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ABSTRACT
Background. The human microbiota plays a key role in health and disease, and
bacteriocins, which are small, bacterially produced, antimicrobial peptides, are likely to
have an important function in the stability and dynamics of this community. Here we
examined the density and distribution of the subclass I lantibiotic modification protein,
LanB, in human oral and stoolmicrobiome datasets using a specially constructed profile
Hidden Markov Model (HMM).
Methods. The model was validated by correctly identifying known lanB genes in
the genomes of known bacteriocin producers more effectively than other methods,
while being sensitive enough to differentiate between different subclasses of lantibiotic
modification proteins. This approach was compared with two existing methods to
screen both genomic andmetagenomic datasets obtained from theHumanMicrobiome
Project (HMP).
Results. Of themethods evaluated, the newprofileHMMidentified the greatest number
of putative LanB proteins in the stool and oral metagenome data while BlastP identified
the fewest. In addition, the model identified more LanB proteins than a pre-existing
Pfam lanthionine dehydratase model. Searching the gastrointestinal tract subset of the
HMP reference genome database with the newHMM identified seven putative subclass
I lantibiotic producers, including two members of the Coprobacillus genus.
Conclusions. These findings establish custom profile HMMs as a potentially powerful
tool in the search for novel bioactive producers with the power to benefit human health,
and reinforce the repertoire of apparent bacteriocin-encoding gene clusters that may
have been overlooked by culture-dependent mining efforts to date.

Subjects Biodiversity, Bioinformatics, Microbiology
Keywords Hidden Markov Model, Lantibiotic, Bacteriocin, Metagenomic, Microbiota

BACKGROUND
Bacteriocins are ribosomally synthesised peptides produced by bacteria that inhibit the
growth of other bacteria. Some classes of bacteriocins are post-translationally modified
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to provide structures beyond those possible by ribosomal translation alone. These
modifications are typically key to the peptide’s functionality, stability and target recognition
(Arnison et al., 2013). Class I bacteriocins, also known as lantibiotics, are one such class
of small (<5 kDa) modified bacteriocins, possessing the characteristic thioester amino
acids lanthionine or methyllanthionine (Perez, Zendo & Sonomoto, 2014). Lantibiotics
form a subgroup within the larger lantipeptide family, which also includes peptides that
lack antimicrobial activity. Lantipeptides can be divided into four different subclasses
(I–IV) based on the distinct biosynthetic enzymes responsible for their posttranslational
modification (Arnison et al., 2013).

Themost commonly studied lantibiotic, Nisin, is a subclass I lantibiotic,meaning that the
linear prepeptide is processed by a LanBC modification system (Arnison et al., 2013). The
core peptide undergoes a two-step posttranslational modification catalysed by two distinct
enzymes—the dehydratase LanB and the cyclase LanC (Xie & Van der Donk, 2004). The
leader sequence, necessary for recognition by the modification enzymes in the two previous
steps, is then removed by the protease LanP to produce the active lantibiotic (Xie & Van
der Donk, 2004). The gene-encoded nature of bacteriocins and bacteriocin-like peptides
makes them ideal candidates for genome mining. In the case of modified bacteriocins, the
structural prepeptide coding sequence often appears alongside the genes encoding proteins
responsible for its modification and export from the cell. However, as more bacteriocins
are discovered, the heterogeneous nature of these prepeptides is becoming ever more
apparent. This diversity, coupled with their small sequence length, makes bacteriocin
prepeptides much more difficult to detect using sequence-homology based searches like
BLAST (Altschul et al., 1990). In an effort to address these obstacles, shifting the focus
to the detection of bacteriocin-associated proteins opens up more avenues of discovery
than simply searching for prepeptide homologs. This provides opportunities to better
determine the frequency with which specific types of bacteriocin gene clusters can be found
in different environmental niches, such as the humanmicrobiota, through the investigation
of metagenomic data.

