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Abstract—In this work, we investigated the spatial 

distribution of failure sites in large area Pt/HfO2/Pt capacitors 

using simple neural networks as classifiers. When an oxide 

breakdown (BD) happens due to severe electrical stress, a mark 

shows up in the top metal electrode at the location where the 

failure event took place. The mark is the result of a 

microexplosion occurring inside the dielectric film. Large area 

devices need to be studied because the number of spots required 

must be sufficient for statistical analysis. The obtained results 

using multilayer perceptrons with different number of neurons 

and hidden layers indicate that the largest breakdown spots tend 

to concentrate towards the center of the device. This observation 

is consistent with previous exploratory analysis using spatial 

statistics techniques. This exercise shows the suitability of 

multilayer perceptrons for investigating the distribution of 

failure sites or defects on a given surface. 

Keywords—neural networks, perceptron, spatial statistics, 

MIM, dielectric breakdown, reliability 

I. INTRODUCTION 

Failure analysis of metal-insulator-metal (MIM) 
capacitors usually involves investigating breakdown (BD) 
data for a large number of small area devices. Very often, a 
constant voltage or current stress is applied to each structure 
and the time-to-BD registered. Subsequently, this information 
is represented using appropriate reliability plots, such as the 
Weibull plot. However, in general, this approach does not 
provide insight into the connection between the size of the BD 
spot and its spatial location on the device area. This could be 
of interest for investigating for instance the occurrence of 
possible time and/or spatial correlations among the generated 
failure events. 

In previous studies [1]–[3], we demonstrated that when the 
BD spots are visible on the top metal electrode thanks to the 
generation of localized thermal damage, a complementary 
analysis is feasible. Instead of a large number of small devices, 
a single large area device with multiple BD spots can be 
investigated using spatial statistics techniques. Briefly, the 
location of the BD spots is mathematically considered as a 2D 
random point pattern enclosed by a given observation 
window. Different functions (intensity, Ripley’s K, pair 
correlation, etc.) allow investigating whether this point pattern 
is consistent with a complete spatial randomness (CSR or 
Poisson-distributed) process or not [4], [5]. Although 
deviations from CSR are indications that the points are not 
Poisson-distributed within the observation window, in 
general, a number of alternative studies must be carried out in 
order to infer the correct distribution of the BD spots [6]. If 
the BD spots are not randomly distributed over the device 
area, this could mean that some hidden variable is affecting 
the generation process. This could be oxide thickness 

nonuniformity, local variations of the permittivity, capacitor 
edge effects, etc. [7], [8].  

The methods of spatial statistics evaluate not only the 
distribution of the spots but also the possible correlation 
between the spot locations and their characteristic features, in 
particular their size. This is interesting as the size of the spots 
can be used as an additional indicator of the damage induced 
by the BD phenomenon. In another words, correlation 
between the location and the size of the spots can be used to 
detect weak regions of the device. In this work, we go a step 
further by analysing the failure data (size and location of the 
BD spots) using simple neural networks. In particular, we 
focus the attention on the use of multilayer perceptrons as 
binary classifiers [9]. In this case, the input is the location of 
the BD spot and the output is its probable size (large or small). 
Of course, this can be complicated further by considering a 
more detailed classification scheme. We demonstrate how, 
after training (synaptic weights determination), the network is 
able to identify the region where the most severe damage 
occurred, confirming the results provided by spatial statistics. 
This is a simple yet encouraging exercise showing the power 
of neural networks applied to an oxide reliability problem. 

