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A Nonlinear Analysis of Spatial Compliant Parallel Modules:
Multi-beam Modules

Guangbo Hao, Xianwen Kong®*, Robert L. Reuben
Department of Mechanical Engineering, Heriot-Watt University, Edinburgh, UK, EH14 4AS

ABSTRACT: This paper presents normalized, nonlinear and analytical models of spatial compliant parallel modules—multi-beam
modules with a large range of motion. The models address the non-linearity of load-equilibrium equations, applied in the deformed
configuration, under small deflection hypothesis. First, spatial nonlinear load-displacement equations of the tip of a beam, conditions of
geometry compatibility and load-equilibrium conditions for a spatial three-beam module are derived. The nonlinear and analytical load-
displacement equations for the three-beam module are then solved using three methods: approximate analytical method, improved
analytical method and numerical method. The nonlinear-analytical solutions, linear solutions and large-deflection FEA solutions are further
analyzed and compared. FEA verifies that the accuracy of the proposed nonlinear-analytical model is acceptable. Moreover, a class of
multi-beam modules with four or more beams is proposed, and their general nonlinear load-displacement equations are obtained based on
the approximate load-displacement equations of the three-beam module. The proposed multi-beam modules and their nonlinear models
have potential applications in the compliant mechanism design. Especially, the multi-beam modules can be regarded as building blocks of
novel compliant parallel mechanisms.

Keywords: Nonlinear analysis; Compliant mechanisms; Spatial modules

1. Introduction

Compliant parallel mechanisms/modules (CPMs) transmit motions/forces by deflections of their compliant members and
have the characteristics of both conventional parallel mechanisms [1-2] and fully compliant mechanisms [3-4]. It is well
known that CPMs possess many potential advantages such as zero backlash, no need for lubrication, reduced wear, high
precision and compact, monolithic configuration. They can be used in a variety of applications, especially where high-
precision movements are required, such as precision motion stages, precision robotics, and MEMS sensors and actuators [5-8].
Due to their merits, CPMs have received much attention over the past decade.

CPMs mainly fall into two categories: lumped compliance mechanisms and distributed compliance mechanisms.
Compared to lumped compliant joints, distributed compliant joints can produce a large range of motion as well as a reduced
stress concentration, and their elastic averaging can permit inexact constraint designs. There are three main approaches to
design of compliant mechanisms: (a) Pseudo-Rigid-Body-Model synthesis methods [9-11], (b) Continuum Structure
Optimization methods [12-14], and (c) innovative design methods such as the constraint-based design approach [15-16], the
building block approach [17], the screw theory based approach and the freedom and constraint topology approach [18-20].

Traditional linear analysis or Pseudo-Rigid-Body-Models [4] have limited application for compliant mechanisms usually
only providing an initial estimate for displacements as a reference for nonlinear analysis. Non-linearities in force-
displacement characteristics of a basic cantilever beam (Euler-Bernoulli beam) have three sources: material non-linearity,
geometric non-linearity and non-linearity of load-equilibrium equations. The material non-linearity can be neglected for most
applications and the geometric non-linearity will also be ignored in this paper due to small deflection assumption. To capture
the nonlinearities of force-displacement equations, the load-equilibrium conditions should be applied in the deformed
configuration of compliant mechanisms [5, 21-22], which is different from the configuration before deformation as used in
linear load-equilibrium. There are two main methods of solving force-displacement equations: a) differential equation based
methods [5, 23], and b) energy methods, such as Castigliano's theorem [24, 25] and virtual work principle [4]. Awtar [5] has
derived the analytical and nonlinear force-displacement equations of a basic cantilever beam of length L in matrix form under
the small deflection assumption, which applies provided that the transverse displacement is less than 0.1L. These nonlinear
equations can be directly used to define the buckling conditions and capture the effects of load-stiffening and elastokinematic
nonlinearities, both resulting from axial forces in the beams [5, 26]. Zelenika et al [22] also proposed the nonlinear equations
of a leaf spring in the cross-spring pivot in the deformed configuration. Nevertheless, these equations can not be generally
used due to the limitation of derivation, and the complication of solution using numerical method. Awtar et al [27, 23] further
studied the elastic averaging effect in multi-beam parallelogram flexure mechanisms, analyzed the characteristics of a double
parallelogram flexure module and proposed simple and accurate approximations. This body of work revealed the fact that any
difference in the axial forces acting on the beams will cause an unequal transverse stiffness change in the beams, and result in
rotational yaw. Based on the contributions in [15], Hao and Kong [28] proposed a 3-DOF (degrees of freedom) CPM for
translation. This CPM has good characteristics such as the kinematostatic-decoupling and large range of motion.

This paper builds on the above advances, and investigates the nonlinear modeling of spatial CPMs with multiple Euler-
Bernoulli beams under small deflection and plane cross-section assumption. A multi-beam module is composed of a motion
stage and a base connected using three or more slender beams [3, 5]. In addition to being an independent CPM in its own
right, e.g. as a vibratory bowl feeder [29-30] and a compliant assembly system device [31], a multi-beam module can also be
used as building blocks of new spatial compliant mechanisms [32-33]. This offers an alternative to spatial CPMs composed
of a number of planar compliant modules with distributed compliance, which have been proposed elsewhere [23, 34-35]. Dai
et al [29] have already analyzed the compliance of a three-legged rigidly connected compliant platform using screw theory
using the linear compliance matrix for each leg. Ding et al [30] have also carried out a dynamic analysis of a vibratory bowl
feeder with three spatial compliant legs based on a characteristic equation. Recently, a tilted three-beam spatial compliant
module, producing three rotations, is analyzed to define layouts of actuators using screw theory [36]. However, as yet, there
has been no analysis of a spatial module with three or more uniform non-tilted slender beams.
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Accordingly, this paper focuses on multi-beam modules with uniform non-tilted beams (Fig. 1). The reasons for this choice
are that the uniform beam is one of the most common flexure elements and the non-tilted arrangement is simple enough to
allow for closed-form analysis in terms of constraint-based design. This paper is organized as follows. In Section 2, spatial
nonlinear load-displacement equations of the tip of a beam, conditions of geometry compatibility and load-equilibrium
conditions of the spatial three-beam module are derived. In Section 3, three approaches are proposed to solve the nonlinear
load-displacement equations for the three-beam module, and the validity condition, extensible application, accuracy and
advantages/limitations of each model are discussed, and the approximate model is compared with the linear model. In Section
4, FEA is conducted to verify the proposed approximate analytical model for the three-beam module. In Section 5, a class of
multi-beam spatial modules is proposed, and the general equations of load-displacement for these modules are summarized.
Finally, conclusions are drawn.

2. Spatial three-beam module analysis

In order to simplify equations and make translational displacements and rotational angles (or forces and moments)
comparable, all translational displacements and length parameters are normalized by the beam length L, forces by EI/L?
bending moments by EI/L, and torques by Gl,/L. Here, E denotes the Young's modulus, | denotes the second moment of the
area of a cross-section, G denotes the shear modulus, and I, denotes the polar second moment of the area of the cross-section.
Throughout the paper, non-dimensional quantities are represented by the corresponding lower-case letters, and all beams have
round cross-sections with the same diameter Dg unless otherwise indicated.

The three-beam module (Figs. 1 and 2) is composed of a base, three beams and a motion stage. The base and motion stage,
which are both assumed to be rigid, are connected by the three compliant beams. Here, the three beams are uniformly spaced
around a circle of radius r; on the base and on the motion stage, and all external loads, p (axial force), f,, f, (transverse forces),
m, (torque), m, and m, (bending moments), are acting at the centre, O', of the motion stage and cause the motion stage to
move by deformation of the three beams. p, f, and f, are the forces along the X-, Y- and Z-axes, respectively; m,, my and m, re
the moments about the X-, Y- and Z-axes, respectively. For the purpose of simplification, the gravity of the motion stage
(including the payloads on it) is integrated into the axial force, and the weights of the compliant beams, which are very small,
are neglected.

Motion stage

Beam

(B |
Base _ : Top view of
motion stage

Fig. 1 Spatial three-beam module.

