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Abstract

Metamorphic growth of semiconductor materials – in which a “virtual” substrate with a desired

lattice constant is obtained by growing a lattice-mismatched metamorphic buffer layer (MBL)

on a conventional substrate such as InP or GaAs – is beginning to attract increasing interest

due to its potential to facilitate the development of improved optoelectronic technologies. For

example, by growing a relaxed InxGa1−xAs MBL on a GaAs substrate heterostructures can

then be grown with a lattice constant intermediate between that of GaAs and InP, thereby

providing enhanced scope for band structure engineering and semiconductor device design and

optimization starting from a GaAs substrate. However, despite significant progress in material

growth and device engineering, there has been very little theoretical analysis of metamorphic

devices.

We are particularly interested in the development of metamorphic AlInGaAs-based lasers op-

erating at the technologically important 1.3 µm wavelength, as well as efficient AlInGaP-based

610 nm Light-Emitting Diodes (LEDs) for maximised white light efficiency. In this thesis we

investigate the electronic and optical properties of these emitters and compare their perfor-

mance with existing photonic devices. Using the continuum based multiband k·p model within

the planewave expansion method we quantify the potential of lattice mismatched MBLs and

identify the trends in device performance.

We show that by employing an InGaAs MBL we can extend the ranges of strain and composition

accessible for a direct band gap AlInGaAs or AlInGaP alloy, which allow the suppression of

the amount of defects and CuPt atomic ordering created during the epitaxial growth. Using

the model solid theory we demonstrate that the electron confinement strongly benefits from

the use of an InGaAs MBL, bringing a reduced current leakage from the active region. After

performing a detailed analysis over a series of metamorphic lasers and LEDs, which include such

nanostructures in the active region as quantum wells, dots and wires, we identify the trends in

electronic and optical properties which compare very favourably with existing devices, and we

provide guidelines for the design of optimised devices.

Using the experimental data available in the literature for metamorphic lasers we are able to es-

timate the defect-related current losses in such devices, and find that there remains opportunity

to further improve laser performance. In addition, the micro-photoluminescence measurements

performed on a prototype 610 nm metamorphic LED confirm our prediction of enhanced in-

ternal quantum efficiency compared to GaAs-based structures, suggesting that this novel type

of LEDs is an excellent candidate for efficient white light emission.
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Chapter 1

Introduction and overview

In this chapter we begin with Section 1.1, where we present the background and motivation for

the research in this thesis. Here we include an overview of the progress made for development of

1.3 µm lasers and 610 nm light-emitting diodes (LEDs) in Sections 1.1.1 and 1.1.2 respectively.

Following this we provide an overview of the structure of this thesis in Section 1.2.

1.1 Background and motivation

Semiconductor photonic devices, such as lasers and LEDs, are currently based mostly on a

p − i − n design and produced using epitaxial growth on substrates like GaAs and InP [1].

These devices can be grown using III-P, III-As and III-Sb alloys, with the desired emission

wavelength achieved by tuning the alloy composition of different epilayers of the separate

confinement heterostructure (SCH) [2].

It is well established that the inclusion of a small amount of strain in the active or i (intrinsic)

region can improve the emission of such devices [3]. This improvement occurs mainly because

the strain can reduce the density of states close to the valence band edge [2, 4]. Consequently,

strain engineering of the band structure of zinc blende materials and alloys has been widely

used to enhance device characteristics [2, 5, 6]. However, the relatively thick epilayers in

a heterostructure (e.g. barrier, cladding) limit the flexibility for band structure engineering

using strain.

In order to incorporate strain in an epilayer due to lattice mismatch with respect to the sub-

strate, its thickness has to be under a critical value to be thermodynamically stable; otherwise

the excessive elastic energy releases as dislocations [3, 7, 8]. Therefore, during the growth of

the semiconductor heterostructure the epilayers should have a lattice constant very close to

the substrate for high quality growth [9]. For a very thin layer however, such as a Quantum

1



Introduction and overview 2

Figure 1.1: Variation of the band gap energy of III-V alloys as a function of lattice constant
at 300 K (taken from Ref. [12]).

Well (QW) in the active region, it is possible to achieve larger values of strain, typically up to

about 2%, to enhance the device characteristics. Strain can also be incorporated into the active

region using self-assembled growth, which consists in nucleation of Quantum Wires (QWRs)

and Quantum Dots (QDs) on the surface of an epilayer due to the lattice mismatch [10, 11].

Figure 1.1 shows the unstrained band gap energies of various III-V alloys as a function of

lattice constant [12]. It can be seen that a range of band gaps can be achieved for a particular

alloy when grown on a substrate. For example, InP, which is a conventional substrate for 1.3

µm lasers, allows growth of lattice-matched layers with a direct band gap between 0.7 and 1.5

eV (or between 0.83 µm and 1.78 µm in units of wavelength). Also, in a quaternary alloy,

e.g. Al1−x−yGayInxAs, the lattice constant can be varied by adjusting the fraction of In x.

This alloy is lattice-matched to InP for x ≈ 52%; its band gap can be tuned by adjusting the

Al or Ga composition. Although growth of heterostructures based on these alloys on binary

substrates has enabled high quality devices with efficient emission, there remains however

room for efficiency improvements in many semiconductor photonic devices. Specifically, alloys

with larger direct band gaps can be used as barrier layers to reduce current leakage in a

device, thereby providing improved gain and threshold characteristics in a laser or more efficient

emission in an LED. In order to achieve this, metamorphic growth can be used, where a buffer
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Figure 1.2: Schematic representation of a p − i − n device grown on a conventional InP
substrate (left panel) and on a relaxed InGaAs Metamorphic Buffer Layer (MBL, right panel).
The arrows on the left and right denote the growth direction. In order to avoid dislocation
defects due to strain relaxation, the layers in the structure from the left and right panel are
nearly lattice-matched to the InP substrate and the InGaAs MBL respectively.

layer is grown in order to minimise the dislocations near the active region due to a potentially

significant lattice mismatch with respect to the main substrate.

In metamorphic growth of semiconductor materials, a “virtual” substrate with a desired lattice

constant is obtained by growing a lattice-mismatched metamorphic buffer layer (MBL) on

a conventional substrate such as InP or GaAs [13], which is shown on the right panel of

Fig. 1.2. This technique is beginning to attract increasing interest due to its potential to

facilitate the development of improved optoelectronic technologies [9, 13]. Most commonly

the metamorphic technique has been used to investigate GaAs-based semiconductor lasers

operating at the technologically important 1.3 µm wavelength [9, 14–17]. For example, by

growing a relaxed InxGa1−xAs MBL on a GaAs substrate, heterostructures can then be grown

with a lattice constant intermediate between that of GaAs and InP, thereby providing enhanced

scope for band structure engineering and semiconductor laser design and optimisation starting

from a GaAs substrate [9].

1.1.1 1.3 µm metamorphic quantum well lasers

The development of long-wavelength semiconductor lasers on GaAs substrates opens up the

possibility to take advantage of the enhanced electronic and optical confinement offered by

(Al)GaAs-based heterostructures. 1.3 µm QW lasers are typically grown on InP substrates

and are based on the InGaAsP or AlInGaAs quaternary alloys [18–27]. While AlInGaAs/InP

1.3 µm lasers demonstrate reduced non-radiative recombination and reduced carrier spillover



Introduction and overview 4

from the QW, leading to improved temperature stability as compared to their InGaAsP coun-

terparts [28–31], uncooled operation has yet to be realised in practical applications and there

remains a drive to improve the high-temperature and high-speed performance of 1.3 µm QW

lasers. The enhanced electronic confinement in GaAs-based devices can be expected to reduce

carrier spillover at high temperatures, thereby overcoming a limiting factor associated with

InP-based technologies [26]. Furthermore, GaAs substrates are attractive due to their greater

flexibility – e.g. the possibility to monolithically integrate long-wavelength optoelectronic de-

vices with GaAs-based microelectronics – and are of lower cost than InP substrates, making

the development of GaAs-based devices appealing from a commercial perspective.

Significant progress has been made in developing GaAs-based 1.3 µm semiconductor lasers.

These efforts have centered mainly on (i) the GaInNAs dilute nitride alloy [32, 33], (ii) vertical

cavity surface emitting lasers (VCSELs) incorporating strained InGaAs QWs [34, 35], and (iii)

In(Ga)As QDs [36–40]. However, none of these approaches has, as yet, found its way through

to widespread application. Lasers based on GaInNAs alloys suffer from strong defect-related

recombination [41, 42], while the use of InGaAs QWs to obtain emission at 1.3 µm means the

laser must be operated with a large detuning between the cavity mode and the gain peak [43] (in

order to avoid the large In composition and associated lattice-mismatch required to produce an

InGaAs/GaAs QW with a band gap close to 1.3 µm). Also, despite that individual QD lasers

with ultra-low threshold current densities have been demonstrated [44–46], in practice many

QDs layers are generally included to provide sufficient optical gain for laser applications [47, 48].

This, combined with the difficulty associated with uniform growth of QD heterostructures and

arrays, means that QW-based devices continue to dominate practical applications.

Recently, there has been increasing interest in the development of GaAs-based 1.3 µm meta-

morphic QW lasers. The first 1.3 µm metamorphic QW laser – grown on GaAs, incorporating a

graded InxGa1−xAs MBL (up to x = 30%) and based on the InGaAsP alloy – was demonstrated

in 1994 by Uchida et al. [49]. Since then there have been a series of key developments, the

first of which was the demonstration of a device based on the AlInGaAs alloy having improved

high-temperature performance [50], with subsequent research on 1.3 µm metamorphic lasers

focused almost exclusively on AlInGaAs devices.

There are a number of challenges associated with the growth of metamorphic laser structures.

These include residual threading dislocations, as well as strain relaxation during the MBL

growth that leads to cross-hatched surface morphologies and large roughness, which may impact

the planarity of thin strained QWs [14, 51]. Despite these challenges, there has been significant

progress in the development of GaAs-based 1.3 µm metamorphic QW lasers. In Ref. [17] Wu et

al. demonstrated room temperature continuous-wave operation of a 1.3 µm AlInGaAs device

having a low threshold current density of 205 A cm−2. Uncooled operation at 10 Gb s−1

was demonstrated up to 85◦C in 2009 [52], while Arai et al. reported a low areal density of
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threading dislocations, D, in a fully relaxed InGaAs MBL (D < 4×106 cm−2) [53] in 2009 and

demonstrated operation up to 200◦C with a high characteristic temperature of 220 K [54] in

2013. A recent review of GaAs-based 1.3 µm metamorphic QW lasers, as well as the associated

development of metamorphic growth techniques, can be found in Ref. [9].

Despite significant progress in materials growth and device engineering, there has been very

little theoretical analysis of metamorphic QW lasers at 1.3 µm. In Ref. [55] a comparative

calculation for a pair of exemplar 1.3 µm InGaAsP devices (based on an InP substrate and

on an In0.26Ga0.74As MBL) demonstrated that metamorphic QWs offer enhanced material

gain due to their improved electronic confinement. While instructive, no general trends in

the characteristics of 1.3 µm metamorphic lasers were identified. To our knowledge there has

been no detailed theoretical investigation of metamorphic QW lasers based upon the AlInGaAs

material system. As such, and also due to the improved high-temperature performance of InP-

based AlInGaAs devices at 1.3 µm over their InGaAsP counterparts [28, 50], we focus our

analysis in this research on AlInGaAs alloys.

1.1.2 610 nm metamorphic light-emitting diodes

Light-Emitting Diodes that produce white light for solid state light applications conventionally

include a blue LED capped with green and red phosphors in the RBGBB design [56–58]. An

alternative phosphor-free RGB design has been recently proposed which enables the maximisa-

tion of the white light efficiency by attenuating the non-radiative recombination, scattering and

absorption losses, as well as energy losses associated with the Stokes shift [59, 60]. This tech-

nology is based on the use of three separate semiconductor emitters, each with narrow emission

linewidth and including a red emitter with 614 nm emission wavelength. A blueshifted red

light source compared to the conventional 630 – 650 nm commercial emitters is also expected

to enhance the spectral eye sensitivity, with an up to 5 times larger luminous efficacy [61],

thereby reducing the output power required from the LED devices.

Red semiconductor emitters can be grown using III-N alloys, and III-P based heterostructures

on GaAs. Although the III-N alloys are currently deployed mostly for green and blue light

sources, the best performing InGaN-based red LED was recently demonstrated with 1.1 mW

light output power at 20 mA input current [62]. Because of the large amount of In required in

the active region to produce red emission and the wurtzite crystal structure of these materials,

the resulting built-in and strain-induced piezoelectric fields strongly suppress the radiative

recombination rate [63–66], with the device ultimately having a very small External Quantum

Efficiency (EQE). It has been shown that the built-in piezoelectric field can be avoided by

growing the III-N based heterostructure on a different crystallographic plane [67]. This, as

well as the use of III-N alloys with zinc-blende crystal structure offers a route to improve

the device performance [68]. In reality, these approaches are currently very challenging to
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implement to achieve cost-efficient large-scale device manufacturing. Unlike the III-N materials,

the piezoelectric field can be completely avoided in III-P heterostructures, due to the zinc-blende

crystal structure of these compounds. AlGaInP-based heterostructures are, therefore, a more

attractive alternative for shorter wavelength red emission, enabling a much higher EQE at high

power operation [69].

The strong blueshift required for 614 nm emission compared to that in conventional 630 – 650

nm emitters brings a decreased EQE, mainly associated with the increased thermal leakage

of electrons from the active region due to the reduced electronic confinement by the barri-

ers [70, 71]. The weak electronic confinement in the active region has been confirmed by

photoluminescence measurements performed on a series of devices by collaborations at Tyndall

National Institute. The intrinsic limitation for the electronic confinement and the path for cur-

rent leakage is associated with the direct-to-indirect band gap crossover in III-P alloys which

occurs at around 2.3 eV at 300 K. One approach that was used to address this issue includes

the incorporation of numerous QWs in the active region [72–75]; however emission in this case

requires a large amount of carriers to be injected into the active region.

Metamorphic growth becomes a more attractive alternative due to its ability to extend the

range of wavelengths available for semiconductor emitters. For example, by employing an

InAsP MBL on InP it became possible to extend the range of wavelengths of InAs-based LEDs

towards 2.50 – 2.94 µm [76], offering significant commercial advantages compared to the devices

grown on GaSb. An AlGaN-based LED grown on an AlGaN MBL emitting at 310 nm studied

by Young et al. [77] has demonstrated excellent electrical characteristics, low extended defect

densities and promising optical emission for relatively unoptimised growth conditions. However

to the best of our knowledge there has been no theoretical or experimental investigation to date

of the use of an InGaAs MBL for red LED applications.

1.2 Structure of the thesis

We begin in Chapter 2 by presenting an overview of the theoretical models used to calculate the

electronic structure of zinc blende semiconductors and the optical properties of semiconductor

photonic devices, such as lasers and light-emitting diodes (LEDs). Here we introduce the well

established 8-band k·p model [78], including the effects of strain, to calculate the electronic

structure of zinc blende semiconductors. We then proceed to the theory of optical properties,

where we derive the expression for gain and spontaneous emission spectra, which will complete

our theoretical model for device simulation.

In Chapter 3 we present the semi-analytical plane wave expansion method [79], which is the

computational technique used in this thesis to implement our theoretical model in a set of codes.
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This method allows us to calculate the electronic and optical properties of QW, QWR and QD

based heterostructures, by considering periodic boundary conditions. We introduce the method

first by applying it to the 1-band model, where we show how the linear Schrödinger equation

can be transformed into an eigenvalue problem with the position-dependent effective mass

Hamiltonian being described by a square matrix, where matrix elements can be determined

analytically using a Fourier transform approach. This matrix is then diagonalised numerically

to calculate the eigenstates in the supercell; hence the semi-analytical name of the method. Here

we introduce the characteristic function of the QW in order to calculate the Fourier expansion of

the Hamiltonian matrix elements. In real space, the position-dependent characteristic function

equals to unity (zero) inside (outside) the QW, and its Fourier transform is the main parameter

required to calculate the electronic structure of a QW (or other nanostructure).

We then apply the method to the 8-band k·p Hamiltonian, which we will directly use to calcu-

late the electronic structure of AlInGaAs- and AlGaInP-based heterostructure in Chapters 4,

5 and 6. Here we also briefly mention the application of the method for multiple QW-based

supercells, where we show that the Fourier expansion of a single-QW Hamiltonian is a simpli-

fied case of a multi-QW expansion, for which a linear combination of multiple characteristic

functions can be used.

We then present the implementation of the method to calculate the electronic properties of QD-

or QWR-based supercells, which are periodic along all three Cartesian coordinate axes. Here we

find the plane wave expansion of the k·p Hamiltonian to be similar to the QW case, and we show

that the former is a special case of the general three-dimensional expansion. Because the strain

distribution in a QWR- or QD-based heterostructure is more complex then in the QW-based

case, we present the analytical expression for the Fourier transform of strain tensor elements in a

supercell that contains a QD or QWR [80]. We then provide the analytical solution of Poisson’s

equation, by evaluating the Fourier transform of the carrier-induced electrostatic potential due

to the spatial separation of electrons and holes within a supercell. The latter is calculated

self-consistently using the Fourier coefficients of the calculated eigenstates directly [81].

The Fourier transform of the strain tensor and carrier-induced electrostatic potential can then

be used to (i) estimate their real-space distribution within the supercell, and/or (ii) evaluate

the plane wave expansion of the strain Hamiltonian matrix elements and the diagonal matrix

elements associated with the electrostatic potential. We then provide analytical expressions

to calculate the momentum matrix elements between a conduction and a valence energy state

using the calculated Fourier coefficients of the corresponding eigenstates [82].

The 8-band k·p model and the plane wave expansion method are then used for the remainder

of this thesis, which essentially consists of two parts.
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In the first part of the research, presented in Chapter 4, we perform an analysis on threshold

and gain characteristics of AlInGaAs-based 1.3 µm metamorphic QW lasers. We begin by

identifying the ranges of strain and band gap accessible to pseudomorphically strained AlIn-

GaAs alloys on InxGa1−xAs MBLs. Having identified the alloy compositions of interest for the

design of the laser active region, we then perform a detailed analysis and optimisation of a

series of metamorphic QW laser structures. We focus primarily on laser structures containing

compressively strained ternary InGaAs QWs with unstrained (Al)InGaAs barriers, grown on

relaxed In0.2Ga0.8As MBLs. We identify optimised laser structures by varying the strain and

QW width while maintaining the QW band gap at 1.3 µm. This enables us to quantify the

electronic and optical properties of GaAs-based 1.3 µm metamorphic QW lasers, as well as to

identify general trends in their gain and threshold characteristics as functions of compressive

strain, QW width and temperature. Additionally, we investigate the effect of varying the alloy

compositions of (i) the InxGa1−xAs MBL, and (ii) the AlInGaAs barrier layers, with the choice

of barrier composition being critical for optimisation of both the carrier and optical confinement

in the device.

We elucidate several general trends in GaAs-based 1.3 µm AlInGaAs metamorphic QW lasers.

Firstly, we demonstrate through consideration of the strained AlInGaAs band structure that

there is scope for the growth of compressively strained ternary (InGaAs) or quaternary (AlIn-

GaAs) QWs, having either unstrained or tensile strained ternary or quaternary barriers. Sec-

ondly, our calculations show that the Al composition in quaternary AlInGaAs barrier layers

can be varied over a much wider range than in equivalent InP-based devices, so that improved

electronic confinement can be obtained. Thirdly, the ability to vary the Al composition over a

wide range in AlInGaAs alloys which are lattice matched to the InxGa1−xAs MBL means that

an AlInGaAs separate-confinement heterostructure (SCH) can be engineered to enhance the

optical confinement and hence reduce the material gain at threshold. Finally, our analysis of

the threshold characteristics of a series of multi-QW devices shows that a low number of QWs

(typically 1 and at most 2 – 3) is required to produce an optimised device; this is significantly

less than the number of QWs (typically 4 – 6) required in an optimised InP-based 1.3 µm

device [83]. Overall, our analysis quantifies the potential of the AlInGaAs material system for

the development of GaAs-based 1.3 µm metamorphic QW lasers, and identifies routes towards

realising optimised devices.

For the second part of this thesis, in Chapters 5 and 6, we perform an analysis on AlGaInP

QWR- and QW-based LEDs for efficient 610 nm emission.

We first begin with Chapter 5, where we investigate the electronic and optical properties

of [110]-oriented self-assembled AlGaInP QWR-based heterostructures for 610 nm emission.

Here our calculations are based on geometry parameters extracted from Transmission Electron

Microscopy (TEM) scans performed on devices grown at Tyndall National Institute, as well as
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using the nominal growth conditions. Having identified the main parameters for our model, we

perform an analysis on the strain distribution in QWR-based supercells.

We then perform an analysis of the electronic and optical properties of QWR-based supercells.

Here we examine the impact of the barrier thickness Lz on the radiative recombination in these

heterostructures. Our calculations show that enhanced optical properties can be achieved by

separating the QWR layers with a thinner barrier. This is a result of an improved electronic

confinement, which then leads to (i) a smaller fraction of electrons occupying the barrier X

states, and (ii) an improved ground electron-hole wavefunction overlap.

From the integrated photoluminescence (PL) measurements we find that thermal leakage of

electrons from the QWR into the barrier is the primary cause of the large decrease in efficiency

of shorter wavelength emitters. Our calculations also show that the QWRs, due to being

elongated along the [110] direction, can be used to create emitters with a strong degree of

linear polarisation. We calculated the radiative emission to be polarised nearly 100% along

the QWR axis when the QWRs are surrounded by thin barrier layers (Lz ≈ 3 nm), in good

agreement with experimental measurements. This then makes such heterostructures attractive

for display applications where, at present, filters are typically employed to achieve polarised

emission.

Finally, we overview and analyse the results of electroluminescence measurements of QWR-

based LED devices under hydrostatic pressure performed at University of Surrey, UK. These

measurements confirmed the direct band gap nature of the radiative recombination. Based on

the measurements, we conclude that Γ – X leakage is indeed the dominant loss mechanism in

the active region at room temperature.

Overall, these results confirm the significant thermal leakage of electrons from the active region

due to a shallow electron confinement. These results serve as a precursor to Chapter 6 , where

we investigate the possibility of improving the electron confinement for improved efficiency of

610 nm devices, by employing lattice-mismatched InGaAs MBLs.

In Chapter 6 we perform theoretical investigation of the electronic and optical properties of

Al(Ga)InP QW-based LEDs for 610 nm emission grown on InGaAs MBLs, focusing on opti-

misation of device performance for 610 nm emission. Here we start by identifying the range of

compositions accessible for direct band gap Al(Ga)InP on InGaAs MBLs, showing that growth

on an MBL should enable the shift of the Γ – X crossover towards larger band gap energies and

also to increase the conduction band offset for an improved electron confinement. We then turn

our attention to the electronic and optical properties, where we focus primarily on compressively

strained AlInP QW structures surrounded by Al(Ga)InP barriers which are lattice-matched to

the InGaAs MBL. We predict that the increased barrier band gap allows reduced leakage cur-

rent at a fixed emission wavelength, and discuss how band offset changes with MBL composition
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may also be beneficial for LED operation. We also show that it should be possible to grow

direct band-gap shorter wavelength LEDs on InGaAs MBLs with a reduced tendency to CuPt

atomic ordering [84, 85], thereby providing higher quality growth of semiconductor emitters.

Finally, we provide an experimental comparison between the micro-photoluminescence mea-

surements peformed on comparable devices grown on GaAs and on an InGaAs MBL, which

highlights the improvements achieved in PL emission at identical wavelengths.

Finally, we conclude and summarise our analysis in Chapter 7, where we also discuss some

directions for further research.



Chapter 2

Theory of electronic and optical

properties of zinc blende

heterostructures

In this chapter we outline the theoretical methods we use to calculate the electronic and optical

properties of zinc blende semiconductors and heterostructures. We start in Section 2.1 with

an introduction of methods to calculate the electronic structure of a semiconductor, where we

also provide the motivation for the method used in this thesis. We start with the first or-

der perturbation theory for a free electron and second order perturbation theory for multiple

electron states (bands) for a periodic unstrained crystal in Section 2.2. We later turn our at-

tention to the application of a small strain to a zincblende semiconductor and analyse its effect

on the electronic structure in Section 2.3. As we will show, the key input parameters for elec-

tronic structure calculations, including strain, can be derived from experimental measurements,

reflecting the semi-empirical nature of the k · p method.

Then, in Section 2.4 we derive explicit expressions for absorption, gain and spontaneous emis-

sion as the main optical properties we are interested in in our calculations. Lastly, we conclude

in Section 2.5.

2.1 Introduction to electronic structure of zinc blende semi-

conductors

Generally speaking, the electron-electron interaction has to be taken into account to calculate

the band structure of a zinc blende semiconductor, leading to a many-body problem. This

can be calculated using first principle methods such as Density-Functional Theory (DFT) [87].

11
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Figure 2.1: Calculated band structure of GaAs using hybrid functionals using the Density-
Functional Theory (DFT) package VASP [86]. L, Γ and X denote the high symmetry points
of the Brillouin zone, and the 0 eV energy corresponds to the valence band maximum.

Fig. 2.1 shows the calculated band structure of GaAs using the DFT package VASP (Vienna

Ab-initio Simulation Package) [86]. Although first principle methods provide an accurate de-

scription of the band strucutre, the calculations can only be performed on very small supercells

(typically up to 1000 atoms) since significant computational resources are required. For this

reason, these methods are mostly used to investigate the band structure of a semiconductor

compound.

The band gap of a semiconductor, which is the energy difference between the minimum of

the conduction band (CB) and the maximum of the valence band (VB), is essentially the

most important parameter extracted from both first principle calculations and experimental

measurements. Depending on the compound, the minimum of the valence band can be located

at (or near1) the L, Γ or X point of the Brillouin zone, while the maximum of the valence

band (VB) is always located at the zone-centre of the Brillouin zone [88]. When the CB and

VB extrema in a semiconductor are located at the same wave vector k, i.e. at Γ, it has a

direct band gap, and indirect otherwise. This fact is particularly important for the design of

photonic devices, where direct band gap semiconductors are preferred due to a much shorter

recombination lifetime compared to indirect compounds and alloys. This is mainly associated

with the fact that (i) the electrons at the Γ point have the lowest effective mass, and (ii) a

phonon emission or absorption is required in order to transfer the electrons between different

wave vectors k. Our goal therefore in this thesis is to design semiconductor lasers and light-

emitting diodes with improved efficiency and based on direct band gap materials only.

1The conduction band minimum can also be located near a high symmetry point of the Brillouin zone, e.g.
near X in Si or GaP.
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For the purpose of optical properties calculations, instead of relying on the full band structure

as shown in Fig. 2.1, the analysis can be restricted to a narrow set of bands close to the energy

gap, and within a narrow range of wave vectors k, which are chosen to describe the energy

states close to the conduction and valence band edges. In this case, perturbation theory [89]

can be applied to give a sufficient description of the electronic structure. The 8-band k·p
method is most commonly employed for such calculations [78], which enables the calculation

of the electronic and optical properties of a heterostructure, and we also use it in this thesis.

The scope of the method is restricted to one lowest CB and three topmost VBs, while also

accounting for the double degeneracy due to spin (hence the 8-band name of the method) and

including the interaction between these bands explicitly2. The parameters required to construct

the band structure using this method, such as band gap, electron and hole effective mass etc.,

can be obtained directly from experimental measurements. This method is presented in more

detail starting with the next section, where we present the detailed derivation of the 8-band

Hamiltonian, including the effects of strain, to calculate the electronic structure of III-As and

III-P based heterostructures later in the thesis.

2.2 k·p theory for electronic structure of zinc blende semicon-

ductors

In this section we present the first order perturbation theory for a free electron in a periodic

crystal, following with the second order correction to account for the interaction between bands.

Having derived the general form of the perturbation Hamiltonian we present the explicit form

of the 8-band k·p Hamiltonian for the calculation of electronic structure of an unstrained

semiconductor.

2.2.1 First and second order perturbation theory

For the derivation of the first-order perturbation theory we follow the method used by O’Reilly

[88]. Here we start with the time-independent Schrödinger equation for a free electron in a

periodic crystal at a particular wave vector k

Ĥ0ψn(k, r) = En(k)ψn(k, r) , (2.1)

where Ĥ0 is given by

2The effect of X states on the optical properties of 610 nm LEDs is investigated in Chapters 5 and 6, where
we use a 1-band model which does not include the interaction with other conduction or valence bands.
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Ĥ0 = − ~2

2m0
∇2 + V0(r) . (2.2)

For now, we ignore the spin-orbit interaction. Here V0(r) is the periodic potential of the

unstrained crystal and its periodicity is described by V0(r) = V0(r + R), where, for crystals

with cubic symmetry, R =
∑

i=x,y,z cia with a being the side length of the cubic unit cell

(or the lattice constant) and ci ∈ Z. According to Bloch’s theorem the electron wavefunction

ψnk(r) can be expressed using a periodic function in the crystal unk(r) as [90]

ψn(k, r) = eik·runk0(r) . (2.3)

Here we assume that the periodic function unk0 does not vary with the wave vector k and

corresponds to a reference value k0. By including Eq. (2.3) into the Schrödinger equation (2.1)

we obtain

Ĥ0

[
eik·runk0(r)

]
= En(k)eik·runk0(r) , (2.4)

which, by considering the reference wave vector k0 and performing the substitution k→ k−k0,

can be rewritten as

[
− ~2

2m0
∇2 + V0(r)

] [
ei(k−k0)·runk0(r)

]
= En(k− k0)ei(k−k0)·runk0(r) . (2.5)

Here we apply the Laplacian and recall the momentum operator p = −i~∇ to find the following

k-dependent Schrödinger equation for the periodic function unk0 :

(
Ĥ0 + Ĥ ′

)
unk0 = En(k− k0)unk0 , (2.6)

where

Ĥ ′ =
~2

2m0
|k− k0|2 +

~
m0

(k− k0) · p . (2.7)

The goal of the k·p method is to solve Eq. (2.6) which includes the k-dependent perturba-

tion Hamiltonian Ĥ ′ (referred to as k·p Hamiltonian hereafter). We can see that the general

Schrödinger equation (2.1) is a reduced form of the perturbed equation (2.6) when k = k0.

Given a known value of En(k0) and assuming a known periodic function in the crystal unk0

at the reference wave vector k0, we can then evaluate its dispersion in k at the vicinity of the
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reference wave vector k0. The energy dispersion En(k−k0) at k near the reference wave vector

k0 can be written as:

En(k− k0) = 〈unk0 |Ĥ0 + Ĥ ′|unk0〉

= En(k0) +
~2|k− k0|2

2m0
〈unk0 |unk0〉+

~(k− k0)

m0
〈unk0 |p|unk0〉 .

(2.8)

Here and throughout the entire thesis we use Dirac’s notation, i.e.

〈um|un〉 =

∫
Ωuc

u∗m(r)un(r)dV = δmn , (2.9)

where the integration is performed over the volume of the periodic unit Ωuc (in this case,

the cubic unit cell). We note here that Eq. (2.9) equals to Kronecker delta δmn due to the

orthonormality of the periodic functions unk0 . The term linear in k in Eq. (2.8) includes the

so-called momentum matrix element 〈unk0 |p|unk0〉 given by:

〈umk0 |p|unk0〉 = pmn = −i~
∫

Ωuc

u∗mk0
(r)∇unk0(r)dV , (2.10)

which vanishes in Eq. (2.8) due to the parity of the periodic functions unk0 . Therefore the

energy dispersion En(k− k0) can be written as a first order perturbation as:

En(k− k0) = En(k0) +
~2(k− k0)2

2m0
(2.11)

As we mentioned, the first order perturbation theory can only be applied to a free electron in

a periodic lattice that occupies a state in a conduction or valence band. For a more accurate

representation of the actual band structure in a semiconductor using the k·p method the

interaction between the bands has to be taken into account. Because of the large number

of bands in the full band structure of a semiconductor, as shown in Fig. 2.1, it is useful to

restrict the analysis of the electronic properties within the k·p method to the bands located

close to the band gap. At the same time, the perturbative nature of the method gives an

accurate quantitative description of the band structure within a narrow range of wave vector k,

although there are multiband k·p methods available in the literature that attempt to reproduce

the entire band structure of a semiconductor [91–95].

It is therefore required to introduce a correction to the energy dispersion from Eq. (2.11)

to account for the interaction between bands. Using Löwdin’s renormalisation [2, 96], the

main bands of interested are denoted as class A, and the interaction between them will be

included explicitly in the Hamiltonian. Although we focus in this thesis on the description
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of class A states, we ensure that the effect of the remote bands, denoted as class B, on the

energy dispersion of the main bands is considered. In the second-order perturbation theory for

degenerate bands, the k·p Hamiltonian of an electron in a semiconductor is given by [2, 88]

Ĥnm(k) = En(k0)δnm + Ĥ ′nm(k) +
∑
l∈A 6=n

Ĥ ′nl(k)Ĥ ′lm(k)

En(k0)− El(k0)
+
∑
l∈B

Ĥ ′nl(k)Ĥ ′lm(k)

EA(k0)− El(k0)
. (2.12)

where the interaction between the class A states and the effect of class B states are expressed

using the first and second sum respectively. The reduced magnitude of the perturbation of the

class B states, compared to the interaction between the class A states, in the Hamiltonian (2.12)

is indicated by the denominator in the last summation, where we assumed that the class B

energy levels lie far away in energy from the class A states EA. The detailed derivation of the

Hamiltonian (2.12) is also provided in Appendix B.

The Hamiltonian matrix (2.12) then allows us to evaluate the dispersion of the energy states at

k by knowing (i) their energies at the reference wave vector k0, (ii) the interaction between the

class A and B states through the perturbation Hamiltonian Ĥ ′, and (iii) the periodic crystal

function unk0 (referred to as basis functions hereafter). The second order perturbation theory

is generally used for electronic structure calculations in the vicinity of high symmetry points

in the Brillouin zone, e.g. Γ, X or L valley minima, close to the semiconductor energy gap. For

the calculation of optical properties, in this thesis we are concerned about the energy dispersion

near the Γ point of the Brillouin zone3 (cf. Fig. 2.1), which corresponds to the reference wave

vector |k0| = 0. As we will show in the following section, one advantage of the k·p method

over, e.g., tight-binding or density functional theory, is that the Hamiltonian can be constructed

using measurable parameters like band gap and electron and hole effective mass. In order to

construct the k·p Hamiltonian the class A states in this thesis include one conduction and three

valence bands, each being double degenerate to account for spin.