II. DEVICES AND EXPERIMENTAL SETUP 

In this work, MIM structures with a 30 nm-thick HfO2 
dielectric film and Pt electrodes were investigated (see Fig. 
1a). The capacitors were fabricated on n-type Si (100) 
substrate with resistivity 1-4 Ω × cm. A detailed description 
of the fabrication steps can be found in [3]. For the sake of 
simplicity, a circular area device is exclusively investigated 
here but the concepts discussed below apply to other device 
geometries as well. The BD spots were generated by applying 
a constant voltage stress to the top electrode with the bottom 
electrode grounded (-10 V for approx. 120s). At the end of the 
stress, the final state of the device was inspected by means of 
an optical microscope (see Fig. 1b).  
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Fig. 1. (a) Cross-sectional sketch of the investigated devices. (b) Optical 

images of a pristine device and a stressed one.  

 

 

Fig. 2. (a) Schematic representation of a binary image. Spots detected from 

the anaylisis using (b) 4-connected or (c) 8-connected pixels approach.  
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As can be seen in this figure, the top metal area is plenty 
of black dots with different sizes. The location and size of each 
spot is obtained from these optical images using MATLAB 
routines for image processing. The subsequent process is as 
follows: first, the image is transformed into a binary image 
using a threshold value in which the BD spots appear as white 
regions (Fig. 2a). Then, a 4-connected pixel approach (Fig. 
2b) is used to avoid consider as one two touching spots. In this 
approach, two pixels are connected if they share an edge. 
Notice that in an 8-connected pixel approach (Fig. 2c), the 
spots are connected if they also share a corner. Finally, this 
information is analyzed using the spatstat package for the R 
language [10]. The neural network analysis discussed in 
Section IV is carried out using the software indicated in [11]. 

III. SPATIAL STATISICS 

A. Distribution of the BD spots 

Before considering the size of the BD spots, an evaluation 
of their spatial distribution is mandatory to correctly interpret 
the possible correlation between the location of the spots and 
their size. In Fig. 3a, an optical image of the studied device is 
shown. This device has a large area (Ø = 1130 µm) which 
allows the generation of a huge number of BD spots [12], [13]. 
Fig. 3b shows the location of all the 1389 BD spots detected 
in Fig. 3a, which correspond to an average intensity λ = 

1.3810-3 spots/µm2. As the average intensity does not give 
any clue about the distribution of the spots, the local variation 
of this parameter is evaluated instead (see Fig. 3c). As can be 
seen, a clear accumulation of spots towards the center of the 
device is observed. In order to complement this information, 
the pair correlation function (g) is computed. In Fig. 3d, the 
experimental g and the expected value for a CSR distribution 
(g = 1) are compared. The shaded region represents the 
expected error for a CSR process and is obtained from 100 
Monte Carlo simulations. As can be seen, the accumulation of 
spots is confirmed as the value of the experimental g is larger 
than g = 1, lying well above the confidence band obtained by 
the Monte Carlo simulations. 

B. Size and location of the BD spots 

In Section IIIA, the location of the spots was exclusively 
evaluated (Fig. 3). Now, in this Section, the size of the BD 
spots will be considered as well. It is worth pointing out that 
likely even though a 4-connected pixel approach is 
considered, several BD spots may still merge as a single count. 
As we are inspecting the final state of the device (Fig. 3a), it 
is not possible to identify if any large spot is in fact the result 
of several BD events. This does not alter our analysis as large 
spots still identify regions severely damaged. For the correct 
assessment of these spots, the time evolution of the damage 
should be investigated.  

 Fig. 4a shows a histogram for the area of the BD spots 
(ABD) detected in Fig. 3b. Two clear peaks can be 
distinguished: one in the range up to 10 µm2 and a second one 
in the range from 10 to 26 µm2. These are the most common 
BD spot sizes. In Fig. 4b, the 2D distribution of the Nadaraya-
Watson kernel smoothing is shown [5]. Briefly, this plot is 
similar to the intensity plot, but it takes into account the size 
of the spots as well, i.e. it gives the location of ABD. As can be 
seen, this plot strongly suggests a concentration of the largest 
spots towards the center of the device. It is also worth 
mentioning that Fig. 4b corresponds to the distribution shown 
in Fig. 3b after removing all the spots larger than 100 µm2. 
Only 13 spots were removed (0.9 % of the BD spots). Fig. 4c 
and Fig. 4d show the mark-weighted K-function (Kf) [14] and 

