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Abstract— Internet of Things (IoT) security is growing in 

importance in many applications ranging from biomedical to 

environmental to industrial applications. Access to data is the 

primary target for many of these applications. Often IoT devices 

are an essential part of critical control systems that could affect 

well-being, safety, or inflict severe financial damage. No current 

solution addresses all security aspects. This is mainly due to the 

resource-constrained nature of IoT, cost, and power 

consumption. In this paper, we propose and analyse a 

framework for detecting anomalies on a low power IoT 

platform. By monitoring power consumption and by using 

machine learning techniques, we show that we can detect a large 

number and types of anomalies during the execution phase of an 

application running on the IoT. The proposed methodology is 

generic in nature, hence allowing for deployment in a myriad of 

scenarios. 

Keywords— IoT, security, embedded systems, low power, 
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I. INTRODUCTION 

Security is a growing concern as the world becomes more 
connected. The Internet of Things (IoT) market is growing at 
a rapid pace, and security becomes a deployment bottleneck 
[1]. A large amount of data will be transmitted wirelessly, 
sometimes in public spaces. They are exposed to malicious 
attackers with a wide variety of aims, which is worrisome in a 
time where we expect 24/7 IoT monitoring through 
smartphones and wearable devices [2]. One of the greatest 
challenges in IoT security is the limited resources available, 
be it the physical hardware (small area/memory), power 
consumption (linked to battery lifetime), or limited bandwidth 
for data transmission. 

In this paper, an intrusion detection system (IDS) to detect 
anomalies for IoT applications was built and evaluated. This 
development is for general purposes by comparing the 
expected behavior of the device to the real-time data readings. 
A set of power data was collected from the application running 
on the IoT device and used to train a machine learning (ML) 
algorithm to generate an accurate model. Currently, a lot of 
anomaly detection research is using ML as it offers high 
accuracy. For example, convolutional neural network (CNN) 
algorithms show some of the best results, with accuracies as 
high as 97%-98% [3] [4]. In [3], one to three layers were tested 
as well as the hybrid algorithm (combining CNN to the 
recurrent neural network or long short-term memory). These 
features use a lot of resources, making CNN not suitable for 
resource-constrained IoT. A study comparing some classical 
ML algorithms (not including CNN) concluded that the best 
option for the detection of common IoT attacks is by using 
random forest algorithms [5]. But it should be noted that these 
were only simulated, and none of the algorithms were 

specifically developed for IoT, such that other algorithms 
might perform better in real-life situations. 

 In [6], a lightweight anomaly detection was created using 
recursive least squares but showed poor performance in real-
world tests, with the best true positive rate (TPR) being 53.6%. 
In [7], an IDS was made for IoT communication protocols 
using open-source software, but it relied on transmitting data 
to a central base station to perform anomaly detection 
analysis. Sending data to a central base station for anomaly 
detection is a common way to circumvent the issue of limited 
resources, at the cost of speed. However, it is known that 
wireless communication is very costly compared to 
computing when it comes to power consumption. Some 
research was also done on focusing on building hardware. In 
[8], an IDS was built using an FPGA, where an FSM would 
monitor the expected state that the device should go next. If it 
entered an unexpected state, then this would indicate an 
anomaly and could be detected within three clock cycles. In 
[9], an anomaly detection system was implemented using an 
autoregressive moving average (ARMA) and autoregressive 
integrated moving average (ARIMA) forecast for smart 
electricity meters. The goal was to detect electricity theft by 
checking the mean and variance. Applying this to the test data 
showed a reduction in 99.4% of stolen electricity, but it only 
functions for a limited time period (seven days) since 
seasonality was not implemented.   

II. METHODOLOGY 

In this paper, an IDS was implemented for anomaly 
detection, with the aim of requiring minimal resources and 
low power consumption. For the detection system, an ML 
algorithm was used to generate a low weight model. 

A. Framework 

The general framework for this IDS (Figure 1) has three 
main components: a power monitor, an IoT device, and a 
security watchdog. Both the IoT and the power monitor were 
implemented using existing boards that match the 
requirements set in this paper (low power, low resource 
usage). The watchdog checks for anomalies and is the focus 
of the research completed for this paper. 

