X COl

Title

Geometric bounds in spherically symmetric general relativity

Authors

Guven, Jemal;é Murchadha, Niall

Publication date

1997

Original Citation

Guven, J. and O Murchadha, N. (1997) ‘Geometric bounds in
spherically symmetric general relativity’, Physical Review D,
56(12), 7650-7657 (8pp). doi: 10.1103/PhysRevD.56.7650

Type of publication

Article (peer-reviewed)

Link to publisher’s
version

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.56.7650 -
10.1103/PhysRevD.56.7650

Rights

© 1997, American Physical Society

Download date

2025-05-09 22:59:14

[tem downloaded
from

https://hdl.handle.net/10468/4582

University College Cork, Ireland
Colaiste na hOllscoile Corcaigh



https://hdl.handle.net/10468/4582

PHYSICAL REVIEW D VOLUME 56, NUMBER 12 15 DECEMBER 1997

Geometric bounds in spherically symmetric general relativity

Jemal Guven
Instituto de Ciencias Nucleares, Universidad Nacional Aotoa de Mgico, Apdo. Postal 70-543, 04510 Meo, D.F., Mexico

Niall O Murchadha
Physics Department, University College Cork, Cork, Ireland
(Received 24 July 1997

We exploit an arbitrary extrinsic time foliation of spacetime to solve the constraints in spherically symmetric
general relativity. Among such foliations there is a one parameter family, linear and homogeneous in the
extrinsic curvature, which permit the momentum constraint to be solved exactly. This family includes, as
special cases, the extrinsic time gauges that have been exploited in the past. These foliations have the property
that the extrinsic curvature is spacelike with respect to the the spherically symmetric superspace metric. What
is remarkable is that the linearity can be relaxed at no essential extra cost which permits us to isolate a large
nonpathological dense subset of all extrinsic time foliations. We now identify properties of solutions which are
independent of the particular foliation within this subset. When the geometry is regular, we can place spatially
invariant numerical bounds on the values of both the spatial and the temporal gradients of the scalar areal
radiusR. These bounds are entirely independent of the particular gauge and of the magnitude of the sources.
When singularities occur, we demonstrate that the geometry behaves in a universal way in the neighborhood of
the singularity. These results can be exploited to develop necessary and sufficient conditions for the existence
of both apparent horizons and singularities in the initial data which do not depend sensitively on the foliation.
[S0556-282(97)05224-1

PACS numbe(s): 04.20.Cv, 04.60.Kz

[. INTRODUCTION do not single out a unique slice through the spacetime—we
need to specify some foliation.

In this paper we examine the constraints in general rela- In general, the initial data are given by specifying the
tivity when the spatial geometry is spherically symmetricintrinsic and the extrinsic geometry on some spacelike hy-
and possesses just one asymptotically flat refiof]. This ~ persurface which satisfy the constraints. A spherically sym-
is the simplest gravitational scenario which exhibits localmetric geometry is completely characterized by specifying
degrees of freedom. the areal radiuR as a function of the proper radius The

In [2] we focused on the solution of the constraints when€Xtrinsic curvature can be expressed in a form consistent
the extrinsic curvatureK,, vanishes. Though they are With spherical symmetry
simple, they nonetheless display some of the features of the
general problem. Such solutions are, however, very special. K ab=NaNpK 2+ (Jap— NaNp) Kr )

For if the extrinsic curvature vanishes, the momentum con-
straint requires that the current density of the matter fiélds

must also vanish. The solutions of the Hamiltonian constraint’N€"€K andKg are two spatial scalars amd is the out-
which result therefore correspond to “momentarily static” ward pointing unit normal to the two-sphere of fixed radius
in the slice.

spatial geometries which do not generally occur in a giveH - i I

spacetimg 3]. Since, if they occur at all, they occur as iso- How dpes one go about fixing the follathn? In principle,

lated objects, we did not need to fix the foliation. Here, Weany_follgtlon admitting globally regular solutions of the con-
traints is as good as any other. Ideally, therefore, we would

extend our work to cover the general situation where matter ) )
flows and, as a result, the extrinsic curvature is nonvanishi<€ t0 consider a completely general slice through the space-

ing. The advantage of having dealt separately with the molime; realistically, however, if the slicing is too general, it

mentarily static solutions is that we can focus here on thjyecomes very difficult to prove anything. At very least, the

physical feedback on the spatial geometry introduced by e feedback on the spatial geometry introduced by e_xtrinsic cur-
trinsic curvature vature should reflect the strength of the material currents

The introduction of extrinsic curvature complicates thefloWing—the gauge certainly should not overshadow com-

analysis substantially. This occurs on two levels. The first isoletely the underlying physics.