Considering for a moment that there is no interaction between the class A states, so the first

sum in Eq. (2.12) vanishes, we end up with the single band model (which we use in this thesis

to calculate the dispersion of the X states). In this case, the term linear in k vanishes due

to symmetry. Therefore, for a particular wave vector k = |k| we can simplify the form of the

energy dispersion [88]

En(k) = En(0) +
~2k2

2m0
+

~2

m2
0

∑
m∈A 6=n

|k · pnm|2

En(0)− Em(0)
+

~2

m2
0

∑
m∈B

|k · pnm|2

En(0)− Em(0)
, (2.13)

3We are also interested in the calculation of the X valley energy states, the impact of which on the electronic
and optical properties will be discussed in Chapter 6.
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It is also useful to write this equation in the so-called effective mass approximation [97], such

as

En(k) = En(0) +
~2

2m0

∑
i,j

kikj
m∗ij

(2.14)

where

1

m∗ij
= δij +

1

m0

∑
m∈A 6=n

p
(i)
nmp

(j)
mn + p

(j)
nmp

(i)
mn

En(0)− Em(0)
+

1

m0

∑
m∈B

p
(i)
nmp

(j)
mn + p

(j)
nmp

(i)
mn

EA(0)− Em(0)
, (2.15)

is the electron effective mass, expressed in units of the mass of free electron. Here we sym-

metrised the i, j = x, y, z components of the momentum matrix pnm. In case of a 1-band model

for the conduction band, i.e. there is no interaction between the conduction and valence bands

so the first sum in the Eq. (2.13) vanishes, the CB edge has a spherical dispersion in k, thus

the effective mass tensor in Eq. (2.15) is diagonal and can be rewritten as:

1

m∗ii
= 1 +

2

m0

∑
m∈B

p
(i)
nmp

(i)
mn

EA(0)− Em(0)
(2.16)

2.2.2 8-band k·p Hamiltonian

In order to construct the 8-band k·p Hamiltonian which includes the effects of spin-orbit

interaction, we need to define the basis functions unk0 at the Γ point. We start with one

conduction state with an s-like symmetry |uCB〉 = |s〉, and three degenerate valence states

with p-like symmetry |u(i)
VB〉 = |v〉, with v = x, y, z and i = 1, 2, 3, and all states are spin

degenerate. When the spin-orbit interaction is taken into account, the total Hamiltonian (2.7)

for an unstrained crystal becomes:

Ĥ =

Ĥ0︷ ︸︸ ︷
p2

2m0
+ V0(r) +

~
4m2

0c
2

(∇V0 × p) · σ+

Ĥ′︷ ︸︸ ︷
~2k2

2m0
+

~
m0

k · p +
~

4m2
0c

2
(∇V0 × ~k) · σ , (2.17)

where σ is the tensor containing the Pauli matrices

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
, (2.18)



Theory of electronic and optical properties of zinc blende heterostructures 18

which, when acting upon the eigenspinors |↑〉 and |↓〉 yields:

σx|↑〉 = |↓〉 σx|↓〉 = |↑〉 (2.19)

σy|↑〉 = i|↓〉 σy|↓〉 = −i|↑〉 (2.20)

σz|↑〉 = |↑〉 σz|↓〉 = −|↓〉 (2.21)

We note that generally the spin-orbit coupling term in Eq. (2.17) is linearly dependent on k.

However we do not include it in our analysis below since the crystal momentum ~k is much

smaller compared to the electron momentum p in the far interior of the atom where most of

the spin-orbit interaction occurs, and its influence has been discussed by Kane [89] where the

wave vector dependent spin-orbit interaction was treated as an additional perturbation.

Here we use the set of basis functions

|u〉 = (|s; ↑〉, |x; ↑〉, |y; ↑〉, |z; ↑〉, |s; ↓〉, |x; ↓〉, |y; ↓〉, |z; ↓〉) (2.22)

to construct the Hamiltonian Hnm (2.12) as follows [98]:

Ĥnm =

(
H(1) 0

0 H(1)

)
+

(
H(2) 0

0 H(2)

)
+



0 0 0 0 0 0 0 0

0 0 −i 0 0 0 0 1

0 i 0 0 0 0 0 −i
0 0 0 0 0 −1 i 0

0 0 0 0 0 0 0 0

0 0 0 −1 0 0 i 0

0 0 0 −i 0 −i 0 0

0 1 i 0 0 0 0 0



∆SO

3
,

(2.23)

where

∆SO =
3i~

4m2
0c

2

〈
x

∣∣∣∣∂V∂x py − ∂V

∂y
px

∣∣∣∣ y〉
=

3i~
4m2

0c
2

〈
y

∣∣∣∣∂V∂y pz − ∂V

∂z
py

∣∣∣∣ z〉
=

3i~
4m2

0c
2

〈
z

∣∣∣∣∂V∂z px − ∂V

∂x
pz

∣∣∣∣x〉 ,

(2.24)

is the spin-orbit splitting,
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H(1) =


ECB0 + ~2k2

2m0
ikxP ikyP ikzP

−ikxP EVB0 + ~2k2
2m0

0 0

−ikyP 0 EVB0 + ~2k2
2m0

0

−ikzP 0 0 EVB0 + ~2k2
2m0

 , (2.25)

and

H(2) =


Ak2 0 0 0

0 Lk2
x +M(k2

y + k2
z) Nkxky Nkxkz

0 Nkxky Lk2
y +M(k2

x + k2
z) Nkykz

0 Nkxkz Nkykz Lk2
z +M(k2

x + k2
y)

 . (2.26)

Here the matrices [89] H(1) and H(2) include the first order interaction due to the terms linear

in k and second order interaction between the class A states respectively, and k2 = |k|2. The

form of the Hamiltonians H(1) and H(2) suggests that the dispersion of the energy bands in k

in [001], [010] and [100] directions will be identical, and the same applies to the [110], [101] and

[011] directions. The parameters A, L, M and N are given by [89]:

A =
~2

2m0

(
1

m∗c

)
+

3P 2

ECB0 − EVB0

,

L =
~2

2m0

(
1 +

2

m0

∑
m∈B

p
(x)
xmp

(x)
mx

EA(0)− Em(0)

)
,

M =
~2

2m0

(
1 +

2

m0

∑
m∈B

p
(y)
xmp

(y)
mx

EA(0)− Em(0)

)
,

N =
~2

m2
0

∑
m∈B

p
(x)
xmp

(y)
my + p

(y)
xmp

(x)
my

EA(0)− Em(0)

(2.27)

where m∗c is the electron effective mass from Eq. (2.16) and P is the Kane matrix element [99]

which denotes the coupling between the s- and p-like states:

P = −i ~
m0
〈s|p̂(j)|j〉 , (2.28)

with j = x, y, z. The parameters L, M and N are closely related to the Luttinger parameters

γL [100, 101] as follows:
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γL1 = −2m0

3~2
(L+ 2M)

γL2 = −m0

3~2
(L−M)

γL3 = −m0

3~2
N

(2.29)

The Luttinger parameters γL1 , γ
L
2 , γ

L
3 are also closely related to the heavy-, light- and spin-

split-off hole effective masses (mhh,mlh,mso respectively) along particular directions of the

wave vector k, and the relationship between them can be found in Refs. [102–104]. We note

that the subscript x, y and superscript (x, y) next to p in Eq. (2.27) correspond to the x/y

functions and the x/y component of the momentum matrix respectively. The eigenvectors

of the Hamiltonian (2.23) are expressed as a mixture of s-like or p-like states due to (i) the

spin-orbit interaction and (ii) the terms linear and quadratic in k. For the purpose of optical

property calculations it is more practical to define the basis functions in terms of conduction,

heavy-hole, light-hole and spin-split-off bands (CB, HH, LH and SO respectively), because

the mixing (or coupling) between them is a more useful factor that determines the optical

performance of photonic devices of interest. We therefore set a new set of orthonormal basis

functions which will transform the Hamiltonian (2.23) into a diagonal matrix at |k| = 0, whose

eigenvalues will also denote the reference energy position E0 of the conduction (valence) band

minima (maxima). A general practice is to use the basis functions in the angular momentum

|J ;mj〉 notation [105], whose combinations of functions with s- or p-like symmetry are obtained

using the unitary transformation matrix S:



|uCB; ↑〉
|uHH; ↑〉
|uLH; ↑〉
|uSO; ↑〉
|uCB; ↓〉
|uHH; ↓〉
|uLH; ↓〉
|uSO; ↓〉


=



∣∣1
2 ; 1

2

〉∣∣3
2 ; 3

2

〉∣∣3
2 ; 1

2

〉∣∣1
2 ; 1

2

〉∣∣1
2 ;−1

2

〉∣∣3
2 ;−3

2

〉∣∣3
2 ;−1

2

〉∣∣1
2 ;−1

2

〉


= iS



|s; ↑〉
|x; ↑〉
|y; ↑〉
|z; ↑〉
|s; ↓〉
|x; ↓〉
|y; ↓〉
|z; ↓〉


, (2.30)

where the i on the right-hand side is simply a phase constant, and S is given by [32]:
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S =



−i 0 0 0 0 0 0 0

0 1√
2

i√
2

0 0 0 0 0

0 0 0 − 2√
6

0 1√
6

i√
6

0

0 0 0 1√
3

0 1√
3

i√
3

0

0 0 0 0 i 0 0 0

0 0 0 0 0 − 1√
2

i√
2

0

0 1√
6
− i√

6
0 0 0 0 2√

6

0 1√
3
− i√

3
0 0 0 0 − 1√

3


. (2.31)

By diagonalising the Hamiltonian matrix at |k| = 0 we find the set of reference energies

ECB0 , EHH0 = EVB0 + ∆SO
3 , ELH0 = EVB0 + ∆SO

3 , ESO0 = EVB0 − 2∆SO
3 with each energy being

double degenerate for spin. The coefficients for the “spin-down” states in the matrix (2.31) are

obtained from the “spin-up” states by applying the time reversal operator which, for zinc blende

semiconductors, is T̂ = −iσyĈĴ [32], where Ĉ is the complex conjugate operator and Ĵ is the

inversion operator about midpoint between nearest neighbours, i.e. Ĵ : s 7→ −s, Ĵ : p 7→ p. We

then evaluate the Hamiltonian matrix using the basis functions due the transformation matrix

S (2.31) and obtain [32]:

Hk·p =



ECB −
√

3T+

√
2U −U 0 0 −T− −

√
2T−

EHH

√
2S −S 0 0 −R −

√
2R

ELH Q T ∗+ R 0
√

3S

ESO

√
2T ∗+

√
2R −

√
3S 0

ECB −
√

3T−
√

2U −U
EHH

√
2S∗ −S∗

ELH Q

ESO


, (2.32)

We ignore here the bottom diagonal terms since the Hamiltonian (2.32) is a Hermitian matrix.

The elements of the Hamiltonian are given here by:

ECB(k) = ECB0 +
~2

2m0
sc
(
k2
x + k2

y + k2
z

)
(2.33a)

EHH(k) = EHH0 −
~2

2m0
(γ1 + γ2)

(
k2
x + k2

y

)
− ~2

2m0
(γ1 − 2γ2) k2

z (2.33b)

ELH(k) = ELH0 −
~2

2m0
(γ1 − γ2)

(
k2
x + k2

y

)
− ~2

2m0
(γ1 + 2γ2) k2

z (2.33c)

ESO(k) = ESO0 −
~2

2m0
γ1

(
k2
x + k2

y + k2
z

)
(2.33d)
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T±(k) =
1√
6
P (kx ± iky) (2.33e)

U(k) =
1√
3
Pkz (2.33f)

S(k) =

√
3

2

~2

m0
γ3kz (kx − iky) (2.33g)

R(k) =

√
3

2

~2

2m0

[
(γ2 + γ3) (kx − iky)2 − (γ3 − γ2) (kx + iky)

2
]

(2.33h)

Q(k) = − 1√
2

~2

m0
γ2

(
k2
x + k2

y

)
+
√

2
~2

m0
γ2k

2
z , (2.33i)

The Hamiltonian (2.32) contains the modified expressions for the electron effective mass sc and

the Luttinger parameters γ due to the CB – VB coupling, and are given by:

sc =
1

m∗
− Ep

3

(
2

Eg
+

1

Eg + ∆SO

)
γ1 = γL1 −

Ep
3Eg

γ2,3 = γL2,3 −
Ep
6Eg

,

(2.34)

where Eg is the band gap at the Γ point in the Brillouin zone of the unstrained crystal, and Ep

= 2m0|P |2
~2 . We note here that the calculated eigenstates of the Hamiltonian (2.32) are slightly

anisotropic in the k‖ plane (so-called band warping) and the dispersion depends on the polar

angle θ = arctan
ky
kx

. For the calculation of optical properties in Chapters 4 and 6 we use the

axial approximation [106], according to which the term γ3 − γ2 in R from Eq. (2.33h) is set

as zero. In this case we simplify our calculations, in particular of the optical properties, by

calculating the dispersion along one polar angle θ = π
4 , thereby allowing us to calculate the

density of states and other quantities in polar coordinates only using the magnitude of the wave

vector k, i.e. 1
4π2

∫
k‖

dk‖ → 1
2π

∫
k‖
k‖dk‖.

2.3 The effects of strain on the electronic structure of zinc

blende semiconductors

In this section we follow the method used by Pikus and Bir [107] to determine the effects of

a small strain on the electronic structure of zincblende semiconductors, and we restrict our

analysis here to the first order perturbation theory only.

A small homogeneous strain is given by the following strain tensor:
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εij =
1

2

(
∂ui
∂j

+
∂uj
∂i

)
, (2.35)

where u =
∑

i uii is the vector of displacement due to strain and i, j = x, y, z. The strain

tensor εij is also related with the stress tensor σkl using the elastic tensor Cijkl as follows:

σkl =
∑
ij

Cijklεij . (2.36)

Taking into account the symmetry of the stress tensor σkl, the fourth order elastic tensor

Cijkl can be simplified to a second order tensor Cαβ using the Voigt notation and making a

substitution of indices ij → α, kl → β. For crystals with cubic symmetry the elastic tensor

Cαβ is then given by:

Cαβ =



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44


. (2.37)

In order to construct the Hamiltonian Ĥε that determines the influence of a crystal lattice

deformation on its electronic structure, we have to firstly determine the operator that describes

the change in energy dispersion due to a homogeneous strain. The unperturbed Hamiltonian

with spin-orbit interaction for a strained crystal is given by:

Ĥε =
p2

2m0
+ Vε(r) +

~
4m2

0c
2

(∇Vε × p) · σ , (2.38)

with the eigenvalues Enε(k) and eigenvectors ψnε(k, r), Vε is the periodic potential of the

deformed cubic unit cell, and the Hamiltonian (2.38) is obtained from the unperturbed Hamil-

tonian from Eq. (2.17) simply by substituting V0 with Vε.

A small deformation can be regarded as an additional perturbation, and we can restrict our

analysis here to the terms linear in strain, i.e. directly proportional to the components of the

strain tensor εα. The position of a Bravais lattice point is given by

a =

3∑
i=1

miai (2.39)
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where ai are the primitive unit vectors of the Bravais lattice and m ∈ Z. If we consider, for

instance, a fixed Bravais lattice point a0 at the origin, i.e. m1 = m2 = m3 = 0, then the ith

component of a Bravais lattice point a0 with mi 6= 0, which in an unstrained crystal is given

by (2.39), changes due to strain as follows:

a(i) = a
(i)
0 + (ε · a0)i , (2.40)

where the dot product (ε · a0)i is given by

(ε · a0)i =
3∑
j=1

εija
(j)
0 . (2.41)

For suffiently large mi the relative displacement ∆a(i) = a(i)−a(i)
0 = (ε · a0)i can be comparable

with the lattice constant, and the difference between the potential of the strained and unstrained

crystal Vε−V0 in this case will of the order of V0. Therefore the change in the crystal potential

cannot be interpreted as a perturbation. At the same time the strain will also affect the

periodicity of the unit cell, thus the basis functions unk of the unperturbed Hamiltonian from

Eq. (2.17) and (2.38) will also be different. In order to address this issue, we perform a

transformation of the coordinates such as the vector components of the Bravais lattice points

in the strained crystal a′m in the new system will coincide with the points in the unstrained

lattice using the old coordinate system. In this case

x(i) = x′(i) +
(
ε · x′

)
i
≡ (1 + ε)x′

x′(i) = (1 + ε)−1x ≈ (1− ε)x .
(2.42)

From this transformation the momentum operator p becomes

p(i) = (1− ε)p′ , (2.43)

where p′(i) = −i~ ∂
∂x′(i)

,

p2 ≈ p′2 − 2
∑
ij

p′(i)εijp
′
j ≡ p′2 − 2

(
p′εp′

)
, (2.44)

and Vε(x) = Vε [(1 + ε)x′]. Going back to the unstrained coordinate system x we find that

Vε [(1 + ε)x] has the same periodicity as V0(x), and the difference between the potentials of the

strained and unstrained crystal δV can be written as:
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δV = Vε [(1 + ε)x]− V0(x) =
∑
ij

Vij(x)εij ≡ (V ε) , (2.45)

where

Vij(x) =
1

2− δij
lim
ε→0

Vε [(1 + ε)x]− V0(x)

εij
. (2.46)

Using the transformations (2.42) and (2.43), we rewrite the Schrödinger Equation (2.6) the

following way:

(
Ĥ0 + Ĥ ′

)
|ψnε(k, r)〉 = Enε(k)|ψnε(k, r)〉 , (2.47)

where |ψnε(k, r)〉 =
∑8

i=1 cnεi|ui〉 and it has the same periodicity as the eigenvectors of the

Hamiltonian (2.32). The unperturbed Hamiltonian Ĥ0 is from (2.17). In order to evaluate

the perturbation Hamiltonian due to strain Ĥε we take into account the fact the potential of

strained and unstrained crystal, Vε [(1 + ε)x] and V0(x) respectively, have the same periodic-

ity. This means that, in order to maintain the periodicity of the basis functions |unk0〉 we

simply substitute the momentum operator p with its corresponding transformation (1 − ε)p.

Consequently Ĥε for k0 = 0 will be given by:

Ĥ ′ =
~2k2

2m0
+

~
m0

k · p− ~
m0

k · (εp)− (pεp)

m0
+ (V ε)

≡ Ĥk·p −
~
m0

k · (εp)− (pεp)

m0
+ (V ε) = Ĥk·p + Ĥε .

(2.48)

There are a few things to note here. Firstly, we do not include the effect of strain on the spin-

orbit interaction for simplicity. Secondly, as we mentioned, we do not include in our analysis

the terms proportional to the product of strain tensor elements εα1εα2 due to a small magnitude

of strain, therefore we restrict our analysis here to the first order perturbation theory only.

Since in the derivation of the Hamiltonian matrix (2.32) we included the first two terms

from (2.48), we focus here on the expansion of the terms depending on the strain which,

in the first order perturbation theory, yields

(
Ĥε

)
nm

= − ~
m0

3∑
i=i

ki (εpnm)i +
∑
ij

(
−
(
p(i)p(j)

)
nm

m0
+ (Vij)nm

)
εij . (2.49)

Using the set of basis functions (2.22) we evaluate the following Hamiltonian matrix
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(
Ĥε

)
nm

=

(
H

(1)
ε 0

0 H
(1)
ε

)
, (2.50)

where

H(1)
ε =


ac(εxx + εyy + εzz) −iP

∑
i kiεxi −iP

∑
i kiεyi −iP

∑
i kiεzi

iP
∑

i kiεxi lεxx +m(εyy + εzz) nεxy nεxz

iP
∑

i kiεyi nεxy lεyy +m(εxx + εzz) nεyz

iP
∑

i kiεzi nεxz nεyz lεzz +m(εxx + εyy)

 .

(2.51)

Here ac and l,m, n are deformation potentials for the s-like (conduction) states and p-like

(valence) states respectively, and are given by:

ac = −
(
p(i)p(i)

)
ss

m0
+ (Vii)ss

l = −
(
p(x)p(x)

)
xx

m0
+ (Vxx)xx

m = −
(
p(y)p(y)

)
xx

m0
+ (Vyy)xx

n = −

(
p(x)p(y)

)
xy

m0
+ (Vxy)xy .

(2.52)

Comparing the matrices (2.51), (2.25) and (2.26) we notice that the elements of the strain

Hamiltonian can be obtain from the k · p interaction matrix with the following substitutions:

kikj → εij

A→ ac

L,M,N → l,m, n

ki → −
∑
j

εijkj .

(2.53)

The valence band deformation potentials av, b, d are closely related with the deformation po-

tentials of the p-like states l,m, n with the following expressions:
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av =
l + 2m

3

b =
l −m

3

d =
n√
3
.

(2.54)

Comparing the expressions above with the Luttinger parameters (2.29), we notice that for the

evaluation of the strain Hamiltonian matrix in the |J ;mj〉 notation it is useful to transform the

Luttinger parameters γ1, γ2, γ3 into the valence band deformation potentials av, b, d as follows:

~2

2m0
γ1 → −av

~2

m0
γ2 → −b

~2

m0
γ3 → −

d√
3
,

(2.55)

thereby obtaining the following Hamiltonian matrix expansion:

Hε =



acεhy −
√

3t+
√

2u −u 0 0 −t− −
√

2t−

−p+ q
√

2s −s 0 0 −r −
√

2r

−p− q −
√

2q t∗+ r 0
√

2s

−p
√

2t∗+
√

2r −
√

3s 0

acεhy −
√

3t−
√

2u −u
−p+ q

√
2s∗ −s∗

−p− q
√

2q

−p


, (2.56)

where
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εhy = εxx + εyy + εzz

p = −avεhy

q = − b
2

(εxx + εyy − 2εzz)

t± = − 1√
6
P
∑
j

(εxj ± iεyj) kj

u = − 1√
3
P
∑
j

εzjkj

s = − 1√
2
d (εxz − iεyz)

r = −
√

3

2
b(εxx − εyy)− idεxy

(2.57)

Similarly to the Hamiltonian (2.32), the lower diagonal in the matrix (2.56) is the complex

conjugate of the upper diagonal since it is also a Hermitian matrix.

We also note here that the 8-band strain Hamiltonian (2.56) can be simplified for an epitaxial

layer, e.g. QW. Here we take into account the fact that the only non-zero components of the

stress tensor σkl are σxx and σyy, which, due to the cubic structure of zinc blende heterostruc-

tures, will be equal. A lattice mismatch between the deposited layer and the substrate will

result in an in-plane strain given by:

εxx = εyy =
as − al
al

, (2.58)

where as and al are the unstrained lattice constants of the substrate and the epitaxially grown

layers respectively. In this case, from Eq. (2.36) we can write:

2C12εxx + C11εzz = σzz = 0

=⇒ εzz = −2C12

C11
εxx .

(2.59)

Also there are no shear forces acting during the pseudomorphic growth of such layers, therefore

εxy = εxz = εyz = 0 and the terms s and r in the strain Hamiltonian (2.56) vanish, as well as

the terms t and u at k = 0.

The effects of strain on the electronic structure of a bulk III-V compound are shown in Fig. 2.2.

Firstly we find that the HH and LH bands, which were originally degenerate in an unstrained

lattice at the zone centre of the Brillouin zone, split due to the diagonal term q in the Hamil-

tonian (2.56), with the HH (LH) band being closer to the CB edge in a compressively (ten-

sile) strained semiconductor (although the spin degeneracy is still maintained). As we will
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Figure 2.2: Calculated energy dispersion of the conduction (black line), heavy-hole (red
line), light-hole (green line) and spin-split-off bands (blue line) along the [001] direction in an
unstrained (left panel), tensile (middle panel) and compressively strained (right panel) InP
epitaxial layer at 300 K.

show later, this is an important feature for the calculation of the optical properties, since the

electron-hole recombination rate now will be strongly favoured by a particular polarisation of

the incident electric field. This is not the case in an unstrained material, where, for instance, a

photoluminescence response would be independent on the polarisation of the laser excitation.

As we will also show in Section 4.2, by splitting the HH and LH bands we also affect the va-

lence density of states, especially at energies close to the valence band maximum. Due to the

Fermi-Dirac distribution of the carriers, the reduced density of states allows a more rapid pop-

ulation of the valence states per unit energy, thereby enhancing the threshold characteristics

and differential gain of a laser.

Secondly, a slight change in volume due to the hydrostatic strain εhy causes a noticeable change

in the band gap, and it increases (decreases) when compressive (tensile) strain is applied, as

can be seen on the right (middle) panel in Fig. 2.2. This feature has to be taken into account

for the design of heterostructure based devices, e.g. lasers and light-emitting diodes, with

a particular emission wavelength. In order to maintain a constant emission wavelength, the

effects of hydrostatic strain can be partially compensated with minor adjustments in the alloy

composition of the active region, or, as we will show in Section 4.2, by changing the confinement

of the carriers with a different nanostructure geometry.

Thirdly, the tensile strain increases the energy separation between the topmost valence band

(light-hole, green line) and the spin-split-off band (blue line). This is particularly imporant for

the CHSH Auger recombination process [108], which is the dominant recombination pathway in
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semiconductor lasers for telecom applications [109], especially at 300 K or higher temperatures.

During this process, due to a smaller magnitude of the spin-orbit splitting ∆SO compared to

the band gap Eg, the released energy of the recombination of a conduction electron and a

valence hole can excite a hole into the spin-split-off band [110]. The dilute bismide-based

heterostructures have been suggested to have a suppressed Auger recombination due to a much

larger spin-orbit splitting ∆SO compared to the band gap Eg [111]. The theoretical estimations

by Jones et al. [112] also indicate a suppressed Auger recombination for 1.5µm lasers when

tensile strain is applied to the QWs in the active region.

Finally, unlike the material parameters for the k·p Hamiltonian (2.32) which are always positive,

the sign convention becomes an important aspect when the effects of strain on the electronic

structure are calculated using the Hamiltonian (2.56). In this thesis we follow the typically

used sign convention for the lattice mismatched as shown in Eq. (2.58)4, in which case the

compressive (tensile) strain is negative (positive). This, in combination with the chosen sign of

(i) the deformation potentials ac, av, b, d, which are provided the III-As and III-P compounds

in Appendix A, and (ii) the set of terms of the strain Hamiltonian from Eq. (2.57) has to result

in a behaviour as previously discussed.

2.4 Theory of optical properties of semiconductor heterostruc-

tures

In this section we discuss the key optical properties which our analysis of device performance

in Chapters 4 – 6 will be based on and provide explicit expressions for gain and spontaneous

emission spectra, and we follow here the approach used by Chuang [2].

We start with the derivation of the expression for the gain spectrum in Section 2.4.1, where

we also discuss (i) the requirements for an amplified emission to occur and (ii) the threshold

condition for gain to overcome the internal losses of the cavity. Then, in Section 2.4.2 we provide

the derivation for the spontaneous emission spectrum due to the relaxation of the conduction

electrons.

2.4.1 Material and modal gain

Due to an incident electromagnetic wave, the Hamiltonian for a free electron (2.2) requires the

substitution p → p − eA, where A is the magnetic vector potential, leading to the following

operator:

4We use the opposite sign convention for strain in Chapter 4, where we provide detailed guidelines for
optimised emission of metamorphic lasers and our analysis is primarily focused on an audience with epitaxial
and device engineering background.



Theory of electronic and optical properties of zinc blende heterostructures 31

Ĥ =
(p− eA)2

2m0
+ V0(r)

= Ĥ0 −
e

2m0
(p ·A + A · p) +

e2

2m0
|A|2 ,

(2.60)

Here Ĥ0 is the unperturbed Hamiltonian from Eq. (2.2) and e is the electron charge. Using the

Coulomb gauge ∇ ·A = 0, such as p ·A = A ·p, and taking into account that the last term in

Eq. (2.60) has a much smaller effect than the term linear in A, we find

Ĥ = Ĥ0 −
e

m0
(p ·A) = Ĥ0 + Ĥ ′(r, t) . (2.61)

The magnetic vector potential A is given here by

A = êA0 cos (kop · r− ωt) , (2.62)

where ê, A0, kop and ω are the polarisation vector, peak amplitude, wave vector and the angular

frequency of the incident wave. Substituting the magnetic vector potential A (2.62) into the

time-dependent perturbation Hamiltonian Ĥ ′(r, t) from Eq. (2.61) we find

Ĥ ′(r, t) = −eA0

m0
cos (kop · r− ωt)p · ê

= − eA0

2m0

(
eikop·re−iωt + e−ikop·reiωt

)
p · ê = Ĥ ′(r)e−iωt + Ĥ ′∗(r)e+iωt ,

(2.63)

We now assume a two-level system, with energy levels E1 and E2, such as E1 < E2, as shown

in Fig. 2.3. Using the Fermi’s golden rule, the derivation of which is presented in Appendix C,

the upward transition rate per unit volume can be written as

R1→2 =
1

V

2π

~

∣∣∣Ĥ ′21

∣∣∣2 δ(E2 − E1 − ~ω)f1(1− f2) . (2.64)

Here f1 (f2) denotes the probability of the state 1 (2) being occupied by an electron according

to the Fermi-Dirac statistics

f1(2) ≡ f(E1(2), Fv(c)) =
1

1 + e
E1(2)−Fv(c)

kBT

, (2.65)

where Fv(c), kB and T are the quasi-Fermi level in the vicinity of the valence (conduction) band

edge, Boltzmann constant and temperature respectively. For a system with a set of valence
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Figure 2.3: Schematic representation of the absorption (a), spontaneous emission (b) and
stimulated emission (c) processes for a two level system E1 and E2, with E1 < E2.

and conduction states, Ev and Ec respectively, with Ec > Ev the total transition rate per unit

volume is the sum of all possible two level transitions, i.e.

Rv→c =
2

V

2π

~
∑
v

∑
c

∣∣∣Ĥ ′cv∣∣∣2 δ(Ec − Ev − ~ω)fv(1− fc) , (2.66)

where the prefactor 2 is included to take into account the transitions between the states with

the same spin. By analogy, the downward transition rate per unit volume between a set of

conduction states c onto the valence states v is

Rc→v =
2

V

2π

~
∑
v

∑
c

∣∣∣Ĥ ′∗vc∣∣∣2 δ(Ev − Ec + ~ω)fc(1− fv) . (2.67)

Taking into account the fact that |Ĥ ′cv| = |Ĥ ′∗vc|, the parity of the Dirac delta function δ(x) =

δ(−x), and the dipole approximation kop ≈ 0 the net upward transition rate per unit volume

is

R = Rv→c −Rc→v =
2

V

2π

~
∑
v

∑
c

∣∣∣Ĥ ′cv∣∣∣2 δ(Ec − Ev − ~ω) (fv − fc)

=
πe2A2

0

V ~m2
0

∑
v

∑
c

|pcv · ê|
2 δ(Ec − Ev − ~ω) (fv − fc) .

(2.68)
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Here pcv · ê = 〈ψc|p · ê|ψv〉 is the momentum matrix element between an initial state Ev and

a final state Ec. From Eq. (2.68) we see that the sign of the difference between the state

occupation fv − fc is the only factor that determines whether the absorption or emission is the

dominant process, with the positive (negative) sign corresponding to net absorption (emission).

The magnetic vector potential A (2.62) is related with the electric and magnetic fields, E and

H respectively, as

E = −∇φ− ∂A

∂t
= −êA0ω sin (kop · r− ωt)

H =
1

µ0
∇×A = − 1

µ0
kop × êA0 sin (kop · r− ωt)

(2.69)

Here we set the scalar potential φ to be zero and use the magnetic permeability of the vaccum

in the first and second equations respectively. The Poynting vector is given by

P = E×H = k̂kop
ωA2

0

µ0
sin2(kop · r− ωt) . (2.70)

and we calculate the power density using the time average of the Poynting vector P [113]

P = |〈P(r, t)〉| = ωA2
0

2µ0
kop =

nrcε0εrω
2A2

0

2
, (2.71)

where nr, c, ε0 and εr are the refractive index, speed of light, vaccuum and relative permittivity5

respectively. Here we took into account the fact that the time average of sin2() is 1/2. The

absorption coefficient, which is the ratio between the rate of absorbed photons per unit volume

and the rate of incident photons per unit area, can be written for a system with a set of states

Ev and Ec as discussed above, as:

α(~ω) =
R

P/~ω
=

2R~ω
nrcε0εrω2A2

0

. (2.72)

We substitute here the expression for the net transition rate (2.68) to find

α(~ω) =
e2π~

ε0εrm2
0nrc~ω

2

V

∑
v

∑
c

|pcv · ê|
2 δ(Ec − Ev − ~ω) (fv − fc) . (2.73)

In the case when the final states Ec have a larger occupation compared to the initial states Ev,

i.e. fv − fc < 0, the absorption is negative and represents the material gain

5Since the relative permittivity is position-dependent, we restrict our calculations by using the εr correspond-
ing to the barrier material.
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Figure 2.4: Spontaneous emission (red) and gain (blue) spectra for an InGaAs QW, at the
injected areal carrier density n2D = 1.51× 1012cm−2.

g(~ω) = −α(~ω) =
e2π~

ε0εrm2
0nrc~ω

2

V

∑
v

∑
c

|pcv · ê|
2 δ(Ec − Ev − ~ω) (fc − fv) . (2.74)

By looking at the definition of the Fermi-Dirac probability function (2.65), we find that the

following condition has to be satisfied for the material gain to occur:

∆F = Fc − Fv > Ec − Ev (2.75)

This is the so-called Bernard-Duraffourg condition, or population inversion, which indicates

that the threshold for a pair of states Ec and Ev to produce amplified emission occurs when

the difference Ec − Ev is smaller than the energy difference in quasi-Fermi levels. A typical

gain spectrum is shown in Fig. 2.4.
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First thing we note here is that the expression for material gain (2.74) is valid for a system

with a set of states in the conduction and valence band calculated at a single value of k.

Consequently, Eq. (2.74) can be in principle applied directly for the gain calculations of QD-

or QWR-based heterostructures, where the electronic structure is calculated at the Γ point in

the Brillouin zone (or |k| = 0) 6.

However the electronic structure calculations for QW-based heterostructures bring about a

dispersion of conduction and valence bands along k‖ (cf. Section 2.2.2). In this case, the

transitions between conduction and valence states at all values of k‖ are taken into account

for gain calculations, by applying the transformation 1
V →

1
a

1
(2π)2

∫
kx,ky

dkxdky to Eq. (2.74),

where a is the thickness of the active region. The axial approximation [106] allows us to

transform this integration using polar coordinates and integrate over the magnitude of k‖, i.e.
1
V →

1
a

1
2π

∫
k‖
k‖dk‖, where k‖ = |k‖|.

Secondly, the Dirac delta function δ in Eq. (2.74) requires to be substituted with a normalised

lineshape function to account for the effects of homogeneous broadening. In our calculation we

use the hyperbolic secant as a lineshape function [32], i.e.

δ(E)→ S(E) =
τin
π~

sech

(
Eτin
~

)
, (2.76)

where τin is the interband relaxation time. The main advantage of the hyperbolic secant

function compared to other lineshape functions, such as the Lorentzian, consists in removing the

problem of absorption below the band gap [4]. Taking into account the integration over k‖ and

the homogeneous broadening, the expression for material gain for a QW-based heterostructure

becomes:

g(~ω) =
e2~

ε0εrm2
0nrc~ω

1

a

∫
k‖

∑
v

∑
c

∣∣pcv(k‖) · ê∣∣2 S [Ec(k‖)− Ev(k‖]−~ω)
[
fc(k‖)− fv(k‖)

]
k‖dk‖

(2.77)

Since in the dipole approximation the electromagnetic wave does not carry (significant) mo-

mentum, we ensure here that the transitions occur between energy levels at the same k‖, also

known as k-selection rule.

Finally, for the derivation of the gain expression (2.77) we assumed that the time averaged

Poynting vector of the incident electromagnetic wave contributes entirely to the energy tran-

sition of the electrons. In reality, only a fraction of the Poynting vector is “confined” in the

active region where the carrier wavefunctions is localised, which is described by the optical

confinement factor Γ given by:

6This is discussed in more details in Section 3.2.
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Γ =

∫
AR
〈P〉 · êdz∫

WG
〈P〉 · êdz

, (2.78)

where the integration in the numerator (denominator) is performed over the active region

(waveguide) length, and the actual modal (or optical) gain is

gm(~ω) = Γg(~ω) , (2.79)

Unlike the material gain (2.77), the modal gain is, in fact, measurable, e.g. using the stripe-

length method [114] or the Hakki-Paoli method [115, 116]. The optical confinement factor Γ

in our calculations is evaluated using the effective index method [117].

Fourthly, in the perfect scenario the amplified emission in Eq. (2.77) is not attenuated while

propagating in the optical cavity. In reality, the modal gain has to reach a certain threshold

value g
(th)
m , so that it compensates (i) the internal absorption losses of the cavity, and (ii) the

reflection losses of the facets. The threshold gain in this case is given by [118]:

g(th)
m = Γgth = αi +

1

L
ln

(
1

R

)
, (2.80)

where αi, L and R are the internal losses, cavity length and reflectivity of the facets. We

notice here that, unlike the threshold material gain gth, the modal gain at threshold g
(th)
m does

not depend on the optical confinement Γ. For the calculation of the quasi-Fermi levels in our

work we consider an equal amount of injected electrons ne and holes nh (for charge neutrality)

into the conduction and valence bands respectively and, for a set of discrete states with no

dispersion in k is calculated iteratively as

ne(h) =
∑
Ec(v)

fe(h) =
∑
Ec(v)

f(Ec(v), Fn(h)) , (2.81)

or, in other words, the total sum of the probabilities finding an electron (hole) in a conduction

state Ec (valence state Ev) equals the amount of injected electrons (holes). When the energy

dispersion has to be take into account, e.g. in QWs along k‖, an additional integration over

the k‖ space is required and, using the axial approximation, it is given by

n2D
e(h) =

1

2π

∑
Ec(v)

∫
k‖

f(Ec(v)(k‖), Fn(h))k‖dk‖ , (2.82)
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where n2D
e(h) has units of number of electrons (holes) per unit area, i.e. n2D

e(h) is the areal carrier

density.