Motion
stage

The loads acting at the
tip of the io-th beam

Fig. 2 Free body diagram of the spatial CPM.
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In the initial configuration, a mobile rigid body coordinate system O'-X"Y'Z" and a global fixed coordinate system O-XYZ
are coincident and both origins are at the centre, O', of the motion stage (Fig. 2). All translational displacements of the new
origin, O', along the X-, Y- and Z-axes are denoted by x, (axial displacement) y; and z; (transverse displacements),
respectively; All rotational displacements (angles) of the motion stage about the X-, Y- and Z-axes are denoted by 6
(torsional angle), 65, and 6, (bending angles), respectively. All loads and displacements shown in all figures are represented
by the nondimensional quantities in the coordinate system O-XYZ. The object is to investigate the translational
displacements, x,, ys and z, and the rotational displacements, 6.,, 65, and 6y, of the motion stage as a function of the applied
loads: p, fy, f,, my, my and m,.

In terms of the constraint-based design [5], the three out-of-plane DOF of the three-beam spatial module are suppressed,
and its motion stage is constrained to move within the YZ plane, which leaves ys, z; and s, as the DOF. If the pitch radius r;
of the beams (hence the motion stage) becomes relatively large, the rotation of the motion stage about the X-axis will be
constrained as well.

2.1. Nonlinear load-displacement equations of the tip of a cantilever beam

The centre of the free-end of the cantilever beam is used as the point (tip) at which the loads and translational movements

are defined. Here, the loads, p; , fj . fi ;.M . m; y, M, (ic=1, 2, 3), denote internal loads acting at the tip, o; , of the io-th

beam, and are the corresponding reactions at the point iy on the motion stage as shown in Fig. 2. Pi, f fiOZ are the forces

ipy?
along the X-, Y- and Z-axes, respectively; m; ,,m; ,,m;, are the moments about the X-, Y- and Z-axes, respectively.
,x: 6,y and 6, ,(ic=1, 2, 3) are rotational displacements of the free-end of the io-th beam about the X-, Y- and Z-axes,

respectively. x; , y; and z; (ioc=1, 2, 3) are translational displacements of the tip of the io-th beam along the X-, Y- and Z-

axes, respectively.

Under the conditions of linear elasticity and small deflections, the principle of superposition [24] can be applied to
straightforwardly deal with the spatial combined deformation of a beam. The combined deformation can be regarded as the
combination of two bending deformations in the XY and XZ planes, respectively, and a torsional deformation about the X-
axis. The bending of a beam in a given plane can be analyzed using the nonlinear load-displacement equations derived by
Awtar [5, 23]. An alternative derivation for the nonlinear analysis of planar deflection of a beam can also be found in
Appendix A.

Equations (A. 12a) and (A. 13a) allow the nonlinear load-displacement equations for the ig-th beam (ip = 1, 2, 3) for
bending in the XY and XZ planes to be written as

iy | [a e Y, Lol e, o[v700 11400 Ty | o
m. | lc ble, | Peln gla,|" P 11400 —11/6300 0,
) o o o

_fioz a c|Z e h|Z, -1/700 1/1400 | %,
2
= +p; + p; + - 2
-m c b|-6 °'h g|-6 °1 1/1400 —-11/6300 | — 6
L loy oy oy Yy

where the second term on the right hand side of Egs. (1) or (2) shows the load-stiffening effect, and the terms after the second
can be neglected for most applications. Equations (1) and (2) are valid under the assumption that the moment about the Y (2)-
axis acting at any location on the beam does not affect the bending in the XY (XZ) plane, i.e. that the two bending
deformations are decoupled or are weakly coupled.

The axial displacement of the iy-th tip can be obtained by adding Egs. (A. 12b) and (A. 13b) (contributions from bending in
the XY and XZ planes) and deducting one of the duplicated terms (purely elastic effect):

1 i k| Y roqf Y oA K P gl
Xio_apio +[yi016ioz]|:k j:||:9iozi|+ pio[yio’eioz]{q Si||:9iozi|+[ziov 9|0y]|:k j:“:—eioyi|+ p|0[2|01 9|0y]|:q S:||:_9i0y:| -

. 2[ o ] 1/42000 -1/84000] Vi, | 2[2 p ] 1/42000 -1/84000) 7, |
PioVior %21 _1 /84000 1/18000 6, , Pio %o ™%y _1/84000  1/18000 | -6

loy
where the first term on the right hand side represents the purely elastic effect of the axial force alone, the second and the
fourth terms show the purely kinematic effect, and the third and the fifth terms show the elastokinematic effect. For most
practical situations the terms after the fifth can be ignored.
The nonlinear load-displacement equation of the ig-th beam (ip=1, 2, 3) for the torsion about the X-axis after deformation
can be obtained (see Appendix B for detailed derivation):
Gox =Mix =C(6,Zi, + 6,y Yi, ) 6= pi h(6, . Zi, + 6,y Vi) O (4)

where 0=2G/E. The first term shows the purely elastic effect of the torque alone, the second term shows the purely kinematic
effect, and the third term shows the elastokinematic effect. Due to the very small bending angles, compared with the
transverse displacements and the torsional angle in the spatial three-beam module, we can also omit the purely kinematic and
the elastokinematic effects in Eq. (4).
The coefficients a, b, ¢, d, e, g, h, i, j, k, g, r and s used above are all non-dimensional numbers and are the characteristic of

the uniform round cross-section beam [5]:

a= 12, b= 4, c= -6, d=16/(Dy/L)%;

e= 1.2, g=2/15, h=-0.1;

and




i=-0.6, j=-1/15, k= 1/20;
r=1/700, s= 11/6300, g= -1/1400.

From Egs. (1) - (4), it can be seen that p; , f m; , and m; , are all approximately in the order of 1, and m; , is in the

iye T
oy’
are all in the order of 0.1 under the small deflection assumption [5].

igz?
order of 0.1 since X , Vi, Zi,, 6 x: 6, y: 6.2

2.2. Conditions of geometric compatibility

For small absolute values of rotational angles (in the order of 0.1), the rotation sequence of three Euler angles is
insignificant [37] and its contribution can be neglected. Due to the rigidity of the motion stage, the geometric compatibility of
the rotational angles can be described:

st = Hlx = HZX = 93x (52)
Opy =01y =0y =0y (5b)
O, =6, =0,, =65, (5¢)

The translational displacement relationships between the tip of the io-th beam and the centre of the motion stage can be
expressed as

X X. — X

X, Xi; ~ X5, Xq io s — X,
Yio =1 Yio = VYio | T| Vs [ =] Vi [F] Ys — Vi (6)
Zj, Zi, — ¢, s Zj, Zs — Zj,

where x; , y; and z; are the coordinates of the tip of the io-th beam relative to the global fixed coordinate system after only
the rotations of the motion stage (no movement at the point O"). xi'0 : yi'O and zi'0 are the local coordinates of the tip of the igp-
th beam relative to the mobile rigid body coordinate system (xi:O, yi:rgsin(n/S), Zi:r3COS(7T/3) for the tip 1, x'2 =0, y'2 =0,
z,=-r for the tip 2, x;=0, y;=-Tssin(z/3), z5 =rscos(z/3) for the tip 3).

The coordinates x;_, y; and z; can be further expressed in a rotation matrix form as

X X;

lo lo
Vi |=Rz(02)Ry (65)Rx (05| Vi, @)
z,o zi'0

where Ry, Ry and Ry are the sequential rotation matrices [18] about the X-, Y- and Z-axes, respectively.
For small rotation angles, high order terms of rotational angles in the product of three rotation matrices above can be
neglected, so:

1 - esz + gsyesx esz esx + Hsy 1 - Hsz esy
Rz(0;,)Ry (esy)RX (Os) =| O, 1 =0y + eszesy ~| Oy 1 — Oy ®)
- 05y Oy 1 - st Oy 1

Combining Egs. (6) - (8), and substituting the local coordinate values of the tips into the result, the displacements of the
tips can be expressed as follows.

X, =X /3104, 1 2+ 1360y, 12 ©9)
Xy = X — 30y, (10)
X3 = X +/3130,, 12+ 136, 2 (11)
Y1 =Ys —Fabs /2 12)
Y2 = Ys + 30 (13)
Y3 =Ys — b5 /2 (14)
2, = 7, /30,0, /2 (15)
Z, =1 (16)
23 =2, —3,0,, /2 17

2.3. Load-equilibrium conditions

From the free body diagram in Fig. 2, the equilibrium conditions of the motion stage in the deformed configuration can be
described:



p ] ! 0 0 0 0 0P
f, 0 1 0 0 0 offiy
f,] o8 0 0 1 00 0ff,
= " " (18)
m | &= 0 -, l8 v, /8 10 0fm,
m, Zj, 0 -x, 010 m
‘m, | Vi %, 0 00 1fp,
where x; , y; and z; can be obtained from the result of substituting Eq. (8) into Eq. (7).
Neglecting the contribution of rotations in Eq. (18), this simplifies to:
P=PL+P2+Ps3 (129)
fy =i, + o+ fyy (20)
f,=1f, + fy, + 1y, (21)
myzm1y+m2y+m3y+(p1+ P3—2p,)r3/2 (22)
m, =My, + My, + Mg, +(p3 - pl)\/§r3/2 (23)
My~ My My, + My -+ (Fy, = F5,)V313/(26) +[2 1, = (o + T3, )1 /(26) (24)

3. Solution to the nonlinear load-displacement analysis for the three-beam module

The constitutive, compatibility and equilibrium conditions of Sections 2.1 to 2.3 now permit a solution of the nonlinear
load-displacement equations in terms of the geometry of the three-beam module. Three methods of increasing accuracy and
complexity are presented in this section: an approximate analytical method, an improved analytical method, and a numerical
method.