purely technical: the Hamiltonian constraint gets coupled to. we will fOCl.JS In th'? paper on an “extrinsic time folia-
the momentum constraint—we have to solve a coupled systlon of spacetime. This involves fixing some spatial scalar
nction of the extrinsic curvature. For a spherically symmet-

tem of equations. The second is conceptual: the constrain{g ) . o
ric geometry, we can cast this relationship in terms of two

scalars appearing in E¢l) as follows:
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with a possible dependence &and/ which we have not —1<R’'<1, (4)
indicated explicitly. Any gauge of this form shou(dt least

implicitly) be solved to fix one of the scalar £ say ap-  independent of the source which was valid in all globally
pearing in Eq(1), in terms of the other. . regular geometries. This bound was seen to operate at a more
All previous work on the constraints in spherically Sym- fndamental level than the positivity of the Arnowitt-Deser-
metric relativity has focused exclusively on some given fo-\jisner (ADM) mass. We then went on to investigate how
liation of this type. These have been maximal slicing or theihe matter content of the slice can potentially force the ap-
so-called polar slicing4]. The latter slicing mimics the pearance of either apparent horizons or singularities. We
Kap=0 form of the Hamiltonian constraint and is the folia- showed that when singularities occurred, they possessed a
tion which provides the standard presentation of thenjyersal form and we could place bounds on the rate of
Schwarzschild geometry. Unfortunately, in either case, ONivergence of geometrical scalars.
is at a loss to know just how sensitively the solution depends How do these results generalize? In globally regular ge-
on the choice of gauge. How will our notions of the size andymetries, the spacetime gradients Rfare bounded. First,
the energy content change in gnother foliation? If theyiynen the weak energy condition is satisfied ar® 0.5 ev-
change in a way we cannot quantify they are almost uselesgyy\here, the bound E¢4) on the spatial gradient continues
To address this kind of question it is desirable to work withiy"hold. Secondly, and perhaps more surprising, an analo-

as large a class of foliations as possible. gous bound can be placed on the extrinsic curvature when
In [1], we introduced a functiom, the ratio of the two  the dominant energy condition is satisfied. We obtain the
scalars defining the extrinsic curvature highly nontrivial result that

By setting @ equal to some specified functiong if @=1. The bound5) can be interpreted as a bound ‘N
— a[Kg,R,/] say, Eq.(3) defines an extrinsic time folia- the derivative ofR with respect to normal proper time both
tion. If a is a function only ofR and/ (in particular, if it is of these bounds are independent of the source magnitude.

constar), the momentum constraint is exactly solvable for 1€y ill play a central role in the establishment of suffi-
Kg. cient co_n_d|t|ons for the appearance of apparent h_onzons and
It was shown i 1] that each constant value afwhich is singularities[5]. If @<<1, no such bound exists—indeed, a
greater than 0.5 provides a globally regular slice for approfountérexample can be constructed.
priate sources. These values®fcorrespond to a spacelike  >ingular geometries can occur even though hotmdJ
extrinsic curvature “vector” with respect to the superspace®'€ finite. The only way that the geometry can become sin-
metric. As special cases we recover both the maximal slicdular, however, is by pinching off at some finite proper ra-
ing, with =2, and the polar gauge when—. d|_us from the center. Generically, at this radiuss(say), R
Remarkably, one can show that even wheris not a  Will vanish nonanalyically
constant the gauge continues to provide regular slices of
spacetime so long as<0.5 asymptotically. All spacelike R~C(/s— /)M, (6)
extrinsic curvatures in superspace provide regular foliations.
The identification of potentially singular geometries will, Remarkably, the quasilocal ma&3LM) remains finite even
however, require that the gradients af be appropriately when the geometry is singular. Indeed, we show that this is
bounded. always true regardless of the gauge condition. Our ability to
The gauges we consider, in fact, represent a very larg&lentify universal behavior of this form will be crucial for
class of extrinsic time foliations. Recasting E®) in the  the establishment of necessary conditions for singular geom
homogeneous formK,.=—a[Kg,R,/1Kg, ensures that etries in a subsequent publicatifs.
when the material currei vanishesK,,=0. In particular, Generally, the singularities of the three-geometry consis-
flat spacetime will be foliated by flat spatial hypersurfacestent with the constraints will be more severe than those
Indeed, when the momentum constraint is satisfied, the exahich are admissable at a moment of time symmetry. If,
trinsic curvature is(quasjlinear in J, albeit in a nonlocal however, the movement of matter is tuned so that the extrin-
way. In this way the extrinsic curvature of the hypersurfacesic curvature vanishes as the singularity is approached, the
responds directly to the movement of matter on it—a physistrength of the singularity will be determined entirely by the
cally reasonable criterion. QLM, exactly as it is at a moment of time symmefg]. We
Within this large class of extrinsic time foliations, there show that this tuning corresponds to an integrability condi-
are universal properties exhibited by solutions of the contion on the current. If, in addition, the tuning is refined so
straints which are either independent of, or do not depenthat the QLM also vanishes as we approach the singularity
sensitively on the particular foliation. These properties di-the curvature singularity disappears and the spatial geometry
vide naturally into those of globally regular geometries andpinches off in a regular way. This latter integrability condi-
those of singular geometries. tion involving the QLM is completely analogous to the inte-
In [2], we examined these properties when the initial datagrability condition encountered at a moment of time symme-
was momentarily static. We first identified a geometricaltry. Regularity at the singularity is, of course, precisely the
bound on the spatial gradient of the areal radRughe prime  condition that the interior be a regular closed universe. If the
is a derivative with respect to proper radius matter fields carry conserved charges these will, in their turn,
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have integrability conditions associated with them. Viewedfound in[2] in a simpler context, the introduction @f is
this way, regular closed universes appear to be very speciaktremely useful and will be exploited repeatedly in our
universeq7]. analysis.

