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Abstract 14 

Sedimentary marine iron ores of Jurassic age and Tertiary marine sandy sediments containing iron 15 

hydroxides concretions have been sampled from boreholes and outcrops in two study areas in 16 

Germany to examine iron and arsenic accumulation processes. Samples were analyzed for bulk rock 17 

geochemistry (INAA/ICP-OES), quantitative mineralogy (XRD with Rietveld analysis), element 18 

distribution (electron microprobe) and arsenic fractionation (sequential extraction). Bulk Jurassic ores 19 

contain an average arsenic content of 123 µg g-1 hosted in mainly goethite ooids which slowly formed 20 

in times of condensed sedimentation. Enrichment occurred syndepositionally and is therefore 21 

characterized as primary. Iron concretions in Tertiary sediments mainly consist of goethite and yield 22 

arsenic up to 1860 µg g-1. The accumulation process is secondary as it took place in the course of 23 

oxidation of the originally reduced marine sediments under terrestrial conditions, leading to element 24 

redistribution and local enrichment in the near-surface part. The scale of enrichment was assessed 25 
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calculating Enrichment Factors, indicating that arsenic accumulation was favoured over other potential 26 

contaminants. In spite of higher bulk arsenic contents in the oxidic rocks, the mainly pyrite-hosted As 27 

pool within the reduced deeper part of the Tertiary sediments is shown to have a higher potential for 28 

remobilization and creation of elevated arsenic concentrations in groundwater.   29 

 30 
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 34 

1 Introduction 35 

1.1 Background and objectives 36 

During the past two decades, the intensity of arsenic (As) research has increased substantially. 37 

Reasons for that are the recognition of As toxicity and its initially underestimated impact on human 38 

health on a global scale, focussing on large problem areas, especially in Southeast Asia (e.g. 39 

Ravenscroft et al. 2005, Zahid et al. 2009). Consequently, drinking water threshold values were 40 

broadly lowered in the 1990ies, mostly down to 10 µg L-1. This confronted water suppliers with the 41 

problem of an increased need to process raw water in order to match drinking water requirements. In 42 

recent years, it was also found that in the large majority of cases, naturally occurring As is responsible 43 

for elevated groundwater concentrations. Thereby, mobilization from As-enriched minerals is the 44 

dominating process (e.g. Lowers et al. 2007, Armienta et al. 2001). Showing characteristics of both 45 

chalcophile and siderophile behaviour, arsenic tends to be preferably hosted by sulphide minerals like 46 

pyrite or (hydr)oxidic Fe phases like goethite, both of which can contain As up to several wt.% 47 

(Smedley and Kinniburgh 2002). In spite of its low average abundance in the upper earth ś crust (1.5-2 48 

µg g-1; Matschullat 1999), arsenic can accumulate in rocks to concentrations several orders of 49 

magnitude higher than this value. The fate of As in the environment is controlled by the prevailing 50 

physico-chemical conditions and the presence of other ions. Redox potential, pH and ionic 51 

competition are crucial parameters governing As behaviour (adsorption, desorption, transport, redox 52 
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transformation). Reducing conditions can lead to As mobilization from oxides while oxidizing 53 

conditions may mobilize As bound to sulphides. High groundwater pH constrains As adsorption to 54 

mineral surfaces and may therefore be responsible for elevated concentrations in solution. Ions 55 

competing with As species for surface binding sites, especially phosphate, can lead to the same result 56 

(Stollenwerk 2002, Smedley and Kinniburgh 2002).  57 

The basis to understand geogenic As cycling and the impact of water-rock-interaction leading to 58 

groundwater contamination is the comprehension of the mechanisms that led to those accumulations, 59 

i.e. arsenic enrichment processes. These often took place millions of years ago, but still have a major 60 

influence on the recent occurrence and thus, hydrogeochemical behaviour, of As and other potential 61 

groundwater contaminants.  62 

While As accumulation in Southeast Asia is subject to extensive research and ongoing lively 63 

discussions (e.g. Acharyya et al. 2000, Stanger 2005), little is known about the origin and development 64 

of geogenic As accumulations in Germany which have been studied sporadically and on a rather local 65 

to regional scale (e.g. Bayer 1997, Heinrichs and Udluft 1999, Rüde and Königskötter 2009, Banning 66 

et al. 2009), although elevated As concentrations have been detected in many parts of the country, an 67 

overview is given by Heinrichs and Udluft (1996). 68 

In this study, we analyzed and compared As-bearing sedimentary rocks in two study areas in Germany 69 

and deduced the relevant accumulation processes, taking hydrogeochemical, mineralogical and 70 

paleogeographical information into account, evaluating the scale of enrichment and estimating the 71 

consequences for potential As remobilization and output into groundwater.        72 

 73 

1.2 Study areas 74 

Two investigation areas in Germany were selected for rock sampling in the Upper Rhine Graben and 75 

in the Lower Rhine Embayment, respectively (Fig. 1). 76 

 77 

Figure 1 Location of study areas in Germany (right side) and geological overview maps with sampling locations 78 
in the Lower Rhine Embayment (LRE; upper left side) and the Upper Rhine Graben (URG; lower left 79 
side).  80 
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 81 