3.1 Approximate analytical solution

An initial FEA showed that, when forces alone are acting, each of two bending angles is approximately two orders of
magnitude smaller than its corresponding one of two transverse displacements (65, to ys, 65,10 zs), and the torsional angle is
almost zero. Therefore, the rotational angles are dropped out wherever appropriate below.

a) Solution for &y, and 6,
Substituting Eq. (2) into Eq. (22) and again neglecting all the rotational displacements:

m, + (3¢ + ph)z,

+ -2p, ~ 25

(P + Ps)—2p, "2 (25)
Similarly, the substitution of Eq. (1) into Eq. (23) yields

mZ _(3C+ ph) ys (26)

(P3—p1) =
:o \/§r3 /2
From Egs. (9) to (11), one can obtain
(X +X3) — 2%, = 3r3sin0;, 27)
Substituting Egs. (3) and (12) - (17) into Eq. (27), and substituting Eq. (25) into the result gives the rotational displacement

2 1 .
Oy z?(a+ yor+z2r)[m, +(3c+ ph)z,]- 20,y (28)
3
Similarly, the rotational displacement 6, can also be obtained from Eqgs. (9), (11), (3), (12), (14), (15), (17) and (26) as
X3 — X 2 1 2 2 .
0, = \/§r31 ~ E(H +yZr+z2n[m, - (3c + ph)y,] - 26,z (29)

b) Solution for ysand z,
Substituting Eq. (1) into Eq. (20) and combining Egs. (12) - (14), we obtain
f, =1, +f,, + 1, =ay, +cd, + p,(ey, +hd,) +ay, +co, + p,(ey, +hb, ) +ay, +co, + p;(ey; +ho,)
1 (30)
= (3a+ pe)ys + (SC + ph)gsz + (2 P, — ( P+ ps)) E raesxe

Rewriting Eq. (30) and replacing 0, with -20,,zi based on Eq. (29), we obtain the transverse translational displacement

. 1
fy - (3C + ph)(_zesxzsl) + [( P+ p3) -2 pz]a r3‘9sxe

= 31
Ys 3a+ pe 1)

The transverse translational displacements z; can be obtained by substituting Eq. (2) into Eq. (21), combining Egs. (15) -
(17) and replacing 6, with -20s,y;i based on Eq. (28):




. J3
fz + (30 + ph)(_zasxysl) + (p3 - pl) 2 r395><e
Zy =

32
3a+ pe (32)

Finally, substituting Egs. (25) and (26) into Egs. (31) and (32), respectively, we obtain the two transverse displacement
equations:
~ fy —(@c+ ph)(—205z4i) +[m, +(3c + ph)z;10,e  f, +m b e

~ ~ 33
s 3a+ pe 3a+ pe (33)
7.~ fz + (3C+ ph)(_zgsxysi) +[mz _(3C+ ph)ys]gsxe ~ 1:z + mzesxe (34)

s 3a+ pe 3a+ pe

c) Solution for 6,
Combining Egs. (1) and (2), and substituting the result along with Eq. (4) into Eqg. (24), we have

V3 1
my = 395)( +3ar32€sx 16+ per3293x /5"'7 rs(pl - ps)ezs 16+ E I’3[2 P2 _(pl + ps)]eys 16 (35)

Substituting Egs. (25) and (26) into Eg. (35), and substituting Eqgs. (33) and (34) into the result, we obtain the torsional
angle (rotational displacement):
m, & +(m,f, +m f )e/(3a+ pe
gsxz X ( 7'z yy) ( p) (36)

3(5+arf + g er?)

If the torque is normalized by EI/L (rather than by Gl,/L), the torsional angle & becomes

m, +(m,f, +m f, )e/(3a+ pe)

Oox = D @7
3(5+arf + 5er32)

d) Solution for x;
From Egs. (9) to (11), we have
Xg = (X + X, +%3)/3 (38)
Substituting Egs. (3) and (12) - (17) into Eq. (38), substituting Eqgs. (25) and (26) into the result and omitting some high
order terms of rotational angles, we obtain the axial translational displacement:

Xs & % + (y32 + Zsz)l ""g(ys2 + ZSZ)I" + r32952xi +§ I’?»ngzxr + 2(ysgsz - Zsesy)k _g(my Ys +M;, Zs)gsxr (39)
where the terms with r3°6s,” are retained since 6., is the DOF, and they are related to the radius rs.

In summary, the approximate displacements of the motion stage for a given set of loads are obtained as follows:

(1) Calculate the torsional angle 65 using Eq. (36) [or Eq. (37)];

(2) Solve for ys and z, by substituting the torsional angle into Egs. (33) and (34);

(3) Calculate 65, and 65, by substituting 6, ys and z, into Egs. (28) and (29);

(4) Obtain the axial displacement x, using Eq. (39).

When myf, =-m,f,, which includes five special cases: my=m,=0; f,=f,=0; m,=f,=0; f, =m,=0; m,=-0.5f, and m,=0.5f,, Eq. (36)
simplifies to Oy,=m,d/[3(d+ars>+pers*/3)]. This condition holds when the resultant transverse force is perpendicular to the
resultant bending moment. In particular, in the case: my=m,=0, the three DOF equations [Eqgs. (33), (34) and (36)] are
independent, and in the case: m,=-0.5f, and m,=0.5f,, the three rotational angles [Eqs. (28), (29) and (36)] are all equal to zero
as long as the axial force p=0 and m,=0. Furthermore, according to Egs. (28), (29), (33), (34), (36) and (39), when only a
torsional moment is imposed on the motion stage, two of the translational displacements, y, and z,, and two of the rotational
displacements, 65, and 6, are zero while HSX:mX5/[3(5+ar32)] and X;=rs205’i (negative), and this reveals how torsion can
reduce the axial displacement x,. If only the two transverse forces are imposed on the motion stage, the spatial three-beam
module can be regarded as a good 2-D translation joint.

It can also be observed from Eqgs. (28), (29), (33), (34), (36) and (39) that:

(a) The axial force p affects the transverse displacements (ys and z;), which reflects the load-stiffening effect. Either of the
two transverse displacement equations shows that the buckling condition pg;i=-3a/e=-30 occurs when the transverse stiffness
becomes zero. The torsional angle 6, decreases with increasing (positive) p, which also shows the load-stiffening effect. The
torsional angle equation shows a second buckling condition peip=-3(5+ars2)/(ers?)=-[30+30d/(ers’)] when the torsional
stiffness becomes zero. Therefore, the buckling load for the spatial three-beam module is perie= MaxX(Peritts Peritz)=-30.

(b) The axial displacement x5 has three components: purely elastic effect from the axial force alone, purely kinematic effect
such as (yZ +22)i+rf63i+2(y,0;, — 2,6, )k and elastokinematic effect such as p(y? +z2)r/3+ prf@5r/3—2(m,y, +m,z,)0,r/3.

Similarly, the bending angle, s, (), is also composed of three components.

(c) The torsional angle has a dominant effect on the accuracy of the above equations in comparison with 6, and 6,,. The
smaller |0,| is, the more accurate are the above force-displacement equations.

(d) All the three rotational angles decrease as r; increases. For a typical value 0.6 of r; and 6,,=0, 65, and Gy, can be in the
order of 1x10™* if d=40000 (i.e. L/D,=50). This reveals the fact that the essence of constraint-based design is a combination of
the effects of large values of d and small values of r. Furthermore, if 0, and y; (or z;) are all relatively large in absolute value,
Osy (65,) is affected by purely kinematic effect: -26,yi (or -20s.zi) dominantly.

