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Necessary conditions for apparent horizons and singularities in spherically symmetric initial data

Jemal Guveh
Instituto de Ciencias Nucleares, Universidad Nacional Aotoa de Mgico, Apdo. Postal 70-543, 04510 Meo, D.F., Mexico

Niall O Murchadha
Physics Department, University College Cork, Cork, Ireland
(Received 24 July 1997

We establish necessary conditions for the appearance of both apparent horizons and singularities in the
initial data of spherically symmetric general relativity when spacetime is foliated extrinsically. When the
dominant energy condition is satisfied these conditions assume a particularly simple form,. L& the
maximum value of the energy density ardthe radial measure of its support. gf,./? is bounded from
above by some numerical constant, the initial data cannot possess an apparent horizon. This constant does not
depend sensitively on the gauge. An analogous inequality is obtained for singularities with some larger con-
stant. The derivation exploits Poincéasge inequalities to bound integrals over certain spatial scalars. A novel
approach to the construction of analogous necessary conditions for general initial data is suggested.
[S0556-282(197)01324-9

PACS numbd(s): 04.20.Cv

I. INTRODUCTION R’
Kg+ ﬁ(KR—K£)=47TJ. 4
In this paper we cast necessary conditions for the appear-

ance of apparent horizons and singularities in the initial data}.he primes represent derivatives with respect'toWe as-
of spherically symmetric general relativity. This is the natu'sume that both the energy density of the maieand its
ral sequel to a previous paper in which we examined suffi-

ciency conditions in the same conté¢#t2]. The formulation current) are finite.

of necessary conditions is clearly more difficult. This is be- We exploit an extrinsic time foliation. This involves a
y Y : constraint on the two extrinsic curvature scalars. We will
cause by the nature of the problem, we must assume t

i S : h§uppose that this constraint is quasilinear, and homogeneous
worst: a scenario in which the geometry possesses an appaly ihat

ent horizon or a singularity.

The initial data consist of the intrinsic and extrinsic ge-
ometry on some spacelike hypersurface. We suppose that the
line element on the spatial geometry is parametrized by

K.+ aKg=0, 5)

where a is some specified not necessarily local function of
the configuration variablesa=a(Kg,R,7) which is
bounded from below by 0.83,4].

. i 5. By a regular geometry, in this paper we understand any
Here/ is the radial length on the surfacer®” is the area  gpatial geometry with a single asymptotically flat region and
of a sphere of fixed”. We can express the spherically sym- 5" reqular center’=0 without either apparent horizons or
metric extrinsic curvature in terms of two spatial scalérs singularities. The appropriate boundary condition on the
andKRg [3]: metric at/'=0 is then

ds?=d/ %+ R%dQ2. )

Kab=NaNpK £+ (Gab— NaNp)Kg- 2 R(0)=0. (6)

Here n is the outward pointing unit normal to the two-  The occurrence of apparent horizons or singularities in
sphere of fixed radius. We have thaf Kg, andK, are  spherically symmetric general relativity is due entirely to the
constrained by the Hamiltonian and momentum constraintsaction of matter. Thouglp andJ are finite there is no guar-
antee that a regular asymptotically flat solution defined for
1 " " , 1, all /=0 will exist [4].
7 (1R = (RR) =4mpR™+ 5 R(2K .~ Kp)Kg, At a future (pas} apparent horizon, the optical scatar
(3)  defined by[3-5]

and w.=2(R"=RKg) (7)
vanishes:
*Electronic address: jemal@nuclecu.unam.mx

"Electronic address: niall@ucc.ie w+(/y)=0. (8
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To avoid clutter we will focus only on future horizons in this broken. Despite appearances this is not an artifact of the

paper. extrinsic time slicing we have exploited. The valuelgflays
Singularities occur when the geometry pinches off ata more significant role than the value@fThis is consistent
some finite proper radiuss from the center: with our findings in[4] in our examination of the generic
behavior of the metric in the neighborhood of a singularity in
R(/'s)=0. (9)  an a foliation of spacetime.

