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Necessary conditions for apparent horizons and singularities in spherically symmetric initial data

Jemal Guven*
Instituto de Ciencias Nucleares, Universidad Nacional Auto´noma de Me´xico, Apdo. Postal 70-543, 04510 Me´xico, D.F., Mexico

Niall Ó Murchadha†

Physics Department, University College Cork, Cork, Ireland
~Received 24 July 1997!

We establish necessary conditions for the appearance of both apparent horizons and singularities in the
initial data of spherically symmetric general relativity when spacetime is foliated extrinsically. When the
dominant energy condition is satisfied these conditions assume a particularly simple form. Letrmax be the
maximum value of the energy density andl the radial measure of its support. Ifrmax l 2 is bounded from
above by some numerical constant, the initial data cannot possess an apparent horizon. This constant does not
depend sensitively on the gauge. An analogous inequality is obtained for singularities with some larger con-
stant. The derivation exploits Poincare´-type inequalities to bound integrals over certain spatial scalars. A novel
approach to the construction of analogous necessary conditions for general initial data is suggested.
@S0556-2821~97!01324-6#

PACS number~s!: 04.20.Cv

I. INTRODUCTION

In this paper we cast necessary conditions for the appear-
ance of apparent horizons and singularities in the initial data
of spherically symmetric general relativity. This is the natu-
ral sequel to a previous paper in which we examined suffi-
ciency conditions in the same context@1,2#. The formulation
of necessary conditions is clearly more difficult. This is be-
cause by the nature of the problem, we must assume the
worst: a scenario in which the geometry possesses an appar-
ent horizon or a singularity.

The initial data consist of the intrinsic and extrinsic ge-
ometry on some spacelike hypersurface. We suppose that the
line element on the spatial geometry is parametrized by

ds25dl 21R2dV2. ~1!

Here l is the radial length on the surface. 4pR2 is the area
of a sphere of fixedl . We can express the spherically sym-
metric extrinsic curvature in terms of two spatial scalarsKL
andKR @3#:

Kab5nanbKL1~gab2nanb!KR . ~2!

Here na is the outward pointing unit normal to the two-
sphere of fixed radius. We have thatR, KR , and KL are
constrained by the Hamiltonian and momentum constraints

1

2
~11R82!2~RR8!854prR21

1

2
R2~2KL2KR!KR ,

~3!

and

KR81
R8

R
~KR2KL!54pJ. ~4!

The primes represent derivatives with respect tol . We as-
sume that both the energy density of the matterr and its
currentJ are finite.

We exploit an extrinsic time foliation. This involves a
constraint on the two extrinsic curvature scalars. We will
suppose that this constraint is quasilinear, and homogeneous
so that

KL1aKR50, ~5!

wherea is some specified not necessarily local function of
the configuration variablesa5a(KR ,R,l ) which is
bounded from below by 0.5@3,4#.

By a regular geometry, in this paper we understand any
spatial geometry with a single asymptotically flat region and
a regular centerl 50 without either apparent horizons or
singularities. The appropriate boundary condition on the
metric atl 50 is then

R~0!50. ~6!

The occurrence of apparent horizons or singularities in
spherically symmetric general relativity is due entirely to the
action of matter. Thoughr andJ are finite there is no guar-
antee that a regular asymptotically flat solution defined for
all l >0 will exist @4#.

At a future~past! apparent horizon, the optical scalarv6

defined by@3–5#

v652~R86RKR! ~7!

vanishes:

v6~ l H!50. ~8!
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To avoid clutter we will focus only on future horizons in this
paper.

Singularities occur when the geometry pinches off at
some finite proper radiusl S from the center:

R~ l S!50. ~9!

A singular geometry necessarily contains at least one kind of
apparent horizon. If the mass-function becomes negative as
one approaches the singularity one must have both future and
past horizons.