(e) The translational displacement, y, (or z;), is weakly dependent on m,, my, m,, p and f, (or f,) (Maxwell Reciprocity [5,
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24]), and strongly dependent on f, (or f,). Here, f, (or f,) is a dominant load in determining y; (or zs), whereas m,, my, my, p and
f, (or f,) are non-dominant loads. Furthermore, torsional angle 6 is weakly dependent on my, m,, f,, f,and p, and strongly
dependent on m, (m, is a dominant load in determining 6y).

3.2 Improved analytical method

For relatively large absolute values of 6 (even including 6, or 6;), the dependence of a transverse translational
displacement on the relevant non-dominant loads becomes significant, particularly if the absolute values of the relevant
dominant load are small relative to the non-dominant ones. Moreover, the purely kinematic effect and the elastokinematic
effect in Eq. (4), the second-order terms in rotational angles neglected in the product of the three rotation matrices in Eq. (8),
and the rotation contributions in Eq. (18) need also to be retained wherever appropriate. In addition, we may approximate s,
and 6s, using Egs. (28) and (29), respectively, in the appropriate derivation below.

Using Eg. (18), Egs (22) - (24) for the moment-equilibrium conditions after deformation can be rewritten as

V3

¢ V3 1
my ~ mly + m2y + m3y +(pl + P3 _2p2)53+ (pl - p3)7r303x +[2 f22 _(flz + f3z)]Er3Hsy + (flz - f32)7r3952 (40a)

V3 r V3 1
m, ~My; + My, + Mg, + (p3 - pl)? f3 +[( P+ p3) _zpz]ggsx +(f3y - 1:1y)7 r3052 +[( fly + f3y) _2f2y]5r395y (40b)

V3 1 V3 1
mx5 ~ 5(mlx +Myy + m3x) + (flz - f32)7r3 + [2 f2y - ( fly + f3y)]5r3 + (f3y - fly)7r395x + [2 f22 - (flz + f32 )]ErSGSx (40C)
From Egs. (1), (2) and (12) - (17), one can obtain

f1, — fa, = V3ars6q, + (P — P3)(ezs —hBy,) +(py + P3)ev/3ryby, /2 (41a)
21, —(fyy + f3y) =3ar0, +[2p, — (P + Pa)I(eys +hOs,) +[4p, + (Py + P3)lersbs /2 (41b)
f3y — f1y =(Ps — po)(eys +Nb,) + (P — p3)ersfs /2 (41c)
21y, —(fy, + f3,) =[2p; — (py + P3)l(ezg —h6gy) +(p3 - pl)e‘/§r365x /2 (41d)

where p;+ps and 4p,+(p1+ps) can also be represented by [2p+(p1+ps-2p,)]/3 and 2p-(p1+ps-2p.), respectively.
Retaining the bending angles in Egs. (31) and (32), the two transverse displacements are obtained as

1
fy —(Bc+ ph)d, +[(py + p3) —2 pz]g r30€

42
3a+ pe (42)

Ys =

V3
fz + (3C + ph)gsy + ( Ps3 — pl)? I‘395X9 43
% = 3a+ pe (43)

where accurate solutions for (p;+ps)-2p, and ps-p; can be obtained by substituting Eq. (41) into Egs. (40a) and (40b) and
combining the results with Egs. (1), (2) and (12)-(17):
m, +[(3c + ph)zg — (3b+ pg)6y,1-{m, —[(3c+ ph)y + (3b + pg)d, 1} (h—1) — (3a+ pe)ry' 6,05, / 2
(r3/2)(05 (h-1)° +1) (44)
my + [(3C + ph)zs - (3b + pg)asy] - [mz - (3C + ph)ys]gsx (h _1)
N (r;/2)
_ M, —[@c+ ph)ys +(30+ pg)f, ] +{m, +[(3c+ ph)z; — (30 + pg)dyy I}, (h —1) + (3a + pe)ry Oy, Os /2

(py+p3)—2p, =

p —

. (+3r, 12)(0%(h-1)2 +1) s)
_ M, —[Bc+ph)ys +(3b+ pg)ds,]+[my +(3c+ ph)zs]6s (h ~1)

(f3r,/2)
For relatively large absolute values of 6, Eq. (28) is re-written as
3130y, = (X1 + X3) — 2%, — 31366,
< ot P20 gyl ay2lie ] + 28) - 2230+ 2Kl + s 297) 2Ky 123~ 22) +(PE + o) 2Byl
(46)

+U(Pizt + Psz3) ~ 2Po23]r +2A(Py+ Ps) ~ 2P, 1(Ys6s, ~ 2,65)0 ~ 31656,
-2 :
4 w_ 6r305xys| - 6r395)(952 (k + 0'5) + [( P+ p3) -2 pz](ysZ + ZSZ)I‘ _[( Pt p3) + 4p2]r305xysr + (pl - pS)‘/§r3gstsr + [( Pt p3) -2 pZ]rSZ‘gszxr
_4[( P+ p3) -2 pz](yszs - zsys)‘gsxiq
x Mﬂ—ﬁrﬂsmi =30, + (P + Pa) = 2p)(Y2 + Z2)1 +[(( Py + Pa) —2P2) — 2PJitlyYst + (P — P3RBT +[(Py+ P3) — 2] 051
The substitution of Egs. (29), (44) and (45) into Eq. (46) produces
2 1
Oy ~ =5[>+ (y2 + 22 +1705)r][m,+(3c + ph)z, —m, 04, (h—1)]
3y d (47)
2 .1 . .
~ 5l 02+ 2 )M, O (1= D10 20,5 (1 + 1) + 20524
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Similarly, Eq. (29) is re-written as
Y3136, = X3~ X, +3r0,8,,

z@*(y2 —Yf)i+(z32 _le)iJergsz(YS = Y1) = 2k6g (24 _Zl)+(p3)’32 - p1y12)r+(p3232 - p1212)|'+2(p3 = P05 — 250400 +\/§r395x‘95y (48)
(p3 ) Zfr3€sx s|+2\/§r3‘9sxesy(k+0'5)+(p3_pl)(ysz+Zsz)r+(p1_p3)r395xys (pL+P3) frﬂsx Zr+(pg = Py)rs Hszxr 4(p3 = P)(YsZs —25Y5)0id
(ps p1) 2p+[(p, + p3) -

2
2Ir395x s' +‘/§r395x€sy +(p3 - pl)(ysz + Zsz)r+(p1 - pS)rsesxysr_ pZ] \/§F3HSXZST+ (p3 - pl)r32‘952xr

Substltutlng Egs. (28), (44) and (45) into Eq. (48), we have

3

2 1
sz ™ _Z[E + (ys + Z +13 esx rsgsxys)r][mz_(BC + ph)ys + mygsx(h _1)]
(49)
+3_[_+(ys +z )r][m +m esx(h l)]gsx 295)(25 (I +—I") 2esx)/s
3
Then, substituting Eqgs. (44) and (45) into Egs. (42) and (43), respectively, the two transverse displacements can be
obtained as

_ fy = @c+ph)by, +{m, +[(3c + ph)z; — (30+ pg)&s,]1-[m, — (3¢ + ph)y; 16, (N —D)}0e

s 3a+ pe (50)
- f, + (3¢ + ph)fy, +{m, —[(3c+ ph)y; + (3b+ pg)&g, ] +[m, + (3¢ + ph)z, 16, (h—1)}be 51)
® 3a+ pe
Equations (50) and (51) can be further simplified as
fy - (SC + ph)(ész - 2esxzsi) + [my + (SC + ph)Zs]ste - mzgszx (h _l)e _ (3C + ph)9 +m, 0, x(h 1)6‘
Yo & 3a+ pe ~Ys~ 3a+ pe (52)
- f,+(Bc+ ph)(b_?,Sy —205Ysi) +[m, —(3c+ ph)ys10se +m, 6 X(h De N (3c+ ph)6’ +m 92 (h—De (53)
* 3a+ pe * 3a+ pe
where 7, :z[—+(ys +22)r]m,—(@c + ph)Ys1- B, —z[—+(ys + 220, (3 + ph)Z,] 5, = S:Vj;Xe 7, = fZSZngxe .
Substituting Eq. (41) into Eq. (40c) and combining with Eq. (4), we have
mx5 ~ 3595)( + 30(95225 + asy ys) + ph(gszzs + asy ys) + 3ar3295x + pel’3295)<
(54)

V3 1
+7I’3(p1 - p3)[(€ZS _hesy) _(eys + hesz)esx]+5r3[2p2 _(pl + p3)][(eys + hesz) +(ezs _h‘gsy)esx]