1.2.1 Upper Rhine Graben (URG) 82 

The URG is an approximately NE-SW-striking rift structure in the border area between Germany and 83 

France. It is situated in between the crystalline basement areas of the Black Forest (Germany) and the 84 

Vosges mountains (France) and mainly filled with sediments of Tertiary age (Fig. 1). Along the 85 

fringes, within the contact zone between crystalline basement and basin filling, shallow marine 86 

Jurassic rocks crop out hosting several horizons of sedimentary-marine ooidic Fe ores which can be 87 

found for ~150 km along the basin margin (Sauer and Simon 1975). During the break-in of the URG, 88 

starting in the early Tertiary and being active to date, steep marginal faults developed and the Jurassic 89 

sediments disrupted and today represent the base rock of the Cenozoic graben filling. In the better 90 

accessible marginal part, the sedimentary Fe ores, deposited in the middle Jurassic (Aalenian), were 91 

mined until the 1960ies. One former location of surface Fe ore mining, the Kahlenberg (~30 km north 92 

of Freiburg, mined until 1969 and today serving as a waste disposal site, Fig. 1), offers a nearly 93 

complete succession of sedimentary rocks from the middle Jurassic (Fig. 2) and was therefore chosen 94 

for sampling.  95 

 96 

1.2.2 Lower Rhine Embayment (LRE) 97 

The LRE is part of the northwest European Tertiary basin which ranges from the British Isles to 98 

Poland. Similar to, and in continuance of, the URG, it represents a rift structure starting its break-in in 99 

middle Tertiary. It is mainly filled with Tertiary marine sediments deriving from the uplift and 100 

subsequent erosion of the surrounding Rhenish Massif. The basin strikes NNW-SSE (Fig. 1). The 101 

graben filling comprises a relatively complete succession of Oligocene, Miocene and Pliocene 102 

sediments which have variable thicknesses due to extensional fault tectonics and the crust breaking 103 

apart into several blocks. The Grafenberg-layers of the Upper Oligocene (Chattian) are very 104 

widespread within the LRE. They represent marine fine sands with a significant thickness of several 105 

hundred meters due to a high sea level and a quite rapid basin floor subsidence during the Chattian 106 

(GLA NRW 1988, Hiss et al. 2005). The primary calcareous and glauconitic Grafenberg-layers 107 
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underwent deep terrestrial weathering in the Late Tertiary. This way, they were altered to a depth of 108 

several decametres in terms of losing their calcitic cement and having their Fe(II) mineral phases 109 

oxidized. Iron was mobilized and accumulated as Fe(III) hydroxides in the oxidized upper part. The 110 

redox boundary is not observable in outcrops nowadays, but was described from former quarries and 111 

boreholes by Quaas (1917). He documented it mainly between 20 and 30 m, in one outcrop in only 112 

6 m depth below ground surface. The geological development and present situation is similar to the 113 

one described for the southwestern Münsterland Cretaceous Basin (Banning et al. 2009). The reduced 114 

lower part of the Grafenberg-layers was sampled from boreholes near Willich and Hamminkeln, the 115 

oxidized upper part from two outcrops of these sediments near Süchteln (Fig. 1).    116 

 117 

2 Material and methods 118 

2.1 Material 119 

From the Jurassic sedimentary profile at the Kahlenberg, 32 rock samples were obtained, covering a 120 

sediment thickness of ~34 m and crossing the stratigraphical boundary between Aalenian (Dogger β) 121 

and Bajocian (Dogger γ) (Fig. 2). Out of these samples, 11 are from the main Fe ore body 122 

(murchinsonae ore horizon) and 7 from two thinner Fe ore layers. In the following, the sampled profile 123 

is shortly described. The stratigraphical terms are mainly from Bayer (1970), derived from biozone 124 

classification by ammonites.  125 

The profile starts at the bottom with clays (opalinus clay) and calcareous sandstones (lowest 126 

Aalenian), both of which were not accessible for sampling. Subsequently, the main ore body 127 

(“Haupterzlager” – HEL) follows with a thickness of ~11 m. The ore consists of Fe phase ooids in 128 

mainly calcitic cement. It is very fossiliferous, especially containing echinoderm remains. 129 

Sedimentological studies showed that Fe ooid formation occurred in a shallow marine environment 130 

with long-term relatively stable flow velocities in a facies transition zone between rather carbonate-131 

dominated and more sandy sediments. The latter can be found some kilometres north of the 132 

