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ABSTRACT
In this paper, we present a 4G trace dataset composed of client-side
cellular key performance indicators (KPIs) collected from twomajor
Irish mobile operators, across different mobility patterns (static,
pedestrian, car, bus and train). The 4G trace dataset contains 135
traces, with an average duration of fifteen minutes per trace, with
viewable throughput ranging from 0 to 173 Mbit/s at a granularity
of one sample per second. Our traces are generated from a well-
known non-rooted Android network monitoring application, G-
NetTrack Pro. This tool enables capturing various channel related
KPIs, context-related metrics, downlink and uplink throughput,
and also cell-related information. To the best of our knowledge,
this is the first publicly available dataset that contains throughput,
channel and context information for 4G networks.

To supplement our real-time 4G production network dataset, we
also provide a synthetic dataset generated from a large-scale 4G
ns-3 simulation that includes one hundred users randomly scat-
tered across a seven-cell cluster. The purpose of this dataset is to
provide additional information (such as competing metrics for users
connected to the same cell), thus providing otherwise unavailable
information about the eNodeB environment and scheduling prin-
ciple, to end user. In addition to this dataset, we also provide the
code and context information to allow other researchers to generate
their own synthetic datasets.
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1 INTRODUCTION
Since the dawn of the first wireless cellular network in late 70’s
mobile network evolution has exploded, resulting in capabilities
and services beyond the original voice communication design. Forty
years later, mobile handsets are part of our everyday routine with
a wide variety of use cases, including office related tasks (read-
ing and sending emails, making appointments), text messaging,
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web browsing, playing games and, consuming multimedia content.
Mobile device usage has risen from 10% in 2011 to just over 36%
by 2018 [20], with mobile data traffic growing 18x over the last
five years. Furthermore, cellular data (4G) accounted for 69% of all
mobile traffic in 2016, while 3G accounted for 24%, while cellular
speeds grew 3x from an average of 2 Mbit/s in 2015 to 6.8 Mbit/s in
2016 [5]. With these rates expected to grow by orders of magnitude
when the next iteration of the cellular standard, known as 5G, is
deployed in 2020.

However current 4G data throughput rates can fluctuate over
a period of few seconds, due primarily to scheduling decisions at
the cell tower, and sudden changes in the underlying radio channel.
These changes are caused by inter-cell interference, congestion due
to a number of devices per cell, and location of the device rela-
tive to the cell edge. This throughput variation is inherently a part
of the underlying communication system since the first wireless
networks and will be further exacerbated in 5G due to technical
issues such as non-line of sight and a reduction in overall trans-
mission distance. This variations in throughput can limit the user
Quality of Experience (QoE), especially when they cause visible
degradation in viewable quality as can occur while streaming audio
or video. Underlying network protocols can mitigate these issues,
such as TCP whose design reflects throughput variation by embed-
ding an exponential moving average (EWMA) statistic to adapt to
rate-distortion [6]. Additionally, adaptation algorithms proposed
for HTTP Adaptive streaming (HAS) [21] can further combat the
challenge of consistent quality through buffering and graceful adap-
tation of video quality. One of the main hurdles for these adaptation
algorithms is a lack of a broad cellular dataset that captures these
throughput variations, especially when combined with channel
and context metrics, on which a solution can be designed and com-
pared with other state-of-art algorithms. Recently, researchers have
recognised this problem, which resulted in a number of datasets
collected over different wireless technologies and video content
datasets [18].

In this paper, we present two datasets: the first collected from
real 4G production networks and the second a synthetic dataset
generated from a large-scale 4G ns-3 [2] simulation. In our pro-
duction dataset, we collected traces from two major Irish mobile
operators, with different mobility patterns (static, pedestrian, car,
bus and train). Relative to our research into adaptive video stream-
ing, our initial goal is to provide a standard dataset platform for
comparison of various HAS streaming approaches. However, in
addition to throughput values, we also collected information about
channel condition for the client in respect to serving eNodeB and
neighbouring cells, GPS positions of the client and serving eNodeB,
client’s speed, and handover events. All of this information allows
a multi-purpose analysis beyond our original HAS use cases, such

https://doi.org/
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as handover prediction, coverage analysis, mobility prediction etc.
While in our synthetic dataset, we utilise a large-scale 4G ns-3 simu-
lation that includes 100 users randomly scattered across a seven-cell
cluster. The purpose of the synthetic dataset is to provide additional
information (competing metrics for users connected to the same
cell), abstracting eNodeB environment and scheduling principles,
and ultimately provide a means of large-scale evaluation of key per-
formance indicators in multi-cell mobility scenarios. To the best of
our knowledge, our production dataset is the first publicly available
dataset that contains throughput, channel and context information
for 4G networks.