The paper is organized as follows. We begin in Sec. Il To solve the constraints classically, we need to specify
with a discussion of the solution of the momentum con-some foliation. In this paper, we will focus on a gauge con-
straint. In Sec. Il we provide a derivation of the bounds ondition of the general form3) where « is some specified
R" andRKg. In Sec. IV, we derive Eq(6). In Sec. V, we function of the configuration variable®, Kg, and/. It is
discuss the integrability conditions and comment briefly onpossible to provide a geometrical interpretation for these
the regularity of Euclidean relativity. We conclude in Sec. VI gauges. To begin with, we know that wher=2 this condi-

with a brief discussion and outline of future work. tion specifies a spacelike hypersurface with maximum vol-
ume in spacetime: the trace of the extrinsic curvatifre
Il. THE CONSTRAINTS =K, +2Kg vanishes. It is simple to show that when

. . . . =a(/), Eq. (3) is precisely the condition that the modified
In this section we examine the analytical structure of thespatial volume of a closed ball

constraints wheik ;,# 0. We recall that the constraints can

be written as /
Va:47rj d/R¢, (13
0

1
KelKr+ 2K ]-=[2(RR) —R'2=1]=8mp  (7) _
R be a maximum.
When « is a constant, the momentum constraint can be

and solved uniquely folKg in terms of the radial flow of matter,
R’ J, as follows:
Kt =(Kr—Kp) =47, (8)
R 4w (7
. . : Kr= d/RY* ey, 14
where the line element on the spatial geometry is param- R R“ﬂfo (149

etrized by
, where we have exploited the regularity of the geometry at
ds’=d/?+R?d0?, (9 the origin to seKg(0)=0.
When Eqgs.(3) and (14) are substituted into Eq7), we

obtain a second order singular nonlinear integro-ordinary dif-

areal radius, and we have expanded the extrinsic curvatuq% . . .
. ’ A . rential equatiofODE) for R [8]. Subject to the boundary
according to Eq(1). All derivatives are with respect to the condition, Eq.(10), the solution is uniquely determined. Not

proper radius of the spherical geomeifyThe spatial geom- only is the extrinsic curvature completely determined by the

e_trles we consider COﬂSISF of a smglg asymptotically flat " aterial sources, so also is the spatial geometry. There are no
gion with a regular center'=0. We will subsequently refer

. : independent gravitational degrees of freedom, exactly as ex-
tq .SUCh geometne; as regulgr. The appropriate boundary CoB'ected. We note that in the gauge K8, the spatial geom-
dition on the metric ar’=0 is then etry does not depend on the global signloOf course, if we

R(0)=0. (10) reverse the sign af, the extrinsic curvature picks up a nega-
tive sign.

We recall thatR’(0)=1 if the geometry is regular at this When « is not constant, it is still possible to mimic the
point. We assume that botp and J are appropriately solution whena is constant. To do this we recast the mo-
bounded functions of on some compact support. This com- mentum constraint in the form
pact support restriction could be easily relaxed so as to con- tow < e ) Lt
sider solutions where both andJ decay appropriately as (RTKp)' =47R™“J+ ' IN(RIL)R™“Kg, (19
one approaches infinity with little extra effort but also with
little extra insight.

