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We study the changes in the spatial distribution of vortices in a rotating Bose-Einstein condensate due to an
increasing eccentricity of the trapping potential. By breaking the rotational symmetry, the vortex system undergoes
a rich variety of structural changes, including the formation of zigzag and linear configurations. These spatial
rearrangements are well signaled by the change in the behavior of the vortex-pattern eigenmodes against the
eccentricity parameter. This behavior allows to actively control the distribution of vorticity in many-body systems
and opens the possibility of studying interactions between quantum vortices over a large range of parameters.
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I. INTRODUCTION

The superfluid nature of atomic Bose-Einstein condensates
(BEC’s) is one of the most striking manifestations of quantum
mechanics on a macroscopic scale. Its telltale sign, the
formation of quantized vortices, has been extensively studied
in recent years and led to significant progress in understanding
the phenomenon [1]. However, to create these topological
defects one usually needs to break the rotational symmetry of
the condensate. This requires a significant external disturbance
through, for example, optical phase imprinting techniques [2]
or stirring laser fields that allow the excitement of quadrupole-
mode resonances [3]. The latter one is similar to the classical
“rotating bucket” method that creates a vortex by rotating a
bucket full of water and was first used in experimental studies
of superfluid 4He [4]. The validity of such an analogy is
certainly limited, given that the nonsuperfluid component in
superfluid 4He experiences friction due to its relative motion
with respect to the walls. As in the classical case, this implies
a transfer of energy and angular momentum from the walls
of the bucket to the superfluid part through the nonsuperfluid
component. In a trapped BEC the latter is always negligible
and the transfer has to be made through the excitation of normal
modes, usually quadrupole ones. A BEC thus reacts to a large
amount of angular momentum by creating many vortices with
winding number equal to one [5], which arrange themselves in
geometrically defined spatial patterns. At large vortex density,
these structures mimic the celebrated Abrikosov lattice [6]. For
harmonically trapped alkali-metal condensates this was first
observed in the seminal experiment by Abo-Shaeer et al. [3],
where more than 100 vortices formed a triangular-shaped
lattice with a few seconds’ lifetime.

Recently, numerical evidence has been provided that the
vortex pattern of a two-dimensional (2D) BEC in an in-plane
anisotropic rotating trap can undergo structural changes as a
function of the eccentricity. Specifically, in Ref. [7] it has been
shown that, for modest changes in the eccentricity, an off-line
configuration (typical for an Abrikosov lattice) can change
into a linear one. While this is somewhat analogous to the case
of ionic crystals [8], the characterization of structural changes
in anisotropic and rotating BEC’s remains largely unexplored.
Most of the existing literature focuses on the limit of large
numbers of vortices for either a symmetric trap [9,10] or very
high angular frequencies, which leads to stripe-shaped vortex

patterns [11–14]. Although the case of medium vorticity has
been addressed, the role of external forces on the dynamics
of the vortex structures still awaits a systematic approach
[15–18]. Yet understanding how vortices behave under external
perturbations is a prerequisite for harnessing the quantum
properties of vortex patterns. Here we present a significant
contribution to advancing these aims by studying the behavior
of finite-sized vortex patterns in 2D BEC’s confined within a
rotating anisotropic trap. In particular we investigate in detail
the effects of the eccentricity on the spatial distribution of the
vortices. By minimizing the eccentricity-dependent interaction
potential between vortices, we show that the vortex configura-
tion undergoes structural changes as the eccentricity parameter
is varied. A hydrodynamical approach to the description of the
superfluid motion allows us to identify the eigenmodes of the
vortex patterns and connect the appearance of discontinuities
with the transition points between different structures. In fact,
the modes suggest that the change in the equilibrium positions
of the vortices is due to the rearrangement of the superfluid
velocity field.

