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Geometric bounds in spherically symmetric general relativity

Jemal Guven*

Instituto de Ciencias Nucleares, Universidad Nacional Auto´noma de Me´xico, Apdo. Postal 70-543, 04510 Me´xico, D.F., Mexico

Niall Ó Murchadha†

Physics Department, University College Cork, Cork, Ireland
~Received 24 July 1997!

We exploit an arbitrary extrinsic time foliation of spacetime to solve the constraints in spherically symmetric
general relativity. Among such foliations there is a one parameter family, linear and homogeneous in the
extrinsic curvature, which permit the momentum constraint to be solved exactly. This family includes, as
special cases, the extrinsic time gauges that have been exploited in the past. These foliations have the property
that the extrinsic curvature is spacelike with respect to the the spherically symmetric superspace metric. What
is remarkable is that the linearity can be relaxed at no essential extra cost which permits us to isolate a large
nonpathological dense subset of all extrinsic time foliations. We now identify properties of solutions which are
independent of the particular foliation within this subset. When the geometry is regular, we can place spatially
invariant numerical bounds on the values of both the spatial and the temporal gradients of the scalar areal
radiusR. These bounds are entirely independent of the particular gauge and of the magnitude of the sources.
When singularities occur, we demonstrate that the geometry behaves in a universal way in the neighborhood of
the singularity. These results can be exploited to develop necessary and sufficient conditions for the existence
of both apparent horizons and singularities in the initial data which do not depend sensitively on the foliation.
@S0556-2821~97!05224-7#

PACS number~s!: 04.20.Cv, 04.60.Kz

I. INTRODUCTION

In this paper we examine the constraints in general rela-
tivity when the spatial geometry is spherically symmetric
and possesses just one asymptotically flat region@1,2#. This
is the simplest gravitational scenario which exhibits local
degrees of freedom.

In @2# we focused on the solution of the constraints when
the extrinsic curvatureKab vanishes. Though they are
simple, they nonetheless display some of the features of the
general problem. Such solutions are, however, very special.
For if the extrinsic curvature vanishes, the momentum con-
straint requires that the current density of the matter fieldsJ
must also vanish. The solutions of the Hamiltonian constraint
which result therefore correspond to ‘‘momentarily static’’
spatial geometries which do not generally occur in a given
spacetime@3#. Since, if they occur at all, they occur as iso-
lated objects, we did not need to fix the foliation. Here, we
extend our work to cover the general situation where matter
flows and, as a result, the extrinsic curvature is nonvanish-
ing. The advantage of having dealt separately with the mo-
mentarily static solutions is that we can focus here on the
physical feedback on the spatial geometry introduced by ex-
trinsic curvature.

The introduction of extrinsic curvature complicates the
analysis substantially. This occurs on two levels. The first is
purely technical: the Hamiltonian constraint gets coupled to
the momentum constraint—we have to solve a coupled sys-
tem of equations. The second is conceptual: the constraints

do not single out a unique slice through the spacetime—we
need to specify some foliation.

In general, the initial data are given by specifying the
intrinsic and the extrinsic geometry on some spacelike hy-
persurface which satisfy the constraints. A spherically sym-
metric geometry is completely characterized by specifying
the areal radiusR as a function of the proper radiusl . The
extrinsic curvature can be expressed in a form consistent
with spherical symmetry

Kab5nanbKL1~gab2nanb!KR , ~1!

whereKL andKR are two spatial scalars andna is the out-
ward pointing unit normal to the two-sphere of fixed radius
in the slice.

How does one go about fixing the foliation? In principle,
any foliation admitting globally regular solutions of the con-
straints is as good as any other. Ideally, therefore, we would
like to consider a completely general slice through the space-
time; realistically, however, if the slicing is too general, it
becomes very difficult to prove anything. At very least, the
feedback on the spatial geometry introduced by extrinsic cur-
vature should reflect the strength of the material currents
flowing—the gauge certainly should not overshadow com-
pletely the underlying physics.

We will focus in this paper on an ‘‘extrinsic time’’ folia-
tion of spacetime. This involves fixing some spatial scalar
function of the extrinsic curvature. For a spherically symmet-
ric geometry, we can cast this relationship in terms of two
scalars appearing in Eq.~1! as follows:

F@KR ,KL#50, ~2!
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with a possible dependence onR and l which we have not
indicated explicitly. Any gauge of this form should~at least
implicitly ! be solved to fix one of the scalars (KL say! ap-
pearing in Eq.~1!, in terms of the other.