It has been estimated that the human microbiota comprises approximately 100 trillion
bacterial cells, outnumbering our own cells by a factor of 10 or more (Bäckhed et al.,
2005). A recent publication, however, has argued that the ratio is actually more likely
to be one-to-one, with the numbers being similar enough that each defecation event
may alter the ratio to favour human cells over bacteria (Sender, Fuchs & Milo, 2016). Of
greater consequence than bacterial numbers, however, is the collection of genes encoded
in this metagenome, thought to be approximately 150 times larger than that of the human
genome, with a functional potential far broader than that of its host (Qin et al., 2010).
Regardless of absolute numbers, this dynamic community is thought to contain 100–1,000
phylotypes (Faith et al., 2013; Qin et al., 2010) and play an integral role in human health
and disease (Clemente Jose et al., 2012; Flint et al., 2012). The human microbiota exhibits
robust temporal stability (Belstrøm et al., 2016; Jeffery, Lynch & O’Toole, 2016) perhaps
due, in part, to the protection against invading bacteria conferred by bacteriocins and
other antimicrobials produced in situ (Corr et al., 2007; Moroni et al., 2006; Rea et al.,
2011a). As such, investigation of the density and diversity of bacteriocins produced in the
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microbiome of healthy individuals may shed light on beneficial and harmful members
of this community, and key organisms for maintaining typical, i.e., health-associated,
microbiota composition.

Mining the human microbiota, especially for antimicrobial compounds, has become
a popular area of research in recent years (Donia Mohamed et al., 2014; Walsh et al.,
2015). Due to the availability of metagenomic data generated by large public funding
initiatives such as the Human Microbiome Project in the US (The Human Microbiome
Project Consortium, 2012) and the European MetaHIT consortium (Dusko Ehrlich, 2010),
in silico mining of data has emerged as a new tool that has the potential to identify
antimicrobial-producing probiotics that can modulate the gut microbiota (Erejuwa,
Sulaiman &Wahab, 2014; Walsh et al., 2014), or address the increasingly serious threat to
public health caused by antimicrobial resistance. There are many available tools for mining
the microbiome for antimicrobials, including BAGEL3 (Van Heel et al., 2013), antiSMASH
(Weber et al., 2015), and traditional sequence-based approaches like BLAST (Altschul et
al., 1990). A feature commonly integrated into these tools are Hidden Markov Models
(HMM) (Morton et al., 2015; Van Heel et al., 2013; Weber et al., 2015), a statistical method
often used to model biological data such as speech recognition, disease interaction and
changes in gene expression in cancer (Gales & Young, 2007; Seifert et al., 2014; Sherlock et
al., 2013). Profile HMMs, a specific subset of HMMs, represent the patterns, motifs and
other properties of amultiple sequence alignment by applying a statistical model to estimate
the true frequency of a nucleotide or amino acid at a given position in the alignment from
its observed frequency (Yoon, 2009). Profile HMMs differ from general HMMs as they
move strictly from left to right along the alignment and do not contain any cycles, a feature
that makes them suitable for modelling nucleotide and protein sequence data, and have
been notably utilized to detect viral protein sequences in metagenomic sequence data
(Skewes-Cox et al., 2014). For each column in the multiple sequence alignment, the profile
uses one of three types of hidden state—a match state, an insert state, or a delete state, to
describe residue frequencies, insertions, and deletions, respectively (Yoon, 2009). Profile
HMMs are potentially more sensitive than sequence homology approaches for identifying
more distantly related proteins as they focus on function-dependent conserved motifs that
are theoretically slower-evolving, as opposed to focusing on overall sequence similarity.
Indeed, profile HMMs are known to typically outperform pairwise sequence comparison
methods (such as BLAST) in the detection of distant homologs (Park et al., 1998), at the cost
of greater computational requirements—particularly in alignment scoring and E-value
calculation (Madera & Gough, 2002). Correspondingly, speed is the main advantage of
BLAST over profile HMMs; however, as it is a heuristic algorithm it does not guarantee
identification of the optimal alignment between query and database sequences.