• The PSoC has a set of components that are found in 
most IoT applications, such as sensors, actuators, and 
configurable analog parts. For this paper, an 
application using LEDs and Linear Feedback Shift 
Registers (LFSRs) was implemented with a clock 
running at 24 MHz. 

• The power monitor is connected to the IoT device, and 
it measures the power consumption. The role of the 
monitor is two-folds. Firstly, it is used in the 
application characterization/modelling process, and 



secondly, it sends real-time power data to the 
watchdog/IDS. 

• In the watchdog, a previously trained machine learning 
application model will analyse the newly acquired data 
during application runtime. If an anomaly is detected, 
it will send a signal to the IoT device to either reset to 
factory settings or turn it off completely (using power 
gating). The main constraint is that the power 
consumption of the energy monitor and the watchdog 
to be smaller than that of the IoT device. 

The reason power data was chosen is because it reflects 
the instruction sequence performed in the core processor. If 
the same set of instructions is repeated (which is the case of a 
duty-cycled application), then the normal power 
characteristics of a cycle should be repeatable. But if any 
modification is made in the code, then the instruction 
sequence changes, and therefore the power consumption will 
be different than expected. It can be observed in Figure 2 
(using a low-cost, low power power-monitor) and Figure 3 
(using an expensive high-end oscilloscope), where each curve 
shows the data after a reset, that it is replicable. To observe 
this, the data was input through erosion, a dilation, a low pass, 
and a high pass filter. The goal of this process is to eliminate 
any noise and offset that might be present, such that only the 
clean signal is present. The data shown in Figure 2 was 
collected using the STMicroelectronics power monitor 
samples current at a rate of 3.2 MSamples/s, using three 12-
bit ADC for different current ranges. This is then averaged 
every 32 points, resulting in an output of 100 kSamples/s. The 
data in Figure 3 was collected using a Tektronix DPO4054 
oscilloscope, which samples the data at 2.5 GSamples/s. 

 

 

 

Figure 2 - Application Characterisation: check for replicability, 

with three reruns (power monitor). 

 

Figure 3 - Application Characterisation: check for replicability, 

with four reruns (using Tektronix DPO4054 oscilloscope, at 2.5 

GSamples/s).  

B. Machine Learning Algorithm 

Many types of ML algorithms were studied for this IDS, 
but ultimately the ARIMA model was chosen [10] due to its 
simplicity and suitability for implementation on a 
microcontroller. This is a statistical method that creates a 
model that approximates the training data. It consists of a 
function, as shown in (1), with one part representing the 
moving average (MA) and the other part being the 
autoregressive (AR) component. Yt is the lag of the series, β 
and ϕ are the coefficients for the AR and MA components 
respectively, ε represents the errors of the lag, and α is a 
constant.  

Yt = α + β1Yt – 1 + β2Yt – 2 + … + βpYt – pεt + ϕ1εt – 1 + ϕ2εt – 

2 + … + ϕqεt – q                                                                      (1) 

Neural networks perform better in terms of detection rate 
[3], but they demand a lot of resources that might not be 
available in IoT devices. The ARIMA is lightweight and easy 
to implement in the embedded system. This is because, for the 
inference, the number of model parameters is much smaller 
than for other ML models. This leads to reduced memory 
usage as well as a reduced number of operations while 
providing high accuracy predictions. 

 
Figure 1 - Framework of IDS (with photos). 



An important characteristic is that this data presents 
seasonality; in other words, it shows a repeating pattern at 
regular intervals. Figure 4 shows the data used for training the 
ML algorithm after pre-processing for improved data 
stationarity. The data approximates a square waveform which 
repeats itself every 40 points. In Figure 4, it can be observed 
that the rolling mean of this data is not constant, and therefore 
the data is not stationary. As a result, the ARIMA model does 
not follow the trends of the training data (Figure 5). This is 
corrected by using seasonal ARIMA (SARIMA), which 
allows to model seasonality in the data. 