2.4.2 Spontaneous emission

We start by assuming a two level system as shown in Fig. 2.3, and define the upward transition

rate due to an incident photon with energy ~ω using the Einstein stimulated emission coefficient

B as

B12 =
2π

~

∣∣∣Ĥ ′12

∣∣∣2 δ(E2 − E1 − ~ω) , (2.83)

where we took into account the transition 1→ 2 due to resonance using the Dirac delta function.

The total upward transition rate for a broad range of photons is given by:

R1→2 = B12ρph(~ω)fB-E(~ω)f1(1− f2) , (2.84)

where we included the occupation probabilities of the two levels, ρph(~ω) is the density of

photon states with energy ~ω in a bulk material [2, 119], given by:

ρph(~ω) =
n3
r(~ω)2

π2~3c3
, (2.85)

and fB-E(~ω) is the probability of finding a photon with energy ~ω using the Bose-Einstein

statistics, given by:

fB-E(~ω) =
1

e
~ω
kBT − 1

. (2.86)

Similarly to Eq. (2.84), the downward emission due to a range of incident photon energies (or

stimulated emission) is given by:

Rstim2→1 = B21ρph(~ω)fB-E(~ω)f2(1− f1) . (2.87)

The spontaneous downward transition rate (spontaneous emission) does not depend on the

incident photons and is given by

Rspon2→1 = A21f2(1− f1) , (2.88)
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where A21 is the Einstein spontaneous emission coefficient. The quasi-equilibrium requires the

rate of upward transitions to be equal with the total downward transitions, therefore

B12ρph(~ω)fB-E(~ω)f1(1− f2) = B21ρph(~ω)fB-E(~ω)f2(1− f1)

+A21f2(1− f1)

=⇒ A21

B21
fB-E(~ω) = ρph(~ω)fB-E(~ω) ,

(2.89)

where we took into account the fact that B12 = B21, and find A21 = B21ρph(~ω). The net

photon-assisted upward transition rate in a two level system can be written as

Rabs = R1→2 −R2→1 = B12(f1 − f2)ρph(~ω)fB-E , (2.90)

and the spectral absorption for a spectral width dE can be written as

α(~ω)dE = RabsdE = B12(f1 − f2)
nr
c
. (2.91)

Taking the ratio between the spontaneous emission rateR2→1 ≡ rspdE (2.88) and the expression

for absorption above we find

rsp(~ω)dE

α(~ω)dE
=
A21

B12

f2(1− f1)

f1 − f2

c

nr

=⇒ rsp(~ω) = ρph(~ω)f2(1− f1)
α(~ω)

f2 − f1

c

nr
.

(2.92)

Eq. (2.92) shows the relationship between the spontaneous emission and absorption in a system

with a conduction and a valence state. Here we substitute the absorption expression from

Eq. (2.73), assuming a single two-level system. We then take into account the set of calculated

states Ec and Ev, integrate over k‖ due to energy dispersion while taking into account the axial

approximation, and find the explicit expression for the spontaneous emission for a QW-based

active region with a set of states Ev and Ec as

rsp(~ω) =
e2nr~ω

π2ε0εr~2c3m2
0a

∫
k‖

∑
v

∑
c

∣∣pcv(k‖) · ê∣∣2 δ [Ec(k‖)− Ev(k‖)− ~ω
]

×fc(k‖)
[
1− fv(k‖)

]
k‖dk‖ .

(2.93)

Two essential differences appear when we compare the expressions (2.77) and (2.93), (i) a

higher energy emission is associated with a reduced gain (enhanced spontaneous emission)

since it is inversely (directly) proportional to the photon energy, and (ii) the probability of
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finding an electron-hole pair determines whether spontaneous emission occurs, whereas at

quasi-equilibrium the gain requires a larger occupation of the conduction states compared

to the valence band. For the calculation of spontaneous emission in our work we assume an

inhomogeneous broadening of the emission. This is particularly relevant when self-assembled

QDs and QWRs are considered, as the distribution in geometry and (potentially) composition

of these nanostructures result in a broader emission spectrum compared to the modal gain. We

therefore consider the Gaussian distribution

δ(E) =
1√
2πσ

e−
E2

2σ2 , (2.94)

where σ is the inhomogeneous broadening factor. We do not consider the inhomogeneous

broadening for the calculation of gain, since we ensure that the CB–VB transition energy is

at resonance with the incident photon ~ω. The spontaneous emission spectrum (2.93) can be

translated into the total radiative electron-hole recombination rate per unit area, or radiative

current density Jrad, simply by integrating over the emission wavelength

Jrad = ea

∫
~ω
rsp(~ω)d(~ω) . (2.95)

2.5 Conclusions

In this chapter we discussed the theory of electronic and optical properties of semiconductors

with zincblende crystal structure.

We started with the derivation of the k · p method for an unstrained crystal in Section 2.2,

where we have shown the effects on the wave vector dependent energy dispersion due to (i) the

electron momentum p as a first order perturbation, and (ii) the nearby and remote bands, class

A and B respectively [96], according to the second order perturbation theory. The effect of

class B states is particularly relevant for the calculation of the electron effective mass m∗ and

Luttinger parameters γ since the experimentally measured effective masses of electrons and

holes are smaller compared to the free electron with a typical ratio m0/m
∗ ≈ 5− 20. Knowing

a set of energy states at a reference wave vector k0, typicall k0 = 0 and having a set of eight

orthonormal basis functions |ub〉 (one conduction and three valence spin degenerate states), we

can then evaluate the 8-band k·p Hamiltonian which explicitly includes the effects of class A

states on the energy dispersion.

Following this, in Section 2.3 we discussed the effects of a small strain on the electronic structure

of zincblende semiconductors. A transformation of the coordinate system was applied in order

to maintain the periodicity of the basis functions |ub〉 of the k · p Hamiltonian. Although
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the magnitude of strain is indeed small, typically up to about ± 2% for thin epitaxial layers

e.g. QWs, noticeable changes in the electronic structure as a consequence occur, such as:

(i) a noticeable increase (decrease) in the band gap due to the compressive (tensile); (ii) the

originally degenerate HH and LH bands split due to biaxial strain with the CB-HH (CB-LH)

transition begin the shortest in the compressive (tensile) case; (iii) increased transition energy

between the topmost valence band (in this case LH) and the spin-split-off band when tensile

strain is applied, and is potentially beneficial for suppressed Auger recombination [109–112].

The sign convention for strain and deformation potentials is another important aspect that has

to be taken into account for strained electronic structure calculations.

Having derived the theoretical framework for the calculation of electronic properties, we turned

our attention to the theory of optical properties in Section 2.4. Starting the the Fermi’s golden

rule, which enforces the energy transitions of electrons to be resonant with the energy of the

incident photons, the explicit expressions for the absorption and gain spectra were found,

leading to the Bernard-Duraffourg condition, or population inversion, for an amplified emission

to occur. Using the optical confinement factor Γ we can then calculate the modal (or optical)

gain which, unlike the material gain, is experimentally measurable, as well as the threshold

gain due to internal and mirror losses in the optical cavity. We then derived the expression for

spontaneous emission which shows that, unlike the gain spectrum, it cannot be negative and

only depends on the population probability of the CB and VB states.

Having derived the necessary set of theoretical frameworks, we now proceed to its computa-

tional implementation in the next chapter, where we focus on the semi-analytical plane wave

method.



Chapter 3

Plane wave expansion method for

electronic structure and optical

properties calculations

In this chapter we derive the semi-analytical plane wave expansion method [79] that can ef-

ficiently and accurately calculate the electronic and optical properties of QW-, QWR- and

QD-based heterostructures using the theoretical methods we presented in Chapter 2. We start

in Section 3.1.1 with the derivation of the method for a one-dimensional confinement using

the 1-band effective mass Hamiltonian and then discuss in Section 3.1.2 its implementation

in a multi-band Hamiltonian and its implementation for a multi-QW based heterostructure in

Section 3.1.3. Following this we proceed to the derivation of the method for QD and QWR

based heterostructures in Section 3.2.1. We will show that, in essence, the implementation of

the method to calculate the eigenstates in a one dimensional potential represents a special case

within the general derivation of the method for a multi dimensional confinement.

In Section 3.2.2 we discuss the Green’s function based method to estimate the real space distri-

bution of the strain tensor elements in a QD and QWR based heterostructure with zincblende

crystal structure based on continuum elasticity theory, and then we derive the Pikus-Bir Hamil-

tonian matrix elements within the plane wave method in Section 3.2.3.

In Section 3.3 we describe the implementation of the plane wave method in order to solve Pois-

son’s equation. This will allow us to estimate the electrostatic field due to the spatial separation

of the confined electrons and holes in a heterostructure. We then show in Section 3.4 that the

electronic eigenstates calculated using the plane wave expansion of the 8-band Hamiltonian

can be used directly to calculate the momentum matrix element between an electron and hole

state according to Szmulowicz’s formalism [82]. The beauty of this method consists in the use

of bulk material parameters to calculate the optical properties, such as spontaneous emission

41
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and gain, in an active region of a photonic device. Finally we summarise the chapter results in

Section 3.5.
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3.1 Derivation of the method for quantum well based hetero-

structures

In this section we present the fundamental idea of the method and present its implementation

for electrons confined in a one-dimensional potential.

3.1.1 1-band model

Our goal here is to solve the one band effective mass Schrödinger equation:

ĤFn(z) = EnFn(z) . (3.1)

The effective mass Hamiltonian Ĥ is given by:

Ĥ = − ~2

2m0

d

dz

(
1

m∗(z)

d

dz

)
+ V (z) . (3.2)

In order to solve Eq. (3.1) we define our heterostructure as a periodic supercell of length L, in

this case along the z (or growth) direction, with a QW of thickness d, with a material parameter

in the supercell fn(z) = fn(z+mL), where m ∈ Z, and the origin of the z coordinate is located

at the centre of the supercell. This allows us to expand the envelope function as a Fourier

series:

Fn(z) =
1√
L

+M∑
m=−M

ãn(Gm)eiGmz , (3.3)

where Gm = 2mπ
L is the one dimensional reciprocal vector of the supercell, ãn(Gm) are Fourier

coefficients of Fn(z) and M ∈ Z.

Substituting Eqs. (3.3) and (3.2) into (3.1) we obtain

1√
L

+M∑
m=−M

Ĥãn(Gm)eiGmz = En
1√
L

M∑
m=−M

ãn(Gm)eiGmz . (3.4)

We then multiply both sides by 1√
L
e−iGm′z, where m′ ∈ [−M,+M ] and integrate over the

supercell
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E

−L/2 −d/2 0 d/2 L/2 z

0

−V0

Figure 3.1: Schematic representation of a supercell with length L that contains a QW of
thickness d. The centre of the QW is situated at 0 on the z axis, and χ(z) ∈ [−d/2, d/2].

+M∑
m=−M

(
1

L

∫ L/2

−L/2
e−iGm′zĤeiGmzdz

)
ãn(Gm) = Enãn(Gm′) (3.5)

On the right-hand side we made use of the fact that

1

L

∫ L/2

−L/2
e−i(Gm′−Gm)z = δmm′ , (3.6)

where δmm′ is the Kronecker delta. We notice that Eq. (3.5) is in fact an eigenvalue problem,

with the solution found after diagonalising the matrix representation of the Hamiltonian

Hm′m =
1

L

∫ L/2

−L/2
e−iGm′zĤeiGmzdz (3.7)

In order to derive the matrix representation of the Hamiltonian, we solve the integral first for

the position-dependent potential V (z) part of the Hamiltonian, and then turn our attention to

the kinetic term of Eq. (3.1). Firstly, we assume that the QW with thickness d is located in

the supercell within z ∈
[
−d

2 ,
d
2

]
, as shown in Fig. 3.1, and we define the position-dependent

characteristic function χ(z) to be

χ(z) =

{
1 , |z| ≤ d

2

0 , otherwise
(3.8)

The Fourier transform of the characteristic function is given by
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χ̃(Gm) =
1

L

∫ L/2

−L/2
χ(z)e−iGmzdz . (3.9)

We can therefore express V (z) using the characteristic function

V (z) = χ(z)Vw + [1− χ(z)]Vb = Vb + χ(z) (Vw − Vb) (3.10)

The indices w and b in Eq. (3.10) correspond to the potential in the QW and surrounding barrier

respectively, and will have the same meaning when used for a particular parameter hereafter.

We also note that this equation can be applied for any position dependent parameter in the

supercell, e.g. effective mass, Luttinger and Kane parameters etc., and it will be particularily

important during the derivation of the plane wave method for the 8-band model for QWs, QDs

and QWRs. We simplify Eq. (3.10) for the example here by defining Vb = 0 and Vw = −V0 (cf.

Fig. 3.1). We therefore obtain the following form of the integral using the Fourier transform of

the characteristic function χ̃ from Eq. (3.9)

− 1

L

∫ d/2

−d/2
V0e
−i(Gm′−Gm)zdz = −V0χ̃(Gm′ −Gm) (3.11)

In order to find χ̃ we reduce the limits of the integral from [−L
2 ,

L
2 ] to [−d

2 ,
d
2 ] because outside

of the QW the integral will be zero. For a QW which is located symmetrically relative to the

centre of the supercell this function then becomes

χ̃(Gm′ −Gm) =
d

L
sinc

[
d(Gm′ −Gm)

2

]
(3.12)

In essence, a characteristic function and its Fourier transform will correspond to a nanostructure

with a particular shape, e.g. QW, QWR or QD. It is important to note here that the sinc

function in Eq. (3.12), unlike the sine, treats the singularity explicitly, and equals to unity at

Gm′−Gm = 0. We will later show that these singularities will be particularily important when

deriving χ̃ for a QWR or a QD shape.

In order to solve the integral of the kinetic part of the Hamiltonian (3.2), we use an approach

similar to Eq. (3.10) for m∗(z), i.e.

1

m∗(z)
=

1

m∗b
+ χ(z)

(
1

m∗w
− 1

m∗b

)
. (3.13)

By substituting Eq. (3.13) into (3.7) we obtain
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Hm′m =

(
− ~2

2m0

1

m∗b

)
iGm
L

∫ L/2

−L/2
e−iGm′z

d

dz
eiGmzdz

+

(
− ~2

2m0

)(
1

m∗w
− 1

m∗b

)
iGm
L

∫ L/2

−L/2
e−iGm′z

d

dz

[
χ(z)eiGmz

]
dz .

(3.14)

We focus for a moment on the integral in the first term here. By applying integration by parts

it becomes

1

L

∫ L/2

−L/2
e−iGm′z

d

dz
eiGmzdz =

e−i(Gm′−Gm)z

L

∣∣∣∣∣
L/2

−L/2

− 1

L

∫ L/2

−L/2
eiGmz

d

dz
e−iGm′zdz

= (Gm′ −Gm) δmm′ + iGm′δmm′

(3.15)

Here for the first term we notice that it is zero due to the definition of the Kronecker delta.

We then perform a similar procedure for the integral in the second term in Eq. (3.14), and

substitute the results into Eq. (3.14) to find the final form of the matrix representation of the

plane wave Hamiltonian (3.2):

Hm′m =
~2

2m0

GmGm′

m∗b
δmm′ +

[
~2GmGm′

2m0

(
1

m∗w
− 1

m∗b

)
− V0

]
χ̃(Gm′ −Gm) . (3.16)

In essence, using analytical methods we transformed the Schrödinger equation from a second

order differential equation into a real symmetric (2M + 1)× (2M + 1) size matrix, which will

be diagonalised numerically (hence the semi-analytical name of the method). The end result

of the diagonalisation is a 2M + 1 size array that contains the eigenvalues En with (2M + 1)

Fourier coefficients ãnm corresponding to the eigenvalue En. Using the Fourier series (3.3) we

can then evaluate the position dependent eigenstate. This method has been shown to converge

rapidly with the number of plane waves 2M + 1 [79], quickly approaching the exact solution of

the Schrödinger equation (3.2) for the ground state, and first few excited states.

3.1.2 8-band model

The ultimate goal is to apply this method to solve the 8-band Schrödinger equation. Here

we start by introducing the eigenstates for an in-plane wave vector k‖ as a set of envelope

functions associated with a particular bulk band b, and we then expand it into a Fourier series

using Eq. (3.3):
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ψn(k‖, z) =
1√
L

8∑
b=1

+M∑
m=−M

ãnb(k‖, Gm)eiGmz|ub〉, (3.17)

We then follow the procedure from the previous section by inserting Eq. (3.17) into Eq. (2.1)

1√
L

8∑
b=1

+M∑
m=−M

Ĥb′b(k‖, z)ãnb(k‖, Gm)eiGmz = En
1√
L

8∑
b=1

+M∑
m=−M

ãnb′(k‖, Gm)eiGmz , (3.18)

where Ĥb′b is the Hamiltonian matrix element linking bands b and b′ in the multiband Hamilto-

nian. Multiplying both sides by 1√
L
e−iGm′z and integrating over the supercell space we obtain

the following matrix representation of the Hamiltonian:

[
Ĥb′b(k‖)

]
m′m

=
1

L

∫ L/2

−L/2
e−iGm′zĤb′b(k‖, z)e

iGmzdz (3.19)

By comparing Eqs. (3.7) and (3.19) we first notice that the plane wave expansion of our 8-

band Hamiltonian yields a 8 (2M + 1) × 8 (2M + 1) size matrix, where each element of the

original Hamiltonian is expanded into a (2M + 1) × (2M + 1) matrix. The diagonalisation of[
Ĥb′b(k‖)

]
m′m

leads to a 8 (2M + 1) array of eigenvalues En with a set of 8 (2M + 1) Fourier

coefficients ãnb corresponding to each eigenvalue. These coefficients allow us to determine the

envelope function associated with each bulk band, and then use Eq. (3.17) to construct the

QW eigenstate at a particular wave vector k‖.

The plane wave expansion of an element in the 8-band Hamiltonian matrix can be obtained

following a similar method to that discussed in Section. 3.1.1. However, because the bulk

Hamiltonian matrix elements contain terms that depend upon A(z), A(z)kz, and A(z)k2
z , the

substitution kz → −i d
dz for the quantisation along the z direction results in the evaluation of

three different types of integrals which we discuss below.

Terms of Hb′b ∝ A(z). Due to their being independent of kz, and therefore lacking the

differential operator, the plane wave expansion of the Hamiltonian matrix elements independent

of kz are the simplest to derive. Starting with the following integral:

[
Ĥb′b(k‖)

]
m′m
∝ 1

L

∫ L/2

−L/2
A(z)e−i(Gm′−Gm)zdz (3.20)
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where A is any position dependent parameter that is constant across a particular layer, in-

cluding the strain εii
1, we can then expand the term A using the characteristic function from

Eq. (3.10) and make the substitution into the integral:

Ab
1

L

∫ L/2

−L/2
e−i(Gm′−Gm)zdz + (Aw −Ab)

1

L

∫ d/2

−d/2
e−i(Gm′−Gm)zdz

= Abδmm′ + (Aw −Ab) χ̃(Gm′ −Gm) .

(3.21)

Terms of Hb′b ∝ A(z)kz. These are the terms that appear in the k·p Hamiltonian in the

form Hb′b ∝ kz. By making the substitution kz → −i d
dz and applying symmetrisation in order

to ensure a Hermitian Hamiltonian matrix we obtain

1

L

∫ L/2

−L/2
e−iGm′z

1

2

[
A(z)

d

dz
+

d

dz
(A(z))

]
eiGmzdz

=
iGm
2L

∫ L/2

−L/2
A(z)e−i(Gm′−Gm)zdz +

1

2L

∫ L/2

−L/2
e−iGm′z

d

dz

[
A(z)eiGmz

]
dz .

(3.22)

The first term of this integral is then evaluated in the same way as was done for Eq. (3.20).

For the second term we use integration by parts to obtain

1

2L

∫ L/2

−L/2
e−iGm′z

d

dz

[
A(z)eiGmz

]
dz =

1

2L
A(z)e−i(Gm′−Gm)z

∣∣∣∣L/2
−L/2

+
iGm′

2L

∫ L/2

−L/2
A(z)e−i(Gm′−Gm)zdz .

(3.23)

It is important to note here that although the parameter A(z) is a step function, i.e. discontin-

uous at the layer interfaces, the periodic boundary conditions and the fact that we can expand

it into a Fourier series, allow us to to perform the integration by parts. This integral then

yields

− iAb
L

sin
[
(m−m′)π

]
+
iGm′

2
[Abδmm′ + (Aw −Ab) χ̃(Gm′ −Gm)] (3.24)

where we used the fact that A(L/2) = A(−L/2) = Ab and Gm = 2mπ
L . With the first term

here becoming zero, we obtain the final result:

1This is different in the case of a QD- or QWR-based supercell, where the strain has a certain profile, which
we discuss in Section 3.2.
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1

L

∫ L/2

−L/2
e−iGm′zĤb′b(k‖)e

iGmzdz =
i(Gm +Gm′)

2
Abδmm′+

i(Gm +Gm′)

2
(Aw−Ab)χ̃(Gm′−Gm)

(3.25)

Terms of Hb′b ∝ A(z)k2
z . These are the terms that appear in the k·p Hamiltonian in the

form Hb′b ∝ k2
z . For this type of Hamiltonian matrix element the derivation of the method

follows the exact same way as we have shown for the kinetic energy term of the 1-band model

in Section 3.1.1, with the expansion becoming

1

L

∫ L/2

−L/2
e−iGm′zĤb′b(k‖)e

iGmzdz = GmGm′Abδmm′ +GmGm′(Aw −Ab)χ̃(Gm′ −Gm) . (3.26)

3.1.3 Derivation of the method for multi-QW based heterostructures

So far, we focused on the derivation of the method for single QW based heterostructures. Here

we consider a set of N QWs with a thickness dq each and with the following characteristic

function

χq(z) =

 1 , z ∈
[
aq − dq

2 , aq +
dq
2

]
0 , otherwise

(3.27)

where aq is the position of the centre of each QW as shown in Fig. 3.2. We then define a

material parameter A(z) using a set of characteristic functions

A(z) = Ab

1−
N∑
q=1

χq(z)

+Aq
N∑
q=1

χq(z) = Ab +

N∑
q=1

χq(z) (Aq −Ab) (3.28)

or, in other words, A(z) = Aq in a particular QW and A(z) = Ab in the barrier material. As

we have seen from the previous section during the derivation of the plane wave representation

of any Hamiltonian term we ended up evaluating the integral in Eq. (3.20). We rewrite this

integral for a multi-QW case to obtain

Ab
1

L

∫ L/2

−L/2
e−i(Gm′−Gm)zdz +

N∑
q=1

(Aq −Ab)
1

L

∫
q
e−i(Gm′−Gm)zdz (3.29)



Plane wave expansion method for electronic structure and optical properties calculations 50

−L/2 a1 0 a2 L/2 z

d1 d2

Figure 3.2: Schematic representation of a supercell with length L that contains two QWs of
thickness d1 and d2. The centre of each QW is situated at a1 and a2 on the z axis, such that
χ1(z) ∈ [a1 − d1/2, a1 + d1/2] and χ2(z) ∈ [a2 − d2/2, a2 + d2/2] .

The integral in the first term here becomes the usual δmm′ . The domain of the second integral

was changed from
[
−L

2 ,
L
2

]
to q ∈

[
aq − dq

2 , aq +
dq
2

]
, because outside of this domain the integral

is zero for a particular QW in the sum. When evaluating the different contributions to the

second integral we assume for simplicity Gm′ −Gm = G, to obtain

1

L

∫
q
e−iGzdz = − 1

L

1

iG
e−iGz

∣∣∣∣
q

= − 1

L

e−iGaq

iG

(
e−

iGdq
2 − e

iGdq
2

)
=
dq
L

sinc

(
Gdq

2

)
e−iGaq = χ̃q(G) .

(3.30)

We can see that Eq. (3.12) is a simplified form of (3.30) since in the former case we considered

a symmetric QW with respect to the centre of the supercell (aq = 0). Substituting this result

into (3.20) we find the plane wave expansion for a material parameter A in a supercell with

multiple QWs to be given by

Abδmm′ +
N∑
q=1

(Aq −Ab) χ̃q(Gm′ −Gm) . (3.31)
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3.2 Derivation of the method for quantum wire and dot based

heterostructures

In this section we derive the semi-analytical expansion for three dimensional supercells that

contain one or multiple QDs or QWRs. Here we define the characteristic function and its

Fourier transform based on the periodic boundary conditions in three dimensions and provide

the general expression for the expanded Hamiltonian matrix element. We then derive the

Fourier transform of the strain tensor elements. Unlike in QW-based heterostructures where

the strain tensor is assumed constant in a particular layer, the inclusion of a lattice-mismatched

QD or QWR in the supercell results in a particular strain profile, which strongly depends upon

the shape of the nanostructure. Having this expression derived, we then turn our attention to

the expansion of the Pikus-Bir Hamiltonian matrix elements.

3.2.1 k·p Hamiltonian

We start the derivation of the method by considering a rectangular cuboid supercell with its

body centre located at the origin of the Cartesian coordinate system, with the supercell size Lx,

Ly, Lz along the x, y, z Cartesian axes respectively, and a material parameter f(r) = f(r+R),

with R = mxLxx+myLyy+mzLzz, where x, y and z are unit vectors along the corresponding

Cartesian axes, and mx,my,mz ∈ Z. Due to its periodicity along all three coordinate axes, the

reciprocal vectors of the supercell are given by Gm = (Gmx, Gmy, Gmz) with

Gmj =
2mjπ

Lj
(3.32)

where j = x, y, z. Using the vectors we then expand the 8-band eigenstate into the following

series:

ψn(r) =
1√
Ωsc

+Mx∑
mx=−Mx

+My∑
my=−My

+Mz∑
mz=−Mz

8∑
b=1

ãnb(Gm)eiGm·r|ub〉 , (3.33)

where Ωsc is the volume of the supercell. In our QWR calculations later in the thesis, the

wires are continous along the x = ±y direction; therefore we have to take into account the

energy dispersion along kx = ±ky. Because of the chosen Cartesian coordinate system (x, y, z),

we ensure the periodic boudary conditions by having a set of reciprocal vectors Gj which

include non-zero components for j = x, y, z. Consequently, computational expense to calculate

En(kx = ky) and ψn(kx = ky) in a QWR increases significantly compared to a QW-based

supercell given the three-dimensional expansion. Therefore, in our calculations we diagonalise
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the Hamiltonian only at kx = ky = kz = 0 for both QD and QWR based heterostructures.

One way to address this concern would be to use a different coordinate system (x′, y′, z), such

that x′ = 1√
2
(x+ y) and y′ = 1√

2
(−x+ y). This would allow us to consider a two-dimensional

supercell instead and to then only use two-dimensional reciprocal vectors. However, in this

case we would need to rederive most of the method, including the expanded Hamiltonian and

the Fourier transform of the strain tensor. Thus we use our existing plane wave framework,

which will be consistent with all nanostructure shapes, including QWRs.

By looking at Eq. (3.33) we can already presume that the three-dimensional expansion will

be more demanding computationally compared to the QW case due to the triple sum over

mx, my and mz. In order to illustrate the evaluation of the integrals, in this section we will

examine a supercell that contains a rectangular cuboid QD of size dx × dy × dz, with its body

centre located at the origin of the coordinate system and the coordinate axes perpendicular to

its faces at the centre. As we have seen from Section 3.1, the shape of the nanostructure is

incorporated using only the Fourier transform of its characteristic function. Fourier transforms

of the characteristic functions used in this thesis will be given in Appendix D, where we also

provide references for additional QD shapes. The characteristic function of the QD is expressed

here then as

χQD(r) =

{
1 , r ∈ ΩQD

0 , otherwise
(3.34)

where ΩQD is the volume of the QD, and its Fourier transform is given by

χ̃QD(G) =
1

Ωsc

∫
ΩQD

e−iG·rdV , (3.35)

with G = (Gx, Gy, Gz).

Following the procedure from Section 3.1.2, we introduce Eq. (3.34) and the expanded eigen-

state (3.33) into Eq. (2.1), multiply both sides by 1√
Ωsc
e−iGm′ ·r, integrate over the volume of

the supercell and obtain the three dimensional plane wave expansion of the Hamiltonian matrix

element:

(Hb′b)m′m =
1

Ωsc

∫
Ωsc

e−iGm′ ·rĤb′b(r)eiGm·rdV . (3.36)

Terms of Hb′b ∝ A(r). Just like in the last section, the easiest point to start from is the

expansion of the Hamiltonian matrix elements that are independent of the wave vector ki. We

define a position dependent parameter A(r) using Eq. (3.34)
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A(r) = Ab + χQD(r)(AQD −Ab) (3.37)

where the index QD in AQD indicates that this parameter corresponds to the QD structure.

The plane wave representation of the Hamiltonian matrix term becomes

(Hb′b)m′m ∝
1

Ωsc

∫
Ωsc

e−iGm′ ·rA(r)eiGm·rdV . (3.38)

By inserting Eq. (3.37) into (3.38) the integral becomes

Abδxx′δyy′δzz′ + (AQD −Ab)
1

Ωsc

∫
ΩQD

e−i(Gm′−Gm)·rdV

= Abδmm′ + (AQD −Ab)χ̃QD(Gm′ −Gm)

(3.39)

where the indices i and i′ (i = x, y, z) in δii′ correspond to the ith component of the wave vectors

Gm and Gm′ respectively. To further simplify the form of the expanded terms we also made

the substitution δxx′δyy′δzz′ → δmm′ , i.e. the Kronecker delta equals to 1 when Gm = Gm′ and

0 otherwise. We then find the Fourier transform of the characteristic function of the cuboid

QD:

χ̃QD(G) =
ΩQD

Ωsc
sinc

(
Gxdx

2

)
sinc

(
Gydy

2

)
sinc

(
Gzdz

2

)
. (3.40)

Terms of Hb′b ∝ A(r)kj. Unlike the previous section where we focused on the one-dimensional

electron confinement along the growth direction z, the electronic structure calculations in a

three-dimensional potential requires the substitution of all wave vectors kj with their respective

partial derivative kj → −i ∂∂j . By making this substitution into the corresponding Hamiltonian

term, we apply here, by analogy with the previous section, matrix element symmetrisation and

obtain the following expansion:

iGmj
2Ωsc

∫
Ωsc

A(r)e−i(Gm′−Gm)·rdV +
1

2Ωsc

∫
Ωsc

e−iGm′ ·r ∂

∂j

[
A(r)eiGm·r]dV

=
i(Gmj +Gm′j)

2
Abδmm′ +

i(Gmj +Gm′j)

2
(AQD −Ab) χ̃QD(Gm′ −Gm) .

(3.41)

To evaluate the second integral here we used the fact that A(−Lj/2) = A(Lj/2) = Ab.
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Terms of Hb′b ∝ A(r)kjkj′ and Hb′b ∝ A(r)k2
j . Here we start by deriving the plane wave

expansion of k·p Hamiltonian matrix elements that depend upon the product of different wave

vectors kjkj′ . We expand the Hamiltonian matrix element by applying the symmetrisation in

the following form:

− 1

2Ωsc

∫
Ωsc

e−iGm′ ·r ∂

∂j

[
A(r)

∂

∂j′
eiGm·r

]
dV − 1

2Ωsc

∫
Ωsc

e−iGm′ ·r ∂

∂j′

[
A(r)

∂

∂j
eiGm·r

]
dV

= −
iGmj′

2Ωsc

∫
Ωsc

e−iGm′ ·r ∂

∂j

[
A(r)eiGm·r]dV − iGmj

2Ωsc

∫
Ωsc

e−iGm′ ·r ∂

∂j′
[
A(r)eiGm·r]dV .

(3.42)

We then use the integration by parts as we have done for Eq. (3.14) to obtain the expanded

Hamiltonian matrix element:

Gmj′Gm′j +GmjGm′j′

2
Abδmm′ +

Gmj′Gm′j +GmjGm′j′

2
(AQD −Ab) χ̃(Gm′ −Gm) (3.43)

We notice that when j = j′, i.e. the Hamiltonian term has the form Ĥ ∝ A(r)k2
j is a special

case of Eq. (3.43) and the expanded Hamiltonian term looks very similar to Eq. (3.14)

(GmjGm′j)Abδmm′ + (GmjGm′j) (AQD −Ab) χ̃QD(Gm′ −Gm) . (3.44)

3.2.2 Fourier transform of the strain tensor

In this section we derive the Fourier transform of the strain tensor elements in a QD-based het-

erostructure with its components having zincblende crystal structure. Originally this method

was used to evaluate the Fourier transform of Green’s tensor by Lifshits and Rosenzweig [120],

and later extended to the strain tensor by Andreev et al. [80]. We follow here the approach

used in Ref. [80] to derive the Fourier transform of the strain tensor.

The Green’s tensor Gln at a point r denotes the displacement along the l direction due to a

point force along the n direction at r, and, given an infinte anisotropic elastic medium, is the

solution of the equation [120]

Ciklm
∂2Gln(r)

∂xk∂xm
= −δ(r)δin , (3.45)
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where Ciklm is the elastic tensor, δ(r) and δin are the Dirac and Kronecker deltas respectively,

and the boundary conditions are |r| → ∞ =⇒ Gln(r) → 0. Here we introduce the inverse

Fourier transform of the Green’s tensor

Gln(r) =

∫ +∞

−∞
G̃ln(ξ)eiξ·rdξ , (3.46)

and integral form of the Dirac delta

δ(r) =
1

(2π)3

∫ +∞

−∞
eiξ·rdξ , (3.47)

where both integrals are performed over all space. We note here that throughout the derivation

process G will denote the Green’s tensor instead of the reciprocal vector from Section 3.2.1,

though we will make use of the reciprocal vector G at a later point in this section. By substi-

tuting Eqs. (3.46) and (3.47) into (3.45) we obtain

CiklmG̃ln(ξ)ξkξm =
δin

(2π)3
. (3.48)

Here and throughout the entire chapter we use Einstein’s notation for summation over 1–3 for

the repeated indices, unless the summation is indicated explicitly. In order to find the strain

in a QD structure, the method of inclusion proposed by Eshelby [121] is used here:

u
(s)
i (r) = uTi χ(r) +

∫
Gin(r− r’)σTnk dS′k , (3.49)

where σTnk = Cnkprε
T
pr, and σTnk, ε

T
pr and uTi are the components of the stress and strain tensors

and the displacement caused by the “initial” strain due to the lattice mismatch. The superscript

(s) indicates that this expression means that there is only one QD in the anisotropic medium.

Using Gauss’ theorem, Eq. (3.49) can be written as:

u
(s)
i (r) = uTi χ(r) +

∫
QD

∂

∂xk
Gin(r− r’)Cnkpr ε

T
prdV

′ . (3.50)

In order to find the final expression for the Fourier transform of the strain tensor we consider

the elastic tensor Cnkpr to be constant throughout the entire medium and corresponding to the

barrier material 2, thereby applying the divergence only to the Green’s tensor. A method to

2We consider different elastic tensors in the barrier and QW for the electronic structure calculations under
strain in Chapters 4 and 6, where we expand the step-like distribution of strain in the supercell using the QW
characteristic function (cf. Section 3.1.2).
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calculate the Fourier transform of the strain tensor which takes into account different elastic

tensors in the barrier and QD is presented in Ref. [122]. However the approximation in this

section strongly reduces the computational expenses of strain calculations, and we expect that

it will have an insignificant impact on the results of our calculations given the small difference

between the actual strain tensors of the barrier and QD. Here we recall the definition of the

elements of the strain tensor εij

εij(r) =
1

2

[
∂ui(r)

∂xj
+
∂uj(r)

∂xi

]
. (3.51)

By substituting Eq. (3.50) and a similar expression for u
(s)
j into (3.51), we obtain

ε
(s)
ij (r) = εTijχ(r) +

1

2
Cnkprε

T
pr

∫
QD

[
∂2Gin(r− r’)

∂xj∂xk
+
∂2Gjn(r− r’)

∂xi∂xk

]
dV ′ . (3.52)

For the first term in Eq. (3.52) we made use of the fact that the “initial” displacement (or

lattice mismatch) is present only in the QD according to the definition of χ from Eq. (3.34).

