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Abstract now only partially ordered (for instance by the Pareto or-
dering) we no longer have a unique maximal value of ex-

We describe multi-objective influence diagrams, pected utility, but a set of them.

based on a set aof objectives, where utility val- The Pareto ordering on multi-objective utility is a rather
ues are vectors iR?, and are typically only par- weak one; the effect of this is that the set of maximal val-
tially ordered. These can still be solved by a ues of expected utility can often become huge. We dis-
variable elimination algorithm, leading to a set of cuss how the notion afcovering, which approximates the
maximal values of expected utility. If the Pareto Pareto set, can be applied for the case of multi-objective in

ordering is used this set can often be prohibitively fluence diagrams. As we demonstrate experimentally, this
large. We consider approximate representations  has a major effect on the size of the undominated utility
of the Pareto set based ercoverings, allowing vector sets and hence on the computational efficiency and
much larger problems to be solved. In addition, feasibility for larger problems.

we define a method for incorporating user trade-

offs, which also greatly improves the efficiency. We also define a simple formalism for imprecise tradeoffs;

this allows the decision maker, during the elicitation stag
to specify a preference for one multi-objective utility vec
tor over another, and uses such inputs to infer other pref-
1 INTRODUCTION erences. The induced preference relation then is used to
eliminate dominated utility vectors during the computatio
Influence diagrams [1] are a powerful formalism for rea- Our experimental results indicate that the presence of even
soning with sequential decision making problems undema few such imprecise tradeoffs greatly reduces the undom-
uncertainty. They involve both chance variables, where thénated set of expected utility values.

outcome is determined randomly based on the values as- . . . .
y ﬁ'he paper is organized as follows. We first discuss the re-

signed to other variables, and decision variables, whieh th : ; ) .
decision maker can choose the value of, based on observlgited work. Then Section 2 describes standard influence di-

tions of some other variables. Uncertainty is represente(‘.'ilgramS and multi-objective utllity values. Section 3 define

(like in a Bayesian network) by a collection of conditional multl-objectlve influence diagrams, and how variable elim-

probability distributions, one for each chance variablee T ination can be used to compute the set of maximal values of

overall value of an outcome is represented as the sum of g‘zﬁggf?hgtﬂ?; g?tﬁ)ezci;\%?iqnm gg;:\éaéear;g; g:tcuggcfigs'
collection of utility functions. 9 :

5 defines the formalism for tradeoffs and how the induced
In many situations, a decision maker has more than one olmotion of preference dominance can be computed. Section
jective, and mapping several objectives to a single utility6 describes our experimental testing of multi-objective in
scale can be problematic, since the decision maker may bituence diagrams, based on the Pareto ordering, oe-the
unwilling or unable to provide precise tradeoffs betweencovering approximation, and based on the dominance rela-
objectives [2, 3, 4]. We consider multi-objective influence tion induced by the user tradeoffs. Section 7 concludes.
diagrams, where utility values are now vector&it, with Co

P bging the number o)f/ objectives. Since utility values areRELATED WORK: - Our approach to multi-objective in-
fluence diagram computation is based on our general

Abdul Razak is funded by IRCSET and IBM through the framework [5].

IRCSET Enterprise Partnership Scheme. This work was also sup- . . . . .
ported in part by the Science Foundation Ireland under grant noD'e.hI and Halmes [6] des_crlbe a.compu.tatllonal teghnlque
08/P1/11912 for influence diagrams with multiple objectives, with the
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restriction of just a single value node (utility functioMhe
solution method is based on influence diagram transforma-
tions [7]. Pareto dominance is used to prune sub-optimal
utility vectors during the computation (with tradeoffs be-
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ing taken into account at the end of the computation). 0
Seismic results P(S|0,T) Drill payoff U,(0,0)
Papadimitriou and Yannakakis [8] proposed the use of the e m e | U I
logarithmic grid in(1 + €) to generate am-covering of oy of of o x|[i [w o
the Pareto set. Dubus et al. [9] also developed a variable T e e T R =
elimination algorithm that usesdominance over a graphi- ook _es S NCEL IR S T =

cal model (GAI network) that represents a (multi-objective

generalized decomposable additive utility function. Figure 1: A simple influence diagram with two decisions.

Zhou et al. [10] consider influence diagrams (with a unique .
value node) based on interval-valued utility, which is sim-varablesy = {Qi,..., @r}, Q; € X UD, calledscopes

ilar to bi-objective utility. They adapt Cooper's approach and represent the preferences of the decision maker.

for solving influence diagrams based on Bayesian networK he graph of an ID contains nodes for chance variables (cir-
algorithms [11]. Other extensions of influence diagramscled), decision variables (boxed) and for the utility compo
include work in [12, 13, 14] which allow interval probabil- nents (diamond). For each chance or decision node there is
ity (but precise single-objective utility), and in [15] vati  an arc directed from each of its parent variables toward it,
considers generalized influence diagrams based on fuzzynd there is a directed arc from each variable in the scope
random variables. of a utility function toward its utility node.

Maua et al. [16] proposed a variable elimination algorithmThe decision variables in an influence diagram are typically
for solving Limited Memory Influence Diagrams (LIM- assumed to be temporally ordered (also knowregslar-
IDs). Although they consider standard totally ordered-util ity). Let D, Ds, ..., D,, be the order in which the decisions
ties, their algorithm also manipulates partially orderetss are to be made. The chance variables can be partitioned
in their case, sets of functions that are used to represent thinto a collection of disjoint setk, I, ...,I,,. For eachk,
effect of different undominated policies. where0 < k < m, I is the set of chance variables that

. . are observed betwedn, and Dy 1. I is the set of initial

Our method for incorporating tradeoffs relatescanvex evidence variables that are observed befre 1, is the

h Th . A | ht i .
(;?JE_SOnge:ﬁ:eW ;r;yer en?:?e;e?age d or??:r:)?]r:s aggrckj)i(;n gggt of chance variables left unobserved when the last deci-
veloped by Yu and others [17, 18] sionD,,, is made. This induces a strict partial ordepver

X UD,givenby:Iy < D; <I; <--- < D, <1, [20].