To provide necessary conditions for an apparent horizon
or a singularity we consider the bounded region enclosed by
the feature in question. The boundary condition~8! or ~9! is
then imposed on Eqs.~3! and~4!. Integrating Eq.~3! over the
domain@0,l H# or @0,l S# then provides an integrability con-
dition on the spatial geometry and the sources. This integra-
bility condition then provides the basis for an inequality
bounding some measure of the energy content of the region
by some measure of its size.

What constitutes a natural measure of the energy content
is a subtle issue. In our examination of sufficiency conditions
we found that the appropriate measures were the total en-
closed material energyM or the differenceM2P, whereP
is the material current@1#. We found that if either the weak
or the dominant energy condition holds, and the geometry
did not possess an apparent horizon, thenM2P,constl ,
where l is the radial support, for some constant of order
unity @1#. The same inequality withM2P replaced byM
and with some larger constant is obtained for singularities.

In @6#, where we addressed the problem when the geom-
etry is momentarily static, we saw thatM can remain small
though l be arbitrarily large. This can occur becauseR is
folded into the definition ofM andR can either saturate or
worse become small. One should not therefore expectM to
serve as a useful measure of the material energy for the pur-
pose of casting necessary conditions. Indeed, we know that
the statement, ifM<constl then the geometry is nonsingu-
lar, cannot be justified@7#.

In @6#, however, withKab50 we did identify variables
with respect to which nontrivial necessary conditions could
be cast of the form: if

rmax l 2,const, ~10!

wherermax is the maximum energy density, the distribution
of matter will not possess an apparent horizon with one con-
stant; with some larger constant it will not possess a singu-
larity.

When matter flows, the obvious generalization ofrmax is
the sumrmax1Jmax—however,rmax and Jmax do not enter
symmetrically into the inequality. Unlike the sufficiency
conditions which involved a symmetric combination ofM
andP, the equalities we obtain do not respect this symmetry.
The natural inequality we obtain involves not onlyJ but its
square, assuming the form: if

rmax l 21c0Jmax l 21c1~Jmax l 2!2,c2 , ~11!

where c0 , c1, and c2 are three given numerical constants,
then the geometry is regular. Once a choice of gauge has
been made the symmetry betweenr and J is necessarily

broken. Despite appearances this is not an artifact of the
extrinsic time slicing we have exploited. The value ofJ plays
a more significant role than the value ofr. This is consistent
with our findings in@4# in our examination of the generic
behavior of the metric in the neighborhood of a singularity in
an a foliation of spacetime.

When the dominant energy condition

r>uJu ~12!

is satisfied, the momentarily static form~10! obtains from
Eq. ~11! with some larger constant which depends only
weakly ona. This is remarkable in many ways. The single
Hamiltonian constraint is replaced by the two coupled equa-
tions ~3! and ~4! satisfying the gauge condition~5!; in the
worst scenario we must assume, not only do we need to
contend with potential divergences in the intrinsic geometry
but, in addition, with divergences in the extrinsic curvature.

The paper is organized as follows. In Sec. II, we collect
some relevant bounds on potential divergences. In Sec. III,
we discuss the weights which must be introduced into inte-
grals over relevant geometrical scalars to render them well
defined when the scalar is singular at the end point of the
domain of integration. In Sec. IV, we derive a necessary
condition of the form~11! for singularities. In Sec. V, we do
the same for apparent horizons. In Sec. VI, we derive a
simple necessary condition for the appearance of minimal
surfaces. We end with brief discussion. Derivations of math-
ematical inequalities are provided in the Appendix.

II. BOUNDS ON R, R8, AND KR

To formulate a necessary condition for singularities it is
important to possess some bound limiting the maximum val-
ues ofR8 andKR which does not require the geometry to be
regular. In particular, one cannot exploit the numerical
bounds on these variables derived in@4# which rely on the
regularity of the geometry. Indeed these quantities can be
arbitrarily large. What we need to do is place an upper bound
on their rate of divergence in the neighborhood of singulari-
ties. These bounds will then be applied to determine the
weights which are appropriate to turn the integrability con-
dition into an inequality. In fact, this will be their only use in
this paper.