All previous work on the constraints in spherically sym-
metric relativity has focused exclusively on some given fo-
liation of this type. These have been maximal slicing or the
so-called polar slicing@4#. The latter slicing mimics the
Kab50 form of the Hamiltonian constraint and is the folia-
tion which provides the standard presentation of the
Schwarzschild geometry. Unfortunately, in either case, one
is at a loss to know just how sensitively the solution depends
on the choice of gauge. How will our notions of the size and
the energy content change in another foliation? If they
change in a way we cannot quantify they are almost useless.
To address this kind of question it is desirable to work with
as large a class of foliations as possible.

In @1#, we introduced a functiona, the ratio of the two
scalars defining the extrinsic curvature

KL1aKR50. ~3!

By setting a equal to some specified function,a
5a@KR ,R,l # say, Eq.~3! defines an extrinsic time folia-
tion. If a is a function only ofR andl ~in particular, if it is
constant!, the momentum constraint is exactly solvable for
KR .

It was shown in@1# that each constant value ofa which is
greater than 0.5 provides a globally regular slice for appro-
priate sources. These values ofa correspond to a spacelike
extrinsic curvature ‘‘vector’’ with respect to the superspace
metric. As special cases we recover both the maximal slic-
ing, with a52, and the polar gauge whena→`.

Remarkably, one can show that even whena is not a
constant the gauge continues to provide regular slices of
spacetime so long asa<0.5 asymptotically. All spacelike
extrinsic curvatures in superspace provide regular foliations.
The identification of potentially singular geometries will,
however, require that the gradients ofa be appropriately
bounded.

The gauges we consider, in fact, represent a very large
class of extrinsic time foliations. Recasting Eq.~2! in the
homogeneous form,KL52a@KR ,R,l #KR , ensures that
when the material currentJ vanishes,Kab50. In particular,
flat spacetime will be foliated by flat spatial hypersurfaces.
Indeed, when the momentum constraint is satisfied, the ex-
trinsic curvature is~quasi!linear in J, albeit in a nonlocal
way. In this way the extrinsic curvature of the hypersurface
responds directly to the movement of matter on it—a physi-
cally reasonable criterion.

Within this large class of extrinsic time foliations, there
are universal properties exhibited by solutions of the con-
straints which are either independent of, or do not depend
sensitively on the particular foliation. These properties di-
vide naturally into those of globally regular geometries and
those of singular geometries.

In @2#, we examined these properties when the initial data
was momentarily static. We first identified a geometrical
bound on the spatial gradient of the areal radiusR ~the prime
is a derivative with respect to proper radius!,

21<R8<1, ~4!

independent of the source which was valid in all globally
regular geometries. This bound was seen to operate at a more
fundamental level than the positivity of the Arnowitt-Deser-
Misner ~ADM ! mass. We then went on to investigate how
the matter content of the slice can potentially force the ap-
pearance of either apparent horizons or singularities. We
showed that when singularities occurred, they possessed a
universal form and we could place bounds on the rate of
divergence of geometrical scalars.

How do these results generalize? In globally regular ge-
ometries, the spacetime gradients ofR are bounded. First,
when the weak energy condition is satisfied anda>0.5 ev-
erywhere, the bound Eq.~4! on the spatial gradient continues
to hold. Secondly, and perhaps more surprising, an analo-
gous bound can be placed on the extrinsic curvature when
the dominant energy condition is satisfied. We obtain the
highly nontrivial result that

21<RKR<1, ~5!

if a>1. The bound~5! can be interpreted as a bound onṘ,
the derivative ofR with respect to normal proper time both
of these bounds are independent of the source magnitude.
They will play a central role in the establishment of suffi-
cient conditions for the appearance of apparent horizons and
singularities@5#. If a,1, no such bound exists—indeed, a
counterexample can be constructed.

Singular geometries can occur even though bothr andJ
are finite. The only way that the geometry can become sin-
gular, however, is by pinching off at some finite proper ra-
dius from the center. Generically, at this radius (l S say!, R
will vanish nonanalyically

R;C~ l S2l !1/~a11!. ~6!

Remarkably, the quasilocal mass~QLM! remains finite even
when the geometry is singular. Indeed, we show that this is
always true regardless of the gauge condition. Our ability to
identify universal behavior of this form will be crucial for
the establishment of necessary conditions for singular geom-
etries in a subsequent publication@6#.