A policy (or strategy for an influence diagram is a list of
decision rulesA = (4,...,d,,) consisting of one rule
for each decision variable. Mecision rulefor the deci-
2.1 INFLUENCE DIAGRAMS sion D, € D is a mappin®i : Qpu(p,) — Qp,, Where
for a setS C X U D, Qg is the Cartesian product of
An influence diagram(ID) [1] is defined by a tuple the individual domains of the variables  Therefore,

2 BACKGROUND

(X,D,P,U), whereX = {X;,...,X,} is a set of g policy A determines a value for each decision variable
chance variablesvhich specify the uncertain decision en- p, (which depends on the parents set(D;)). Given
vironment andD = {Ds,..., Dy} is a set ofdecision 3 utility function U, a policy A yields a utility function

variableswhich specify the possible decisions to be made|{/], that involves no decision variables, by assigning their
in the domain. The chance variables are further divide alues usingA_ The expected ut|||ty gi\/en po||c)A is
into observablemeaning they will be observed during ex- pr, = ST, P x E§:1 U;)]a. Solving an influ-
ecution, orunobservable As in BayESian networks [19], ence diagram means f|nd|ng apt|ma| p0||cythat maxi-
each chance variabl¥; € X is associated with aondi-  mizes the expected utility, i.e., to findg max,, EUx. The
tional probability table(CPT) P; = P(X;|pa(X;)), where  maximum expected utility can be shown to be equal to:
P, € P andpa(X;) C XUD\ {X;}. Each decision vari-

ableD;, € D has a parent sela(Dy,) C X UD\ {D;}, i "

denoting the variables whose values will be known at the ZH}%X' B Z Tgaxz HPi X Z Uj @)
time of the decision and may affect directly the decision. Lo L Ln \i=1 7=l
Non-forgettingis typically assumed for an influence dia-

gram, meaning that a decision node and its parents are paexample 1 Figure 1 shows the influence diagram of the
ents to all subsequent decisions. Tindity (or reward)  oil wildcatter problem (adapted from [21]). An oil wild-
functionsU = {Uy,...,U,} are defined over subsets of catter must decide either wrill or not to drill for oil at a



specific site. Before drilling, aeismic testould help de- An important example of such a partial order is the weak
termine the geological structure of the site. The test tesul Pareto order.
can show &closedreflection pattern (indication of signif-
icant oil), an openpattern (indication of some oil), or a DEFINITION 1 (weak Pareto ordering) Let «,v € RP
diffuse pattern (almost no hope of oil). The special value such thati = (ui,...,u,) and v = (vy,...,v,). We
notestis used if no seismic test is performed. There aredefine the binary relation> on R? by & > ¢ <=
therefore two decision variabled; (Test) andD (Drill), Vie{l,....p}u; > v,
and two chance variableS (Seismic results) an@ (Oil
contents). The probabilistic knowledge consists of the conGivend, v € R?, if « = ¢ then we say thai dominates’.
ditional probability tablesP(0O) and P(S|O, T), while the ~ As usual, the symbot refers to the asymmetric part gf
utility function is the sum df’, (T') andU, (O, D). The op-  Namelya > ¢ if and only if & = ¢ and it is not the case
timal policy is to perform the test and to drill only if the thatd = . In particular, relatior> (resp.>) is also called
test results show an open or a closed pattern. The expectéieak Pareto dominandegesp.Pareto dominance
utility of this policy is 22.5.

DEFINITION 2 (maximal/Pareto set) Given a partial or-
Several exact methods have been proposed over the p&#r = and a finite set of utility vectod C R?, we define
decades for solving influence diagrams using local comthe maximal setdenoted bynax (i), to be the set con-
putations [7, 22, 23, 20, 24, 25]. These methods adaptesisting of the undominated elementgni.e., max,. (U) =
classicavariable eliminatiortechniques, which compute a {7 € U | 37 € U, 7 - @}. When:= is the weak Pareto
type of marginalization over a combination of local func- ordering>, we callmax, (/) the Pareto set
tions, in order to handle the multiple types of information
(probabilities and utilities), marginalizatiot { andmax) 3 MULTI-OBJECTIVE INFLUENCE
and compmauon X fgr probab|I|t_|es,+ for ut|I|t|es_,) in- DIAGRAMS
volved in influence diagrams. Since the alternatiorp Of

andmax in Equation 1 does not commute in general, it P& this section, we introduce the extension of the stan-

vents the solution technique from eliminating variables Nyard influence diagram model to include multiple objec-

any ordering. Therefore, the computathn Q|ct§ted by Equat'ives. Towards this goal we consider a multi-objective-util
tion 1 must be performed alonglegal elimination order-

ing that respects<, namely the reverse of the elimination ity function that is additively decomposable [26]. For sim-

N X plicity and without loss of generality we assume that all
ordering is some extension efto a total order [20, 24]. objectives are to be maximized. We next define formally

the graphical model and then derive a sequential variable

2.2 MULTI-OBJECTIVE UTILITY VALUES elimination algorithm for evaluating the model.

In many real-world situations it may not be possible for the
decision maker to map the various possible consequence?%'.1 THE GRAPHICAL MODEL

of a set of actions to the same scale of utility in a way that T .
avoids essentially arbitrary decisions. Hence, it is redtior A multi-objective influence diagrafMOID) extends the

consider multi-objective or multi-attribute utility futions standard influence diagram by allowing a multi-objective

to cope with multiple and non-commensurate utility s;calesUtlllty function defined orp > 1 objectives. The graph-

. e , ical structure of a MOID is identical to that of a standard
on which the decision maker’s preferences are expressed o : : .
1D, namely it is a directed acyclic graph containicttance

Consider a situation witlp objectives (or attributes). A nodes(drawn as circles) for the random discrete variables
multi-objective utility valueis characterized by a vector X, decision nodegdrawn as rectangles) for the decision

@ = (u1,...,up) € RP, whereu; represents the utility variablesD, and utility nodes(drawn as diamonds) for
with respect to objective € {1,...,p}. We assume the the local utility functionsU of the decision maker. The
standard pointwise arithmetic operations, namely v = directed arcs in the MOID represent the same dependen-
(ur +v1,...,up+vp)andg X € = (g X U1, ...,q X Up), cies between the variables as in the standard model. Each
whereq € R. The comparison of utility values reduces to chance nod&; € X is associated with a conditional prob-
that of their corresponding-dimensional vectors. ability table P(X;|pa(X;)) : Qx,upacx,) — [0,1]. The
utility functions U; € U represent the decision maker’s
preferences with respect to each of thabjectives, namely

Uj : Qq, — RP, whereQ); is the scope o/;.