To evaluate the integral in the second term we apply the following substitution:

∂2Gin(r− r’)

∂xk∂xj
= Gin,kj(r− r’) ,

∂2Gjn(r− r’)

∂xk∂xi
= Gjn,ki(r− r’) ,

(3.53)

and rewrite the integral to find

∫ +∞

−∞
χ(r’) [Gin,jk(r− r’) +Gjn,ik(r− r’)] dV ′ = χ(r) ∗ [Gin,jk(r) +Gjn,ik(r)] . (3.54)

where the asterisk sign denotes the convolution. By substituting Eq. (3.54) into (3.52), using

the definition of the Fourier transform (3.46) for ε(r) and G(r), expressing χ(r) using (3.47)

for normalisation and taking into account the convolution theorem, we obtain

ε̃
(s)
ij (ξ) = εTijχ̃(ξ)− (2π)3

2
χ̃(ξ)Cnkprε

T
prξk

[
ξjG̃in(ξ) + ξiG̃jn(ξ)

]
. (3.55)

Eq. (3.55) gives the general expression for the Fourier transform of the strain tensor in a

structure containing a single QD of arbitrary shape, which is described by the Fourier transform

of the characteristic function χ̃. We now treat the specific case of zincblende semiconductors

which have a cubic crystal symmetry. Here the elastic tensor has three independent components

and can be represented in the form
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Ciklm = C12δikδlm + C44 (δilδmk + δimδlk) + Can

3∑
p=1

δipδkpδlpδmp . (3.56)

where C11, C12 and C44 are the elastic constants, and Can = C11 − C12 − 2C44 describes the

anisotropic part of the tensor. In the isotropic case, i.e. Can = 0, C12 and C44 represent the

Lamé parameters λ and µ respectively [123]. By substituting Eq. (3.56) into (3.48) we derive

3∑
l=1

[
(C12 + C44)ξiξl + C44δil|ξ|2 + Canδilξ

2
i

]
G̃ln(ξ) =

δin
(2π)3

. (3.57)

The derivation of Eq. (3.57) involves algebraic operations with many Kronecker delta functions,

which we will skip. We introduce here the dot product
[
ξ · G̃(ξ)

]
n

=
∑3

l=1 ξlG̃ln(ξ) and take

into account the δil in the sum, which yields

(C12 + C44) ξi

[
ξ · G̃(ξ)

]
n

+
(
C44|ξ|2 + Canξ

2
i

)
G̃in(ξ) =

δin
(2π)3

. (3.58)

We rewrite this equation for G̃in(ξ) to obtain

G̃in(ξ) =
δin/(2π)3 − (C12 + C44)ξi

[
ξ · G̃(ξ)

]
n

C44|ξ|2 + Canξ2
i

. (3.59)

We multiply both sides of Eq. (3.59) by ξi, perform the sum over i and solve for
[
ξ · G̃(ξ)

]
n
:

[
ξ · G̃(ξ)

]
n

=
1

(2π)3

ξn
C44|ξ|2 + Canξ2

n

[
1 + (C12 + C44)

3∑
i=1

ξ2
i

C44|ξ|2 + Canξ2
i

]−1

. (3.60)

We then substitute Eq. (3.60) into (3.59) to obtain the final form of the Fourier transform of

the Green’s tensor

G̃in(ξ) =
δin

(2π)3

1

C44|ξ|2 + Canξ2
n

− (C12 + C44)ξiξn
(C44|ξ|2 + Canξ2

i )(C44|ξ|2 + Canξ2
n)

×

[
1 + (C12 + C44)

3∑
i=1

ξ2
i

C44|ξ|2 + Canξ2
i

]−1

.

(3.61)

The “initial” strain in a crystal with cubic symmetry is given by:
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εTpr =
ab − aQD

aQD

δpr = ε0δpr , (3.62)

where ab and aQD are the unstrained lattice constants of the barrier and QD materials respec-

tively. Combining this with the elastic tensor gives the following expression:

Cnkprε
T
pr = ε0(C11 + 2C12)δnk . (3.63)

By including Eqs. (3.62) and (3.63) into Eq. (3.55) we obtain

ε̃
(s)
ij (ξ) = ε0χ̃(ξ)

{
δij −

(2π)3

2
(C11 + 2C12)

[
ξi

[
ξ · G̃(ξ)

]
j

+ ξj

[
ξ · G̃(ξ)

]
i

]}
. (3.64)

We substitute here Eq. (3.60) and obtain the final form the Fourier transform of the strain

tensor for a single QD:

ε̃
(s)
ij (ξ) = ε0χ̃(ξ)

{
δij −

1

2
(C11 + 2C12)

[
ξiξj

C44|ξ|2 + Canξ2
i

+
ξiξj

C44|ξ|2 + Canξ2
j

]

×

1 + (C12 + C44)
3∑
p=1

ξ2
p

C44|ξ|2 + Canξ2
p

−1 .

(3.65)

Due to the linearity of the elastic problem, the strain field in an infinite medium that contains

multiple QDs is simply expressed as the superposition of the strain field due to the individual

QDs, i.e.

ε
(m)
ij (r) =

∑
∞
ε
(s)
ij (r) (3.66)

In this work we consider infinitely periodic supercells with volume Ωsc that contain one (or

multiple, if necessary) QDs. Here we multiply both sides of Eq. (3.66) by e−iG·r

Ωsc
, where G is

the reciprocal vector from Section 3.2.1, and we integrate over the supercell space

ε̃
(m)
ij (G) =

∑
∞

1

Ωsc

∫
Ωsc

ε
(s)
ij (r)e−iG·rdV =

∑
∞

1

(2π)3

∫
ξ
ε̃
(s)
ij (ξ)

1

Ωsc

∫
Ωsc

e−i(G−ξ)·rdV dξ

=
1

(2π)3

∫
ξ
ε̃
(s)
ij (G)dξ = ε̃

(s)
ij (G) ,

(3.67)
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where ε̃
(s)
ij (G) has the form of Eq. (3.65), in which χ̃ is now Eq. (3.35). For the left-hand side

we also used the definition of the Fourier transform from Eq. (3.35).

From Eq. (3.65) we see that an apparent singularity occurs with |G| = 0. In this case we

assume for growth on a substrate with lattice constant ab that the diagonal terms of the strain

tensor are:

ε̃xx(|G| = 0) = ε̃yy(|G| = 0) =
ab − aQD

aQD

χ̃(|G| = 0)

ε̃zz(|G| = 0) = −2C12

C11
ε̃xx(|G| = 0) ,

(3.68)

and we set the off-diagonal terms to be zero. This expansion then allows us to treat pseudo-

morphic growth and to use the Fourier series to estimate the position dependent strain tensor,

which we will discuss in the next section.

3.2.3 Pikus-Bir Hamiltonian

In this section we will be deriving the plane wave expansion of the Pikus-Bir Hamiltonian terms.

As we mentioned in Section 2.3, the pseudomorphic strain in a supercell with a QW is assumed

constant within a particular layer, therefore it can be expressed using the characteristic function

χ(z) as

εαα(z) = εbαα + χ(z)
(
εwαα − εbαα

)
. (3.69)

where α = x, y, z, and the superscripts b and w correspond to the barrier and QW layer

respectively. When a supercell with a QD is considered the strain follows a certain profile

across the supercell. Hence, we define the elements of the strain tensor εαβ here using the

Fourier series

εαβ(r) =

+Mx∑
nx=−Mx

+My∑
ny=−My

+Mz∑
nz=−Mz

ε̃αβ(Gn)eiGn·r =
∑
n

ε̃αβ(Gn)eiGn·r (3.70)

where ε̃αβ(Gn) is the Fourier transform of the strain, as derived in Section 3.2.2. The Fourier

series here was written using a single sum over all possible reciprocal vectors in order to simplify

the equations. By looking at the Pikus-Bir Hamiltonian from Section 2.3 we notice that it

contains only two types of matrix elements, Hb′b ∝ A(r)εαβ(r) and Hb′b ∝ A(r)εαβ(r)kj .



Plane wave expansion method for electronic structure and optical properties calculations 60

Terms of Hb′b ∝ A(r)εαβ(r) We start with the matrix elements that are independent of kj .

(Hb′b)m′m ∝
1

Ωsc

∫
Ωsc

e−iGm′ ·rA(r)εαβ(r)eiGm·rdV

= Ab
1

Ωsc

∫
Ωsc

εαβ(r)e−i(Gm′−Gm)·rdV + (AQD −Ab)
1

Ωsc

∫
ΩQD

εαβ(r)e−i(Gm′−Gm)·rdV .
(3.71)

We simplify the evaluation of these integrals by making the substitution Gm′−Gm → Gµ, where

µj ∈ [−2Mj ,+2Mj ]. By inserting Eq. (3.70) with the reciprocal vectors limits nj ∈ [−Mj ,+Mj ]

into the first integral we obtain

Ab
1

Ωsc

∑
n

ε̃αβ(Gn)

∫
Ωsc

e−i(Gµ−Gn)·rdV

= Ab
∑
n

ε̃αβ(Gn)δ(Gµx, Gnx)δ(Gµy, Gny)δ(Gµz, Gnz)
(3.72)

Here δ represents the Kronecker delta, and taking into account that the domain of Gµ is larger

than Gn, the result of the integration becomes

{
Abε̃αβ(Gµ) , |Gµj | ≤ 2njπ

Lj

0 , otherwise
(3.73)

We make the same substitutions into the second integral from Eq. (3.71) which becomes

(AQD −Ab)
1

Ωsc

∑
n

ε̃αβ(Gn)

∫
ΩQD

e−i(Gµ−Gn)·rdV

= (AQD −Ab)
∑
n

ε̃αβ(Gn)χ̃QD(Gµ −Gn) .
(3.74)

The final result can be written in the following way:

Abε̃αβ(Gm′ −Gm) + (AQD −Ab)
∑
n

ε̃αβ(Gn)χ̃QD(Gm′ −Gm −Gn) , (3.75)

where we keep in mind that the first term becomes 0 if |Gm′j −Gmj | >
2njπ
Lj

. We can see that

the plane wave expansion of the Pikus-Bir Hamiltonian matrix elements results in a sum over

(2Mx + 1)× (2My + 1)× (2Mz + 1) reciprocal vectors. Compared to the expansion of the k·p
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Hamiltonian, the time it takes to computationally evaluate each term in the (2Mx+1)×(2My+

1)× (2Mz +1) order matrix increases considerably. Because the Fourier transform of the strain

tensor matrix element decays rapidly at larger nj , we decided to reduce the computational

expenses by using the Fourier series with nj ∈ [−Mj ,+Mj ].

Terms of Hb′b ∝ A(r)εαβ(r)kj In order to expand the Pikus-Bir Hamiltonian matrix elements

that take the form Hb′b ∝ A(r)εαβ(r)kj we use the symmetrisation technique when making the

substitution kj → −i ∂∂j , leading to the the evaluation of the following two integrals

(Hb′b)m′m ∝
iGmj

2

1

Ωsc

∫
Ωsc

εαβ(r)A(r)ei(Gm′−Gm)·rdV

+
1

2

1

Ωsc

∫
Ωsc

e−iGm′ ·r ∂

∂j

[
εαβ(r)A(r)eiGm·r]dV .

(3.76)

The first term of this expansion can be found similarly to the terms discussed earlier. For

the second term we perform the integration by parts and, taking into account the fact that

εαβ(Lj/2)A(Lj/2) = εαβ(−Lj/2)A(−Lj/2), the final result becomes

i
(
Gmj +Gm′j

)
2

[
Abε̃αβ(Gm′ −Gm) + (AQD −Ab)

∑
n

ε̃αβ(Gn)χ̃QD(Gm′ −Gm −Gn)

]
(3.77)

where the first term in the square bracket becomes 0 if |Gm′j −Gmj | >
2njπ
Lj

.

3.3 Carrier-induced self-consistent electrostatic potential

Throughout this thesis we assume the thermal distribution of electrons and holes within their

corresponding states in a QW that can be described using the Fermi-Dirac distribution, accord-

ing to which the occupation probability of a particular state Ee,h at a particular wave vector

k‖ is expressed as:

fe,h
[
Ene,h(k‖), Fe,h

]
=

1

1 + exp
(−1)p[Ene,h (k‖)−Fe,h]

kBT

, (3.78)

where the indices e and h correspond to the electrons and holes respectively, Fe,h is the quasi-

Fermi level and p = 0 (1) for electrons (holes). Assuming that the band dispersion is isotropic in
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the QW plane (depending only on the magnitude of k‖, i.e. k‖ = |k‖|), the position-dependent

electron and hole carrier density is then given by

n(z) =
1

2πL

∑
ne

∫
k‖

∣∣ψne(z, k‖)∣∣2 f [Ene(k‖), Fe] k‖dk‖ (3.79)

p(z) =
1

2πL

∑
nh

∫
k‖

∣∣ψnh(z, k‖)
∣∣2 f [Enh(k‖), Fh

]
k‖dk‖ , (3.80)

which determine the position dependent charge density ρ(z) = e [p(z)− n(z)], with the choice

of quasi-Fermi energies then determining the areal carrier density

∫ L/2

−L/2
n(z)dz = n2D∫ L/2

−L/2
p(z)dz = p2D

(3.81)

In our calculations we assume charge neutrality, i.e. n2D = p2D. In a typical type-I heterostruc-

ture, where both conduction and valence band offsets are large enough to not allow significant

spillover of the bound eigenstates into the barrier layer, the magnitude of the position-dependent

charge density ρ(z) is close to 0 for all z. However, in type-I heterostructures with a very small

magnitude of, e.g., conduction band offset, or type-II structures where the electrons and holes

are confined in different layers, the resulting non-zero charge density generates an electrostatic

potential across the supercell φ(z). This electrostatic potential can be understood as arising

from the Coulomb attraction between opposite charges due to their spatial separation, and is

described using Poisson’s second order linear differential equation

d

dz

[
εr(z)

d

dz
φ(z)

]
=
ρ(z)

ε0
, (3.82)

where ρ(z) is the charge density, and εr(z) and ε0 are the relative permittivity and vacuum

permittivity respectively. This electrostatic potential φ(z) then enters the Schrödinger equa-

tion (2.6) as a position-dependent potential energy term V (z) = −eφ(z), which needs to be

calculated self-consistently. The structures we investigate in this thesis have type-I Γ − Γ

confinement, i.e. the bound Γ electrons and holes are confined in the same layer, e.g. QW.

However, as we will show in Chapter 6, when considering AlGaInP red-emitting heterostruc-

tures (i) the bulk conduction band edges in the Γ and X valleys of the barrier layer (EΓ
cb

and

EX
cb

respectively) in our calculations are either close to degenerate or can even have EX
cb
< EΓ

cb
,

and (ii) the X conduction band offset is often negative, i.e. ∆EX
c = EX

cb
− EX

cqw < 0. The

X band edge in the QW therefore acts as a potential barrier for the electrons in the barrier
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layer, and we assume in our calculations that a fraction of injected electrons will populate the

resulting bound states with X character according to Eq. (3.78). Thus our goal here is to use

the plane-wave method to solve the Poisson’s equation (3.82) for the electrostatic potential

V (z). We will start the derivation of the solution for a QW-based heterostructure, and later

present the solution for the QD case. Here for a simplified derivation we assume εr(z) = εb

throughout the entire supercell. We start by considering the Fourier series expansion of V

V (z) =
∑
m

Ṽ (Gm)eiGmz (3.83)

with m ∈ [−M,+M ]. By inserting Eq. (3.83) into Eq. (3.82), applying the Laplacian, multi-

plying both sides by e−iGpz

L and integrating over the supercell we obtain

G2
pṼ (Gp) =

e

ε0εb

1

L

∫
L
ρ(z)e−iGpzdz . (3.84)

with the domain of p being the same as for m. By inserting Eq. (3.17) into Eqs. (3.79) and

(3.80), and keeping in mind the orthonormality of the zone centre basis functions 〈ua|ub〉 = δab

we obtain

n(z) =
1

2πL

∑
ne

8∑
b=1

∑
m

∑
m′

∫
k‖

ã∗neb(Gm′ , k‖)ãneb(Gm, k‖)e
−i(Gm′−Gm)zf

[
Ene(k‖), Fe

]
k‖dk‖

(3.85)

p(z) =
1

2πL

∑
nh

8∑
b=1

∑
m

∑
m′

∫
k‖

ã∗nhb(Gm′ , k‖)ãnhb(Gm, k‖)e
−i(Gm′−Gm)zf

[
Enh(k‖), Fh

]
k‖dk‖

(3.86)

with m′j ∈ [−M,+M ]. We note here that the first equation includes the sum over the calculated

Γ and X eigenstates, i.e. ne = 2(2M + 1) + 3(2M + 1). We then substitute these expansions

into Eq. (3.84), evaluate the integral over the supercell on the right-hand side and solve it for

Ṽ (Gp) [81]

Ṽ (Gp) =
e2

2πε0εbLG2
p

8∑
b=1

∑
m

∫
k‖

{∑
nh

f
[
Enh(k‖), Fh

]
ã∗nhb(Gp −Gm, k‖)ãnhb(Gm, k‖)

−
∑
ne

f
[
Ene(k‖), Fe

]
ã∗neb(Gp −Gm, k‖)ãneb(Gm, k‖)

}
k‖dk‖ .

(3.87)
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Here we took into account the Kronecker delta δ(Gm′ , Gp − Gm). There are a few things

to discuss here. Firstly, we notice that the summation includes Fourier coefficients ã that

depend upon reciprocal vectors G that are outside of the domain [−M,+M ]. The fact that the

diagonalisation of the Hamiltonian yields a set of 2M + 1 Fourier coefficients for a particular

eigenstate and particular band |ub〉 suggests that we should have to use then non-existent

terms. However, we keep in mind that the Fourier coefficients ã rapidly approach 0 at larger

reciprocal vectors for convergence. Thus, for the calculation of the Fourier coefficients Ṽ (Gp)

it is sufficient that the sum over m is performed only for the terms that depend upon Gp−Gm
with p−m ∈ [−M,+M ].

Secondly, for the expansion of the carrier-induced electrostatic potential Hamiltonian we need

to evaluate an integral similar to Eq. (3.20), where the expanded terms will depend upon

Gm′ −Gm, which may also be outside of the original domain [−M,+M ]. From Eq. (3.87) we

notice that the Fourier coefficients rapidly approach 0 at larger wave vectors G since they are

decaying at least as fast as 1/G2
p. Thus, the Fourier coefficients Ṽ (Gp) that are outside of the

domain [−M,+M ] in our calculations do not need to be considered in the expansion of this

Hamiltonian matrix element.

The last question arises regarding the singularity of Ṽ (Gp) at |Gp| = 0. In this case the

right-hand side of Eq. (3.84) becomes zero due to the charge neutrality, and we obtain

|Gp|2Ṽ (Gp)
∣∣∣
Gp=0

= 0 , (3.88)

therefore Ṽ (Gp = 0) ∈ R. In practice, a non-zero Ṽ (Gp = 0) will result in an equivalent shift of

all energy bands and, ultimately, does not make a difference for the transition energy between

any two states. Therefore in our calculations we set Ṽ (Gp = 0) = 0 for simplicity.

For QD and QWR based heterostructures the electronic structure calculations are limited to

the Γ and X valley minima, and the carrier density is given by

ne(r) =
1

Ωsc

∑
ne

|ψne(r)|2 f(Ene , Fe) (3.89)

nh(r) =
1

Ωsc

∑
nh

|ψnh(r)|2 f(Enh , Fh) (3.90)

which, when integrated over the volume of the supercell, yields the total number of injected

carriers:
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n =

∫
Ωsc

ne(r)dV (3.91)

and similarly for holes. We will not provide the detailed derivation of the solution of Pois-

son’s equation in this case, as we do not perform self-consistent calculations for QWR or QD

structures, but, by analogy to the QW-based heterostructures, one finds the solution in the

following form

Ṽ (Gp) =
e2

ε0εbΩsc|Gp|2
8∑
b=1

∑
m

[∑
nh

f(Enh , Fh)ã∗nhb(Gp −Gm)ãnhb(Gm)

−
∑
ne

f(Ene , Fe)ã
∗
neb(Gp −Gm)ãneb(Gm)

]
,

(3.92)

where the summation index m indicates that it is performed over (2Mx + 1) × (2My + 1) ×
(2Mz + 1) reciprocal vectors.

3.4 Momentum matrix elements

Our goal here is to analytically calculate the momentum matrix element between an initial

conduction state ψ
(i)
ne and a final valence state ψ

(f)
nh in a QW-based heterostructure, which is

given by:

Pe,h(k‖) =
〈
ψ(i)
ne (k‖) |p̂ · ê |ψ(f)

nh
(k‖)

〉
(3.93)

where ê is the polarisation vector, and the product p̂ · ê, according to Szmulowicz’s formalism

[82], can be defined as:

p̂ · ê =
m0

~

(
∂Ĥ

∂k‖
ê‖ +

∂Ĥ

∂kz
êz

)
kz→−i d

dz

· ê . (3.94)

Substituting Eqs. (3.94) and (3.17) into (3.93) we obtain



Plane wave expansion method for electronic structure and optical properties calculations 66

P
(j)
e,h (k‖) =

m0

~
1

L

∑
b,b′

∑
m,m′

ã∗neb′(Gm′ , k‖)ãnhb(Gm, k‖)

∫ L/2

−L/2
e−iGm′z

〈
ub′

∣∣∣∣∣∂Ĥ∂kj · êj
∣∣∣∣∣ub
〉
eiGmzdz

=
m0

~
1

L

∑
b,b′

∑
m,m′

ã∗neb′(Gm′ , k‖)ãnhb(Gm, k‖)

∫ L/2

−L/2
e−iGm′z

(
∂Ĥb′b

∂kj
· êj

)
eiGmzdz

=
m0

~
∑
b,b′

∑
m,m′

ã∗neb′(Gm′ , k‖)ãnhb(Gm, k‖)

(
∂Ĥb′b

∂kj
· êj

)
m′m

,

(3.95)

where the superscript j in P
(j)
e,h denotes the polarisation direction of the external electric field,

m,m′ ∈ [−M,+M ] and b, b′ ∈ [1, 8], and
(
∂Ĥb′b
∂kj
· êj
)
m′m

is defined similar to Eq. (3.19).

The in-plane polarisation vector ê‖ denotes the transverse electric (TE) polarisation. In our

calculations, the dispersion of the energy states are calculated along k‖ = kx cos θ + ky sin θ

with θ = π
4 . Therefore, to average over all in-plane directions, the TE polarisation vector is

taken to lie along the kx direction, whereas the transverse magnetic polarisation êz is simply

êz = ẑ.

For a QWR or QD-based heterostructure, the momentum matrix element is calculated at the

centre of the superlattice Brillouin zone

Pe,h =
〈
ψ(i)
ne |p̂ · ê |ψ

(f)
nh

〉
, (3.96)

where, using the formalism of Szmulowicz

p̂ =
m0

~

(
∂Ĥ

∂kx
· x̂+

∂Ĥ

∂ky
· ŷ +

∂Ĥ

∂kz
· ẑ

)
kj→−i ∂

∂kj

(3.97)

In analogy to Eq. (3.95), the momentum matrix element for a QWR or QD based heterostruc-

tures is calculated in the following way:

P
(j)
e,h =

m0

~
∑
b,b′

∑
m,m′

ã∗neb′(Gm′)ãnhb(Gm)

(
∂Ĥb′b

∂kj
· êj

)
m′m

, (3.98)

where m,m′ ∈ (2Mx + 1)× (2My + 1)× (2Mz + 1). Two different TE polarisation vectors are

used here x̂ and ŷ because, depending on the shape of the nanostructure and its characteristic

function χ(r), the resulting momentum matrix elements may differ. The TM polarisation is,

similarly to the QW case, associated with the ẑ polarisation vector. The plane wave expansion
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of the partial derivative of the Hamiltonian matrix for either type of nanostructure follows the

same way we described in Sections 3.1 and 3.2 and is, in fact, simpler due to the reduction of

the Hamiltonian terms by one order.

3.5 Conclusions

In conclusion, we have derived in this chapter the semi-analytical plane wave expansion method

for the calculation of electronic and optical properties of QW-, QWR- and QD-based het-

erostructures. In Section 3.1 we started with the general idea of the method and applied it to

solve the 1-band effective mass Schrödinger equation, followed by the extension of the method

to the 8-band k·p Hamiltonian in order to calculate the electronic structure of QW-based

heterostructures.

We have discussed in Section 3.2 the implementation of the method for QD-based heterostruc-

tures and the main differences from a QW-based system. In particular, we presented the

extended definition of the characteristic function for a QD, which is, essentially, a mathemati-

cal representation of a QD shape. We did not discuss QWRs explicitly in this chapter; however

in our calculations we treat these structures as a particular QD shape. The Fourier transforms

of the characteristic function for some QWR shapes we consider in our calculations are given in

Appendix D. In Section 3.2.2 we derived the explicit form of the Fourier transform of the strain

tensor for zincblende semiconductors using the Green’s tensor method, followed by discussing

the expansion of the Pikus-Bir Hamiltonian within the plane wave framework.

Due to the spatial separation of the electron and hole charge densities, we derived in Section 3.3

the analytical solution to Poisson’s equation using the Fourier series expansion of the electron

and hole eigenstates.

Finally, we have presented in Section 3.4 the analytical calculation of the momentum matrix

elements using the plane wave method, that can be applied to either QW-, QWR- or QD-

based structures. We showed that the momentum matrix elements between two states can

be expressed using (i) the Fourier coefficients of the eigenstates and (ii) the bulk material

parameters that we also used to solve the Schrödinger equation.

This set of analytical techniques was implemented in a suite of codes that was used to explic-

itly calculate the electronic and optical properties of different heterostructures. We start using

the method to analyse the performance of 1.3-µm QW lasers grown on InGaAs metamorphic

buffer layers, and present our analysis in Chapter 4. We extend the application of the method

towards the calculation of the electronic and optical properties of QWR-based heterostructures
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in Chapter 5, and, based on the insights we obtain about their electronic properties, we inves-

tigate the performance of AlGaInP QW-based metamorphic light-emitting diodes (LEDs) for

610 nm emission in Chapter 6.



Chapter 4

AlInGaAs 1.3 µm metamorphic

quantum well lasers

In this chapter we investigate the predicted characteristics of (Al)InGaAs QW-based lasers

with 1.3 µm peak gain emission and grown on a relaxed InGaAs Metamorphic Buffer Layer

(MBL) lattice-mismatched to the GaAs substrate. The goal of this chapter is to provide a

set of parameters for an (Al)InGaAs-based laser grown on an InGaAs MBL with an optimised

performance. We start with Section 4.1 where we provide the parameters required for the

calculation of the laser properties at threshold.

We start our calculations in Section. 4.2 by evaluating the ranges of strain and band gaps

accessible for pseudomorphically strained (Al)InGaAs layers grown on InGaAs MBLs. We

focus here primarily on compressively strained ternary InGaAs QWs having unstrained InGaAs

barriers grown on relaxed In0.2Ga0.8As MBLs. We note here that throughout this chapter the

in-plane strain εxx > 0 and εxx < 0 correspond to compressive and tensile strain respectively as

the sign convention. Additionally, different elastic tensors for the barrier and QW are considered

for the strain calculations in this chapter. As we will show, while changing the strain in the

QW we can also adjust the QW thickness in order to maintain 1.3 µm emission. In order to

find out how the strain and QW thickness affect the performance of our devices independently,

we also performed an additional set of calculations where we consider quaternary AlInGaAs

QWs with either a constant strain or well width.

In Section 4.3 we investigate the effect of increased barrier band gap by using quaternary

AlInGaAs barrier layers lattice-matched to the InGaAs MBL. Because we consider an AlInGaAs

Separate Confinement Heterostructure (SCH) layer with the same composition throughout the

entire study, a choice of the barrier material will be critical for optimisation of both carrier

and optical confinement in the device. We then discuss the effects of varying the InGaAs MBL

composition on the device performance in Section 4.4.

69
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Figure 4.1: Composition space map showing the calculated variation of the in-plane strain
(εxx) and room temperature strained bulk and quantum well (QW) band gaps for InyGa1−yAs
grown pseudomorphically on an InxGa1−xAs metamorphic buffer layer (MBL). Dotted black
and solid red lines respectively denote paths in the composition space along which εxx and
the InyGa1−yAs strained bulk band gap are constant. The dotted red line lying above each
solid red line denotes the path in the composition space along which the bulk band gap of the
InyGa1−yAs/InxGa1−xAs QW material is constant, assuming a total confinement energy of 75
meV, so that the QW emission wavelength is the same as the bulk material denoted by the
solid red line. The closed blue circle and vertical arrow show that an InyGa1−yAs QW with an
emission wavelength of 1.3 µm can be grown with 2% compressive strain on an In0.2Ga0.8As
MBL.

We provide a short summary at the end of each section, where we derive from the context the

parameters required for an optimised metamorphic laser having 1.3 µm peak gain. Finally, we

summarise the chapter conclusions in Section 4.5.

4.1 Laser parameters and device modeling

Paths of constant strain for an InyGa1−yAs layer grown pseudomorphically on InxGa1−xAs are

shown in Fig. 4.1 using dotted black lines, while paths along which the strained bulk band

gap of the InyGa1−yAs material is constant at 1.3 and 1.55 µm are shown using solid red

lines. Dotted red lines show the corresponding compositions for the bulk band gaps of the

InyGa1−yAs material required to form QWs emitting at 1.3 and 1.55 µm, assuming a total
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Figure 4.2: Composition space maps showing the variation of the in-plane strain (εxx) and
strained bulk band gap for pseudomorphically strained AlxInyGa1−x−yAs alloys grown epitax-
ially on (a) a conventional InP substrate, and (b) an In0.2Ga0.8As metamorphic buffer layer
(MBL). Dashed black and solid red lines respectively denote paths in the composition space
along which εxx and the AlxInyGa1−x−yAs strained bulk room temperature band gap are
constant. As discussed in the text, the closed blue circle in (b) denotes the alloy Al compo-
sition (x = 62%) above which the AlxInyGa1−x−yAs alloys which are lattice matched to an
In0.2Ga0.8As MBL (satisfying y = 0.2− 0.02x) have an indirect band gap.

confinement energy of 75 meV1. At x = 0 we see that a compressive strain close to 4% is

required to produce 1.3 µm emission from an InGaAs QW on a GaAs substrate, which is too

large a strain value to allow high quality pseudomorphic growth. However, employing an MBL

with x = 20% we see that it is possible to grow InyGa1−yAs QWs under 2% compressive strain

which have a 1.3 µm band gap (as highlighted by the closed blue circle and arrow). We further

see that increasing the MBL In composition to approximately 34% should enable the growth

of strained InyGa1−yAs QWs having a 1.55 µm band gap under 2% compressive strain.

Figures 4.2(a) and 4.2(b) show the calculated variation of the in-plane strain (dashed black

lines) and band gap (solid red lines) as a function of the Al and In compositions x and y in the

AlxInyGa1−x−yAs composition space, calculated for strained AlInGaAs alloys grown on an InP

substrate and on an In0.2Ga0.8As MBL, respectively. The variation of the alloy composition

required to maintain a fixed bulk band gap is shown in each case for emission wavelengths of

1.3 and 1.55 µm, as well as 1 µm (a representative barrier material). Comparing Figs. 4.2(a)

and 4.2(b) we note several important differences in the material parameter trends.

Firstly, while there is significant scope for the growth of tensile strained (εxx < 0) QWs with

1.3 and 1.55 µm band gaps on the InP substrate, only compressively strained (εxx > 0) 1.3

µm InGaAs QWs can be grown on the In0.2Ga0.8As MBL. This is because a much reduced In

composition y is required to remain lattice matched to the In0.2Ga0.8As MBL (εxx = 0 for y =

1The total confinement energy denotes here the difference between the QW ground state transition energy
at k‖ = 0 and the bulk band gap of the QW material. The red dashed line in Fig. 4.1 is presented as a reminder
that a higher composition and strain would be required to achieve 1.3 or 1.55 µm emission in a QW compared to
the bulk case. The assumed 75 meV total confinement energy is close to that obtained in the optimised structure
discussed later in this chapter.
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Figure 4.3: Schematic representation of the distribution of the conduction band minimum
and valence band maximum (red and blue line respectively, left panel) and refractive index pro-
file (green line, right panel) of the active region of the laser heterostructure along the growth
direction. The Quantum Well (QW), barrier and Separate-Confinement Heterostructure (SCH)
are denoted by (i), (ii) and (iii) respectively. A larger conduction (valence) band offset between
the barrier and the QW brings about an improved confinement of the electron (hole) wave-
function, denoted by the dashed red (blue) line on the left panel. A larger difference between
the refractive index of the SCH and of the barrier brings about an improved confinement of
the optical mode in the active region, denoted by the dashed green line on the right panel.

20%) compared to the InP substrate (εxx = 0 for y = 53%). Examining Fig. 4.2(b) we see that

compressively strained InyGa1−yAs bulk-like epilayers with a 1.3 µm band gap can be grown

on an In0.2Ga0.8As MBL for y ≈ 40% (εxx ≈ 1.5%). As we will see when confinement effects

are taken into account in Section 4.2, compressively strained InyGa1−yAs QWs can be grown

on the In0.2Ga0.8As MBL with In compositions (compressive strains) y & 45% (εxx & 1.8%).

Secondly, we see that the growth of an unstrained quaternary barrier having a 1 µm band gap

requires significantly less Al in the case of the In0.2Ga0.8As MBL (x ≈ 15%) as compared to the

InP substrate (x ≈ 40%). The largest Al composition that can be achieved in an unstrained

cladding layer on an InP substrate is 48%, for which the room temperature energy gap is 1.41

eV. By comparison, we find that it is possible to grow direct gap AlxInyGa1−x−yAs alloys on an

In0.2Ga0.8As MBL up to x ≈ 62% and an energy gap of 1.95 eV. This crossover to an indirect

gap is denoted by the closed blue circle in Fig. 4.2(b). This then makes it possible to engineer

a greater band gap difference and refractive index contrast between the QW and the cladding

layers for the In0.2Ga0.8As MBL, which introduces the possibility to improve both the carrier

and optical confinement compared to the InP case. A schematic diagram of the band gap and

refractive index distribution in the active region is depicted in Fig. 4.3.

Finally, we note that tensile strained quaternary barriers can be grown with strains of up to

approximately 1% on an In0.2Ga0.8As MBL. It is therefore possible to grow compensated strain

or zero net strain AlInGaAs metamorphic laser structures having compressively strained QWs
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and tensile strained barriers, which increases the number of QW-barrier repeats that can be

grown before plastic relaxation becomes problematic.

The material parameters we use for our calculations are provided in Appendix A. In order to

calculate the band offsets at the barrier-QW interface, we find the absolute energy position of

the CB minima and VB maxima which are calculated using model solid theory [124, 125] for

an unstrained semiconductor layer as:

Ev = Eavgv +
1

3
∆SO (4.1)

Ec = Ev + Eg . (4.2)

The band edge energies in a strained epilayer are then calculated using the k·p (2.32) and strain

Hamiltonian (2.56) from Chapter 2. The calculation of the average valence band energy Eavgv

is outside of the scope of this thesis and we rely on existing values which are calculated using

Density Functional Theory (DFT) methods [124–130]. The calculated QW band structure and

eigenstates, using the method we derived in Section 3.1.2, are used directly to calculate the laser

optical properties. The interband momentum matrix elements, calculated using the method

in Section 3.4 are then used to calculate the gain and spontaneous emission spectra. For the

calculations of spontaneous emission and material gain spectra (cf. Section 2.4) we assume

a homogeneous linewidth broadening described using a hyperbolic secant lineshape having an

interband relaxation time of τin = 100 fs [32, 131].