In this study we designed, validated and implemented a Profile HMM to search for
putative subclass I lantibiotic gene clusters in the HMP metagenomes and compared its
performance to some of the tools mentioned above.
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METHODS
Data collection
HMASM (HMP Illumina WGS Assemblies) and HMRGD (HMP Reference Genomes
Data) were downloaded from the Data Analysis and Coordination Centre for the HMP
(http://hmpdacc.org/). A total of 835 bacterial RefSeq protein sequences annotated as
‘‘lantibiotic dehydratase’’ were downloaded from NCBI Protein website (13 Apr 2015) in
FASTA format (listed in Table S1).

Building and validating the new profile hidden Markov model
A global multiple sequence alignment was generated in the aligned-FASTA format
using MUSCLE (v3.8.31) (Edgar, 2004), and a profile HMM was built from the
MSA aligned-FASTA file using the HMMER tool hmmbuild (v3.1b1 May 2013)
(http://hmmer.janelia.org/). For comparison of the newmodel’s performance, HMMER3’s
hmmsearch tool was used, with default parameters, to search the Pfam lantibiotic
dehydratase model PF04738 against the same stool and oral HMASM assemblies (the
sequences used to build this model are listed in Table S2). Positive and negative controls
(listed in Table 1) were used to evaluate the model’s ability to (1) accurately identify
LanB protein sequences, and (2) distinguish LanB protein sequences from other, related,
lantibiotic modification proteins (i.e., LanM, LanKC, and LanL). The controls were also
screened using the PF04738model, theweb-based bacteriocin genomemining tool BAGEL3
(Van Heel et al., 2013), and a traditional BlastP using the nisin-associated lanthionine
dehydratase, NisB, as the driver sequence (GenBank accession number CAA79468.1) to
compare the sensitivity and specificity of each approach. A flowchart of the steps involved
in building, validating and applying a profile HMM is depicted in Fig. S1.

Target sequence translation
TheHMMER3 hmmsearch tool only accepts protein sequences as targets for comparison to
protein profile HMMs, so a python script was created to translate the nucleotide sequences
into protein sequences. The DNA nucleotide sequences were translated in six frames using
the standard genetic code.

Metagenomic screen
The HMMER3 tool hmmsearch was used, with default parameters, to search both the new
LanB profile HMM and the Pfam PF04738 profile HMM (Punta et al., 2012) against the
stool and oral subsets of the Human Microbiome Project’s whole metagenomic shotgun
sequencing assemblies (HMASM). 139 stool communities and 382 communities from eight
different body sites within the oral cavity were screened from the HMP database. These
are listed in Table 2. As an additional comparison of performance, a traditional BlastP
screen was performed on the same metagenomic samples using the previously mentioned
nisin-associated lanthionine dehydratase, NisB, driver sequence. A significance cutoff of
E ≤ 1×10−5 was chosen for both profile HMM and BlastP methods.

Manual examination of randomly selected gene neighbourhoods
A subset of sixty hits were randomly selected and the surrounding region examined to
identify other proteins involved in lantibiotic biosynthesis. Open Reading Frames were
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Table 1 Controls used in validation of the profile HMM, listing the lantibiotic produced and the sub-
class of modification protein responsible for lanthionine dehydration for each strain.