Kahlenberg outcrop, arguing for higher flow velocities, lower water depths and proximity to the 133 

coastline (Aldinger 1957; Urban 1966). Clastic and Fe input into the system are estimated to derive 134 
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from terrestrial weathering of the Rhenisch-Ardennic Shield in the north (Sauer and Simon 1975). The 135 

staufensis zone, containing the murchinsonae ore, is followed by the concava zone composed of 136 

marlstones (“Gryphitenmergel” – GM; ~2 m), sandstones (“Wedelsandstein” – WS; ~6.5 m) and the 137 

lower ore layer (LOL; ~0.7 m). The latter comprises Fe ooids in carbonatic matrix again, and thus 138 

indicates the return of favourable conditions for Fe accumulation. An omission surface on top of this 139 

layer contains the Aalenian-Bajocian stratigraphic boundary. Above that, clayey marlstone (~1.5 m; 140 

not sampled), the upper ore layer (UOL; ~0.7 m; macroscopically similar to the lower one), a 141 

mudstone (“Rimsinger Ton” – RT; ~6 m) and limestone layer (“Hangende Kalke” – HK; ~2.5 m) 142 

belong to the hyperlioceras and the sowerby zone. The Jurassic rocks in the area are covered by 143 

Pleistocene loess with a thickness of up to 10 m.  144 

From the range of the Grafenberg-layers in the LRE, a total number of 36 sediment samples were 145 

taken, 16 of which stem from the reduced lower part and were sampled from cores of up to 182 m 146 

deep boreholes (in addition, one sample of the Quaternary cover sediment – coarse sand – was taken 147 

for comparison). All borehole samples were sealed in gastight bags and stored at 4° C. The remaining 148 

19 samples were obtained from two outcrops of the oxidized upper part of the Grafenberg-layers. 149 

The reduced lower facies of the Grafenberg-layers comprises a quite homogenous marine fine sand of 150 

greyish to greenish colours with a total thickness of up to ~300 m in the study area (Nickel 2003). 151 

They are little consolidated and contain calcite, glauconite and abundant mollusc shells. Sediment 152 

habit hardly changes on a length of ~140 m in the sampled core (with an important exception in the 153 

uppermost section of the strata which is discussed later on), documenting relatively stable shallow 154 

marine depositional conditions during the Chattian. Clastic input into the basin derived from the 155 

weathering of Variscan mainlands to the east of the LRE. 156 

Resulting from the paleo-redox process mentioned in the previous chapter, the oxidized upper facies 157 

of the Grafenberg-layers is composed of yellowish to orange fine sands. They are unconsolidated due 158 

to the loss of their carbonatic cement. Iron mobilized from reduced phases during the late Tertiary 159 

weathering precipitated in the upper part, forming Fe(III) hydroxide coatings around quartz grains. In 160 

outcrops, Fe(III)-concretions are observable which are orange to dark red in colour and significantly 161 



 7 

more consolidated than the ambient sands. Special attention was paid to these concretions during 162 

sampling.     163 

 164 

2.2 Methods   165 

Bulk rock geochemistry (55 elements) was assessed for all (68) samples using either Instrumental 166 

Neutron Activation Analysis (INAA; thermal neutron flux: 7*1012 n cm-2 s-1; Ge detector: resolution 167 

better than 1.7 keV for the 1332 keV, 60Co photopeak) or total digestion (HClO4-HNO3-HCl-HF at 168 

240°C) followed by analysis with ICP-OES (Varian 735ES). 169 

Seventeen selected samples (five Jurassic ore samples, five samples from the reduced part of the 170 

Grafenberg-layers, seven from the respective oxidized part) were ground to powder grain size in a 171 

corundum mill and their mineralogical composition was determined using a Bruker AXS D8 Advance 172 

X-ray diffractometer (XRD; operational adjustments: 40 kV, 40 mA; 2θ=2-92°). Quantitative mineral 173 

phase analysis was accomplished applying Rietveld analysis with the software BGMN, version 4.2.3.  174 

Thin sections were produced from five Fe ore samples (three from the main ore body – lower, middle 175 

and upper part – and one from the lower and upper ore layer, respectively). These were studied and 176 

photographed using a reflected-light microscope (Leica MZ75). Additionally, two thin sections (upper 177 

and lower part of the main ore body) were analyzed for element distribution with an electron 178 

microprobe (EMP, JEOL JXA-8900R, equipped with energy-dispersive and wavelength-dispersive 179 

spectrometers, and operated at 15 kV and 23 nA with a beam diameter of 1.6 µm). Qualitative 180 

chemical mapping was performed for Si, Ca, Fe, Mn and As to characterize element distribution 181 

between the main rock components (ooids, matrix, clastic grains). Moreover, a traverse of quantitative 182 

single spot measurements was produced to assess chemical distribution in the single ooid grain scale, 183 

i.e. in the nucleus and the cortex.    184 

Arsenic fractionation and mobilization potential were examined applying a sequential extraction 185 

procedure (SEP), designed for As by Wenzel et al. (2001). It was modified accounting for sample 186 

composition, i.e. two additional steps, targeting for As bound on Mn (hydr)oxides and sulphides, 187 

respectively, were implemented for samples with significant Mn or S (as pyrite) content, see chapter 188 
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3.1. Altogether, the applied procedure consisted of six steps (Tab. 1). A total of 20 samples were 189 