II. VORTEX PATTERN

We consider the pattern of vortices in the ground state of a
BEC held in a rotating trapping potential. The ground state is
found by minimizing the energy functional [19]

E[�,�∗]

=
∫

d3r
[
h̄2|∇�|2

2m
+ V (r)|�|2 + Ng|�|4

2
− �∗(�·L̂)�

]
,

(1)

where � is the normalized order parameter of the condensate
(its dependence on r is omitted for ease of notation), V (r) is
the trapping potential, m is the atomic mass, N is the number
of atoms, g = 4πh̄2a/m is the interatomic interaction energy
volume determined by the s-wave scattering length a, � is
the rotation frequency vector of the condensate, and L̂ is
the angular momentum operator. The function � minimizing
E has been studied both numerically and analytically under
different working assumptions such as the Thomas-Fermi
(TF) approximation [19], the lowest-Landau-level (LLL)
approximation [20], or the limit of very weak interactions [16].
The first usually corresponds to the requirement of a very large
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number of particles, so that the kinetic energy associated with
∇|�NS| (with �NS representing the nonsingular part of the
order parameter) can be neglected in favor of the boson-boson
interaction. In the LLL approximation, on the other hand, the
main contribution to the energy stems from the centrifugal
term and � is well described by means of single-particle wave
functions. Finally, in the limit of weak interactions the healing
length becomes large and even under strong rotation only a
small number of large vortices nucleate [16].

Here we consider a BEC in a harmonic trap rotating about
its z axis, which is also the direction of tight confinement, so
that � can be factorized into an axial part (the ground state of
a harmonic potential) and an in-plane one, ψ(x,y). We call ωj

(j = x,y) the trapping frequency along axis j of the trap and
introduce the eccentricity parameter λ = ωy/ωx .

We are now in a position to minimize E in the TF limit.
For a set value of 0 < λ � 1, we call �Nv

(λ) the minimum
angular frequency of the trap which allows for Nv vortices in
the state which minimizes E[�,�∗], while ri is the position
of the ith vortex in the frame rotating with the condensate. By
introducing |ri |2λ = x2

i + λ2y2
i , the energy of the vortex pattern

can be written as U = UT + UI with [21]

UT = πρ0(λ)

(1 + λ2)

Nv∑
i=1

|ri |2λ,
(2)

UI = −πρ0(λ)
Nv∑
i=1

Nv∑
j �=i=1

log |ri−rj |.

Here, ρ0(λ)=√
2λ/π is the density of the condensate at

the center of the trapping potential, and minimizing these
energies will determine the positions of vortices. In doing
this, we will assume that the variations of λ are accom-
panied by an adiabatic change of the angular frequency so
that �Nv

(λ) � � � �Nv+1(λ), which ensures that the wave-
function minimizing the energy functional carries exactly
Nv vortices. The absence of an �-dependent term from the
expression of UT can be understood by considering that, in the
TF limit, the centrifugal force is proportional to the restoring
term for � ≈ �Nv

(λ) [see Eq. (3.4) in Ref. [14]], so that they
sum up to a quantity that is independent of �. In order to
quantitatively asses the deviations of the vortex pattern from
the Abrikosov-like lattice [7], we first show how the distances
of the vortices from the tight trapping direction vary against
the eccentricity λ. Two representative cases (Nv = 7,8) of the
general dynamics are shown in Fig. 1: the pattern of vortices
corresponding to values of λ larger than a critical threshold
λL (in general a function of Nv) abruptly collapses to an
all-aligned configuration.

