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Abstract

We describe multi-objective influence diagrams,
based on a set ofp objectives, where utility val-
ues are vectors inRp, and are typically only par-
tially ordered. These can still be solved by a
variable elimination algorithm, leading to a set of
maximal values of expected utility. If the Pareto
ordering is used this set can often be prohibitively
large. We consider approximate representations
of the Pareto set based onǫ-coverings, allowing
much larger problems to be solved. In addition,
we define a method for incorporating user trade-
offs, which also greatly improves the efficiency.

1 INTRODUCTION

Influence diagrams [1] are a powerful formalism for rea-
soning with sequential decision making problems under
uncertainty. They involve both chance variables, where the
outcome is determined randomly based on the values as-
signed to other variables, and decision variables, which the
decision maker can choose the value of, based on observa-
tions of some other variables. Uncertainty is represented
(like in a Bayesian network) by a collection of conditional
probability distributions, one for each chance variable. The
overall value of an outcome is represented as the sum of a
collection of utility functions.

In many situations, a decision maker has more than one ob-
jective, and mapping several objectives to a single utility
scale can be problematic, since the decision maker may be
unwilling or unable to provide precise tradeoffs between
objectives [2, 3, 4]. We consider multi-objective influence
diagrams, where utility values are now vectors inRp, with
p being the number of objectives. Since utility values are
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now only partially ordered (for instance by the Pareto or-
dering) we no longer have a unique maximal value of ex-
pected utility, but a set of them.

The Pareto ordering on multi-objective utility is a rather
weak one; the effect of this is that the set of maximal val-
ues of expected utility can often become huge. We dis-
cuss how the notion ofǫ-covering, which approximates the
Pareto set, can be applied for the case of multi-objective in-
fluence diagrams. As we demonstrate experimentally, this
has a major effect on the size of the undominated utility
vector sets and hence on the computational efficiency and
feasibility for larger problems.

We also define a simple formalism for imprecise tradeoffs;
this allows the decision maker, during the elicitation stage,
to specify a preference for one multi-objective utility vec-
tor over another, and uses such inputs to infer other pref-
erences. The induced preference relation then is used to
eliminate dominated utility vectors during the computation.
Our experimental results indicate that the presence of even
a few such imprecise tradeoffs greatly reduces the undom-
inated set of expected utility values.

The paper is organized as follows. We first discuss the re-
lated work. Then Section 2 describes standard influence di-
agrams and multi-objective utility values. Section 3 defines
multi-objective influence diagrams, and how variable elim-
ination can be used to compute the set of maximal values of
expected utility, up to a form of equivalence. Section 4 de-
scribes the use of theǫ-covering of the Pareto set. Section
5 defines the formalism for tradeoffs and how the induced
notion of preference dominance can be computed. Section
6 describes our experimental testing of multi-objective in-
fluence diagrams, based on the Pareto ordering, on theǫ-
covering approximation, and based on the dominance rela-
tion induced by the user tradeoffs. Section 7 concludes.

RELATED WORK: Our approach to multi-objective in-
fluence diagram computation is based on our general
framework [5].

Diehl and Haimes [6] describe a computational technique
for influence diagrams with multiple objectives, with the



restriction of just a single value node (utility function).The
solution method is based on influence diagram transforma-
tions [7]. Pareto dominance is used to prune sub-optimal
utility vectors during the computation (with tradeoffs be-
ing taken into account at the end of the computation).

Papadimitriou and Yannakakis [8] proposed the use of the
logarithmic grid in (1 + ǫ) to generate anǫ-covering of
the Pareto set. Dubus et al. [9] also developed a variable
elimination algorithm that usesǫ-dominance over a graphi-
cal model (GAI network) that represents a (multi-objective)
generalized decomposable additive utility function.

Zhou et al. [10] consider influence diagrams (with a unique
value node) based on interval-valued utility, which is sim-
ilar to bi-objective utility. They adapt Cooper’s approach
for solving influence diagrams based on Bayesian network
algorithms [11]. Other extensions of influence diagrams
include work in [12, 13, 14] which allow interval probabil-
ity (but precise single-objective utility), and in [15] which
considers generalized influence diagrams based on fuzzy
random variables.

Maua et al. [16] proposed a variable elimination algorithm
for solving Limited Memory Influence Diagrams (LIM-
IDs). Although they consider standard totally ordered utili-
ties, their algorithm also manipulates partially ordered sets:
in their case, sets of functions that are used to represent the
effect of different undominated policies.

Our method for incorporating tradeoffs relates toconvex
cones, as shown by Theorem 3. A general approach to
multi-objective preferences based on cones has been de-
veloped by Yu and others [17, 18].

2 BACKGROUND

2.1 INFLUENCE DIAGRAMS

An influence diagram(ID) [1] is defined by a tuple
〈X,D,P,U〉, where X = {X1, . . . , Xn} is a set of
chance variableswhich specify the uncertain decision en-
vironment andD = {D1, . . . , Dm} is a set ofdecision
variableswhich specify the possible decisions to be made
in the domain. The chance variables are further divided
into observablemeaning they will be observed during ex-
ecution, orunobservable. As in Bayesian networks [19],
each chance variableXi ∈ X is associated with acondi-
tional probability table(CPT)Pi = P (Xi|pa(Xi)), where
Pi ∈ P andpa(Xi) ⊆ X ∪D \ {Xi}. Each decision vari-
ableDk ∈ D has a parent setpa(Dk) ⊆ X ∪ D \ {Dk},
denoting the variables whose values will be known at the
time of the decision and may affect directly the decision.
Non-forgettingis typically assumed for an influence dia-
gram, meaning that a decision node and its parents are par-
ents to all subsequent decisions. Theutility (or reward)
functionsU = {U1, . . . , Ur} are defined over subsets of

Figure 1: A simple influence diagram with two decisions.

variablesQ = {Q1, . . . , Qr},Qi ⊆ X ∪D, calledscopes,
and represent the preferences of the decision maker.

The graph of an ID contains nodes for chance variables (cir-
cled), decision variables (boxed) and for the utility compo-
nents (diamond). For each chance or decision node there is
an arc directed from each of its parent variables toward it,
and there is a directed arc from each variable in the scope
of a utility function toward its utility node.