involved in the sequence (eight from the Jurassic sedimentary profile, four from the reduced Tertiary 190 

sediments, eight from their oxidized facies). The pulverized (agate mortar) solid sample (2 g) was 191 

placed in centrifugation tubes. Successively, 50 mL of each extraction reagent was added and the 192 

respective extraction procedure for each step was carried out. The tube was then centrifuged at 3000 193 

rpm for 15 minutes and subsequently, the supernatant solution was filtered through 0.45 µm cellulose 194 

acetate filters. The remaining solid material was then used for the next extraction step. Analysis of 195 

dissolved As was performed using AAS (Perkin Elmer AAnalyst 800, THGA furnace).  196 

 197 

Table 1: Sequential Extraction Procedure. 198 

 199 

3 Results 200 

Obtained results are presented in this chapter, distinguishing between Jurassic and Tertiary sediments 201 

in the subsections. 202 

3.1 Bulk rock geochemistry and mineralogy 203 

3.1.1 Jurassic sediments 204 

Contents of elements relevant for this study in the sampled Jurassic rocks as determined from 205 

INAA/TD-ICP analysis as well as MUNSELL sample colour characterization are shown in Table 2. 206 

Figure 2 illustrates the development of Fe and As as well as Fe phase fractionation in the sediment 207 

profile at the Kahlenberg. 208 

 209 

Table 2: Whole rock geochemical results of selected elements from the Jurassic samples (DL: detection limit; 210 
HK: Hangende Kalke, limestone; RT: Rimsinger Ton, mudstone; UOL: upper ore layer, LOL: lower ore 211 
layer; WS: Wedelsandstein, sandstone; GM: Gryhitenmergel, marlstone; HEL: Haupterzlager, main Fe 212 
ore body). Samples marked with grey background were analyzed with XRD, see also Table 3. 213 

 214 

Iron overall average content for the ore layers is 17.8 ± 7.0 wt.% while the non-ore sediments show an 215 

average of 2.2 ± 1.1 wt.%. The three different ore horizons contain 14.1 ± 3.0 wt.% (UOL), 11.6 ± 1.2 216 
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wt.% (LOL) and 21.3 ± 6.9 wt.% (HEL), respectively. Arsenic in all ore samples is present at 123 ± 217 

48.5 µg g-1 (UOL: 131 ± 21 µg g-1; LOL: 97 ± 11 µg g-1; HEL: 133 ± 59 µg g-1), in the remaining 218 

sediments at 18.0 ± 7.8 µg g-1. Iron and As development with depths exhibit a close positive 219 

correlation (Fig. 2). Trace metals contents in single samples and average values for the different 220 

stratigraphical layers are shown in Table 2.  221 

 222 

Figure 2: Lithological profile, Fe and As contents development and Fe phase fractionation of the sampled 223 
Jurassic sediments, former quarry Kahlenberg. 224 

 225 

The mineralogical composition of the ooidic Fe ores, calculated from X-ray diffractograms using 226 

Rietveld analysis is summarized in Table 3. Iron phase fractionation is additionally indicated in 227 

Figure 2. Goethite (α-FeOOH) is the most important Fe host mineral in the ore layers, accounting for 228 

67 ± 9 % of the present Fe phases, whereby the proportion is slightly higher in the ore layers, 229 

compared to the main ore body. Other Fe phases, hematite (α-Fe2O3; 23.8 ± 16 %) and the Fe silicate 230 

mineral chamosite ((Fe2+,Mg,Fe3+)5Al(Si3Al)O10(OH,O)8; 8.8 ± 10 %), show much higher variabilities. 231 

Hematite is more abundant in the main ore body, while chamosite reaches significant amounts in the 232 

ore layers only (Fig. 2). Besides Fe host minerals, bulk ore samples contain calcite (CaCO3) as the 233 

main matrix mineral, detrital quartz (SiO2) and minor amounts of muscovite (KAl2(Si3Al)O10(OH,F)2) 234 

and microcline (KAlSi3O8). Dolomite (CaMg(CO3)2) is partly detectable, pyrite (FeS2) is present in 235 

trace amounts in the two thinner ore layers only. 236 

 237 

Table 3: Mineralogical composition of Jurassic Fe ore samples , see Tab. 2 for stratigraphical allocation (n.d. – 238 
not detectable). 239 

 240 

In all Fe ore thin sections, oval to nearly round ooid grains of brownish to reddish colour in a mainly 241 

greyish calcitic matrix were observed. In some parts, the latter is of yellowish-orange colour, 242 

indicating matrix areas with elevated Fe. Sub-rounded detrital quartz grains and bioclasts are further 243 

components. Among the fossils found in the samples, echinoderms, especially crinoids, are most 244 

abundant. Additionally, gastropoda, bivalvia, bryozoa, foraminifera and one calcite-filled belemnite 245 
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rostrum were found. Some Fe grains exhibit characteristics of broken and regenerated ooids. It can be 246 

assumed that during ooid formation, the milieu underwent multiple synsedimentary reworking and 247 

redeposition as also indicated by ooids forming the nucleus of the next ooid generation (Flügel 2004). 248 