Generally, the singularities of the three-geometry consis-
tent with the constraints will be more severe than those
which are admissable at a moment of time symmetry. If,
however, the movement of matter is tuned so that the extrin-
sic curvature vanishes as the singularity is approached, the
strength of the singularity will be determined entirely by the
QLM, exactly as it is at a moment of time symmetry@2#. We
show that this tuning corresponds to an integrability condi-
tion on the current. If, in addition, the tuning is refined so
that the QLM also vanishes as we approach the singularity
the curvature singularity disappears and the spatial geometry
pinches off in a regular way. This latter integrability condi-
tion involving the QLM is completely analogous to the inte-
grability condition encountered at a moment of time symme-
try. Regularity at the singularity is, of course, precisely the
condition that the interior be a regular closed universe. If the
matter fields carry conserved charges these will, in their turn,
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have integrability conditions associated with them. Viewed
this way, regular closed universes appear to be very special
universes@7#.

The paper is organized as follows. We begin in Sec. II
with a discussion of the solution of the momentum con-
straint. In Sec. III we provide a derivation of the bounds on
R8 andRKR . In Sec. IV, we derive Eq.~6!. In Sec. V, we
discuss the integrability conditions and comment briefly on
the regularity of Euclidean relativity. We conclude in Sec. VI
with a brief discussion and outline of future work.

II. THE CONSTRAINTS

In this section we examine the analytical structure of the
constraints whenKabÞ0. We recall that the constraints can
be written as

KR@KR12KL#2
1

R2 @2~RR8!82R8221#58pr ~7!

and

KR81
R8

R
~KR2KL!54pJ, ~8!

where the line element on the spatial geometry is param-
etrized by

ds25dl 21R2dV2, ~9!

l is the proper radial distance on the hypersurface,R is the
areal radius, and we have expanded the extrinsic curvature
according to Eq.~1!. All derivatives are with respect to the
proper radius of the spherical geometryl . The spatial geom-
etries we consider consist of a single asymptotically flat re-
gion with a regular centerl 50. We will subsequently refer
to such geometries as regular. The appropriate boundary con-
dition on the metric atl 50 is then

R~0!50. ~10!

We recall thatR8(0)51 if the geometry is regular at this
point. We assume that bothr and J are appropriately
bounded functions ofl on some compact support. This com-
pact support restriction could be easily relaxed so as to con-
sider solutions where bothr and J decay appropriately as
one approaches infinity with little extra effort but also with
little extra insight.

We define the quasilocal massm as follows:

m5
R

2
~12R82!1

1

2
KR

2R3. ~11!

When the constraints~7! and~8! and the boundary condition
at the origin, Eq.~10!, are satisfied,m is determined by the
sources as follows:

m54pE
0

l

dl R2@rR81JRKR#. ~12!

This way,m arises as a first integral of the constraints. These
equations are gauge invariant. In a globally regular geom-
etry,m coincides at infinity with the ADM mass,m` . As we

found in @2# in a simpler context, the introduction ofm is
extremely useful and will be exploited repeatedly in our
analysis.

To solve the constraints classically, we need to specify
some foliation. In this paper, we will focus on a gauge con-
dition of the general form~3! where a is some specified
function of the configuration variablesR, KR , and l . It is
possible to provide a geometrical interpretation for these
gauges. To begin with, we know that whena52 this condi-
tion specifies a spacelike hypersurface with maximum vol-
ume in spacetime: the trace of the extrinsic curvatureK
5KL12KR vanishes. It is simple to show that whena
5a(l ), Eq. ~3! is precisely the condition that the modified
spatial volume of a closed ball,

Va54pE
0

l

dl Ra, ~13!

be a maximum.
When a is a constant, the momentum constraint can be

solved uniquely forKR in terms of the radial flow of matter,
J, as follows:

KR5
4p

R11aE0

l

dl R11aJ, ~14!

where we have exploited the regularity of the geometry at
the origin to setKR(0)50.

When Eqs.~3! and ~14! are substituted into Eq.~7!, we
obtain a second order singular nonlinear integro-ordinary dif-
ferential equation~ODE! for R @8#. Subject to the boundary
condition, Eq.~10!, the solution is uniquely determined. Not
only is the extrinsic curvature completely determined by the
material sources, so also is the spatial geometry. There are no
independent gravitational degrees of freedom, exactly as ex-
pected. We note that in the gauge Eq.~3!, the spatial geom-
etry does not depend on the global sign ofJ. Of course, if we
reverse the sign ofJ, the extrinsic curvature picks up a nega-
tive sign.

When a is not constant, it is still possible to mimic the
solution whena is constant. To do this we recast the mo-
mentum constraint in the form

~R11aKR!854pR11aJ1a8ln~R/L !R11aKR , ~15!

whereL is any characteristic length scale. The spatial varia-
tion of a has been absorbed completely into the second term
on the right-hand side~RHS!. The solution is given by

KR5
4p

R11aE0

l

dl 1R11aJD~ l 1 ,l !, ~16!

where

D~ l 1 ,l !5e* l 1

l dl 2a8 ln~R/L !. ~17!