The decision variables in an influence diagram are typically
assumed to be temporally ordered (also known asregular-
ity). LetD1, D2, ..., Dm be the order in which the decisions
are to be made. The chance variables can be partitioned
into a collection of disjoint setsI0, I1, . . . , Im. For eachk,
where0 < k < m, Ik is the set of chance variables that
are observed betweenDk andDk+1. I0 is the set of initial
evidence variables that are observed beforeD1. Im is the
set of chance variables left unobserved when the last deci-
sionDm is made. This induces a strict partial order≺ over
X ∪D, given by:I0 ≺ D1 ≺ I1 ≺ · · · ≺ Dm ≺ Im [20].

A policy (or strategy) for an influence diagram is a list of
decision rules∆ = (δ1, . . . , δm) consisting of one rule
for each decision variable. Adecision rulefor the deci-
sionDk ∈ D is a mappingδk : Ωpa(Dk) → ΩDk

, where
for a setS ⊆ X ∪ D, ΩS is the Cartesian product of
the individual domains of the variables inS. Therefore,
a policy∆ determines a value for each decision variable
Di (which depends on the parents setpa(Di)). Given
a utility function U , a policy ∆ yields a utility function
[U ]∆ that involves no decision variables, by assigning their
values using∆. The expected utility given policy∆ is
EU∆ =

∑

X
[(
∏n

i=1 Pi ×
∑r

j=1 Uj)]∆. Solving an influ-
ence diagram means finding anoptimal policythat maxi-
mizes the expected utility, i.e., to findargmax∆EU∆. The
maximum expected utility can be shown to be equal to:

∑

I0

max
D1

· · ·
∑

Im−1

max
Dm

∑

Im





n
∏

i=1

Pi ×
r

∑

j=1

Uj



 (1)

Example 1 Figure 1 shows the influence diagram of the
oil wildcatter problem (adapted from [21]). An oil wild-
catter must decide either todrill or not to drill for oil at a



specific site. Before drilling, aseismic testcould help de-
termine the geological structure of the site. The test results
can show aclosedreflection pattern (indication of signif-
icant oil), an openpattern (indication of some oil), or a
diffuse pattern (almost no hope of oil). The special value
notestis used if no seismic test is performed. There are
therefore two decision variables,T (Test) andD (Drill),
and two chance variablesS (Seismic results) andO (Oil
contents). The probabilistic knowledge consists of the con-
ditional probability tablesP (O) andP (S|O, T ), while the
utility function is the sum ofU1(T ) andU2(O,D). The op-
timal policy is to perform the test and to drill only if the
test results show an open or a closed pattern. The expected
utility of this policy is 22.5.

Several exact methods have been proposed over the past
decades for solving influence diagrams using local com-
putations [7, 22, 23, 20, 24, 25]. These methods adapted
classicalvariable eliminationtechniques, which compute a
type of marginalization over a combination of local func-
tions, in order to handle the multiple types of information
(probabilities and utilities), marginalization (

∑

andmax)
and combination (× for probabilities,+ for utilities) in-
volved in influence diagrams. Since the alternation of

∑

andmax in Equation 1 does not commute in general, it pre-
vents the solution technique from eliminating variables in
any ordering. Therefore, the computation dictated by Equa-
tion 1 must be performed along alegal elimination order-
ing that respects≺, namely the reverse of the elimination
ordering is some extension of≺ to a total order [20, 24].

2.2 MULTI-OBJECTIVE UTILITY VALUES

In many real-world situations it may not be possible for the
decision maker to map the various possible consequences
of a set of actions to the same scale of utility in a way that
avoids essentially arbitrary decisions. Hence, it is natural to
consider multi-objective or multi-attribute utility functions
to cope with multiple and non-commensurate utility scales
on which the decision maker’s preferences are expressed.

Consider a situation withp objectives (or attributes). A
multi-objective utility valueis characterized by a vector
~u = (u1, . . . , up) ∈ Rp, whereui represents the utility
with respect to objectivei ∈ {1, . . . , p}. We assume the
standard pointwise arithmetic operations, namely~u + ~v =
(u1 + v1, . . . , up + vp) andq × ~u = (q × u1, . . . , q × up),
whereq ∈ R. The comparison of utility values reduces to
that of their correspondingp-dimensional vectors.

We are interested in partial orders< on Rp satisfying the
following two monotonicity properties, where~u,~v, ~w ∈ Rp

are arbitrary vectors.

[Independence:] If ~u < ~v then~u+ ~w < ~v + ~w

[Scale-Invariance:] If ~u < ~v and q ∈ R, q ≥ 0 then
q × ~u < q × ~v.

An important example of such a partial order is the weak
Pareto order.

DEFINITION 1 (weak Pareto ordering) Let ~u,~v ∈ Rp

such that~u = (u1, . . . , up) and ~v = (v1, . . . , vp). We
define the binary relation≥ on Rp by ~u ≥ ~v ⇐⇒
∀i ∈ {1, . . . , p} ui ≥ vi.

Given~u,~v ∈ Rp, if ~u < ~v then we say that~u dominates~v.
As usual, the symbol≻ refers to the asymmetric part of<,
namely~u ≻ ~v if and only if ~u < ~v and it is not the case
that~v < ~u. In particular, relation≥ (resp.>) is also called
weak Pareto dominance(resp.Pareto dominance).

DEFINITION 2 (maximal/Pareto set) Given a partial or-
der< and a finite set of utility vectorsU ⊆ Rp, we define
the maximal set, denoted bymax<(U), to be the set con-
sisting of the undominated elements inU , i.e.,max<(U) =
{~v ∈ U | ∄~v ∈ U , ~v ≻ ~u}. When< is the weak Pareto
ordering≥, we callmax<(U) thePareto set.

3 MULTI-OBJECTIVE INFLUENCE
DIAGRAMS

In this section, we introduce the extension of the stan-
dard influence diagram model to include multiple objec-
tives. Towards this goal we consider a multi-objective util-
ity function that is additively decomposable [26]. For sim-
plicity and without loss of generality we assume that all
objectives are to be maximized. We next define formally
the graphical model and then derive a sequential variable
elimination algorithm for evaluating the model.