We are interested in partial ordegson R? satisfying the
following two monotonicity properties, whefg v, w € RP
are arbitrary vectors.

A policy for a MOID is a sequencéd = (d1,...,0m),
where eacld; is a function fromQ2,,,p,) — Qp,. Clearly,
[Scale-Invariance:] If @ = v andq € R, ¢ > 0then given a policyA we have thattUx C RP. Solving a
qXUsx=qxu. multi-objective influence diagram means finding the set of

[Independence:]If @ = ¥thend + @ = ¥+ W



d,y\;f)\ max(U,V) = max, (U UV). Itis easy to see that, x
o5 03] 02 andmax are commutative and associative.

Test payoff | U (T) . . . .

Tost To ensure the correctness of a variable elimination com-

e putation (such as the one in Algorithm 1) we need some
Sefamic rosults eTom Drilpayolt | U0) distributivity properties. However, the important progyer
e e R (@1 +¢2) xU = ¢1 x U + g2 x U does not always hold.
oy of of of x|[iw [w ©0) As a simple example, lej; = ¢2 = 0.5 and consider
wet es .. we es ,12) - - . TH
R a set of bi-objective utility vectors = {(1,0),(0,1)}.
ook _es R Using the point-wise operations on pairs of real numbers

we have tha{q; + ¢2) x U yields the sef(1,0),(0,1)},
whereas(q1 x U) + (¢2 x U) = {(0.5,0),(0,0.5)} +
{(0.5,0),(0,0.5)} = {(1,0),(0.5,0.5),(0,1)}. We will
see next that this distributivity property does hold if we re
'strict to convex sets.

Figure 2: A bi-objective influence diagram.

policies that generate maximal values of expected utility
i.e., values of utility in the sethax,. { EUa | policiesA}.

We say that a polic\ is optimalif the corresponding ex-
pected utility ZU» is undominated. 3.3 EQUIVALENT SETS OF UTILITY VALUES

Fori/,V C RP, we say that/ = V if every element of

Example 2 Figure 2 displays a bi-objective influence dia- ., .
gram for the decision problem from Example 1. We con-V is (weakly) dominated by some elementoiso that/

: o . . . . contains as least as large element3’gsnamely if for all
5|de_r a Ut!|IFy function with two attributes re_presentlr‘r@t 7 € V there existsi € U with @ = 7. We also define an
testing/drilling payoff and damageo the environment, re- . : -

> . 27 equivalence relatiors between two finite seld,V C R?
spectively. The utility of testing i6-10, 10), whereas byl ~ Vifand only ifif = V and) = U
the utility of drilling is (—70,18), (50,12), (200,8) for 2~ yiu = g
a dry, wet and soaking hole, respectively. The aim is taGiven a selt/ C RP, we define itxonvex closur€ (i/) to
find optimal policies that maximize the payoff and min-consist of every element of the forEle(qj x /), where
imize the damage to environment. The dominance rela; js an arbitrary natural number, eath € ¢4, eachy; > 0
tion is defined in this case by > v < w; > v, and ndS™* 1 respectivel N
uz < vy (€.9.,(10,2) > (8,4) and(10,2) # (8,1)). The _ 2j=14i = L. Tesp _ Y _ _
Pareto setmax> {EUx | policiesA} contains 4 elements, Given{,V C R”, we define the equivalence relatien
i.e., {(22.5,17.56), (20,14.2), (11,12.78), (0,0)}, cor- byU = Vifand only if C(t/) ~ C(V). Therefore, two
responding to the four optimal policies shown below (wesets of utility vectors are considered equivalent if, fogrgv

show how to obtain these in Section 3.4): convex combination of elements of one, there is a convex
combination of elements of the other which is at least as
| A | 2 | As | As good (with respect to the partial orderon R?). The fol-
o yes no yes no i i i i
5TD e (5= closet) Tyes (5= Foieslyes (5= Tiossdno (S=Tioiesh lowing re_s_ult shows, in particular, th_at the operat_|ons on
yes (S = open) no (S = open) sets of utility values respects the equivalence relation.
no (S = diffuse) no (S = diffuse)
EUA, [{(22.5,17.56)} [ {(20, 14.2)} [{(11,12.78)] [{(0,0)} ProPOSITIONL LetZ/,V, W C RP? be finite sets and let

> 0. The following properties hold: = ;
Because we are considering partially ordered utilities, th ((12)_ifu — V theng 35 :pq V1t )(/\J?!: me%(ggd

max operator does not necessarily lead to a unique ele: UW) = VW
ment. This means that we need to extend the arithmetiénax( W) = max(V, W).

operations, addition, multiplication andax, to finite sets  we can show now that the distributivity, and other proper-
of utility values. ties we require, hold with respect to therelation between
finite sets of partially ordered utility values.