Bioclasts serve as further nucleus material. Despite their abundance in the ores, silicate (mainly 249 

quartz) grains were not found as nuclei, which is in agreement with Jurassic ooidic Fe ores from the 250 

Swiss Jura mountains (Burkhalter 1995). Thin section analyses indicate that the samples are rather 251 

matrix-supported (matrix/component ratios range from ~80/20 to 50/50, with HEL ores showing a 252 

higher component proportion). The carbonatic matrix is micritic in UOL and LOL, whereas it is rather 253 

sparitic in HEL, arguing for a higher degree of cementation. This is supported by a lower amount of 254 

bioclasts and a higher proportion of hematite, possibly formed through dehydration of primary 255 

goethite or its precursor phases (Maynard 1983, Schwertmann et al. 1999), compared to the thinner ore 256 

layers.  257 

 258 

3.1.2 Tertiary sediments 259 

Table 4 shows the geochemical composition of sediments from the Grafenberg-layers. A concentration 260 

profile indicates geochemical development of some elements and Fe phase fractionation dependent 261 

upon depth in the borehole (Fig. 3). 262 

 263 

Table 4: Whole rock geochemical results of selected elements from the Tertiary sediments (DL: detection limit; 264 
Ox_G: oxidized Grafenberg-layers; QC_G: Quarternary cover sediment; Red_G: reduced Grafenberg-265 
layers; Red_H: Reduced Grafenberg-layers from the borehole in Hamminkeln). Samples marked with 266 
grey background were analyzed with XRD, see also Table 5. 267 

 268 

The reduced lower part of the Grafenberg-layers contains relatively homogenous Fe and As of 1.84 ± 269 

0.57 wt.% and 11.6 ± 3.6 µg g-1, respectively. Sulphur content is 0.22 ± 0.09 wt.% on average, it 270 

correlates well with As for a large part of the profile (Fig. 3).  271 

 272 

Figure 3: Stratigraphical profile, Fe, As and S contents development and Fe phase fractionation of the 273 
Grafenberg-layers sampled from a borehole near Willich.  274 

 275 
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Bulk sediment mineralogical results can be found in Table 5. Moreover, Figure 3 contains Fe phase 276 

fractionation in borehole samples. XRD analysis identified several reduced Fe minerals, wherein 277 

glauconite ((K,Na)(Fe,Al,Mg)2[(OH)2|(Si,Al)4O10]) is dominant (60 % of all Fe phases on average), 278 

followed by pyrite (FeS2) and siderite (FeCO3). Greenish glauconite and framboidal pyrite grains were 279 

observable in the sediments under the microscope. One layer at the bottom of the borehole contains a 280 

high glauconite proportion of 11.1 % of the bulk sample. Goethite (FeOOH) was identified in the 281 

uppermost Tertiary sample (GW_0201) only, coexisting with siderite, glauconite and pyrite and thus 282 

indicating a zone of redox transition. The calcite content here (0.09 %) is depleted, compared to the 283 

deeper sediments (1.82 ± 0.79 %); on the other hand, Fe and As are enriched by factor 3 and 2, 284 

respectively. The discordantly following Quarternary cover sediments yield significantly lower 285 

contents of Fe and As (Fig. 3). Besides quartz as the dominant mineral phase, calcite and the 286 

mentioned Fe phases (Tab. 5), the samples contain minor amounts of muscovite, clay minerals and 287 

feldspar. 288 

 289 

Table 5: Mineralogical composition of Grafenberg-layers samples, see Tab. 4 for facies allocation (n.d. – not 290 
detectable). 291 

 292 

In contrary to the deep sediments, the upper oxidized facies of the Grafenberg-layers shows a very 293 

heterogenous distribution of Fe, As and other trace elements, so mean values are not given in Table 4. 294 

Iron content averages 3.93 ± 2.2 wt.% in the unconsolidated sands, but can be as high as 23.4 wt.% in 295 

concretions. All samples contain goethite whose proportion ranges from 1.04 to 34.51 %. 296 

Lepidocrocite (γ-FeOOH) as a second Fe hydroxide was identified in two samples. XRD analysis of 297 

one sample in the grain fraction <0.63 µm (GG_0102f; obtained through wet sieving) indicated that Fe 298 

hydroxides are preferably occurring in the fine-grained sediment proportion. Calcite is not detectable 299 

in any sample (Tab. 5).  300 

Arsenic contents average 20.3 ± 11.8 µg g-1 in sands, but yield a peak value of 1860 µg g-1 As in one 301 

Fe concretion, thus underlining the pronounced heterogeneity of element distribution in the oxidized 302 

facies, even at very close range (Fig. 4).  303 
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 304 