The threshold current density Jth is assumed to include two components, one due to radiative

recombination (Jrad) and the second due to non-radiative Auger recombination (JAuger) [24, 83,

132]

Jth = Jrad + JAuger . (4.3)

Jrad is calculated directly for each laser structure by integrating over the calculated spontaneous

emission spectrum at threshold as a function of temperature [133]. We do not calculate the

Auger recombination rate directly, but instead follow the commonly used Boltzmann approxi-

mation where the Auger current density is assumed to vary with threshold carrier density nth

as JAuger = eCn3
th [24, 83, 132]. The Auger recombination coefficient C is taken to vary with

temperature T as [134]

C(T ) = C300 exp

(
−Ea
kB

(
1

T
− 1

300

))
, (4.4)
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where C300 is the Auger recombination coefficient at T = 300 K and Ea is the Auger activation

energy. We take C300 = 8.67 × 10−17 cm4 s−1 and Ea = 30 meV in all of the calculations

presented below. The chosen C300 and Ea lie well within the range of values quoted in the

literature, and were chosen so as to match our best performing laser structures to the results of

Ref. [28]. Equations (4.3) and (4.4) can then be used to provide an estimate of the Auger current

density and its temperature dependence in each device. This approach should reproduce well

trends in the Auger contribution to the total current density, which is expected in all cases to

increase superlinearly with increasing nth and Jrad.

For the calculation of the threshold gain we assume internal cavity losses of 6 cm−1, choose an

unstrained AlInGaAs SCH with an Al composition of 40%, and take an overall cavity length

of 750 µm for all of the devices considered [83]. The confinement factor Γ of the fundamental

(TE-polarised) optical mode was calculated for each laser structure using an effective index

approach [117]. By varying the thickness of the barrier layers it was found for all structures

considered that Γ is maximised for 160 – 180 nm thick (Al)InGaAs barriers. As such, all

calculations presented below were performed for laser structures having 180 nm wide barriers.

Having outlined our theoretical model we now turn to present the results of the theoretical

calculations, which we use to elucidate general trends in the gain and threshold characteristics

of 1.3 µm metamorphic QWs, as well as to identify optimised laser structures.

4.2 Variable strain and well width

The solid blue and dashed red lines in Fig. 4.4 show the calculated variation of the QW width

with strain required to maintain peak gain at 1.3 µm for a ternary InGaAs QW, with unstrained

In0.2Ga0.8As and Al0.12In0.2Ga0.68As barriers respectively. We first discuss in this section the

results for In0.2Ga0.8As barriers, before turning to consider the effects of varying the barrier

composition in Section 4.3. We calculate that 1.3 µm InxGa1−xAs QWs can be grown with

compressive strains between 1.8 and 2.6%, corresponding to In compositions between 46 and

58%, and with QW widths varying from dQW = 9.8 nm for εxx = 1.8%, to narrow QWs having

dQW = 3.8 nm for εxx = 2.6%.

Since the In composition can be varied over a relatively large range in these QW structures

while maintaining a 1.3 µm band gap, there is significant scope to engineer the density of states

(DOS) at the VB edge so that nth is minimised. The effect on the VB structure of varying

the strain in this series of QWs is shown in Fig. 4.5, where we compare the band structure

(left panel) and DOS (right panel) in the vicinity of the VB edge for the structures having the

lowest strain (widest QW) and highest strain (narrowest QW). We firstly note that all of the

zone-centre bound states calculated in this series of QWs are heavy-hole- (HH) like along the
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Figure 4.4: Calculated variation of the quantum well (QW) width required to maintain 1.3
µm peak gain at T = 300 K as a function of in-plane strain and QW In composition, for
a series of compressively strained InxGa1−xAs QWs grown on an In0.2Ga0.8As metamorphic
buffer layer. The QWs have either ternary In0.2Ga0.8As (blue solid lines, closed squares) or
quaternary Al0.12In0.20Ga0.68As (red dashed lines, open squares) unstrained barriers.

growth direction. We calculate that the QW having 1.8% compressive strain has a relatively

large DOS for energies & 20 meV from the VB edge, due to the relatively small separation in

energy between the two highest energy hole subbands in this 9.8 nm wide well. As the strain

in the QW is increased to 2.6% we see a dramatic reduction in the DOS at energies further

away from the VB edge, due to the reduction in QW width, dQW, to 3.8 nm in this case.

Confinement effects in this narrowest QW lead to a large splitting of approximately 80 meV

between the two highest energy hole subbands.

To elucidate the effects of these differences in the VB structure on the laser performance we

have calculated the variation of nth and Jth for the series of QW structures represented by the

blue line in Fig. 4.4. The results of the calculations for nth are shown in Fig. 4.6, where the

solid (dashed) blue lines correspond respectively to the calculated variation of nth at T = 300

K (360 K). The green, red and black lines in Figs. 4.6 depict the corresponding results for QWs

having quaternary (AlInGaAs) barriers – we reserve discussion of these results for Section 4.3.

Examining first the solid blue line in Fig. 4.6, we see that the carrier density required to reach
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Figure 4.5: Calculated valence band structure (left panel) and density of states (DOS; right
panel) for 1.3 µm InGaAs quantum wells (QWs) having 1.8 and 2.6% compressive strain (solid
and dashed lines, respectively) on an In0.2Ga0.8As metamorphic buffer layer. Both QWs have
unstrained In0.2Ga0.8As barriers. The zero of energy is taken in each case at the energy of
the highest bound hole state, in order to facilitate a comparison of the DOS in the vicinity of
the band edge. All of the bound hole states in each case are heavy-hole- (HH) like along the
growth direction at the QW Brillouin zone centre.

threshold reduces rapidly with increasing strain up to εxx ≈ 2.2%, consistent with the reduction

of the DOS in the vicinity of the VB edge discussed above. Calculations were undertaken in

Ref. [131] to estimate the gain characteristics of an ideal 1.3 µm InGaAs/GaAs QW structure,

with εxx = 3.8% and dQW = 7 nm, for which a value of nth = 1.65×1012 cm−2 was obtained at

300 K. Although the QW width and strain in this GaAs-based structure are beyond what can

be achieved in strained QW growth, this hypothetical GaAs-based structure can nevertheless

serve as a useful benchmark for the metamorphic structures considered here. Encouragingly,

we calculate that nth = 1.46 × 1012 cm−2 at εxx = 2.2%, so that the performance of the

metamorphic devices under consideration then compares very favourably with the GaAs-based

benchmark device.

We note that there is only minimal reduction in the calculated room temperature value of

nth for QW widths . 5.4 nm (strains & 2.2%), suggesting that there is little benefit to be

obtained from growing highly strained QWs having εxx & 2.2% (dQW . 5.4 nm) considering
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Figure 4.6: Calculated variation of the (areal) threshold carrier density as a function of in-
plane strain and quantum well (QW) In composition at T = 300 K (solid lines, closed squares)
and 360 K (dashed lines, open squares), for the same series of compressively strained 1.3 µm
InGaAs QWs as in Fig. 4.4. The QWs have unstrained AlyIn0.2Ga0.8−yAs barriers with y = 0,
6, 12 or 15% (blue, green, red and black lines/squares, respectively).

the potential relaxation of highly strained layers [135]. A similar trend is shown by the dashed

blue line in Fig. 4.6, which shows the variation of nth as a function of strain at 360 K.

We calculate that the optical transition strength at the QW Brillouin zone centre for the

fundamental TE-polarised electron to HH1 transition decreases slowly over the strain range

considered, with the calculated value of 23.1 eV at εxx = 2.6% being approximately 89% of its

value at εxx = 1.8%. This weak variation in the transition strength is due to the fact that while

dQW decreases with increasing strain, the corresponding increase in the QW In composition is

sufficient to increase the CB offset – from 141 meV at εxx = 1.8% to 200 meV at εxx = 2.6%

– so that the electron-hole overlap remains approximately constant for 1.8% ≤ εxx ≤ 2.6%.

As such, we conclude that the calculated reduction of nth as a function of compressive strain

is primarily due to the reduction in the DOS in the vicinity of the VB edge, which is in turn

brought about primarily as a result of the reduced QW width required to maintain peak gain

at 1.3 µm.
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Figure 4.7: Calculated variation of the (areal) threshold carrier density as a function of in-
plane strain at a fixed quantum well (QW) width of 7 nm (left panel) and QW width at a fixed
strain of 2.0% (right panel) at T = 300 K (solid lines, closed squares) and 360 K (dashed lines,
open squares), for a series of AlInGaAs QWs with the peak gain at 1.3 µm. The QWs have
unstrained AlyIn0.2Ga0.8−yAs barriers with y = 0, 6 or 12% (blue, green and red lines/squares,
respectively), as in Fig. 4.6.

Further calculations where we kept a fixed QW width of 7 nm but used a quaternary AlInGaAs

QW to vary the strain confirm this conclusion. The threshold carrier density at a fixed dQW

was much less sensitive to a change in εxx compared to the opposite case, as shown in Fig. 4.7.

We note that the nth minimum at εxx = 2.0% from the blue lines is associated with a minor

reduction in the conduction band DOS at energies in the vicinity of the ground electron state.

By contrast, there is a much larger increase in nth associated with increased QW width dQW at

a constant strain εxx since a larger number of HH bound states are allowed in the QW valence

band. We speculate here that the threshold characteristics of the laser will be negatively

impacted by having a compressively strained AlInGaAs QW with εxx < 1.8%. However it is

not possible to reduce the strain in such a QW without increasing its thickness dQW in order

to maintain the 1.3 µm emission, since the 1.8% QW in this context is InGaAs-based. A wider

QW then, as we have shown, will lead to a dimished laser performance.

The solid (dashed) blue curve in the left panel of Fig. 4.8 shows the calculated variation of

the total threshold current density Jth as a function of strain for the series of InGaAs QW

structures from Fig. 4.4 at 300 K (360 K), calculated using the corresponding values of nth



AlInGaAs 1.3 µm metamorphic quantum well lasers 79

100

200

300

400

500

1.8 2 2.2 2.4 2.6

0.46 0.52 0.58
T

h
re

sh
ol

d
cu

rr
en

t
d

en
si

ty
,
J
th

(A
cm

−
2
)

In-plane strain, εxx (%)

Quantum well In composition, x

1.8 2 2.2 2.4 2.6
10

20

30

40

50

60

70

80
0.46 0.52 0.58

In
te

rn
al

qu
an

tu
m

effi
ci

en
cy

,
J
ra

d
J
th

(%
)

Figure 4.8: Calculated variation of the threshold current density (left panel) and the ratio of
the radiative current density to the total current density at threshold (the internal quantum
efficiency; right panel) as a function of in-plane strain and quantum well (QW) In composition
at T = 300 K (solid lines, closed squares) and 360 K (dashed lines, open squares), for the same
series of compressively strained 1.3 µm InGaAs QWs as in Figs. 4.4 and 4.6. The QWs have
unstrained AlyIn0.2Ga0.8−yAs barriers with y = 0, 6 or 12% (blue, green and red lines/squares,
respectively), as in Fig. 4.6.

from Fig. 4.6 in Eq. (4.3). At 300 K we see that there is a reduction in Jth as εxx (dQW) is

increased (decreased), with the calculated value of 165 A cm−2 at εxx = 1.8% decreasing to 109

A cm−2 at εxx = 2.2%. At 300 K we find that there is little benefit to having strains & 2.2%

(QW widths . 5.4 nm), with Jth decreasing only by 8 A cm−2 between εxx = 2.2% and 2.6%.

The situation at T = 360 K is somewhat similar. The calculated value of Jth = 466 A cm−2

at εxx = 1.8% is relatively large, and we calculate that Jth decreases extremely rapidly with

increasing strain in the QW, decreasing by a factor of approximately two to 231 A cm−2 for a

QW having εxx = 2.2%.

The reasons for these calculated trends in Jth at 360 K can be understood in light of Eqs. (4.3)

and (4.4), as well as the calculated variation of nth shown in Fig. 4.6. We assume in our

calculations that the non-radiative (Auger) component of Jth varies as the cube of nth, with

the larger carrier densities at threshold at 360 K then leading to strongly increased values of

Jth at high temperature. In addition, we calculate using Eq. (4.4) that the Auger coefficient

C increases by approximately 21% between 300 and 360 K. Based on this value of C, and
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the assumption that JAuger ∝ n3
th, we then estimate that Jth at 360 K is dominated by its

non-radiative component. This can be seen from the dashed blue curve in the right panel of

Fig. 4.8, which shows the calculated variation of the internal quantum efficiency (IQE) – i.e. the

ratio of the radiative current density to the total current density at threshold – as a function

of strain for the structures depicted by the blue curve in Fig. 4.4. Examining the calculated

variation of the IQE at threshold as a function of strain at 360 K (shown by the dashed blue

curve) we estimate, based on the value of C used here, that Jth is dominated at εxx = 1.8%

by non-radiative recombination, which accounts for approximately 80% of the total current

density in the device at threshold. The calculated IQE at 360 K increases with increasing

strain in the QW. We estimate that non-radiative recombination increases from approximately

35% of Jth at room temperature to 62% at 360K in the narrowest, highly strained QW having

dQW = 3.8 nm and εxx = 2.6%. This suggests that GaAs-based 1.3 µm metamorphic QW

lasers should have favourable temperature dependence of Jth due to the fact that non-radiative

Auger recombination could play a less important role than radiative recombination at room

temperature for εxx & 2.2%.

We note that the quantitative aspects of these results for Jth depend upon the assumed value

of the room temperature Auger recombination coefficient used in Eq. (4.4). Furthermore, the

high density of threading dislocations present in metamorphic laser structures [9] may provide

a large number of recombination centres, which could lead to there being an appreciable defect-

related contribution to Jth that has not been taken into account in Eq. (4.3). The values of

Jth here include radiative and Auger recombination only, while measurements of Jth and the

characteristic temperature T0, given by [136]

T0 =

[
dlnJth(T )

dT

]−1

. (4.5)

include additional contributions from defect-related recombination and carrier leakage, calcu-

lation of which is beyond the scope of our current analysis. However, assuming on the basis

of our calculations that Jth = 100 A cm−2 per QW and T0 = 85 K (cf. Fig. 4.8) for radia-

tive and Auger recombination, we estimate that the combined defect-related/leakage current

accounts respectively for 50 and 70% of the measured values of Jth at room temperature for

the devices studied in Refs. [17] and [54]. We note that defect-related contributions to Jth of

this magnitude are comparable to those previously reported for GaInNAs-based 1.3 µm devices

[41]. Measurements performed on GaInNAs-based lasers indicate that devices having higher

Jth tend to have higher values of T0, suggesting that strong defect-related recombination leads

to an artificially high T0 [137]. Our analysis here suggests that this conclusion may also be

extended to metamorphic lasers, which may account for the large T0 values reported for some

devices. The best high temperature performance obtained to date was in a triple QW device,

which displayed a Jth of order 7 kA cm−2 at 200 ◦C, and a T0 value of order 220 K over a
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Figure 4.9: Calculated variation of the differential gain at threshold as a function of in-
plane strain and quantum well (QW) In composition at T = 300 K, for the same series of
compressively strained 1.3 µm InGaAs QWs as in Figs. 4.4, 4.6 and 4.8. The QWs have
unstrained AlyIn0.2Ga0.8−yAs barriers with y = 0, 6, 12 or 15% (blue, green, red and black
lines/squares, respectively). We note that the differential gain has been calculated with respect
to the three-dimensional (as opposed to areal) carrier density, so that any explicit dependence
on the QW width has been removed.

wide temperature range [54]. If we assume that the T0 value for Auger and radiative current

remains close to 85 K over the full temperature range, the combined defect-related/leakage cur-

rent would then account for approximately 60% of the total Jth, suggesting that there remains

opportunity to further improve the performance of metamorphic QW devices.

The calculated variation of the differential gain at threshold, dg
dn , as a function of strain at

300 K is shown by the blue curve in Fig. 4.9, for the same series of InGaAs QWs having

unstrained In0.2Ga0.8As barriers (cf. Fig. 4.4). The differential gain, which plays a key role in

determining the bandwidth of a semiconductor laser through its relationship to the modulation

response frequency (ωr ∝
√

dg
dn), is presented in conventional three-dimensional units here, so

that any explicit dependence on dQW has been removed. We calculate a differential gain of

approximately 1.1× 10−15 cm2 in the widest QW having εxx = 1.8%, and note that this single

QW value is comparable to that calculated in Ref. [83] for an optimised InP-based InGaAsP

laser structure containing 4 QWs. We note that the values of differential gain presented in
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Ref. [83] were calculated at transparency (or at zero gain) as opposed to threshold, with dg
dn

being typically larger at the former. As such, the fact that our calculated values of dg
dn at

threshold are comparable to those calculated at transparency for InP-based devices containing

& 4 QWs suggests that significantly enhanced differential gain can be obtained in ideal 1.3 µm

metamorphic devices.

As the strain is increased we calculate that dg
dn increases strongly up to εxx ≈ 2.3%, due

primarily to a combination of (i) the decrease of the DOS at the VB edge with increasing strain

brought about by the reduction in dQW required to maintain peak gain at 1.3 µm, and (ii) the

associated reduction in nth (cf. Fig. 4.6). At εxx = 2.3% dg
dn attains a value of approximately

1.8×10−15 cm2, which is equal to that calculated in Ref. [83] for an 8 QW device, reinforcing that

compressively strained metamorphic InGaAs QWs offer increased differential gain as compared

to equivalent InP-based heterostructures. In Ref. [131] a value of 2.1×10−15 cm2 was calculated

for dg
dn at threshold for the aforementioned hypothetical 1.3 µm InGaAs/GaAs QW, where the

strain and QW width are beyond what can be achieved experimentally. This value of dg
dn is

slightly larger than the values we have obtained here for devices having ternary barriers but,

as we will show in Section 4.3, an appropriate choice of barrier materials can be used to further

increase dg
dn . As was the case for nth above, we again conclude that the performance of the

metamorphic devices under consideration should be equivalent to, or slightly improved over

that of an idealised GaAs-based benchmark device. We finally note that the improvement in
dg
dn begins to saturate for strains > 2.3%, so that there appears to be little benefit to growing

QWs with εxx & 2.3%.

In addition to the analysis of single QW devices presented here, we have also calculated the

variation of Jth and dg
dn as a function of the number of QWs in the structure with the following

approximation:

Jthq = nqJradq + nqCn
3
thq (4.6)

dg

dn

∣∣∣∣
q

=
dg

dn

(
nthq

)
, (4.7)

where nq is the number of QWs, and Jradq , nthq and dg
dn

∣∣∣
q

are evaluated at the carrier density

corresponding to gthq = gth/nq. We find that Jth increases with the number of QWs, so that

the minimum values of Jth are obtained in devices containing 1 – 2 QWs as shown in Fig. 4.10.

This is in marked contrast to the InP-based 1.3 µm InGaAsP devices studied in Ref. [83],

where is was determined that an optimised laser structure should contain 6 QWs. Similar to

the analysis in Ref. [83], we also find that dg
dn at threshold increases with the number of QWs.

However, since the enhancement in dg
dn brought about by increasing the number of QWs in the
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Figure 4.10: Calculated variation of the threshold current density as a function of number
of quantum wells (QWs) at T = 300 K, for the series of supercells that contain a 1.8% (blue),
2.0% (green), 2.2% (red), 2.4% (black) and 2.6% (pink) compressively strained 1.3 µm InGaAs
QWs corresponding to the blue solid line in Figs. 4.4, 4.6 and 4.8. The QWs have unstrained
In0.2Ga0.8As barriers.

device comes at the expense of increasing Jth, we conclude that an optimised device – in which

Jth and dg
dn are simultaneously optimised – should contain . 3 QWs.

In summary, we calculate that compressively strained 1.3 µm InGaAs QWs can be grown on

In0.2Ga0.8As MBLs for strains 1.8% . εxx . 2.6%, corresponding to QW widths 3.8 nm .

dQW . 9.8 nm. We have calculated that Jth decreases rapidly with increasing strain to values

less than those calculated previously for optimised InP-based devices [83]. We find that there

is no clear minimum in the calculated variation of Jth with strain and that there is little benefit

to having strains & 2.2%. However, we calculate that the IQE and differential gain at threshold

can be expected to continue to increase with further increases in the strain. Based on the results

of this analysis we conclude that optimised 1.3 µm InGaAs lasers grown on an In0.2Ga0.8As

MBL should contain . 3 QWs having compressive strains 2.0% . εxx . 2.3%, corresponding

to QW widths (In compositions) 5 nm . dQW . 7 nm (49% . x . 54%).
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4.3 Variable barrier composition

Having determined the optimum QW parameters for compressively strained InGaAs QWs with

unstrained ternary In0.2Ga0.8As barriers, we now turn our attention to the composition of the

barrier materials. By considering quaternary AlInGaAs barriers with variable Al composition

we show that it is possible to engineer the carrier and optical confinement in such a way as

to minimise the carrier and current densities at threshold, while simultaneously maximising

the differential gain. We focus our attention here on unstrained quaternary barriers, but also

provide some general comments on compensated strain structures containing tensile strained

barriers.

We consider unstrained AlyIn0.2Ga0.8−yAs barriers, for which the Al composition y is varied

between 0 and 24%. Incorporation of Al in the barrier layers produces a slight increase in the

energy separation between the lowest energy electron and highest energy hole states in the QW,

so that the QW width then must be increased slightly as compared to a QW having Al-free

barriers in order to maintain peak gain at 1.3 µm. This effect is relatively minor, but leads to

an InGaAs QW with dQW & 10 nm for εxx = 1.8%. We omit this structure from our analysis

here, limiting our calculations to structures with dQW < 10 nm, given the rapid increase in nth

and Jth observed for wider QWs with Al-free barriers.

Taking as an example the structure containing a 2% compressively strained QW (In0.49Ga0.51As,

dQW = 7 nm) with Al-free barriers we calculate in this case a conduction band to valence band

offset ratio of ∆Ec : ∆Ev ≈ 60 : 40, with the separation in energy between the lowest energy

electron (highest energy hole) bound state and the barrier conduction (valence) band edge then

being equal to 105 (88) meV. Adding 12% Al to the barrier increases both the conduction and

valence band offsets, and raises this energy separation to 143 (150) meV. The total difference

in energy between the barrier band gap and the ground state transition energy of the QW is

approximately 193 meV for Al-free barriers, which increases to 293 meV for a laser structure

having barriers containing 12% Al, thereby improving the carrier confinement in the QW.

The upper portion of Fig. 4.11 shows the calculated variation of the electron confinement

factor at 300 K and at 360 K (solid and dashed blue lines, respectively), as well as the optical

confinement factor Γ (solid green line), given in Eq. (2.78), as a function of the barrier Al

composition for a 7 nm wide InGaAs QW having εxx = 2%. The electron confinement factor

ηe is calculated at each temperature as the fraction of the total electron charge density lying

within the QW at threshold, assuming thermally occupied conduction subbands described by

a quasi-Fermi distribution function [81], and is given by

ηe =

∫
QW

n(z)dz

nth
, (4.8)
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Figure 4.11: Calculated variation of the electron confinement factor ηe (at threshold) and
optical confinement factor as a function of barrier Al composition for 2% compressively strained
InGaAs quantum wells (QWs) having peak gain at 1.3 µm and unstrained AlInGaAs barriers.
Blue solid (dashed) lines and closed (open) squares show the calculated variation of the electron
confinement factor at 300 K (360 K) for QWs grown on an In0.2Ga0.8As metamorphic buffer
layer (MBL). Red solid (dashed) lines and closed (open) squares show the calculated variation
of the electron confinement factor at 300 K (360 K) for QWs grown on an In0.25Ga0.75As MBL.
Green solid (dashed) lines show the calculated variation of the optical confinement factor for
QWs grown on an In0.2Ga0.8As (In0.25Ga0.75As) MBL.

where n(z) is given by Eq. (3.79) and the integration is performed over the QW. At 300 K

we see that > 80% of the electron charge density lies within a QW having ternary (Al-free)

barriers, and we calculate that the electron confinement increases approximately linearly with

increasing barrier Al composition y, reaching 93% for y = 24%, due to the associated increase

in the CB offset (which increases from 156 meV to 259 meV between y = 0 and 24%). At

360 K we calculate that the electron confinement increases more strongly with increasing y,

from 76% at y = 0 to 91% at y = 24%. In addition to confirming that these metamorphic

QWs have strong carrier (and optical) confinement, these results suggest that barrier materials

with higher Al compositions should be of benefit at higher temperature, where they play an

important role in limiting temperature-dependent carrier spillover. Over the same range of

barrier Al compositions we calculate that the optical confinement factor Γ decreases, from

1.5% at y = 0 to 1.3% at y = 12%, and to 1% at y = 24%, as the refractive index contrast

between the barrier and SCH layer is reduced.

The effects of varying the barrier Al composition on nth, Jth, and dg
dn are shown in Figs. 4.6 – 4.9
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using solid (dashed) lines at 300 K (360 K), for 1.3 µm InGaAs QWs having AlyIn0.2Ga0.8−yAs

barriers with y = 6, 12 and 15% (shown using green, red and black lines respectively). We

calculate that the enhanced carrier confinement for y > 0% at fixed strain leads to (i) a decrease

in nth, (ii) a decrease in Jth, (iii) an increase in IQE, and (iv) significant enhancement of dg
dn ,

with the latter reaching values in excess of 2.0 × 10−15 cm2 for a single QW device. We note

that the calculated values of nth, Jth, the IQE, and dg
dn vary little for 6% . y . 15%, suggesting

that there is a wide window within which the barrier alloy composition can be engineered in

order to optimise the laser performance.

We have performed additional calculations for compensated strain structures incorporating

2.0% compressively strained 7 nm InGaAs QWs and tensile strained AlInGaAs barriers having

−0.5% ≤ εxx ≤ 0.0%. Overall, our calculations suggest that the use of up to −0.5% tensile

strained barriers leads to a minor degradation in the threshold characteristics, i.e. a 3.3% and

4.9% increase in nth and Jth respectively, suggesting that unstrained barriers are favourable for

the design of optimised devices. However, we note that the incorporation of a small amount

of tensile strain in the barrier layers may be beneficial in a real device, since this may serve to

facilitate dislocation-free growth of the optimised QWs identified above, which have relatively

high values of compressive strain.

To summarise, our calculations have shown that the incorporation of Al in the AlyIn0.2Ga0.8−yAs

barrier layer may be beneficial for the threshold characteristics of the 1.3 µm laser. This how-

ever introduces a trade-off between the carrier and optical confinement since we consider the

same Al0.4In0.2Ga0.4As SCH layer. We find that nth and Jth vary little for 6% . y . 15%

at both 300 and 360 K. We note that by using an SCH layer with a larger fraction of Al up

to 62% (compared to 40% in our calculations) for an enhanced refractive index contrast may

further improve the optical confinement in metamorphic devices, but we do not address this

possibility further in this thesis.

4.4 Variable metamorphic buffer layer composition

Having investigated 1.3 µm InGaAs/(Al)InGaAs QW lasers grown on In0.2Ga0.8As MBLs, we

now turn our attention to the effect of varying the InGaAs MBL alloy composition on the laser

performance. Specifically, we consider InGaAs QWs with well widths close to 4 nm (and 2.0%

compressive strain) grown on In0.25Ga0.75As MBLs and calculate the associated changes in the

carrier and optical confinement, and the theshold carrier density nth and current density Jth

as compared to the In0.2Ga0.8As laser structures studied above.

The lower portion of Fig. 4.11 shows the calculated variation of the electron confinement factor

ηe at 300 K and at 360 K (solid and dashed red lines, respectively), as well as the optical



AlInGaAs 1.3 µm metamorphic quantum well lasers 87

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

0 5 10 15

T
h
re
sh
ol
d
ca
rr
ie
r
d
en
si
ty
,
n
th
(×

10
12

cm
−
2
)

Al content in AlyGa1−x−yInxAs barrier, y (%)

5 10 15
80

120

160

200

240

280

320

360

T
h
re
sh
ol
d
cu
rr
en
t
d
en
si
ty
,
J
th
(A

cm
−
2
)

Figure 4.12: Calculated variation of the threshold carrier density nth (left panel) and the
threshold current denstiy Jth (right panel) as a function of Al content y in the AlyInxGa1−x−yAs
barrier on an InxGa1−xAs MBL with x = 20% (red lines) and x = 25% (blue lines) at T =
300 K (solid lines, closed squares) and 360 K (dashed lines, open squares). The QW in the
structure grown on In0.2Ga0.8As (In0.25Ga0.75As) MBL is 2.6% (2.0%) compressively strained
and 3.8 nm . dQW . 4.3 nm (3.7 nm . dQW . 4.4 nm).

confinement factor Γ (dashed green line), as a function of the barrier Al composition for an

InGaAs QW having εxx = 2% and grown on an In0.25Ga0.75As MBL. The electron confinement

is strongly reduced compared to an equivalent QW grown on an In0.2Ga0.8As MBL, with only

52% of the electron charge density residing within the QW at 300 K for a laser structure

incorporating unstrained ternary barriers. This is primarily caused by the reduced energy

difference between the In0.2Ga0.8As barrier CB edge and the electron ground state in the

InGaAs QW from 105 meV with x = 20% in the InxGa1−xAs MBL to 58 meV with x = 25%.

We calculate that the electron confinement increases strongly with increasing Al composition

y in the barrier layers, reaching 77% at y = 24%. However, this is still less than the electron

confinement calculated for an InGaAs QW with Al-free barriers grown on an In0.2Ga0.8As

MBL. At 360 K we calculate that < 50% of the electron charge density lies within a QW

having ternary barriers, suggesting that carrier spillover from the QW at high temperature

increases strongly with increasing In composition in the MBL. While the net degradation in the

optical confinement factor Γ between y = 0 and 24% is reduced by a factor of approximately

two compared to the devices grown on In0.2Ga0.8As MBLs, we note that the overall optical
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confinement factor Γ is significantly smaller in the case of an In0.25Ga0.75As MBL, with Γ .

0.8% for all of the laser structures considered.

The change in the calculated variation of the threshold carrier density nth and current density

Jth with the InGaAs MBL composition is shown in Fig. 4.12. We saw earlier that, for sufficiently

high strain, nth and Jth vary more strongly with well width than with strain. In order to

therefore compare structures with similar well width, we compare quantum wells with 2%

compressive strain on an In0.25Ga0.75As MBL (3.7 nm . dQW . 4.4 nm), with QWs with 2.6%

compressive strain on an In0.20Ga0.80As MBL (3.8 nm . dQW . 4.3 nm).

The left panel (right panel) of Fig. 4.12 shows a strong increase in nth (Jth) at 300 K by

growing the device with unstrained InxGa1−xAs barriers for x = 25% compared to x = 20%, as

a consequence of (i) reduced electron-hole overlap due to a reduced CB offset and (ii) reduced

optical confinement factor Γ. We find that by growing the laser on the InxGa1−xAs MBL the

threshold carrier density nth increases by 25%, i.e. from 1.37×1012 for x = 20% to 1.72×1012

cm−2 for x = 25%, at 300 K by having ternary InGaAs barriers. In terms of total current

density at threshold Jth we estimate a 30% increase by growing the laser on an In0.25Ga0.75As

MBL, with the IQE decreasing from 65% to 49%. We find that the relative increase in nth can

be reduced to 10%, i.e. from 1.31×1012 for x = 20% to 1.45×1012 cm−2 for x = 25%, at 300 K

by having 15% Al in the AlyInxGa1−x−yAs barrier, thereby minimising the change in Jth and

IQE.

By increasing the temperature from 300 to 360 K we see a minor change in the relative increase

of nth. However, due to the overall larger magnitude of nth, by growing the device on an

InxGa1−xAs MBL with x = 25% instead of x = 20% we estimate an increase of almost a factor

of two for Jth, from 193 to 358 A cm−2, at 360 K when having ternary barriers. Similarly to 300

K, we find that this increase in Jth can be reduced down to 28% by having an AlyInxGa1−x−yAs

barrier with y ≈ 15%. Overall these results suggest that a larger barrier band gap is required

for an optimised performance of 1.3 µm lasers when they are grown on an InGaAs MBL with

a larger fraction of In.

In summary, we have shown that by growing the 1.3 µm laser on an InxGa1−xAs MBL with

x = 25% the electronic and optical properties are diminished compared to x = 20%, mainly due

to (i) smaller band gap difference and (ii) poorer refractive index contrast between the QW,

barrier and SCH layers. Our results indicate that the variation of the threshold characteristics

of the 1.3 µm laser with the InxGa1−xAs MBL composition can be reduced, especially at

higher temperatures, by using an AlyInxGa1−x−yAs barrier having y ≈ 15%. By contrast,

our calculations also suggest that the threshold characteristics of the 1.3 µm laser can be

(in principle) improved by growing the heterostructure on an InxGa1−xAs MBL with x <

20%. However highly strained and/or wide InGaAs QWs are expected to be required for a

1.3 µm peak emission (cf. Fig. 4.1). Thus we conclude that optimised electronic and optical
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x in InxGa1−xAs MBL x = 20%

y in AlyGa0.8−yIn0.2As barrier 6% . y . 15%

z in InxGa1−xAs QW 49% . x . 54%

QW width, dQW 5 nm . dQW . 7 nm

QW strain, εQW 2.0% . εxx . 2.3%

Number of QWs, NQW NQW . 3

Table 4.1: Design parameters of a laser structure grown on an InGaAs Metamorphic Buffer
Layer (MBL) for an optimised 1.3 µm emission. The table includes (i) InGaAs MBL compo-
sition, (ii) AlInGaAs barrier composition, (iii) InGaAs Quantum Well (QW) composition, (iv)
QW thickness dQW, (v) in-plane strain in the QW εxx, and (vi) number of QWs NQW.

properties of 1.3 µm emitting lasers will be achieved by growing the heterostructure on an

In0.2Ga0.8As MBL, thereby avoiding the need for pseudomorphic growth of highly strained

layers with (potentially) wide InGaAs QWs.

4.5 Conclusions

We have presented a theoretical investigation and optimisation of the properties and perfor-

mance of GaAs-based 1.3 µm InGaAs/(Al)InGaAs quantum well lasers grown on InGaAs meta-

morphic buffer layers. Beginning with a consideration of the strained AlInGaAs band struc-

ture we demonstrated that there is large scope for the design of 1.3 and 1.55 µm metamorphic

quantum well heterostructures, using compressively strained ternary (InGaAs) or quaternary

(AlInGaAs) quantum wells with unstrained or tensile strained ternary or quaternary barriers.

Following the general analysis of the available laser structures in Section 4.1 we focused our

attention on devices consisting of compressively strained ternary InGaAs quantum wells hav-

ing unstrained (Al)InGaAs barriers. We calculated the variation of the gain and threshold

characteristics as a function of strain and quantum well width in Section 4.2, and showed

that metamorphic 1.3 µm laser structures offer reduced threshold current density, comparable

internal quantum efficiency and enhanced differential gain compared to those calculated previ-

ously for optimised InP-based devices. We also considered quantum wells having quaternary

AlInGaAs barriers in Section 4.3 and showed that the barrier Al composition can be varied to

optimise the trade-off between the carrier and optical confinement in such a way as to enhance

the laser performance, leading to reduced carrier and current densities at threshold, as well

as improved internal quantum efficiency and differential gain, with the effects of quaternary

barriers becoming increasingly beneficial with increasing temperature.
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Through our analysis we identified that an optimised 1.3 µm device grown on an In0.2Ga0.8As

metamorphic buffer layer should consist of . 3 quantum wells, with the InGaAs quantum

wells having compressive strains 2.0% . εxx . 2.3%, corresponding to quantum well widths

5 nm . dQW . 7 nm (In compositions 49% . x . 54%). We further identified that the

optimum barrier materials are unstrained AlyIn0.2Ga0.8−yAs alloys having Al compositions

6% . y . 15%. Finally, by varying the composition of the InGaAs metamorphic buffer layer

in Section 4.4 we found that the devices should be grown on virtual substrates having low In

composition for improved gain characteristics. Although this is consistent with the expected

improvement in device performance in going from InP-based to GaAs-based heterostructures,

our analysis indicates that for optimised laser performance the devices should be grown on an

In0.2Ga0.8As metamorphic buffer layer. Our guidelines for an optimised 1.3 µm laser design

are summarised in Table 4.1.