We can further substitute Eqs. (44), (45), (47), (49), (52) and (53) into Eq. (54) and omit some high order terms of
rotational angles. Then we simplify the torsional angle as follows:
Os »{Myd +[m,—(3c + ph) Y5 — (3b + pg)(fs, — 205Zsi) +[my + (3¢ + ph)Zs 165, (h —D][(eZs — hbyy + 2h G, Ysi) — Y65, ]

+[m,+@3c + ph)z, — (3b+ pg)(fs, — 264, Y5i) —[M, — (3¢ + ph)§ 105, (h—D)I[(eF, + 6y, — 2n O, 2i) + 2,6, ] (55)

ph'( 9T

— (3¢ + ph)(Biy2, + oy J)HHAS +arf + gerﬁ —20i(22 + 92) -

Where g, = f, +m, e —(3c+ ph)d, 2= f, +m, 0+ (3c+ ph)d,,
3a+ pe 3a+ pe
equation with one unknown 6. Equation (55) can be shown to reduce to Eq. (36) for relatively small |0
In addition, substituting the torsional angle 6 obtained from Eq. (55) into Egs. (52) and (53), the two transverse
displacements, ys and z;, can be found.
Once s, ys and z; have been obtained, the other two rotational angles, s, and 6, can be obtained using Egs. (47) and (49),
and the axial displacement X, can then be obtained using Egs. (3) and (9) - (17) as

. Only one real solution is the desired solution for the

=—(x1+x2+x3>~§+(ys+z)u p(y5+z)r+r303xl+§ 03 + 212D, ~(Py+ Po)Ys + (Pr — Pa)3r2 B

+2(Ys05; — 2400 )k + (05, +05) J + p(ys e = 2040+ 3 2[(2p, ~(py + P56 — Py — Ps]3 30y 1000+ D02 +62)s
Substituting Eqs. (44) and (45) into Eq. (56) and making further simplification, we have
. 2
X ~ £+(y52 +22)i +£(yS + 2+ 12021+ — P 05T +2(Ys0, — 250 )k —= (M, Y +M,2,) 05,1
3d 3 3" 3 57)
2
_5[(my + (3C+ ph)zs)gsz _(mz _(3C+ ph) ys)gsy]gsxq
Equations (47), (49), (52), (53), (55) and (57) are the improved analytical load-displacement equations for large |0/, which
can capture more nonlinear effects. It can be shown that 6;,~0 for the five special loading cases: m,=m,=m,=0; m,=f, =f,=0;
my=my=f,=0; m,=f,=m,=0; m,=0, m,=-0.5f, and m,=0.5f,.
If my or m, in Egs. (52) and (53) and all of the dominant transverse forces are very small in absolute value, we can obtain

more accurate solutions to the load-displacement equations. Starting from the 6, s, and 6;, obtained above, the two accurate
transverse displacements (ys and z;) can be obtained from Eqgs. (50) and (51). Then, we can obtain more accurate values of 6,
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Osy, 05, and X, step-by-step by substituting the above y; and z; into Egs. (55), (47), (49) and (57).
3.3 Numerical method

Exact solutions for the nonlinear load-displacement equations can be obtained numerically without the need for
approximation, although this has the disadvantage that the qualitative behavior of the CPMs is more difficult to explore.

The numerical scheme involves seven unknown terms: (p1+ps)-2P2, Ps-P1, Osx, Osys Bs2, ¥s and zsthat are obtained by solving
the seven following equations, obtained from Eqgs. (42)-(46), (48) and (54):

1
Ys ={fy = @B+ ph)&;, +[(py + ps) = 2p, 17 130}/ (3a + pe) (58)
V3
zo ={f, +@Bc+ ph)esy +(ps— pl)? r;0se}/(3a+ pe) (59)

my + [(3C + ph)zs B (3b + pg)esy] _{mz _[(3C + ph) Ys + (3b + pg)esz ]}st(h _1) B (3a+ pe)rszeszesx 12

_2p, = 60
(py+ P3)—2p, /2 (60)
m, —[(3c+ ph)ys + (30 + pg)Bg, 1+{m, +[(3c+ ph)z, — (3b+ pg)By, 130, (N —1) + (3a+ pe)ry 6y, 04, /2
P3— P = (61)
. (3r,12)
+ -2 .
350y = PP gy 61,0,0, (k+08) +[(py + )~ 2P, (Y2 +22)r )
+[((Py + P3) —2P,) — 2P0, YsF + (P — Pa)VBROZer +[(Py + Ps) — 2P, IFEO5T +2[(py + P3) — 2P, 1(Ysbs; — 2564,)0
‘/§r3€sz = (psd;pl)_ 2\/§I’395X25i + 2‘/§r395x95y(k + 0-5) + ( p3 - pl)(ys2 + ZSZ)I’
(63)
2p+ +p;3)-2
+ ( P — p3)r395xysr - P [( Py 3p3) pZ] \/§I’395X25r + ( Ps— pl)r32052xr + 2( Ps— pl)(ysesz - Zsesy)q
M, S =30, + (3¢ + ph)(fs,z5 + Oy, ¥, ) + (3a+ pe)ri oy,
(64)

V3 1
+7r3(p1 - p3)[(ezs - hgsy) - (eys + hesz)gsx] +Er3[2 P2 _(pl + p3)][(eys + hgsz) + (eZs - hesy)gsx]

Once (p1+P3)-2P2, P3-P1, sk Gy, Osz, Ys and zghave been obtained using Maple fsolve function, they can be substituted into
Eq. (56) to obtain the axial displacement x;. We can also obtain p; and p, and ps by combining Egs. (60), (61) and (19), which
is useful for further stress analysis.

3.4. Discussion

a) Validity condition of the proposed approaches

The proposed models are valid only for small deflections (usually all normalized displacements less than 0.1 [5]) and large
ratios of length to diameter, i.e. slenderness ratios (usually L/D, more than 10 [38] for slender beams ignoring shear
deformation). If the proposed nonlinear models are applied to the analysis of CPMs under the conditions of large deflections
or small slenderness ratios (for Timoshenko beams), errors between the analytical results and real results will be unacceptable,
but these models can still capture certain nonlinear constraint characteristics of the CPMs.

Let us now discuss the range of r; under given conditions. If we make a rotational angle (such as ;) smaller than « times
(usually > 50) a corresponding transverse displacement (such as ys) in absolute value under only one transverse force acting
(such as f,), we have the following relationship based on Eq. (29):

2

— U d+yin(3cy,) < ys/a

3r;

The above equation is simplified to determine the range of rs:
r{ >12a/d

b) Extensible application of the proposed approaches to CPMs with regular polygon cross-section beams and varying-
thickness beams

It should be noted that the above normalized and nonlinear models are also applicable for the CPMs with regular polygon
cross-section beams (ignoring warping effect under torsion), but the non-dimensional coefficient d should be modified
accordingly. For example, for the square cross-section multi-beam module, d=12/(T/L)? (T is the thickness of the beam).
Moreover, these models can be used to deal with generalized beam modules by modifying the coefficients a, b, ¢, d, e, g, h, i,
j» k, g, r and s based on Ref. [23], and using 6=G/(Eay,) and then replacing m,d with 2agm,d in Egs. (36), (55) and (64). The
generalized beam, with the same overall beam length L, is composed of two uniform compliant segments (each normalized
length is ay) and one rigid segment.

c) Characteristics of three approaches

In order to illustrate the applicability of the various solutions, an example three-beam CPM is analyzed below. The CPM is
taken to be made from an aluminum alloy for which Young’s modulus, E, is 69,000 Nmm? and Poisson’s ratio, v, is 0.33.
The dimensions are Dy=4 mm (d=2500), R;=30 mm (r3=0.6) and L=50 mm. All the normalized external transverse forces
need to be approximately over [-3.6, 3.6] yielding normalized transverse displacements over [-0.1, 0.1] as shown in Fig. 5.
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The normalized external torque needs to be approximately in the order of 1.8 to limit the torsional angle to the order of 0.1.
Other normalized external loads may be all of order of 1.8 or greater compared with the pre-determined loads.

In practice, the simpler and more analytical the approach is, the more useful the analysis for design of CPMs is. If each of
the dominate forces for transverse displacements, such as f, for ys, is relatively large (for example, 2 times larger than all the
relevant non-dominant moments in absolute value) or two bending moments are both zero (m,=m,=0), the approximate
analytical solution should be acceptable for design purposes (the case under the latter condition is shown in Fig. 3). When the
above condition does not hold, a balance needs to be made between accuracy and complexity.