The SARIMA model developed in this paper was made 
using Python libraries. This allows the user to select the order 
of p (AR), q (MA), and d (differencing components). For 
seasonal models, it is also necessary to select pseasonal, qseasonal, 
dseasonal and the period which the season repeats, due the need 
to represent the seasonality in the data. The parameters chosen 
for this paper are (p, d, q)x(pseasonal, dseasonal, qseasonal) = (0, 1, 
2)x(0, 1, 0), with a seasonal frequency of 40. The chosen 
values provide an accurate enough model within a reasonable 
time since each coefficient is iterated multiple times. The 
differencing components were chosen to improve the 
stationarity of the data. Although some pre-processing is 
already in place for this purpose, the additional differencing 
(and differencing for the seasonal component) significantly 
improves the resulting model. Sometimes, in low order 
models, the AR and MA parts cancel each other's effect. For 
this reason, it was decided to have no AR components. 

C. Validation and Performance Metrics 

To compare different SARIMA models, the Akaike 
Information Criterion (AIC) is used [11]. It is an estimate of 
how much information was lost between the model and the 
training data. This value is automatically calculated by the 
algorithm used in this paper. For data prediction, AIC should 
be as close to zero as possible such that it follows the training 
data closely. For example, the AIC value for the ARIMA 
model in Figure 5 is -1959.917, while the AIC for a similar 
order SARIMA is -1678.8095. This shows that the SARIMA 
model is more suitable in this case. However, in anomaly 
detection, the lowest AIC value is not always the best option. 
A good model for IDS should be able to follow the trends 
accurately without having the exact same points. The reason 
for this is that two separate data sets will have some 
differences, which are not anomalies, for example, due to 
process, voltage, or temperature (PVT). If the model is too 
close to the training data, then it may detect a false anomaly. 

Therefore, the goal is to find a model with small AIC, but 
that still follows the trends. For example, in Table 1 the AIC 
for model (2,1,0)x(0,1,0,40) was lower than model 
(0,1,2)x(0,1,0,40). But in Figure 6 and Figure 7, it can be seen 
that model (2,1,0)x(0,1,0,40) has more noise that might affect 
the performance of the anomaly detection, while model 
(0,1,2)x(0,1,0,40) has a smoother plot that follows the trends. 

 

Figure 4 - Training data after pre-processing.  

 
Figure 5 - ARIMA Model for Training Data. 

ARIMA Model AIC Comparison 

Model Parameters 

(p,d,q)x(pseasonal,dseasonal,qseasonal,40) 
AIC 

(0,1,1)x(0,1,0,40) -1681.3801 

(1,1,0)x(0,1,0,40) -1610.4896 

(0,1,1)x(0,1,1,40) -1671.9873 

(1,1,0)x(0,1,1,40) -1671.9873 

(2,1,0)x(0,1,0,40) -1651.2217 

(0,1,2)x(0,1,0,40) -1678.8095 

(0,1,2)x(0,1,1,40) -1739.4169 

(2,1,0)x(0,1,1,40) -1703.4882 

Table 1 - AIC values for each ARIMA model. 

 

Figure 6 - SARIMA model with parameters (0,1,2)x(0,1,0,40). 



 

Figure 7 - SARIMA model with parameters (2,1,0)x(0,1,0,40). 

To measure the performance of the anomaly detection, the 
true positive rate (TPR) and false-positive rate (FPR) were 
calculated [4], as shown in (2) and (3). The figures required 
for these calculations are the number of true positives (TP), 
the number of false negatives (FN), the number of false 
positives (FP), and the number of true negatives (TN). 

TPR is also known as detection rate or recall and is a 
measure of how many of the anomalies tested were actually 
detected by the IDS. FPR is sometimes called a false alarm 
rate and indicates how often will be IDS falsely show an 
anomaly. FPR is an important measure as too many false 
positives can impact the performance of the device, for 
example, if a reset occurs every time. In general, there is a 
trade-off between TPR and FPR. Relaxing the features used to 
characterise an anomaly can improve TPR, but it will also 
make the IDS more susceptible to false positives. 