3.1 THE GRAPHICAL MODEL

A multi-objective influence diagram(MOID) extends the
standard influence diagram by allowing a multi-objective
utility function defined onp > 1 objectives. The graph-
ical structure of a MOID is identical to that of a standard
ID, namely it is a directed acyclic graph containingchance
nodes(drawn as circles) for the random discrete variables
X, decision nodes(drawn as rectangles) for the decision
variablesD, and utility nodes (drawn as diamonds) for
the local utility functionsU of the decision maker. The
directed arcs in the MOID represent the same dependen-
cies between the variables as in the standard model. Each
chance nodeXi ∈ X is associated with a conditional prob-
ability tableP (Xi|pa(Xi)) : ΩXi∪pa(Xi) → [0, 1]. The
utility functions Uj ∈ U represent the decision maker’s
preferences with respect to each of thep objectives, namely
Uj : ΩQj

→ Rp, whereQj is the scope ofUj .

A policy for a MOID is a sequence∆ = (δ1, . . . , δm),
where eachδi is a function fromΩpa(Di) → ΩDi

. Clearly,
given a policy∆ we have thatEU∆ ⊆ Rp. Solving a
multi-objective influence diagram means finding the set of



Figure 2: A bi-objective influence diagram.

policies that generate maximal values of expected utility,
i.e., values of utility in the setmax<{EU∆ | policies∆}.
We say that a policy∆ is optimal if the corresponding ex-
pected utilityEU∆ is undominated.

Example 2 Figure 2 displays a bi-objective influence dia-
gram for the decision problem from Example 1. We con-
sider a utility function with two attributes representing the
testing/drillingpayoff and damageto the environment, re-
spectively. The utility of testing is(−10, 10), whereas
the utility of drilling is (−70, 18), (50, 12), (200, 8) for
a dry, wet and soaking hole, respectively. The aim is to
find optimal policies that maximize the payoff and min-
imize the damage to environment. The dominance rela-
tion is defined in this case by~u ≥ ~v ⇔ u1 ≥ v1 and
u2 ≤ v2 (e.g.,(10, 2) ≥ (8, 4) and (10, 2) � (8, 1)). The
Pareto setmax≥{EU∆ | policies∆} contains 4 elements,
i.e., {(22.5, 17.56), (20, 14.2), (11, 12.78), (0, 0)}, cor-
responding to the four optimal policies shown below (we
show how to obtain these in Section 3.4):

∆1 ∆2 ∆3 ∆4

δT yes no yes no
δD yes (S = closed) yes (S = notest)yes (S = closed)no (S = notest)

yes (S = open) no (S = open)
no (S = diffuse) no (S = diffuse)

EU∆i
{(22.5, 17.56)} {(20, 14.2)} {(11, 12.78)} {(0, 0)}

Because we are considering partially ordered utilities, the
max operator does not necessarily lead to a unique ele-
ment. This means that we need to extend the arithmetic
operations, addition, multiplication andmax, to finite sets
of utility values.

3.2 ARITHMETIC OPERATIONS AND
DISTRIBUTIVITY PROPERTIES

In this section we assume a partial order< onRp that sat-
isfies Independence and Scale-Invariance. In particular,<

can be the weak Pareto ordering.

Given two finite setsU ,V ⊆ Rp and q ≥ 0, we define
the summation and multiplication operations asU + V =
{~u + ~v | ~u ∈ U , ~v ∈ V} and q × U = {q × ~u | ~u ∈
U}, respectively. The maximization operation is defined as

max(U ,V) = max<(U ∪ V). It is easy to see that+, ×
andmax are commutative and associative.

To ensure the correctness of a variable elimination com-
putation (such as the one in Algorithm 1) we need some
distributivity properties. However, the important property
(q1 + q2) × U = q1 × U + q2 × U does not always hold.
As a simple example, letq1 = q2 = 0.5 and consider
a set of bi-objective utility vectorsU = {(1, 0), (0, 1)}.
Using the point-wise operations on pairs of real numbers
we have that(q1 + q2) × U yields the set{(1, 0), (0, 1)},
whereas(q1 × U) + (q2 × U) = {(0.5, 0), (0, 0.5)} +
{(0.5, 0), (0, 0.5)} = {(1, 0), (0.5, 0.5), (0, 1)}. We will
see next that this distributivity property does hold if we re-
strict to convex sets.

3.3 EQUIVALENT SETS OF UTILITY VALUES

For U ,V ⊆ Rp, we say thatU < V if every element of
V is (weakly) dominated by some element ofU (so thatU
contains as least as large elements asV), namely if for all
~v ∈ V there exists~u ∈ U with ~u < ~v. We also define an
equivalence relation≈ between two finite setsU ,V ⊆ Rp

by U ≈ V if and only if U < V andV < U .

Given a setU ⊆ Rp, we define itsconvex closureC(U) to
consist of every element of the form

∑k
j=1(qj×~u

j), where
k is an arbitrary natural number, each~uj ∈ U , eachqj ≥ 0

and
∑k

j=1 qj = 1, respectively.

Given U ,V ⊆ Rp, we define the equivalence relation≡
by U ≡ V if and only if C(U) ≈ C(V). Therefore, two
sets of utility vectors are considered equivalent if, for every
convex combination of elements of one, there is a convex
combination of elements of the other which is at least as
good (with respect to the partial order< onRp). The fol-
lowing result shows, in particular, that the operations on
sets of utility values respects the equivalence relation.

PROPOSITION1 Let U ,V,W ⊆ Rp be finite sets and let
q ≥ 0. The following properties hold: (1)U ≡ max<(U);
(2) if U ≡ V thenq × U ≡ q × V, U +W ≡ V +W and
max(U ,W) ≡ max(V,W).

We can show now that the distributivity, and other proper-
ties we require, hold with respect to the≡ relation between
finite sets of partially ordered utility values.

THEOREM 1 Let< be a partial order onRp satisfying In-
dependence and Scale-Invariance. Then, for allq, q1, q2 ≥
0 and for all finite setsU ,V,W ⊆ Rp, we have that:
(i) q × (U + V) = q × U + q × V;
(ii) (q1 + q2)× U ≡ (q1 × U) + (q2 × U);
(iii) q1 × (q2 × U) = (q1 × q2)× U ;
(iv) max(q × U , q × V) = q ×max(U ,V);
(v)max(U +W,V +W) ≡ max(U ,V) +W.