. . : . When the dominant energy condition
A singular geometry necessarily contains at least one kind of

apparent horizon. If the mass-function becomes negative as p=|J| (12
one approaches the singularity one must have both future and _ _ _
past horizons. is satisfied, the momentarily static for(d0) obtains from

To provide necessary conditions for an apparent horizofFd. (11) with some larger constant which depends only
or a singularity we consider the bounded region enclosed byeakly ona. This is remarkable in many ways. The single
the feature in question. The boundary conditi8nor (9) is Hamiltonian constraint is replaced by the two coupled equa-
then imposed on Eq$3) and(4). Integrating Eq(3) over the  tions (3) and (4) satisfying the gauge conditiofd); in the
domain[0,/4] or[0,/s] then provides an integrability con- Worst scenario we must assume, not only do we need to
dition on the spatial geometry and the sources. This integrscontend with potential divergences in the intrinsic geometry
bility condition then provides the basis for an inequality but, in addition, with divergences in the extrinsic curvature.
bounding some measure of the energy content of the region The paper is organized as follows. In Sec. I, we collect
by some measure of its size. some relevant bounds on potential divergences. In Sec. lll,

What constitutes a natural measure of the energy contenYe discuss the Weights which must be introduced into inte-
is a subtle issue. In our examination of sufficiency conditionsgrals over relevant geometrical scalars to render them well
we found that the appropriate measures were the total erflefined when the scalar is singular at the end point of the
closed material energy or the differenceV — P, whereP domain of integration. In Sec. IV, we derive a necessary
is the material curreritl]. We found that if either the weak condition of the form(11) for singularities. In Sec. V, we do
or the dominant energy condition holds, and the geometryh€ same for apparent horizons. In Sec. VI, we derive a
did not possess an apparent horizon, thér P<const/, simple necessary condition for the appearance of minimal
Where/ is the radial Support, for some constant of Ordersurfalces.-we endW|th brief dilscussion. DeriVatiol:]S of math-
unity [1]. The same inequality wittM —P replaced byM ematical inequalities are provided in the Appendix.
and with some larger constant is obtained for singularities.

In [6], where we addressed the problem when the geom- Il. BOUNDS ON R, R’, AND Kg
etry is momentarily static, we saw thit can remain small

though/ be arbitrarily large. This can occur becatRés To formulate a necessary condition for singularities it is

important to possess some bound limiting the maximum val-

I/Sgigg L)netgotr:i ﬁgﬁt%}nﬂhﬁ? ang??hilrtQ% rrese;t)ljratfbor ues ofR’ andKg which does not require the geometry to be
: pe regular. In particular, one cannot exploit the numerical

serve as a useful measure of the material energy for the pu ounds on these variables derived[#] which rely on the

fhoesztgfe(r;r?zzrgif\/lnicceosr?saty t%%r:]dt'ggnséol&deet?dESV\:]%rI:;?]WUt_h%gularity of the geometry. Indeed these quantities can be

lar. cannot be’just}ie@ﬂ g 9 y 9 arbitra_rily large. What we ne_ed to do_is place an upper bound
,In (6], however withk 0 we did identify variables on their rate of divergence in the neighborhood of singulari-
. ' ' ab— L ties. These bounds will then be applied to determine the

with respect to which nontrivial necessary conditions Cou'%eights which are appropriate to turn the integrability con-

be cast of the form: if dition into an inequality. In fact, this will be their only use in

/?<const, 10  this paper. ,
Prmax (10 We first recall that Eq(4) can be solved foKy in terms

wherep,., is the maximum energy density, the distribution Of the radial flow of matted as follows:
of matter will not possess an apparent horizon with one con- 4 ,
lstq?t; with some larger constant it will not possess a singu- KR:Rl_iTa f d/ R IA(/4, 7). (13)
arity. 0
When matter flows, the obvious generalizationpgf,, is N o
the SUM pmaxctJmax—NOWEVET, prmay aNd Jax do not enter  The positive factont is given by
symmetrically into the inequality. Unlike the sufficiency y
conditions which'involved a.symmetric combin_ation aif A(/lv/):eXF(f d/a’ In(R/L)), (14)
andP, the equalities we obtain do not respect this symmetry. /1
The natural inequality we obtain involves not orlybut its

square, assuming the form: if whereL is some arbitrary length scale. ¢f is constantA
=1. This form of the solution makes explicit the fact that
Pmax 2+ Codmax 2 2+ C1(Imax 2 2)%<Cyp, (11)  spatial variations ofr can be absorbed into a multiplicative