The remainder of this paper is organised as follows. Section 2
describes related work. The dataset collection and captured met-
rics are explained in Section 3, while Section 4 explores statistical
traits of the production and synthetic dataset for different mobility
patterns. In Section 5 we layout possible use cases, while Section 6
outlines future work and our conclusion.

2 RELATEDWORK
Previous datasets in this area, focused primarily on the variance
in available bandwidth and typically offered a very limited set of
device metrics, such as velocity, GPS and signal strength. We begin
with Bokani et al. [3], who offered a dataset, collected from 3G and
4G networks, consists of throughput measurements logged every
ten seconds, a timestamp for same and GPS coordinates of the user
device itself. The authors utilised a single mobile commute pattern
in a metropolitan scenario, and repeated multiple trails within this
pattern, warranted by the evidence that network throughput can
vary significantly for the same route. They collected a large number
of samples across the same path to get statistically significant results
on network performance. However, their dataset has a low sampling
granularity (ten seconds) and only contains throughput and a very
limited set of device values.

Similarly, Xiao et al. and Li et al. collected bandwidth traces over
3G and 4G network respectively [11, 25]. In both papers, the authors
use MobiNet1, a custom developed non-rooted android application
for downloading content using TCP. The majority of both datasets
are collected in high-speed mobility environments (train) where
speeds can rise to 310 kph. The content of the datasets consists of
information such as application throughput, signal strength, de-
vice velocity and eNodeB id. Riiser et al. [17] obtained bandwidth
logs from a 3G network using different mobility patterns; these
included tram, train, metro, bus, ferry, and car. The dataset con-
tains a sample granularity in the order of seconds and provides
additional information such as timestamp, GPS coordinates of the
device, and bandwidth throughput. Also, Hooft et al. [23] used
the same approach for collecting 4G network traces for analogous
mobility patterns, foot, bicycle, bus, tram, train, and car. However,
all these traces focus on acquiring throughput values with high
sample granularity. Even though collected in a wireless environ-
ment, none of the previous datasets contain any information about
the cellular channel. In comparison to these papers, our dataset
includes repeated trails as well as one-second sampling granularity

1http://www.wandoujia.com/apps/thu.kejiafan.mobinet

from a more diverse set of routes (bus, pedestrian, train and com-
mute routes) coupled with both channel and context metrics for
improved cellular and device feedback.

In our research, these datasets provide sufficient throughput
information to evaluate the performance of state-of-art HAS algo-
rithms that determine the streamed video quality in response to
changes in the operating conditions. These algorithms typically
adopt a rate-based and buffer-based strategy. Rate-based algorithms
base their decision for the next chunk rate on a series of the previ-
ously downloaded chunk’s throughput, with FESTIVE [10] being
a well-known algorithm utilising a rate-based approach. Buffer-
based algorithms map playback buffer levels to the throughput
rate for the next segment. BBA-1 and BOLA [8, 19] are one of a
number of algorithms that rely on this technique. However, most
state-of-art algorithms use a hybrid strategy, combining both rate
and buffer-based methods [4, 28].

Xie et al. [26] recently use channel information from the wire-
less channel in addition to the throughput rate to make a more
intelligent decision for the next segment quality. Also, a new strat-
egy emerged recently, relying on throughput forecasting [29] to
optimise a quality selection of segments. As a result, there are con-
siderable efforts to accurately predict throughput for the next x
seconds in the future by leveraging the channel information in ad-
dition to the throughput rate [27], and our own research [16]. Also,
context information such as UE’s GPS position, velocity, eNodeB
GPS position and distance between UE and serving eNodeB can be
used for user movement prediction and resource allocation [22].
Wang et al. [24] utilise these metrics for UEmovement and direction
prediction to minimise the number of handovers. For evaluating
and comparing these novel techniques, new datasets are needed
containing information beyond throughput, such as the channel
and context metrics provided in the dataset presented in the paper.