3.2 ARITHMETIC OPERATIONS AND . i
DISTRIBUTIVITY PROPERTIES THEOREM1 Let = be a partial order orR? satisfying In-
dependence and Scale-Invariance. Then, fogall, g; >
In this section we assume a partial orgepn R” that sat- 0 @nd for all finite set$/, V, )W C R”, we have that:
isfies Independence and Scale-Invariance. In particglar, (') gxU+V)=gxU+qgxV,
can be the weak Pareto ordering. (i) (g1 +q2) XU = (¢ x U) + (g2 X U);

. - i (i) q1 x (g2 xU) = (q1 X q2) x U,
Given two finite setd/,V C RP andq > 0, we define (iv) max(q x U, q x V) = q x max(U, V);

the summation and multiplication operationslas-V = (v) max(if + W,V + W) = max(U, V) + W.
{i+0|ueU,veViandgxU = {gxu|u €
U}, respectively. The maximization operation is defined asThis implies that variable elimination can be used to gen-
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Algorithm 1: ELiIM-MoOID

Data: AMOID (X, D, P, U) with p > 1 objectives, a legal
elimination ordering of the variables= (Y1, ...,Y}:)

Result An optimal policy A

// partition the functions into buckets

for [ = ¢ downto 1do

place inbuckets[l] all remaining components iR andU

|_ that contain variabl&; in their scope

/1 top-down step

for | = ¢t downto 1do

let® = {$1,...,¢;} and¥' = {¢1,...,9:} be the
probability and utility components ibu.ckets|l]
if Y; is a chance variabléhen

¢l — ZYI HZ:1 ¢z
P ()7 x D5 (T2 60) % (25—, 9))
else ifY; is a decision variabléhen
& maxy; [ []_, ¢
¢ maxy, (TT=y 64) x (C5—, ¢5))
place eachp' andy' in the bucket of the highest-index
| variable in its scope

/1 bottomup step

fori=1totdo

if Y} is a decision variab]ehen
81+ argmaxy, ([T/_, ¢:) x (35—, v5))
A+ AU,

return A

putes new probability (denoted k) and utility (denoted

by ) components which are then placed in corresponding
lower buckets (lines 3-11). For a chance variahjlethe ¢-
message is generated by multiplying all probability com-
ponents in that bucket and eliminating by summation.
The y»-message is computed as the average utility in that
bucket, normalized by the bucket's compiledhereY; is
eliminated by>""). For a decision variabl¥, we compute
the ¢ andvy components in a similar manner and eliminate
Y; by maximization. In this case, the product of probability
components in the bucket is a constant when viewed as a
function of the bucket'’s decision variable and therefoee th
compiledg-message is a constant as well [20, 5].

In the second, bottom-up step, the algorithm generates an
optimal policy (lines 12-16). The decision buckets are pro-
cessed in reversed order, from the first variable to the last.
Each decision rule is generated by taking the argument of
the maximization operator applied over the combination of
probability and utility components in the respective bucke
for each combination of the variables in the bucket’s scope
(i.e., the union of the scopes of all functions in the bucket
minusY;) while remembering the values assigned to earlier
decisions. Ties are broken uniformly at random.

As is usually the case with bucket elimination algorithms,
the complexity of EIM-MoOID can be bounded exponen-
tially (time and space) by the width of the ordered induced

erate the set of maximal values of expected utility, up tograph that reflects the execution of the algorithm (i.e., in-

equivalence (see also [5] for more detalils).

3.4 VARIABLE ELIMINATION

duced width of the legal elimination ordering) [24]. Since
the utility values are vectors IR, it is not easy to predict
the size of the undominated set of expected utility values.

As well as operationt on sets of utilities, we define op- 4 APPROXIMATING THE PARETO SET
eration+’ on finite sets of utility values by/ +' V =
ma&b(lu T V). 'tl'_heorem %j aIIowls us t‘? aprl)lyl_an |tet_rat|ve In this section, we assume without loss of generality a weak
variable elimination procedure along a legal elimination o ; P ima.
dering where chance variables are eliminatedtbydeci- F_’areto ordermg OR; because the proposed approxima

, ; - tion method relies on a log transformation of the solution
sion variables bynax, and the probability and (set-valued) gpace as we will see next. The cardinality of the Pareto set
utility functlons' are combined by< and +, r'espec.tlvely. maxs {EU : policiesA} (and also the number of opti-
The set of maximal expected utility values is equivalent to,, 5| policies) can often get very large. What would then
S 3, Maxp, - maxp,, >p (H:;l Px 3y Uj) : be desirable for the decision maker is an approximation of

. L . . the Pareto set th roximatelydominates (or covers) all
The variable elimination algorithm, called.Bv -MoID, is app v ( )

. ) . elements in{ EUA : policiesA} and is of considerabl
described by Algorithm 1. It is based on Dechter’s bucket S INEUA : _policiesA} 'S St y

R s smaller size. This can be achieved by considering the no-
elimination framework [24] and computes the maximal Setion of e-covering of the Pareto set which is basedeon
max, { EUA| policiesA} as well as an optimal policy (the

. S . dominancébetween utility values [8].
algorithm can be easily instrumented to produce the entire

set of optimal policies). Given a legal elimination orderin DEFINITION 3 (e-dominance) For any finitee > 0, thee-

T = Y1,...,Y;, the input functions are partitioned into a domi o . -
i . ominanceaelation is defined on positive vectorsi®f b
bucket structure, calleduckets such that each bucket is _ P + oY

) ) . i ) s > U 1 -4 > 7.
associated with a single variable and contains all input Uzcve (1+e) U270
probability and utility functions whose highest variabte i

. . - i CR? )
their scope is;. DEFINITION 4 (e-covering) Let/ C RY ande > 0. Then

a setU. C U is called ane-approximate Pareto set an
ELIM-MoID processes each bucket, top-down from the last-covering if any vectors € U is e-dominated by at least
to the first, by a variable elimination procedure that com-one vectori € U, i.e.,V¥ € U Fi € U, such thati >, v.
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Algorithm 2:: (¢, \)—COVERING(U) PROPOSITION4 L_etm U, W < Ri and\, X € (0,1). The
T—0v—0 following properties hold: (i) ifi >? o thend + @ >2

foreach @ ¢ U do v+, and ifd >} dandg > O theng - @ >2 ¢ - @, (i) if
if o (i) ¢ I then @ >) vandv >} o thend >MA i,
remove froml" all ¢ (¥) such thatpx (@) > A (7);
L I« TUu{ea(@)}; We define operationsiax* and-+* on finite sets of utility
fOI’eaChtpx(ﬁ) eTdoV« VU {7._[}, values bymax*(Z/{,V) = max23 (L{ U V) andy/ +*V =
return V: maxs» (U + V), wheremax » (U) is an(e, A)-covering of

the finite set/ C R% (computed using Algorithm 2).