We first recall that Eq.~4! can be solved forKR in terms
of the radial flow of matterJ as follows:

KR5
4p

R11a E
0

l

dl 1R11aJD~ l 1 ,l !. ~13!

The positive factorD is given by

D~ l 1 ,l !5expS E
l 1

l

dl 2a8 ln~R/L ! D , ~14!

whereL is some arbitrary length scale. Ifa is constant,D
51. This form of the solution makes explicit the fact that
spatial variations ofa can be absorbed into a multiplicative
dressing of the current density. The constanta result is
modulated byD.

It is now straightforward to place a bound onKR . We
have
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KR<
4puJmaxu

R11a D~0,l !E
0

l

dl 1R11a. ~15!

We saw in @4# that D is, in fact, finite everywhere. It is
possible to further boundD(0,l ) by boundinga8 by ua8umax
and pulling it through the integral. However, we will treat
the integral appearing in the exponent itself as the natural
measure of the variation ofa. Just as we found thata
>0.5, we will need to bound the variation ofa appropriately
if we are not to be overwhelmed by gauge introduced noise
in casting necessary conditions. Recall that no such bound
was ever invoked when we addressed sufficiency conditions
in @1#.

The exact expression~13! and the bound~15! determines
the potential divergence ofKR at a singularity. This occurs
with R returning to zero at some finite radius from the center,
at l 5l S . In @4#, we saw that in the neighborhood of this
point

R;S Ca

a11D 1/~a11!

~ l S2l !1/~a11!, ~16!

whereCa is the finite constant

Ca5E
0

l S
dl 1R11aJD~ l 1 ,l !. ~17!

Generically, therefore,R8 diverges atl S as do all higher
derivatives ofR. If a(l S).0.5, such spatial singularities are
more severe than the strong singularities discussed in@6#
which are consistent with the Hamiltonian constraint at a
moment of time symmetry. Increasing this value ofa in-
creases the strength of the singularity.

Even if the geometry is singular so thatR8 diverges, it can
only diverge to minus infinity—the surfaceR851 in the
configuration space can never be breached from below. We
always haveR8<1 @4#.

III. POINCARE´ INEQUALITIES,
WEIGHTS AND MEASURES

Crucial to the derivation of Eq.~10! in @6# were two
simple Poincare´ inequalities of the form

SE
0

l 1
dl R2<E

0

l 1
dl R82, ~18!

whereS depends on the boundary conditions satisfied byR.
In generalR(0)50. At the first trapped surface,R8(l 1)
50 and S5p2/4l 1

2. At a singularity, R(l 1)50 and S
5p2/l 1

2.
Recall that becauseR8<1, R is always bounded byl .

This guarantees that if the geometry is small in the radial
direction it will also be small in the two transverse direc-
tions. A consequence is that any integral over positive pow-
ers of R will be well defined over any finite interval. At a
singularity, in a moment-of-time-symmetry slice, however,
we found thatR tends to zero asR;(l S2l )2/3 so thatR8
diverges as (l S2l )21/3. Even thoughR8 diverges so that
the integrand on the right-hand side~RHS! of Eq. ~18! di-
verges, the integral itself remains finite. WhenJÞ0, R8 can

diverge more rapidly. Equation~16! implies R8;(l S
2l )2a/11a. Thus the integral on the RHS of Eq.~18! will
only exist if a,1. This is outside the range found to provide
the best sufficiency results in@1#. To remedy this situation a
nontrivial weight function will need to be introduced into the
integrand to render the bounding integral well defined. In@6#,
we found that we could improve the inequalities of necessity
at a moment of time symmetry by weighting with an appro-
priate power ofR. Here it will be essential.