Strain Bacteriocin Subclass

Lactococcus lactis ssp. lactis S0 a,b,c,d Nisin Z LanB
Lactococcus lactis ssp. lactis CV56a,b,c,d Nisin A LanB
Lactococcus lactis ssp. lactis IO-1a,b,c,d Nisin Z LanB
Bacillus subtilis subsp. spizizienii ATCC 6633a,b,c,d Subtilin LanB
Staphylococcus aureus subsp. aureus USA300_FPR3757a,c,d Bsa LanB
Streptococcus mutans CH43a,b,d Mutacin I LanB
Streptococcus mutans UA787a,b,d Mutacin III LanB
Streptococcus pyogenes a,b,c,d Streptin LanB
Staphylococcus epidermidis a,b,c,d Pep5 LanB
Lactococcus lactis subsp. lactis KF147c None –
Streptococcus mutans GS-5 Mutacin GS-5 LanM
Lactococcus lactis subsp. lactis plasmid pES2 Lacticin 481 LanM
Streptomyces cinnamoneus cinnamoneus DSM 4005 Cinnamycin LanM
Bacillus paralichenformis APC 1576 Formicin LanM
Streptococcus salivarius plasmid pSsal-K12 Salivaricin B LanM
Streptomyces venezuelae ATCC 10712d Venezuelin LanL

Notes.
aLanthionine dehydratase protein identified by our model.
bLanthionine dehydratase protein identified by PF04738 model.
cLanthionine dehydratase protein identified by BlastP.
dLanthionine dehydratase protein identified by BAGEL3.

Table 2 Number of metagenomic samples per body site screened.

Site Number of Samples

Attached Keratinized Gingiva 6
Buccal Mucosa 107
Palatine Tonsils 6
Saliva 3
Stool 139
Subgingival Plaque 7
Supragingival Plaque 118
Throat 7
Tongue Dorsum 128

identified using Glimmer v3.02 (Delcher et al., 1999), which were then visualised using
Artemis (Carver et al., 2012) and blasted against the nr database using BlastP.

Genomic screen
HMMER3’s hmmsearch tool was used, with default parameters, to search the new profile
HMM against the draft genomes comprising the gastrointestinal tract subset of the Human
Microbiome Project’s reference genome database.
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Taxonomic classification of LanB-encoding contigs
Taxonomy was assigned to LanB-encoding contigs, as assigned by our profile HMM using
Kaiju (Menzel, Ng & Krogh, 2016). Analysis was performed inMEM runmode using default
parameters and the NCBI non-redundant protein database.

Statistical analysis
Statistical analysis was performed in R (v. 3.1.3) (R Core Team, 2015).

RESULTS
Validation of the profile hidden Markov model
The ability of the newly developed profile HMM and the Pfam lantibiotic dehydratase
model PF04738 to detect LanB-encoding genes were compared using the positive and
negative controls listed in Table 1. The positive controls were selected based on a relevant
book chapter (Rea et al., 2011b) and all are previously characterised bacteriocin producers
for which the sequence of the relevant biosynthetic gene cluster was available. None of
the positive control sequences were used in the building of the model and a graphical
representation of these clusters is presented in Fig. 1. Lactococcus lactis subsp. lactis KF147
was chosen as a negative control because it is of the same subspecies as three of the
positive controls (Lactococcus lactis subsp. lactis S0, Lactococcus lactis subsp. lactis CV56
and Lactococcus lactis subsp. lactis IO-1) but does not produce a bacteriocin. Streptococcus
mutans GS-5, Streptomyces cinnamoneus cinnamoneus DSM 4005, the Lactococcus lactis
subsp. lactis IL1835 plasmid pES2, the Streptococcus salivarious plasmid pSsal-K12, and the
newly characterised formicin producer Bacillus paralicheniformis APC 1576 were chosen as
negative controls to evaluate the ability of themodel to differentiate between LanB (subclass
I) proteins and the LanM proteins-from these strains, which perform a similar, but distinct,
function in the posttranslational modification of subclass II lantibiotics. Streptomyces
venezuelae ATCC 10712 was chosen as the final negative control as it has been reported
to produce a LanL-type lantipeptide (Goto et al., 2010). Examination of the ATCC 10712
genome using BAGEL3 identified several other orphan lantibiotic modification genes,
including those encoding putative LanL, LanM, LanD and LanB proteins. The genome
also appeared to encode a subclass III lantipeptide cluster comprised of genes potentially
encoding a structural protein, two ABC-type transporters and a LanKC modification
protein. Notably, there have been no reports of subclass I lantibiotic production by ATCC
10712 despite an in-depth investigation into the strain’s lantipeptide producing capability
(Goto et al., 2010), and BAGEL3 identified no other lantibiotic-related genes in the area of
interest leading us to determine that this was a false positive.