The set/, is not unique. However, it is possible to compute The algorithm called EIM -MoID., which computes aa-
ane-covering of a finite seY C R, by mapping each vec- covering of the expected utility set, is obtained from Algo-
tor @ € U onto a hyper-grid using the log transformation rithm 1 by replacingmax and 3"’ by max* and 3", re-

o : RE — 78, defined byp(id) = (p(u1),...,¢(uy))  spectively. Since the top-down phase of the algorithm con-
whereVi, p(u;) = [logu,;/log(1l + €)] [8]. By definition,  sists oft elimination steps, one for each variable, and there-
we have that: fore requires computing (e, A;)-coverings viamax,

i = 1,...,t, a sufficient condition to obtain a valie
covering is to choose thg; values summing to 1, specifi-
cally \; = 1/t, wheret is the number of variables. Thus:

It is easy to see that any cell of the grid represents a dif-

ferent class of vectors having the same image thrapgh THEOREM2 Given a MOID instancéX, D, P, U) with ¢
Based on Proposition 2, any vector belonging to a givervariables,p > 1 objectives and any finite > 0, algorithm

cell e-dominates any other vector of that cell. Therefore,ELim-Moib, computes ar-covering.

for any finitee, we can obtain a valid-covering ofl/ by

choosing one representative element in each cell and byhe time and space complexity ofLf-MoiD, is also
keeping only undominated cells occupied. For example, ibounded exponentially by the induced width of the legal
we restrict the vectors itX to be bounded byl < wu; < B elimination ordering. However, the size etovering gen-
foralli € {1,...,p}, then the size of{. is polynomial in  erated can be in many cases significantly smaller than the
log B and1/e (see also [8] for more details). corresponding Pareto set, as we will see in Section 6.

<L

PROPOSITION2 Vi, 7 € R, (@) > p(7) = 4 >

Example 3 LetY/ = {@, v} such thatZ = (3.1,2.9) and
7= (3,3.05). Clearly,d # vand¢ # 4. Sete = 0.1. We 5 HANDLING IMPRECISE TRADEOFFS
have thatp(u) = ¢(¥) = (12,12), and it is easy to verify o ]
that@ >, 7 and@ >, @. Thereforeld, = {a} is avalid The Pareto ordering is rather weak (often leading to very
e-covering of/, as is{7}. large Pareto optimal sets, as mentioned above in Section 4,
and illustrated by the experiments in Section 6). Very often
We next extend algorithm lEmM-MoID to compute are-  the decision maker will be happy to allow some trade-offs
covering of the expected utility sét=U, : policiesA}.  between objectives. For example, in a two-objective situa-
However, it is not possible to just replace Pareto dominancéion, they may tell us that are happy to gain 3 units of the
with e-dominance at each variable elimination step and stilfirst objective at the cost of losing one unit of the second,
guarantee a valié-covering because-dominance is nota and hence prefef3, —1) to (0,0). Such tradeoffs may be
transitive relation (e.g., it >. 7 and@ >. @, we only  €licited using some structured method, or in a matéoc
have thati > (1+¢)? - ). To overcome this difficulty, we ~Way. For instance, in Example 1, the decision maker may
use a finer dominance relation, defined as follows [9]. be asked to imagine a scenario where it was known that the
oil content was “wet”, and whether they would then have a
DEFINITION 5 ((¢, A)-dominance) For any finitee > 0  preference for drilling. To do so would imply a preference
and A € (0,1), the (¢, \)-dominancerelation is defined of (50, 12) over(0,0).
on positive vectors k%, by i >} v < (14 €)* - @ > 7.
Given a set/ C RY, a subset/. ) C U is called an
(e, X)-covering, ifvd € U Jii € U, 5 such thati > .

We thus consider some sét of vector pairs of the form
(t,v), wherew, v € RP. The idea is that this consists of
elicited preferences of the decision maker. We say that bi-
nary relatiort= onRR? extend® if @ 3= ¢ for all (4, ¥) € ©.

Algorithm 2 computes af, A)-covering of a finite sl C Similarly, we say that- extends Pareto if > & = i = 7.

R’ by using the log grid mapping,, : RY. — Z defined
by ox(@) = (pa(u1), ..., pr(up)) WhereVi, px(u;) =  We consider that the decision maker has a partial order
[logu;/log(1 + €)*]. Itis easy to see that: overR?, and that they specify a set of preferenéesWe
assume the Scale-Invariance and Independence properties
PROPOSITION3 Vi, 7 € RE, px (@) > oA (D) = © >2 ©. hold (see Section 2), and, naturally, assume thaktends



Pareto. The input preferenc@scould contradict the other Alternatively, we can use the fact that the dominance test
assumptions we make. We say thais consistentif there  corresponds to checking whethigr ¢'is in the convex cone

exists some partial order that extend®, extends Pareto, generated byu;—v; : i = 1,..., k} plus thep unit vectors
and satisfies Scale-Invariance and Independence. in RP. We made use of an (incomplete) algorithm [27] for
this purpose (which computes the distance of a vector from

The input preference® (if consistent) give rise to a rela- a cone)
tion >=¢ which specifies the deduced preferences. We say '
that («, v) can be deduced fro® if @ = ¢ holds for all ~ Therefore, the algorithm calledLEv -MoID-TOF that ex-
partial orders= that extendd, extend Pareto, and satisfy ploits tradeoffs is obtained from Algorithm 1, by replac-
Scale-Invariance and Independence. In this case we writiag the+’ andmax operators with+© andmax®, respec-
i =g . The definition easily implies the following. tively, wheremax® (14, V) = maxy, (U U V), U +°V =
maxs, (U +V), andmaxy ., (/) is the set of undominated
PROPOSITIONS If © is consistent then-g is a par- elements of finite sé¥ C R? with respect to-¢.
tial order extending® and Pareto, and satisfying Scale-

. Instead of eliminatin -dominated utility values durin
Invariance and Independence. Fo y 9

the computation, one could generate the Pareto optimal set

p ition 5 sh that this domi lat i of expected utility values, and only then eliminate,-
roposition 5 shows that this dominance relatiol satls- 4, inateqd values. However, the experimental results in

fies Scale-Invariance and Independence, giving the propekse 1o 6 (Table 2) indicate that this will typically be much
ties (Theorem 1) we need for the variable elimination algo-IeSS computationally efficient

rithm to be correct (up to equivalence).