Again, let this function be some power ofR, Ra, say. The
relevant exponent will generally depend ona. At a singular-
ity, RaR82;(l S2l )(a22a)/(11a). The integral

E
0

l 1
dl RaR82 ~19!

will exist for all a.a21. This is not, however, the optimal
value for our purposes. We will see below that a larger value
is desirable. If a is constant, we have Ra/2R8
5(R11a/2)8/(11a/2). We then simply apply Eq.~18! to the
function R11a/2 in place ofR.

IV. SINGULARITIES

When the gauge condition, Eq.~5! is satisfied, we note
that the Hamiltonian constraint assumes the form

1

2
~11R82!5~RR8!814prR21

1

2
~2a21!R2KR

2.

~20!

The second and third terms on the RHS are manifestly posi-
tive. Suppose that the geometry is singular atl 5l S . We
cannot simply integrate Eq.~20! and discard the boundary
term. First of all, as we pointed out above, it is clear from
Eq. ~16! that the integral ofR82 does not exist on the interval
@0,l S#; in addition, the surface termRR8 does not vanish at
the singularity unlessa,1 there. To remedy the problem we
multiply Eq. ~20!, as discussed in Sec. III, by an appropriate
weight functionRa before integration.

This multiplication has the unfortunate side effect of de-
stroying the divergence (RR8)8 appearing on the RHS of Eq.
~20!. It is, however, simple to restore this divergence: we
note that

~R11b!85~11b!RbR82b8R11b ln R/l S . ~21!

We perform an integration by parts on the termRa(RR8)8,
and now substitute the RHS of Eq.~21! for (Ra)8 (a5b
11):

1

2 E
0

l S
dl Ra@11~2a11!R82#

5R11aR8u l S
14pE

0

l S
dl rR21a2F

1
1

2 E
0

l 1
dl ~2a21!R21aKR

2, ~22!

whereF, given by
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F5E
0

l S
dl a8ln~R/l S!R11aR8, ~23!

is a correction which vanishes ifa850. To discard the
boundary term, we requireR11aR8 to vanish at the singular-
ity. This implies that

a.a21. ~24!

This choice ofa simultaneously bounds the integral over
RaR82.

We also will need to place a bound on the last term on the
RHS of Eq. ~22!. We exploit Eq.~15! to boundKR . The
problem is that this bound involves the positive power ofR,
R11a, in the denominator which is difficult to control. We
obtain the bound

E
0

l S
dl ~2a21!R21aKR

2

<~4p!2~2amax21!Jmax
2 D~0,l S!2E

0

l S
dl Ra22a

3S E
0

l

dl R11aD 2

~25!

on this term. If the weighting exponent is chosen such that

a>2a, ~26!

the denominator is removed by the weight. Fortunately, such
values are consistent with Eq.~24! for all physically accept-
able values ofa. The RHS of Eq.~22! is clearly simplest
when

a52a. ~27!

This is the value we will henceforth adopt fora.
The expression on the right-hand side of Eq.~25! is still

not very useful as it stands. A remarkable fact, however, is
that we can bound it by an integral overR2(11a). In fact, we
have the following inequality:

E
0

l 1
dl S E

0

l

dl R11aD 2

<S 2

p D 2

l 1
2E

0

l 1
dl R2~a11!.

~28!

This result is derived in the Appendix. Equation~28! implies
the bound for theKR

2 term:

E
0

l S
dl ~2a21!R2~11a!KR

2

<64~2amax21!Jmax
2 D~0,l S!2l S

2E
0

l S
dl R2~11a!. ~29!

To understand why this bound is important, note that we can
exploit the identity~21! to cast the integrandR2aR82 appear-
ing on the LHS of Eq.~22! in the form

R2aR825
1

~11a!2 @~R11a!822a82R212a ln2~R/l S!#

2
2a8

11a
R112aR8 ln~R/l S!. ~30!

If a is constant only the first term survives. Let us focus on
this term. A one-dimensional Poincare´ inequality can be ex-
ploited to place a lower bound on the integral over
(R(11a))82:

SE
0

l 1
dl R2~11a!<E

0

l 1
dl ~R11a!82, ~31!

where the constantS5p2/l 1
2 is the constant which is rel-

evant for functions which vanish at bothl 50 andl 5l 1 .
If a is constant, we then have

E
0

l S
dl R2a<2F4prmax132~2a21!Jmax

2 l S
2

2S p

l S
D 2 114a

2~11a!2G E
0

l S
dl R2~11a!.