The newly developed LanB profile HMM correctly identified the LanB protein in all nine
positive controls, while the PF04738 profile HMM correctly identified the LanB protein
in eight of the nine positive controls, failing to detect the Bsa-associated LanB protein in
Staphylococcus aureus subsp. aureusUSA300_FPR3757. Both the LanB and PF04738 profile
HMMs returned no false positives when searched against the seven negative controls used
in this study.
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Figure 1 BAGEL3 output of putative bacteriocin gene clusters identified in the positive controls used
for validation of our new profile HMM. Each predicted open reading frame is colour-coded based on the
role it plays in lantibiotic biosynthesis.

The web version of BAGEL3 correctly identified the lantibiotic modification proteins
in all positive and negative controls, excepting the aforementioned ATCC 10712-encoded
LanB concluded to be a false positive. Interestingly, examination of these controls with the
BlastP method described previously, failed to correctly identify the LanB proteins encoded
by Streptococcus mutans CH43 and Streptococcus mutans UA787, although the former
(E = 3×10−4) fell just short of the significance cutoff (E ≤ 1×10−5). BlastP also incorrectly
identified a LanB protein in the negative control Lactococcus lactis subsp. lactis KF147.

Metagenomic screen
A search with the newly developed profile HMM against the HMASM database identified
399 hits from the stool metagenomes and 1169 hits from the oral metagenomes. In
contrast, the PF04738 model identified 288 hits from the stool metagenomes and 686 from
the oral metagenomes. Our model reported at least one putative lantibiotic gene cluster
in 81% of oral metagenomes and 86% of stool metagenomes, compared to 73% and 76%,
respectively, identified by the Pfam model. The distribution of hits per sample is presented
in Fig. 2. BlastP identified 231 hits from the stool metagenomes and 374 hits from the
oral metagenomes. The results of these three approaches were compared to ascertain what
proportion of significant hits was common to more than one search method. The results
of this comparison are summarised in Fig. 3 and show that the newly developed profile
HMM identified the greatest number of lantibiotic modification genes in datasets from
both body sites, while the BlastP approach identified the fewest.

The overall results of these combined screening approaches, illustrated in Fig. 4 and
summarised in Table S3, show a higher number and density of hits in the oral metagenomes
than in the stoolmetagenomes (Wilcoxon rank sum test, p= 1.399e–05) and they also reveal
a large variation in density of hits between the different sites within the oral metagenomes.
This pattern was also reflected in four of the Oral subsites, namely Saliva, Subgingival
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Figure 2 Barchart depicting the distribution of lanthionine dehydratase protein numbers identified
by our new profile HMM inmetagenomic samples from the stool and oral microbiota.

Plaque, Supragingival Plaque and Tongue Dorsum, all of which had a significantly higher
LanB density than the Stool metagenomes (p= 0.0258,0.0014, 6.7e–09, and 9.4e–06,
respectively). Within the Oral samples, our model revealed a large variation in density
of hits between different subsites. The throat metagenomes had the lowest LanB density,
and exhibited significantly lower densities than Saliva (p= 0.0287), Subgingival Plaque
(p= 0.009), Supragingival Plaque (p= 0.0016), and TongueDorsum (p= 0.0031) subsites’.

Manual examination of selected gene neighbourhoods
Sixty hits, listed in Table S4, were randomly selected from those identified by the new profile
HMM, 45% (27/60) of which were identified by at least one of the other two methods,
and manually examined to determine if a bacteriocin gene cluster could be identified. A
total of 42% (25/60) of these were not further analysed because the often relatively short
regions assembled from the shotgun data prevented the identification of a full lantibiotic
gene cluster. However, of the 35 remaining clusters, 28 (80%) appeared to encode multiple
genes involved in the biosynthesis of bacteriocins and thiopeptides. These genes encode
proteins involved in posttranslational modification, bacteriocin transport, leader cleavage
and regulation (Fig. S2).