Figure 4: Example of heterogenous Fe and As distribution in the oxidized part of the Grafenberg-layers. The 305 
inset (upper left corner) shows Fe concretions found in the darker (orange) layer on the left side. 306 

 307 

In the example shown in figure 4, Fe and As levels increase erratically from hardly coloured (right 308 

side) via bright orange sands (left side) to the very hard, dark reddish Fe concretions (inset) found 309 

within the latter. Approximate relational factors in these three sediment zones for Fe are 1-2-17, for As 310 

1-5-207. The different scales of enrichment, also for other trace elements, are discussed in chapter 4.2. 311 

 312 

3.2 EMP results in Fe ores 313 

Results of the chemical mapping of an ooid grain from the upper part of the main ore body conducted 314 

with energy-dispersive microprobe analysis are shown in Figure 5a. The general detection limit for 315 

this method is approximately 0.5 wt.%. The mapping area was chosen to contain all important 316 

sediment components (Fe ooids, carbonate matrix, clastic grains). For As, the resulting map was 317 

homogenous, thus not showing any differences in As distribution. This suggests that As is present in 318 

contents <0.5 wt.% in all rock compounds. To assess As contents in the ooid grains, a traverse of 319 

quantitative wavelength-dispersive single spot measurements was carried out (Fig. 5b). Detection limit 320 

for As in this procedure was calculated to be 117 µg g-1.     321 

 322 

Figure 5: a: elemental mapping of an Fe ooid in calcitic matrix (qualitative), b: traverse (indicated in 323 
backscattered light image) of single spot chemical measurements through cortex and nucleus of an Fe 324 
ooid.  325 

 326 

Element distribution maps (Fig. 5a) show a well-definded oval Fe ooid (Fe map) from the HEL, 327 

together with matrix material and margins of two silicate grains (Si map). Calcium is present in the 328 

matrix only. Besides the detrital grains, Si occurs in smaller amounts in some areas within the ooid. 329 

The distribution of Mn indicates its preferential presence in the matrix rather than in the ooid. Iron 330 

distribution within the ooid is not even, differences correspond to different layers of the cortex, the 331 

ooid rim seems to be particularly enriched. In the case of Figure 5a, the nucleus is Fe-rich (although it 332 
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seems to contain less Fe than the average cortex), thus probably representing an ooid fragment of a 333 

previous generation. A profile of point measurements, shown for another Fe ooid in Figure 5b 334 

(backscattered light), supports these findings. Iron is enriched in the “lighter” parts (areas of higher 335 

electron density) of the cortex and in the nucleus, exceeding 50 wt.%, while the “darker” layers 336 

contain around 40 wt.% Fe. On the contrary, Al and Si are more abundant in the darker parts. Unlike 337 

in the “macroscopic” outcrop scale (Fig. 2), arsenic contents do not necessarily follow Fe in the grain 338 

scale. While, independent from Fe, arsenic content is around 1000 µg g-1 in the cortex layers, it drops 339 

to below 500 µg g-1 in the nucleus.      340 

 341 

3.3 SEP results 342 

Sequential extraction procedures base on using increasingly stronger solvents, each targeting a specific 343 

host mineral fraction (Tab. 1) which allows us to subdivide the bulk trace element (in this case As) 344 

content of a sample into proportions of different extractabilities. This enables an estimation of the 345 

potential mobility of As and is thus more valuable for ecological considerations than the bulk content.  346 

 347 

3.3.1 Jurassic sediments 348 

Results of As fractionation determined by SEP are shown in Figure 6a. An average proportion of 3.64 349 

± 1.9 % Astot is surface-bound (i.e. NH4H2PO4-soluble and thus quite readily available through pH 350 

changes or P addition, Wenzel et al. 2001) in Fe ore layers, corresponding to more variable absolute 351 

amounts of 1.9-10.3 µg g-1. Mudstone (RT) and sandstone (WS) from the Jurassic sediment profile 352 

both show comparable relative proportions of 3.7 %, but absolute As amounts of only 0.8-1.5 µg g-1 353 

soluble in step 1. Arsenic bound to Mn (hydr)oxides, targeted with NH2OH-HCl (step 2), is of minor 354 

importance (0.69 ± 0.4 % in ore layers). NH4-oxalate-soluble As (step 3) is most important in RT 355 

mudstone (27 %), fresh Fe hydroxide striation was observable in the sampled sediments. The As 356 

proportion dissolved in this step is higher in UOL and LOL (~13 %) than in HEL (~7 %, decreasing 357 

towards the lower part). Arsenic fractions of lower extractability (step 4 and step 6) are dominant in all 358 

ore layers. Within HEL, residual As increases with depth. Step 5-soluble As is negligible except for 359 
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RT (8.5 %). Assuming a change in redox conditions from presently oxidizing to rather reducing 360 

conditions, the potentially short- to medium-term mobilizable As amount corresponds to steps 1-3 361 

soluble As (Banning et al. 2009). This proportion is higher for the thinner ore layers (~18 %) than for 362 