~32!

In @6#, we proved that when Eq.~6! is satisfied andR8
<1 then the ratio of the integrals appearing in Eq.~32! can
be bounded as follows@Eq. ~6.3.16!# (a52a)

E
0

l 1
R21adl

E
0

l 1
Radl

<
11a

31a
l 1

2. ~33!

Equation~33! implies

1

2

312a

112a
1

114a

2~11a!2 p2<4prmax l 1
2132~2a21!Jmax

2 l 1
4.

~34!

We note that it is the second term on the left-hand side which
will determine the bound fora;11. It is maximized when
a50.5. With this value, we reproduce the moment of time
symmetry result@6#—this is a peculiarity of this gauge.

The dependence on the value ofa will generally not be a
strong one so long asa is bounded. In particular, ifa51,

5p

32 F11
4

3p2G<rmax l 1
21

8

p
~Jmax l 1

2!2. ~35!

Note the asymmetry between the roles ofrmax andJmax. The
inequality does not involve what one would to be the obvi-
ous generalization ofrmax, the sumrmax1Jmax. Jmax plays a
more decisive role thanrmax in the inequality, appearing as it
does through its square in contrast tor which appears lin-
early. The inequality withKab50 does not generalize in the
obvious linear way. If the dominant energy condition Eq.
~12! holds, the inequality simplifies. Fora51 we obtain
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1

8 FA5

3
1

3

2
p22

p

2 G<rmax l S
2. ~36!

The LHS;5/16, which is approximately half as good as the
moment of time symmetry result.

If a is not a constant, additional noise is introduced into
the inequality by the gauge. We get

E
0

l 1
dl R2a<2F4prmax132~2amax21!Jmax

2 D2l 1
2

2S p

l 1
D 2 114a

2~11a!2G E
0

l 1
dl R2~11a!1F1

1F2 , ~37!

whereF1 andF2 are given, respectively by

F15E
0

l 1
dl

2a21

11a
a8 ln R/l 1R112aR8, ~38!

and

F25E
0

l 1
dl

114a

2~11a!2 a82 ln2 R/l 1R2~11a!. ~39!

The spatial dependence ofa is encoded inD and two terms
F1 ,F2 which get picked up in the trade off ofRaR8 for
(R11a)8. F1 includes the contribution fromF appearing in
Eq. ~22!.

These integrals can both be bounded. We have

F1<
2amax21

11amin
Rmax

112aE
0

Rmax
dRua8uu ln R/l 1u, ~40!

and

F2<
114amax

2~11amin!
2 Rmax

2~11a!E
0

l 1
dl a82 ln2 R/l 1 . ~41!

The integrated logarithm appearing in Eq.~40! is bounded by
that which appears in the definition, Eq.~14! of D. Clearly,
we can bound both by~the square root of! the integral ap-
pearing in Eq.~41!. This is the only measure ofa8 we need
to control. We will also need the bounds

Rmax
n12aY E

0

l 1
dl R2a<~112amax!l 1

n21 , ~42!

for n>1.

V. APPARENT HORIZONS

At a moment of time symmetry, there is a remarkable
similarity between the signal for the presence of an apparent
horizon R850 and that for the presence of a singularityR
50. In @6#, this meant that the techniques we exploited for
analyzing singularities were also good for analyzing apparent
horizons and the effort required almost identical. In general,
however, the signal for an apparent horizon will involve the
extrinsic curvature of the spatial hypersurface through Eq.
~8!. Its physical location no longer coincides with an ex-

tremal surface of the spatial geometry as it did at a moment
of time symmetry.