dressing of the current density. The constantesult is
wherec,, c;, andc, are three given numerical constants, modulated byA.
then the geometry is regular. Once a choice of gauge has It is now straightforward to place a bound &ty. We
been made the symmetry betwepnand J is necessarily have
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47| J o ‘o diverge more rapidly. Equation16) implies R’ ~ (/g
KRSWA(O/) jo d/ AR (15 — /)~ % e Thus the integral on the RHS of E€L8) will
only exist if «<1. This is outside the range found to provide
We saw in[4] that A is, in fact, finite everywhere. It is the best sufficiency results [d]. To remedy this situation a
possib'e to further bound(o,/) by boundinga’ by |C(/ |max nontrivial Welght function will need to be introduced into the
and pulling it through the integral. However, we will treat integrand to render the bounding integral well defined6ln
the integral appearing in the exponent itself as the naturave found that we could improve the inequalities of necessity
measure of the variation of. Just as we found thax ~ at @ moment of ime symmetry by weighting with an appro-
=0.5, we will need to bound the variation afappropriately ~ Priate power ofR. Here it will be essential.
if we are not to be overwhelmed by gauge introduced noise Again, let this function be some power Bf R?, say. The
in casting necessary conditions. Recall that no such boungglevant exponent will generally depend anAt a singular-
was ever invoked when we addressed sufficiency conditiony, R?R'?~(/'s— /)@ 221" ) The integral
in [1].
The exact expressiofi3) and the bound15) determines f/ld/RaR’z (19)
the potential divergence d€i at a singularity. This occurs 0
with R returning to zero at some finite radius from the center,
at/=/s. In [4], we saw that in the neighborhood of this will exist for all a>a— 1. This is not, however, the optimal

point value for our purposes. We will see below that a larger value
is desirable. If a is constant, we have R¥?R’
C, |Herv Yt 1) =(RY"32)’/(1+a/2). We then simply apply Eq18) to the
“lar1 (7s=7) ’ (16 fynctionR*#2 in place ofR.
whereC,, is the finite constant IV. SINGULARITIES
‘S e When the gauge condition, E¢b) is satisfied, we note
Ca= 0 d/ 1 R¥TIA(/1,7). (17) that the Hamiltonian constraint assumes the form
Ger_1eri_ca||y, thereforeR’ diverges at/g as <_jo all hi_gher E(1+R/2)=(RR,)’+47T[)R2+ E(Za—l)RZKEQ.
derivatives oR. If a(/'5)>0.5, such spatial singularities are 2 2
more severe than the strong singularities discussefblin (20

which are consistent with the Hamiltonian constraint at
moment of time symmetry. Increasing this value ®fin-
creases the strength of the singularity.

Even if the geometry is singular so tHat diverges, it can
only diverge to minus infinity—the surfacB’=1 in the
configuration space can never be breached from below.
always haveR’' <1 [4].

aThe second and third terms on the RHS are manifestly posi-
tive. Suppose that the geometry is singular/at /5. We
cannot simply integrate Eq20) and discard the boundary
term. First of all, as we pointed out above, it is clear from
g.(16) that the integral oR’? does not exist on the interval
0,/ s]; in addition, the surface teriRR’ does not vanish at
the singularity unlesa<1 there. To remedy the problem we
multiply Eg. (20), as discussed in Sec. lll, by an appropriate
weight functionR? before integration.
This multiplication has the unfortunate side effect of de-
Crucial to the derivation of Eq(10) in [6] were two  stroying the divergenceRR’)" appearing on the RHS of Eq.

Ill. POINCARE INEQUALITIES,
WEIGHTS AND MEASURES

simple Poincarénequalities of the form (20). It is, however, simple to restore this divergence: we
note that
"1 n2 "1 D2
SJO d/R $f0 d7R', (18 (RMP)' =(1+b)RR' —b'R*P InRI/s.  (21)

We perform an integration by parts on the teRf(RR’)’,
and now substitute the RHS of EQ1) for (R?)’ (a=b
+1):

whereS depends on the boundary conditions satisfiedRby
In generalR(0)=0. At the first trapped surfaceR’ (/1)
=0 and S=#?/4/2. At a singularity, R(/;)=0 and S
— 2y 2