We define the quasilocal massas follows:

/ is the proper radial distance on the hypersurfé&és the

wherelL is any characteristic length scale. The spatial varia-
tion of @ has been absorbed completely into the second term
on the right-hand sidéRHS). The solution is given by

R 1,
m= = (1-R’?)+ ZK&R%. (112) 4

/
2 2 Kr= RHJO d/ R IA(/1.7), (16)

When the constraint&’) and(8) and the boundary condition
at the origin, Eq(10), are satisfiedm is determined by the where
sources as follows: P
p A(/l’/) :ef/ld/za’ln(R/L)_ (17)
— /D2 !

m—477J0 d/RTpR'+IRKg]. (12 The constant result is simply modulated by an exponential
multiplicative correctionA. We note in particular thaKg
This way,m arises as a first integral of the constraints. These=0 whenJ=0. This provides a very strong justification for
equations are gauge invariant. In a globally regular geomeasting the gauge in the form of E@). If a=a(R,/)
etry, m coincides at infinity with the ADM mass,,. Aswe  alone,Ky will also be linear and homogeneous Jn If we
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admit aKg dependence explicitly inter the linear correla- Suppose satisfies the weak energy conditipe=0. Con-
tion of Kg andJ no longer holdsKy will nonetheless be sider any foliation satisfying Eq(3) with «=0.5 every-
positive whenJ is. If, however,« is an even function oKg ~ where. Then, if the geometry is regul&®’2<1 everywhere.
thenKy will echo the parity ofd: Kg[ —J]=—Kg[J]. The proof is very simple and was given in Rél]. We

It is clear from inspection of the definition df that spa- repeat it here to emphasize that the spatial variatiora of
tial variations ina are antiscreened: remote source contribu-does not entef®’ must be bounded in any regular geometry.
tions get distorted more than nearby ones. This is potentiallyVe note thaR’'(0)=1 andR’—1 at infinity. ThusR’ must
worrysome but, as we will see, it is not a serious obstacle. possess an interior critical point. At this polRt=0. In the

We will now look more closely at the analytic structure of gauge(3), the Hamiltonian constraint, E¢7), now reads, at
solutions. Let us first focus on regular geometries. this point,

12_q_ 2 _ 21 2
Ill. GLOBALLY REGULAR GEOMETRIES R'“=1-8mpR"~ (22~ 1RKg. (20

We first comment on the behavior of the Spatia] geometr)BOth the second and the thlrd terms on the RHS are negative.
in the neighborhood of the origin. In fact, in the neighbor- The result follows immediately.

hood of /=0, we haveR~/, so that[9] A simple corollary of this result is the positivity of. We
can obtain analogous bounds & in the gauge Eq(3).
J(0) However, it is important to stress that without some control
KR~4wm/. (18)  overJ we should not expedf to be bounded. Let us there-

fore suppose that the dominant energy conditi@EC)
|J<p is satisfied everywhere. Our experiencd ihsuggests

Thus if K is regular at the origin then it must also vanish yna when the DEC holds, the appropriate variables are the
there. This is not, however, surprising. Spherical symmetr)bptica| scalars defined HyL0]

is very restrictive leaving a regular geometry no freedom to

evolve at the origin. w.=2(R'*RKg), (21)
We can expandR(/) in a power series in the neighbor-
hood of /=0 and substitute into Eq7) to get which are R times the null expansions in the out-future and

out-past directions. They are a useful set of variables to ex-

- Ax ploit when we are interested in identifying apparent horizons

R(/)=/+ ?p(o)/3+ R (19 [1,10,5. The optical scalar which marks the presence of a
future trapped surface i®,: w,=0 at a future apparent

- . . horizon.
A consequence of Fhe_vam_shmg IQE(Q) is thatJ will only : It was shown in[10] (and again in[1]) that when the
show up at order five in this expansion—two orders behind, . - . -
. - . . dominant energy conditiof)| <p is satisfied,
p. The metric at the origin clearly is not sensitively depen-

dent on the current flowing there. -
- . . NEVEN Y 22
The other region we need to check is outside the source. |w=[< K+ ]« (22

What constraints does asymptotic flatness placex@nTo where k=maxRK| andK is the trace of the extrinsic cur-

recover an asymptotically flat spatial geometry we requir§ 4 re. These bounds depend on the sources only thiéugh

that R(/)~/ to I(f?ding order. We have thaKg  \yhenk=0 («=2) they become numerical bounds which
~constanh (/o,/)/R*"*. Now for an appropriate falloff .o independent of the sources:

(faster than/"1) on a’, A(/,,7) will always saturate so

that we can absorb it into the constant. On one hand, we note —2<w.,.<2. (23)

that outside the source, the integral identit) impliesm is -

a constant. However, the contribution of extrinsic curvaturdt then follows that

to m [Eq. (11)] ~1/R?%="1. There represents an inconsis-

tency if @ tends asymptotically to any value,, , lower than RKr=(w;—w_)/4, (29

0.5. If @,,>0.5, not onlyKg but also its contribution ten

vanish asymptotically. Such a choice is simultaneously reguandR’ = (o, + »_)/4 are boundedRKg|=<1 and|R’'|<1.

lar at the origin. Here, we would like to show that even wher2 in the
We note that with strict inequalityy.,>0.5, m be domi-  gauge Eq.(3) it is still possible to bound». by Eq. (23).

nated asymptotically by the first term in E@.1) so thatm,,  One way to do this is to bootstrap on Eg2). This way, one

is encoded completely in the intrinsic geometry. In the lim-can bound|w.| when a lies within the range ¥ a<3.

iting case,a=0.5, the intrinsic and the extrinsic geometries However, the bound does depend @rand diverges at the

share the burden. However, such a falloff invalidates the trapoints,a=1 anda=3. However, one can do better.

ditional expressions for the ADM mass. We showed in1] that it is possible to add and subtract
What can we say in general about globally regular geomthe two constraint$7) and(8) to obtain simple equations for

etries? We will demonstrate that they possess the remarkablee spatial derivative ob, andw

property that for an appropriate dense subset of extrinsic

time foliations both the spatial and temporal gradient&Rof

are bounded numerically in a way which is entirely indepen-

dent of the material sources and ®@f (25)

1
(02)'==87R(p5J)— (00 —4) T w. K,
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We now exploit the gauge conditiori8) and (24) to recast our result. If, howeverg <1 this is not necessarily the case.
these equations in the form If J(0) exceeds (2 «)p(0)/3 anda<1, thenw, =2 in the
neighborhood of the origin. We note also that

2
72J(0)%/4<4.

(34

1
(w+)'=—87R(p+JI)+ ﬁ[(a—l)w+w_+4—awi].

8 2 8
(26) C"+‘*’$(2—?7T[p(0)/2]) —(m

Let us establish the inequalit23) for o, . The argument is
very similar to the one we used above to derive the boundhis is consistent with the inequality E@9). Note also that
R'?<1. We note thatw, must be bounded in a regular the absolute maximum of the produst. «_ obtains at the
geometry and thab, (0)=2 andw,—2 at infinity. Thus  poundary values’=0 and/ == and it is also the flat space
w, must possess an interior critial point. At this poiat  value. WherkK =0, this is also true of botw, andw_ . In

=0 so that general, the absolute maximum of neither need occur at these
2 ) points.

(a—lw,w_+4—aw’=327R(p—1J), (27

the right-hand side of which is positive by hypothesis. Thus IV. SINGULAR GEOMETRIES

So far we have assumed that the geometry is regular ev-
erywhere. A nonsingular asymptotically flat solution defined
for all /=0 will not, however, always exist for every speci-

aw’<(a-1o,0_+4. (28

However, the quasilocal mass is positive or, equivalently

fication of p andJ. In this section, our task will be to under-
(1,10 . ) .
stand what can go wrong and to identify the mechanism
0,0 <4, (29)  driving the geometry into a singularity.
In Sec. Il we showed thaR’?><1 in any globally regular
so that whenv=1, w, satisfies Eq(23). geometry. Thus ifR’2>1 anywhere the geometry must be

In [1], we pointed out that the “binding energyM —m  singular.
of a regular spherically symetric system satisfying the domi- Let us suppose tha®’'2>1 at some point. Then, when
nant energy condition is positive when the slicing is maxi-K, satisfies Eq(3), Eq. (7) implies
mal. In general, we have )

1
Rszi[l—R'2]+ 7(1—2a)K2R—47Tp, (35

M —m=4wfo/d/R2[(p+J)(2—w+)+(p—J)(2+w,)],

(300  so thatR"<0 andR’ is decreasing there. This can only
occur byR’ falling throughR’'=—1. OnceR’ falls below

this value it will continue decreasing monotonically thereaf-
ter. The surface withBR'=—1 in the configuration space
therefore acts as a oneway membrane. Suppose that the areal
radius isR; whenR’'=—1. We know now that the solution
fust crash, i.eR—0 within a finite proper distance which

is less than or equal tB, from that point.

which is manifestly positive whenevéw..|<2. Thus this
result is also true for all values @f=1.