HEL (~11 %), nevertheless, corresponding maximum absolute values are comparable (Fig. 6a).     363 

 364 

Figure 6: Sequential extraction results of samples from the Jurassic profile (a) (RT: Rimsinger Ton, mudstone; 365 
UOL: upper ore layer, LOL: lower ore layer; WS: Wedelsandstein, sandstone;  HEL: Haupterzlager, 366 
main Fe ore body) and selected Tertiary sediment samples (b), ordered by redox facies . 367 

 368 

3.3.2 Tertiary sediments 369 

Sequential extraction results for samples from the range of the Grafenberg-layers are illustrated in 370 

Figure 6b. The reduced lower part of the Grafenberg-layers comprises a relatively homogenous As 371 

fractionation. Arsenic soluble in step 1 is 7.30 ± 0.4 %, 31.89 ± 2.1 % in step 3, 28.76 ± 5.2 % in step 372 

4 and 27.47 ± 5.6 % in step 5. In the redox transition zone, H2O2-soluble As decreases to 16 %. 373 

Potential mobilizability is similar in all samples (38.57 ± 2.3 % Astot), but higher absolute amounts are 374 

found in the transition zone (Fig. 6b). 375 

Arsenic extractability in the oxidized facies is more heterogenous. Fractions of steps 4 and 6 are 376 

dominant in all samples, but proportions of higher extractability (steps 1-3) vary heavily in 377 

unconsolidated sands (5.9-33.1 %) as well as in harder concretions (3.4-39.1 %). Corresponding 378 

potentially mobile As varies between 1.3 and 62.6 µg g-1 with a peak value for Fe concretion 379 

GG_0103 (Fig. 6b).  380 

  381 

4 Discussion 382 

The Discussion chapter distinguishes between Jurassic and Tertiary sediments in the three subsections 383 

4.1-4.3, before a comparison is drawn in the Conclusions chapter 5.  384 

4.1 Geochemical characterization and timing of As accumulation 385 

4.1.1 Jurassic sediments 386 
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The studied Fe ores from the former quarry Kahlenberg represent a significant As sink with a 387 

maximum content of 223 µg g-1 at 32.2 wt.% Fe in HEL. The overall average of the ore samples (123 388 

µg g-1) is elevated by ~factor 7, compared to the non-ore sediments of the profile. Lithologically and 389 

facially similar Jurassic ooidic Fe ores from Luxemburg and France (so called Minette Fe ores) are 390 

known to be potential As hosts: Siehl and Thein (1978) detected maximum As contents of 435 µg g-1 391 

at 50 wt.% Fe in one profile (with As and Fe correlating well), thus showing conditions comparable to 392 

the ooid ores studied in this work. The scale of As (and other elements) enrichment is discussed in 393 

more detail in chapter 4.2.1. 394 

Statistical analysis of ore samples from the main ore body (HEL) was conducted using the software 395 

SPSS Statistics 17.0. A matrix of Pearson element correlations is presented in Figure 7a. 396 

 397 

Figure 7: Pearson element correlation matrices for samples from the HEL (a) and the oxidized facies of the 398 
Grafenberg-layers (b). 399 

 400 

Arsenic occurrence and behaviour is controlled by Fe oxides and hydroxides, as suggested by 401 

mineralogical and sequential extraction results, as well as element correlation analysis (Fig. 7a). 402 

Goethite was found to be the most important Fe host phase, which is in agreement with previous 403 

studies about these ores (Aldinger 1957, Sauer and Simon 1975). This is also valid for similar ooidic 404 

Fe accumulations of Aalenian/Bajocian age from Switzerland described by Burkhalter (1995). In that 405 

study, also chamositic ooids were found, forming a complete transition series with goethite ooids. 406 

Varying degrees of the chamosite compound in predominantly goethite ooids might explain the 407 

occurrence of elevated Si in some areas of the ooid studied with EMP (Fig. 5a), Al and Si enrichment 408 

in the “darker” layers of the cortex (Fig. 5b) as well as a positive Fe-Al correlation (Fig. 7a). Another 409 

similarity is a comparably high P content in the Fe ore layers (0.3 wt.% on average in this study), 410 

attributable to apatite admixtures in the ooids on a submicroscopic scale (Burkhalter 1995). This is 411 

supported by a very significant positive correlation between Fe and P (Fig. 7a), indicating that P is 412 

hosted by Fe ooids. However, apatite was not detectable in XRD, making it more likely that P is 413 

present on the Fe (hydr)oxide surfaces as it was described for Jurassic Fe ooids in Bavaria (Halbach 414 
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1968). Most probably, it was adsorbed as PO4
3- from sea water during the precipitation of positively 415 

charged Fe(OH)3 particles.  416 

In contrast to P-Fe, Ca correlation with Fe is significantly negative. Calcium is present in the calcitic 417 

matrix only, while Fe is broadly limited to ooid grains (although microscopy of thin sections revealed 418 

some areas of visible Fe contribution to the matrix material). The only studied element with a positive 419 