                          TPR = TP / (TP + FN)                          (2) 

                          FPR = FP / (TN + FP)                          (3) 

The relationship between TPR and FPR is very important, 
so a common way to evaluate an IDS is to use the receiver 
operating characteristic (ROC) curve. This is useful for 
comparing different IDS. A high accuracy IDS will have a 
steep ROC curve, i.e., TPR grows faster than FPR. 

D. Types of Inserted Anomaly 

A Python-based algorithm was used to generate random 
anomalies with a variable length between 2 to 5 data points. 
Many of these were based on the anomalies described in [6]. 

• Addition or subtraction: these generate peaks and 
troughs types of anomalies, by adding (or subtracting) 
to the signal. 

• Multiplication: similar to addition and subtraction, but 
the anomaly is proportional to the signal. 

• Constant: the signal plateaus as a certain value. 

• Noise: generates random noise that is within three 
standard deviations of the error of the measured data. 
This is not exactly an anomaly but rather used to test 
for false positives. 

E. Central ARIMA Algorithm 

Another potential algorithm that was tested for this paper 

was Central ARIMA. For this, the SARIMA models of the 

original training data (original model) and the inverted form 

(inverted model) are made. Then a window of length 2N + 1 

is taken where i (the point under analysis) is in the middle of 

this window. All points between i-N and i-1 are taken from the 

original model, while points i+1 to i+N are taken from the 

inverted model (where they are equivalent to points i-N to i-1, 

in this case). These points are summed, and the average will 

be the estimate for point i. The new value for point i is then 

used for anomaly detection analysis. 

III. RESULTS 

A few anomaly detection techniques were tested. Initially, 
the system checked if the error from the measured data was 
normally distributed (i.e., within three standard deviations 
from the training data error). To improve it, analysis of a 
window average was applied as this means the anomaly would 
have an impact on the points surrounding it, facilitating 
detection. Another way of improving was to implement an 
integration of the errors, such that a large difference between 
the integrals at that point (determined by a threshold) would 
indicate an anomaly, even if the data is still within the bounds 
of three standard deviations. 

A. Comparison Between Detection Methods 

 Table 2 shows the results when only the three standard 
deviations are checked. The TPR is low compared to current 
state-of-the-art IDS. One of the main issues was that this IDS 
had difficulties detecting constants since they sometimes are 
well within the threshold. For this reason, the window 
averaging was implemented, as it means that the IDS will 
detect the average approximating that value. The TPR 
significantly improved with windowing and integration, 
reaching over 80%. However, the trade-off for this is an 
increase in FPR and a larger memory requirement to store the 
points. In Figure 8, the ROC curves between three window 
lengths were compared, and it was found that the optimal 
window length is eight points. It showed similar TPR to the 
10-point window but without any false-positive results. 
Although a window of six points also has FPR of zero, the 
TPR is much worse, at only 55%. 

 In Figure 9, a graph of error with an anomaly after 100 
points is shown. The detection system, in this case, uses a 10-
point window. It is clear that the anomaly was detected 
(indicated by the blue crosses). Figure 10 shows the integrals 
of the errors from Figure 9, and there is a difference of 
approximately 0.046 where the anomaly occurs. Figure 11 
shows the same anomaly but this time using the 6-point 
window. Although the anomaly is still detected, only one point 
of it was identified, meaning that this IDS is not as robust. 
Note that the upper and lower bounds are slightly different 
between Figure 9 and Figure 11, due to the window average 
used (similarly, the integration is different between Figure 10 
and Figure 12).  

 Table 2 - Performance metrics for each IDS scheme tested. 

Three Standard Deviations 

FN TP TN FP TPR FPR 

27 53 12 7 66.25% 36.84% 

Window of 10 points (+ Integration) 

8 34 2 6 80.95% 75% 

Window of 8 points (+ Integration) 

9 36 5 0 80% 0% 

Window of 6 points (+ Integration) 

18 22 10 0 55% 0% 



  

 Figure 8 - ROC curve comparing the three window average 

lengths. 

 

Figure 9 - Anomaly detection for a 10-point window. 