3 DATASET COLLECTION
For the production dataset collection, we use the Android device
G-NetTrack Pro mobile network monitoring tool2. This tool enables
the capturing of various channel related key performance indicators
(KPIs), context-related metrics, downlink and uplink throughput,
and also cell-related information. The main advantage of this ap-
plication is that it does not require a rooted phone. In contrast
to G-NetTrack, Li and al. developed an open-source software tool
MobileInsight [12] that can capture radio information directly from
chipsets in real time. However, the software requires a rooted mo-
bile phone and works with Qualcomm SoCs only. This tool is similar
to proprietary Qualcomm’s QXDM3 diagnostic software. While the
non-rooted aspect of G-NetTrack is beneficial, there are a number
of limitations to the application. Firstly, the minimum granularity
of collected samples is one second. Having low-resolution KPIs,
e.g., can increase prediction error as reported in [16]. Secondly,
the tool uses the standard Android library (telephony class) for
reporting channel metrics. Implementation of these callback func-
tions depends on the manufacturer of the mobile system on a chip
(SoC) chipsets. Also, not all parameters are reported for different
cellular technologies (2G/3G/4G). For our dataset, we test mobile

2http://www.gyokovsolutions.com/
3https://www.qualcomm.com/
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devices from three major mobile chipsets manufactures, Qualcomm
(Snapdragon), Samsung (Exynos) and Huawei (Kirin). Ultimately,
the mobile device chosen is a Samsung J5, which provides a means
of capturing all 4G network metric KPIs.

For our production dataset, we collected 135 traces for various
mobility patterns across two major Irish operators, with different
data limit caps. The first provider (operator A) gives unlimited 4G
data, while the second provider (operator B) offers only 15GB per
month. However, the second operator provides 60GB on social
media including Youtube streaming. For the first mobile operator,
we continuously download a file (connection-oriented, TCP) with
an average duration of 15 minutes per trace (with a five-second
pause after the download completes). We use the same approach
for the second operator, but once the data cap is reached, we extend
the approach by downloading content from Youtube. We generate
a URL for the video from Youtube to exploit the higher data cap for
social media. For each trial, regardless of measurement approach,
we use large file (> 50MB) to allow the TCP sending window to
ramp up to the maximum size. As stated, every sample is logged
with one-second granularity. As a result, average trace duration is
15 minutes.

To provide a comparison between operators, we perform mea-
surements trials for both operators at the same time (we use the
same mobile device model to limit the impact of device hardware
on throughput rate and channel metrics). This subset of traces per-
mits comparison of mobile operators performances across different
parameters (throughput and channel KPIs). Competing tests use
the same download approach for both cellular operators (file or
video download).

The following outlines the various KPIs within our production
dataset:
• Timestamp: timestamp of sample
• Longitude and Latitude: GPS coordinates of mobile device
• Velocity: velocity in kph of mobile device
• Operatorname: cellular operator name (anonymised)
• CellId: Serving cell for mobile device
• NetworkMode: mobile communication standard (2G/3G/4G)
• RSRQ: value for RSRQ. RSRQ Represents a ratio between
RSRP and Received Signal Strength Indicator (RSSI). Sig-
nal strength (signal quality) is measured across all resource
elements (RE), including interference from all sources (dB).
• RSRP: value for RSRP. RSRP Represents an average power
over cell-specific reference symbols carried inside distinct
RE. RSRP is used for measuring cell signal strength/coverage
and therefore cell selection (dBm).
• RSSI: value for RSSI. RSSI represents a received power (wide-
band) including a serving cell and interference and noise
from other sources. RSRQ, RSRP and RSSI are used for mea-
suring cell strength/coverage and therefore cell selection
(handover) (dBm).
• SNR: value for signal-to-noise ratio (dB).
• CQI: value for CQI of a mobile device. CQI is a feedback
provided by UE to eNodeB. It indicates data rate that could
be transmitted over a channel (highest MCS with a BLER
probability less than 10%), as the function of SINR and UE’s

receiver characteristics. Based on UE’s prediction of the chan-
nel, eNodeB selects an appropriate modulation scheme and
coding rate.
• DL_bitrate: download rate measured at the device (applica-
tion layer) (kbit/s)
• UL_bitrate: uplink rate measured at the device (application
layer) (kbit/s)
• State: state of the download process. It has two values, either
I (idle, not downloading) or D (downloading)
• NRxRSRQ & NRxRSRP: RSRQ and RSRP values for the neigh-
bouring cell.
• Cell_Longitude & Cell_Latitude: GPS coordinates of serving
eNodeB. We use OpenCellid4, the largest community open
database providing GPS coordinates of cell towers.
• Distance: distance between the serving cell and mobile de-
vice in metres.