The constanta result is simply modulated by an exponential
multiplicative correctionD. We note in particular thatKR
50 whenJ50. This provides a very strong justification for
casting the gauge in the form of Eq.~3!. If a5a(R,l )
alone,KR will also be linear and homogeneous inJ. If we
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admit aKR dependence explicitly intoa the linear correla-
tion of KR and J no longer holds.KR will nonetheless be
positive whenJ is. If, however,a is an even function ofKR
thenKR will echo the parity ofJ: KR@2J#52KR@J#.

It is clear from inspection of the definition ofD that spa-
tial variations ina are antiscreened: remote source contribu-
tions get distorted more than nearby ones. This is potentially
worrysome but, as we will see, it is not a serious obstacle.

We will now look more closely at the analytic structure of
solutions. Let us first focus on regular geometries.

III. GLOBALLY REGULAR GEOMETRIES

We first comment on the behavior of the spatial geometry
in the neighborhood of the origin. In fact, in the neighbor-
hood of l 50, we haveR;l , so that@9#

KR;4p
J~0!

21a~0!
l . ~18!

Thus if KR is regular at the origin then it must also vanish
there. This is not, however, surprising. Spherical symmetry
is very restrictive leaving a regular geometry no freedom to
evolve at the origin.

We can expandR(l ) in a power series in the neighbor-
hood of l 50 and substitute into Eq.~7! to get

R~ l !5l 1
4p

9
r~0!l 31•••. ~19!

A consequence of the vanishing ofKR(0) is thatJ will only
show up at order five in this expansion—two orders behind
r. The metric at the origin clearly is not sensitively depen-
dent on the current flowing there.

The other region we need to check is outside the source.
What constraints does asymptotic flatness place ona? To
recover an asymptotically flat spatial geometry we require
that R(l );l to leading order. We have thatKR
;constantD(l 0 ,l )/R11a. Now for an appropriate falloff
~faster thanl 21) on a8, D(l 0 ,l ) will always saturate so
that we can absorb it into the constant. On one hand, we note
that outside the source, the integral identity~12! impliesm is
a constant. However, the contribution of extrinsic curvature
to m @Eq. ~11!# ;1/R2a`21. There represents an inconsis-
tency if a tends asymptotically to any value,a` , lower than
0.5. If a`.0.5, not onlyKR but also its contribution tom
vanish asymptotically. Such a choice is simultaneously regu-
lar at the origin.

We note that with strict inequality,a`.0.5, m be domi-
nated asymptotically by the first term in Eq.~11! so thatm`

is encoded completely in the intrinsic geometry. In the lim-
iting case,a50.5, the intrinsic and the extrinsic geometries
share the burden. However, such a falloff invalidates the tra-
ditional expressions for the ADM mass.

What can we say in general about globally regular geom-
etries? We will demonstrate that they possess the remarkable
property that for an appropriate dense subset of extrinsic
time foliations both the spatial and temporal gradients ofR
are bounded numerically in a way which is entirely indepen-
dent of the material sources and ofa.

Supposer satisfies the weak energy conditionr>0. Con-
sider any foliation satisfying Eq.~3! with a>0.5 every-
where. Then, if the geometry is regular,R82<1 everywhere.
The proof is very simple and was given in Ref.@1#. We
repeat it here to emphasize that the spatial variation ofa
does not enter:R8 must be bounded in any regular geometry.
We note thatR8(0)51 andR8→1 at infinity. ThusR8 must
possess an interior critical point. At this pointR950. In the
gauge~3!, the Hamiltonian constraint, Eq.~7!, now reads, at
this point,

R825128prR22~2a21!R2KR
2 . ~20!

Both the second and the third terms on the RHS are negative.
The result follows immediately.

A simple corollary of this result is the positivity ofm. We
can obtain analogous bounds onKR in the gauge Eq.~3!.
However, it is important to stress that without some control
overJ we should not expectKR to be bounded. Let us there-
fore suppose that the dominant energy condition~DEC!
uJu<r is satisfied everywhere. Our experience in@1# suggests
that when the DEC holds, the appropriate variables are the
optical scalars defined by@10#

v652~R86RKR!, ~21!

which are (R times! the null expansions in the out-future and
out-past directions. They are a useful set of variables to ex-
ploit when we are interested in identifying apparent horizons
@1,10,5#. The optical scalar which marks the presence of a
future trapped surface isv1 : v150 at a future apparent
horizon.