0.05

—S— Approximate analytical for any fy and fz

—+— Numerical for any fy=2 and fz=1

0.041 “— Numerical for any fy=2 and fz=2 il

005 - And for p=my=m,=0 |

Osx

0.02 - N

20.01 r r r r r r r r r
0 01 02 0.3 0.4 05 06 0.7 08 09 1

my

Fig. 3 Comparison of results obtained using three approaches (case with no bending moments acting).

Table 1 shows the calculated displacements of the motion stage of the three-beam module for the approximate and
improved analytical models and for the numerical model under loads: f,=2, m,=10 (m,f,=20) and p=m,=m,=m,=0, i.e. where
the torsional angle is relatively large.

Table 1
Comparison of the results obtained using the three nonlinear methods under the large torsion

Displacements Ys Zs Xs 05, Osy Osx
Method
Approximate analytical method 0.00 0.0702 -0.00390 0.0112 -9.518x10" 0.0438
Improved analytical method 0.00513 0.0755 -0.00424 0.0131 -1.106x10° 0.0607
Numerical method 0.00514 0.0764 -0.00436 0.0131 -1.111x10° 0.0609

Error between improved and

0 0 0 0 9 0
approximate analytical methods 100% 7.02 % 7.80% 14.50% 13.94% 28.08%

We can observe from Table 1 that, for relatively large 6y, the error (|(improved analytical result - approximated analytical
result)/improved analytical result|x100%) is relatively large and is unacceptably high for y, since the dominant load f, for ys is
zero. Table 1 also shows that the approximations for the improved analytical method are reasonable, leading to very small
differences between the analytical and numerical solutions. If the loading is changed to f,=2, m,=5 (m,f,=10), and p=m,=m,
=m, =0, the error in the torsional angle reduces from the 28.08% in Tab. 1 to 6.40%.

Figure 4 shows that the torsional angle error between the improved and approximate analytical (or numerical) methods
increases at an accelerating rate as the ratio of f, to m, decreases starting at around 1.6, and also verifies the accuracy of the
improved analytical method. It is concluded that the difference between the solutions obtained using these two methods
decreases with the increase of the transverse loads.

0.04 T T T T
—S— Approximate analytical
0.038 4 —+— Improved analytical n

—%— Numerical
0.036 ht

0.034 bt

0.032f- For m,f,=10, and

Osx

0.03 p=m,=my=m,=0 i
0.028 -
0.026 -

0.024

0.022 -

0.02 c c c :
0

fJ/m,
Fig. 4 Comparison for fixed product of m,f,.
d) Linear analytical approaches
If the effects of load-stiffening and elastokinematic non-linearities in Eqgs. (1) - (4) are all neglected, the linear load-
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displacement equations of the tip of the i,-th beam are:

fiy la ¢ Y
Misz e b O
fi, a cf %,
L mio)’:| ) L b}{_ gioy:l
1 i kY ok %
Xiozapio+[yi0’9i02]|:k J{ebjﬂaol—ﬁioy]{k JLQW}

Oix = Mjx =6 ,Zi) + 6,y Yi,) 10

(65)

Using Eqg. (65), and following the solution process in section 3.1, one can obtain the linear load-displacement equations of

the motion stage as

m,o 2 _ . 2 _ -
~—— O, ~x——(m,+3cZ,)-20,,VY.i;, 6, ~——(m,-3cy.)—20,,7Z.i
SX 3(5+ar32) sy 3r32d y s sxJs sz 3r32d z s sx©s
f, —(@Bc+ph)ds, f, +(3c+ ph)d,,
Ys ® i Iy ®
3a 3a
Xs z%Jr y§i+z§i +r32¢952xi+2(y567SZ —ZSHSy)k

where ys = f, /3a, z,=1f,/3a.

(66)

Figures 5-7 show a comparison of results using linear and nonlinear approximate analytical analysis for my=m,=m,= 0
(in which case, 65=0). Figure 7 also shows that Eq. (66) only captures the effects of dominant loads (such as m;, f;) upon the
rotational displacements (like &;,) while the nonlinear equation [Eq. (29)] captures the effects of all loads upon the rotational
displacements. Thus, the linear equations may be applicable under a very small range of deflection, such as that indicated by

the rectangular area in Fig. 7 drawn for 1.65% error compared with the nonlinear analysis.

If the purely kinematic component in Eq. (3) is also neglected, the single beam load-displacement equations are simplified
and the approximate linear load-displacement equations of the motion stage, similar to the ones used in [29-30], can be

derived (see Ref. [32] for details).

oir Linear for any p: -----
Nonlinear: ——

0.05

ys

o
T
\

-0.05

P p=-3,-2,-1,0,1,2,3
-0.1r /

c : c : c : c
-4 -3 -2 -1 ¢} 1 2 3 4
fy

Fig. 5 Primary stiffness in the Y direction.

0.015

Linear for any fy: -----
Nonlinear: ——
fy=-3,-2,-1,0,1,2,3 _—

0.01

0.005 -

=0

ys-ys|p

-0.005 -

-0.01

-0.015
4

Fig. 6 Cross-axis error.
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Nonlinear curved

[iF4

Fig. 7 Rotational angle about the Z-axis.

4. FEA verification for the three-beam module

The displacements obtained for the example CPM using FEA with Comsol large-deformation analysis are compared with
the three nonlinear methods in Tab. 2. The FEA translational displacements were given directly by the software, and the
rotational angles were calculated from the displacements of points 04, 0,, and 03 using Egs. (9), (10) and (13). The other
nonlinear results were obtained by first normalizing the loads then substituting these into the analytical equations
correspondingly to obtain the normalized translational displacements and the actual rotational angles (in radians). The actual
translational displacements (in mm) were then obtained by multiplying the normalized translational displacements by L.

Table 2 shows that the displacement errors (J(analytical result - FEA result)/analytical result|x100%) between FEA method
and any of the three analytical nonlinear methods are within 3.5% and considerably less for 6y (lanalytical result - FEA
result]). Here, the bold data are the normalized translational displacements. As mentioned earlier, it can be observed from Tab.
2 that the two bending angles, 6, and 6, are approximately two orders smaller than the normalized transverse translational
displacements, y, and z,, respectively, and the torsional angle, 6, is 3.33x10°® small.

Figures 8-11 show more results obtained using both the FEA and the approximate analytical equations [Egs. (28), (29),
(33), (34), (36) and (39)] without moments acting. It can be seen from these figures that the average errors between the
analytical results and FEA results for a given force are acceptable. This verifies the accuracy of the proposed nonlinear
equations for the spatial three-beam module.

Table 2
Results contrast between FEA and analytical analysis for P=10N, F,=10N, F,=249.59N, M,=M,=M,=0
Displacements Ys(mm) Vs Z,(mm) Z Xs(mm) Xs O, (radian) 0y (radian) O (radian)
Method
FEA method 1.0050 0.02010 0.0403 8.0534x10*  -0.0120  -2.3958x10"  2.5980x10* -1.0802x10°® 3.3333x10°
Approximate analytical method 0.9985 0.01998 0.0400 8.0000x10*  -0.0120  -2.3958x10"  2.6690x10"  -1.0682x10° 0
Improved analytical method 1.0050 0.02012  0.0403  8.0534x10”  -0.0121  -2.4279x10"  2.6869x10*  -1.0753x10° 6.5715x10™
Numerical method 1.0050 0.02012 0.0403 8.0533x10*  -0.0121  -2.4280x10*  2.6631x10* -1.0658x10° -2.8988x10™°
aEr:;(I);t?g;\lNr?\ZTh%%p;%i ?éf: 0.65 % 0.74 % 0.00 % 2.66% 1.10% 3.3333x10°
af;;’écg?tx‘fﬁobmgg‘fg A 0.00% 0.00 % 0.82% 3.30% 0.65 % 3.3333x10°
Error between numerical method o, 0.00 % 0.82 % 2.44% 2.87 % 3.3333x10°
and FEA
0.01 ) 0.25

—&— Analical result
—+— FEAresult

0.005 [~
Fy=249.59N
Fz=10N

-0.005
0.5

-0.55

Average error (%): 2.55 -
g ( ) 0.6 | —%— Analtical result E;jigg?elw\‘ 4
—+— FEAresult

r r L r r r r r r r -0.65 r r r r r
0 100 200 300 400 500 600 700 800 900 1000 -1500 -1000 -500 0 500 1000 1500

Displacement in x- direction: xs (mm)
Displacement in X direction: xs (mm)

-0.01

-0.015

Axial Force: p (N) Transverse force Fy (N)
(@) (b)

Fig. 8 Axial displacement verification: (a) for different P, (b) for different F,.
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If only the torsional moment, MX=GIp/L=1.3069><104 Nmm, is imposed on the motion stage, the analytical result using Eq.
(36) and FEA result of the rotational angle 0, are respectively 0.0495 radians and 0.0494 radians, an error of about 0.2%.

