
Title Lightweight anomaly detection framework for IoT

Authors Tagliaro Beasley, Bianca;O'Mahony, George D.;Gómez Quintana,
Sergi;Temko, Andriy;Popovici, Emanuel

Publication date 2020-08-31

Original Citation Tagliaro Beasley, B., O'Mahony, G. D., Gómez Quintana, S.,
Temko, A. and Popovici, E. (2020) 'Lightweight anomaly detection
framework for IoT', 2020 31st Irish Signals and Systems
Conference (ISSC), Letterkenny, Ireland, 11-12 June. doi: 10.1109/
ISSC49989.2020.9180205

Type of publication Conference item

Link to publisher's
version

10.1109/ISSC49989.2020.9180205

Rights © 2020, IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Download date 2024-04-20 00:44:17

Item downloaded
from

https://hdl.handle.net/10468/13312

https://hdl.handle.net/10468/13312

Lightweight Anomaly Detection Framework for IoT

Bianca Tagliaro Beasley

Electrical and Electronic Engineering

UCC

Andriy Temko

Electrical and Electronic Engineering

UCC

George O’Mahony

Electrical and Electronic Engineering

UCC

Emanuel Popovici

Electrical and Electronic Engineering

UCC

Sergi Gómez Quintana

Electrical and Electronic Engineering

UCC

Abstract— Internet of Things (IoT) security is growing in

importance in many applications ranging from biomedical to

environmental to industrial applications. Access to data is the

primary target for many of these applications. Often IoT devices

are an essential part of critical control systems that could affect

well-being, safety, or inflict severe financial damage. No current

solution addresses all security aspects. This is mainly due to the

resource-constrained nature of IoT, cost, and power

consumption. In this paper, we propose and analyse a

framework for detecting anomalies on a low power IoT

platform. By monitoring power consumption and by using

machine learning techniques, we show that we can detect a large

number and types of anomalies during the execution phase of an

application running on the IoT. The proposed methodology is

generic in nature, hence allowing for deployment in a myriad of

scenarios.

Keywords— IoT, security, embedded systems, low power,

ARIMA, SARIMA, Machine Learning, anomaly detection

I. INTRODUCTION

Security is a growing concern as the world becomes more
connected. The Internet of Things (IoT) market is growing at
a rapid pace, and security becomes a deployment bottleneck
[1]. A large amount of data will be transmitted wirelessly,
sometimes in public spaces. They are exposed to malicious
attackers with a wide variety of aims, which is worrisome in a
time where we expect 24/7 IoT monitoring through
smartphones and wearable devices [2]. One of the greatest
challenges in IoT security is the limited resources available,
be it the physical hardware (small area/memory), power
consumption (linked to battery lifetime), or limited bandwidth
for data transmission.

In this paper, an intrusion detection system (IDS) to detect
anomalies for IoT applications was built and evaluated. This
development is for general purposes by comparing the
expected behavior of the device to the real-time data readings.
A set of power data was collected from the application running
on the IoT device and used to train a machine learning (ML)
algorithm to generate an accurate model. Currently, a lot of
anomaly detection research is using ML as it offers high
accuracy. For example, convolutional neural network (CNN)
algorithms show some of the best results, with accuracies as
high as 97%-98% [3] [4]. In [3], one to three layers were tested
as well as the hybrid algorithm (combining CNN to the
recurrent neural network or long short-term memory). These
features use a lot of resources, making CNN not suitable for
resource-constrained IoT. A study comparing some classical
ML algorithms (not including CNN) concluded that the best
option for the detection of common IoT attacks is by using
random forest algorithms [5]. But it should be noted that these
were only simulated, and none of the algorithms were

specifically developed for IoT, such that other algorithms
might perform better in real-life situations.