 

Figure 10 - Integrals of the error of the training data and the test 

data for 10-point window.  

 

Figure 11 - Anomaly detection for a 6-point window. 

 

Figure 12 - Integrals of the error of the training data and the test 

data, for 6-point window. 

B. Comparison Between Types of Anomalies 

Table 3 shows the TPR for each anomaly type that was 
described in section II.D. It shows very clearly that this IDS 
can easily detect values added or subtracted from the signal. 
However, it has difficulties detecting constants and 
multiplications. The TPR for constants increased by over 10% 
for window averages of eight and ten points, which is a 
significant improvement. For multiplication, it is possible that 
some of the undetected anomalies are occurring in points 
where the signal is close to zero, resulting in a very small 
anomaly. The length of the anomaly occurrence also has an 
impact on the detection rate. For multiplication anomalies, 
40% of undetected anomalies were three points long and 30% 
were two points long. This might indicate that the IDS is not 
suitable for short anomalies. 

Three Standard Deviations 

 FN TP TPR 

Multiplication 11 14 56% 

Addition 2 13 86.67% 

Subtraction 2 13 86.67% 

Constant 12 13 52% 

Window of 10 points (+ Integration) 

Multiplication 2 6 75% 

Addition 1 8 88.89% 

Subtraction 0 10 100% 

Constant 5 8 61.54% 

Window of 8 points (+ Integration) 

Multiplication 3 3 50% 

Addition 1 13 92.86% 

Subtraction 1 13 92.86% 

Constant 4 7 63.64% 

Window of 6 points (+ Integration) 

Multiplication 5 6 54.55% 

Addition 5 6 54.55% 

Subtraction 0 8 100% 

Constant 8 2 20% 

Table 3 - Total number of false negatives and true positives per 

anomaly for each IDS scheme tested.  



C. Central ARIMA Results 

For the Central ARIMA algorithm, the 4-point window 

averaging with integral analysis IDS scheme was used as this 

provided the best ROC curve for the SARIMA model. In 

Figure 13, it can be seen that Central ARIMA can accurately 

follow the trends of the data, even in new data that was not 

used during the training process. 

Table 4 summarises the results for Central ARIMA. The 

TPR is better than all the previously tested detection methods 

for SARIMA. Compared to SARIMA with 10-point window, 

which had the best TPR but also had a very high FPR, the 

Central shows improvements for both TPR and FPR. 

Table 4 - Performance metrics for Central ARIMA. 

D. Implementation 

For the SARIMA model inference, it requires two 

coefficients to be stored, ten addition operations and eight 

constant multiplication operations. For the decision process, 

it requires two subtractions, some memory operations and 

integral of eight points. This shows that the implementation 

of this IDS is lightweight. 

IV. CONCLUSION 

The IDS proposed in this paper consists of an ARIMA 
model, which is used to find if the measured data is within the 

normal distribution and has a small difference in the integral 
for the window of points being analysed. After optimising the 
detection method, it was found that TPR can be as high as 
80%. This IDS shows better or similar performance compared 
to other non-neural network algorithms, which have TPR 
ranging from 45.74% to 87.65% [4]. It also performed much 
better when compared to another lightweight algorithm in [6], 
which achieved 53.6% TPR. Our framework provides the 
potential of implementation on a low power device with a high 
detection rate. 

Further work will be done on implementing this IDS into 
hardware for demonstration and testing another algorithm 
(Central ARIMA). Our algorithms focus on anomaly 
detection within the computing unit. In the future, this IDS 
will be implemented into a device (PSoC 6 BLE) with RF and 
wireless communications with a focus on both computing and 
communication. 
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Total Results 

FN TP TN FP TPR FPR 

11 55 12 4 83.33% 25% 

Per Anomaly Type 

 FN TP TPR 

Multiplication 2 13 86.67% 

Addition 3 10 76.92% 

Subtraction 2 24 92.31% 

Constant 4 8 66.67% 

 

 
Figure 13 - Plot of errors using Central ARIMA for two 

different test data sets, with an anomaly at points 168-171. A 

blue x indicates a detected anomaly. 