/
d/RA1+(2a+1)R’?]
0

Recall that becausB’'<1, R is always bounded by". =
This guarantees that if the geometry is small in the radia?
direction it will also be small in the two transverse direc-
tions. A consequence is that any integral over positive pow- =RI2R/|, +47Tf/sd/pR2+a—q)
ers of R will be well defined over any finite interval. At a 'S 0
singularity, in a moment-of-time-symmetryysglice, however, 1
we found thatR tends to zero aR~(/'s— /)" so thatR’ S o 1 \p2+ag?
diverges as {'s— /)~ Y3. Even thoughR’ diverges so that 3 fo d7(2a= R, 22
the integrand on the right-hand sid@HS) of Eq. (18) di-
verges, the integral itself remains finite. Whé# 0, R’ can  where®, given by
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‘s 1
q>=f “d/a’'In(RI/ R 4R, (23 RZ“R’2=—Z(1+ ) [(RY"%)'2—qa2R?* 2% In?(R//g)]
0 o
is a correction which yaqifhes itfv’zo_. To disca}rd the _ 2a’ RI*2¢R’ In(RI/). (30)
boundary term, we requir@ 2R’ to vanish at the singular- 1+a

ity. This implies that
If «is constant only the first term survives. Let us focus on
a>a—1. (24)  this term. A one-dimensional Poincaireequality can be ex-
ploited to place a lower bound on the integral over
This choice ofa simultaneously bounds the integral over (R ®)’2:
RZR’2,
We also will need to place a bound on the last term on the 1 otra— [ty ol an2
RHS of Eq.(22). We exploit Eq.(15) to boundKg. The Sfo d/R = 0 dZ(RT4)"%, (3D
problem is that this bound involves the positive poweRof
1+a . . . . . .
R*™, in the denominator which is difficult to control. We \ynere the constar§= 772//% is the constant which is rel-

obtain the bound evant for functions which vanish at botfi=0 and/=/.
, If «is constant, we then have

~'S
fo d/(2a—1)R*"3K3

/
f *d/ R < 2[4wpmax+ 322a—1)32,/2
0

/s
<(47)*(2ama— 1) 3528 (0,/5)? fo d/R3"2¢ (w)z Ltde | (7 onn
78 2(1+e)? fo / '

X

/ 2
fo d/R““) (25 (32

In [6], we proved that when Ed®6) is satisfied andR’
<1 then the ratio of the integrals appearing in E2R) can
be bounded as followkEq. (6.3.16] (a=2a)

on this term. If the weighting exponent is chosen such that

a=2a, (26)
/
the denominator is removed by the weight. Fortunately, such f ‘R2taq,
values are consistent with E(R4) for aII_physmaIIy accept- 0 < l1+a ,.2 (39
able values ofa. The RHS of Eq.(22) is clearly simplest /1 3+a L
when f R3d/
0
a=2a. (27

Equation(33) implies
This is the value we will henceforth adopt far 1342 144

The expression on the right-hand side of E2f) is still = . @
not very useful as it stands. A remarkable fact, however, i 1+2a  2(1+a)
that we can bound it by an integral ov@f** ), In fact, we (34)
have the following inequality:

2 /
| d/’( [farreee
0 0

This result is derived in the Appendix. Equati(#8) implies
the bound for the&k3 term:

s T<ATpmax/ 2+ 32(2a—1)32../ 1.

We note that it is the second term on the left-hand side which
2 [(9\2 /1 will determine the bound for~ + 1. It is maximized when
s(;) /ff d/R2@+1), a=0.5. With this value, we reproduce the moment of time
0 symmetry resulf6]—this is a peculiarity of this gauge.
(28) The dependence on the value®fwill generally not be a
strong one so long ag is bounded. In particular, i&=1,

—1 5 2 P /’2 —8 J /2 2 35
+ = T+ / .
32 3 max “ 1 ar ( nax 1) ( )

/
f *d/(2a— )R K2
0 Note the asymmetry between the rolespgf,, andJ .- The
, inequality does not involve what one would to be the obvi-
<642 1)Jr2na>A(0/s)2/éf Sd/R2(1+a). (29) ous gene'ra'lization P max: the sumpmax+qmax. Jimax p!ays a
0 more decisive role thap,y in the inequality, appearing as it
does through its square in contrastgavhich appears lin-
To understand why this bound is important, note that we camarly. The inequality witiK,,=0 does not generalize in the
exploit the identity(21) to cast the integranB?*R’2 appear-  obvious linear way. If the dominant energy condition Eq.
ing on the LHS of Eq(22) in the form (12) holds, the inequality simplifies. Far=1 we obtain
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2

< Pmax /g (36)

|

The LHS~5/16, which is approximately half as good as the
moment of time symmetry result.
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tremal surface of the spatial geometry as it did at a moment
of time symmetry.