 In [6], a lightweight anomaly detection was created using
recursive least squares but showed poor performance in real-
world tests, with the best true positive rate (TPR) being 53.6%.
In [7], an IDS was made for IoT communication protocols
using open-source software, but it relied on transmitting data
to a central base station to perform anomaly detection
analysis. Sending data to a central base station for anomaly
detection is a common way to circumvent the issue of limited
resources, at the cost of speed. However, it is known that
wireless communication is very costly compared to
computing when it comes to power consumption. Some
research was also done on focusing on building hardware. In
[8], an IDS was built using an FPGA, where an FSM would
monitor the expected state that the device should go next. If it
entered an unexpected state, then this would indicate an
anomaly and could be detected within three clock cycles. In
[9], an anomaly detection system was implemented using an
autoregressive moving average (ARMA) and autoregressive
integrated moving average (ARIMA) forecast for smart
electricity meters. The goal was to detect electricity theft by
checking the mean and variance. Applying this to the test data
showed a reduction in 99.4% of stolen electricity, but it only
functions for a limited time period (seven days) since
seasonality was not implemented.

II. METHODOLOGY

In this paper, an IDS was implemented for anomaly
detection, with the aim of requiring minimal resources and
low power consumption. For the detection system, an ML
algorithm was used to generate a low weight model.

A. Framework

The general framework for this IDS (Figure 1) has three
main components: a power monitor, an IoT device, and a
security watchdog. Both the IoT and the power monitor were
implemented using existing boards that match the
requirements set in this paper (low power, low resource
usage). The watchdog checks for anomalies and is the focus
of the research completed for this paper.

• The PSoC has a set of components that are found in
most IoT applications, such as sensors, actuators, and
configurable analog parts. For this paper, an
application using LEDs and Linear Feedback Shift
Registers (LFSRs) was implemented with a clock
running at 24 MHz.

• The power monitor is connected to the IoT device, and
it measures the power consumption. The role of the
monitor is two-folds. Firstly, it is used in the
application characterization/modelling process, and

secondly, it sends real-time power data to the
watchdog/IDS.

• In the watchdog, a previously trained machine learning
application model will analyse the newly acquired data
during application runtime. If an anomaly is detected,
it will send a signal to the IoT device to either reset to
factory settings or turn it off completely (using power
gating). The main constraint is that the power
consumption of the energy monitor and the watchdog
to be smaller than that of the IoT device.

The reason power data was chosen is because it reflects
the instruction sequence performed in the core processor. If
the same set of instructions is repeated (which is the case of a
duty-cycled application), then the normal power
characteristics of a cycle should be repeatable. But if any
modification is made in the code, then the instruction
sequence changes, and therefore the power consumption will
be different than expected. It can be observed in Figure 2
(using a low-cost, low power power-monitor) and Figure 3
(using an expensive high-end oscilloscope), where each curve
shows the data after a reset, that it is replicable. To observe
this, the data was input through erosion, a dilation, a low pass,
and a high pass filter. The goal of this process is to eliminate
any noise and offset that might be present, such that only the
clean signal is present. The data shown in Figure 2 was
collected using the STMicroelectronics power monitor
samples current at a rate of 3.2 MSamples/s, using three 12-
bit ADC for different current ranges. This is then averaged
every 32 points, resulting in an output of 100 kSamples/s. The
data in Figure 3 was collected using a Tektronix DPO4054
oscilloscope, which samples the data at 2.5 GSamples/s.

Figure 2 - Application Characterisation: check for replicability,

with three reruns (power monitor).

Figure 3 - Application Characterisation: check for replicability,

with four reruns (using Tektronix DPO4054 oscilloscope, at 2.5

GSamples/s).

B. Machine Learning Algorithm

Many types of ML algorithms were studied for this IDS,
but ultimately the ARIMA model was chosen [10] due to its
simplicity and suitability for implementation on a
microcontroller. This is a statistical method that creates a
model that approximates the training data. It consists of a
function, as shown in (1), with one part representing the
moving average (MA) and the other part being the
autoregressive (AR) component. Yt is the lag of the series, β
and ϕ are the coefficients for the AR and MA components
respectively, ε represents the errors of the lag, and α is a
constant.