However, looking at the distance of the vortices from the
soft axis only gives limited information about the actual
vortex pattern and we show in Figs. 2 and 3 the full
position distribution for different numbers of vortices and
different values of 1 � λ > λL. Two more structurally distinct
configurations become evident from this; let us first consider
the case of an even number of vortices (shown in Fig. 2):
starting from an Abrikosov-like pattern at zero eccentricity
(λ = 1), the first structural change at λ = λC witnesses the
central vortex being displaced so as to join the ring formed
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FIG. 1. (Color online) Distance �x of the vortices from the soft
trapping axis (in units of

√
2Ng�/h̄ωx) against the eccentricity of

the trap, λ. We show the cases of Nv = 7 and 8 [panels (a) and (b),
respectively] and plot only the changes in positions of four vortices
in the lattice (the association with the curves is irrelevant), with
the remaining showing analogous behavior. At λ = λL the vortices
suddenly align along the y axis (�x = 0). We have used a BEC of 106

87Rb atoms with a scattering length a = 5.23 × 10−9 m in a trap of
frequencies ωz/2π = 100 Hz and

√
ωxωy/2π = 50 Hz (independent

of λ).

by the outer ones. A further reduction of λ leads to a second
threshold value, λZ , at which the mirror symmetry is broken
and a zigzag pattern is formed. The situation is different for
an odd number of vortices, where a parity effect leads to
the Abrikosov-to-ring and ring-to-zigzag transitions becoming
degenerate: from full isotropy the lattice rearranges directly
into a zigzag pattern at λ = λZ; see Fig. 3. For an even as well
as an odd number of vortices, a further reduction in λ makes
the vortices align along the weak trapping direction, as already
observed in Fig. 1. The situation is even richer for a larger
(but finite) number of vortices. Let us consider, for instance, a

FIG. 2. (Color online) Phase distribution of the condensate
carrying a vortex lattice in the x-y plane with Nv = 8 for different
values of λ. The black dots mark the positions of the vortices (in
units of

√
2Ng�/h̄ωx). The appearance of different structural vortex

patterns is clearly visible.
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FIG. 3. (Color online) Phase distribution of the condensate
carrying a vortex lattice in the x-y plane with Nv = 7 for different
values of λ. All other values are as in Fig. 2.

system consisting of 18 vortices (see Fig. 4). As shown in panel
(a), at λ = 1 they arrange in a pattern with a single vortex at the
center of the trap and two concentric rings surrounding it. By
decreasing λ we first observe an Abrikosov-to-ring structural
change involving the inner ring (made out of six vortices) and
the central vortex, similar to the one described above [see panel
(b)]. By further decreasing λ, the vortices in the newly formed
inner ring start joining the outer one [see panel (c)] before
forming a zigzag pattern [panel (d)]. Finally, the transition
into a linear structure occurs (not shown).

Let us briefly compare the vortex patterns we have just
discussed with the ones presented in Refs. [11,13]. In these
works the authors address the case of an asymmetric trapping
potential in the fast rotation limit, � → min(ωx,ωy). In this
case the condensate background cloud is stretched along the
direction of weak confinement and assumes a stripe-like shape.
Because of the symmetry of such a system, vortices have to
enter the cloud in rows and the possible geometries are given
by whether or not vortices between different rows are aligned.

FIG. 4. (Color online) Phase distribution of the condensate
carrying a vortex lattice in the x-y plane with Nv = 18 for different
values of λ. The black dots mark the positions of the vortices (in units
of

√
2Ng�/h̄ωx).

In the case of fast-rotating traps the solution is determined by
single-particle states, and if the vorticity exceeds the number
of atoms in the system, the existing lattice melts and a highly
correlated state emerges. In contrast, we are dealing with a
fixed number of vortices in the limit where the interaction
energy dominates the centrifugal one. For such systems the
healing length is much smaller than any other characteristic
length of the system, which, as we have shown, leads to a
number of possible patterns with well-localized singularities.
Transitions between these patterns are then determined by the
interplay between the trapping potential and the interaction
energy between the vortices.