This implies that variable elimination can be used to gen-



Algorithm 1 : ELIM -MOID

Data: A MOID 〈X,D,P,U〉 with p > 1 objectives, a legal
elimination ordering of the variablesτ = (Y1, . . . , Yt)

Result: An optimal policy∆
// partition the functions into buckets
for l = t downto 1do1

place inbuckets[l] all remaining components inP andU2
that contain variableYl in their scope

// top-down step
for l = t downto 1do3

letΦl = {φ1, . . . , φj} andΨl = {ψ1, . . . , ψk} be the4
probability and utility components inbuckets[l]
if Yl is a chance variablethen5

φl ←
∑

Yl

∏j

i=1 φi6

ψl ← (φl)−1 ×
∑

′

Yl
((
∏j

i=1 φi)× (
∑k

j=1 ψj))7

else ifYl is a decision variablethen8

φl ← maxYl

∏j

i=1 φi9

ψl ← maxYl
((
∏j

i=1 φi)× (
∑k

j=1 ψj))10

place eachφl andψl in the bucket of the highest-index11
variable in its scope

// bottom-up step
for l = 1 to t do12

if Yl is a decision variablethen13

δl ← argmaxYl
((
∏j

i=1 φi)× (
∑k

j=1 ψj))14

∆← ∆ ∪ δl15

return ∆16

erate the set of maximal values of expected utility, up to
equivalence (see also [5] for more details).

3.4 VARIABLE ELIMINATION

As well as operation+ on sets of utilities, we define op-
eration+′ on finite sets of utility values byU +′ V =
max<(U + V). Theorem 1 allows us to apply an iterative
variable elimination procedure along a legal elimination or-
dering where chance variables are eliminated by+′, deci-
sion variables bymax, and the probability and (set-valued)
utility functions are combined by× and+, respectively.
The set of maximal expected utility values is equivalent to
∑′

I0
maxD1

· · ·maxDm

∑′
Im

(

∏n
i=1 Pi ×

∑r
j=1 Uj

)

.

The variable elimination algorithm, called ELIM -MOID, is
described by Algorithm 1. It is based on Dechter’s bucket
elimination framework [24] and computes the maximal set
max<{EU∆| policies∆} as well as an optimal policy (the
algorithm can be easily instrumented to produce the entire
set of optimal policies). Given a legal elimination ordering
τ = Y1, . . . , Yt, the input functions are partitioned into a
bucket structure, calledbuckets, such that each bucket is
associated with a single variableYl and contains all input
probability and utility functions whose highest variable in
their scope isYl.

ELIM -MOID processes each bucket, top-down from the last
to the first, by a variable elimination procedure that com-

putes new probability (denoted byφ) and utility (denoted
by ψ) components which are then placed in corresponding
lower buckets (lines 3-11). For a chance variableYl, theφ-
message is generated by multiplying all probability com-
ponents in that bucket and eliminatingYl by summation.
Theψ-message is computed as the average utility in that
bucket, normalized by the bucket’s compiledφ (hereYl is
eliminated by

∑′). For a decision variableYl, we compute
theφ andψ components in a similar manner and eliminate
Yl by maximization. In this case, the product of probability
components in the bucket is a constant when viewed as a
function of the bucket’s decision variable and therefore the
compiledφ-message is a constant as well [20, 5].

In the second, bottom-up step, the algorithm generates an
optimal policy (lines 12-16). The decision buckets are pro-
cessed in reversed order, from the first variable to the last.
Each decision rule is generated by taking the argument of
the maximization operator applied over the combination of
probability and utility components in the respective bucket,
for each combination of the variables in the bucket’s scope
(i.e., the union of the scopes of all functions in the bucket
minusYl) while remembering the values assigned to earlier
decisions. Ties are broken uniformly at random.

As is usually the case with bucket elimination algorithms,
the complexity of ELIM -MOID can be bounded exponen-
tially (time and space) by the width of the ordered induced
graph that reflects the execution of the algorithm (i.e., in-
duced width of the legal elimination ordering) [24]. Since
the utility values are vectors inRp, it is not easy to predict
the size of the undominated set of expected utility values.

4 APPROXIMATING THE PARETO SET

In this section, we assume without loss of generality a weak
Pareto ordering onRp

+ because the proposed approxima-
tion method relies on a log transformation of the solution
space as we will see next. The cardinality of the Pareto set
max≥{EU∆ : policies∆} (and also the number of opti-
mal policies) can often get very large. What would then
be desirable for the decision maker is an approximation of
the Pareto set thatapproximatelydominates (or covers) all
elements in{EU∆ : policies∆} and is of considerably
smaller size. This can be achieved by considering the no-
tion of ǫ-covering of the Pareto set which is based onǫ-
dominancebetween utility values [8].

DEFINITION 3 (ǫ-dominance) For any finiteǫ > 0, theǫ-
dominancerelation is defined on positive vectors ofRp

+ by
~u ≥ǫ ~v ⇔ (1 + ǫ) · ~u ≥ ~v.

DEFINITION 4 (ǫ-covering) LetU ⊆ Rp
+ andǫ > 0. Then

a setUǫ ⊆ U is called anǫ-approximate Pareto setor an
ǫ-covering, if any vector~v ∈ U is ǫ-dominated by at least
one vector~u ∈ Uǫ, i.e.,∀~v ∈ U ∃~u ∈ Uǫ such that~u ≥ǫ ~v.



Algorithm 2 : (ǫ, λ)−COVERING(U )

Γ← ∅; V ← ∅;1
foreach~u ∈ U do2

if ϕλ(~u) /∈ Γ then3
remove fromΓ all ϕλ(~v) such thatϕλ(~u) ≥ ϕλ(~v);4
Γ← Γ ∪ {ϕλ(~u)};5

foreachϕλ(~u) ∈ Γ do V ← V ∪ {~u};6
return V;7

The setUǫ is not unique. However, it is possible to compute
anǫ-covering of a finite setU ⊆ Rp

+ by mapping each vec-
tor ~u ∈ U onto a hyper-grid using the log transformation
ϕ : Rp

+ → Zp
+, defined byϕ(~u) = (ϕ(u1), . . . , ϕ(up))

where∀i, ϕ(ui) = ⌈log ui/ log(1 + ǫ)⌉ [8]. By definition,
we have that:

PROPOSITION2 ∀~u,~v ∈ Rp
+, ϕ(~u) ≥ ϕ(~v) ⇒ ~u ≥ǫ ~v.