We perform 4G measurement trials (unless otherwise stated) across
six different mobility patterns summarised in Table 1.

Table 1: Mobility Patterns
Type Summary
Static Static trials (indoor)
Pedestrian Walking trials around Cork city, Ireland
Bus Trials include urban and suburban cases
Car Trials include urban and suburban scenarios
Train Travelling between Cork - Dublin (240km)

and Cork - Farranfore (75km). Combination
of 3G and 4G.

4 DATASET OVERVIEW
ProductionDataset In this section, we give a short overview of our
dataset. We categorise our traces as commute traces as we collected
the majority of traces during morning and evening hours while
going from home to work and back, and begin with an overview of
our trace models:

Static As the name implies, these traces were collected indoors
with mobile devices being stationary. This scenario represents how
people typically tend to use their smart devices. However, this case
has the least appeal as the throughput is quite stable with relatively
low variations.

Pedestrian Outdoor traces while walking around Cork city centre
using a number of different routes. Characteristics of collected
traces (average rate and standard deviation) are similar to the static
case with slightly more variation due to channel condition and
handovers.

Bus Bus traces using public transport around Cork city. We gath-
ered traces during weekdays and at the weekends to capture differ-
ent congestion patterns.

Car Car traces over the city and suburban routes. This sub-
category of our dataset contains the most traces.

Train While our goal is to collect 4G traces, a majority of the
train traces are a mixture of 3G and 4G for both operators, due to
the availability of 4G within major urban areas only.

We now provide a more detailed overview of the Throughput,
Channel and Context information provided in our dataset:
4https://opencellid.org/
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Figure 1: Time-series of application throughput for different mobility patterns and mobile operators

Table 2: Average and Variation Range of Application Throughput (Mbit/s) across different mobility patterns and mobile oper-
ators

Mobility Patterns
Operator Static Pedestrian Bus Car Train

A
B

Avg.
5.3
42.6

Var. Range
(0.9, 9.3)
(21.3, 77.2)

Avg.
9.9
18.2

Var. Range
(0.4, 28.0)
(5.6, 34.2)

Avg.
8.0
13.5

Var. Range
(0.08, 20.3)
(2.0, 29.1)

Avg.
11.4
22.3

Var. Range
(0.92, 27.9)
(3.2, 49.1)

Avg.
4.7
6.6

Var. Range
(0, 11.3)
(0.3, 16.5)

Num. Traces 15 31 16 53 20
Trace Dur. (m) 254 560 180 1265 650

Throughput Figure 1 illustrates a time-series of application
throughput for both network operators across different mobility
pattern setups (we show randomly selected competing traces). Fur-
thermore, Table 2 depicts average application throughput and vari-
ation including the number of traces and total trace duration across
all traces for different mobility pattern categories and two mobility
operators. By definition, variation range is a percentile-wise mea-
sure of variation. Let’s define R as application throughput during
time interval the (t , t + 1). Then we can define variation range as
the interval [RL ,RH ], where RL represents a 10th percentile of R,
and analogously RH a 90th percentile of R [9]. This range defines
boundaries where 80% of measured throughput lies. From the val-
ues shown in Table 2, operator B has a significantly higher average
than operator A for all mobility pattern cases. There could be dif-
ferent reasons for this observation including better coverage, and
operator’s internal traffic policy (e.g., traffic limitation and shap-
ing). Looking at each case individually, there are different changes
in average value and variation range depending on the operator
itself, e.g., for A, a static case has significantly lower average than
the pedestrian case. A rationale for this result could be in cover-
age discrepancy for indoor and outdoor scenarios. We note that
experiments run indoor have a weaker signal in 90% of cases.