the mark variogram () [15] for the distribution shown in Fig. 
3b, respectively. Considering the accumulation of spots 
previously demonstrated by the experimental g (Fig. 3d), the 
experimental value of Kf (Fig. 4c) indicates that there is a 
concentration of spots with large ABD as its value is higher than 
the expected value for a CSR distribution and the confidence 

band. In addition, the experimental  (Fig. 4d) nearly agrees 
with a CSR process. This serve as an example why several 
estimators and methods are needed to evaluate any point 
pattern as we know from the other estimators that the 
distribution is not CSR. 

 

Fig. 3. (a) Photograph of a multiple BD spot distribution in a circular area 

capacitor with Ø = 1130 µm. (b) Location of points in the capacitor area. (c) 
Intensity plot for the experimental data. (d) Pair correlation function g for the 

experimental data and for a CSR process. The shaded region is obtained after 

100 Monte Carlo simulations.  

 

 

Fig. 4. (a) Histogram for the spot sizes. (b) Smoothing the distribution of BD 
using the Nadaraya-Watson kernel smoothing, after removing all the spots 

higher than 100 µm2. (c) Mark-weighted K-function Kf and (d) mark 

variogram  for the experimental data (Fig. 3b) and for a CSR process. The 

shaded regions are obtained after 100 Monte Carlo simulations.  

 



Since a binary classification will be applied, the points are 
separated into two groups: Large and Small, with a threshold 
value 10 µm2. According to this criterion, there are 422 small 
spots (Fig. 5a) and 967 large spots (Fig. 5b). These 
distributions are assessed using the intensity plot and the 
estimator g (Fig. 5d-f). Interesting, the smallest spots seem to 
be largely situated near the edge of the device (Fig. 5c), which 
is confirmed by the experimental g value (Fig. 5e). As can be 
seen, its value is higher than the confidence band for short r 
distances and decreases as the distances increase. On the other 
hand, notice that the accumulation of the largest BD spots 
towards the center of the device is evident again: as can be 
observed in the intensity plot (Fig. 5d) and the experimental g 
value (Fig. 5e), the largest spots show accumulation. With this 
prior knowledge at hand, we will check whether a simple 
neural network is able to identify the most severe damage 
region of the device or not. 

IV. MULTILAYER PERCEPTRON ANALYSIS 

Briefly, a multilayer perceptron is a system formed by 
neurons and synapsis (Fig. 6). Whereas the synapsis are 
weights that connects the neurons, and have a fixed value; the 
neurons are functional units distributed in layers whose value 
is determined by the expression  

 ni = F(w · nj
T + b) () 

where ni is the value of a specific neuron, nj is a vector with 
the value of the previous neurons connected to ni, w is a vector 
that contains the associated weights, and b is the bias (a 
constant) [16]. As an example, the value of n10 (see Fig. 6) is:  

 n10 = F([w10,8, w10,9] · [n8, n9]T + b) () 

F is a nonlinear function that squeezes the combinations of 
neurons, weights, and bias between two values. In our case, 
these two values are -1 and 1: 

 F(C) = 2 / [1 + exp(− · C) −  () 

Notice that F is a bipolar sigmoid function where  determines 
the slope of the transition and C is w · nj

T + b (1). As the values 
of the neurons are determined by (1), the learning of the 
network is performed by modifying the weights of the 
synapsis. The optimal weights are obtained using a 
backpropagation learning algorithm, i.e., the desired output is 
compared with the predictions of the neural network. A 
minimization of the quadratic error at the output is performed 
by recalculating the weight of the synapsis. The neural 
networks used in this paper have a very simple structure, with 
only two inputs and two outputs. While the inputs represent 
the X and Y location of a BD spot, the outputs represent the 
classification previously mentioned: Small or Large. It is 
important to point out that both coordinates, X and Y, are also 
squeezed between -1 and 1.  

