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Small rings without ideal centres

STEPHEN M. BUCKLEY AND DESMOND MACHALE

Abstract. We show that the smallest indecomposable non-unital
ring in which the centre is not an ideal has order 32.

1. Introduction

We say that a ring R has an ideal centre if its centre Z(R) is
an ideal. It is easy to see that a unital ring has an ideal centre if
and only it is commutative, so this concept is mainly of interest for
non-unital rings.

Rings with ideal centres are discussed in [1], where it is shown that
certain classical results of Jacobson and Herstein, whose usual proofs
involve Jacobson’s structure theory, can be proved in an elementary
fashion if we restrict to rings with ideal centres. A notable example
is Herstein’s result [5] that a ring R is commutative if and only if for
every x ∈ R there exists an integer n(x) > 1 such that xn(x) − x ∈
Z(R).

It is easily proved that a finite ring can be decomposed as a direct
sum of rings of prime power order [4], that the centre of a direct sum
is a direct sum of the centres, and that a ring has an ideal centre
if and only if each direct summand has an ideal centre, so the task
of finding a ring of minimal order whose centre fails to be an ideal
reduces to considering only prime powers pn. Here and throughout
the paper, p denotes a prime number.

Various families of noncommutative non-unital rings with ideal
centres are given in [1], but few examples are given of non-unital
rings in which the centre fails to be an ideal. In this note, we will
prove that most non-unital rings of small order, whether commu-
tative or not, have ideal centres. This stands in contrast to the
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42 S. BUCKLEY AND D. MACHALE

situation in unital rings which fail to have an ideal centre if and
only if they are noncommutative.

In view of the discussions above, there is one way of constructing
obvious examples of non-unital rings (with order p4 or higher) that
fail to have an ideal centre: just take the direct sum of a noncom-
mutative unital ring and a non-unital ring. Giving a non-obvious
example amounts to giving an indecomposable example, ideally of
minimal order, and we do so below.

In order to state more precisely the results for small rings in [1], we
first define two rings: U(2,Zn) is the ring of 2× 2 upper triangular
matrices over the ring Zn of integers mod n > 1, i.e. all matrices of
the form (

a b
0 c

)
, a, b, c ∈ Zn , (1)

and N(p) is the ring with p elements in which all products are zero.
The following result is Theorem 4 in [1].

Theorem 1.1.

(i) Suppose R is a unital ring of order pn, where p is prime and
n ≤ 3. If R does not have an ideal centre, then n = 3 and R
is isomorphic to U(2,Zp).

(ii) If R is a non-unital ring of order pn, where p is prime and n ≤
3, then R has an ideal centre. However R16 := U(2,Z2)⊕N(2)
is a non-unital ring of order 24 that fails to have an ideal centre.

Consequently, the order of the smallest unital ring failing to have
an ideal centre is 8, and the order of the smallest non-unital ring
failing to have an ideal centre is 16.

Theorem 1.1(i) was not new, since it just amounts to saying that
if R is a noncommutative unital ring of order pn for n ≤ 3, then
R is isomorphic to U(2,Zp), a result that was proved by Eldridge
[2]. Although Theorem 1.1(ii) was new, the example given there is
certainly decomposable, and is an obvious example in the sense dis-
cussed above; by contrast, U(2,Zp) is easily seen to be indecompos-
able. It would be nice to improve (b) by giving an indecomposable
example of order 16. However the following pair of theorems show
that no such example exists, and that the smallest indecomposable
example has order 32.

Theorem 1.2. The direct sum U(2,Zp)⊕N(p) is the unique non-
unital ring of order p4 in which the centre fails to be an ideal.
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Theorem 1.3. Let S be the subring of U(2,Z4) consisting of all
elements of the form (1) with c even. Then S has order 32, and it
is the smallest indecomposable non-unital ring in which the centre
fails to be an ideal.

2. Preliminaries

We also use the following notation throughout, where in all cases
x is an element of some ring R that is omitted from our notation.

〈x, . . .〉 is the additive subgroup generated by x, . . . .

〈〈x, . . .〉〉 is the subring generated by x, . . . .