It is clear from Eq.(28) that Eq.(23) cannot be extended
to a<l—w_w, is not bounded from below. To obtain a
bound we need to exclude both future and past trapped su
faces so thatv, w_ is positive. We then have, for all posi-

tive a, Since R"<0 wheneverR’=1 we see that the surface
"=1 in the configuration space also acts as a oneway mem-
|w+|$2ma)(2/\/;mi”'l)' 31 brane and the sol%tion canponly pass downwards thrgugh it.
The results forw_ are identical. However, since at a regular center we h&/e=1 andR’
This implies the bound oy starts to reduce as soon as we enter matter, it is clear that the
region defined byR'>1 is completely forbidden.
|RKg|<max 1/\amin1). (32) We conclude that crashing througti= — 1 is the generic
way the spatial geometry can become singular. Singularities
We already haveR’?><1 for all « when the weak energy with R"=—1 atR=0 are also possible. They result, how-
condition is satisfied. ever, only for special finely tuned matter distributions. We

One can, in fact, easily construct a counterexample denwill discuss them more fully below in Sec. V. Putting the
onstrating explicitly that we should not expect to do betterregular and singular results together, we have the following:
than Eq.(31) when a<1. We do this by examining the if the geometry is globally regular, thenl<R’'<1 every-
values assumed by the optical scalars in the neighborhood @fhere; if —1<R’<1 everywhere, then the geometry is glo-
/'=0. We can combine Eq$18) and (19) to obtain bally regular.

One possible way that this method of constructing initial
data for a spherically symmetric gravitational field can break
down is that the slicing turns null. SincR is a four-
dimensional scalar, nothing will go bad with it. On the other
If the dominant energy condition is satisfied, then when hand,/ is the spacelike proper distance along the slice and
=1, we havew. <2 near the origin which is consistent with sod/” will become small and thuR’ will become unbound-

8 3 >
wt~2—? p(0)+m.](0) /e (33
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edly large if the slice turns null. But we have shown that this1/(/s— /)2 as we approach a singularity unless there is
cannot happen if we assunae=0.5 andp=0. Note that we some constraint obstructing them from doing so.
do not have to assume that=constant. Therefore, if we To show that the above analysis is self-consistent, we
stay inside the light cone of the supermetric, we stay outsid@eed to demonstrate that, for finiag, (i) the form factorA
the light cone of the spacetime. For any slice satisfying defined by Eq(17) remains finiteyii) m remains finite.
=0.5 the only possible singularity is whé— 0. To this end, we note that

Let us now examine more carefully the approach towards

a singularity. In the neighborhood of the poifit= />0 at ‘o, , -y
which R=0, Eq. (16) implies that , 37/ INRIL<|a'[;max | d/]INRILL (42)
C.(79) The integrated logarithm is bounded. While the integrand
R™ Ri*a ' (36) diverges atR=0, the integral is nevertheless well behaved.
We note that
where s
p j dsIns=sIns—s. (43
/ 0
C () =4m f d/ IR A (/7)) (37
0

Thus in particular, the form factor is well behaved on the flat
solution,R= /. This is essentially all we need to check be-
cause as we have just seB()~(/o— /)Y at a sin-
gularity so that logarithm is multiplicatively identical to the
flat space value.

We now confirm thatn remains finite as we approach a
strong singularity. We do this by demonstrating that the vol-

To examine the structure of singularities it is extremelygme :jntegral(ﬁ) Is always finite. We note that, for suitably
useful to exploit the definition of the quasilocal mass intro- oundedp andJ,

duced earlier. From a functional point of view, EHd.l) is 257 — ;A —[(a-2)(a+1)]
identical to the energy integral in classical mechanics. To (PRPR" IR )~ (p,0)(7's= /) - (49

exploit this analogy, we therefore recast this equation as foly a<2, the integrand itself remains finite. In general, the

is finite if A is. K will therefore be singulatfor physically
acceptable values af) if the geometry pinches off unless
the current is tuned such that

Ca(79)=0. (38)

lows: integral will be finite if the exponent of As—/) ! is
5 bounded by 1. But¢—2)/(a+1)<1 for all finite values of

erzl__mjLK’éRz, (39 a thus guaranteeing that the .integrals. O\E’f'pR’ and .