Channel Measured throughput is a combination of the eNodeB
environment (load, scheduler policy), wireless channel characteris-
tics and mobile device receiver capabilities. Additional information
about the channel environment in addition to throughput values
can increase accuracy and granularity, paving a way to more accu-
rate prediction. In Figure 2, we analyse this relationship and show
boxplot of CQI against application throughput. Boxplot shows the
range of throughput values for each CQI separately. Overall, we
can observe an increasing trend in throughput proportional to CQI.
However, the range of throughput values oscillates significantly
for each CQI. Furthermore, for operator A, the average throughput

of CQI equals 14 is lower than the throughput for CQI 15. A simi-
lar observation holds for operator B as well. Finally, this result is
strengthened even more with the calculation of correlation between
throughput and CQI, yielding a relatively low correlation coeffi-
cient of 0.6 and 0.38, for operator A and B, respectively. However,
this correlation is even lower for other cases; in particular for the
static case where the correlation coefficient equals 0.35. CQI is cal-
culated on the mobile device (based on wireless channel condition)
and represents the maximum rate the device can receive with low
error. However, actual rate (number of allocated resources blocks
per frame) is assigned by eNodeB (scheduler). Many factors can
influence eNodeB decision, including the number of users, other
users throughput demand, their CQIs values, etc.
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Figure 2: Boxplot of CQI vs application throughput for both
network operators (car)

Context Our dataset provides additional context information
such as device’s GPS positions and velocity. Figure 3 shows a ran-
domised selected train route from our dataset. We provide estimated
GPS coordinates of serving eNodeBs and distance between them
using Haversine formula.

Additionally, Table 3 shows average and variation range of device
velocity across different mobility patterns and network operators.
Intuitively, speed increases as we move from static (not shown) to
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Table 3: Average and Variation Range of device velocity (kph) across different mobility patterns and mobile operators
Mobility Patterns

Operator Pedestrian Bus Car Train

A
B

Avg.
2.4
1.5

Var. Range
(0.0, 4.0)
(0.0, 3.0)

Avg.
17.2
10.7

Var. Range
(0.0, 34.0)
(0.0, 30.0)

Avg.
23.7
35.1

Var. Range
(0.0, 54.0)
(0.0, 56.0)

Avg.
60.6
53.9

Var. Range
(0.0, 109.4)
(0.0, 114.0)

Figure 3: GPS coordinate for the train mobility pattern

pedestrian and finally train scenario. A similar observation holds for
variation range as well. Velocity values are alike for both network
operators as the same phones/patterns were used for both operators.

Caveats This production dataset contains a considerable amount
of information. However, there are a number of limitations. Firstly,
our sampling granularity is only one second. This limitation is due
to G-NetTrack and the Google channel API. Even with direct access
to the API, granularity does not significantly increase [27]. Sec-
ondly, not all records have all values. The most prominent example
represents RSSI, which doesn’t get logged for every sample. Sim-
ilarly, for geo-locations of eNodeB, we use opencell.org database.
Unfortunately, this database doesn’t contain GPS coordinates for
all eNodeBs. One approach we use to deal with missing data is
imputation methods [14].

Synthetic Dataset To supplement our real-time 4G production
network dataset, we also provide a synthetic dataset generated
from a large-scale 4G ns-3 simulation. As pointed out, our pro-
duction dataset has medium sample granularity and only contains
information gathered at the client. As an alternative, we provide
simulation traces that have high granularity (250ms) and comple-
ment the simulation traces with network-side measurements. These
additional pieces of information can only be collected at the net-
work/operator, which in practice, is a ponderous task. We provide
additional information such as competing metrics for users con-
nected to the same cell, leveraging eNodeB scheduling principles,
and ultimately provide a means of large-scale evaluation of key
performance indicators in multi-cell mobility scenarios.

Due to space limitation, we provide a brief overview of our syn-
thetic dataset, with full details of trace output, simulation testbed,
and associated code and setup located at our website5. In our syn-
thetic dataset, we utilise a large-scale 4G ns-3 simulation that in-
cludes 100 users randomly scattered across a seven-cell cluster.
Every user has a constant moving speed (80 kph) and uses Gauss-
Markov mobility model for movement emulation. Half of the de-
vices are downloading at 32 Mbit/s rate, and the other half are
uploading at 2Mbit/s rate. We use UDP instead of TCP as the trans-
port protocol. A motivation for this decision is a removal of any
adaptation mechanisms from the client.

5http://www.cs.ucc.ie/misl/research/datasets/ivid_4g_lte_dataset/
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Figure 4: The autocorrelation coefficient of throughput

Interestingly, if we compare autocorrelation coefficient of through-
put for different time lags between simulation and the real case we
conclude that simulation throughput exhibits more randomness,
as depicted in Figure 4. This result is intuitive as simulation uses
pseudo-random generators so one can expect this result.