〈x, . . . ;Z〉 = 〈x, . . .〉 + Z(R) is the additive subgroup generated by
x, . . . , and all elements of Z(R).

〈〈x, . . . ;Z〉〉 is the subring generated by x, . . . , and all elements of
Z(R).

〈x;Z〉− = 〈x;Z〉 \ Z(R).

Thus

〈x, . . .〉 ⊂ 〈〈x, . . .〉〉 ,
〈x, . . .〉 ⊂ 〈x, . . . ;Z〉 ⊂ 〈〈x, . . . ;Z〉〉 ,

Note that 〈〈x;Z〉〉 is always commutative, and so it never equals R
if R is noncommutative. In particular, if R is not commutative, then
the additive factor group R/Z(R) cannot be cyclic. Note also that in
a finite non-unital ring R, the additive homomorphisms x 7→ xy and
x 7→ yx must have nontrivial kernel for all y ∈ Z(R), since otherwise
we have a permutation which we can iterate to get a unity.

We now give two preparatory lemmas.

Lemma 2.1. Suppose R is a ring. If z ∈ Z(R) and u, v ∈ R are
such that zu = u and zv ∈ Z(R), then uv = vu.

Proof. We simply note that uv = (uz)v = u(zv) = (vz)u = v(zu) =
vu. �

Lemma 2.2. Suppose R is a finite ring with a subring S. If z ∈ S
and x ∈ R are such that zx = ix + z′ for some i ∈ Z, z′ ∈ S,
and if inx /∈ S for all n ∈ N, then there exist m,N ∈ N, such that
y := zmx /∈ S, e := zN is a nonzero idempotent, and ey = y.

Proof. By distributivity, we have zjx = ijx+ bj for all j ∈ N, where
bj ∈ S. In particular zjx ∈ R \ S and so zj 6= 0, for all j ∈ N.
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Since R is finite, we can pick m,n ∈ N such that zmx = zn+mx.
Similarly we can find k > 1 such that zn = znk. Then e := zn(k−1)

and y := zmx have the desired properties. �

3. Proofs of main results

We first use Lemma 2.2 to prove a lemma for a finite ring with
centre of index p2.

Lemma 3.1. Suppose that R is a finite ring and that the additive
factor group G := R/Z(R) is of order p2 for some prime p. If
z ∈ Z(R) and x ∈ R are such that zx /∈ Z(R), then there exist
m,N ∈ N, such that y := zmx /∈ Z(R), e := zN is a nonzero
idempotent, and ey = y.

Proof. First |G| = p2 and x /∈ Z(R), so x + Z(R) has order pk in
G, where k ∈ {1, 2}. But it cannot have order p2, since the additive
factor group cannot be cyclic. Thus ix ∈ Z(R) if and only i is
divisible by p. Also zx ∈ 〈x;Z〉, since otherwise 〈〈x;Z〉〉 ⊃ 〈x, zx;Z〉
would have order p2|Z(R)| and R = 〈〈x;Z〉〉 would be commutative.
Thus zx = ix + z′ for some z′ ∈ Z(R), and i ∈ N not divisible by p.
The result now follows from Lemma 2.2. �

The following lemma will be particularly useful to cut down on
the number of cases that need to be examined.

Lemma 3.2. Suppose that R is a finite non-unital ring of order pn

for some prime p and integer n ≥ 3. Suppose further that

(i) Z(R) is not an ideal, and
(ii) the additive factor group G := R/Z(R) is of order p2.

Then Z(R) is non-unital and (Z(R),+) is non-cyclic. Furthermore,
there exists a nonzero idempotent e ∈ Z(R) and an element y ∈
R \ Z(R) such that ey = y.

Proof. Since Z(R) is not an ideal, there exists z ∈ Z(R) and x ∈
R such that zx /∈ Z(R). Applying Lemma 3.1, we get a nonzero
idempotent e ∈ Z(R) and y ∈ R \ Z(R) such that ey = y.

All elements in pZ(R) are nilpotent, so if (Z(R),+) were cyclic,
nonzero idempotents would necessarily generate (Z(R),+). But if e
is idempotent and generates (Z(R),+), then it is a unity for Z(R).
Thus to finish the proof, it suffices to prove that Z(R) is non-unital.