At a future apparent horizory , defined by Eq(7) van-
ishes. EliminatindgR’ in the divergence term in E3) using
Eq. (7) we obtain

If «is not a constant, additional noise is introduced into

the inequality by the gauge. We get

/
f "d/R2< 2[47Tpmax+ 32(2ama— 1)J2 ,A%/2
0

( )2 1+4a
B 2(1+ a)?

T

1 2
fo d/R?AT0) + @,

+®y, 37
whered,; and®, are given, respectively by
®,= f/ld/ 207l NRIZRYR, (39
o 1+a
and
®,= fo/ld/ —2(11++4§)2 a2 In? RI/ RIS, (39)

The spatial dependence afis encoded iM and two terms
®,,P, which get picked up in the trade off ®R*R’ for
(R )", @, includes the contribution fror® appearing in
Eq. (22).

These integrals can both be bounded. We have

20ma— 1

= 1+‘amm

1+2a
max

Rma)(
f dRle’|In R/, (40)
0

and

1+4amax 1
P,< mreﬁgﬁjo d/a'?In? RI/;. (41)
The integrated logarithm appearing in E4Q) is bounded by
that which appears in the definition, Ed.4) of A. Clearly,
we can bound both bythe square root ¢fthe integral ap-
pearing in Eq(41). This is the only measure @f’ we need
to control. We will also need the bounds

n+2a
Rmax

/1 2 n—-1
f d/R**< (14 2ama /] (42
0

for n=1.

V. APPARENT HORIZONS

At a moment of time symmetry, there is a remarkable

similarity between the signal for the presence of an apparent

horizonR'=0 and that for the presence of a singulamiy
=0. In [6], this meant that the techniques we exploited for

analyzing singularities were also good for analyzing apparer\sv
horizons and the effort required almost identical. In general,

however, the signal for an apparent horizon will involve the
extrinsic curvature of the spatial hypersurface through Eq
(8). Its physical location no longer coincides with an ex-

1
5(1+ R'?)=(Rw,—R?Kg)' +4mpR%+ 5 (2a- 1)R2K 2.
(43

Again both the second and third terms on the RHS are mani-
festly positive. Let us suppose for simplicity thatis con-
stant.

Suppose that all quantities are well defir@a will relax
this assumption belowWe can then integrate EG3) up to
the first future horizon at whiclw =0 to get

/1 /1
J d/(1+R’'?) —RzKR|/1+4TrJ d/R%p
0 0

1 2 2
+§(2a—1)J d/R?K&. (44
0

We wish to exploit Eq(15) to place a bound oKg in the
surface term. Unfortunately, this bound will only be well
defined fora<1.

The first two terms can be dealt with symmetrically when
a=1. In this case these first two terms on the RHS can be
bounded as follows:

2 1, R2 1 2

-R KR|/1+47T d/Rep<47(pmaxt | Imad) d/Re.
0 0

(45

A linear term inJ,,, appears in the apparent horizon in-
equality condition which is not present in the singularity in-
equality. This is a reflection of the different boundary condi-
tions enforced there.

We can exploit a Poincareequality to place a bound on
the integral over the intervdld,/;] of the quadratidR? by
the same integral over the quadrafe?:

/1 /1
d/R?*< | "d/R'2.

s, o<,

The inequality is saturated by the trigonometric function

(47)

(46)

R(/)=sin(y/),

which also determines the optimal value 8f& 2. The
boundary condition8) determinesy to be the lowest solu-
tion of the transcendental equation:

tan y/ 1= — Kl (48)
R

e note that
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if Kg is negative withy— m/2/; as Kg—0 which is the  The same upper and lower bounds gnhold, i.e., m/2/
moment of time symmetry bound ang—~m//y asKr—  _J<// . We can again exploit Eq33) to bound the
tee. ratio of the integrals in the first term of E¢53). In the
Unfortunately, even wherx=1, when we attempt t0 ¢o-ond term, one can exploit

bound the third term on the right-hand side we run into the
same problem we faced when we examined singularities in /1 /1 1+2a
Sec. IV with the same term. We need to introduce a weight- Ri*“J d/’R”“/ J d/R?< 53
ing to guarantee convergence of the integral. The same 0 0 @
weighting which worked for singularities works again. There.l_hiS is proved using the same technique as the derivation of
is no real simplification in thee=1 case so we will return to

the general case. To restore the divergence appearing in EEq' (39). The necessary condition for an apparent horizon