It was shown in@10# ~and again in@1#! that when the
dominant energy conditionuJu<r is satisfied,

uv6u<k1Auku214, ~22!

wherek5maxuRKu and K is the trace of the extrinsic cur-
vature. These bounds depend on the sources only throughK.
When K50 (a52) they become numerical bounds which
are independent of the sources:

22<v6<2. ~23!

It then follows that

RKR5~v12v2!/4, ~24!

andR85(v11v2)/4 are bounded,uRKRu<1 anduR8u<1.
Here, we would like to show that even whenaÞ2 in the

gauge Eq.~3! it is still possible to boundv6 by Eq. ~23!.
One way to do this is to bootstrap on Eq.~22!. This way, one
can bounduv6u when a lies within the range 1,a,3.
However, the bound does depend ona and diverges at the
points,a51 anda53. However, one can do better.

We showed in@1# that it is possible to add and subtract
the two constraints~7! and~8! to obtain simple equations for
the spatial derivative ofv1 andv2

~v6!8528pR~r7J!2
1

4R
~v1v224!6v1KL ,

~25!
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We now exploit the gauge conditions~3! and ~24! to recast
these equations in the form

~v6!8528pR~r7J!1
1

4R
@~a21!v1v2142av6

2 #.

~26!

Let us establish the inequality~23! for v1 . The argument is
very similar to the one we used above to derive the bound
R82<1. We note thatv1 must be bounded in a regular
geometry and thatv1(0)52 andv1→2 at infinity. Thus
v1 must possess an interior critial point. At this pointv18
50 so that

~a21!v1v2142av1
2 532pR2~r2J!, ~27!

the right-hand side of which is positive by hypothesis. Thus

av1
2 <~a21!v1v214. ~28!

However, the quasilocal mass is positive or, equivalently,
@1,10#

v1v2<4, ~29!

so that whena>1, v1 satisfies Eq.~23!.
In @1#, we pointed out that the ‘‘binding energy’’M2m

of a regular spherically symetric system satisfying the domi-
nant energy condition is positive when the slicing is maxi-
mal. In general, we have

M2m54pE
0

l

dl R2@~r1J!~22v1!1~r2J!~21v2!#,

~30!

which is manifestly positive wheneveruv6u<2. Thus this
result is also true for all values ofa>1.

It is clear from Eq.~28! that Eq.~23! cannot be extended
to a,1—v2v1 is not bounded from below. To obtain a
bound we need to exclude both future and past trapped sur-
faces so thatv1v2 is positive. We then have, for all posi-
tive a,

uv1u<2max~2/Aamin,1!. ~31!

The results forv2 are identical.
This implies the bound onKR :

uRKRu<max~1/Aamin,1!. ~32!

We already haveR82<1 for all a when the weak energy
condition is satisfied.

One can, in fact, easily construct a counterexample dem-
onstrating explicitly that we should not expect to do better
than Eq. ~31! when a,1. We do this by examining the
values assumed by the optical scalars in the neighborhood of
l 50. We can combine Eqs.~18! and ~19! to obtain

v6;22
8p

3 S r~0!7
3

21a
J~0! D l 2. ~33!

If the dominant energy condition is satisfied, then whena
>1, we havev6<2 near the origin which is consistent with

our result. If, however,a,1 this is not necessarily the case.
If J(0) exceeds (21a)r(0)/3 anda,1, thenv1>2 in the
neighborhood of the origin. We note also that

v1v2<S 22
8p

3
@r~0!l 2# D 2

2S 8

21a D 2

p2J~0!2l 4<4.

~34!

This is consistent with the inequality Eq.~29!. Note also that
the absolute maximum of the productv1v2 obtains at the
boundary valuesl 50 andl 5` and it is also the flat space
value. WhenK50, this is also true of bothv1 andv2 . In
general, the absolute maximum of neither need occur at these
points.

IV. SINGULAR GEOMETRIES

So far we have assumed that the geometry is regular ev-
erywhere. A nonsingular asymptotically flat solution defined
for all l >0 will not, however, always exist for every speci-
fication ofr andJ. In this section, our task will be to under-
stand what can go wrong and to identify the mechanism
driving the geometry into a singularity.

In Sec. III we showed thatR82<1 in any globally regular
geometry. Thus ifR82.1 anywhere the geometry must be
singular.