Suppose for the sake of contradiction that u is a unity for Z(R).
Since R is finite and non-unital, w 7→ wu must have nonempty kernel
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in R, so there must exist v 6= 0 such that uv = 0. Now ey = y and
ev = euv = 0, so y and v commute by Lemma 2.1. It follows that
〈y, v;Z〉 is commutative, and so 〈y, v;Z〉 cannot be all of R. Since
y /∈ Z(R), we see that the additive group R/〈y;Z〉 has size at most
p. It follows that v ∈ 〈y;Z〉, so v = iy + w for some i ∈ Zp and
w ∈ Z(R). Thus

0 = uv = iuy + uw = iuey + uw = iey + w = v 6= 0 ,

giving the desired contradiction. �

Lemma 3.3. Suppose that R is a non-unital ring of order p4 for
some prime p and that Z(R) is of order p2 and is not an ideal.
Then Z(R) is isomorphic to Zp ⊕N(p).

Proof. By Lemma 3.2, we know that there is a nonzero idempotent
e ∈ Z(R), that Z(R) is non-unital, and that (Z(R),+) is not cyclic.
This is already enough to deduce the lemma if we examine the list of
all nine isomorphism classes of commutative rings of order p2 given
in [3]. However it is not hard to give a self-contained proof so let us
proceed.

Since (Z(R),+) is not cyclic, it is isomorphic to Zp⊕Zp, and Z(R)
is a Zp-algebra of dimension 2. Suppose z ∈ Z(R) \ 〈e〉, so {e, z} is
a basis for Z(R) and ez = ie + jz for some i, j ∈ Zp. The equation
ez = e2z expands to ie + jz = (i + ij)e + j2z, and so ij = 0. Thus
ez ∈ {e, z, 0}. Now ez = z would imply that e is a unity for Z(R),
so we can rule that out. We may assume that ez = 0 since if ez = e,
then replacing z by z− e reduces to this case. Next z2 = ae+ bz for
some a, b ∈ Zp. The equation z2e = 0 yields ae = 0 and so a = 0.
Thus z2 = bz.

If b 6= 0, and we define w := e + b−1z (with the inverse taken
in Zp), then (e + w)x = x for x ∈ {e, z}, and so e + w is a unity
for Z(R). Since Z(R) is non-unital, it follows that b = 0, and that
Z(R) is isomorphic to Zp ⊕N(p). �

Proof of Theorem 1.2. Throughout this proof, we assume that R is
a non-unital ring of order p4 in which the centre is not an ideal. In
particular R is not commutative. By R/Z(R), we always mean the
additive factor group. Since R/Z(R) cannot be cyclic, and since
Z(R) is not an ideal, it follows that |Z(R)| = pk for k ∈ {1, 2}, and
that (R,+) is not cyclic. Since R is noncommutative, R is never
equal to 〈〈x;Z〉〉 for any x ∈ R.
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The proof consists of examining in turn each of the four possible
isomorphism types of (R,+) that remain: two two-generator types,
one three-generator type, and one four-generator type (which splits
into two cases).

Case 1: (R,+) = Zp3 ⊕ Zp.

Let u, v be generators of (R,+), with u being of order p3 and v
of order p. Now u and v do not commute, but puv = pvu = 0,
so Z(R) must equal 〈pu〉. But 〈pu〉 is an ideal, so R cannot be of
this additive type. (Alternatively 〈pu〉 is cyclic, which contradicts
Lemma 3.2.)

Case 2: (R,+) = Zp2 ⊕ Zp2.

Z(R) cannot contain an element x of order p2 in (R,+), since if we
then took y such that 〈x, y〉 = R, it would follow that R = 〈x, y〉 =
〈〈y;Z〉〉 is commutative. All other nonzero elements have order p,
so Z(R) contains pu for some element u of order p2. If we now pick
v ∈ R \ 〈u〉, then (pu)v = v(pu), so pv ∈ Z(R) also. Thus Z(R)
contains pR. Since |pR| = p2, we must have Z(R) = pR. But pR is
an ideal in R, so R cannot be of this additive type. (Alternatively
all elements in pR are nilpotent, contradicting Lemma 3.2.)