Yt = α + β1Yt – 1 + β2Yt – 2 + … + βpYt – pεt + ϕ1εt – 1 + ϕ2εt –

2 + … + ϕqεt – q (1)

Neural networks perform better in terms of detection rate
[3], but they demand a lot of resources that might not be
available in IoT devices. The ARIMA is lightweight and easy
to implement in the embedded system. This is because, for the
inference, the number of model parameters is much smaller
than for other ML models. This leads to reduced memory
usage as well as a reduced number of operations while
providing high accuracy predictions.

Figure 1 - Framework of IDS (with photos).

An important characteristic is that this data presents
seasonality; in other words, it shows a repeating pattern at
regular intervals. Figure 4 shows the data used for training the
ML algorithm after pre-processing for improved data
stationarity. The data approximates a square waveform which
repeats itself every 40 points. In Figure 4, it can be observed
that the rolling mean of this data is not constant, and therefore
the data is not stationary. As a result, the ARIMA model does
not follow the trends of the training data (Figure 5). This is
corrected by using seasonal ARIMA (SARIMA), which
allows to model seasonality in the data.

The SARIMA model developed in this paper was made
using Python libraries. This allows the user to select the order
of p (AR), q (MA), and d (differencing components). For
seasonal models, it is also necessary to select pseasonal, qseasonal,
dseasonal and the period which the season repeats, due the need
to represent the seasonality in the data. The parameters chosen
for this paper are (p, d, q)x(pseasonal, dseasonal, qseasonal) = (0, 1,
2)x(0, 1, 0), with a seasonal frequency of 40. The chosen
values provide an accurate enough model within a reasonable
time since each coefficient is iterated multiple times. The
differencing components were chosen to improve the
stationarity of the data. Although some pre-processing is
already in place for this purpose, the additional differencing
(and differencing for the seasonal component) significantly
improves the resulting model. Sometimes, in low order
models, the AR and MA parts cancel each other's effect. For
this reason, it was decided to have no AR components.

C. Validation and Performance Metrics

To compare different SARIMA models, the Akaike
Information Criterion (AIC) is used [11]. It is an estimate of
how much information was lost between the model and the
training data. This value is automatically calculated by the
algorithm used in this paper. For data prediction, AIC should
be as close to zero as possible such that it follows the training
data closely. For example, the AIC value for the ARIMA
model in Figure 5 is -1959.917, while the AIC for a similar
order SARIMA is -1678.8095. This shows that the SARIMA
model is more suitable in this case. However, in anomaly
detection, the lowest AIC value is not always the best option.
A good model for IDS should be able to follow the trends
accurately without having the exact same points. The reason
for this is that two separate data sets will have some
differences, which are not anomalies, for example, due to
process, voltage, or temperature (PVT). If the model is too
close to the training data, then it may detect a false anomaly.

Therefore, the goal is to find a model with small AIC, but
that still follows the trends. For example, in Table 1 the AIC
for model (2,1,0)x(0,1,0,40) was lower than model
(0,1,2)x(0,1,0,40). But in Figure 6 and Figure 7, it can be seen
that model (2,1,0)x(0,1,0,40) has more noise that might affect
the performance of the anomaly detection, while model
(0,1,2)x(0,1,0,40) has a smoother plot that follows the trends.

Figure 4 - Training data after pre-processing.

Figure 5 - ARIMA Model for Training Data.

ARIMA Model AIC Comparison

Model Parameters

(p,d,q)x(pseasonal,dseasonal,qseasonal,40)
AIC

(0,1,1)x(0,1,0,40) -1681.3801

(1,1,0)x(0,1,0,40) -1610.4896

(0,1,1)x(0,1,1,40) -1671.9873

(1,1,0)x(0,1,1,40) -1671.9873

(2,1,0)x(0,1,0,40) -1651.2217

(0,1,2)x(0,1,0,40) -1678.8095

(0,1,2)x(0,1,1,40) -1739.4169

(2,1,0)x(0,1,1,40) -1703.4882

Table 1 - AIC values for each ARIMA model.