5 POSSIBLE USE-CASES
In this section, we outline some of the possible use-cases for the
dataset. We start with HAS algorithms, where our dataset enables
the comparison of different algorithm strategies depending on the
information they require for optimisation of chunk selection. Most
algorithms calculate on throughput samples only, with some of
them requiring finer granularity than chunk duration. However,
going beyond throughput requirement, new strategies mandate
channel and context information, allowing them to make more
accurate throughput prediction. The proliferation of Commercial
Virtual Reality (VR) technology is increasing download demands
and is a distinct candidate for evaluation using our dataset. Al-
though VR typically uses progressive download, it is expected that
VR will switch to HAS mechanism in the near future [15]. This
switch will result in the need for designing new adaptation algo-
rithms suitable for VR specific needs (adapting the quality level of
tiles).

Another use-case would be handover analysis and prediction.
Handover procedure is crucial in cellular networks as it allows
continuous connection across different eNodeBs. There are various
mechanisms and approaches for handover prediction [1, 7, 13]. To
benefit these approaches, our dataset contains information about
handover events and also information about GPS position of current
cell and device, channel metrics for serving and the neighbouring
cell. Finally, generating new bandwidth traces based on the existing
traces is a very interesting and demanding challenge, as multi-
dimensional statistical analysis is needed over all available KPIs.
For this task, one approach could be leveraging machine learning
techniques. As a result, a large number of realistic traces would
be generated and thus relieving researchers of manually collecting
vast amounts of network traces, which can be a very tedious task.

http://www.cs.ucc.ie/misl/research/datasets/ivid_4g_lte_dataset/
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6 CONCLUSION
In this paper, we present both production and synthetic 4G trace
dataset, with low bandwidth throughput sampling granularity, and
invaluable client-side cellular channel and context information,
from a diverse set of routes across two mobile operators (produc-
tion) and a large range of clients in a multi-cell cluster (synthetic).
The throughput values of both datasets permit detailed analysis
with respect to oscillation in the transmission medium, while the
channel and context metrics of the production dataset far exceed
the original goal of the dataset with respect to HAS evaluation for
throughput prediction.

We provide a high-level overview of the dataset which provides
insight into different mobility patterns across bothmobile operators,
with respect to application throughput, average and variation in
bandwidth, and channel and context metrics. We also illustrate a
number of possible use cases for the dataset. To the best of our
knowledge, this is the first publicly available dataset that contains
throughput, channel and context information for real-time analysis
of a production 4G network.

ACKNOWLEDGEMENTS
The authors acknowledge the support of Science Foundation Ireland
(SFI) under Research Grant 13/IA/1892. We also thank Noel Bourke
and Yusuf Sani for their invaluable help with the dataset collection.

REFERENCES
[1] I. M. Bălan, B. Sas, T. Jansen, I. Moerman, K. Spaey, and P. Demeester. 2011.

An enhanced weighted performance-based handover parameter optimization
algorithm for LTE networks. EURASIP Journal on Wireless Communications and
Networking 2011, 1 (17 Sep 2011), 98. https://doi.org/10.1186/1687-1499-2011-98

[2] N. Baldo, M. Miozzo, M. Requena-Esteso, and J. Nin-Guerrero. 2011. An Open
Source Product-oriented LTE Network Simulator Based on Ns-3. In Proceedings
of the 14th ACM International Conference on Modeling, Analysis and Simulation of
Wireless and Mobile Systems (MSWiM ’11). 293–298.

[3] A. Bokani, M. Hassan, S. S. Kanhere, J. Yao, and G. Zhong. 2016. Comprehensive
Mobile Bandwidth Traces from Vehicular Networks. In Proceedings of the 7th
International Conference on Multimedia Systems (MMSys ’16). Article 44, 6 pages.

[4] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo. 2013. ELASTIC: A Client-
Side Controller for Dynamic Adaptive Streaming over HTTP (DASH). In 2013
20th International Packet Video Workshop. 1–8. https://doi.org/10.1109/PV.2013.
6691442

[5] Cisco. 2017. Cisco Visual Networking Index: Global Mobile Data Traf-
fic Forecast Update, 2016–2021. (2017). https://www.cisco.com/c/en/
us/solutions/collateral/service-provider/visual-networking-index-vni/
mobile-white-paper-c11-520862.html

[6] B. A. Forouzan. 2002. TCP/IP Protocol Suite (2 ed.). McGraw-Hill, Inc., New York,
NY, USA.