In Example 1, suppose now we have the additional useg EXPERIMENTS
preference of 50, 12) over (0,0), and hence include the

pair ((50,12),(0,0)) in ©. This would then imply that | this section, we evaluate empirically the performance
(11,12.78) is dominated w.r.t—¢ by (20, 14.2). of the proposed variable elimination algorithms on random

Theorem 3 below gives a characterization of the partial ormulti-objective influence diagrams. All experiments were
der o, which we use as the basis of our implemented alfun on a 2.6GHz quad-core processor with 4GB of RAM.

gorithm for testing this kind of dominance. LBt be some g gigorithms considered were implemented in C++ (32-
subset ofR”. DefineC(W), the convex cone generated by pipy and are denoted byLEv-Moip (Section 3), EiM-

W, to be the set consisting of all vectarsuch that there  \jo,p_ (Section 4) and Eim-MoiD-ToF (Section 5), re-
existsk 20 and no]r:-negatlve real sgalans > gk @nd - gpectively. We implemented both methods for performing
w; € Wwith @ > >0 | gy, where> is the weak Pareto  the o -dominance, namely the linear programming and
relation (and an empty summation is taken to be equal tghe distance from a cone based one, and report only on the

0). C(W) is the set of vectors that weakly-Pareto dominateformer because their performance was comparable overall.

some (finite) positive linear combination of element$1of ) ) ) )
We experimented with a class of random influence di-

THEOREM3 Let© be a consistent set of pairs of vectors 29rams described by the parametets D, k, p, 7, a, 0),
in RP. Thend ¢ @ if and only if @ — & € C(d; — v, : whereC is the number of chance variablds,is the num-
(i, ) € ). - ’ ber of decision variableg; is the maximum domain size,

’ p is the number of parents in the graph for each variable,
Write finite set of input preference® as { (1%}, @) : i = r is the number of root nodes, is the arity of the utility
1 k}. Theorem 3 shows that, to perfgrnlw the domi- functions and? is the number of objectives. The structure
nance testi >¢ v, it sufficient to check if there exist, of the influen_ce diagram is created by randomly picking
for i = 1,...,k non-negative real scalars such that C + L —r variables outol’+ D and, for each, selecting
U—7> Z’E_l éji (’17,» —v;). This can be determined using a parents fro_m their p_receding variab!e_s, relat_ive to sorne or
Iinearf)roglr?imming solver, since it amounts to testing if adenng, whilst ensuring that the decision variables are con
finite set of linear inequalities is satisfiable. ngc_:ted by a directed path. .We then adqed to the gfaph

utility nodes, each one havingparents picked randomly

Example 4 Consider® — {(~1,2,-1),(4,~3,0)} and from the chance and decision variables.

vectorsi = (1,—1,0) andv = (0,—2,1). Thend =¢ ¢  We generated random problems with parameters 2,

iff ¥ — ¢ weak Pareto-dominates a non-negative combi-p = 2, r = 5, a = 3 and variedC € {15, 25, 35,45, 55},
nation of elements 00, i.e, 3¢1 > 0,92 > 0 such D € {5,10} andO € {2, 3,5}, respectively. In each case,
thatd — v > ¢1(—1,2,—-1) + ¢2(4,—3,0), which is iff  25% of the chance nodes were assigned deterministic CPTs
there exists a solution for the linear system defined by{containing O and 1 entries). The remaining CPTs were ran-
1> —q1 +4¢2 and1 > 2¢g; — 3¢q2, and—1 > —q;. Since  domly filled using a uniform distribution. The utility vec-
this is the case (e.ggs = 1; g2 = 0.5) we havei =g . tors were generated randomly, each objective value being



Table 1: Results with algorithmsiLiEv -Moib and BE.im -M oD, on random influence diagrams. Time limit 20 minutes.

*

size w

(C,D,0)

ELiIM-MoOID e =0.01 e=0.1 e=0.3
# time avg stdev = med# time avg stdev = med# time avg stdev med# time avg stdev med