R R3JKg converge. The only possible gap in this argument is

o the assumption thain remains finite. It is possible thah
wherem is given by Eq.(12) andKg by Eq. (14). diverges fast enough when the singularity is approached so
Let us suppose tha remains finite. Now, iC, does not  thatm/R dominatesR?K 2. This would requirem to diverge
vanish gm_ja>0.5, t_he_ most singular term in EEB9) is the  taster thanR 2%, The first term in Eq(12) cannot give a
quadratic inKg. This implies that divergentm as R%p obviously remains finite angR’d/
R'2. R2K2 (40) =R is also bounded as we approach the singularity. There-
R fore we need only consider thER®Kg term. This will di-
_ ) o 2102 _ verge asR?™“. Let us assume th®~ (/s—/)? for some
in the neighborhood oR=0, orR'“~C:/R“*. Generically, B>0. Then, from Eq(12), m will, at worst, diverge asn
therefore R ?diverges. The solution is ~(/s— /)2~ 9B+ Now the requirement that thra term in
Eq. (39 dominates implies (2 a)B+1<(2a—1)B<0.
R~( Ca This in turn gives— (a+1)8>1, a negative3. Therefore it
a+1 is clear thaim(/’g) is always finite.
The sign ofm will, however, depend on the details of the
If «>0.5, such spatial singularities are more severe than theurrent flow. This is obvious from the definition E¢L1).
strong singularities discussed [2] which are consistent Even ifR’?>1, a sufficiently large value df can rendem
with the Hamiltonian constraint at a moment of time sym-positive. In particular, unlike the value oh assumed at
metry. We will refer to the generic kind of singularity driven strongp singularities wherK ,,=0 (discussed i2]) which
by extrinsic curvature as a strongtype singularity. Asa is always negative, the sign generally can assume either
increases, the power law determining the strength of the sinsalue. Indeedn need never even be negative in a singular
gularity increases. Note that the limit—o (the polar gauge geometry. ThougtR’' decreases monotonically nonethe-
discussed in Refl]) is extremely singular. This is, however, less can remain positive. There is no conflict with the posi-
a gauge artifact reflecting how poor the polar gauge really istive QLM theorem. In our examination of momentarily static
Unlike the strong singularities occurring whef,,=0, at  configurations if2], we found tham is positive everywhere
which the scalar curvatur® remained finite]R will gener-  except at the origin or in a neighborhood of it if and only if
ally blow up [just like K2R~ 1/(/s—7)?]. On dimensional the geometry is nonsingular. This is a consequence of the
grounds, we expect all curvature scalars to blow up asoincidence of the converse of the bound®d lemma and

UNa+1)
(/‘S_ /‘)l/(aJrl). (41)
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the converse of the positive QLM theorem whi€g,=0. In

the general case, whdf,,# 0, no such coincidence occurs.
The mass is finite at RO independent of the gaug@/e

have shown above that the quasi-local masis finite even

if the spatial slice is strongly singular wifR—0 so long as

JEMAL GUVEN AND NIALL O MURCHADHA

A7 /
m(/)=?pR3+4wf d/R3JIKg—p'].  (46)
0

The first term is manifestly positive. So is the third gf
<0. If J is positive (negative everywhere then so im in

(p,J) remain finite. This result was derived on the assUmpyny o gauge. However, the third term appearing on the RHS
tion that the slice was chosen to saFisfy the gauge conditiog¢ Eq. (39) may still pull the geometry into a singularity Jf

(3) with @=0.5. It turns out that the finitenesswfholds on 5 g fficiently large. The peculiarity of momentarily static

any .SI.'Ce'.TO see this we need only c_ons_lderﬂ@)_, which configurations withp’ <0 discussed if2] can clearly be

is slicing independent, and E(B9), which is effectively the  yegiapilized by the motion of matter. All regular closed cos-
definition of m. As we argued above, the first term in EQ. mo|ogies simultaneously satisfy two integrability conditions,

(12) rezma_lins finite as we approach the singularity. We knowgqs (3g) and(45). There can be no net flow of material from
that R°p is bounded and'd/R’=R also is well behaved. 4ne pole 1o the other. In particulat, must change sign be-

/ 2 g
Thus we ne;ed_ only focus on thed/R°JRKg term. We  qyeen the poles. In addition, EG6) tells us that
know thatR<“J is bounded so we only need to control the

RKg term. The necessary control is given by Eg9). If
R2K2R is the dominant term on the right-hand side of Eg.
(39), we get thajRKg|~—R’ so the integral in Eq(12) is
finite asR—0. If m becomes large and negative so that theyn particular,JKr— p’ must change sign between the poles.
term —2m/R dominates, we geiRKg|<—R’ so again the  These conditions will be examined in the closed cosmologi-
integral converges. The only case left to consider is the posca| context in a subsequent publicatie.