Figure 6 - SARIMA model with parameters (0,1,2)x(0,1,0,40).

Figure 7 - SARIMA model with parameters (2,1,0)x(0,1,0,40).

To measure the performance of the anomaly detection, the
true positive rate (TPR) and false-positive rate (FPR) were
calculated [4], as shown in (2) and (3). The figures required
for these calculations are the number of true positives (TP),
the number of false negatives (FN), the number of false
positives (FP), and the number of true negatives (TN).

TPR is also known as detection rate or recall and is a
measure of how many of the anomalies tested were actually
detected by the IDS. FPR is sometimes called a false alarm
rate and indicates how often will be IDS falsely show an
anomaly. FPR is an important measure as too many false
positives can impact the performance of the device, for
example, if a reset occurs every time. In general, there is a
trade-off between TPR and FPR. Relaxing the features used to
characterise an anomaly can improve TPR, but it will also
make the IDS more susceptible to false positives.

 TPR = TP / (TP + FN) (2)

 FPR = FP / (TN + FP) (3)

The relationship between TPR and FPR is very important,
so a common way to evaluate an IDS is to use the receiver
operating characteristic (ROC) curve. This is useful for
comparing different IDS. A high accuracy IDS will have a
steep ROC curve, i.e., TPR grows faster than FPR.

D. Types of Inserted Anomaly

A Python-based algorithm was used to generate random
anomalies with a variable length between 2 to 5 data points.
Many of these were based on the anomalies described in [6].

• Addition or subtraction: these generate peaks and
troughs types of anomalies, by adding (or subtracting)
to the signal.

• Multiplication: similar to addition and subtraction, but
the anomaly is proportional to the signal.

• Constant: the signal plateaus as a certain value.

• Noise: generates random noise that is within three
standard deviations of the error of the measured data.
This is not exactly an anomaly but rather used to test
for false positives.

E. Central ARIMA Algorithm

Another potential algorithm that was tested for this paper

was Central ARIMA. For this, the SARIMA models of the

original training data (original model) and the inverted form

(inverted model) are made. Then a window of length 2N + 1

is taken where i (the point under analysis) is in the middle of

this window. All points between i-N and i-1 are taken from the

original model, while points i+1 to i+N are taken from the

inverted model (where they are equivalent to points i-N to i-1,

in this case). These points are summed, and the average will

be the estimate for point i. The new value for point i is then

used for anomaly detection analysis.

III. RESULTS

A few anomaly detection techniques were tested. Initially,
the system checked if the error from the measured data was
normally distributed (i.e., within three standard deviations
from the training data error). To improve it, analysis of a
window average was applied as this means the anomaly would
have an impact on the points surrounding it, facilitating
detection. Another way of improving was to implement an
integration of the errors, such that a large difference between
the integrals at that point (determined by a threshold) would
indicate an anomaly, even if the data is still within the bounds
of three standard deviations.

A. Comparison Between Detection Methods

 Table 2 shows the results when only the three standard
deviations are checked. The TPR is low compared to current
state-of-the-art IDS. One of the main issues was that this IDS
had difficulties detecting constants since they sometimes are
well within the threshold. For this reason, the window
averaging was implemented, as it means that the IDS will
detect the average approximating that value. The TPR
significantly improved with windowing and integration,
reaching over 80%. However, the trade-off for this is an
increase in FPR and a larger memory requirement to store the
points. In Figure 8, the ROC curves between three window
lengths were compared, and it was found that the optimal
window length is eight points. It showed similar TPR to the
10-point window but without any false-positive results.
Although a window of six points also has FPR of zero, the
TPR is much worse, at only 55%.