[7] H. Ge, X. Wen, W. Zheng, Z. Lu, and B. Wang. 2009. A History-Based Han-
dover Prediction for LTE Systems. In 2009 International Symposium on Computer
Network and Multimedia Technology. 1–4. https://doi.org/10.1109/CNMT.2009.
5374706

[8] T. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. 2014. A Buffer-
based Approach to Rate Adaptation: Evidence from a Large Video Streaming
Service. In Proceedings of the 2014 ACM Conference on SIGCOMM (SIGCOMM ’14).
187–198.

[9] M. Jain and C. Dovrolis. 2005. End-to-end Estimation of the Available Bandwidth
Variation Range. In Proceedings of the 2005 ACM SIGMETRICS International Con-
ference on Measurement and Modeling of Computer Systems (SIGMETRICS ’05).
265–276.

[10] J. Jiang, V. Sekar, and H. Zhang. 2014. Improving Fairness, Efficiency, and Stability
in HTTP-Based Adaptive Video Streaming With Festive. IEEE/ACM Transactions
on Networking 22, 1 (Feb 2014), 326–340. https://doi.org/10.1109/TNET.2013.

2291681
[11] L. Li, K. Xu, D. Wang, C. Peng, Q. Xiao, and R. Mijumbi. 2015. A measurement

study on TCP behaviors in HSPA+ networks on high-speed rails. In 2015 IEEE
Conference on Computer Communications (INFOCOM). 2731–2739. https://doi.
org/10.1109/INFOCOM.2015.7218665

[12] Y. Li, C. Peng, Z. Yuan, J. Li, H. Deng, and T.Wang. 2016. Mobileinsight: Extracting
and Analyzing Cellular Network Information on Smartphones. In Proceedings of
the 22Nd Annual International Conference on Mobile Computing and Networking
(MobiCom ’16). 202–215.

[13] W. Luo, X. Fang, M. Cheng, and X. Zhou. 2011. An optimized handover trigger
scheme in LTE systems for high-speed railway. In Proceedings of the Fifth In-
ternational Workshop on Signal Design and Its Applications in Communications.
193–196. https://doi.org/10.1109/IWSDA.2011.6159423

[14] R. Mazumder, T. Hastie, and R. Tibshirani. 2010. Spectral Regularization Algo-
rithms for Learning Large Incomplete Matrices. J. Mach. Learn. Res. 11 (Aug.
2010), 2287–2322.

[15] F. Qian, L. Ji, B. Han, and V. Gopalakrishnan. 2016. Optimizing 360 Video Delivery
over Cellular Networks. In Proceedings of the 5th Workshop on All Things Cellular:
Operations, Applications and Challenges (ATC ’16). ACM, New York, NY, USA,
1–6. https://doi.org/10.1145/2980055.2980056

[16] D. Raca, A. H. Zahran, C. J. Sreenan, R. K. Sinha, E. Halepovic, R. Jana, and V.
Gopalakrishnan. 2017. Back to the Future: Throughput Prediction For Cellular
Networks Using Radio KPIs. In Proceedings of the 4th ACM Workshop on Hot
Topics in Wireless (HotWireless ’17). 37–41.

[17] H. Riiser, P. Vigmostad, C. Griwodz, and title = Commute Path Bandwidth Traces
from 3G Networks: Analysis and Applications booktitle = Proceedings of the
4th ACM Multimedia Systems Conference series = MMSys ’13 year = 2013 isbn
= 978-1-4503-1894-5 location = Oslo, Norway pages = 114–118 numpages = 5
http://doi.acm.org/10.1145/2483977.2483991 doi = 10.1145/2483977.2483991 acmid
= 2483991 publisher = ACM address = New York, NY, USA keywords = 3G,
adaptive streaming, bandwidth traces, bitrate adaption, fluctuating bandwidth,
mobile internet, wireless Halvorsen, P. [n. d.].

[18] Y. Sani, A. Mauthe, and C. Edwards. 2017. Adaptive Bitrate Selection: A Survey.
IEEE Communications Surveys Tutorials 19, 4 (Fourthquarter 2017), 2985–3014.
https://doi.org/10.1109/COMST.2017.2725241

[19] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman. 2016. BOLA: Near-optimal bitrate
adaptation for online videos. In IEEE INFOCOM 2016 - The 35th Annual IEEE
International Conference on Computer Communications. 1–9. https://doi.org/10.
1109/INFOCOM.2016.7524428

[20] Statista. 2016. Number of smartphone users worldwide from
2014 to 2020. (2016). https://www.statista.com/statistics/330695/
number-of-smartphone-users-worldwide/

[21] T. Stockhammer. 2011. Dynamic Adaptive Streaming over HTTP –: Standards
and Design Principles. In Proceedings of the Second Annual ACM Conference on
Multimedia Systems (MMSys ’11). 133–144.