At a future apparent horizon,v1 defined by Eq.~7! van-
ishes. EliminatingR8 in the divergence term in Eq.~3! using
Eq. ~7! we obtain

1

2
~11R82!5~Rv12R2KR!814prR21

1

2
~2a21!R2KR

2.

~43!

Again both the second and third terms on the RHS are mani-
festly positive. Let us suppose for simplicity thata is con-
stant.

Suppose that all quantities are well defined~we will relax
this assumption below!. We can then integrate Eq.~43! up to
the first future horizon at whichv150 to get

E
0

l 1
dl ~11R82!52R2KRu l 1

14pE
0

l 1
dl R2r

1
1

2
~2a21!E

0

l 1
dl R2KR

2. ~44!

We wish to exploit Eq.~15! to place a bound onKR in the
surface term. Unfortunately, this bound will only be well
defined fora<1.

The first two terms can be dealt with symmetrically when
a51. In this case these first two terms on the RHS can be
bounded as follows:

2R2KRu l 1
14pE

0

l 1
dl R2r<4p~rmax1uJmaxu!E

0

l 1
dl R2.

~45!

A linear term in Jmax appears in the apparent horizon in-
equality condition which is not present in the singularity in-
equality. This is a reflection of the different boundary condi-
tions enforced there.

We can exploit a Poincare´ inequality to place a bound on
the integral over the interval@0,l 1# of the quadraticR2 by
the same integral over the quadraticR82:

SE
0

l 1
dl R2<E

0

l 1
dl R82. ~46!

The inequality is saturated by the trigonometric function

R~ l !5sin~gl !, ~47!

which also determines the optimal value ofS5g2. The
boundary condition~8! determinesg to be the lowest solu-
tion of the transcendental equation:

tan gl 152
g

KR
. ~48!

We note that

g<
p

2l 1
~49!
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if KR is negative withg→p/2l 1 as KR→0 which is the
moment of time symmetry bound andg→p/l 1 as KR→
1`.

Unfortunately, even whena51, when we attempt to
bound the third term on the right-hand side we run into the
same problem we faced when we examined singularities in
Sec. IV with the same term. We need to introduce a weight-
ing to guarantee convergence of the integral. The same
weighting which worked for singularities works again. There
is no real simplification in thea51 case so we will return to
the general case. To restore the divergence appearing in Eq.
~43! we need to perform an integration by parts as before.
We integrate up tol 1 :

1

2 E
0

l 1
dl R2a@11~4a11!R82#

52R2~11a!KRu l 1
14pE

0

l 1
dl rR2~11a!

1
1

2
~2a21!E

0

l 1
R2~11a!KR

2. ~50!

We now exploit Eq.~15! to bound theKR andKR
2 terms. For

the former,

R2~11a!KRu l 1
<4pR11aJmax E

0

l 1
dl R11a. ~51!

The weighting process has broken the symmetry under inter-
change ofr andJ of the linear terms on the RHS of Eq.~44!
which is evident in Eq.~45!. For the term quadratic inKR ,
we again have@Eq. ~29! with a52a#

E
0

l 1
dl R2~11a!KR

2<~4p!2Jmax
2 E

0

l 1
dl S E

0

l

dl R11aD 2

.

~52!

We again require a bound on the last term by an integral over
R2(11a). Though the boundary conditions are different we
again obtain the bound~28!. We demonstrate this in the Ap-
pendix. We can now write

1<2F4prmax132~2a21!Jmax
2 l 1

22 g̃2
114a

2~11a!2G
3E

0

l 1
dl R2~11a!Y E

0

l 1
dl R2a

18pJmaxR1
11aE

0

l 1
dl R11aY E

0

l 1
dl R2a. ~53!

Here g̃ is the analogue of theg that appears in Eqs.~47!–
~48!, except thatR2 in Eq. ~46! is replaced byR2(11a). This
means that Eq.~48! must be replaced by

tang̃ l 152
g̃

KR~11a!
. ~54!