Case 3: (R,+) = Zp2 ⊕ Zp ⊕ Zp.

Suppose first that there is a central element z of order p2. Since
|Z(R)| ≤ p2, we have Z(R) = 〈z〉. But this is cyclic, contradicting
Lemma 3.2.

Let w be an element of order p2 in R. Since (R,+) is generated
by w and a pair of elements of order p, and since pw annihilates all
elements of order p, we see that 〈pw〉 = 〈〈pw〉〉 is an ideal of order
p contained in Z(R), and so it cannot be all of Z(R). Thus Z(R)
must be of order p2, so there exists a nonzero idempotent e ∈ Z(R)
and y ∈ R\Z(R) such that ey = y. Since e has order p, y must also
be of order p. This rules out the possibility that y ∈ 〈w〉 since then e
would be an identity for 〈pw, e〉 = Z(R), contradicting Lemma 3.2.
It follows that R = 〈w, e, y〉, and that y does not commute with w.

Note that 〈y;Z〉 is commutative and of order p3, and so it must
consist of all x ∈ R such that px = 0. We also see that 〈y;Z〉
consists of all x ∈ R that commute with y. Now p(ew) = 0, so
ew must commute with y, and certainly ew commutes with w. We
deduce that ew is central. Applying Lemma 2.1 with data (z, u, v)
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given by (e, y, w), we see that y and w commute, contradicting our
assumptions.

Case 4: (R,+) = Zp ⊕ Zp ⊕ Zp ⊕ Zp and Z(R) is of order p.

Let z be a nonzero element in Z(R). Suppose first that z2 = 0.
Since z is not an ideal, we must have zu = v for some v /∈ Z(R). If
v = zu ∈ 〈u;Z〉, then zu = iu+jz for some i, j ∈ Zp, i 6= 0. But then
z2u = i2u + ijz /∈ Z(R) contradicting the fact that z2u = (0)u = 0.
Thus v /∈ 〈u;Z〉 and S := 〈〈z, u, v〉〉 must be of order p3 (since it is
commutative) and S is also generated as a Zp-vector subspace of R
by z, u, v. Let w ∈ R \ 〈〈z, u, v〉〉, so that {z, u, v, w} forms a basis
of R. Suppose wz = qz + ru+ sv+ tw, for some q, r, s, t ∈ Zp. Since
z, u, v lie in a subring S that omits w, it follows from the equation
wz2 = 0 that t = 0. Thus wz ∈ S commutes with u and we get
wv = wzu = uwz = uzw = vw. Now v commutes with w as well as
e, u, and v, contradicting the assumption that Z(R) = 〈z〉.

Thus z2 6= 0, so multiplication by z gives a permutation of Z(R).
We deduce that Z(R) has an identity, and we may assume that this
is z. Since the centre is not an ideal there exist x, u ∈ R \ Z(R)
such that zx = u. Now zu = z(zx) = z2x = u. Thus z is an
identity on 〈〈u;Z〉〉. However R does not have an identity so there
must exist v 6= 0 such that zv = 0. By Lemma 2.1, 〈〈u, v;Z〉〉 is
commutative. Let w ∈ R \ 〈〈u, v;Z〉〉. Now wz = zw cannot lie in
〈〈u, v;Z〉〉, since otherwise it would commute with u and we would
get uw = uzw = zwu = wzu = wu, from which it would follow that
u ∈ Z(R), contradicting the assumption that Z(R) = 〈z〉. Thus
wz = qz + ru + sv + tw for some q, r, s, t ∈ Zp, t 6= 0. We deduce
that wz2 = (q + qt)z + (r + rt)u + stv + t2w and, since z = z2, we
must have q = r = 0, so wz = sv+ tw. Multiplying by j = t−1 ∈ Zp,
we get w = jwz + s′v, where s′ = −js. Since vz = 0, we deduce
that

vw = v(jwz + s′v) = jvzw + s′v2 = s′v2

and we similarly see that wv = s′v2. Thus v commutes with w as
well as e, u, and v, contradicting the assumption that Z(R) = 〈z〉.