(43) we need to perform an integration by parts as before\.%Ith constanta is then

We integrate up to’;:

/2. (55

3+2a 2 2 4
41 PmaxT m.]max /1+32(2a—1).]ma/1

1 (/1
- /D2 12
Zfo d/R%*[1+(4a+1)R'?] 13+2a 1+4a

S21+2a BAta)?2”

(56)

71
=—RAITIKgl, + 47Tf d/pRA* The only real difference with respect to EQ4) is the ap-
0 pearance of the lineak,,, term. When the dominant energy

1 1, 5 condition is satisfied, we can repladg,, with po and get
+5(2a=1) fo RAIFOKE, (50)  a quadratic expression jiax /3. This in turn can be solved
to give a direct bound opmax/f. Whena=1, this becomes
: 2
:/r\]/s fr:)(;vnv]:rplon Eq(15) to bound theKg andK§ terms. For e 1 [30172 . 5 o 0.07 :
’ Pmax”1=8 N7124 "3 6 7

/
R OK |, s47rR1+“JmaXf 1d/R1+a, (51) This is approximately three times smaller than the constant
! 0 we obtained for the moment of time symmetry cas¢ah

The weighting process has broken the symmetry under inter-

. VI. MINIMAL SURFACES
change ofp andJ of the linear terms on the RHS of E@t4)

which is evident in Eq(45). For the term quadratic iKg, There is a very simple necessary condition for the exis-
we again havgEq. (29) with a=2a«] tence of a minimal surface which is easy to derive and which
is essentially gauge independent. Let us return to the Hamil-

1 (s 2 tonian constraint, Eq.3). This can be rewritten as
J d/ R OKE< (47)207 f d/( f d/R““)

0 0

(52 %(1+R’2)—(RR’)’:‘1—1R23R, (58)

We again require a bound on the last term by an integral over . . .
RZ(”%) Thc?ugh the boundary conditions gre differgent WeWhere 3R is the three scalar curvature of the initial slice. If

: : L the weak energy condition is satisfied and if9.5<x we
again obtain the boun®8). We demonstrate this in the Ap- 3 - . p
pendix. We can now write have that*R=0. This is sufficient to show tha&’'=<1. Let

us assume that the initial data contains a minimal surface and

1440 that the first minimal surface occurs dt=/",. Clearly, in
1$2{4meax+32(2a_1)J2ma/§_7);2 —_— the range &/</),, we have G=R’'<1. Let us integrate
2(1+a) Eq. (58) from the origin out to), . We get
J/1/2(1+)/ "1 2 1 7/ 1 /
0 0 /M/z JO (1+R'?)d/ = o7 o 47R?*Rd/
1ra [71 1+ / ‘1 /R2 1 (7
+ “ /R 'R ,
8mImal] JO ds jo d (53 L (Mg, (59

Here'y is the analogue of the that appears in Eqs47)—  The boundary term can be discarded becaRse 0 at a
(48), except thaR? in Eq. (46) is replaced byR**®). This  minimal surface. Thus a necessary condition for the appear-

means that Eq48) must be replaced by ance of a minimal surface is
Y Mg
o= — lGﬂT/ZJ Rdv. 60
tany/, Kalta)" (54) . (60)
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If we have a minimal surface it must be either future or pastndeed, had we exploited conformal coordinates, with re-
trapped. Unfortunately, we cannot use this condition, Eqspect to which the spatial line element assumes the form,

(60), to derive a necessary condition for trapped surfacesiszztb“dsﬁat, we would have found ourselves in need of
because we could have a trapped surface without any minsuch an inequality to derive the results of this paper. We are
mal surface. encouraged by the fact that Sobelev inequalities are known

to be related intimately with the isoperimetric probl¢h®].
A physically interesting question that is extremely rel-
VII. CONCLUSIONS evant is the identification of initial data that potentially might

In this paper we have presented new necessary Conditiorgsevelop apparent horizons. In principle it should be possible

for the presence of both apparent horizons and singularitie@ d(.) trluélextplpnmg ":. addltlonl tot tge c?ﬂstra_ltr'\tsl,,hthe dy-
in spherically symmetric initial data. namical Einstein equations evaluated on the initial hypersur-