A prototype of a three-beam module, made of engineering plastic, have been fabricated using 3-D printer for initial
qualitative analysis (see Appendix C for details). The preliminary test results with the prototype comply with the modeling
presented in this paper.

5. Multi-beam spatial module analysis
In this section, we will deal briefly with multi-beam modules with more than three beams only having three in-plane DOF,
in particular five classes of multi-beam module with different layouts of beams. As in the case of the three-beam spatial

module, the loads are taken to be acting at the center of motion stage, and the coordinate system, displacements and loads are
defined in the same way. Figure 12 shows six-beam spatial modules with a variety of layouts.
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Fig. 12 Six-beam spatial modules with round cross-section beams.

In the following, we limit ourselves to multi-beam spatial modules, which have an even number of beams, n, and in which
all beams are uniformly distributed around a circle [Fig. 12(a)]. Apparently, the multi-beam module has good dynamic
performance of high band-width and large buckling load with the increasing of the number of beams, but in turn results in
large primary motion stiffness.

The approximate analytical load-displacement equations for a motion stage in four-beam and six-beam spatial modules can
be obtained in a similar way to the approximate analytical model for the three-beam module:

N mx5+(mzfz +myfy)e/(4a+ pe)
sx ~
4(5 +ar? +£er42)
fy, +m,Oe
Yo ax pe
. f, +m, 6 e
* da+pe 7
1,1 i
& =5 (S + yEr+220[m +(4c + ph)zg]- 204,y
2rf d
1.1 2 2 i
O, ~ _2(_+ yst+z5r)[m,—(4c+ ph)ys]—26,zi
2r; d
- H 1
X, %+ (y2 +22)i +%(y§ +23)r + 105 +§r4293xr + 250 =20 =5 My Y+, 24)05,7
mx5+(mzfz +myfy)e/(66\+ pe)
SX ~
6(5 +ard +ger62)
fy, +m,O,e
Yo gar pe
- f,+m,0,e
s 6a+ pe (©%)

1,1 .
Oy ~ E(a+ yZr+zZr)[m,+(6c+ ph)z,]- 26,y

1.1 .
O ~ o5 (5 + yer +22r)[m,—(6c + ph)y,] - 20,2
6

. . 1
Xs & %“' (y52 + Zsz)l +§(y32 + ZSZ)I’ + rGZHsle +§r62032xr + 2(ysesz - Zsesy)k _g(my Ys + mzzs)esxr

The general load-displacement equations for spatial multi-beam modules can be summarized as follows:
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myo +(m,f, +m f,)e/(na+ pe)

n(S+ar? +er?)
n

~

SX

fy+m e
Yo ¥ has pe
N f,+m,6,e
" na+ pe
1 1 2 2 .
Oy = = (E+ ysr+zgn[my+(nc+ ph)z,]-26y;i
Z [cos
ip=1(0
:nr_z(a+ y§r+z§r)[my+(nc+ ph)z,1- 264, Y,
n
1 1 2 2 .
Hsz ~ ni2 i (H+ysr+zs r)[mz_(nc+ ph)Ys]_zgsxzsl
[sin 2712 _ jo2r?
|0:1(0dd n
2 1
:_(E y5r+z r)[m —(nc+ ph)y]—26,,7,i
. . 2 69
xszm-f-(y?+z$2)|+§(ysz+zsz)r+rnzgszx| p 2052Xr+2(y5 sz —Zg 9 )k_ﬁ(myys"'mzzs)asxr ( )
. 0 for n/4=int . 27, . . . .
where, j, = ., the beam number n is even and n< D r,denotes the nondimensional pitch circle
1 for n/4=int D,/L

radius of the beam tips. If the torque is normalized by EI/L, the torsional angle becomes
Oy ~ [My + (M, F, +m,f, )e/(na+ pe)l/[n(s +ar? +2er?)].
n

The system shown in Fig. 12(c) is obtained by symmetrically arranging two three-beam modules as two building blocks.
This system is kinematicly decoupled in two transverse translational directions, and has a large load-stiffening effect,
resulting from the augmentation of transverse stiffness in the presence of gradually increased axial tension-force in the
configuration of two symmetrical three-beam modules, as shown in the transverse displacement equations [Egs. (33) and
(34)]. The system shown in Fig. 12(e) is obtained by connecting two three-beam modules as two building blocks in series.
This system has approximately half the primary stiffness and double the motion range of the single three-beam module, and
can alleviate the load-stiffening effect.

6. Conclusions

The nonlinear and analytical load-displacement equations of the spatial multi-beam CPMs, with round or regular polygon
cross-section beams have been formulated and analyzed by mathematical transformation and substitution. A method has also
been presented to analyze the spatial combined deformation of compliant beams or mechanisms.

For a set of given payloads exerted on the motion stage of the spatial three-beam module, one can obtain quickly the
displacements using the proposed nonlinear models as compared with FEA or other numerical methods. The larger the pitch
circle radius of beam tips, the smaller the absolute value of the torsional angle and therefore the more accurate the proposed
approximate analytical model. It has been verified using the large-deflection FEA that the accuracy of the proposed analytical
model is acceptable. In the case of our example CPM, the maximum transverse displacements for the proposed spatial
modules are approximately 5.0 mm (0.1L) under small deflection’s condition.

An analysis of the modules proposed in Figs. 12(b) — (e) and a comparison between experiment results at the macro- and
micro-scale and analytical results will be areas for further investigation.
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Appendices

A. Nonlinear analysis of a beam for the bending only in the XY (XZ) plane

Figure Al shows a deformed beam for the bending only in XY plane.

A .
Y fy< n’lz’e, -7 202
//k; p

v
<
M
D
y

A

Fig. Al Deformation of a beam.

Based on the Euler’s formula and load equilibrium condition after deformation, we can obtain the differential equation of a
beam under small deflection as

y'(X) =mge + fy (1+ X —X) = PLYe — Y(X)]
where m, + f, (1+X, —X) — p[y. — Y(X)] is the bending moment acting at any x location of the beam about the Z-axis; mg, fy

and p are, respectively, the bending moment about the Z-axis, the transverse force along the Y-axis and the axial force along
the X-axis acting at the free-end of the beam; y, and x. are, respectively, the transverse displacement along the Y-axis and
axial displacement along the X-axis of the free-end of the beam; y(x) is the transverse displacement of any x location on the
beam along the Y-axis. The subscript e denotes the free-end.

The above equation can be rewritten as

Y (X) = py(x) =mge + f,, (1+ X, —X) — PYe (A1)
The boundary conditions for Eq. (A. 1) are

y=0 when x=0;

y’=0 when x=0. (A.2)

Awtar [5] used a homogeneous 4th-order differential equation, obtained by differentiating Eqg. (A. 1) with respect to x
twice, to solve load-displacement equations.

This appendix presents alternative solution to Eq. (Al) (non-homogeneous 2nd-order differential equation) directly by
combining the general solution to the corresponding homogeneous differential equation and the particular solution to the non-
homogeneous differential equation.

The general solution to the corresponding homogeneous differential equation (y”—py =0) is

y = AeM 4 B (A. 3)
where k’=p.
The particular solution to the non-homogeneous differential equation is assumed as
y=Cx+D (A.4)

Substituting Eq. (A. 4) into the Eq. (A. 1), we can obtain
—Kk?(Cx+D) =my + f, (L+x,) —k?y, — f,x
Then we have

-k*C=-f,
—k?D=m,, + f (1+x,)—k?2y,

C=f,/k?
mze+ fy(l+xe)_k2ye (A 5)
- =
Combining Egs. (A. 3), (A. 4) and (A. 5), we can obtain the general solution to the non-homogeneous 2-order differential
equation as

f f,(L+x,) —k?
)’:Aek’(+B'k"+k—;x—mZe+ y(l;XE) Ye
Substituting the boundary condition, Eg. (A. 2), into Eq. (A. 6), we can obtain
Mg + f, L+ %) —k?y,
kz

(A.6)

A+B- =0

fy
Ak —Bk+—% =0
k

Solving the above equations, we then obtain
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1Mt f,(L+%)-k?y, f

A -
2 k? 2 k3 A.7)

Bfl My + fy(L+%) Ky, f,

=35 2 e

Substituting Egs. (A. 5) and (A. 7) into Eq. (A. 6), the general solution to Eq. (A. 1) is obtained as

Myt Fy @ x) Ky, e ey e fy me + fy (LX) —KPY

X -X +Yx
y(x) 2 ) E S ) 2 A8
2 2
:mze+fy(1+zxe)_k Ye COSth—f—§Sinth+f—)2lX—mze+fy(lzxe)_k Ye
K k

An analogous solution can also be obtained in terms of trigonometric functions rather than the above hyperbolic functions

for negative values of p.