Fig. 7a illustrates the learning process for a multilayer 
perceptron with one hidden layer and three neurons. Notice 
that the error reflects the percentage of misclassified spots. At 
the beginning, the neural network starts classifying all the BD 
spots as large as there are more large spots than small ones. 
Then, after some learning cycles, the error drops significantly 
and starts to fluctuate around a minimum value. This happens 
when the network is not able to further improve its outcome. 
The value of each neuron is determined by (2), which defines 
a kind of hyperplane in the output space. At the end, with the 
aid of the sigmoid function (3), this 2D hyperplane splits the 
pattern into two regions, classifying the points in one region 

 

Fig. 5. Location of the BD spots (a) smaller than 10 µm2 and (b) larger than 

10 µm2. Intensity plot for the distribution of  (c) small spots and (d) large 
spots. Pair correlation function g for the experimental data and for a CSR 

process corresponding to the distribution of (e) small spots and (f) large spots. 

The shaded regions are obtained after 100 Monte Carlo simulations.  

 

 

Fig. 6. Schematic representation of a 4:3:2:2 multilayer perceptron 

network, highlighting the neurons and synapsis that determines the 

value of some internal neurons. 

 

Fig. 7. Analysis of the BD spot distribution shown in Fig. 2b with a 2:3:2 
neural network. (a) Training of the neural network and its schematic 

representation. (b) Representation of the clasification (decision boundaries) 

carried out by the neural network. (c) Final results provided by the neural 
network. The blue region corresponds to large spots (ABD > 10 µm2) and the 

yellow one to small spots (ABD < 10 µm2). 



as small and the other as large. In Fig. 7b, the decision 
boundary determined by each neuron at the end of the learning 
process is represented by a dotted line. As can be seen, these 
three lines discriminate the point pattern in a total of 6 regions. 
In each region, the classification performed by each 
hyperplane is combined to determine the final outcome of the 
network. Basically, if all three decision boundaries classify 
one of these regions as small, then the neural network will 
recognize that region as small. Otherwise, if the classification 
is not the same for all the decision boundaries, both answers 
(small and large) are evaluated and the dominant one 
determines the final outcome. In Fig. 7c, the final answer of 
the neural network is illustrated. Notice that the analysis 
clearly indicates that the large spots (blue region) accumulate 
towards the center of the device, whereas the small spots 
(yellow region) are mostly located close to the edge of the 
structure. This result not only indicates where the most severe 
damaged region of the device is, but also confirms the results 
previously observed using the spatial statistics techniques 
(Fig. 5).  

In order to evaluate the impact of the selected neural 
network, more complex networks were analyzed (Fig. 8). The 
results were obtained after 104 epochs (optimization cycle). 
Notice that despite the error reduces as the neuronal network 
increases its complexity, the shape of the blue region becomes 
more irregular and less circular. This happens because the 
distribution of small and large spots are not completely 
separable, as can be seen when their respective distributions 
are plotted (Fig. 5a,b). As the network becomes more 
complex, the combination of the decision boundaries leads to 
more intricate results. In fact, using a very complex network, 
with a larger number of neurons and several hidden layers, it 
should be possible to drastically reduce the error as the 
network would be able to identify several clusters for each 
type of spot. However, this general classification (Fig. 8a) is 
what we are looking for since we are interested in identifying 
the most damage region of the device. Therefore, for this type 
of problem, simple neural networks with one hidden layer do 
the expected job.    

V. CONCLUSIONS 

In this paper, the potential of neural networks for 
investigating oxide reliability issues was demonstrated. Both 
the methods of spatial statistics as well as the multilayer 
perceptrons approach indicate that there is an accumulation of 

more and larger BD spots in the central region of the device. 
Even though an initial training process is needed, the neural 
network analysis is a good complementary technique to those 
of spatial statistics. Although a number of causes have been 
proposed, the reason behind the accumulation of spots is still 
unclear so more efforts in investigating this phenomenon are 
required. The combination of characterization techniques will 
sure help in that direction.  