Let us suppose thatR82.1 at some point. Then, when
Kab satisfies Eq.~3!, Eq. ~7! implies

RR95
1

2
@12R82#1

R2

2
~122a!KR

224pr, ~35!

so that R9,0 and R8 is decreasing there. This can only
occur byR8 falling throughR8521. OnceR8 falls below
this value it will continue decreasing monotonically thereaf-
ter. The surface withR8521 in the configuration space
therefore acts as a oneway membrane. Suppose that the areal
radius isR0 whenR8521. We know now that the solution
must crash, i.e.,R→0 within a finite proper distance which
is less than or equal toR0 from that point.

Since R9<0 wheneverR851 we see that the surface
R851 in the configuration space also acts as a oneway mem-
brane and the solution can only pass downwards through it.
However, since at a regular center we haveR851 andR8
starts to reduce as soon as we enter matter, it is clear that the
region defined byR8.1 is completely forbidden.

We conclude that crashing throughR8521 is the generic
way the spatial geometry can become singular. Singularities
with R8521 at R50 are also possible. They result, how-
ever, only for special finely tuned matter distributions. We
will discuss them more fully below in Sec. V. Putting the
regular and singular results together, we have the following:
if the geometry is globally regular, then21<R8<1 every-
where; if21,R8<1 everywhere, then the geometry is glo-
bally regular.

One possible way that this method of constructing initial
data for a spherically symmetric gravitational field can break
down is that the slicing turns null. SinceR is a four-
dimensional scalar, nothing will go bad with it. On the other
hand,l is the spacelike proper distance along the slice and
sodl will become small and thusR8 will become unbound-
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edly large if the slice turns null. But we have shown that this
cannot happen if we assumea>0.5 andr>0. Note that we
do not have to assume thata5constant. Therefore, if we
stay inside the light cone of the supermetric, we stay outside
the light cone of the spacetime. For any slice satisfyinga
>0.5 the only possible singularity is whenR→0.

Let us now examine more carefully the approach towards
a singularity. In the neighborhood of the pointl 5l S.0 at
which R50, Eq. ~16! implies that

KR;
Ca~ l S!

R11a
, ~36!

where

Ca~ l !54pE
0

l

dl 1JR11aD~ l ,l 1! ~37!

is finite if D is. KR will therefore be singular~for physically
acceptable values ofa) if the geometry pinches off unless
the current is tuned such that

Ca~ l S!50. ~38!

To examine the structure of singularities it is extremely
useful to exploit the definition of the quasilocal mass intro-
duced earlier. From a functional point of view, Eq.~11! is
identical to the energy integral in classical mechanics. To
exploit this analogy, we therefore recast this equation as fol-
lows:

R82512
2m

R
1KR

2R2, ~39!

wherem is given by Eq.~12! andKR by Eq. ~14!.
Let us suppose thatm remains finite. Now, ifCa does not

vanish anda.0.5, the most singular term in Eq.~39! is the
quadratic inKR . This implies that

R82;R2KR
2 ~40!

in the neighborhood ofR50, or R82;Ca
2/R2a. Generically,

therefore,R82diverges. The solution is

R;S Ca

a11D 1/~a11!

~ l S2l !1/~a11!. ~41!

If a.0.5, such spatial singularities are more severe than the
strong singularities discussed in@2# which are consistent
with the Hamiltonian constraint at a moment of time sym-
metry. We will refer to the generic kind of singularity driven
by extrinsic curvature as a strongJ-type singularity. Asa
increases, the power law determining the strength of the sin-
gularity increases. Note that the limita→` ~the polar gauge
discussed in Ref.@1#! is extremely singular. This is, however,
a gauge artifact reflecting how poor the polar gauge really is.
Unlike the strong singularities occurring whenKab50, at
which the scalar curvatureR remained finite,R will gener-
ally blow up @just like KR

2;1/(l S2l )2#. On dimensional
grounds, we expect all curvature scalars to blow up as

1/(l S2l )2 as we approach a singularity unless there is
some constraint obstructing them from doing so.

To show that the above analysis is self-consistent, we
need to demonstrate that, for finitea8, ~i! the form factorD
defined by Eq.~17! remains finite;~ii ! m remains finite.

To this end, we note that

E
0

l

dl a8lnR/L<ua8umaxE
0

l

dl u lnR/Lu. ~42!

The integrated logarithm is bounded. While the integrand
diverges atR50, the integral is nevertheless well behaved.
We note that

E
0

s

ds lns5s lns2s. ~43!

Thus in particular, the form factor is well behaved on the flat
solution,R5l . This is essentially all we need to check be-
cause as we have just seenR(l );(l 02l )1/11a0 at a sin-
gularity so that logarithm is multiplicatively identical to the
flat space value.