 In Figure 9, a graph of error with an anomaly after 100
points is shown. The detection system, in this case, uses a 10-
point window. It is clear that the anomaly was detected
(indicated by the blue crosses). Figure 10 shows the integrals
of the errors from Figure 9, and there is a difference of
approximately 0.046 where the anomaly occurs. Figure 11
shows the same anomaly but this time using the 6-point
window. Although the anomaly is still detected, only one point
of it was identified, meaning that this IDS is not as robust.
Note that the upper and lower bounds are slightly different
between Figure 9 and Figure 11, due to the window average
used (similarly, the integration is different between Figure 10
and Figure 12).

 Table 2 - Performance metrics for each IDS scheme tested.

Three Standard Deviations

FN TP TN FP TPR FPR

27 53 12 7 66.25% 36.84%

Window of 10 points (+ Integration)

8 34 2 6 80.95% 75%

Window of 8 points (+ Integration)

9 36 5 0 80% 0%

Window of 6 points (+ Integration)

18 22 10 0 55% 0%

 Figure 8 - ROC curve comparing the three window average

lengths.

Figure 9 - Anomaly detection for a 10-point window.

Figure 10 - Integrals of the error of the training data and the test

data for 10-point window.

Figure 11 - Anomaly detection for a 6-point window.

Figure 12 - Integrals of the error of the training data and the test

data, for 6-point window.

B. Comparison Between Types of Anomalies

Table 3 shows the TPR for each anomaly type that was
described in section II.D. It shows very clearly that this IDS
can easily detect values added or subtracted from the signal.
However, it has difficulties detecting constants and
multiplications. The TPR for constants increased by over 10%
for window averages of eight and ten points, which is a
significant improvement. For multiplication, it is possible that
some of the undetected anomalies are occurring in points
where the signal is close to zero, resulting in a very small
anomaly. The length of the anomaly occurrence also has an
impact on the detection rate. For multiplication anomalies,
40% of undetected anomalies were three points long and 30%
were two points long. This might indicate that the IDS is not
suitable for short anomalies.

Three Standard Deviations

 FN TP TPR

Multiplication 11 14 56%

Addition 2 13 86.67%

Subtraction 2 13 86.67%

Constant 12 13 52%

Window of 10 points (+ Integration)

Multiplication 2 6 75%

Addition 1 8 88.89%

Subtraction 0 10 100%

Constant 5 8 61.54%

Window of 8 points (+ Integration)

Multiplication 3 3 50%

Addition 1 13 92.86%

Subtraction 1 13 92.86%

Constant 4 7 63.64%

Window of 6 points (+ Integration)

Multiplication 5 6 54.55%

Addition 5 6 54.55%

Subtraction 0 8 100%

Constant 8 2 20%

Table 3 - Total number of false negatives and true positives per

anomaly for each IDS scheme tested.

C. Central ARIMA Results

For the Central ARIMA algorithm, the 4-point window

averaging with integral analysis IDS scheme was used as this

provided the best ROC curve for the SARIMA model. In

Figure 13, it can be seen that Central ARIMA can accurately

follow the trends of the data, even in new data that was not

used during the training process.

Table 4 summarises the results for Central ARIMA. The

TPR is better than all the previously tested detection methods

for SARIMA. Compared to SARIMA with 10-point window,

which had the best TPR but also had a very high FPR, the

Central shows improvements for both TPR and FPR.

Table 4 - Performance metrics for Central ARIMA.

D. Implementation

For the SARIMA model inference, it requires two

coefficients to be stored, ten addition operations and eight

constant multiplication operations. For the decision process,

it requires two subtractions, some memory operations and

integral of eight points. This shows that the implementation

of this IDS is lightweight.

IV. CONCLUSION

The IDS proposed in this paper consists of an ARIMA
model, which is used to find if the measured data is within the

normal distribution and has a small difference in the integral
for the window of points being analysed. After optimising the
detection method, it was found that TPR can be as high as
80%. This IDS shows better or similar performance compared
to other non-neural network algorithms, which have TPR
ranging from 45.74% to 87.65% [4]. It also performed much
better when compared to another lightweight algorithm in [6],
which achieved 53.6% TPR. Our framework provides the
potential of implementation on a low power device with a high
detection rate.