III. SUPERFLUID HYDRODYNAMICS

In this section we will explore the structural transitions
in detail by looking at the change in the superfluid motion
of the condensate. This is analogous to an argument used by
Fetter in Ref. [15], where superfluid motion in an elliptical
and rectangular cylinder was studied. While both the energy
and the angular momentum of the system were found [15],
the existence of a threshold value for the angular velocity
above which the configuration with one vortex is energetically
favorable was shown. It is important to stress that in our case
the vortex-lattice configuration found by minimizing Eq. (2)
does not represent, in general, a rigid pattern, due to the
perturbations introduced into the system by the eccentricity.
This can be seen by recasting the trapping potential as

Vλ(x) ≡ Vs(x)+VQ(λ,y)

= 1
2mω2

x(x2+y2) + 1
2mω2

x(λ2−1)y2 (3)

and recognizing VQ(λ,y) as a term exciting quadrupole modes.
Thus the background condensate and the vortex pattern are not
stationary.

The free energy of the rotating BEC is now given by FNv
=

ENv
(�,λ) + UT + UI , where UT,I are defined by Eq. (2) and

ENv
(�,λ) is an energy term that does not depend on the vortex

configuration and whose detailed form is not essential for
our discussions. By calling {r0

i } (i = 1, . . . ,Nv) the vortex
positions that minimize Eq. (2) for a set number of vortices, we
have the condition ∇jFNv

|{r0
i } = 0, where ∇j ≡ (∂xj

,∂yj
) and

where we have used the subscript j to represent the coordinates
of the j th vortex. In the rotating frame, a vortex has a velocity
vj such that

∇jFNv

∣∣
rj

·vrj
= 0, (4)

which implies the absence of dissipation, as expected from
particles moving in a superfluid. A solution to this equation is
given by vrj

=α(∇⊥
j FNv

|rj
) with ∇⊥

j ≡ (∂yj
, − ∂xj

), where α

is the amplitude of the velocity field. Its value

α = aho

√
�ωx

πρ0(λ)

(
with aho =

√
h̄

mωx

)
(5)

is found by comparing it with the velocity field
(h̄/m)∇S−�×rj in the rotating frame. In this expression,
S = S0 + ∑Nv

i �=j θi is the phase of the order parameter as seen
by the j th vortex, tan θj = (y−yj )/(x−xj ) specifies the polar
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FIG. 5. (Color online) Superfluid velocity field in the rotating
frame for Nv = 8 (other parameters as in Fig. 1). From (a) to (d)
the asymmetry parameter is given by λ = 1,0.76,0.56,0.36. Darkest
(dark purple) regions correspond to zero velocity and the velocities
close to the vortex cores are not shown on the chosen color map.

angle of a reference frame centered on the j th vortex core [19],
and

S0= − m�(1−λ2)

h̄(1+λ2)
xy (6)

is the vortex-free phase of the BEC at position (x,y).
In Fig. 5 we show the magnitude of the velocity field for

Nv = 8 in a frame that rotates rigidly with the trap. The value
of λ decreases from panels (a) to (d) and the arrows show the
flow directions with the magnitude being encoded in the color.
In the dark (dark purple) regions the velocity field vanishes,
i.e., the superfluid moves at the trap angular velocity. For
no eccentricity [panel (a)], the vortex pattern rotates rigidly
with the trap potential since the velocity field at the vortex
positions (when the vortex itself is not present) vanishes in the
rotating frame. It is worth noticing that outside the vortex
pattern particles flow with a different velocity. This is at
the origin of the imperfect rigid-body rotation of finite-sized
vortex patterns in isotropic traps. By increasing the eccentricity
[panels (b)–(d)], the rigid body behavior is lost and the vortex
pattern is no longer a steady solution [7], since the continuous
rotation of the trap increases the angular momentum of
the system. However, the condition � ∈ [�Nv

,�Nv+1] on
the angular velocity fixes the number of vortices in the
condensate Nv . The only possibility for the system to react
is to move the vortex cores to accommodate the angular
momentum. In a real system, heating and dissipation would
eventually lead to the crystallization of the vortex pattern or
the transition to a turbulent regime [22].

FIG. 6. (Color online) Spectrum of a BEC with Nv = 7 vortices
against the eccentricity λ. The points λC,L, where the vortex pattern
undergoes a structural change, are visible.