We now confirm thatm remains finite as we approach a
strong singularity. We do this by demonstrating that the vol-
ume integral~12! is always finite. We note that, for suitably
boundedr andJ,

~rR2R8,JR3KR!;~r,J!~ l S2l !2@~a22!/~a11!#. ~44!

If a<2, the integrand itself remains finite. In general, the
integral will be finite if the exponent of (l S2l )21 is
bounded by 1. But (a22)/(a11),1 for all finite values of
a thus guaranteeing that the integrals overR2rR8 and
R3JKR converge. The only possible gap in this argument is
the assumption thatm remains finite. It is possible thatm
diverges fast enough when the singularity is approached so
thatm/R dominatesR2KR

2 . This would requirem to diverge
faster thanR122a. The first term in Eq.~12! cannot give a
divergent m as R2r obviously remains finite and*R8dl
5R is also bounded as we approach the singularity. There-
fore we need only consider theJR3KR term. This will di-
verge asR22a. Let us assume thatR;(l S2l )b for some
b.0. Then, from Eq.~12!, m will, at worst, diverge asm
;(l S2l )(22a)b11. Now the requirement that them term in
Eq. ~39! dominates implies (22a)b11,(2a21)b,0.
This in turn gives2(a11)b.1, a negativeb. Therefore it
is clear thatm(l S) is always finite.

The sign ofm will, however, depend on the details of the
current flow. This is obvious from the definition Eq.~11!.
Even ifR82.1, a sufficiently large value ofKR can renderm
positive. In particular, unlike the value ofm assumed at
strongr singularities whenKab50 ~discussed in@2#! which
is always negative, the sign generally can assume either
value. Indeedm need never even be negative in a singular
geometry. ThoughR8 decreases monotonically,m nonethe-
less can remain positive. There is no conflict with the posi-
tive QLM theorem. In our examination of momentarily static
configurations in@2#, we found thatm is positive everywhere
except at the origin or in a neighborhood of it if and only if
the geometry is nonsingular. This is a consequence of the
coincidence of the converse of the boundedR82 lemma and
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the converse of the positive QLM theorem whenKab50. In
the general case, whenKabÞ0, no such coincidence occurs.

The mass is finite at R50 independent of the gauge. We
have shown above that the quasi-local massm is finite even
if the spatial slice is strongly singular withR→0 so long as
(r,J) remain finite. This result was derived on the assump-
tion that the slice was chosen to satisfy the gauge condition
~3! with a>0.5. It turns out that the finiteness ofm holds on
any slice. To see this we need only consider Eq.~12!, which
is slicing independent, and Eq.~39!, which is effectively the
definition of m. As we argued above, the first term in Eq.
~12! remains finite as we approach the singularity. We know
that R2r is bounded and*dl R85R also is well behaved.
Thus we need only focus on the*dl R2JRKR term. We
know thatR2J is bounded so we only need to control the
RKR term. The necessary control is given by Eq.~39!. If
R2KR

2 is the dominant term on the right-hand side of Eq.
~39!, we get thatuRKRu;2R8 so the integral in Eq.~12! is
finite asR→0. If m becomes large and negative so that the
term 22m/R dominates, we getuRKRu,2R8 so again the
integral converges. The only case left to consider is the pos-
sibility that 2m/R is positive and diverges at the same rate as
R2KR

2 and some cancellation occurs so thatR8 is uncorre-
lated with RKR . Let us assumeR;(l S2l )b for someb
.0 and uRKRu;(l S2l )2g for g.0. We then getm
;(l S2l )b22g. However, the argument in Eq.~12! goes as
R3KR;(l S2l )2b2g. Hence we getm diverging at worst as
m;(l S2l )2b2g11. If this is self-consistent, we require
2b2g115b22g. This implies b1g1150, which
makes no sense. Thus such cancellation cannot take place.

V. INTEGRABILITY CONDITIONS

What are the implications of the integrability condition,
Eq. ~38!? If Eq. ~38! is satisfied the strongJ singularity is
moderated to one which is only strong a lar. The behavior
in the vicinity of the singularity will then be determined by
the m/R term in Eq.~39! even if the system was originally
‘‘driven’’ towards the singularity by extrinsic curvature. If,
in addition,

m~ l S!54pE
0

l S
dl @rR2R81JR3KR#50, ~45!

the singularity will be a weak one withR8(l S)521. We
note thatR950 at this point. The corresponding bag of gold
will be a regular closed universe. These integrability condi-
tions do depend ona. If a given functionJ satisfies Eq.~38!
with one functiona, generally it will not satisfy that condi-
tion with any other function. There is no spacetime diffeo-
morphism invariant statement of the integration. The integra-
bility condition need not be preserved by the evolution.