(15,5,2) | 9 |16 10.77 3,601 7,422 1,330 18.48 2,051 4,811 920 0.06 87 150 1420  0.03 18 24 5
(25,5,2) | 11 |12 17.28 3,663 6,952 1,6236 58.47 1,340 2,835 1320 0.76 157 321 120 0.17 24 42 6
(355,2) | 14 |11 60.63 2,104 2,092 2,040 141.86 4,554 8,979 3420 149 112 167 2320 1.12 16 20 5
(455,2) | 16 | 5 304.08 7,131 6,086 6,9118 56.57 1,791 3,183 80420 2444 121 199 620 2.53 21 27 12
(55,5,2) | 18 | 5 267.74 8,227 11,166 4,2668 5891 3,428 6,363 1,27@0 17.59 80 113 2320 16.60 10 14 5
(15,5,3) | 9 |13 21.12 3,827 9,993 4298 8.52 1,247 1,477 9737 51.31 7,220 12,355 1409 1.89 470 675 16
(25,5,3) | 11| 2 163.84 4,638 4,518 4578 103.75 5,167 8,122 2,0638 77.98 2,641 4,409 871&0 1.43 139 229 62
(355,3) | 14| 0 1 49.56 2,200 0 2,20003 83.25 6,113 8,614 39@0 37.26 1,326 2,713 200
(4553) | 16 | 1 0.74 907 0 907 3 317.34 30,025 22,643 352485 57.58 5,689 15,495 520 76.48 1,256 3,746 20
(55,53) | 18 | 0 3  19.95 711 794 22014 165.69 898 1918 1Q@0 85.02 1,434 4,715 43
(15,5,5) | 9 | 7 183.32 19,973 21,437 9,668 111.53 7,267 3,789 6,628 80.26 2,368 4,541 5463 10.97 156 235 59
(25,5,5) | 11 | 1 199.13 25,021 0 25,0210 6 222.08 5,142 5,993 6,499 106.95 6,432 17,449 133
(355,5)| 14 |0 0 1 36.04 636 0 6366 305.37 21 9 27
(45,5,5) | 16 | O 0 0 7 5194 6,620 5,898 8,250
(55,55) | 18 | 0 0 0 4 7725 1,556 2,488 3,091
(15,10,2) 12 |11 221.24 5,516 6,653 1,947 192.55 11,783 27,315 1720 10.74 1,074 3,122 220 6.01 153 470 9
(25,10,2) 17 | 1 0.62 688 0 68814 208.05 4,391 12,479 2399 49.35 186 544 120 14.18 42 125 6
(35,10,2) 20 | O 2 490.39 3,788 1,601 2,6935 95.18 266 475 7816 79.63 68 152 18
(45,10,2) 22 | O 1 51251 4,136 0 4,1369 196.46 493 647 1899 125.28 87 111 54
(55,10,2) 26 | O 0 1 590.92 20 0 201 148.03 7 0 7
(15,10,3) 12 | O 0 2 5332 312 17 16412 118.71 4,429 9,303 47
(25,10,3) 17 | O 0 2 10496 2,822 2,584 2,708 215.39 1,960 2,005 2,678
(35,10,3) 20 | O 0 1 15.38 49 0 49 4 272.04 3,496 5,659 6,918
(45,10,3) 22 | O 0 2 280.15 956 809 8822 98.59 87 70 78
(55,10,3) 26 | 0 0 0 0
(15,10,5) 12 | 0 0 0 1 112.00 429 0 429
(25,10,5) 17 | 0 0 0 1 790.34 584 0 584
(35,10,5) 20 | 0 0 0 0
(45,10,5) 22 | 0 0 0 0
(55,10,5) 26 | 0 0 0 0
. class (C=35, D=5, O=5
drawn uniformly at random between 1 and 30. T ’
-0~ solved [

We report the average CPU time (in seconds) as well as the ] R
. . . . - 40k /

average size (together with standard deviation and median) e / Feo

of the maximal expected utility sets generated. In addjtion g Feo 3

. . 5 20k s
we also record the average induced widtt Y of the prob- 5 Fao &
lems obtained using a minfill elimination ordering [24]. " 5 F oo
ol ek 6 o &
Impact of the e-covering Table 1 summarizes the results | o o
obtained with algorithms Em-MoiD and B.IM-MoOID, 20k 1T T T T+t
. . 0 0.010.050.1 02 03 04 05 06 07 08 09 1.0
with ¢ € {0.01,0.1,0.3} on problems with 5 and 10 de- .

cisions. The number shown in column (#) indicates how o )
many instances out of 20 were solved within the time orFigure 3: Distribution (mean and stdev) of theovering
memory limit. We see that IEM-MoID can solve only ~SiZ€ 8s a function of thevalue. We al§o_plot thg number
relatively small instances and runs out of time/memory orf instances solved out of 100. Time limit 20 minutes.
the larger ones. For example, on problem si2& 5, 2),
ELiM-MoID solved 60% of the instances in about 17 sec-
onds and generated Pareto sets containing about 3,6

vectors on average (with a standard deviation of abou ows. Let(i, j) be a pair of objectives picked randomly out

6,900). On the other hand, algor|thn_11|E| 'MO'D? Sca'?s .. of p objectives. We generate two tradeofis; — be; and
up and solves larger problems while generating signifi-

: : . be; — ace;, wheree; andé; are thei-th and;j-th unit vec-
cantly smallere-coverings, especially asincreases. For . -
: tors. Intuitively, one of the tradeoffs indicates how much
example, on problem clag®5,5,2), the average size of S L - . .
. . . of objectivei one is willing to sacrifice to gain a unit of
the e-covering fore = 0.3 is about 2 orders of magnitude

smaller than the corresponding Pareto optimal set. The reé)_bjectwej, and the other is vice versa. In addition, we also

son is that ag increases, the corresponding logarithmic generate a 3-way tradeoff between three objeclues k)

grid gets coarser (i.e., fewer cells) and therefore the numpiCked randomly as well in the form of the tradeoff vector

. . a€; + be; — cey. Therefore, our random tradeoffs genera-

ber of representative vectors needed to cover the optimal . :
. or is characterized by parametéss, T a, b, ¢), whereK

Pareto set is smaller.

is the number of pairs of objective$, is the number of
Figure 3 plots the distribution (mean and standard deviatriplets (and thus a total dfK + T tradeoffs in®), and
tion) of the size of the-coverings generated for problem randomly chosem, b, ¢ € [0,1) are used to construct the
class(35,5,5), as a function ok. We can see that as  tradeoff vectors. Notice that parametecan be used to
increases the size of thecovering decreases considerably. control the strength of the two-way tradeoffs. Specifigally