[22] D. Stynes, K. N. Brown, and C. J. Sreenan. 2016. A probabilistic approach to
user mobility prediction for wireless services. In 2016 International Wireless
Communications and Mobile Computing Conference (IWCMC). 120–125. https:
//doi.org/10.1109/IWCMC.2016.7577044

[23] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface, T. Bostoen,
and F. De Turck. 2016. HTTP/2-Based Adaptive Streaming of HEVC Video Over
4G/LTE Networks. IEEE Communications Letters 20, 11 (2016), 2177–2180.

[24] H-L. Wang, S-J. Kao, C-Y. Hsiao, and F-M. Chang. 2014. A moving direction
prediction-assisted handover scheme in LTE networks. EURASIP Journal on
Wireless Communications and Networking 2014, 1 (15 Nov 2014), 190. https:
//doi.org/10.1186/1687-1499-2014-190

[25] Q. Xiao, K. Xu, D. Wang, L. Li, and Y. Zhong. 2014. TCP Performance over Mobile
Networks in High-Speed Mobility Scenarios. In 2014 IEEE 22nd International
Conference on Network Protocols. 281–286. https://doi.org/10.1109/ICNP.2014.49

[26] X. Xie, X. Zhang, S. Kumar, and L. E. Li. 2015. piStream: Physical Layer Informed
Adaptive Video Streaming over LTE. In Proceedings of the 21st Annual International
Conference on Mobile Computing and Networking (MobiCom ’15). 413–425.

[27] C. Yue, R. Jin, K. Suh, Y. Qin, B. Wang, and W. Wei. 2017. LinkForecast: Cellu-
lar Link Bandwidth Prediction in LTE Networks. IEEE Transactions on Mobile
Computing PP, 99 (2017), 1–1. https://doi.org/10.1109/TMC.2017.2756937

[28] A. H. Zahran, D. Raca, and C. Sreenan. 2018. ARBITER+: Adaptive Rate-Based
InTElligent HTTP StReaming Algorithm for Mobile Networks. IEEE Transactions
on Mobile Computing (2018), 1–1. https://doi.org/10.1109/TMC.2018.2825384

[29] X. K. Zou, J. Erman, V. Gopalakrishnan, E. Halepovic, R. Jana, X. Jin, J. Rexford,
and R. K. Sinha. 2015. Can Accurate Predictions Improve Video Streaming in
Cellular Networks?. In Proceedings of the 16th International Workshop on Mobile
Computing Systems and Applications (HotMobile ’15). 57–62.

https://doi.org/10.1186/1687-1499-2011-98
https://doi.org/10.1109/PV.2013.6691442
https://doi.org/10.1109/PV.2013.6691442
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html
https://doi.org/10.1109/CNMT.2009.5374706
https://doi.org/10.1109/CNMT.2009.5374706
https://doi.org/10.1109/TNET.2013.2291681
https://doi.org/10.1109/TNET.2013.2291681
https://doi.org/10.1109/INFOCOM.2015.7218665
https://doi.org/10.1109/INFOCOM.2015.7218665
https://doi.org/10.1109/IWSDA.2011.6159423
https://doi.org/10.1145/2980055.2980056
https://doi.org/10.1109/COMST.2017.2725241
https://doi.org/10.1109/INFOCOM.2016.7524428
https://doi.org/10.1109/INFOCOM.2016.7524428
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://doi.org/10.1109/IWCMC.2016.7577044
https://doi.org/10.1109/IWCMC.2016.7577044
https://doi.org/10.1186/1687-1499-2014-190
https://doi.org/10.1186/1687-1499-2014-190
https://doi.org/10.1109/ICNP.2014.49
https://doi.org/10.1109/TMC.2017.2756937
https://doi.org/10.1109/TMC.2018.2825384

	Abstract
	1 Introduction
	2 Related Work
	3 Dataset Collection
	4 Dataset Overview
	5 Possible use-cases
	6 Conclusion
	References