It is easy to see that any cell of the grid represents a dif-
ferent class of vectors having the same image throughϕ.
Based on Proposition 2, any vector belonging to a given
cell ǫ-dominates any other vector of that cell. Therefore,
for any finiteǫ, we can obtain a validǫ-covering ofU by
choosing one representative element in each cell and by
keeping only undominated cells occupied. For example, if
we restrict the vectors inU to be bounded by:1 ≤ ui ≤ B
for all i ∈ {1, . . . , p}, then the size ofUǫ is polynomial in
logB and1/ǫ (see also [8] for more details).

Example 3 Let U = {~u,~v} such that~u = (3.1, 2.9) and
~v = (3, 3.05). Clearly,~u � ~v and~v � ~u. Setǫ = 0.1. We
have thatϕ(~u) = ϕ(~v) = (12, 12), and it is easy to verify
that ~u ≥ǫ ~v and~v ≥ǫ ~u. Therefore,Uǫ = {~u} is a valid
ǫ-covering ofU , as is{~v}.

We next extend algorithm ELIM -MOID to compute anǫ-
covering of the expected utility set{EU∆ : policies∆}.
However, it is not possible to just replace Pareto dominance
with ǫ-dominance at each variable elimination step and still
guarantee a validǫ-covering becauseǫ-dominance is not a
transitive relation (e.g., if~u ≥ǫ ~v and~v ≥ǫ ~w, we only
have that~u ≥ (1+ ǫ)2 · ~w). To overcome this difficulty, we
use a finer dominance relation, defined as follows [9].

DEFINITION 5 ((ǫ, λ)-dominance) For any finite ǫ > 0
and λ ∈ (0, 1), the (ǫ, λ)-dominancerelation is defined
on positive vectors ofRp

+ by ~u ≥λ
ǫ ~v ⇔ (1 + ǫ)λ · ~u ≥ ~v.

Given a setU ⊆ Rp
+, a subsetU(ǫ,λ) ⊆ U is called an

(ǫ, λ)-covering, if∀~v ∈ U ∃~u ∈ U(ǫ,λ) such that~u ≥λ
ǫ ~v.

Algorithm 2 computes an(ǫ, λ)-covering of a finite setU ⊆
Rp

+ by using the log grid mappingϕλ : Rp
+ → Zp

+ defined
by ϕλ(~u) = (ϕλ(u1), . . . , ϕλ(up)) where∀i, ϕλ(ui) =
⌈log ui/ log(1 + ǫ)λ⌉. It is easy to see that:

PROPOSITION3 ∀~u,~v ∈ Rp
+, ϕλ(~u) ≥ ϕλ(~v) ⇒ ~u ≥λ

ǫ ~v.

PROPOSITION4 Let~u,~v, ~w ∈ Rp
+ andλ, λ′ ∈ (0, 1). The

following properties hold: (i) if~u ≥λ
ǫ ~v then~u + ~w ≥λ

ǫ

~v + ~w, and if~u ≥λ
ǫ ~v andq ≥ 0 thenq · ~u ≥λ

ǫ q · ~v; (ii) if
~u ≥λ

ǫ ~v and~v ≥λ′

ǫ ~w then~u ≥λ+λ′

ǫ ~w.

We define operationsmax∗ and+∗ on finite sets of utility
values bymax∗(U ,V) = max≥λ

ǫ
(U ∪ V) andU +∗ V =

max≥λ
ǫ
(U + V), wheremax≥λ

ǫ
(U) is an(ǫ, λ)-covering of

the finite setU ⊆ Rp
+ (computed using Algorithm 2).

The algorithm called ELIM -MOIDǫ, which computes anǫ-
covering of the expected utility set, is obtained from Algo-
rithm 1 by replacingmax and

∑′ by max∗ and
∑∗, re-

spectively. Since the top-down phase of the algorithm con-
sists oft elimination steps, one for each variable, and there-
fore requires computingt (ǫ, λi)-coverings viamax≥λ

ǫ
,

i = 1, . . . , t, a sufficient condition to obtain a validǫ-
covering is to choose theλi values summing to 1, specifi-
cally λi = 1/t, wheret is the number of variables. Thus:

THEOREM 2 Given a MOID instance〈X,D,P,U〉 with t
variables,p > 1 objectives and any finiteǫ > 0, algorithm
ELIM -MOIDǫ computes anǫ-covering.

The time and space complexity of ELIM -MOIDǫ is also
bounded exponentially by the induced width of the legal
elimination ordering. However, the size ofǫ-covering gen-
erated can be in many cases significantly smaller than the
corresponding Pareto set, as we will see in Section 6.

5 HANDLING IMPRECISE TRADEOFFS

The Pareto ordering is rather weak (often leading to very
large Pareto optimal sets, as mentioned above in Section 4,
and illustrated by the experiments in Section 6). Very often
the decision maker will be happy to allow some trade-offs
between objectives. For example, in a two-objective situa-
tion, they may tell us that are happy to gain 3 units of the
first objective at the cost of losing one unit of the second,
and hence prefer(3,−1) to (0, 0). Such tradeoffs may be
elicited using some structured method, or in a moread hoc
way. For instance, in Example 1, the decision maker may
be asked to imagine a scenario where it was known that the
oil content was “wet”, and whether they would then have a
preference for drilling. To do so would imply a preference
of (50, 12) over(0, 0).

We thus consider some setΘ of vector pairs of the form
(~u,~v), where~u,~v ∈ Rp. The idea is that this consists of
elicited preferences of the decision maker. We say that bi-
nary relation< onRp extendsΘ if ~u < ~v for all (~u,~v) ∈ Θ.
Similarly, we say that< extends Pareto if~u ≥ ~v⇒ ~u < ~v.

We consider that the decision maker has a partial order<

overRp, and that they specify a set of preferencesΘ. We
assume the Scale-Invariance and Independence properties
hold (see Section 2), and, naturally, assume that< extends



Pareto. The input preferencesΘ could contradict the other
assumptions we make. We say thatΘ is consistentif there
exists some partial order< that extendsΘ, extends Pareto,
and satisfies Scale-Invariance and Independence.