Impact of imprecise tradeoffs For the purpose of this
aluation, we generated consistent random tradeoffs be-
ween the objectives of a given problem instance, as fol-



class (C=25, D=5, 0=5) - T=3

Table 2: Results comparing algorithmsiE-Moip and 1200 7 . B
ELIM-MoID-TOF on random influence diagrams with ran- 1,000 el L
. . . . 4 o — 80
dom tradeoffs. Time limit 20 minutes. w0 ] e i
size w™ ELIM-MoOID ELIM-MoID-TOF E ] // r
(C,D,0) # time avg stdev  mefl# time avg stdev med _g 600 /D —o— maxset (avg, stdev) [ 0 g
K=LT=0,a,bce[0.11) 5] g e med) H
(15,5,2) | 9 [9 13958 2,714 2,864 1,67%34 2493 98 232 1 ‘s 400 — / L a0 *
(25,5,2) | 11 (7 18.25 2,344 2,614 2692 7.12 33 126 1 k] ] / L
(35,5,2) | 14 |2 283.29 9,115 8,934 9,0283 59.18 147 378 1 v 200 F
(45,5,2) | 16 |2 397.72 7,596 7,536 7,5666 23.08 86 302 1 ] [ I [ r
(55,5,2) | 18 |4 717.68 10,422 5,851 14,8986 48.02 90 233 2 1 jzo
K=2T=1a,bcel01,1) ° e [ T TIT1 L
(155,3) | 9 [6 10.69 4,889 4,069 58385 34.62 48 135 2 ] - r
(255,3) | 11 (2 4.42 4,000 3,938 3,990 18.20 41 95 2 -200 LA L I L L L BN AL L B Y
(35,53) | 14 |0 50 89.51 119 198 13 2 0 2 4 6 8 10 12
(45,53) | 16 |2 242.68 15431 1,729 85862 2818 41 73 4 tradeoffs (K)
(55,5,3) | 18 |0 51 94.63 75 154 4
K =61 =3,a,b,ce[0.1,1 . N . . .
(555 [ 9 [3 6573 15062 12575 (14,7[134 1)9_70 11044 Figure 4: Distribution (mean, stdev, median) of the size of
(2555) | 11 |1 50.35 21,074 0 21,0744 83.30 97 217 4 i ili H H H
G | 14 [0 L5 6300 101 235 8 maX|_maI utility sets as a function of pairwise tradeaffs
(4555) | 16 0 61 9659 107 216 8 and fixed 3-way tradeoffd{ = 3). We also plot the number
(55,5,5) | 18 |0 41 8432 51 101 12 . . .. .
AT AR T A of instances solved out of 100. Time limit 20 minutes.
(15,10,2) 12 |5 91.82 6,856 8,280 3,198 34.09 60 145 1
25,10,2) 17 |1 808.94 4,964 0 4,9687 94.08 63 232 1 . . .
E35,10,2 20 |0 23 22778 29 68 1 tually 1 indicating that the tradeoffs generated were gfron
(45,10,2) 22 [0 11 59.97 30 39 13 : H
(55.102) 26 |0 0 enough to make-¢ fairly close to being a total order.
K =2,T=1;a,b,c€[0.1,1) 3
(15,10,3) 12 |0 45 157.48 86 191 12 -
In Table 3 we take a closer look at the impact of the trade
e 20 1o W0 Ta 8 T3 offs strength for bi-objective problems with 5 decisions.
ggigg 2z Sossar a4 We see that even exploiting a single tradeoff (i.e., using
' K=67=3a,b,cec[0.1,1) ¢ = 0 for two objective case) has a dramatic impact on the
(15,10,5) 12 |0 40 106.50 27 64 5 . J ) -1: p
@5105) 17 |0 21 10470 67 114 10 size of the maximal expected utility set. For example, on
Getog 22 16 > 24445 T2 B0 48 problem clasg55, 5, 2), the undominated set of expected
(55,105) 26 |0 0 utility values computed by EM-MoOID-TOF contains on

average 38 times fewer utility values than the correspond-
if we were to setc = 1 then the two objectives andj  INg Pareto optimal set generated by -MoID.

would essentially collapse into a single one (we'd have prefigure 4 shows the distribution (mean, standard deviation
cise rates of exchange between objectivasdj). If c =0 and median) of the size of the maximal sets generated
then the second tradeoff for the péiry) is irrelevant. by ELIM-MoID-TOF on problems from clas&5, 5, 5) as

a function of the number of pairwise tradeoff§. As

Table 3: Impact of the quality of the random tradeoffs onore tradeoffs become available the number of problem

S . ) S . instances solved increases because-thedominance gets
bi-objective influence diagrams. Time limit 20 minutes. . : -
stronger and therefore it reduces the undominated utility
size ELiM-MoID ELiM-MoID-ToF

(C,D,0) #  time avg stdev mep# time avg stdev med sets Slgmflcantly'

K =0; [ K=1,c=0

(15,5,2) 9 |9 139.58 2,714 2,864 1,6784 4830 243 542 23

(25,5,2)| 11 |7 18.25 2,344 2,614 26%1 16.83 79 260 10

(35,5,2)| 14 |2 283.29 9,115 8,934 19,0242 94.89 190 344 11 7 CONCLUSION
(45,5,2)| 16 |2 397.72 7,596 7,536 7,56@2 76.83 130 297 5

(55,5,2)| 18 |4 717.68 10,422 5,851 14,8981 144.64 268 312 78

*
w

In this paper, we describe how a variable elimination solu-
tion method for influence diagrams is extended to the case
of multi-objective utility. A general problem with using
the Pareto ordering for multi-objective utility is that thet

of maximal expected utility values will often become ex-

Table 2 reports the results obtained with algorithmave
MoiD and E.iIM-MoOID-TOF, respectively. For each prob-
lem class(C, D,O) we generated 10 random instances,

and for each problem instance we generated 10 sets of rapr'emel large. We show how the use otoverinas can
dom tradeoff vectors using the paramet&isr’, a, b, ¢ in- y large. 9

dicated in the header of each horizontal block. As beforeIead to a much more practical computational approach than

the columns labeled by # show how many problems out the exact computation.

10 (respectively, out of 100) were solved byiIE-MoIiD  We also define a natural way of taking imprecise tradeoffs
(respectively, EiIM-MoID-TOF). Overall, we notice that into account, and give a computational method for check-
the expected utility sets computed byl -MoID-ToFare  ing the resulting dominance condition. Our experimental
orders of magnitude smaller than the corresponding Paret@sults indicate that the resulting maximal (multi-obijezt
optimal ones generated byLB-MoID. We also see that values of expected utility can be very much reduced by the
the median size is even smaller, in some cases being aedding of (even a small number of) tradeoffs.
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