A total of 81 hits identified by BlastP were missed by both profile HMM approaches.
A total of 50 of these originated in the stool metagenomes and were selected for manual
annotation to determine if an overall structure or similarity could be observed. A total of 29
of these 50 were part of clusters whose components showed relatively low sequence identity
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Figure 3 Venn diagram illustrating the numbers of lanthionine dehydratase proteins reported in stool
(A) and oral (B) metagenomic data by single andmultiple methods.
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Figure 4 Comparison of lanthionine dehydratase density by body site reported by all three methods.
Insert shows overall comparison between stool and oral environments.

(39–50%) with proteins responsible for the biosynthesis of thiopeptides and lantibiotics,
including a putative lanthionine dehydratase, a radical SAM/SPASM domain-containing
protein, a thiopeptide-type bacteriocin biosynthesis domain-containing protein, an S41
family peptidase, and a protein of unknown function (DUF4932) predicted to be a putative
metalloprotease. All 50 manually annotated gene clusters are available in GENBANK
format and an example of this cluster architecture is summarised in Table S5.

Genomic screen
The draft genomes of the gastrointestinal tract subset of the HMRGD were also used as
a database and searched using the new profile HMM. This resulted in the identification
of seven hits, including two strains of Coprobacillus, a potentially probiotic genus (Stein
et al., 2013; Yan et al., 2012) (Table 3). From these seven genomes, only three lantibiotic
gene clusters were identified by BAGEL3, these are illustrated in Fig. 5. Although this
low frequency of lanthionine dehydratase proteins in the genomic dataset (0.006 hits/Mb)
contrasts with the findings of themetagenome screen reported above, it is in agreement with
previous reports of relatively low subclass I lantibiotic density within the humanmicrobiota
(Walsh et al., 2015; Zheng et al., 2014). A possible explanation for this significantly lower
gene density (Welch’s two sample t -test, p= 1.232e−10) is that the subclass I lantibiotic
clusters identified in the metagenomic data by the new profile HMM are present in the
genomes of rarer members of the gut microbiota, which are not represented in the HMP
reference genome database.

Walsh et al. (2017), PeerJ, DOI 10.7717/peerj.3254 10/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.3254#supp-5
http://dx.doi.org/10.7717/peerj.3254


Figure 5 BAGEL3 output of three putative bacteriocin gene clusters identified from the gastrointesti-
nal tract subset of the HumanMicrobiome Project’s reference genome database by our new profile
HMM. (A) Coprobacillus sp. D6 (B) Coprobacillus sp. 29_1 (C) Dorea formicigenerans 4_6_53AFAA. Each
predicted open reading frame is colour-coded based on the role it plays in lantibiotic biosynthesis.

Table 3 Detailed information of all lanthionine dehydratase proteins identified in the gastrointestinal
tract subset of the HumanMicrobiome Project’s reference genome database using our profile HMM.

Accession Strain E Value

JH414709 Bacillus sp. 7_6_55CFAA_CT2 9.0E–16
GL636578 Coprobacillus sp. 29_1 3.7E–67
AKCB01000002 Coprobacillus sp. D6 4.5E–68
JH126516 Dorea formicigenerans 4_6_53AFAA 2.3E–81
ACEP01000029 Eubacterium hallii DSM3353 9.4E–27
KI391961 Fusobacterium nucleatum subsp. animalis 3_1_33 2.2E–09
GG657999 Fusobacterium sp. 4_1_13 7.1E–09

Taxonomic classification of LanB-encoding contigs
TheMEM runmode of Kaiju works by searching for exact matches of given length between
the query and database sequences, in the case of multiple hits of the same length in different
taxa, a lowest common ancestor is inferred. Kaiju classified 378 of 399 LanB-encoding
contigs. Of these, 232 were classified to the species level—however, 68 were removed as
their exact species was ambiguous. Of the remaining 164 classified contigs, 66 (40.2%) were
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represented at the species-level in the previously screened HMRGD database. The most
abundant genus was Alistipes, accounting for 14.03% of LanB-encoding cotigs identified
by our model, followed by Blautia (7.77%), Clostridium (4.51%), and Bacteroides (3.76%)
(Table S6).