Overall, our theoretical analysis has identified important trends in the performance of GaAs-

based metamorphic quantum well lasers, has provided design parameters for optimised laser

structures, and has confirmed the promise of these novel heterostructures for the development

of high performance GaAs-based 1.3 µm semiconductor lasers.



Chapter 5

AlGaInP 610 nm quantum wire

based emitters on GaAs

In this chapter we perform an analysis on the electronic properties of lattice-mismatched [110]-

oriented AlInP Quantum Wire (QWR) based heterostructures for 610 nm emission.

We begin in Section 5.1 with an overview of the structural properties of the AlGaInP QWR

nanostructures that were grown at Tyndall National Institute and whose characteristics are

investigated later in the chapter. We then investigate in Section 5.2 the effects of strain on the

electronic properties of QWR-based supercells using the Hamiltonian derived in Section 2.3.

Unlike QW-based systems, where the strain Hamiltonian (2.56) can be simplified due to van-

ishing components of the stress and strain tensors, most of these elements become non-zero in

a QWR-based heterostructure.

Following this we turn our attention to the photoluminescence (PL) measurements performed

on a series of AlGaInP QWR-based structures in Section 5.3. Having understood the behaviour

of the electronic structure of AlGaInP-based QWRs under strain, we analyse the accuracy of our

method by comparing the ground state transition energy with the measured PL energies. We

then examine the efficiency of the radiative emission of our structures from the integrated PL

measurements. Here we also discuss the trends in the photoluminescence response of AlGaInP-

based QWR systems due to variable direction of the linearly polarised excitation.

In Section 5.4 we discuss the electroluminescence measurements performed on QWR-based

samples under hydrostatic pressure at University of Surrey, UK. The pressure measurements

are used primarily to determine the importance of Γ-related radiative recombination and Γ–X

electron leakage in the QWR structures considered. Finally, we conclude in Section 5.5.

91
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5.1 Nanostructure formation

For the devices being investigated in this chapter, the original intention was to develop AlInP

QD-based emitters using the self-assembled Stranski-Krastanov growth technique [11]. The

main advantage of a QD-based system over QW-based active regions consists in (i) potentially

reduced carrier leakage due to the localisation of the carrier in the QDs, and (ii) the reduced

density of states due to atomic-like electronic properties of the QDs with discrete energy states.

At the same time, the self-assembled growth is preferred over, e.g., site controlled growth [138],

due to its ability to create a relatively dense array of QDs with a Gaussian-like size and shape

distribution, thereby resulting in a broad emission spectrum, favourable for LED applications.

In order to achieve a noticeable emission from such heterostructures, the devices were grown

on GaAs substrates tilted by 6◦ towards the (111)A plane which allowed high quality growth

of numerous QD layers (up to 200) in one structure. AFM measurements performed on these

structures indicate, however, that the self-assembled growth results in the formation of ordered

(both vertically and horizontally) QWRs instead, which are elongated along the [110] direction

with a length of 0.5 − 2.0 µm and a thickness around 20 nm. We speculate that the QWR

formation is caused primarily by the bunched surface organisation [139]. Although, compared

to QDs, the QWRs have a larger size due to their elongation along the [110] direction, it is

expected that their optical properties will still be superior to QW-based heterostructures. Due

to the tilt of the substrate, the calculation of electronic and optical properties require, ideally,

the rotation of the k·p and strain Hamiltonians, as well as the strain tensor. In our calculations

however we consider only perfectly oriented heterostructures grown along the [001] direction

and we assume that the impact of the substrate tilt on the electronic and optical properties is

negligible.

The periodic horizontal and vertical ordering of the grown QWRs, as can be seen from the

TEM scan in Fig. 5.1, suggests that the plane wave method with periodic boundary conditions

is a very suitable approximation for the evaluation of the electronic (and optical) properties

of such a superlattice. In Section 3.2 we derived the general form of the plane wave method,

which can be directly applied to QD-based heterostructures; we apply it directly here for the

calculation of the electronic (and optical) properties of [110] QWR-based systems. Unlike

the discrete energy levels in a QD, the [110] QWRs require, ideally, the calculation of energy

dispersion along the wire direction. Because we however are primarily interested in the ground

state properties, we therefore simplify our calculations by determining the energy levels only

at k = 0. Because the calculations are undertaken using a quantum dot code the calculations

at k = 0 also give results for a regular grid of k points determined by the QD supercell size.

This allows us therefore to also use the k = 0 calculations to estimate spectral properties as a

function of energy. In addition, due to the much larger length of the [110] QWRs compared to

their thickness, in our calculations we consider the wires to have an infinite length according
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Figure 5.1: HAADF TEM image of a 60-layer Al0.22In0.78P/(Al0.6Ga0.4)0.52In0.48P het-
erostructure. The stacked AlInP QWRs are visible as bright columns. The TEM is performed
at Intel Ireland Labs.

to the periodic boundary conditions. The top-view diagram of the QWR in the supercell and

its characteristic function are given in Appendix D.

For the calculation of electronic and optical properties in this chapter we consider compressively-

strained [110] AlInP QWRs surrounded by an AlGaInP barrier lattice-matched to the GaAs

substrate. Although the self-assembled growth brings about a distribution of QWR cross-

sections that may impact the electronic and optical properties, we simplify our analysis here

by considering QWRs with a rectangular cross-section only.

5.2 Strain distribution in a [110] QWR based supercell

The weak electron confinement and significant electron leakage in 610 nm emitters is associated

with the direct-to-indirect band gap crossover in the (AlxGa1−x)0.52In0.48P barrier lattice-

matched to GaAs, which occurs at x ≈ 0.6 [140] with the largest direct band gap Eg ≈ 2.3 eV.
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Figure 5.2: Calculated distribution of the in-plane (upper left panel) and out-of-plane (upper
right panel) component of the strain tensor, εxx and εzz respectively, the shear component of
the strain tensor εxy (bottom left panel), and the hydrostatic strain εhy = εxx + εyy + εzz

(bottom right panel), in the (110) plane of a Al0.316Ga0.212In0.472P supercell on GaAs with the
size 56.6×56.6×3 nm. The supercell contains a 15 nm thick and 2.2 nm tall [110] Al0.22In0.78P
QWR, denoted by the hatched black rectangle. Note that the in-plane dimensions (or [11̄0])
are one order of magnitude larger than along the growth direction (or [001]).

While the band gap can be slightly increased by going beyond the crossover composition, the

optical properties in this case will tend to be strongly diminished since most of the electrons

will be located in a different position of the wave vector space with a much larger effective mass

compared to the CB minimum at Γ. In this section we consider the best case scenario, where

the unstrained AlGaInP barrier material on GaAs is at the Γ−X crossover at 300 K with the

assumed band gap Eg = 2.284 eV. For the heterostructures with x in the (AlxGa1−x)0.52In0.48P

barrier larger than 0.6 the PL response is much weaker, indicating the indirect band gap nature

of the material.

The anisotropic strain associated with the QWR will tend to split the energies of the X states

both in the wire and in the barrier layer. The strain associated with a [110] QWR has been

analysed previously by Ma et al. [141], and is worth to summarise here, before we consider our

model wires in further details.

It is relatively straightforward to derive expressions for the strain components using a coordinate

system where the axes 1, 2 and 3 are pointing along the [11̄0], [110] and [001] directions

respectively. In this coordinate system, there is no shear strain in the growth plane (ε12 = 0).

Likewise, there is no strain in the barrier along axis 2 (ε22 = 0) while the strain in the wire

along axis 1 is given by ε22 = −ε0, where ε0 is the (positive) lattice mismatch between the wire

and substrate lattice constants. If we assume isotropic elastic constants that are equal in the

well and the barrier, then the hydrostatic strain is zero in the barrier, so that ε11 = −ε33 for
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the barrier material, where ε11 is negative (barrier compressed) along axis 1 and ε33 is positive

along axis 3 (barrier lattice constant stretched along the growth direction). Converting to

Cartesian coordinates yields εxx = εyy = (ε11 + ε22) /2, εzz = ε33 and εxy = (ε11 − ε22) /2. If we

assume that the wire is continuous along the growth (z) direction, which based on Figure 5.1

is a reasonable first approximation, then the strain tensor in Cartesian coordinates is given

by [141]:

εQWR =


(ε11 − ε0)/2 (ε11 + ε0)/2 0

(ε11 + ε0)/2 (ε11 − ε0)/2 0

0 0 ε33

 (5.1)

Fig. 5.2 shows the calculated distribution of the in-plane (upper left panel) and out-of-plane

(upper right panel) strain, εxx and εzz respectively, as well as the shear strain εxy (bottom

panel), in the (110) plane of a 56.6×56.6×3 nm Al0.316Ga0.212In0.472P supercell, that contains

a 15 nm thick and 2.2 nm tall [110] Al0.22In0.78P QWR. We find a very good agreement between

calculated distribution of strain in the AlInP QWR and the expected values from the model

above. We firstly notice that the hydrostatic strain εhy, which is shown on the bottom right

panel in Fig. 5.2, given by εhy = εxx + εyy + εzz, is applied primarily to the AlInP QWR,

as expected based on the analysis above. The resulting compressive hydrostatic strain in the

QWR increases the band gap by shifting the conduction band minimum at the Γ point of the

Brillouin zone upwards in energy (as well as the valence band maximum downwards in energy),

as we indicated in Section 2.3. The overall shallow electron confinement in the QWR for 610

nm emission, which is believed to be the dominant factor that influences the leakage related

losses of the radiative recombination [142], is further weakened due to the reduced conduction

band offset. The ground hole state, on the other hand, remains almost fully localised in the

AlInP QWR because of (i) a larger magnitude of the valence band offset compared to the

conduction band, and (ii) a much larger effective mass.

Our calculations show there is minimal hydrostatic strain εhy applied to the barrier layer due

to anisotropy of the elastic constants. This is in a good agreement with the assumptions in our

model above, and overall it has a negligible effect on the electronic structure. The effects of

strain on the band structure of an Al0.316Ga0.212In0.472P supercell with an Al0.22In0.78P QWR

are shown in Fig. 5.3, where we only include the effects of the axial strain components on the

Hamiltonian. Due to the biaxial strain in the term q of the Hamiltonian (2.56) the HH (orange

line) and LH (purple line) band edges at Γ, originally degenerate in an unstrained material,

will split, and the confined ground hole state in the QWR would then posess mostly a HH-like

character, which is expected for a compressively strained nanostructure. In addition, the shear

strain component εxy introduces a further mixing between the HH and LH states, increasing the

band edge splitting in Fig. 5.3, and leading to the highest valence state being predominantly
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Figure 5.3: Calculated distribution of the conduction band minima at Γ (solid red line),
X‖ (blue line), X⊥ (solid green line), and heavy-hole (solid orange line) and light-hole (purple
line) valence band maxima at the supercell wave vector k = 0 through the centre of a 15 nm
thick and 2.2 nm tall [110] Al0.22In0.78P QWR in a 56.6×56.6×3.4 nm Al0.316Ga0.212In0.472P
supercell along the growth direction (left panel) and along the [11̄0] direction (right panel).
The dashed red, green and orange lines denote the ground electron states at Γ and X, and the
hole state respectively.

associated with p-like states pointing along the QWR axis. We consider this mixing further,

when we analyse the polarisation characteristics of the emitted light in Section 5.3 below.

The strain also affects the three conduction band minima at the X point of the Brillouin zone,

which are degenerate in an unstrained material. We label the three X states as Xx, Xy and Xz

along the [100], [010] and [001] direction of k respectively. However, due to (i) the symmetry

of the supercell with respect to the axis of the AlInP QWR and (ii) the growth being along

the [001] direction, we use here the following labeling: Xx = Xy = X⊥; Xz = X‖. The effects

of strain on the conduction band minima at X of a [110] QWR are given by [124]:

X⊥ = X0 + Ξhεhy +
1

3
Ξax(ε‖ − ε⊥)

X‖ = X0 + Ξhεhy +
2

3
Ξax(ε⊥ − ε‖) ,

(5.2)
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where X0 is the unstrained conduction band edge at X, Ξh and Ξax denote the hydrostatic and

axial deformation potentials of the X band edge respectively, ε‖ = εxx = εyy and ε⊥ = εzz. The

compressive (tensile) hydrostatic strain pushes these three bands to lower (higher) energies,

and the effect is very similar to the VB maximum. Due to the biaxial strain these states

split causing either X⊥ or X‖ to be at a lower energy. Using Eq. (5.2), the magnitude of this

splitting in energy equals to ∆X =
∣∣X⊥ −X‖

∣∣ =
∣∣Ξax(ε‖ − ε⊥)

∣∣. The conduction band edge at

X in the QWR-based supercells is almost unaffected by the hydrostatic strain εhy. However

we find that the biaxial strain pushes the X‖ (X⊥) states in the barrier downwards in energy

by 84 (21) meV along the [001] ([11̄0]) direction, thereby reducing the barrier potential energy

for the electrons to overcome to thermally leak from the QWR; this effect will be discussed in

Section 5.4 in more detail. Consequently the barrier material, originally at the Γ−X crossover,

has an indirect band gap, with the ground X state located below the barrier Γ CB.

Because the heterostructure in Fig. 5.3 has a type-I Γ − Γ band alignment, i.e. the CB (VB)

edge at Γ of the barrier has a higher (lower) potential energy compared to the AlInP QWR, the

confined Γ electrons and holes are located in the QWR. However due to the band alignment,

the X conduction states in the AlInP QWR are located at a higher energy compared to the

AlGaInP barrier, thereby acting as a potential “barrier” for the X states in the surrounding

barrier material. This results in a set of delocalised X energy levels located in the barrier with

a very large density of states due to the large effective mass of the X electrons. The barrier X

states for the structure in Fig. 5.3 are calculated to be about 40 meV above the lowest confined

Γ state in the QWR. Carrier leakage from the QWR to the barrier is then expected to be an

increasing problem as the temperature increases, as is already known to be the case for red

QW devices [70]. This issue will be discussed further below.

5.3 Optical properties and photoluminescence measurements

The goal of this section is to use our 8-band k·p model to analyse trends in optical proper-

ties, both qualitatively and quantitatively, of QWR-based heterostructures. Consequenty, it

becomes necessary to determine whether there is good agreement between (i) the electronic and

optical properties calculated using the 8-band k·p model, and (ii) the measured PL response of

existing QWR-based structures. The blue curve in Fig. 5.4 shows the measured PL spectrum

of a 60-layer AlInP QWR-based system at 300 K. We note here that all of the measured PL

properties presented in this section were, for consistency, measured on this sample. The mea-

surements show a relatively broad emission from this QWR-based structure, with a Full Width

Half Maximum (FWHM) of about 163 meV, and the peak emission wavelength around 618 nm.

Although for the calculation of the spontaneous emission spectrum in our work we consider

the effects of inhomogeneous broadening, it is important nonetheless to explicitly investigate
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Figure 5.4: Measured PL spectrum of a Al0.22In0.78P/(Al0.60Ga0.40)0.52In0.48P QWR-based
structure (blue line) and calculated transition energy for the QWR-based supercell specified in
Table 5.1 at 300 K.

the expected variation in ground state emission wavelength due to geometry and possible com-

position variations. Table 5.1 includes the set of supercells we performed calculations on for

the analysis of the emission broadening. The green arrow in Fig. 5.4 denotes the calculated

ground state transition energy for a 7.5 nm wide and 2.2 nm tall Al0.22In0.78P QWR with an

in-plane and vertical spacing of 32.5 and 1.8 nm respectively, where the QWR is surrounded

by Al0.32Ga0.20In0.48P. The compositions of the QWR and barrier materials are taken from the

nominal growth conditions. The QWR in-plane thickness is approximately extrapolated from

the upper part of the TEM micrograph in Fig. 5.1, and the height of 2.2 nm has been used

in order to preserve the nominal 0.4:3.0 nm growth ratio of AlInP QWR and AlGaInP barrier

respectively. From our calculations we find that the ground state transition energy of 597 nm

(in units of wavelength λ) for this structure is located at the high energy (short wavelength) tail

of the measured PL spectrum. By considering a larger in-plane thickness of the AlInP QWR,

thereby preserving the nanostructure periodicity, but breaking the assumed wire to barrier

growth ratio of 0.4:3.0, we find a minor redshift in the emission towards 601 nm, denoted by

the purple arrow.

To produce an additional redshift in ground state emission wavelength, we consider that a minor

fraction of Ga atoms from the AlGaInP barrier diffuses into the AlInP QWR, thereby decreasing

the band gap while maintaining the 0.4:3.0 wire to barrier growth ratio, i.e. migration of a

small amount of Ga atoms from the barrier can give a noticeable change in QWR composition

from Al0.22In0.78P to Al0.177Ga0.043In0.78P. The transition energy of this structure is denoted by

the brown arrow in Fig. 5.4 with the calculated ground state emission wavelength of 613 nm. A

further decrease in the QWR composition due to a further exchange of Al (Ga) atoms towards
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Line colour
QWR Barrier

λ, nm
Composition

dw,
nm

hw,
nm

dxy,
nm

dz,
nm

Composition

Green Al0.22In0.78P 7.5 2.2 32.5 1.2 Al0.32Ga0.20In0.48P 597.2

Purple Al0.22In0.78P 15 2.2 25 1.2 Al0.32Ga0.20In0.48P 601.0

Brown Al0.177Ga0.043In0.78P 15 2.2 25 1.2 Al0.32Ga0.20In0.48P 612.7

Black Al0.135Ga0.085In0.78P 7.5 2.2 32.5 1.2 Al0.33Ga0.19In0.48P 615.6

Table 5.1: Composition and geometry data used for theoretical simulations of QWR-based
supercells, with dw, hw, dxy and dz denoting the QWR width, height, in-plane and vertical dis-
tance between the QWRs respectively. The calculated transition energies in units of wavelength
λ correspond to the highlighted arrows in Fig. 5.4.

(from) the barrier material redshifts the emission towards 616 nm (black arrow). Although for

the last heterostructure we preserved the nominal 0.4:3.0 layer thickness ratio by assuming a

narrower QWR, from the first two structures we found that only a minor change in emission

wavelength can be attributed to this change in geometry. We conclude that the inclusion of

some Ga – Al interdiffusion between the wire and the barrier provides a theoretically calculated

emission wavelength in good agreement with the observed experimental data. However we note

that there are in addition some further factors that may contribute to the broadening of the

emission, e.g. (i) partial strain relaxation of the QWRs and (ii) partial CuPt ordering [84, 85].

Although earlier PL measurements indicate that the CuPt atomic ordering should be diminished

due to the high temperature growth conditions [143], we nevertheless speculate that a portion

of the broad spectrum can be attributed to this effect, which is known to decrease the band

gap. While there are theoretical methods that describe the effect of the CuPt ordering on

the band gap [144], it is nearly impossible to accurately quantify its effect on a particular

heterostructure. Nevertheless, we believe that there is good overall agreement between (i) the

calculated ground state transition energies using the 8-band k·p model, and (ii) the emission

wavelength of the measured PL spectrum of a representative sample, supporting the use of the

model below for further calculation of trends in electronic and optical properties.

PL measurements were performed on a series of QWR-based structures with different separation

between QWRs along the growth direction (or barrier thickness) in order to determine its

influence on the intensity of the PL emission. It was found that by decreasing the barrier

thickness from 20 nm to 3 nm an enhanced spontaneous emission can be obtained, suggesting

that a minimal amount of barrier material has to be deposited to maximise the intensity

and efficiency of the emission. We perform here a theoretical analysis of the impact of the

barrier thickness on the QWR spontaneous emission for a better understanding of its influence.

Fig. 5.5 shows the calculated variation of the radiative current density Jrad of the x-polarised

emission (red line) and peak emission wavelength λp (blue line) of a 15 nm thick and 2.2 nm tall

[110] Al0.22In0.78P QWR in an Al0.316Ga0.212In0.472P supercell with in-plane base dimensions

56.6×56.6 nm2 and supercell height between 3 and 10 nm, and injected areal carrier density
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Figure 5.5: Calculated variation of the radiative current density Jrad of the x−polarised
emission (red line) and peak emission wavelength λp (blue line) of a 15 nm thick and 2.2
nm tall [110] Al0.22In0.78P QWR in an Al0.316Ga0.212In0.472P supercell with the in-plane base
56.6×56.6 base and the supercell heigh between 3 and 10 nm, and injected areal carrier density
n2D = 1.56× 1011 cm−2.

n2D = 1.56 × 1011 cm−2. Here, for the calculation of Jrad we consider the possibility of the

injected electrons to occupy both the Γ states in the QWR as well as the delocalised X states

in the barrier. Comparing the strain distribution in this set of supercells, we find that there is

negligible change in the magnitude of strain tensor elements by increasing the supercell height

from 3 to 10 nm. Therefore the change in peak emission wavelength from 605 to 585 nm

when the supercell thickness increases from 3 to 10 nm occurs mostly due to a smaller vertical

separation between the QWRs (or thinner barrier) and wavefunction coupling between the

neighbouring layers.

In addition, increasing the supercell thickness from 3 to 10 nm leads to a significant reduction

in the calculated radiative current density Jrad by a factor of 4, due to a combination of

factors. Firstly, by increasing the supercell thickness from 3 to 10 nm, the wavefunction coupling

between the neighbouring layers decreases; therefore the Γ electron ground state reaches the

Γ band edge of the barrier. At the same time, the difference between the ground Γ and X

electron states decreases from 44 to 8.7 meV when the supercell thickness changes from 3 to

10 nm, thereby allowing a smaller fraction of electrons to occupy the direct band gap states

according to the Fermi-Dirac distribution, which becomes particularly important at 300 K or

higher temperatures.

Secondly, the shallow ground electron confinement and a smaller supercell height compared

to its in-plane base size results in the partial spillover of the electron wavefunction into the
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Figure 5.6: Calculated distribution of the probability density of the ground electron (left
column) and hole (right column) states in the (110) plane of a Al0.316Ga0.212In0.472P supercell
on GaAs with the in-plane base size 56.6×56.6 nm, and the height 3 nm (10 nm) in the upper
row (bottom row). The supercell contains a 15 nm thick and 2.2 nm tall [110] Al0.22In0.78P
QWR, denoted by the hatched black rectangle. Note that the in-plane dimensions (or [11̄0])
are one order of magnitude larger than along the growth direction (or [001]).

barrier; its wavefunction confinement ratio decreases from 73 to 41% by increasing the height

of the supercell from 3 to 10 nm. The wavefunction confinement ratio ηψ is given by:

ηψ =

∫
ΩQ

|ψ(r)|2 dr , (5.3)

where the integration is performed over the volume of the nanostructure ΩQ (in this case QWR)

and is always smaller than 1 due to the wavefunction being normalised. This, in combination

with the strongly localised ground hole state with ηψ ≈ 85%, means that a stronger electron-

hole wavefunction overlap will be achieved when the electron wavefunction will occupy the least

amount of volume i.e. in a supercell with a smaller height, which is shown in Fig. 5.6. From

our calculations we find that the momentum matrix element between the ground electron and

hole states of 12.3 eV·Å in the 3 nm tall supercell for x-polarised light reduces to 8.15 eV·Å by

increasing the height to 10 nm.

The emission efficiency of a photonic structure and its behaviour as a function of temperature

can be studied by analysing the temperature dependence of the integrated PL spectrum. Such

measurements can provide very useful insight into the nature of carrier leakage mechanisms

by determining the activation energy (or energies) associated with thermal leakage [145, 146].

Temperature-dependent PL measurements were performed on a range of QWR-based samples

grown at the Tyndall National Institute, with the measured temperature dependence of the
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Figure 5.7: Measured temperature dependence of the integrated PL intensity (blue squares)
of a Al0.22In0.78P/(Al0.60Ga0.40)0.52In0.48P QWR-based structure, normalised to the measure-
ment at 8 K. The dashed line denotes the fitting of the measured integrated intensity using
Eq. (5.4).

integrated PL intensity of the AlInP/AlGaInP structure discussed above shown using blue

squares in Fig. 5.7. The following Arrhenius equation was used to fit the data [143]

I(T ) ∝ 1
√
T
(
A exp (− Ee

kBT
) +B exp (− Eh

kBT
)− CT 2

) (5.4)

where A, B, C are fitting parameters, Ee, Eh are activation energies, and kB and T denote

the Boltzmann constant and temperature respectively. Looking at the data for T . 60 K

we find that there is an unusual increase in integrated PL intensity, which is fitted using the

last term in the demonimator in Eq. (5.4). We believe that this increase is associated with

the indirect band gap nature of the barrier material (cf. Fig. 5.3), whereby the intervalley

transfer of electrons from the X states of the barrier into the confined Γ electron states in the

AlInP QWRs is phonon-assisted. A rise in temperature from 8 K and the consequent increase in

electron-phonon scattering rate, thereby promotes this transfer leading to an increased radiative

recombination rate between the electrons and the localised holes in the AlInP QWR [143].

The activation energies used to fit the temperature dependent integrated PL from Fig. 5.7 are

Ee = 23 meV and Eh = 108 meV. We note that there is a certain variability in the chosen set

of parameters to reproduce the fit, particularly the activation energies Ee and Eh. Ignoring

the term CT 2 in the denominator of Eq. (5.4), we find that a range of activation energies Ee

and Eh can be used to reproduce the resulting temperature dependent integrated PL intensity.
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Figure 5.8: Calculated radiative current density Jrad for a single light polarisation ê =
x̂ cos (θ) + ŷ sin (θ) as a function of the polarisation direction of the incident wave θ of a 15 nm
thick and 2.2 nm tall [110] Al0.22In0.78P QWR in a 56.6×56.6×3.4 nm Al0.316Ga0.212In0.472P
supercell. At θ = π/4 the light polarisation is along the QWR axis.

For instance, a similar fit can be obtained by choosing Ee (Eh) in the range of 17.5 – 37.5

(107 – 127) meV, while simultaneously adjusting the parameter A (B). Overall it is clear that

two activation energies are necessary to accurately fit the experimental measurements, one

of which is much smaller than the other. Examining the band structure in Fig. 5.3, we see

that the ground hole state is located approximately 107 meV above the LH band edge of the

barrier. At the same time, we calculate that the ground electron state in the AlInP QWR is

located 40 meV below the ground delocalised X state in the barrier. We therefore attribute the

activation energies Ee and Eh to the confinement depth1 of the ground electron and hole states

respectively, with electron leakage due to the shallow confinement then making a significant

contribution to the nonradiative losses in short wavelength red emitters [70]. In Chapter 6

we propose a way to improve the efficiency of shorter wavelength red emitters by employing

metamorphic substrates to give improved electron confinement and to consequently reduce the

electron leakage.

Due to the fact that the active region is formed of QWRs, it is expected that the spontaneous

emission will be highly anisotropic, favouring a particular polarisation direction of the emitted

radiation. The polar plot in Fig. 5.8 shows the calculated radiative current densities Jrad

of a [110] AlInP QWR as a function of the in-plane polarisation direction of the incident

electromagnetic wave at a constant injected areal carrier density n2D = 1.56 × 1011 cm−2.

For the calculation of the polarisation dependent emission we consider here two supercells (cf.

Fig. 5.5) with height Lz = 3 nm (red line) and 10 nm (blue line). The angle θ = π/4 is

associated with the electromagnetic radiation that is linearly polarised along the QWR axis.

We, again, find here that enhanced emission can be achieved by growing the multilayer structure

1Here and in Chapter 6 the confinement depth will denote the difference in energy between, e.g., the electron
(hole) ground state and the barrier conduction (valence) band edge.
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with thinner barrier, as described earlier. When investigating the impact of barrier thickness

earlier, we calculated the radiative current rate for x-polarised TE emission (cf. Fig. 5.5). We

see from Fig. 5.8 that the QWR emission strength varies strongly with angle, being maximised

along the [110] direction, and with the value along x direction equivalent to that obtained by

averaging over all directions. From our calculations we find that rotating from the x to the

[110] direction almost doubles Jrad for the structure in a 3 nm tall supercell from 4.07 to 7.96

A·cm−2 (from 0.972 to 1.592 A·cm−2 for the 10 nm tall supercell).

For the polarisation angle θ = 3π/4, i.e. normal to the QWR axis, Jrad in fact decreases by

surrounding the AlInP with a thinner barrier. This suggests that a larger degree of linear

polarisation (DOLP) p is associated with the reduced barrier thickness, where p is defined here

as:

p =
J

[110]
rad − J

[1̄10]
rad

J
[110]
rad + J

[1̄10]
rad

, (5.5)

where J
[110]
rad and J

[1̄10]
rad are the radiative current densities along the [110] (maximum Jrad)

and [1̄10] (minimum Jrad) polarisation directions respectively. From our calculations we find

that by reducing the supercell height from 10 to 3 nm p increases linearly from 0.63 to 0.95.

The polarisation-dependent PL measurements performed on the QWR-based structure from

Fig. 5.4 and 5.7 indicate that almost 80% of the emitted light is polarised along the QWR

axis, which is in reasonably good agreement with our model. We note that the measured

DOLP is intermediate between that which we calculate for the 10 nm and 3 nm supercell

height, suggesting that the interwire coupling in the actual device may be lower than that

which we have assumed when using a 3 nm supercell height. The fact that TE-polarised

red emission with a DOLP close to 1 can be obtained by employing [110]-oriented QWRs is

particularly relevant when we take into account the possibility to generate green and blue

highly polarised emission using III-N based heterostructures [147, 148]. It is therefore possible

to design white light sources based on red, green and blue emitters with high DOLP, thereby

reducing the complexity of devices like LCD displays by, e.g., removing the requirement for

polarising filters. The multilayer [110] AlGaInP QWR-based heterostructures are therefore an

attractive candidate as a red emitter for such technologies.

5.4 Electroluminescence measurements under hydrostatic pres-

sure

Hydrostatic pressure is a very useful tool to analyse loss mechanisms in semiconductor devices.

When hydrostatic pressure is applied, the equilibrium lattice constant changes and the band
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Figure 5.9: Measured variation of the peak electroluminescence energy of an Al(Ga)InP
QWR-based LED device under hydrostatic pressure, denoted by the red open circles. The
blue and green solid (dashed) lines denote the change in the direct (indirect) band gap under
hydrostatic pressure of AlP and InP respectively. The measurements were performed at 293
K. The measurements indicate an increase in peak emission energy with applied hydrostatic
pressure, consistent with direct band gap radiative recombination.

structure is modified in a controlled way. In particular, hydrostatic pressure increases the direct

gap at Γ by about 10 meV/kbar and decreases the indirect gap at X by about 2 meV/kbar [140].

As a result the separation between Γ and X states decreases with increasing pressure. Hence

if carrier escape from Γ to X is a significant loss mechanism in a semiconductor laser or LED,

it can be expected that this loss becomes more significant with increasing pressure, and so

the device optical efficiency will decrease as pressure is applied. Previous measurements of

the red laser threshold current density as a function of hydrostatic pressure have proved to be

very useful in identifying the role of carrier leakage to X states in determining overall device

efficiency [71, 149]. As there has been little previous work on red QD/QWR LEDs, hydrostatic

pressure measurements should also provide useful insight for these devices, and samples were

therefore provided to collaborators at University of Surrey to undertake such measurements.

Figure 5.9 shows the measured variation of the energy gap with pressure for an LED structure.

We see increasing peak energy with increasing pressure, which is consistent with movement of

the direct band gap. The measured pressure dependence of 6.8 meV/kbar is consistent with

that expected from AlInP QWRs with high In composition, as dEg/dp = 9.4meV/kbar and

7.4 meV for AlP and InP respectively, and strained QWRs can be expected to have a lower

pressure coefficient than equivalent bulk alloys, due to third order elasticity effects [150].
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Figure 5.10: Measured electroluminescence spectra of an Al(Ga)InP QWR-based LED device
resulting when a 6 mA (red line), 11 mA (green line) and 18 mA (solid black line) current is
injected into the device at ambient pressure. The measurements were performed at 293 K.
The dashed black line denotes the spectral range in which the GaAs substrate is transparent.
The emission from the active region is observed around the high energy (2 eV) peak, while the
spectrum below 1.4 eV is due to emission from the n-doped GaAs substrate.

Figure 5.10 shows the room temperature PL spectra measured across a wide spectral range for

a sample LED structure. Interestingly, some broad PL emission is found below 1.4 eV, which

subsequent analysis showed was due to emission from the n-doped GaAs substrate. It should

be noted that the data presented in Fig. 5.10 has been spectrally corrected to account for the

efficiency of the photodetector used in the spectral measurements, which is about an order of

magnitude more efficient in the low energy range than it is around 2 eV.

Because the LED output decreases strongly with increasing temperature, it was not possible to

undertake spectrally resolved pressure measurements at room temperature. Instead the inte-

grated light output was measured, using both an InGaAs photodetector and a Si photodetector.

Figure 5.11 shows the integrated intensity measured as a function of drive current for the two

detectors. It can be seen that the light output drops off more rapidly with drive current for the

Si detector. This is most likely because the Si detector does not detect all the long wavelength

near-IR band.
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Figure 5.11: Measured L–I curves of an Al(Ga)InP QWR-based LED device under ambient
pressure. The emission was collected using an InGaAs detector (red line) and Si detector (green
line) at 293 K, while the blue solid line corresponds to the L–I curve measured at 80 K.

The left panel of Fig 5.12 shows the measured room temperature L–I curve as a function of

pressure. It can be seen that the current required to achieve a given total light output increases

weakly with pressure. This is investigated in further detail in the right panel of Fig. 5.12,

where we plot the normalised total current required to provide a constant output intensity as

a function of pressure. The black data points were obtained using the Si detector, while the

red data points were obtained using the InGaAs detector. It is difficult to make an accurate

quantitative analysis of the measured data. We note however that the data obtained using the

Si detector tend to lie above those obtained using the InGaAs detector, presumably reflecting

the greater contribution or near-IR emission in the InGaAs case. Assuming that the radiative

emission and defect currents do not vary with pressure, a reasonable fit is obtained if 7% of

the total current at ambient pressure is due to Γ–X leakage, using the model below [71, 151]:

Itot(p) = Idef (p) + Irad(p) + IΓ−X
leak (p)

Irad(p) + Idef (p) = const

IΓ−X
leak (p) ∝ exp

[
−
(

dEX

dp
− dEΓ

dp

)
p

kBT

]
,

(5.6)
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Figure 5.12: (Left panel) Measured L–I curves of an Al(Ga)InP QWR-based LED device
under hydrostatic pressure and at 293 K temperature. The dashed black line shows how the
total current varies for an arbitrary constant light output level as a function of applied pressure.
(Right panel) Measured normalised injected current to achieve a constant radiative emission as
a function of applied hydrostatic pressure, denoted by the dashed black line in the left panel.
The black squares and red circles correspond to the injection current required to achieve a
constant emission measured by a Si and InGaAs detector respectively. The dashed black line
denotes the expected behaviour of the L–I curve assuming that Γ–X leakage is the dominant
non-radiative loss mechanism, whereas the measured data (red circles) was fitted using the
model from Eq. (5.6).

where Itot, Idef , Irad and IΓ−X
leak denote the total, defect-related, radiative and Γ – X leakage-

related current respectively. The dashed black line shows the expected variation of the nor-

malised current, ignoring the near-IR contribution to the L–I curve, and assuming that the

radiative current is only due to red emission (close to 2 eV). It can be seen that the measured

pressure dependence is significantly lower than that predicted by the dashed black line. If we

allow however that a large part of the measured light output comes from the low-energy near-

IR peak then the measured data are consistent with the Γ–X leakage being the dominant loss

mechanism in the device active region. As noted, the detectors are up to an order of magnitude

more sensitive in the near-IR range compared to the red spectral range. From Fig. 5.10, the

measured response due to the substrate emission could then be close to an order of magnitude

larger than that due to the red-band emission. We conclude therefore, based on Figs. 5.10 and

5.12, and wider spectral measurements undertaken at Tyndall National Institute that the dom-

inant non-radiative loss mechanism in the devices considered is associated with non-radiative

Γ–X leakage, due to the close proximity of the Γ and X states in the device being investigated.