The input preferencesΘ (if consistent) give rise to a rela-
tion �Θ which specifies the deduced preferences. We say
that (~u,~v) can be deduced fromΘ if ~u < ~v holds for all
partial orders< that extendΘ, extend Pareto, and satisfy
Scale-Invariance and Independence. In this case we write
~u �Θ ~v. The definition easily implies the following.

PROPOSITION5 If Θ is consistent then�Θ is a par-
tial order extendingΘ and Pareto, and satisfying Scale-
Invariance and Independence.

Proposition 5 shows that this dominance relation�Θ satis-
fies Scale-Invariance and Independence, giving the proper-
ties (Theorem 1) we need for the variable elimination algo-
rithm to be correct (up to equivalence).

In Example 1, suppose now we have the additional user
preference of(50, 12) over (0, 0), and hence include the
pair ((50, 12), (0, 0)) in Θ. This would then imply that
(11, 12.78) is dominated w.r.t.�Θ by (20, 14.2).

Theorem 3 below gives a characterization of the partial or-
der�Θ, which we use as the basis of our implemented al-
gorithm for testing this kind of dominance. LetW be some
subset ofRp. DefineC(W ), the convex cone generated by
W , to be the set consisting of all vectors~u such that there
existsk ≥ 0 and non-negative real scalarsq1, . . . , qk and
~wi ∈ W with ~u ≥

∑k
i=1 qi ~wi, where≥ is the weak Pareto

relation (and an empty summation is taken to be equal to
0). C(W ) is the set of vectors that weakly-Pareto dominate
some (finite) positive linear combination of elements ofW .

THEOREM 3 Let Θ be a consistent set of pairs of vectors
in Rp. Then~u �Θ ~v if and only if~u − ~v ∈ C(~ui − ~vi :
(~ui, ~vi) ∈ Θ).

Write finite set of input preferencesΘ as{(~ui, ~vi) : i =
1, . . . , k}. Theorem 3 shows that, to perform the domi-
nance test~u �Θ ~v, it sufficient to check if there exist,
for i = 1, . . . , k, non-negative real scalarsqi such that
~u−~v ≥

∑k
i=1 qi(~ui − ~vi). This can be determined using a

linear programming solver, since it amounts to testing if a
finite set of linear inequalities is satisfiable.

Example 4 ConsiderΘ = {(−1, 2,−1), (4,−3, 0)} and
vectors~u = (1,−1, 0) and~v = (0,−2, 1). Then~u �Θ ~v
iff ~u − ~v weak Pareto-dominates a non-negative combi-
nation of elements ofΘ, i.e., ∃q1 ≥ 0, q2 ≥ 0 such
that ~u − ~v ≥ q1(−1, 2,−1) + q2(4,−3, 0), which is iff
there exists a solution for the linear system defined by:
1 ≥ −q1 + 4q2 and1 ≥ 2q1 − 3q2, and−1 ≥ −q1. Since
this is the case (e.g.,q1 = 1; q2 = 0.5) we have~u �Θ ~v.

Alternatively, we can use the fact that the dominance test
corresponds to checking whether~u−~v is in the convex cone
generated by{~ui−~vi : i = 1, . . . , k} plus thep unit vectors
in Rp. We made use of an (incomplete) algorithm [27] for
this purpose (which computes the distance of a vector from
a cone).

Therefore, the algorithm called ELIM -MOID-TOF that ex-
ploits tradeoffs is obtained from Algorithm 1, by replac-
ing the+′ andmax operators with+Θ andmaxΘ, respec-
tively, wheremaxΘ(U ,V) = max�Θ

(U ∪ V), U +Θ V =
max�Θ

(U + V), andmax�Θ
(U) is the set of undominated

elements of finite setU ⊆ Rp with respect to�Θ.

Instead of eliminating�Θ-dominated utility values during
the computation, one could generate the Pareto optimal set
of expected utility values, and only then eliminate�Θ-
dominated values. However, the experimental results in
Section 6 (Table 2) indicate that this will typically be much
less computationally efficient.

6 EXPERIMENTS

In this section, we evaluate empirically the performance
of the proposed variable elimination algorithms on random
multi-objective influence diagrams. All experiments were
run on a 2.6GHz quad-core processor with 4GB of RAM.

The algorithms considered were implemented in C++ (32-
bit) and are denoted by ELIM -MOID (Section 3), ELIM -
MOIDǫ (Section 4) and ELIM -MOID-TOF (Section 5), re-
spectively. We implemented both methods for performing
the �Θ-dominance, namely the linear programming and
the distance from a cone based one, and report only on the
former because their performance was comparable overall.

We experimented with a class of random influence di-
agrams described by the parameters〈C,D, k, p, r, a,O〉,
whereC is the number of chance variables,D is the num-
ber of decision variables,k is the maximum domain size,
p is the number of parents in the graph for each variable,
r is the number of root nodes,a is the arity of the utility
functions andO is the number of objectives. The structure
of the influence diagram is created by randomly picking
C+D−r variables out ofC+D and, for each, selectingp
parents from their preceding variables, relative to some or-
dering, whilst ensuring that the decision variables are con-
nected by a directed path. We then added to the graphD
utility nodes, each one havinga parents picked randomly
from the chance and decision variables.

We generated random problems with parametersk = 2,
p = 2, r = 5, a = 3 and variedC ∈ {15, 25, 35, 45, 55},
D ∈ {5, 10} andO ∈ {2, 3, 5}, respectively. In each case,
25% of the chance nodes were assigned deterministic CPTs
(containing 0 and 1 entries). The remaining CPTs were ran-
domly filled using a uniform distribution. The utility vec-
tors were generated randomly, each objective value being



Table 1: Results with algorithms ELIM -MOID and ELIM -MOIDǫ on random influence diagrams. Time limit 20 minutes.
size w∗ ELIM -MOID ǫ = 0.01 ǫ = 0.1 ǫ = 0.3
(C,D,O) # time avg stdev med# time avg stdev med# time avg stdev med# time avg stdev med