Further work will be done on implementing this IDS into
hardware for demonstration and testing another algorithm
(Central ARIMA). Our algorithms focus on anomaly
detection within the computing unit. In the future, this IDS
will be implemented into a device (PSoC 6 BLE) with RF and
wireless communications with a focus on both computing and
communication.

ACKNOWLEDGMENTS

We would like to acknowledge the support of SFI
INSIGHT Centre.

We would like to express our gratitude to Cypress
Semiconductor for their continuous support and aid
throughout this project.

REFERENCES

[1] J. A. Stankovic, ‘Research Directions for the Internet of Things’, IEEE
Internet of Things Journal, Vol. 1, pp. 3-9, 2014.

[2] A. AboBakr and M. A. Azer, “IoT Ethics Challenges and Legal Issues”,
12th International Conference on Computer Engineering and Systems
(ICCES), Cairo, Egypt, 1st Feb 2017, 2018

[3] R. Vinayakumar, K. P. Soman and P. Poonachandran, “Applying
Convolutional Neural Network for Network Intrusion Detection”, 2017
International Conference on Advances in Computing, Communications
and Informatics (ICACCI), Udupi, India, 13th – 16th September 2017,
2017

[4] Y. Liu, S. Liu and X. Zhao, “Intrusion Detection Algorithm Based on
Convolutional Neural Network”, 4th International Conference on
Engineering Technology and Application (ICETA 2017), Nagoya,
Japan, 29th – 30th June 2017, 2017

[5] M. Hasan, M. M. Islam, M I. I. Zarif and M. M. A. Hashem, ‘Attack
and Anomaly Detection in IoT Sensors in IoT Sites Using Machine
Learning Approaches’, Internet of Things, Vol. 7, 2019

[6] H. H. W. J. Bosman, A. Liotta, G. Iacca and H. J. Wörtche, “Anomaly
Detection in Sensor Systems Using Lightweight Machine Learning”,
2013 IEEE International Conference on Systems, Man and
Cybernetics, Manchester, UK, 13th - 16th October 2013, pp. 7-13,
2014

[7] P. Kasinathan, G. Costamagna, H. Khaleel, C. Pastrone and M. A.
Spirito, “DEMO: An IDS Framework for Internet of Things
Empowered by 6LoWPAN”, 2013 ACM SIGSAC Conference on
Computer & Communications Security, Berlin, Germany, 4th - 8th
November 2013, pp. 1337-1339, 2013

[8] M. Rahmatian, H Kooti, I. G. Harris and E. Bozorgzadeh, ‘Hardware-
Assisted Detection of Malicious Software in Embedded Systems’,
IEEE Embedded Systems Letters, Vol. 4, pp. 94-97, 2012

[9] V. B. Krishna, R. K. Iyer, and W. H. Sanders, "ARIMA-Based
Modeling and Validation of Consumption Readings in Power Grids",
10th International Conference on Critical Information Infrastructures
Security, Berlin, Germany, 5th – 7th October 2015, pp. 199-210, 2015

[10] W. R Kinney Jr., ‘ARIMA and Regression in Analytical Review: An
Empirical Test’, The Accounting Review, Vol. 53, pp. 48-60, 1978

[11] H. Akaike, ‘Fitting Autoregressive Models for Prediction’, Annals of
the Institute of Statistical Mathematics, Vol. 21, pp. 243-247, 1969

Total Results

FN TP TN FP TPR FPR

11 55 12 4 83.33% 25%

Per Anomaly Type

 FN TP TPR

Multiplication 2 13 86.67%

Addition 3 10 76.92%

Subtraction 2 24 92.31%

Constant 4 8 66.67%

Figure 13 - Plot of errors using Central ARIMA for two

different test data sets, with an anomaly at points 168-171. A

blue x indicates a detected anomaly.