5.5 Conclusions

In this chapter we investigated the electronic and optical properties of [110]-oriented compres-

sively strained AlInP Quantum Wires (QWRs) for 610 nm emission, surrounded by AlGaInP

barriers lattice-matched to the GaAs substrate.
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In Section 5.1 we outlined the motivation for the use of, originally intended, QD-based het-

erostructures, which were grown using the self-assembled Stranski-Krastanov technique at Tyn-

dall National Institute. In order to obtain high-quality multilayer QD-based heterostructures

(with up to 200 layers) a 6◦ tilt was applied to the substrate towards the (111)A direction. The

resulting step-bunched organisation consequently promoted the growth of QWRs elongated

along the [110] direction, which we can model using the plane wave method with periodic

boundary conditions to calculate the electronic and optical properties.

In our calculations, the QWR composition was chosen to match the nominal growth conditions,

with the main QWR details extrapolated from the TEM scan, including QWR geometry and

periodicity. In Section 5.2 we analysed the influence of strain on the electronic structure of

compressively strained AlInP QWRs surrounded by an AlGaInP barrier grown lattice-matched

on GaAs. From the calculated strain distribution we found that the band structure of the

AlInP QWRs is affected the most due to the lattice mismatch, thereby reducing the CB offset

and the electron confinement depth. Due to the biaxial strain in the AlGaInP barrier (i) the

lowest CB edge is located at the X point in the Brillouin zone, and (ii) a significant fraction

of the electrons can populate the delocalised X states in the barrier, assuming a Fermi-Dirac

carrier distribution for the electrons.

We perform an analysis of the electronic and optical properties of QWR-based supercells in

Section 5.3. Having found that there is reasonable agreement between our model and the mea-

sured PL energies of the QWR-based structure investigated, we examined the impact of the

barrier thickness Lz on the radiative current density Jrad of such supercells. Our calculations

show that enhanced optical properties can be achieved by separating the QWR layers with a

thinner barrier due to (i) a smaller fraction of electrons occupying the barrier X states because

of a deeper confinement, and (ii) a larger ground electron-hole wavefunction overlap, which

is related to better confinement of the ground electron state in the wire. From the PL mea-

surements performed on AlInP/AlGaInP-based heterostructures we found that (i) interatomic

diffusion, (ii) partial relaxation, and (iii) potential CuPt ordering have to be taken into account

to explain the wide PL spectra.

From the integrated PL measurements we found that thermal leakage of electrons from the

QWR into the barrier is the primary cause of the large decrease in efficiency of shorter wave-

length emitters. We found that the reduced symmetry of the QWRs allows to create emitters

with a strong degree of linear polarisation. The radiative emission was found to be polarised

nearly 100% along the QWR axis when the QWRs are surrounded by thin barrier layers (Lz ≈
3 nm), making such heterostructures attractive for display applications, where polarising filters

are typically employed.

Finally, we analysed the electroluminescent properties of QWR-based LED devices under hy-

drostatic pressure in Section 5.4, for which the experimental measurements were performed at
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University of Surrey, UK. A blueshifted emission due to applied pressure confirmed the direct

band gap nature of the radiative recombination. A large component of the measured response

in the pressure measurements was estimated as being due to sub-band-gap optical emission

from the n–doped substrate. Assuming that this substrate emission only has a weak depen-

dence on pressure, we conclude that Γ–X leakage is indeed the dominant loss mechanism in the

active region at room temperature.

Considering that the major drawback of these devices is carrier leakage related with the weak

electronic confinement, in the next chapter we will examine a way to enhance the efficiency of

shorter wavelength red emitters by employing lattice-mismatched metamorphic buffer layers.



Chapter 6

AlGaInP 610 nm metamorphic

quantum well based light-emitting

diodes

For this chapter we perform calculations to investigate the potential benefits of growing Al(Ga)InP

QW-based light-emitting diodes (LED) with 610 nm peak emission on InGaAs Metamorphic

Buffer Layers (MBL).

We start in Section 6.1 with an analysis of the range of compositions accessible for a direct

band gap Al(Ga)InP alloy when grown on an InzGa1−zAs MBL. We then consider a series of

heterostructure for 610 nm emission with a compressively strained AlInP QW surrounded by

Al(Ga)InP barriers, which are at the direct-to-indirect band gap crossover and lattice-matched

to the InGaAs MBL. Using model solid theory we estimate the change in the conduction band

offset, which is crucial for the investigation of electronic confinement.

Having estimated the band alignment in the series of heterostructures considered, we then

analyse the electronic properties of a series of structures in Section 6.2, where we focus pri-

marily on the effect of the InGaAs MBL lattice constant on the electronic confinement and

estimate its potential impact on the thermal leakage of electrons. We then perform an analysis

of the optical properties of the series of structures in Section 6.3, to determine the effect of an

InGaAs MBL lattice constant on the calculated radiative recombination rate. These are then

compared to preliminary results of temperature dependent microphotoluminescence measure-

ments performed on QW-based structures grown on InzGa1−zAs with z = 0 and 6%. Finally,

we conclude in Section 6.4.

111
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Figure 6.1: Calculated variation of the bulk band gap of AlxIn1−xP lattice matched to the
InzGa1−zAs MBL at 300 K. The solid and dashed lines denote the band gap at the Γ and
X valleys respectively. The closed blue circle and vertical arrow show that AlxIn1−xP can be
grown with a direct band gap lattice matched to the InzGa1−zAs MBL with z ≈ 11%.

6.1 Band structure engineering

As we mentioned in Section 5.3, the main factor that limits the efficiency of short wavelength

red LEDs on GaAs is the shallow electronic confinement due to the direct-to-indirect band

gap crossover in AlxGayIn1−x−yP. The largest direct band gap EΓ
g available for this alloy

lattice-matched to GaAs is 2.33 eV at 0 K (cf. Ref. [140], Ref. 37 in [140]) and 2.253 at 300

K [140]. This, as a consequence, brings about (i) a significant thermal leakage of electrons

into the barrier at 300 K or higher temperatures in 610 nm LEDs due to a small magnitude

of the conduction band offset, and (ii) a reduced refractive index contrast between the barrier

and the cladding layer necessary for optical confinement. The second factor is particularly

important for the development of efficient 610 nm lasers, where the low optical confinement

factor Γ significantly increases the threshold current density Jth. The early work by Bour et

al. [70] on AlGaInP-based lasers with 614 – 663 nm emission indicates a significant rise in

Jth when shortening the emission wavelength, and is especially noticeable when the peak gain

shifts from 620 to 614 nm (Jth increases from 0.8 to 2.4 kA cm−2 at 300 K respectively).

A characteristic temperature T0 = 22 K was also determined for the 614 nm laser, making

continuous wave operation impossible at room temperature. The optimisation of 610 nm lasers

is not considered in this chapter where we focus exclusively on the electronic confinement and

spontaneous emission. However we hope that the results presented here will also motivate the

development of short wavelength red lasers with improved threshold characteristics.
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Due to the aforementioned limitation in the direct band gap, we wish to explore the band

structure of AlxGayIn1−x−yP with a lattice constant other than that of GaAs, similar to the

analysis carrier out in Section 4.1 for AlGaInAs, with the aim to identify the potential to

improve electronic confinement for more efficient 610 nm emission. Fig. 6.1 shows the calculated

variation of the bulk band gap at Γ (solid line) and X (dashed line) for AlInP at 300 K lattice

matched to an InzGa1−zAs MBL with 0 ≤ z ≤ 12%. Details of the origins of the parameters

used in this chapter are given in Appendix A. We calculate that a direct band gap can be

achieved for AlxIn1−xP when lattice matched to InzGa1−zAs with z & 11%, with the largest

band gap EΓ
g of 2.310 eV at z ≈ 11% (blue arrow). While it may not appear significantly

different than the largest direct band gap of AlGaInP lattice matched to GaAs of about 2.284

eV according to our set of material parameters, it can contribute nonetheless to a reduced

thermal leakage of electrons by increasing the confinement depth ∆E0 of electrons. In order to

avoid the indirect band gap in AlInP lattice matched to InzGa1−zAs with z . 11% and bring

it (at least) towards the Γ−X crossover, a fraction of AlP has to be replaced with GaP whose

EΓ
g is smaller by ≈ 0.885 eV at 300 K. However, due to an additional interplay between (i)

the band gap bowing and (ii) the reduced fraction of InP at lower z to maintain the lattice-

matched condition, the band gap at the Γ− X crossover increases overall by about 1 kBT (at

300 K) in our calculations going from z = 0 to 11%. We note however that our calculations are

likely to be a lower estimate of the increase in energy gap; experimental measurements give an

estimated Γ–X crossover at 2.253 eV at 300 K on GaAs [140] and at a maximum value of 2.33

eV on In0.105Ga0.895As [152]. The direct band gap of AlInP lattice-matched to InzGa1−zAs

with z & 11% decreases simply due to a replacement of AlP with InP with the EΓ
g decreasing

by about 226 meV per 1% In for z & 11%. Since we find that a larger direct band gap for

Al(Ga)InP can be only for z > 0%, we exclude from our analysis here heterostructures grown

on an MBL, e.g. GaAsP or InGaP, with a lattice constant smaller than GaAs.

We calculate the band gap of the unstrained AlxGayIn1−x−yP alloy using the following quadratic

interpolation

EΓ,X
g (AlxGayIn1−x−yP ) = xEΓ,X

g (AlP) + yEΓ,X
g (GaP) + (1− x− y)EΓ,X

g (InP)−

− xyCΓ,X
AlGaP − x(1− x− y)CΓ,X

AlInP − y(1− x− y)CΓ,X
GaInP ,

(6.1)

where CAlGaP, CAlInP, CGaInP denote the band gap bowing parameters of the corresponding

ternary materials1, with the superscripts Γ and X denoting the corresponding valley minimum

of the Brillouin zone. For most ternary alloys, the band gap bowing parameters C are positive,

1The interpolation of the band gap of a quaternary alloy may also include an additional term of form −xy(1−
x− y)CAlGaInP. We neglect this bowing parameter from our analysis since our values of band gap for AlGaInP
lattice-matched to GaAs compare very favourably with other theoretical and experimental works; this is discussed
in more details in Appendix A.
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thereby producing a sublinear interpolation of the band gap between the binary components.

For AlGaInP specifically, the band gap bowing arises primarily from CGaInP which is taken

here to be 0.66 eV, while the other two are set as zero [125, 153]. Although it is known that

EΓ
g of GaInP follows a sublinear interpolation between the binary components [154–156], to

our knowledge there have been no experimental works on the (direct) band gap of AlGaInP

lattice-mismatched with respect to GaAs, therefore we cannot benchmark our chosen value for

bowing on the quaternary alloy with arbitrary composition.

Following the discussion above, the electronic and optical properties calculations in this chapter

are performed on a set of compressively strained AlInP QW-based heterostructures surrounded

by Al(Ga)InP barriers, which are lattice matched to the InzGa1−zAs MBL with z ≤ 12%. The

barrier is chosen to have a thickness of 20 nm on each side of the QW and the composition of

the barrier is set to be at the Γ−X crossover, to both minimise carrier leakage and maximise

electronic transport. We choose to include a QW rather than a QD or QWR in the supercell, in

order to simplify our analysis whereby the barrier band structure is not affected by the lattice

mismatch of the AlInP QW with respect to the InGaAs MBL2 (cf. chapter 5.2).

The AlxIn1−xP QW in the supercell is chosen to have a thickness of 8 nm. Depending on

the composition of InzGa1−zAs MBL, the composition of the QW is slightly adjusted in order

to maintain the peak emission at 610 nm, with x = 25% on GaAs and up to x = 27.2% at

z = 11%, where the barrier band gap is the largest, and x = 26.7% at z = 12%. The in-plane

compressive strain εxx in the AlInP QW due to being lattice-mismatched to the InzGa1−zAs

MBL reduces from εxx ≈ 2.00% on GaAs to εxx ≈ 1.08% with z = 11% due to the negligible

change in the QW’s lattice constant, thereby reducing the upward (downward) shift in energy

of the CB minimum (VB maxima). Excluding the effects of confinement, this minor increase in

the fraction of AlP in the AlInP QW, combined with the resulting change in strain, keeps the

band gap almost constant at about 2 eV. The calculations of optical properties are performed

at 300 K.

The average valence band energy Eavgv of the Al(Ga)InP alloy, required for the estimation of

the band alignment at the QW-barrier interface, is interpolated quadratically using Eq. (6.1),

where the bowing parameters CABC for Eavgv are calculated as follows [124]

CABC = 3 [av(AC)− av(BC)]
aAC − aBC

aMBL
, (6.2)

where ABC denotes a ternary alloy, e.g. AlxIn1−xP, av(AC,BC) is the hydrostatic deformation

potential of the valence band maximum for the corresponding binary compound, with aAC,BC

2Following the results from Chapter 5.3, the inclusion of a QWR (or QD) into the supercell, which may
additionally improve the carrier transport, e.g. by reducing the surface recombination due to carrier localisation,
is an additional step for optimisation of 610 nm emitters, which is beyond the scope of this work.
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Figure 6.2: Calculated distribution of the bulk band edges along the growth direction in
a AlInP QW surrounded by Al(Ga)InP barrier lattice-matched to InzGa1−zAs for z = 0%
(left panel) and z = 11% (right panel). The solid red, green, orange and blue lines denote
the conduction band edge at Γ, X, heavy-hole and light-hole valence bands respectively. The
dashed red and orange lines denote the calculated confined ground electron and hole states
respectively. The zero of energy is in each case taken at the barrier valence band maximum.

and aMBL corresponding to the lattice constants of the binary material and MBL respectively.

Fig. 6.2 shows the resulting calculated band alignment of the AlInP/Al(Ga)InP heterostructures

grown on GaAs (left panel) and In0.11Ga0.89As (right panel). Using our set of parameters we

find that by changing the InzGa1−zAs MBL composition from GaAs to z = 11%, the valence

band offset ∆Ev of the AlInP/Al(Ga)InP heterostructure, calculated using Eq. (4.1), decreases

from 194 to 148 meV when the effects of strain are considered. When looking at the evolution

of Eavgv of the AlxGayIn1−x−yP barrier with z in the InzGa1−zAs MBL, we find, surprisingly,

that the largest contribution arises from the term x(1−x−y)CAlInP. This can be explained by

the fact that (i) av(AlP) is almost 2.5 times larger than av(InP), and (ii) GaP has the lowest

composition fraction, and this effect is more pronounced at z > 0 where the fractions of both

AlP and InP increase at the expense of GaP. This change in ∆Ev and the increased EΓ
g of

the barrier from 2.284 to 2.310 eV at 300 K mentioned earlier result in a calculated increase

in the conduction band offset ∆Ec by 72 meV. We therefore expect this increase in ∆Ec to

significantly modify the electronic confinement for 610 nm emission, and we quantify its effect

on the optical properties in the next section. We also note that the magnitude of the change in

∆Ec is sensitive to the set of chosen material parameters, and requires additional experimental

investigations to be performed on such heterostructures in order to test our predictions.
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Figure 6.3: Calculated variation of the confinement depth ∆E0 of the ground electron state
(left panel), and normalised thermal leakage of electrons at 300 K assuming an exponential
dependence upon ∆E0 as shown in Eq. (6.3) (right panel) as a function of z in the InzGa1−zAs
MBL. The calculations are performed on a series of supercells with a compressively strained
8 nm AlInP QW for 610 nm emission and surrounded by 20 nm Al(Ga)InP barriers with the
band gap at the Γ–X crossover and lattice-matched to an InzGa1−zAs MBL.

6.2 Electronic confinement

Having determined the effect of the InzGa1−zAs MBL on the conduction band offset ∆Ec at

the AlInP QW – AlGaInP barrier interface, we turn our attention to the consequent change in

electron confinement. The left panel of Fig. 6.3 shows the calculated confinement depth ∆E0 of

the ground electron state in our set of AlInP/Al(Ga)InP supercells at 300 K. We find a linear

increase in ∆E0 when growing the AlInP/Al(Ga)InP heterostructure on the InzGa1−zAs MBL

from 73 meV on GaAs to 130 meV at z = 11% , with an additional increase in the InGaAs MBL

lattice constant lowering this value due to a decrease in the barrier band gap (cf. Fig. 6.1). In

the previous chapter we assumed that the escape rate of the carriers 1/τes has the following

dependence

1

τes
∝ exp

(
− Ea
kBT

)
, (6.3)

which is caused by the thermal escape of the confined carriers whose confinement depth repre-

sents the activation energy. Based on this assumption, we expect that a deeper confinement of

the electrons in the QW will suppress their thermal escape into the barrier when the structure

is grown on InzGa1−zAs with z ≈ 11% compared to GaAs. Assuming that the coefficient A

from Eq. (5.4) does not vary with temperature, this change in confinement therefore reduces

the thermal escape of electrons by up to a factor of 6 at 300 K by increasing z from 0 to 11%,

as shown in the right panel of Fig. 6.3.

In a similar manner, a deeper confinement of electrons reduces their probability to occupy

the delocalised X states in the barrier assuming that they obey the Fermi-Dirac distribution.

Using Eq. (4.8) and considering only the calculated electron bound states at Γ to compute the
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Figure 6.4: Calculated variation of the electron confinement factor ηe (cf. Eq. (4.8)) in the
AlInP QW for 610 nm emission for an areal carrier density n2D = 1.0×1012 cm−2 as a function
of z in the InzGa1−zAs MBL, for the same series of compressively strained 610 nm QWs as in
Fig. 6.3.

electron confinement factor ηe, we calculate that by growing the structure on the InzGa1−zAs

MBL ηe increases from 47.4% on GaAs to 78.3% when z = 11% at the areal carrier density

n2D = 1.0 × 1012 cm−2, thereby allowing a much larger fraction of electrons to radiatively

recombine with the holes in the QW. Although ∆E0 decreases for z & 11% (cf. Fig. 6.3), the Γ

and X valley minima of the AlInP conduction band are no longer degenerate thus providing an

additional energy separation between the ground electron state and the delocalised X states in

the barrier, and we find ηe ≈ 82.4% for z = 12% at the same n2D. This case, however, introduces

a trade-off between (i) a shallower electronic confinement and (ii) a larger fraction of electrons

occupying the bound states in the QW. We predict that the radiative emission of a 610 nm

LED at 300 K or higher temperatures will therefore be maximised in a heterostructure grown

on an In0.11Ga0.89As MBL when the magnitude of ∆E0 reaches its peak; however additional

experimental confirmation is required to test this prediction. We also note that, although the

phonon-assited intervalley transfer of electrons from the QW may reduce the actual activation

energy by a few tens of meV (cf. Section 5.3), the incorporation of an InzGa1−zAs MBL

with z > 0% can nonetheless facilitate an improved electronic confinement, therefore providing

enhanced thermal efficiency and radiative emission at 300 K or higher temperatures.

Another side effect of the distribution of electrons into the barrier X states is the creation of an

electrostatic potential across the supercell due to the spatial separation between the electrons in

the barrier and the holes in the QW. Here we proceed with the following Schrödinger equation:
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[Hk·p(z,k) +Hε(z,k)− eφ(z)]ψn(z,k) = En(k)ψn(z,k) , (6.4)

where Hk·p and Hε are the k ·p and strain Hamiltonians respectively, e is the electron charge,

and the electrostatic potential φ(z) is the solution of Poisson’s equation from Eq. (3.82) and

is, therefore, calculated self-consistently. Although in our set of supercells this effect is not as

significant as in a typical type-II heterostructure with Γ−Γ carrier confinement, i.e. where the

bound Γ electrons and holes are localised in separate layers, this effect nevertheless affects the

carrier confinement in our structures by pushing both Γ electron and hole states downward in

energy and, generally, blueshifting the emission when carriers are injected into the heterostruc-

ture. Due to a smaller ηe at lower compositions z of the InzGa1−zAs MBL, this effect is most

pronounced in the structure grown on GaAs. Our calculations, however, show that there is a

negligible change in the peak emission wavelength when n2D is increased. Our calculations also

show that ηe increases by approximately 74% when increasing n2D from 1.0×1010 to 1.0×1012

cm−2 in the heterostructure grown on GaAs. We attribute this to (i) an increasing separa-

tion between the ground Γ electron states in the QW and the X states in the barrier (and,

consequently, ∆E0
3) due to the electrostatic potential when increasing n2D, and (ii) a slightly

improved wavefunction confinement ratio ηψ, given in Eq. (5.3), for the bound Γ electron states.

These results suggest that a superlinear dependence of the ground state spontaneous emission

rate on n2D will occur, although we note that the leakage rate will also depend on the carrier

density. On the other hand, the electrostatic field is strongly diminished in the heterostructure

grown on the In0.11Ga0.89As MBL, therefore we conclude that ηe remains relatively constant

within the same range of n2D, which is a typical behaviour for a type-I active region.

6.3 Spontaneous emission and photoluminescence measurements

The effect of a deeper electron confinement on the optical properties of a 610 nm emitter is

presented in the left panel in Fig. 6.5, which shows the calculated radiative current density Jrad

in our set of structures for a constant injected areal carrier density n2D = 1.0× 1012 cm−2. We

find that by growing the structure on an InzGa1−zAs MBL, Jrad increases by 63 % from 18.7

A cm−2 on GaAs to 30.4 A cm−2 when z = 11%, due to the aforementioned increase in the

fraction of electrons located in the QW. Jrad increases even beyond this lattice constant of the

MBL, reaching 32.14 A cm−2 at z = 12%, although leakage current may also start to increase

again due to the reduction in barrier energy gap at z & 11%. These results also suggest that

3Because of this electrostatic potential, which is calculated self consistently using Schrödinger’s and Poisson’s
equations, (i) the conduction and valence band edges across the supercell are no longer flat, and (ii) the confine-
ment depth ∆E0 depends on the injected carrier density. Therefore, in order to simplify the estimations of the
electron confinement depth ∆E0, the data presented in Fig. 6.3 is calculated relative to the barrier band edge
when the electrostatic potential is neglected, although in reality they may be confined deeper in the QW, with
this difference becoming less significant for z approaching 11%.
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Figure 6.5: Calculated radiative current density Jrad at injected areal carrier density n2D =
1.0×1012cm−2 (left panel), and areal carrier density n2D required to obtain a Jrad ≈ 30 A cm−2

(right panel), as a function of z in the InzGa1−zAs MBL, for the same series of compressively
strained 610 nm QWs as in Fig. 6.3.

the incorporation of an InzGa1−zAs MBL enables the reduction of n2D in order to achieve a

certain radiative recombination rate, which is shown in the right panel of Fig. 6.5. Here we

find that by changing the lattice constant of the InzGa1−zAs MBL from the one of GaAs to

z = 11%, n2D can be reduced by 23% in order to maintain Jrad ≈ 30 A cm−2. This reduction in

n2D could be useful, particularly for the development of power efficient portable devices, where

the display has the largest power consumption. Our calculations also show that n2D for any

constant value of Jrad starts to saturate when the structure is grown on In0.1Ga0.9As and there

is minimal difference by having z = 11% in the InzGa1−zAs MBL.

In order to verify our predictions of an improved efficiency in 610 nm emitters by employing an

InzGa1−zAs MBL, two 5 QW AlGaInP-based samples were grown by the Epitaxy and Physics of

Nanostructures group at the Tyndall National Institute. As the efficiency of the emission drops

rapidly as it blueshifts towards 610 nm [70], it becomes important here to compare samples with

the peak emission wavelength as similar as possible, which will then allow a direct comparison

of the drop in emission efficiency with increasing temperature. The first structure was grown on

GaAs, with the QWs surrounded by (Al0.6Ga0.4)0.52In0.48P (sample A) which has the band gap

near the Γ−X crossover for an optimised performance of real LED (cf. Section 5.2). The QWs in

the second structure were surrounded by (Al0.95Ga0.05)0.47In0.53P barriers, which were grown

lattice-matched to an In0.06Ga0.94As MBL (sample B). The microphotoluminescence (µPL)

measurements performed on these samples at 270 K show a nearly identical peak emission

wavelength, as shown in the left panel of Fig. 6.6.

The right panel of Fig. 6.6 includes a comparison of the temperature dependent integrated

µPL, with the red and blue lines corresponding to sample A and B respectively. Similar to the

QWR-based structures from Chapter 5, the intensity of the emission in sample A (on GaAs)

reduces by a factor of 300 when increasing the temperature from 8 to 270 K. By contrast,

there is a significantly smaller drop in the efficiency of the emission of sample B (on an InGaAs
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Figure 6.6: Measured µ−photoluminescence spectra of at 270 K (left panel), and measured
temperature dependent integrated photoluminescence (right panel) of a sample grown on GaAs
(sample A, red line) and In0.06Ga0.94As (sample B, blue line); each sample contains 5 QWs.

MBL) with temperature, decreasing only by a factor of 100 over the same range of temperature.

Although, using our set of parameters, the barriers in sample B are expected to have an indirect

band gap, we conclude that the observed improvement in optical emission efficiency for growth

on an InzGa1−zAs MBL with z = 6% is highly encouraging 4.

There are a few things to note here. Firstly, the aforementioned barrier composition in both

samples denote the nominal growth conditions, while in reality they may (slightly) differ. The

shallow electronic confinement can be affected by variations in barrier and well composition

primarily due to (i) changes in the composition-dependent band gap, and (ii) strain-induced

effects on the QW band gap.

Secondly, there is a much larger degree of uncertainty in the composition of the AlGaInP QWs

in both samples, since they are much thinner than the barrier layers. The composition of a

particular layer is inferred from X-Ray Diffraction (XRD) and PL measurements, where certain

assumptions, e.g. lack of relaxation, are made. Nevertheless, the critical factor is the emission

wavelength, and it can be seen from Fig. 6.6 that this is nearly identical in the two samples,

and possibly even at slightly shorter wavelength in the sample B. Finally, we acknowledge that

the comparison of the efficiency of the temperature-dependent integrated µPL was performed

only on two samples, whereas a larger sample size is required for a more accurate description.

6.4 Conclusions

In this chapter we investigated the electronic and optical properties of AlInP/AlGaInP QW-

based heterostructures for use as the active region in shorter wavelength red emitters grown

on InGaAs Metamorphic Buffer Layers (MBL). Here we consider a series of supercells with a

4The experimental data for sample A on the right panel of Fig. 6.6 (red line) is obtained by averaging the
data of multiple µPL measurements at each temperature.
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8 nm compressively strained AlxIn1−xP QW surrounded by 20 nm Al(Ga)InP barriers lattice-

matched to an InzGa1−zAs MBL with 0 ≤ z ≤ 12%, and perform the calculations at 300 K.

The composition of the Al(Ga)InP barrier was chosen such as to have the Γ and X CB valley

minima degenerate, while including minor adjustments to the QW composition to maintain

610 nm peak emission.

We started our analysis in Section 6.1 with the investigation of Al(Ga)InP band structure

lattice-matched to an InzGa1−zAs MBL. Using our set of parameters presented in Appendix A

we found that the use of an InzGa1−zAs MBL allows to (i) increase the direct band gap of

the Al(Ga)InP barrier with the largest magnitude corresponding to AlInP lattice-matched to

InzGa1−zAs MBL at z ≈ 11% at 300 K, and (ii) increase the CB offset at the barrier-QW

interface at the expense of the VB offset according to model solid theory [124]. A larger CB

offset then allows a deeper confinement of electrons in the QW for 610 nm emission, thereby

reducing what is known to be the primary loss mechanism in such structures.

In Section 6.2 we present the results of electronic confinement and optical properties calculations

performed on a series of supercells. Here we calculate that by employing an InzGa1−zAs MBL

the electron confinement depth can be increased from 73 meV on GaAs to 130 meV having

z = 11%. We expect that a deeper electronic confinement will enable the:

(i) suppression of the thermal leakage of the electrons from the QW into the barrier. Our

qualitative analysis here suggests that the electron leakage can be reduced by up to a

factor of 6 at 300 K (or even more at higher temperatures), assuming that the thermal

leakage depends exponentially on the confinement depth;

(ii) reduction of the fraction of electrons thermally distributed into the delocalised X states

in the barrier assuming the Fermi-Dirac distribution. Our calculations show that the

fraction of electrons occupying the QW increases by about 79% when the device is grown

on In0.11Ga0.89As compared to GaAs. This, therefore, allows a larger fraction of elec-

trons to radiatively recombine with the holes in the QW, and we calculate the radiative

current density Jrad to increase by about 63% by growing the structure on In0.11Ga0.89As

compared to GaAs at a constant areal carrier density n2D = 1.0× 1012 cm−2;

(iii) reduction of n2D when increasing z in the InzGa1−zAs MBL from 0 to 11% to maintain

a constant radiative recombination rate. This improvement is particularily important in

the context of portable devices, e.g. smartphones, where the largest power consumption

is attributed to the display.

In order to verify our predictions, we turned our attention to microphotoluminescence (µPL)

measurements performed on two 5 QWs samples in Section 6.3, grown on GaAs (sample A) and

on an In0.06Ga0.94As MBL (sample B). The temperature-dependent integrated µPL response of
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these structures, which emit at close to identical wavelengths at 270 K, show an improvement

by a factor of 3 in the efficiency of the emission for sample B at 270 K.

Finally, we note that the calculated improvements in electronic and optical properties in 610

nm emitters brought about by growth on an InGaAs MBL is sensitive to the chosen set of

material parameters. At the same time, the comparison of the µPL measurements made on

only 2 samples is not sufficient to draw a definitive conclusion about the impact of an InGaAs

MBL on the efficiency of shorter wavelength red emitters. Based on the preliminary results,

we therefore strongly encourage the scientific community to investigate in more detail (i) the

band structure of AlGaInP, and (ii) the effect of growth on an InGaAs MBL on the emission

efficiency of 610 nm light-emitting diodes.



Chapter 7

Summary, conclusions, and future

work

We present our final analysis of the thesis in this chapter. We start with Section 7.1, where

we provide a summary of the thesis, and then present and discuss in Section 7.2 potential

directions for future research based on the work in this thesis.

7.1 Summary and conclusions

In this thesis we performed theoretical simulation of electronic and optical properties of 1.3 µm

AlInGaAs-based lasers and 610 nm AlGaInP-based LEDs grown on relaxed InGaAs Metamor-

phic Buffer Layers (MBLs) for optimised emission and improved efficiency compared to devices

grown on conventional substrates such as InP and GaAs.

We began in Chapter 2 by presenting the theoretical model to calculate the electronic structure

of zinc blende semiconductors and the optical properties of semiconductor photonic devices,

such as lasers and light-emitting diodes (LEDs). Here we introduced the well established 8-band

k·p model, including the effects of strain, to calculate the electronic structure of zinc blende

semiconductors. We then proceeded to the theory of optical properties, where we derived the

expression for gain spectrum. Starting with Fermi’s golden rule, which ensures that a transition

between a conduction and a valence state is at near-resonance with the energy of the incident

photon, we showed that population inversion is necessary for material gain to occur. Here the

optical confinement factor Γ was introduced, which describes the fraction of the incident wave

“confined” in the active region, typically a few percent in a single QW-based heterostructure.

This factor therefore reduces the magnitude of the amplified emission, with the device ulti-

mately producing the modal gain, which, unlike the material gain, is measurable. Finally, the
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expression for the spontaneous emission spectrum is derived to complete our theoretical model

for device simulation.

In Chapter 3 we presented the semi-analytical plane wave expansion method, which is the

computational technique used in this thesis to implement our theoretical model into a set

of codes. This method then enables the calculation of the electronic and optical properties of

Quantum Well (QW), Quantum Wire (QWR) and Quantum Dot (QD) based heterostructures,

using periodic boundary conditions. We applied the method first to the 1-band model, where

we showed how the linear Schrödinger equation can be transformed into an eigenvalue problem

with the position-dependent effective mass Hamiltonian becoming a square matrix using the

Fourier transform approach. This matrix is then diagonalised numerically to calculate the

eigenstates in the supercell. Here we introduced the characteristic function of the QW in order

to calculate the Fourier expansion of the Hamiltonian matrix elements. In real space, the

position-dependent characteristic function equals unity (zero) inside (outside) the QW, and its

Fourier transform is the key step required to calculate the electronic structure of a QW (or

other nanostructure).

We then applied the method to the 8-band k·p Hamiltonian, which we directly used to calculate

the electronic structure of AlInGaAs- and AlGaInP-based heterostructures in Chapters 4, 5 and

6. The method was applied first for single and multiple QW-based supercells, where we showed

that the Fourier expansion of a single-QW Hamiltonian is a simplified case of a multi-QW

expansion, for which a linear combination of multiple characteristic functions is used.

We then presented the implementation of the method to calculate the electronic properties

of QD- or QWR-based supercells, which are periodic along all three Cartesian coordinate

axes. Here we found the plane wave expansion of the k·p Hamiltonian to be similar to the

QW case, and we showed that the former is a special case of the general three-dimensional

expansion. Because the strain distribution in a QWR- or QD-based heterostructure is more

complex compared to the QW-based case, we presented the analytical expression for the Fourier

transform of strain tensor elements in a supercell that contains a QD or QWR. We then

provided the analytical solution of Poisson’s equation by evaluating the Fourier transform

of the carrier-induced electrostatic potential due to spatial separation of electrons and holes

within a supercell. The latter is calculated self-consistently using the Fourier coefficients of the

calculated eigenstates directly.

The Fourier transform of the strain tensor and carrier-induced electrostatic potential can be

used to (i) estimate their real-space distribution within the supercell, and/or (ii) evaluate the

plane wave expansion of the Pikus-Bir Hamiltonian matrix elements and the diagonal terms of

the aforementioned electrostatic potential. We next provided analytical expressions to calculate

the momentum matrix elements between a conduction and a valence energy level using the

calculated Fourier coefficients of the corresponding eigenstates.
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The 8-band k·p model and the plane wave expansion method are then used for the remainder

of this thesis, where we performed a detailed analysis of the electronic structure and optical

properties of (i) 1.3 µm metamorphic AlInGaAs QW-based lasers for telecom applications in

Chapter 4, and (ii) 610 nm AlGaInP QWR- and QW-based LEDs for display applications in

Chapters 5 and 6.

The first part of this research was presented in Chapter 4, where we performed a theoreti-

cal investigation and optimisation of the properties and performance of GaAs-based 1.3 µm

InGaAs/(Al)InGaAs QW lasers grown on InGaAs MBLs, with the goal to provide detailed

guidelines for the design of optimised devices.

We started our analysis by identifying the ranges of strain and QW thickness accessible for

1.3 µm emission when the heterostructure is grown on an InGaAs MBL. We then calculated

the variation of gain and threshold characteristics as a function of strain and QW thickness,

and showed that metamorphic 1.3 µm laser structures offer reduced threshold current den-

sity, comparable internal quantum efficiency and enhanced differential gain compared to those

calculated previously for optimised InP-based devices. We also considered QWs having quater-

nary AlInGaAs barriers and showed that the barrier Al composition can be varied to optimise

the trade-off between the carrier and optical confinement in such a way as to enhance the

laser performance, leading to reduced carrier and current densities at threshold, as well as im-

proved internal quantum efficiency and differential gain, with the effects of quaternary barriers

becoming increasingly beneficial with increasing temperature.

Through our analysis we identified that an optimised 1.3 µm device grown on an In0.2Ga0.8As

MBL should consist of . 3 QWs, with the InGaAs QWs having compressive strains 2.0% .

εxx . 2.3%, corresponding to QW widths 5 nm . dQW . 7 nm (In compositions 49% . x .

54%). We further identified that the optimum barrier materials are unstrained AlyIn0.2Ga0.8−yAs

alloys having Al compositions 6% . y . 15%. Finally, by varying the composition of the In-

GaAs MBL we found that the devices should be grown on virtual substrates having low In

composition for improved gain characteristics. Although this is consistent with the expected

improvement in device performance in going from InP-based to GaAs-based heterostructures,

our analysis indicates that for optimised laser performance the devices should be grown on an

In0.2Ga0.8As MBL.