When x=1, the transverse displacement y. and the rotational angle 8, about the Z-axis of the free-end can be obtained using
Eqg. (A. 8) as

My + f, kY, f, . f, me+f,—k%y,
Yo = YD) zk—zooshk—Fsmthrk—z—k—2
ie.
- f, (k —tanhk) . m, (cosh k —1) (A.9)
e 3 2
k k“coshk
Mg + fy =K%y, f,
0,=yD= S|nhk—k—2005hk
i.e.
- f, (coshk -1) L Mae tanh k (A. 10)
2
k* cosh k k

Equations (A. 9) and (A. 10) are same as the results derived in [5, 23].
As in [5], the axial displacement can be divided in two parts: a purely elastic component and a kinematic component as

Xe = 68 +5F
where &5 = p/d, which is the purely elastic component, 5)‘(( is the kinematic component.
The kinematic component can be obtained as follows:

ds=dx/cos@=(1+tan? )2 dx=(1+ y'z)l’ZdXz(l+%y’2)dx

Then we obtain
1465 L+X, 1
_ - 12
!ds- _([ (1+2y )dx

1
1468 =1+(5¢ +§:)+%jy'z dx
0
Then above equation can be rewritten as
1
5k = —%jy’z dx (A. 11)
0

Substituting Eq. (A. 8) into Eq. (A. 11) and combining with the purely elastic component, we can obtain the axial
displacement (see [5] for detailed expression).

Then making approximations for all load-displacement equations of the free-end of the beam based on the Taylor series
expansion, we obtain

f M
y [_|& ¢]VYe ‘p e hjy, 4 p? 1/700 1/1400 | v, . (A. 12)
m,e c bjg, h gjé, | 1/1400 -11/6300 | 6,
1 i ke roaly.] 1/42000 —1/84000] y,
S .0 .0 .0 A.12b
%o =g Pl Z]{k ijw[ye Z]_q S:||:HZ + Pl ~1/84000 1/18000 | 6, | ( )
Similarly, the load-displacement equations of the free-end of a beam for the bending only in the XZ plane can be obtained
as
f 1 _
z _|ac Z, ip e hjz +p2 1/700 1/1400 |z, . (A. 133)
-Mye | [c b]-6, h g]-6] 1/1400 -11/6300 | -6,
1 i ki Ve r qj Z 2 1/42000 —1/84000 || Z,
== —0, —0 —0, . A. 13b
=g Ptz y]{k j}{—ey}p[ze y][q s}{—ey}p e8] 1gan0 112000 o, |" (A 130)
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where my,, f, and p are, respectively, the bending moment about the Y-axis, the transverse force along the Z-axis and the axial
force along the X-axis acting at the free-end of the beam; z., x.and 6, are, respectively, the transverse displacement along the
Z-axis, the axial displacement along the X-axis and the rotational angle about the Y-axis of the free-end of the beam.

B. Torsion of a beam after deformation about the X-axis

Due to the small deflection hypothesis, we can assume
dg, = m,(x)dx (B. 1a)
where m, (x) =m,, + f,[y, —y(x)1/ 6 — f, [z, —2(x)]/ &, which is the torque acting at any x location on the beam about the

X-axis in deformed configuration; 6=2G/E; m,, f,, and f, are, respectively, the torque about the X-axis, the transverse force
along the Z-axis and the transverse force along the Y-axis acting at the free-end of the beam; y, and z, are the transverse
displacements of the free-end of the beam along the Y- and Z-axes, respectively; y(x) and z(x) are the transverse
displacements of any x location on the beam along the Y- and Z-axes, respectively.

Equation (B. 1a) can be rewritten as

dBx :{mxe + fz[ye - y(X)]/ﬁ_ fy[ze - Z(X)]/é}dx (B- 1b)
Based on Eq. (A. 8), y(x) and z(x) can be expressed respectively as
m, k2 f, f,  mg+f,—k?
y(X) =—yecosh o« —— sinhkx +—2- x —%ye
k2 k3 k? k (B.2)
-m,, +f, kz f.o. f mye+f kze
z(x) —k—zcosh kx—k—gsmhkx+k—§x —

where k’=p. p, my. and m, are, respectively, the axial force along the X-axis, the bending moment about the Y-axis and the
bending moment about the Z-axis acting at the free-end of the beam.
The torsional angle of free-end can be obtained by integrating Eq. (B. 1b) as

0, :J‘l{mXe + . [Ye — Y/ 0 - f,[z. —2(X)]/ SYdx =m, +(f, Y, — fyze)/é—r[fzy(x)ld— fyz(x)/ 6]dx
0 0

Substituting Eqg. (B. 2) into the above equation, we obtain

1 my+ f, —k? f f,  me+f,—k?
0, =my +(f,y.— f ze)lé—j{fz[ucosh X —~Lsinhkox + L x— e 1y 7K Yeq 5
y o k2 k3 kZ k2
(B.3)
o —my, + f, —k’z, o sinhioc Tz —mye+fz—kzze]/5}d
- —cos ——Zsinhkx+ %42 x—-———0r—— X
k? k3 k? k?
We take the third term in Eq. (B. 3) for further simplification as follows:
f f, f, f, —k?
J.{f M + £y —K%ye Dae® 1y 78 Ve coshiox——Lsinhke+ 2 x— ety 75 ey 5
k3 k2 k
-m +fZ—kz f, f,  —my+f,—kz
—H[%COShkX—Fsmth+k—2X—%]/é}dx
— f,m,, - f k?z,
= (f,Ye- fze)/5+j{[—zekfk yecosh@—fszZE]/s—[ o aoshc fy ye]/5}o| (B.4)
— f,m,, — f,k?z —f,m
=(f,y, - fze)/5+J'{[ mge = fok*ye  — fy o e]cosh|<x/5+[#—fz—”;‘w]/é‘}cjx
k2 k k k
+ f,m . - - f.m
:(fzye—fyze)/§+[(%+fyze—fzye)/5]3|nhk/k+( y yle(z VP
According to the Taylor series expansion, we have
e =1+k+k?/2+---+Kk"/nk---
Thus
k —_ _k 2 cee) — —_— 2 e
sinhk/k:e e :(1+k+k [24+--)—@Q-k+k“/2+ )zl (B.5)
2k 2k
Substituting Eq. (B. 5) into (B. 4), and substituting the result into Eq. (B.3), we obtain
f,m,e + fymye —fymy —f,m,
ex:mxe+(fzye_fyZe)/5_{(fzye f Zg )/5+[(k— fyze_fzye)/5]+(k—2)/5} (B. 6)

=My +(f,ye—f,z,)/5+0

Equation (B. 6) can also be explained qualitatively as follows. When we calculate the torsional angle 6, the beam can be
assumed as a straight beam without bending deformations (Fig. B1). Therefore, the torsional moment m,(x), with respect to
central axis of the undeformed beam, at any x location on the beam may be regarded as m,, +(f,y, — f,z.)/ 5, and therefore

the torsional angle can be also obtained as

1
6y :Io[mxe +(fzye - fyze)/5]dX:mxe +(fzye - fyze)/5
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Fig. B1 Equivalent transformation for the torsional angle calculation.

Based on the mentioned principle of superposition in section 2.1, we can substitute Egs. (A. 12a) and (A. 13a) into Eq. (B.
6) to obtain

gx =My +(fzye - 1:yze)/é‘z Mye +(aze + peze)ye /5_(aYe + peYe)Ze /5_(:(9229 +9yye)/5_ ph(gzze +6yYe)/5 (B 7)
=M, —C(0,2, +0,Y.)/ 6 — ph(0,z. +0,Y,)/ &

C. Prototype of a three-beam module

A fabricated three-beam module under the action of f, and m, is shown in Fig. C1. Under the above payloads, the three-
beam module has two primary motions: z; and s, [Fig. C1(a)]. In addition, the parasitic rotational angle of the motion stage
about the Z-axis is dominated by 1.2z,0,, [see Eq. (29)], which can be verified by the experiment as shown in Fig. C1(b).

(b)

Fig. C1 Prototype of a three-beam module in deformation.
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