The same upper and lower bounds ong̃ hold, i.e., p/2l

<g̃<p/l 1 . We can again exploit Eq.~33! to bound the
ratio of the integrals in the first term of Eq.~53!. In the
second term, one can exploit

R1
11aE

0

l 1
dl R11aY E

0

l 1
dl R2a<

112a

21a
l 1

2 . ~55!

This is proved using the same technique as the derivation of
Eq. ~33!. The necessary condition for an apparent horizon
with constanta is then

4pS rmax1
312a

21a
JmaxD l 1

2132~2a21!Jmax
2 l 1

4

<
1

2

312a

112a
1

114a

8~11a!2 p2. ~56!

The only real difference with respect to Eq.~34! is the ap-
pearance of the linearJmax term. When the dominant energy
condition is satisfied, we can replaceJmax with rmax and get
a quadratic expression inrmax l 1

2. This in turn can be solved
to give a direct bound onrmax l 1

2. Whena51, this becomes

rmax l 1
2<

1

8
A301p2

144
1

5

3
2

p

6
'0.07. ~57!

This is approximately three times smaller than the constant
we obtained for the moment of time symmetry case in@6#.

VI. MINIMAL SURFACES

There is a very simple necessary condition for the exis-
tence of a minimal surface which is easy to derive and which
is essentially gauge independent. Let us return to the Hamil-
tonian constraint, Eq.~3!. This can be rewritten as

1

2
~11R82!2~RR8!85

1

4
R23R, ~58!

where 3R is the three scalar curvature of the initial slice. If
the weak energy condition is satisfied and if 0.5<a,` we
have that3R>0. This is sufficient to show thatR8<1. Let
us assume that the initial data contains a minimal surface and
that the first minimal surface occurs atl 5l M . Clearly, in
the range 0<l <l M , we have 0<R8<1. Let us integrate
Eq. ~58! from the origin out tol M . We get

l M>
1

2 E
0

l M
~11R82!dl 5

1

16p E
0

l M
4pR2 3Rdl

5
1

16p E
0

l M 3Rdv. ~59!

The boundary term can be discarded becauseR850 at a
minimal surface. Thus a necessary condition for the appear-
ance of a minimal surface is

16pl >E
0

l M 3Rdv. ~60!
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If we have a minimal surface it must be either future or past
trapped. Unfortunately, we cannot use this condition, Eq.
~60!, to derive a necessary condition for trapped surfaces
because we could have a trapped surface without any mini-
mal surface.

VII. CONCLUSIONS

In this paper we have presented new necessary conditions
for the presence of both apparent horizons and singularities
in spherically symmetric initial data.

While we have assumed that spacetime is foliated extrin-
sically, this is not a severe restriction. Indeed, modulo the
constraints, the destinction between intrinsic and extrinsic
foliations becomes an artificial one.

The inequalities do not depend sensitively ona. We have
seen that just as one has to place a lower bound ona to
obtain a sensible gauge, to obtain necessary conditions one
needs also to impose an explicit upper bound on the spatial
variation of a. Acting as it does to mask the underlying
physics, it is not at all surprising that the variation ofa8
needs to bounded. It is, overall, surprising that all of the
gauge ambiguity can be absorbed in such a simple way.

Our approach to functional analysis has been extremely
heuristic—it is clear that some of the inequalities exploited
in Secs. IV and V can be sharpened, especially those relating
to nonconstanta. As physicists, however, we always use the
gauge which makes life easiest—linear gauges witha con-
stant does this. Whena is not constant, we are clearly more
interested in the fact that such bounds can be established
than in squeezing them for better constants.

How is this work likely to be generalized? The obvious
challenge is to generalize it to nonspherically symmetric ge-
ometries.