IV. VORTEX LATTICE MODES

A quantitative confirmation of the abrupt nature of the
structural changes can be found by studying the eigenmodes
of the vortex pattern [18]. We take a set of small displacements
{δri} from the equilibrium configuration {r0

i } and write

δv = (
δvx

r1
,δvy

r1
, . . . ,δvx

rNv
,δvy

rNv

)
, (7)

so that the vortex cores velocities in the rotating frame become
δv 
 A · δr. Here A is a 2Nv × 2Nv matrix whose j th row is
found by expanding the velocity field vrj

= α∇⊥
j FNv

|rj
around

each r0
i . This gives

Aj = α
∑

i

[
∂xi

(∇⊥
j FNv

)
x̂i + ∂yi

(∇⊥
j FNv

)
ŷi

]
{r0

i }
, (8)

where α is determined as before. We now numerically
diagonalize A for a set number of vortices. The eigenvalues
αl (1 � l � 2Nv) of A represent the rate at which vortices start
moving from {r0

i } once they are displaced by the corresponding
eigenvector δrl . We note that the eigenmodes are related by

αn(λ) + α2Nv−n(λ) = C(λ) (0 < n � Nv) (9)

and the corresponding eigenvectors are mutually orthogonal.
The constant C(λ) depends on the system parameters but,
remarkably, is independent of the pair of eigenvectors consid-
ered. A typical spectrum for Nv = 7 is shown in Fig. 6. At
two specific values of λ the eigenmodes show noncontinuous
behavior, beside the appearance of a null eigenvalue. These
points can be connected to the structural transition points:
λC signaling the Abrikosov-to-ring transition and λL the
zigzag-to-linear one. At any other value of λ the eigenmodes
are positive, confirming our previous point on the nonsteady
nature of the vortex patterns in the rotating frame. However, the
exact value of λ at which the lowest eigenvalue first deviates
from zero is found to grow with the number of vortices. The
corresponding eigenvector corresponds to displacements of
the vortex positions along the tangent to the vortex ring, i.e.,
a rotation of the vortex pattern produces no effect. In fact,
it is not possible to clearly discriminate the eigenmodes of
a finite-size lattice with a small number of vortices from
the phonon modes of the background condensate: rotating
an anisotropic trap excites Bogoliubov modes in the BEC,
which have a strong influence on the vortex pattern [23]. The
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link between Bogoliubov modes and changes in the properties
of the vortex matter has already been explored in relation
to vortex-pattern formation and instability [24]. Moreover, in
Ref. [25] stability of vortex clusters (comprising both vortices
and antivortices) in a nonrotating anisotropic trap has been
studied by looking at the Bogoliubov modes. The dynamics
induced between the background cloud and the vortex matter
has been shown to be not separable.

V. CONCLUSIONS

We have studied the structural transitions induced in a
finite vortex lattice by an increasing degree of eccentricity of
a rotating BEC. An Abrikosov-like arrangement undergoes a
sequence of symmetry-breaking processes that push it toward a
linear arrangement of vortices. Such modifications, witnessed
and understood in terms of background superfluid motion,
are well signaled by the eigenmodes of the vortex lattice.
By addressing the case of a finite lattice, our work comple-
ments and extends the existing literature on vortex instabilities
and arrangements in rotating BEC’s and provides interesting

insight into the many-body properties of a mesoscopic quan-
tum system. Our analysis is not limited to BEC’s: vortex-like
excitations exist in superconducting films, Josephson-junction
arrays, and dislocation pairs in the theory of 2D melting [26].
Intervortex potentials depending logarithmically on the
distance between two vortices, similar to Eq. (2), have been
observed in thin superconducting films [27]. Vortex lattices
in thin films under magnetic fields have been shown to take
the form of discrete rows [28]. Strong analogies between the
dynamics of vortex lattices and Josephson-junction arrays hold
due to the charge-vortex duality [29], thus giving our results
a generality and interest that goes beyond the cases addressed
here.
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