DISCUSSION
Bacteriocin production enhances the competitiveness of bacteria living in complex
communities and has the potential to be harnessed for the benefit of human health. The
goal of this study was to develop a profile HMM and to assess its ability, in comparison with
several other approaches, to detect putative subclass I lantibiotic gene clusters in human
metagenomic datasets. Through this process it was also possible to evaluate the potential
frequency and distribution of these bacteriocin gene clusters in the human microbiota.

To validate the model, nine positive controls and five negative controls were selected
to evaluate its sensitivity and specificity. These controls were selected based on reported
bacteriocin production; all positive controls were known producers of subclass I lantibiotics
while the negative controls produced either different subclasses of lantibiotics or none at
all. Following validation, genomic and metagenomic data corresponding to two niches
within the human microbiome were chosen as the focus of this study. The first of these
niches was human stool and was selected as the corresponding samples were most likely
to yield bacteriocin producers with the potential to modulate undesirable microbiota
profiles associated with obesity, colorectal cancer, type 2 diabetes or inflammatory bowel
diseases due to their ability to survive and colonise this environment. Secondly, human
oral communities were examined as a previous study showed that they contained, by
far, the greatest proportion of bacteriocin structural genes across a number of human
metagenome samples (Zheng et al., 2014). Zheng et al. reported that 80% of class I
bacteriocins (lantibiotics) and 89% of all bacteriocins identified using their method
originated in the oral metagenomes, while the stool metagenomes contained just 15% and
7%, respectively. The same study reported that 88% of samples from the oral cavity and
73% of samples from the gut contained at least one bacteriocin (regardless of class), while
the new profile HMM reported these statistics as 81% and 83%, respectively for subclass
I lantibiotics alone. The in silico screen carried out with the profile HMM is consistent
with the observation by Zheng et al. (2014) by yielding a higher number and density of hits
from the oral, compared to the stool, metagenomic data. Furthermore, the large variation
in density of hits between sites within the oral environment suggests that lantibiotic
production confers a greater advantage in saliva, subgingival plaque, supragingival plaque,
and tongue dorsum communities compared to communities from the throat. This may
be due to the direct benefits of antimicrobial activity but could also involve the intra-
and interspecies signalling roles attributed to lantibiotic peptides (Upton et al., 2001),
particularly in the intensely competitive microbial biofilm environment of dental plaque.

One of the most interesting observations from the study was the large variation in the
numbers of lanB genes reported by the three different approaches. The BlastP approach
identified, by far, the lowest number of significant hits overall and the lowest in every
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body site examined, except for the saliva microbiome. Our model identified more than
double the number of hits provided by the BlastP-based approach, in line with the
aforementioned knowledge that profile HMMs can detect as much as three times as many
distant homologs than pairwise methods (Park et al., 1998). Our model also identified a
greater number of LanB proteins than the Pfam PF04738 model when used to search the
same data using the same parameters. While the PF04738 model relates to the C-terminus
of the lanthionine dehydratase protein, responsible for the glutamate elimination step of
lantibiotic modification (Ortega et al., 2015), the newly developed profile HMM takes the
full length of the LanB protein into consideration, thereby providing greater predictive
power. Our model, in addition to identifying more potential LanB proteins, also exhibited
greater sensitivity and specificity during validation than all other methods used to analyse
the controls. As stated above, profile HMMs are already known to be particularly sensitive,
the validation step, however, also suggests that they are more specific than the other
methods evaluated as they were the only approach which did not return any false positives.
When selecting the controls used to examine the performance of the different approaches,
greater consideration was given to the quality of these controls than their quantity. Only
controls with experimentally characterised lantibiotic production were included in the
validation dataset. This relatively small control group means that, although the results of
the validation step may explain the contrasting numbers of LanB proteins reported by our
model and the PF04738model, it cannot be said for certain that ourmodel performedbetter.