If J is positive~or negative! everywhere,Ca(l ) defined
by Eq. ~37! cannot vanish. Thus, if matter is collapsing or
exploding everywhere, all singularities must be strongJ-type
singularities. This contrasts with the obstruction,r8,0, dis-
cussed in@2#, prohibiting the formation of any singularity
when Kab50. In general, we note that on performing an
integration by parts on the first term,m can be rewritten

m~ l !5
4p

3
rR314pE

0

l

dl R3@JKR2r8#. ~46!

The first term is manifestly positive. So is the third ifr8
<0. If J is positive ~negative! everywhere then so ism in
anya gauge. However, the third term appearing on the RHS
of Eq. ~39! may still pull the geometry into a singularity ifJ
is sufficiently large. The peculiarity of momentarily static
configurations withr8,0 discussed in@2# can clearly be
destabilized by the motion of matter. All regular closed cos-
mologies simultaneously satisfy two integrability conditions,
Eqs.~38! and~45!. There can be no net flow of material from
one pole to the other. In particular,J must change sign be-
tween the poles. In addition, Eq.~46! tells us that

m~ l S!54pE
0

l S
dl R3@JKR2r8#50. ~47!

In particular,JKR2r8 must change sign between the poles.
These conditions will be examined in the closed cosmologi-
cal context in a subsequent publication@4#.

There are no strong J singularities in the Euclidean
theory. The singularity structure we have investigated has
one important consequence for Euclidean general relativity.
If the sign of the quadratic term inKR appearing in Eq.~39!
had been negative,insteadof facilitating the occurrence of
singularities it would have presented an obstacle to their oc-
currance. Any nonvanishing extrinsic curvature would there-
fore tend to stabilize the spatial geometry against singularity
formation. We note that there is precisely such a sign switch
in the Hamiltonian constraint of Euclidean general relativity.
The Bianchi identities there tell us that the solutions of the
constraints represent all possible configurations the system
may assume as it is evolved with respect to Euclidean time.
This suggests that gravitational instantons will tend to be
more regular than their Lorenzian counterparts. In fact, the
most singular Euclidean geometries will occur when the ge-
ometry is momentarily static. In a tunneling Euclidean four-
geometry, such three-geometries correspond to the initial and
final hypersurfaces of the Lorentzian spacetimes between
which it interpolates. If these hypersurfaces are themselves
nonsingular, i.e., do not involve Planck scale structures, then
Planck Scale physics does not enter the semiclassical de-
scription of tunneling between them. This would appear to
validate the application of the semiclassical approximation.

VI. CONCLUSIONS

We have identified a dense subset of extrinsic time folia-
tions with respect to which there exist universal bounds on
certain geometrical invariants. When the geometry is regular,
we have described how the spacetime gradients ofR in this
dense subset are bounded numerically, independent both of
the gauge and of the sources. Near a singularity, these gra-
dients diverge in a way we can quantify.

These results can be applied to address the question of
identifying necessary and sufficient conditions for the pres-
ence of apparent horizons and singularities in the initial data
@5,6# extending the work of@11,12#, @2#, and @10#. In the
analysis of sufficient conditions for the appearance of
trapped surfaces and singularities, first the moment-of-time-
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symmetry case was examined@11,2# followed by maximal
slices @12,10#. We find that, not only can we extend this
work to constanta but to the large class of extrinsic time
foliations described by Eq.~3! for variable a within the
range 0.5<a,`. We also find that we can provide very
powerful generalizations of the necessary conditions intro-
duced in @2# for moment of time symmetry initial data to
general initial data.

There are a number of interesting spherically symmetric
problems we intend to pursue. A very satisfactory represen-
tation of regular closed solutions of the constraints can be
given as closed bounded trjectories in the (v1 ,v2) plane.
In this representationR plays a subsidiary role. These vari-
ables suggest a novel approach to the canonical quantization
of spherically symmetric general relativity@13#. Indeed, con-
stanta foliations can be exploited to provide a new descrip-

tion of the Schwarzschild solution@14#.
The next stage is the examination of the classical evolu-

tion. Write down the Einstein equations with respect to the
optical scalar variables. Can we cast the theory in Hamil-
tonian form? If the value of these variables in the analysis of
the constraints is anything to go by, one has every reason to
expect that they will throw light on the solution of the dy-
namical Einstein equations, both analytically and numeri-
cally. Indeed these variables have recently been exploited to
establish global existence results@15#.
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