Case 5: (R,+) = Zp ⊕ Zp ⊕ Zp ⊕ Zp and Z(R) is of order p2.

By Lemmas 3.2 and 3.3, Z(R) is isomorphic to Zp ⊕ N(p), and
there exists u ∈ R \ Z(R) such that eu = u, where e is the unique
nonzero idempotent in Z(R). Let z ∈ Z(R), z 6= 0, be such that
z2 = 0 (and so also ez = 0).
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Choosing w ∈ R \ 〈u;Z〉, we must have we = ew /∈ 〈〈u;Z〉〉 since
otherwise uw = uew = ewu = weu = wu, and u would be in Z(R).
Thus we can apply Lemma 2.2 to get v ∈ 〈w;Z〉 \ Z(R) such that
ev = v. Now zu = zeu = 0 and zv = zev = 0 so zR = {0}.
Also ex = x for all x ∈ 〈〈e, u, v〉〉, and R is non-unital, so we must
have 〈e, u, v〉 = 〈〈e, u, v〉〉. We denote this last subring by S: note
that S is a noncommutative ring of order p3 with unity e. Since
also T := 〈z〉 is isomorphic to N(p), and since z annihilates the
generators of S, we see that R = S ⊕ T . To finish we appeal to the
proposition on p.513 of [2] which tells us that a noncommutative
unital ring of order p3 must be isomorphic to U(2,Zp). �

Proof of Theorem 1.3. All rings of prime power order less than 32
have order pn for some prime p and n ≤ 4, so by Theorem 1.1(ii) and
Theorem 1.2, they have ideal centre. Thus the minimal example has
order at least 32.

It is readily verified that S is a non-unital ring of order 32, and
that Z(S) is of order 2: in fact Z(S) consists of the two multiples
of the identity matrix in U(2,Z4) that lie in S. It is also clear that
Z(S) is not an ideal: in fact the product S ·Z(S) equals 2S and has
order 4.

It remains to prove that S is not decomposable. Suppose for the
sake of contradiction that S = S1 ⊕ S2, where the orders ni of Si

satisfy n1 ≥ n2 > 1. Thus we either have n1 = 16 and n2 = 2,
or n1 = 8 and n2 = 4. As mentioned in the introduction, Z(S) =
Z(S1)⊕ Z(S2) and S has an ideal centre if and only if both S1 and
S2 have ideal centres.

Now (S,+) has the form Z4 ⊕ Z4 ⊕ Z2, so each of these additive
direct summands must be allocated to either S1 or S2. Suppose first
that n1 = 16. Then (S1,+) = Z4 ⊕ Z4, and S1 cannot have an ideal
centre since S2 must be commutative. By Theorem 1.2, rings of
order 16 without ideal centres have additive type Z2⊕Z2⊕Z2⊕Z2,
so we conclude that S1 cannot be non-unital. On the other hand, if
S1 were unital, we could take its unity 1 as one of its two generators.
Now 1 commutes with the other generator of S1, forcing S1 and hence
S, to be commutative, which it cannot be. Thus n1 6= 16.

Suppose instead that n1 = 8. Since the smallest ring with non-
ideal centre has order 8, S2 must have ideal centre and S1 must not.
By Theorem 1.1, S1 would have to be U(2,Z2). But (U(2,Z2),+) =
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Z2 ⊕ Z2 ⊕ Z2, whereas S1 must be of type Z4 ⊕ Z2, so this case is
also ruled out. �

The results of this paper suggest that perhaps finite indecompos-
able non-unital rings rarely fail to have an ideal centre. On the other
hand, it is clear from the results in [1] that the assumption that a
ring has an ideal centre is of great use for proving commutativity
results. This suggests that the ideal centre assumption may be use-
ful for formulating conjectures regarding conditions that may imply
commutativity: if we can prove a commutativity result for rings
with ideal centres, then it seems reasonable to search for a proof of
the corresponding result without the ideal centre assumption.
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