(15,5,2) 9 16 10.77 3,601 7,422 1,33020 18.48 2,051 4,811 9220 0.06 87 150 1420 0.03 18 24 5
(25,5,2) 11 12 17.28 3,663 6,952 1,62316 58.47 1,340 2,835 13720 0.76 157 321 1320 0.17 24 42 6
(35,5,2) 14 11 60.63 2,104 2,092 2,04620 141.86 4,554 8,979 34420 1.49 112 167 2320 1.12 16 20 5
(45,5,2) 16 5 304.08 7,131 6,086 6,91718 56.57 1,791 3,183 80420 24.44 121 199 6920 2.53 21 27 12
(55,5,2) 18 5 267.74 8,227 11,166 4,26618 58.91 3,428 6,363 1,27020 17.59 80 113 2320 16.60 10 14 5
(15,5,3) 9 13 21.12 3,827 9,993 4298 8.52 1,247 1,477 97317 51.31 7,220 12,355 14019 1.89 470 675 16
(25,5,3) 11 2 163.84 4,638 4,518 4,5788 103.75 5,167 8,122 2,06318 77.98 2,641 4,409 87620 1.43 139 229 62
(35,5,3) 14 0 1 49.56 2,200 0 2,20013 83.25 6,113 8,614 39020 37.26 1,326 2,713 200
(45,5,3) 16 1 0.74 907 0 907 3 317.34 30,025 22,643 35,24815 57.58 5,689 15,495 5520 76.48 1,256 3,746 20
(55,5,3) 18 0 3 19.95 711 794 22014 165.69 898 1,918 10620 85.02 1,434 4,715 43
(15,5,5) 9 7 183.32 19,973 21,437 9,6593 111.53 7,267 3,789 6,6287 80.26 2,368 4,541 58613 10.97 156 235 59
(25,5,5) 11 1 199.13 25,021 0 25,0210 6 222.08 5,142 5,993 6,4999 106.95 6,432 17,449 133
(35,5,5) 14 0 0 1 36.04 636 0 636 6 305.37 21 9 27
(45,5,5) 16 0 0 0 7 51.94 6,620 5,898 8,250
(55,5,5) 18 0 0 0 4 77.25 1,556 2,488 3,091

(15,10,2) 12 11 221.24 5,516 6,653 1,94617 192.55 11,783 27,315 17320 10.74 1,074 3,122 2320 6.01 153 470 9
(25,10,2) 17 1 0.62 688 0 68814 208.05 4,391 12,479 23519 49.35 186 544 1620 14.18 42 125 6
(35,10,2) 20 0 2 490.39 3,788 1,601 2,69515 95.18 266 475 7316 79.63 68 152 18
(45,10,2) 22 0 1 512.51 4,136 0 4,1369 196.46 493 647 1899 125.28 87 111 54
(55,10,2) 26 0 0 1 590.92 20 0 20 1 148.03 7 0 7
(15,10,3) 12 0 0 2 53.32 312 17 16412 118.71 4,429 9,303 47
(25,10,3) 17 0 0 2 104.96 2,822 2,584 2,7038 215.39 1,960 2,005 2,678
(35,10,3) 20 0 0 1 15.38 49 0 49 4 272.04 3,496 5,659 6,918
(45,10,3) 22 0 0 2 280.15 956 809 8822 98.59 87 70 78
(55,10,3) 26 0 0 0 0
(15,10,5) 12 0 0 0 1 112.00 429 0 429
(25,10,5) 17 0 0 0 1 790.34 584 0 584
(35,10,5) 20 0 0 0 0
(45,10,5) 22 0 0 0 0
(55,10,5) 26 0 0 0 0

drawn uniformly at random between 1 and 30.

We report the average CPU time (in seconds) as well as the
average size (together with standard deviation and median)
of the maximal expected utility sets generated. In addition,
we also record the average induced width (w∗) of the prob-
lems obtained using a minfill elimination ordering [24].

Impact of the ǫ-covering Table 1 summarizes the results
obtained with algorithms ELIM -MOID and ELIM -MOIDǫ

with ǫ ∈ {0.01, 0.1, 0.3} on problems with 5 and 10 de-
cisions. The number shown in column (#) indicates how
many instances out of 20 were solved within the time or
memory limit. We see that ELIM -MOID can solve only
relatively small instances and runs out of time/memory on
the larger ones. For example, on problem size〈25, 5, 2〉,
ELIM -MOID solved 60% of the instances in about 17 sec-
onds and generated Pareto sets containing about 3,600
vectors on average (with a standard deviation of about
6,900). On the other hand, algorithm ELIM -MOIDǫ scales
up and solves larger problems while generating signifi-
cantly smallerǫ-coverings, especially asǫ increases. For
example, on problem class(25, 5, 2), the average size of
the ǫ-covering forǫ = 0.3 is about 2 orders of magnitude
smaller than the corresponding Pareto optimal set. The rea-
son is that asǫ increases, the corresponding logarithmic
grid gets coarser (i.e., fewer cells) and therefore the num-
ber of representative vectors needed to cover the optimal
Pareto set is smaller.

Figure 3 plots the distribution (mean and standard devia-
tion) of the size of theǫ-coverings generated for problem
class〈35, 5, 5〉, as a function ofǫ. We can see that asǫ
increases the size of theǫ-covering decreases considerably.
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Figure 3: Distribution (mean and stdev) of theǫ-covering
size as a function of theǫ value. We also plot the number
of instances solved out of 100. Time limit 20 minutes.

Impact of imprecise tradeoffs For the purpose of this
evaluation, we generated consistent random tradeoffs be-
tween the objectives of a given problem instance, as fol-
lows. Let(i, j) be a pair of objectives picked randomly out
of p objectives. We generate two tradeoffsa~ei − b~ej and
b~ej − ac~ei, where~ei and~ej are thei-th andj-th unit vec-
tors. Intuitively, one of the tradeoffs indicates how much
of objectivei one is willing to sacrifice to gain a unit of
objectivej, and the other is vice versa. In addition, we also
generate a 3-way tradeoff between three objectives(i, j, k)
picked randomly as well in the form of the tradeoff vector
a~ei + b~ej − c~ek. Therefore, our random tradeoffs genera-
tor is characterized by parameters(K,T, a, b, c), whereK
is the number of pairs of objectives,T is the number of
triplets (and thus a total of2K + T tradeoffs inΘ), and
randomly chosena, b, c ∈ [0, 1) are used to construct the
tradeoff vectors. Notice that parameterc can be used to
control the strength of the two-way tradeoffs. Specifically,



Table 2: Results comparing algorithms ELIM -MOID and
ELIM -MOID-TOF on random influence diagrams with ran-
dom tradeoffs. Time limit 20 minutes.