Zheng et al. using the same metagenomic data that was the focus of this study, identified
17 potential subclass I lantibiotics from stool samples and 76 from oral samples, a much
lower frequency of detection than in this study, probably due to the differentmethodologies
used. That study focused on searching for proteins similar to those in BAGEL3’s manually
curated database, an approach which likely lost sensitivity because bacteriocin precursor
peptides can differ considerably at primary sequence level. Furthermore, the screen
employed a BLAST-based approach which, as demonstrated here, exhibited the lowest
number of significant hits reported.

To investigate the areas surrounding the LanB-encoding genes identified by our model
we randomly selected thirty positive hits from the oral and stool metagenome screens for
manual examination. This approach revealed that several of the hits were on scaffolds that
were either too small to contain a full gene or did not contain the gene’s start codon. This
was most likely as a consequence of the fragmented nature of the metagenomic data, as
opposed to identification of true false positives by the model and would probably occur
regardless of the method employed. A total of 42% (25/60) of hits selected for manual
examination were discarded based on these criteria. It also revealed that a considerable
number of hits exhibited low (∼30%) similarity to putative thioesterases in the nr protein
sequence database, highlighting that lanthionine dehydratases are relatively-closely related
to proteins involved in the posttranslational modification of thiopeptides, most likely those
responsible for dehydration of serine and threonine residues (Garg, Salazar-Ocampo &
van der Donk, 2013). The similarity between these dehydratase proteins suggests a possible
common ancestor protein (Kelly, Pan & Li, 2009). Another possible explanation relates
to the fact that all of the proteins annotated as thiopeptide modification proteins are
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putative annotations and none, to our knowledge, have been confirmed as such in vitro.
It is possible, therefore, that these may simply be lanthionine dehydratases which have
been incorrectly annotated due to automatic software and incomplete/under-curated
databases. The majority of clusters identified contained genes encoding both LanB and
LanC modification proteins, while many also contained a leader cleavage and activation
peptidase and/or ABC transporter proteins for export of the mature peptide, suggesting
that these have the potential to encode a functional lantibiotic.

To evaluate the model’s performance in a genomic context we applied it to the
gastrointestinal tract subset of the HMP’s reference genome database and compared
the results to our previously published study which used the online bacteriocin genome
mining tool BAGEL3 to screen this same database (Walsh et al., 2015). The results of the
two screens were startlingly different and served to highlight the variation in results that can
arise from applying different methods to the same data. Interestingly, the gastrointestinal
tract reference genomes encoded a significantly lower frequency of LanB hits than the
stool metagenomic samples. Taxonomic classification of the 399 LanB-encoding contigs
identified by our newmodel from the stool metagenomes revealed that only 40.2% of these
potential lantibiotic producing strains were represented in the reference genome database,
suggesting that the majority of these lantibiotics were encoded by rarer members of the
gut microbiota or those that have not previously been identified as important. Taxonomic
classification of these LanB-encoding contigs also served to highlight patterns in the results
of the three approaches used (Fig. S3), for example our model identified Allokutzneria,
Coprococcus, Enterovibrio, Paenibacillus, and Tenicibaculum-encoded LanB proteins that
were completely missed by the Pfram and BlastP approaches.

CONCLUSIONS
Across the oral and stool communities examined, this study identified 2007 unique
putative subclass I lantibiotic biosynthetic gene clusters by three different methods, further
emphasising the tremendous potential that the human microbiota has as a source of
therapeutic compounds. As this study was performed entirely in silico, the next challenge
lies in experimentally identifying and characterising these putative bacteriocins to identify
those with the ability to desirably modulate the microbiota for the treatment of disease.
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