S|b|l|ty that 2m/R is pOSitiVe and diVergeS at the same rate as There are no Strong J Singu|arities in the Euclidean

m(/s)=477J0/Sd/R3[JKR—p’]=O. 47)

R?KZ and some cancellation occurs so tiRit is uncorre-
lated with RKg. Let us assum&~ (/s—7)”? for somep
>0 and |RKg|~(/s—7)"" for y>0. We then getm
~(/s—/)P~?7. However, the argument in E4L2) goes as
R3Kr~(/s—/)?*~ 7. Hence we gein diverging at worst as
m~(/s— /)%~ r"1 If this is self-consistent, we require
2B—vy+1=B—2y. This implies B+ y+1=0, which

theory. The singularity structure we have investigated has
one important consequence for Euclidean general relativity.
If the sign of the quadratic term iz appearing in Eq(39)

had been negativénsteadof facilitating the occurrence of
singularities it would have presented an obstacle to their oc-
currance. Any nonvanishing extrinsic curvature would there-
fore tend to stabilize the spatial geometry against singularity

makes no sense. Thus such cancellation cannot take placeformation. We note that there is precisely such a sign switch

V. INTEGRABILITY CONDITIONS

What are the implications of the integrability condition,
Eqg. (38)? If Eq. (38) is satisfied the strong singularity is
moderated to one which is only strong adaThe behavior
in the vicinity of the singularity will then be determined by
the m/R term in Eq.(39) even if the system was originally
“driven” towards the singularity by extrinsic curvature. If,
in addition,

/
m(/s)=4wf Sd/[pRZR' +JRKg]=0, (45
0

the singularity will be a weak one witR'(/g)=—1. We
note thatR”=0 at this point. The corresponding bag of gold

will be a regular closed universe. These integrability condi-

tions do depend om. If a given functionJ satisfies Eq(38)
with one functiona, generally it will not satisfy that condi-

tion with any other function. There is no spacetime diffeo-

in the Hamiltonian constraint of Euclidean general relativity.
The Bianchi identities there tell us that the solutions of the
constraints represent all possible configurations the system
may assume as it is evolved with respect to Euclidean time.
This suggests that gravitational instantons will tend to be
more regular than their Lorenzian counterparts. In fact, the
most singular Euclidean geometries will occur when the ge-
ometry is momentarily static. In a tunneling Euclidean four-
geometry, such three-geometries correspond to the initial and
final hypersurfaces of the Lorentzian spacetimes between
which it interpolates. If these hypersurfaces are themselves
nonsingular, i.e., do not involve Planck scale structures, then
Planck Scale physics does not enter the semiclassical de-
scription of tunneling between them. This would appear to
validate the application of the semiclassical approximation.

VI. CONCLUSIONS

We have identified a dense subset of extrinsic time folia-
tions with respect to which there exist universal bounds on
certain geometrical invariants. When the geometry is regular,
we have described how the spacetime gradien® of this

morphism invariant statement of the integration. The integradense subset are bounded numerically, independent both of

bility condition need not be preserved by the evolution.

If J is positive (or negative everywhereC (/) defined
by Eq. (37) cannot vanish. Thus, if matter is collapsing or
exploding everywhere, all singularities must be strargpe
singularities. This contrasts with the obstructipn<0, dis-

the gauge and of the sources. Near a singularity, these gra-
dients diverge in a way we can quantify.

These results can be applied to address the question of
identifying necessary and sufficient conditions for the pres-
ence of apparent horizons and singularities in the initial data

cussed in[2], prohibiting the formation of any singularity [5,6] extending the work o0f11,12, [2], and[10]. In the
when K,,=0. In general, we note that on performing an analysis of sufficient conditions for the appearance of
integration by parts on the first terrm can be rewritten trapped surfaces and singularities, first the moment-of-time-
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symmetry case was examingtll,2] followed by maximal tion of the Schwarzschild solutidri4].
slices[12,10. We find that, not only can we extend this = The next stage is the examination of the classical evolu-
work to constanix but to the large class of extrinsic time tion. Write down the Einstein equations with respect to the
foliations described by Eq(3) for variable @ within the  optical scalar variables. Can we cast the theory in Hamil-
range 0.5<a<. We also find that we can provide very tonian form? If the value of these variables in the analysis of
powerful generalizations of the necessary conditions introthe constraints is anything to go by, one has every reason to
duced in[2] for moment of time symmetry initial data to expect that they will throw light on the solution of the dy-
general initial data. namical Einstein equations, both analytically and numeri-
There are a number of interesting spherically symmetriccally. Indeed these variables have recently been exploited to
problems we intend to pursue. A very satisfactory represenestablish global existence resulis].
tation of regular closed solutions of the constraints can be
given as closed bounded trjectories in the,(w_) plane.
In this representatioR plays a subsidiary role. These vari-
ables suggest a novel approach to the canonical quantization We gratefully acknowledge support from CONACyYT
of spherically symmetric general relativifg3]. Indeed, con- Grant No. 211085-5-0118PE to J. G. and Forbairt Grant No.
stanta foliations can be exploited to provide a new descrip-SC/96/750 to N.CM.
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