size w∗ ELIM -MOID ELIM -MOID-TOF

(C,D,O) # time avg stdev med# time avg stdev med

K = 1; T = 0; a, b, c ∈ [0.1, 1)
(15,5,2) 9 9 139.58 2,714 2,864 1,67394 24.93 98 232 1
(25,5,2) 11 7 18.25 2,344 2,614 26992 7.12 33 126 1
(35,5,2) 14 2 283.29 9,115 8,934 9,02483 59.18 147 378 1
(45,5,2) 16 2 397.72 7,596 7,536 7,56676 23.08 86 302 1
(55,5,2) 18 4 717.68 10,422 5,851 14,89676 48.02 90 233 2

K = 2; T = 1; a, b, c ∈ [0.1, 1)
(15,5,3) 9 6 10.69 4,889 4,069 5,83085 34.62 48 135 2
(25,5,3) 11 2 4.42 4,000 3,938 3,96970 18.20 41 95 2
(35,5,3) 14 0 50 89.51 119 198 13
(45,5,3) 16 2 242.68 15,431 1,729 8,58052 28.18 41 73 4
(55,5,3) 18 0 51 94.63 75 154 4

K = 6; T = 3; a, b, c ∈ [0.1, 1)
(15,5,5) 9 3 65.73 15,062 12,229 14,74184 19.70 41 104 4
(25,5,5) 11 1 50.35 21,074 0 21,07474 83.30 97 217 4
(35,5,5) 14 0 59 63.69 101 225 8
(45,5,5) 16 0 61 96.59 107 216 8
(55,5,5) 18 0 41 84.32 51 101 12

K = 1; T = 0; a, b, c ∈ [0.1, 1)
(15,10,2) 12 5 91.82 6,856 8,280 3,17578 34.09 60 145 1
(25,10,2) 17 1 808.94 4,964 0 4,96437 94.08 63 232 1
(35,10,2) 20 0 23 227.78 29 68 1
(45,10,2) 22 0 11 59.97 30 39 13
(55,10,2) 26 0 0

K = 2; T = 1; a, b, c ∈ [0.1, 1)
(15,10,3) 12 0 45 157.48 86 191 12
(25,10,3) 17 0 11 204.78 74 83 73
(35,10,3) 20 0 3 303.42 8 8 4
(45,10,3) 22 0 3 158.17 4 4 1
(55,10,3) 26 0 0

K = 6; T = 3; a, b, c ∈ [0.1, 1)
(15,10,5) 12 0 40 106.50 27 64 5
(25,10,5) 17 0 21 104.70 67 114 10
(35,10,5) 20 0 5 244.45 72 80 48
(45,10,5) 22 0 0
(55,10,5) 26 0 0

if we were to setc = 1 then the two objectivesi and j
would essentially collapse into a single one (we’d have pre-
cise rates of exchange between objectivesi andj). If c = 0
then the second tradeoff for the pair(i, j) is irrelevant.

Table 3: Impact of the quality of the random tradeoffs on
bi-objective influence diagrams. Time limit 20 minutes.

size w∗ ELIM -MOID ELIM -MOID-TOF

(C,D,O) # time avg stdev med# time avg stdev med

K = 0; K = 1;c = 0
(15,5,2) 9 9 139.58 2,714 2,864 1,67384 48.30 243 542 23
(25,5,2) 11 7 18.25 2,344 2,614 26961 16.83 79 260 10
(35,5,2) 14 2 283.29 9,115 8,934 9,02442 94.89 190 344 11
(45,5,2) 16 2 397.72 7,596 7,536 7,56642 76.83 130 297 5
(55,5,2) 18 4 717.68 10,422 5,851 14,89641 144.64 268 312 78

Table 2 reports the results obtained with algorithms ELIM -
MOID and ELIM -MOID-TOF, respectively. For each prob-
lem class〈C,D,O〉 we generated 10 random instances,
and for each problem instance we generated 10 sets of ran-
dom tradeoff vectors using the parametersK,T, a, b, c in-
dicated in the header of each horizontal block. As before,
the columns labeled by # show how many problems out of
10 (respectively, out of 100) were solved by ELIM -MOID

(respectively, ELIM -MOID-TOF). Overall, we notice that
the expected utility sets computed by ELIM -MOID-TOFare
orders of magnitude smaller than the corresponding Pareto
optimal ones generated by ELIM -MOID. We also see that
the median size is even smaller, in some cases being ac-
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Figure 4: Distribution (mean, stdev, median) of the size of
maximal utility sets as a function of pairwise tradeoffsK
and fixed 3-way tradeoffs (T = 3). We also plot the number
of instances solved out of 100. Time limit 20 minutes.

tually 1 indicating that the tradeoffs generated were strong
enough to make�Θ fairly close to being a total order.

In Table 3 we take a closer look at the impact of the trade-
offs strength for bi-objective problems with 5 decisions.
We see that even exploiting a single tradeoff (i.e., using
c = 0 for two objective case) has a dramatic impact on the
size of the maximal expected utility set. For example, on
problem class〈55, 5, 2〉, the undominated set of expected
utility values computed by ELIM -MOID-TOF contains on
average 38 times fewer utility values than the correspond-
ing Pareto optimal set generated by ELIM -MOID.

Figure 4 shows the distribution (mean, standard deviation
and median) of the size of the maximal sets generated
by ELIM -MOID-TOF on problems from class〈25, 5, 5〉 as
a function of the number of pairwise tradeoffsK. As
more tradeoffs become available the number of problem
instances solved increases because the�Θ-dominance gets
stronger and therefore it reduces the undominated utility
sets significantly.

7 CONCLUSION

In this paper, we describe how a variable elimination solu-
tion method for influence diagrams is extended to the case
of multi-objective utility. A general problem with using
the Pareto ordering for multi-objective utility is that theset
of maximal expected utility values will often become ex-
tremely large. We show how the use ofǫ-coverings can
lead to a much more practical computational approach than
the exact computation.

We also define a natural way of taking imprecise tradeoffs
into account, and give a computational method for check-
ing the resulting dominance condition. Our experimental
results indicate that the resulting maximal (multi-objective)
values of expected utility can be very much reduced by the
adding of (even a small number of) tradeoffs.
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