REFERENCES 

[1] J. Muñoz-Gorriz et al., “Detection of inhibitory effects in the 
generation of breakdown spots in HfO2-based MIM devices,” 

Microelectron. Eng., vol. 215, p.111023, 2019. 

[2] X. Saura, J. Suñé, S. Monaghan, P. K. Hurley, and E. Miranda, 
“Analysis of the breakdown spot spatial distribution in Pt/HfO2/Pt 

capacitors using nearest neighbor statistics,” J. Appl. Phys., vol. 114, 

no. 15, p. 154112, 2013. 

[3] J. Muñoz-Gorriz et al., “Exploratory study and application of the 

angular wavelet analysis for assessing the spatial distribution of 

breakdown spots in Pt/HfO2/Pt structures,” J. Appl. Phys., vol. 122, 

no. 21, p. 215304, 2017. 

[4] J. Illian, A. Penttinen, H. Stoyan, and D. Stoyan, Statistical analysis 

and modelling of spatial point patterns. Chichester, UK: John Wiley 

& Sons, Ltd, 2008. 

[5] A. Baddeley, E. Rubak, and R. Turner, Spatial point patterns : 

methodology and applications with R. New York: Chapman and 

Hall/CRC, 2015. 

[6] B. D. Ripley, “Modelling spatial patterns,” J. R. Stat. Soc. Ser. B 

(Statistical Methodol.), vol. 39, no. 2, pp. 172–212, 1977. 

[7] Y. L. Li, Z. Tökei, P. Roussel, G. Groeseneken, and K. Maex, “Layout 

dependency induced deviation from Poisson area scaling in BEOL 

dielectric reliability,” Microelectronics Reliability, vol. 45, no 9-11, 

pp. 1299–1304, 2005. 

[8] X. S. Mas, S. Monaghan, P. K. Hurley, J. Suñé, and E. Miranda, 

“Failure analysis of MIM and MIS structures using point-to-event 

distance and angular probability distributions,” IEEE Trans. Device 

Mater. Reliab., vol. 14, no. 4, pp. 1080–1090, 2014. 

[9] A. Géron, Hands-on Machine Learning with Scikit-Learn , Keras & 

TensorFlow. Canada: O’Relly Media, Inc., 2019. 

[10] A. Baddeley and R. Turner, “Spatstat : an R package for analyzing 

spatial point patterns,” J. Stat. Softw., vol. 12, no. 6, pp. 1–42, 2005. 

[11] P. Chlebek, “Sharky Neural Network.” [software], 2009. Available 

from: http://www.sharktime.com/en_SharkyNeuralNetwork.html. 

[12] F. Palumbo et al., “A review on dielectric breakdown in thin 
dielectrics: silicon dioxide, high-k and layered dielectrics,” Adv. 

Funct. Mater., vol. 30, no. 18, p. 1900657, 2020. 

[13] E. Y. Wu and J. Suñé, “On voltage acceleration models of time to 
breakdown—Part I: experimental and analysis methodologies,” IEEE 

Trans. Electron Devices, vol. 56, no. 7, pp. 1433–1441, 2009. 

[14] A. Penttinen, D. Stoyan, and H. M. Henttonen, “Marked Point 

Processes in Forest Statistics,” For. Sci., vol. 38, no. 4, pp. 806–824, 

1992. 

[15] N. Cressie, Statistics for Spatial Data. New York: JohnWiley & Sons, 

Inc. 1993. 

[16] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT 

Press, 2016. 

 

 

Fig. 8. Outcome of (a) 2:4:2, (b) 2:4:4:2, and (c) 2:4:4:4:2 neural network 

after 104 epochs with a learning velocity of  ni = 0.25.  
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