For the second part of this research, presented in Chapters 5 and 6, we performed a theoretical

investigation of electronic and optical properties of AlGaInP-based LEDs for 610 nm emission.

We started with Chapter 5, where we investigated the electronic and optical properties of [110]-

oriented self-assembled AlGaInP Quantum Wires (QWRs) based heterostructures for 610 nm

emission.
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The TEM scans performed on QWR-based devices grown at Tyndall National Institute showed

the in-plane and vertically periodic organisation of the nanostructures, the electronic and optical

properties of which we calculated using the periodic boundary conditions of our model. Using

the calculated strain distribution we found that the band structure of the AlInP QWRs is

affected the most due to the lattice mismatch with respect to the barrier, leading to a reduced

conduction band (CB) offset and reduced electron confinement.

We then performed an analysis of the electronic and optical properties of QWR-based supercells.

Here we examined the impact of the barrier thickness Lz on the radiative recombination in

these heterostructures, with our calculations showing that enhanced optical properties can be

achieved by separating the QWR layers with a thinner barrier. This is the result of an improved

electronic confinement, which then leads to (i) a smaller fraction of electrons occupying the

barrier X states, and (ii) an improved ground electron-hole wavefunction overlap.

From the integrated PL measurements we found that thermal leakage of electrons from the

QWR into the barrier is the primary cause of the large decrease in efficiency of shorter wave-

length emitters. Our calculations also showed that the QWRs, due to being elongated along

the [110] direction, can be used to create emitters with a strong degree of linear polarisation.

We calculated the radiative emission to be polarised nearly 100% along the QWR axis when the

QWRs are surrounded by thin barrier layers (Lz ≈ 3 nm), in good agreement with experimen-

tal measurements. This then makes such heterostructures attractive for display applications,

where, to date, filters are typically employed to achieve polarised emission.

Finally, electroluminescence measurements of QWR-based LED devices under hydrostatic pres-

sure performed at University of Surrey, UK confirmed the direct band gap nature of the ra-

diative recombination, while also providing evidence that Γ–X leakage is indeed the dominant

loss mechanism in the active region at room temperature.

Overall, these results confirm the significant thermal leakage of electrons from the active region

due to a shallow electron confinement. These results serve as a precursor to the following

chapter, where we investigate the possibility of improving electron confinement for improved

efficiency of 610 nm devices, by employing lattice-mismatched InGaAs MBLs.

Finally, we investigated in Chapter 6 the possibility of using AlInP/AlGaInP QW-based het-

erostructures grown on InGaAs MBLs as the active region for 610 nm LEDs. We started

our analysis with an investigation of the band strucutre of Al(Ga)InP lattice-matched to an

InzGa1−zAs MBL. We calculated that the use of an InzGa1−zAs MBL brings about (i) an

increased direct band gap of the Al(Ga)InP barrier, with the largest value at 300 K found for

AlInP lattice-matched to an InzGa1−zAs MBL at z ≈ 11%, and (ii) an increased CB offset at

the barrier-QW interface at the expense of the VB offset according to model solid theory. A

larger CB offset then allows better confinement of electrons in the QW for 610 nm emission,
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thereby reducing what was confirmed in the previous chapter as the primary loss mechanism

in such devices.

We then performed calculations on a series of supercells to investigate the electronic and optical

properties of these heterostructures. Our calculations showed that the electron confinement can

be strongly improved by growing the heterostructure on an InGaAs MBL, thereby reducing the

thermal leakage of electrons from the QW into the barrier. In a similar manner, the enhanced

electron confinement is expected to reduce the fraction of thermally distributed electrons in

the X bands in the barrier, thereby improving the radiative recombination rate at fixed car-

rier density for 610 nm emission. In order to test our predictions, microphotoluminescence

(µPL) measurements were performed on two 5 QWs structures, grown on GaAs and on an

In0.06Ga0.94As MBL. The preliminary temperature-dependent integrated µPL measurements

performed on these devices, which emit at close to identical wavelength at 270 K, show an

improvement by a factor of 3 in the efficiency of the emission at 270 K.

We note that the calculated scale of improvements in the electronic and optical properties of

610 nm emitters brought about by incorporating an InGaAs MBL are sensitive to the chosen

set of material parameters. Also, we cannot make a definitive conclusion about the impact of

an InGaAs MBL on the efficiency of shorter wavelength red emitters given the small sample

size on which the µPL measurements were performed. Based on the preliminary results, we

therefore strongly encourage the scientific community to investigate in more detail (i) the band

structure of AlGaInP, and (ii) the effect of growth on an InGaAs MBL on the emission efficiency

of 610 nm LEDs.

Overall, our theoretical analysis has identified important trends in the performance of GaAs-

based metamorphic QW lasers and LEDs, has provided design parameters for optimised emis-

sion of the heterostructures, and has confirmed the promise of these novel heterostructures for

the development of high performance GaAs-based 1.3 µm lasers and 610 nm LEDs.

7.2 Future work

Here we present some possible directions towards which research presented in this thesis can

be extended.

For our analysis of electronic and optical properties of metamorphic lasers in Chapter 4 we

considered an AlxGa0.8−xIn0.2As cladding layer with x = 40%. A possible way to further

optimise metamorphic lasers for 1.3 µm emission is to incorporate a larger fraction of Al x

for a larger band gap. We estimate that a direct band gap AlxGa0.8−xIn0.2As epilayer can

be grown with x up to about 62%, with the increased band gap allowing an improved carrier

confinement. This, in combination with an improved refractive index contrast for a superior
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optical confinement, is expected to further improve the threshold and gain characteristics of

1.3 µm metamorphic lasers.

In Chapter 6 our analysis was restricted to the calculation of the electronic and optical prop-

erties of QW-based supercells. The lattice mismatch between the QW and the MBL produces

a linear strain profile across the supercell, thereby simplifying the analysis of the electronic

confinement. It is however expected that metamorphic 610 nm emitters could also benefit

from the incorporation of self-assembled QWRs, which would produce a polarised emission (cf.

Chapter 5). Also, in our previous work in Ref. [143], the electrical measurements showed that

incorporation of self-assembled QWRs in the active region instead of QW(s) can further reduce

the current leakage, whereby a higher degree of spatial confinement in the growth plane reduces

the diffusion of carriers towards the surface of the device.

In addition, the results of our calculations in Chapter 6 are a motivation to create efficient

610 nm lasers. It is known that the significant current leakage due to the weak electron

confinement has been a limiting factor on the threshold characteristics of shorter wavelength

red lasers. A threshold current density Jth of 5.9 kA cm−2 for a 610 nm p− n junction based

laser was reported originally by Nuese et al. in 1972 [157]. The work by Bour et al. reported

a reduced Jth to 2.4 kA cm−2 for a single QW-based 614 nm laser in 1994, although with a

very low characteristic temperature T0 of 22 K between 3 and 30◦ C, so that the device cannot

operate in continuous-wave mode at room temperature [70]. Other attempts have also been

made to create a semiconductor laser for red-orange emission, including conversion of a 1220–

1240 nm dilute nitride GaInNAs QW-based laser into 610–620 nm using nonlinear crystal

waveguides [158, 159]. Therefore, metamorphic substrates become a more attractive option

since it is expected to improve the device efficiency without the incorporation of additional

layers into the heterostructure, thereby simplifying the laser design.

However, as we mentioned the results presented in Chapter 6 are sensitive to the choice of

material parameters. As we discuss in Appendix A, we find that the literature currently lacks

a consistent set of material parameters for III-P compounds. While some theoretical and

experimental analysis has been performed on the band structure of AlGaInP lattice-matched

to GaAs, which is the conventional substrate for red emitting devices, to our knowledge the

research focused on the bandstructure of III-P alloys with a different lattice constant is very

limited. Given the intrinsicly weak electronic confinement in blueshifted red LEDs, as well as

our predictions of improved optoelectronic performance for these devices by using an InGaAs

MBL, there is an opportunity to investigate in more detail the bandstructure of AlGaInP alloys

for efficient 610 nm (or shorter wavelength) emission.



Appendix A

Material parameters for k·p
calculations

In this appendix we present the material parameters used in the calculations of electronic and

optical properties of AlGaInAs QW based lasers in Chapter 4 and AlGaInP-based LEDs in

Chapters 5 and 6. In Section A.1 we discuss the chosen material parameters for III-P binaries.

Unlike the III-As compounds, the material parameters of which are well defined in the literature

and have a relatively low degree of uncertainty, it appears that the literature lacks a consistent

set of parameters for the III-P binaries. In particular, the main uncertainties are related with

the direct and indirect band gap, as well as certain deformation potentials.

This leads to uncertainty regarding the material parameters for (Al)GaInP ternary (quaternary)

layers grown on InGaAs MBLs. Parameters have been extracted from strained GaInP layers

grown on GaAs, and from lattice-matched AlGaInP layers on GaAs, as well as limited data

for lattice-matched AlInP layers on InGaAs MBLs. We use these results to benchmark the

parameters that we present for AlGaInP grown on InGaAs MBL layers.
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Table A.1: Material parameters for III-As and III-P compounds used in k·p calculations.
Since we do not consider the X valley in the electronic and optical properties calculations
of AlGaInAs-based lasers, certain parameters like electron effective masses or deformation
potentials are omitted. The parameters presented include (i) Γ and X energy gaps at 0 K,
spin-orbit splitting energy, and average energy of the three highest valence states relative to
vaccuum; (ii) parameters for temperature dependence of Γ and X energy gaps; (iii) parameters
for k·p model, and Γ and X effective masses; (iv) lattice constant and elastic constants; (v)
deformation potentials, and (vi) bowing parameters for Γ and X band gap, and spin-orbit
splitting energy. The parameters for III-As compounds are taken from Refs. [103, 125, 132],
and we discuss the sources of parameters for III-P compounds in Section A.1.

Parameter AlAs GaAs InAs AlP GaP InP

EΓ
g at 0 K (eV) 3.051 1.517 0.424 3.680 2.826 1.4539

EX
g at 0 K (eV) 2.229 1.980 1.433 2.510 2.350 2.300

∆SO (eV) 0.280 0.340 0.380 0.070 0.080 0.108
Eavgv (eV) -7.38 -6.84 -6.68 -8.00 -7.47 -7.04

αΓ (meV K−1) 0.67 0.5408 0.406 0.5771 0.10811 0.03592

βΓ (K) 300 204 271 372 1641 2092

αX (meV K−1) 0.7 0.46 0.276 0.5771 0.62 0.5771
βX (K) 530 204 93 372 460 372

EP (eV) 21.1 28.8 21.5 16.807 17.496 14.314
γL

1 3.760 6.980 20.0 3.750 6.517 6.28
γL

2 0.820 2.060 8.50 0.893 1.872 2.08
γL

3 1.420 2.930 9.20 1.494 2.672 2.76
mΓ
e (m0) 0.1350 0.0665 0.0223 0.170 0.0925 0.0808

m‖e (m0) —– —– —– 2.68 2.0 1.38
m⊥e (m0) —– —– —– 0.155 0.253 0.278

a0 (Å) 5.6600 5.6533 6.0580 5.4672 5.4505 5.8697
C11 (GPa) 125.0 118.0 83.0 133.0 140.5 102.0
C12 (GPa) 53.0 53.8 48.0 63.0 62.03 57.6
C44 (GPa) 57.0 59.4 39.6 61.5 70.33 46.0

ac (eV) -5.64 -8.06 -5.88 -5.86 -8.57 -5.71
av (eV) 2.47 1.16 1.00 3.15 1.70 1.27
b (eV) -1.50 -1.70 -1.80 -1.50 -1.50 -1.60
d (eV) —– —– —– -4.60 -4.60 -5.00

Ξh (eV) —– —– —– 1.81 2.70 1.85
Ξax (eV) —– —– —– 6.75 6.30 3.30

Parameter AlGaAs AlInAs GaInAs AlGaP AlInP GaInP

CΓ (eV) 0.370 0.750 0.450 0.000 0.000 0.660
CX (eV) 0.000 0.000 0.000 -0.130 0.000 0.220
C∆ (eV) 0.000 0.150 0.0289 0.000 0.000 0.000

1EΓ
g calculated using Ref. [160]

2EΓ
g calculated using Ref. [161]
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A.1 Review of the material parameters for III-P compounds

In our calculations the direct (indirect) band gap of AlP and InP at 300 K are taken to be 3.602

and 1.346 eV (2.432 and 2.222 eV) respectively. These values are in a very good agreement

with the measurements performed by Onton et al. [153]. Similarly to Si, GaP is an indirect

gap material with the conduction band minimum located near the X point of the Brillouin zone

[162]. For our calculations we assume a direct and indirect band gap of GaP at 300 K to be

2.717 and 2.276 eV respectively, with the latter being in a good agreement with Ref. [163]. We

find that the reported values of Γ and X band gaps for GaP (c.f. Refs. [155, 163–165]) are more

inconsistent compared to InP and AlP. Consequently, our values were adjusted to fit the more

recently reported experimentally measured band gaps for GaInP lattice-matched to GaAs from

Refs. [140, 166], which also require a bowing parameter and is discussed below.

Except for the direct band gap of InP and GaP, the temperature dependence of the band gaps

of the binary materials were calculated using the Varshni relation. The literature data suggests

that different equations can be used to better reproduce the direct energy gap of InP [161] and

GaP [160]. Another important aspect is that the band gap in the X valley decreases slower

compared to the Γ minimum. For example, in the work by Beaton et al. [152] it was shown

that by increasing the temperature from 8 to 300 K, the direct-to-indirect band gap crossover

in the AlxIn1−xP alloy shifts from x ≈ 40.5± 0.2 % to x ≈ 43.2± 0.2 %. A similar behaviour

was found for GaP, where the difference between the band gap in Γ and X valleys decreased

from 0.555 eV at 8 K to 0.538 eV at 300K [164].

Typically the band gap of a ternary alloy follows a quadratic fit and is interpolated with the

relation:

Eg (AxB1−xC) = x · Eg (AC) + (1− x) · Eg (BC)− x · (1− x) · CABC (A.1)

where CABC is the band gap bowing parameter. The work by Onton et al. [153] however shows

that the band gap of an AlInP alloy can be interpolated linearly between the binary extremes,

thus we do not include band gap bowing for this alloy in our calculations. Using the parameters

in [153] we find that the direct-to-indirect band gap crossover in AlxIn1−xP alloys at 300K occurs

at x ≈ 42.7 % with the energy gap at 2.310 eV. The experimental work by Beaton et al. [152]

shows the direct-to-indirect band gap crossover occuring at 300 K for x ≈ 43.3 ± 0.2 % with

the measured band gap at 2.330 ± 0.005 eV, while the cathodoluminescence measurements

performed by Onton et al. [153] determine the crossover to be at x ≈ 44 % with a 2.33 eV

band gap. While the difference between our theoretical estimations and the experimental values

has a small magnitude, a 20 meV change in the band gap could impact the external quantum

efficiency of 610 nm emitters by affecting the intrinsicly weak electronic confinement and barrier
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to electron leakage. We note however that the theoretical barrier energy gap is smaller than

the experimental one, so that our results therefore provide a conservative estimate of the effect

of growth on a MBL.

Unlike the AlInP alloy, multiple reports [154, 156] show that a non-zero bowing parameter is

required to fit the composition dependent bandgap in GaInP for both Γ and X valleys. In our

calculations we use CGaInP to be 0.66 (0.22) eV for the direct (indirect) band gap in order to

reproduce the experimentally measured band gap of (i) the GaxIn1−xP alloy across the entire

composition range from Ref. [154], and (ii) Ga0.5In0.5P from Refs. [140, 166]. We find that

there has been very limited investigation of the electronic structure of AlGaP alloys, and these

suggest that the alloy does not require a bowing parameter in order to interpolate the band

gap [125].

Having established a set of parameters that can provide a good description of the band gaps

of AlGaInP alloys with lattice constants close to that of GaAs, we now turn our attention to

the band alignment. This will help us determine the magnitude of the band offsets in order to

estimate the electron confinement depth using our 8-band k·p model. In our calculations we

calculate the valence band offset ∆Ev using model solid theory [124]. This and the calculated

Γ and X band gaps for our heterostructures allow us to calculate the conduction band offset

∆Ec. The maximum of the valence band, Ev, is calculated using the position of the average

valence band, Eavgv , and the spin-orbit splitting, ∆so, as follows:

Ev = Eavgv +
1

3
∆so (A.2)

Several values for the average valence band energy, Eavgv , determined from model solid theory,

can be found in the literature. The original work by Van de Walle [124] estimates Eavgv to

be -8.09, -7.40 and -7.04 eV for AlP, GaP and InP respectively. The work by Qteish and

Needs [126] suggests slightly different values for the III-P binaries (-8.00, -7.26 and -6.81 eV

for AlP, GaP and InP respectively). In our calculations we take Eavgv for AlP, GaP and InP

to be -8.00, -7.47 and -7.04 eV respectively, based on the theoretical work by Krijn [125]. The

values for ∆so used in our calculations are 0.07, 0.08 and 0.108 eV for AlP, GaP and InP

respectively, and are typical values used in the literature [103]. Using our set of parameters we

find a very good agreement between our estimated ∆Ev for AlP/GaP/InP interfaces and the

theoretical predictions by Li et al. [127]. We also find that the calculated ∆Ev and ∆Ec for

GaInP/AlGaInP heterostructures lattice matched to GaAs in our model are in good agreement

with the work by Zhang et al. [167], with the ∆Ec/∆Ev ratio being within the range of

measured values [168, 169].

Because of an inconsistent set of deformation potentials available in the literature for III-P

compounds, we limit the choice of compositions for AlGaInP-based heterostructures by using
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lattice-matched barriers. Nevertheless deformation potentials are required for our calculations

to include the effect of compressive strain on the band structure of AlInP QW- and QWR-

based supercells. In our calculations we assume the conduction band deformation potentials ac

for AlP, GaP, and InP to be -5.86, -8.57 and -5.71 eV respectively, and are taken from Wei’s

work [170]. The values for valence band deformation potential av, which is responsible for the

strain-induced shift of the average valence band energy, are taken from Qteish’s work [126]

and are in agreement with other reported values [103]. Overall, we estimate the direct band

gap deformation potential aΓ
g = ac − av in our calculations to be -9.01, -10.27 and -6.98 eV

for AlP, GaP and InP respectively. Earlier experimental measurements suggest aΓ
g for GaP

to be -9.9±0.3 eV [171] and -9.9 eV±10% [165], assuming in the latter a bulk modulus of 90

GPa. For InP however a broader range of aΓ
g can be found, with values such as -6.35±0.05

[172], -6.07±0.06 [173], -6.4 [174] and -8.0±0.4 eV [175] for InP. We find this range surprising

given the direct band gap nature of this compound. Using the bulk modulus of GaAs, which

is estimated to be about 6% larger than the one for InP, Kobayashi et al. evaluate aΓ
g to be

-6.7 eV for InP [176]. The experimental work by Ernst et al. [177] estimates the Γ− X valley

crossover in undoped InP to occur at 11.2±0.4 GPa at low temperatures, which translates into

approximately 3.7% lattice compression, however the authors did not provide the magnitude

of the band gap at this crossover. Using our values for aΓ
g and the hydrostatic deformation

potential for the X valley aX
g = Ξh − av of 0.58 eV, where Ξh is the hydrostatic deformation

potential for the X valley minimum, we find that this crossover occurs at 2.234 eV with a 3.9%

lattice compression at 4 K. To our knowledge there are no experimental investigations of aΓ
g

for AlP, with the theoretical works estimating it to be -9.52 [170], -8.7 eV [124].

In our calculations the values considered for the shear deformation potential b, which determines

the splitting of heavy- and light-hole bands, are taken from Vurgaftman’s work [103] and are

typical values derived from theoretical and experimental estimations. In order to investigate

the effects of strain on the X minimum, the hydrostatic and axial deformation potentials (Ξh

and Ξax respectively) for the conduction band minima are included in our one-band model of

the indirect band gap. We find that there is limited research on these deformation potentials

in the literature, and our values are taken from Adachi [178].

Overall we note that the literature currently lacks a consistent set of material parameters for

III-P compounds. Given the intrinsicly weak electronic confinement in blueshifted red LEDs,

as well as our predictions of improved optoelectronic performance in these devices by using an

InGaAs MBL, we strongly encourage the scientific community to investigate the bandstructure

of AlGaInP alloys in more details.





Appendix B

Second order perturbation theory

Here we provide the derivation of the second order perturbation theory, and we follow the

method used by O’Reilly [88].

For the second order perturbation theory we estimate how the nth wavefunction changes under

the k·p Hamiltonian Ĥ ′, which will help us find an additional change in the energy bands En.

Since we use the perturbation theory for a narrow range of wave vectors k close to the reference

k0, the effect of the perturbed Hamiltonian Ĥ ′ in (2.7) is much smaller compared to Ĥ0 in (2.2).

Therefore the total Hamiltonian Ĥ can be expressed as a power series using a parameter λ,

such as Ĥ = Ĥ0 + λĤ ′ and 0 ≤ λ ≤ 1. In order to estimate the second order correction to the

non-degenerate energy bands En we require the first order correction of the wavefunction ψn

such as

ψn(r) = ψ(0)
n (r) + λψ(1)

n (r) , (B.1a)

En = E(0)
n + λE(1)

n + λ2E(2)
n . (B.1b)

Substituting the expanded Hamiltonian Ĥ and Eqs. (B.1a) into the Scrödinger equation (2.1)

yields

(
Ĥ0 + λĤ ′

)(
ψ(0)
n (r) + λψ(1)

n (r)
)

=
(
E0
n + λE(1)

n + λ2E(2)
n

)(
ψ(0)
n (r) + λψ(1)

n (r)
)
. (B.2)
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Here we assume that the equation is true for all values of λ. Therefore, the polynomials on

both sides will be equal only if the coefficients next to parameter λ at the same power will be

identical, i.e.

Ĥ0ψ
(0)
n (r) = E(0)

n ψ(0)
n (r) (B.3a)

Ĥ ′ψ(0)
n (r) + Ĥ0ψ

(1)
n (r) = E(0)

n ψ(1)
n (r) + E(1)

n ψ(0)
n (r) (B.3b)

Ĥ ′ψ(1)
n (r) = E(2)

n ψ(0)
n (r) + E(1)

n ψ(1)
n (r) . (B.3c)

The first equation here is simply the unperturbed Schrödinger equation (2.1), while the second

can be used to estimate the first order energy E
(1)
n and wavefunction ψ

(1)
n (r) corrections. The

results can then be substituted into the third equation to determine the second order correction

for the energy E
(2)
n .

A change in the wavefunction ψ
(0)
n (r) due to the perturbed Hamiltonian Ĥ ′ can be regarded as

mixing between the other states ψ
(0)
m with m 6= n, in which case the first order correction to the

nth wavefunction can be written as a linear combination of individual fractional contribution

of the other states, i.e.

ψ(1)
n (r) =

∑
m 6=n

anmψ
(0)
m (r) , (B.4)

where anm is the fractional contribution of the mth state to the nth wavefunction. Substituting

Eq. (B.4) into (B.3b) we obtain

∑
m 6=n

(
Ĥ0 − E(0)

n

)
anmψ

(0)
m (r) =

(
E(1)
n − Ĥ ′

)
ψ(0)
n (r) , (B.5)

which, using Eq. (B.3a), becomes

∑
m 6=n

anm

(
E(0)
m − E(0)

n

)
ψ(0)
m (r) =

(
E(1)
n − Ĥ ′

)
ψ(0)
n (r) . (B.6)

Multiplying both sides of the equation here by
(
ψ

(0)
n

)∗
and integrating over the the unit cell

space yields

∑
m 6=n

anm

(
E(0)
m − E(0)

n

)
〈ψ(0)

n |ψ(0)
m 〉 = 〈ψ(0)

n |E(1)
n − Ĥ ′|ψ(0)

n 〉 . (B.7)
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Due to the orthonormality of the wavefunction, i.e. 〈ψn|ψm〉 = δnm, where δnm is the Kronecker

delta, the left-hand side of the Eq. (B.7) is equal to 0. Thus we obtain the first order correction

E
(1)
n of the nth energy state

E(1)
n = 〈ψ0

n|Ĥ ′|ψ0
n〉 , (B.8)

which we have also shown in Eq. (2.11). We now multiply both sides of Eq. (B.6) by
(
ψ

(0)
n′

)∗
to obtain

∑
m6=n

anm

(
E(0)
m − E(0)

n

)
〈ψ(0)

n′ |ψ
(0)
m 〉 = 〈ψ(0)

n′ |E
(1)
n − Ĥ ′|ψ(0)

n 〉 . (B.9)

where, due to the wavefunction orthonormality, only one term in the sum of the left-hand side

is non-zero, and rearrange to find the coefficients a

ann′ =
〈ψ(0)

n′ |Ĥ
′|ψ(0)

n 〉
E

(0)
n − E(0)

n′

. (B.10)

Substituting Eq. (B.10) into (B.4) we find the first order correction ψ
(1)
n to the wavefunction

ψ(1)
n (r) =

∑
m 6=n

〈ψ(0)
m |Ĥ ′|ψ(0)

n 〉
E

(0)
n − E(0)

m

ψ(0)
m . (B.11)

In order to find the second order correction E
(2)
n to the energy state we substitute the first

order expansion of the wavefunction (B.4) into (B.3c)

E(2)
n ψ(0)

n (r) =
∑
m6=n

anm

(
Ĥ ′ − E(1)

n

)
ψ(0)
m (r) , (B.12)

multiply both sides by
(
ψ

(0)
n

)∗
, integrate over the unit cell volume, and, taking the wavefunction

orthonormality into account, we find

E(2)
n =

∑
m 6=n

anm〈ψ(0)
n |Ĥ ′|ψ(0)

m 〉 =
∑
m 6=n

〈ψ(0)
m |Ĥ ′|ψ(0)

n 〉
E

(0)
n − E(0)

m

〈ψ(0)
n |Ĥ ′|ψ(0)

m 〉 (B.13)

Plugging Eqs. (B.8) and (B.13) into (B.1b) yields
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En = E(0)
n + 〈ψ0

n|Ĥ ′|ψ0
n〉+

∑
m 6=n

∣∣∣〈ψ(0)
n |Ĥ ′|ψ(0)

m 〉
∣∣∣2

E
(0)
n − E(0)

m

= E(0)
n + Ĥ ′nn +

∑
m 6=n

∣∣∣Ĥ ′nm∣∣∣2
E

(0)
n − E(0)

m

,

(B.14)

and using the k·p Hamiltonian from Eq. (2.7) the energy dispersion with the second order

correction becomes

En(k) = En(k0) +
~2

2m0
|k− k0|2 +

~
m0

(k− k0) · pnn +
~2

m2
0

∑
m6=n

|(k− k0) · pnm|2

En(k0)− Em(k0)
(B.15)

with the Hamiltonian matrix element Ĥnm

Ĥnm(k) = En(k0)δnm + Ĥ ′nm(k) +
∑
l∈A 6=n

Ĥ ′nl(k)Ĥ ′lm(k)

En(k0)− El(k0)
, (B.16)

where δnm is the Kronecker delta. The term under summation in Eq. (B.15) represents the

perturbation on a particular band En from the nearby bands Em that are located relatively close

in energy. According to Löwdin’s renormalisation method [96] these energy states correspond

to class A, which is specified in the sum in Eq. (B.16). He also introduces the class B states

which denote the remote energy states, which have a much weaker interaction with the class

A states compared to the interaction between the class A states themselves. By adding the

perturbation of class B remote states into the Hamiltonian it becomes:

Ĥnm(k) = En(k0)δnm + Ĥ ′nm(k) +
∑
l∈A 6=n

Ĥ ′nl(k)Ĥ ′lm(k)

En(k0)− El(k0)
+
∑
l∈B

Ĥ ′nl(k)Ĥ ′lm(k)

EA(k0)− El(k0)
. (B.17)
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Fermi’s golden rule

Here we provide the derivation of Fermi’s golden rule, and we start by considering the time-

dependent Schrödinger equation

Ĥψp(r, t) = i~
∂

∂t
ψp(r, t) (C.1)

where the Hamiltonian Ĥ consists of the unperturbed and time-dependent perturbation, Ĥ0

and Ĥ ′ respectively:

Ĥ = Ĥ0 + Ĥ ′(r, t) . (C.2)

Similarly to the perturbation theory in section 2.2, we assume a known wavefunction ψm0 for

the unperturbed Hamiltonian Ĥ0, and can be written as

ψm(r, t) = ψm(r)e−iEmt/~ . (C.3)

The Hamiltonian Ĥ ′ is assumed to have the form:

Ĥ ′(r, t) =

{
Ĥ ′(r)e−iωt + Ĥ ′∗(r)e+iωt, t ≥ 0

0, t < 0
(C.4)

where the ∗ superscript in Ĥ ′∗ denotes the Hermitian conjugate and the perturbation Hamil-

tonian Ĥ ′(r, t) appears due to the interaction between the electron and the incident electro-

magnetic wave with angular frequency ω. Here we consider the time-dependent wavefunction

ψp as a combination of fractional contributions of unperturbed wavefunctions ψm in the series
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ψp(r, t) =
∑
m

am(t)ψm(r, t) =
∑
m

am(t)ψm(r)e−iEmt/~ , (C.5)

where |am|2 gives the probability density of the state n at time t. We substitute the expan-

sion (C.5) into the Schrödinger equation (C.1) and, taking into account the fact that ψm is the

eigenfunction of the unperturbed Hamiltonian Ĥ0, obtain

∑
m

dam(t)

dt
ψm(r)e−iEmt/~ =

1

i~
∑
m

Ĥ ′(r, t)am(t)ψm(r)e−iEmt/~ ⇐⇒

⇐⇒
∑
m

dam(t)

dt
|ψm(r, t)〉 =

1

i~
∑
m

Ĥ ′(r, t)am(t)|ψm(r, t)〉 .
(C.6)

Here we left multiply by 〈ψn(r, t)| and, taking into account the orthonormality condition

〈ψn(r)|ψm(r)〉 = δnm, we obtain

dan(t)

dt
=

1

i~
∑
m

am(t)Ĥ ′nme
iωnmt , (C.7)

where

Ĥ ′nm(t) = 〈ψn(r)|Ĥ ′(r, t)|ψm(r)〉 =

= Ĥ ′nme
−iωt + Ĥ ′∗nme

+iωt ,

ωnm = (En − Em)/~ .

(C.8)

We note here that the Hamiltonian matrix elements Ĥ ′nm and Ĥ ′∗nm are time- and position-

independent. Here we consider the expansion of the Hamiltonian (C.2) and the fractional

parameters an into the following power series:

Ĥ = Ĥ0 + λĤ ′(r, t)

an(t) = a(0)
n + λa(1)

n (t) ,
(C.9)

where 0 ≤ λ ≤ 1, resulting in:

da
(0)
n

dt
= 0

da
(1)
n (t)

dt
=

1

i~
∑
m

a(0)
m Ĥ ′nm(t)eiωnmt .

(C.10)
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Suppose at time t = 0, when no perturbation is applied, the electron is located in an initial

state i, such as:

a
(0)
i = 1

a(0)
n = 0, n 6= i .

(C.11)

With the perturbation included we calculated the first-order contribution to the initial state

a
(1)
i (t):

da
(1)
n (t)

dt
=

1

i~
Ĥ ′ni(t)e

iωnit =

=
1

i~

[
Ĥ ′fie

i(ωni−ω)t + Ĥ ′∗fie
i(ωni+ω)t

]
.

(C.12)

We solve this equation for a final state m = f by integration with the lower and upper limits

t1 = 0 and t2 = t respectively:

a
(1)
f (t) = −1

~

[
Ĥ ′fi

ei(ωfi−ω)t − 1

ωfi − ω
+ Ĥ ′∗fi

ei(ωfi+ω)t − 1

ωfi + ω

]
. (C.13)

We now assume that the incident wave ω is near resonance, i.e. ω ≈ ±ωfi, thereby yielding

the probability density of the electron being in the final state

∣∣∣a(1)
f (t)

∣∣∣2 =
1

~2

{∣∣∣Ĥ ′fi∣∣∣2 sin2[t(ωfi − ω)/2]

[(ωfi − ω)/2]2
+
∣∣∣Ĥ ′∗fi∣∣∣2 sin2[t(ωfi + ω)/2]

[(ωfi + ω)/2]2

}
, (C.14)

where we ignored the cross product terms due to their relatively small magnitude. For times

long enough, we can make the substitution sin2(xt/2)
x2

→ πδ(x) t2 , where δ(x) is the Dirac delta

function, therefore for the transition probability we obtain:

Wif =
d

dt

∣∣∣a(1)
f (t)

∣∣∣2 =
2π

~

{∣∣∣Ĥ ′fi∣∣∣2 δ(Ef − Ei − ~ω) +
∣∣∣Ĥ ′∗fi∣∣∣2 δ(Ef − Ei + ~ω)

}
, (C.15)

where we used the fact that δ(ω) = δ(~ω)/~. The Eq. (C.15) is the Fermi’s golden rule, where

the first (second) term in the bracket represents the absorption (emission), since Ef ≈ Ei + ~ω
(Ef ≈ Ei − ~ω).





Appendix D

Useful characteristic functions for

various quantum wire and quantum

dot shapes

In this appendix we present a set of Fourier transform of the characteristic function χ̃ for

various QD and QWR shapes, which is given by the following integral:

χ̃(G) =
1

Ωsc

∫
ΩQD

e−iG·rdV . (D.1)

Following the derivation procedure in Chapter 3.2, we consider here a rectangular cuboid

supercell with the volume Ωsc = Lx × Ly × Lz. A position dependent material parameter

of the supercell A(r) follows the periodic boundary condition, i.e. A(r) = A(r + R), where

R = mxLxx + myLyy + mzLzz and mx,my,mz ∈ Z. The reciprocal space wave vector G =

(Gx, Gy, Gz), where Gj (j = x, y, z) is given by:

Gj =
2mjπ

Lj
(D.2)

Cuboid Quantum Dot

χ̃(G) =
Ωqd

Ωsc
sinc

(
Gxdx

2

)
sinc

(
Gydy

2

)
sinc

(
Gzdz

2

)
, (D.3)

where dx, dy and dz are the sides length of the cuboid QD along the x, y and z directions

respectively. The body centre of the QD is situated at the origin of the coordinate system.
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Lb

Lb d

Figure D.1: Top view schematic representation of a supercell containing a wire along [110]
direction with the thickness d. When we perform electronic and optical properties calculations
on a QWR we ensure that the supercell has a shape of a square in the (x,y) plane, with sides
Lb. The red hashed areas, including the triangles outside the supercell, are considered for
the derivation of χ̃. Due to the periodic boundary conditions, the red hashed triangles are
replicated inside the supercell, shown as black hashed triangles.

[110] and [11̄0] QWR with a rectangular cross section. Let the QWR have the thickness

d and height h in a supercell with the sides Lb, Lb and Lz in x, y and z direction respectively.

Let a = d
√

2, then

χ̃(G) =
2
√

2Lbh

Gy
sin

(
aGy

2

)
sinc

(
Gzh

2

)
δ(Gx,∓Gy) . (D.4)

The minus and plus signs inside the Kronecker delta δ correspond to the QWR along [110] and

[11̄0] direction respectively. For the derivation of χ̃ of the QWR we ensure that the top view

of the supercell represents a square with the side length L, as shown in Fig. D.1. This, and

the periodic boundary conditions, result in the presence of multiple structures in the supercell,

which, ultimately, do not negatively impact our calculations. One way to address these concerns

is to use another coordinate system (x′, y′) which is rotated by θ = π
4 counterclockwise relative

to the original system (x, y). In this case, however, we (i) are forced to introduce a new set of

wave vectors kj , therefore we need to reevaluate the plane wave expansion of the Hamiltonian

matrix elements [79], and (ii) reevaluate the Fourier transform of the strain tensor. Thus we

decide to use a plane wave basis set that is consistent with all QD and QWR shapes in order to
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simplify the implementation in a code. Here the line x = ±y at z = 0 goes through the centre

of the wire cross section.

Additional expressions for characteristic function for various QD shapes can be found in

Refs. [80, 179].
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