While we have assumed that spacetime is foliated extrinface: These equations involve the pressure of matter through
sically, this is not a severe restriction. Indeed, modulo theOme equation Qf state. The scenario which is most suscep-
constraints, the destinction between intrinsic and extrinsiéIble to cqllapse IS pressureless matter. We should.t.)e able to
foliations becomes an artificial one. exploit this condition to formul:_:tte necessary con_dltlpr_]s. At

The inequalities do not depend sensitively@rWe have the other extreme, a stiff equatlc_)n of stat_e would |r_lh|blt col-
seen that just as one has to place a lower bound da lapse. Thus such a scenario might provide a sufficient con-

obtain a sensible gauge, to obtain necessary conditions or‘fjét'on'
needs also to impose an explicit upper bound on the spatial
variation of a. Acting as it does to mask the underlying ACKNOWLEDGMENTS

physics, it is not at all surprising that the variation @f We gratefully acknowledge support from CONACYT
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Our approach to functional analysis has been extremely
heuristic—it is clear that some of the inequalities exploited
in Secs. IV and V can be sharpened, especially those relating
to nonconstan&. As physicists, however, we always use the In this appendix, we provide a derivation of the bound for
gauge which makes life easiest—linear gauges witton-  the extrinsic curvature quadratic used in the text:
stant does this. Whea is not constant, we are clearly more ) 5
interested in the fact that such bounds can be established j/ld/( f/d/R““) < E) /ij/ld/RZ(a+l)‘

0 a

APPENDIX

than in squeezing them for better constants. 0 0

How is this work likely to be generalized? The obvious (A1)
challenge is to generalize it to nonspherically symmetric ge-
ometries. The existence of a bound of this form is not hard to see. A

The Hoop Conjecture formulated many years ago by KipCfUde bound is prOV|ded by the .DOSitiVity of the covariance
Thorne[8] states, in rough terms, that a black hole hole will for any powerR" (Holder inequality:
form if and only if energy is compressed in all three spatial

directions. If we admit “cosmic censorship” the conjecture (RY)2<(R*"), (A2)
can be rephrased in terms of initial data, with black hole, . implies

replaced by apparent horizon. It should be clear why the

phrasing of the conjecture is vague. Even with no indepen- /1 . 2 ST

dent gravitational degrees of freedom to worry about, it is (fo d/R ) $/1f0 d/R", (A3)

remarkably difficult to provide a description of the two in-
gredients “quantity of matter” and size which is simulta- g that
neously valid for both necessity and sufficiency, never mind

proving the conjecture. The situation can only get worse 1 (7 " 2 /{ S

when we relax spherical symmetry. One needs to bear in JO df( JO d/R “) << fo d/R21+9) . (A4)
mind that our ability to describe the configuration space in

considerable detail has relied on features of the sphericallyne hound(Al) is, however, better. To derive it, let
symmetric problem which, we know, do not admit generali-
zations. Progress has been made on the sufficiency part of
the conjecturd9]. Much less is known about the necessary
part. Our work in this paper where the Poincarequality on

the interval plays a central role, suggests a new approach fdow G(0)=0 andG’(/;)=0, for all n=0. We apply the
attacking the problem in nonspherically symmetric geom-Poincareinequality toG with the constant which is appro-
etries. This generalization might involve a Sobolev-type in-priate with these boundary conditions:

equality on the scale factab:

S( f d3x®8

G(/):= f O/d/R”. (A5)

71 ) 2/1 2 1 ]
f d/G,(/)’<|— f d/R2" (AB)
113 0 ™ 0
sf d3x(Vd)2. (61)

so that
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/1 ‘o 2 (2/\? ("1 o1 Now H(0)=0 andH(/;)=1 for all n. We apply the Poin-
fo d/( jo d/R' +“)) < 7) jo d/R? ), careinequality toH with the appropriate constant

(A7)

This is better by a factor ofr2/8 than the estimatéA4). L L 20\ o\
The same bound is obtained for functidR&”) satisfying jo d7H(7)*< ¥ (T fo geR fo d7R)

Eq. (8) at /=/,. The crude bound we derived before, Eq. (A9)

(A4), is expected to work better this time. As before, how-

ever, we can do better. This time we let

wherevy is given by Eq.(49). Exploiting the lower bound on

/ / / : ! ;
H(/): :J' d/Rn/ f 1d/Rn_ (A8) v ob_talned in the text we obtain E¢AL1) exactly as we did
0 0 for singularities.
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