The Hoop conjecture formulated many years ago by Kip
Thorne@8# states, in rough terms, that a black hole hole will
form if and only if energy is compressed in all three spatial
directions. If we admit ‘‘cosmic censorship’’ the conjecture
can be rephrased in terms of initial data, with black hole
replaced by apparent horizon. It should be clear why the
phrasing of the conjecture is vague. Even with no indepen-
dent gravitational degrees of freedom to worry about, it is
remarkably difficult to provide a description of the two in-
gredients ‘‘quantity of matter’’ and size which is simulta-
neously valid for both necessity and sufficiency, never mind
proving the conjecture. The situation can only get worse
when we relax spherical symmetry. One needs to bear in
mind that our ability to describe the configuration space in
considerable detail has relied on features of the spherically
symmetric problem which, we know, do not admit generali-
zations. Progress has been made on the sufficiency part of
the conjecture@9#. Much less is known about the necessary
part. Our work in this paper where the Poincare´ inequality on
the interval plays a central role, suggests a new approach to
attacking the problem in nonspherically symmetric geom-
etries. This generalization might involve a Sobolev-type in-
equality on the scale factorF:

SS E d3xF6D 1/3

<E d3x~¹F!2. ~61!

Indeed, had we exploited conformal coordinates, with re-
spect to which the spatial line element assumes the form,
ds25F4dsflat

2 , we would have found ourselves in need of
such an inequality to derive the results of this paper. We are
encouraged by the fact that Sobelev inequalities are known
to be related intimately with the isoperimetric problem@10#.

A physically interesting question that is extremely rel-
evant is the identification of initial data that potentially might
develop apparent horizons. In principle it should be possible
to do this exploiting in addition to the constraints, the dy-
namical Einstein equations evaluated on the initial hypersur-
face. These equations involve the pressure of matter through
some equation of state. The scenario which is most suscep-
tible to collapse is pressureless matter. We should be able to
exploit this condition to formulate necessary conditions. At
the other extreme, a stiff equation of state would inhibit col-
lapse. Thus such a scenario might provide a sufficient con-
dition.
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APPENDIX

In this appendix, we provide a derivation of the bound for
the extrinsic curvature quadratic used in the text:

E
0

l 1
dl S E

0

l

dl R11aD 2

<S 2

p D 2

l 1
2E

0

l 1
dl R2~a11!.

~A1!

The existence of a bound of this form is not hard to see. A
crude bound is provided by the positivity of the covariance
for any powerRn ~Hölder inequality!:

^Rn&2<^R2n&, ~A2!

which implies

S E
0

l 1
dl RnD 2

<l 1E
0

l 1
dl R2n, ~A3!

so that

E
0

l 1
dl S E

0

l

dl R11aD 2

<
l 1

2

2 E
0

l 1
dl R2~11a!. ~A4!

The bound~A1! is, however, better. To derive it, let

G~ l !:5E
0

l

dl Rn. ~A5!

Now G(0)50 andG8(l 1)50, for all n>0. We apply the
Poincare´ inequality toG with the constant which is appro-
priate with these boundary conditions:

E
0

l 1
dl Gn~ l !2<S 2l 1

p D 2E
0

l 1
dl R2n ~A6!

so that

7672 56JEMAL GUVEN AND NIALL Ó MURCHADHA



E
0

l 1
dl S E

0

l

dl R~11a!D 2

<S 2l 1

p D 2E
0

l 1
dl R2~11a!.

~A7!

This is better by a factor ofp2/8 than the estimate~A4!.
The same bound is obtained for functionsR(l ) satisfying

Eq. ~8! at l 5l 1 . The crude bound we derived before, Eq.
~A4!, is expected to work better this time. As before, how-
ever, we can do better. This time we let

H~ l !:5E
0

l

dl RnY E
0

l 1
dl Rn. ~A8!

Now H(0)50 andH(l 1)51 for all n. We apply the Poin-
caréinequality toH with the appropriate constant

E
0

l 1
dl H~ l !2<

1

g2 S 2l 1

p D 2E
0

l 1
dl R2nY S E

0

l 1
dl RnD 2

,

~A9!

whereg is given by Eq.~49!. Exploiting the lower bound on
g obtained in the text we obtain Eq.~A1! exactly as we did
for singularities.
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