relationship towards Ca, and therefore most probably hosted predominantly in the matrix, is Mn. It 420 

correlates significantly negative with all other metals, As and P and thus indicates its absence in the Fe 421 

ooids. These findings are supported by elemental mapping in EMP (Fig. 5a) and the lack of As bound 422 

to Mn (hydr)oxides as suggested by SEP (Fig. 6a). Consequently, although Mn mineral phases can 423 

yield a major influence on As behaviour (Smedley and Kinniburgh 2002), they do not do so in the case 424 

of the studied ores. An explanation for this phenomenon might be the formation of weakly reducing 425 

microenvironments caused by bacterial decomposition of organic matter in the sediments. This may 426 

lead to Mn release from the solid phase to solution and subsequent uptake by the calcite matrix, while 427 

Fe2+ remained in the form of chamosite (the presence of chamosite is interpreted as a proxy for mildly 428 

reducing conditions during diagenesis, Berner 1981). A mechanism like that is proposed for Tertiary 429 

Fe ooids in Egypt (Salama et al. 2008). During the latest period of Fe ooid formation in the studied 430 

profile (i.e., in the UOL), stronger reducing conditions seem to have been prevailing, indicated by 431 

trace amounts of pyrite and a high proportion of chamosite among Fe phases (Fig. 2).   432 

In contrary to Mn, Pb, Zn, Co, Cd, Cr and Ni correlate positively with Fe and As, and with each other, 433 

and negatively with Ca and Mn, clearly indicating that these heavy metals are hosted by Fe ooids, and 434 

hardly appear in the matrix. The correlation of Fe and As is weaker at the grain scale as deviated by 435 

single ooid measurements (Fig. 5b). This suggests that conditions for As accumulation varied before 436 

(ooid nuclei), during (ooid cortices) and after (matrix) Fe ooid formation.  437 

Element and mineral distribution in the studied sediments argue for a primary, i.e. syndepositional 438 

accumulation of As in Fe ooids from the middle Jurassic. Shallow marine origin of the ores under 439 

tropical climatic conditions is evident from the fossil record (chapter 3.1.1; Urban 1966). Iron (and As) 440 

accumulation in the present form occurred in times of non-deposition (concerning clastic input, i.e. in 441 

condensed horizons) in at least temporarily agitated water, which are prerequisites for Fe ooid 442 
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formation (Burkhalter 1995). Under these conditions, Fe together with As and trace metals, was 443 

transported in solution or colloidal form from the weathering mainland towards shallow marine 444 

environments. There, it was able to accumulate, before conditions changed once more and the calcitic 445 

matrix settled. During the slow process of Fe ooid formation, reactive surfaces were available for a 446 

long time for AsO4
3- adsorption on hydroxides as described above for the geochemically very similar 447 

PO4
3-. Additionally, these surfaces were renewed through rhythmic formation of ooid cortices and 448 

periodical reworking of the sediments. This way, syndepositional As enrichment potential in Fe ooids 449 

is obvious. After the main accumulation (HEL), a sedimentary milieu favouring Fe and As enrichment 450 

returned twice as documented by LOL and UOL.         451 

 452 

4.1.2 Tertiary sediment 453 

The oxidized upper part of the Grafenberg-layers, compared to the reduced lower part, is enriched in 454 

As by ~factor 2, considering average values. However, due to the extremely heterogenous element 455 

distribution, the scale of enrichment has to be analysed in more detail (chapter 4.2.2). Like for the 456 

Jurassic samples described in chapter 4.1.1, statistical analysis for the oxidized near-surface facies of 457 

the Grafenberg-layers was conducted using SPSS software. The Pearson element correlation matrix is 458 

shown in figure 7b. Due to its partly extremely high concentrations, especially for Fe and As, 459 

concretion GG_0103 was not included in the calculations. Like in the Fe ooids, a striking positive 460 

correlation (R2=0.93) between Fe and P is observable – again, P is bound to Fe hydroxides (goethite 461 

and, less abundant, lepidocrocite), ubiquitarily available in the oxidized sediments. Iron correlations 462 

with metals are variable. While Cd (R2=0.96), Zn (R2=0.80) and, less distinct, Cr (R2=0.60) show a 463 

clear positive relation towards Fe, regression is much weaker for Ce (R2=0.39), Mn (R2=0.37), Co 464 

(R2=0.37), Pb (R2=0.31), As (R2=0.30) and Ni (R2=0.21) and is not detectable for Cu and Al. From the 465 

second group, Mn, Co, Ni and Ce provide positive interrelations (R2=0.63-0.97) arguing for a common 466 

occurrence, while Cu, Al and As do not yield any significant correlation with the other metals. These 467 

results underline the extreme heterogenous element distribution. Nevertheless, the lack of As-Al 468 

correlation and SEP results indicate that no clay minerals or other silicates but rather Fe hydroxides act 469 

as As sinks, albeit with large variations in adsorbed As amounts. The by far highest As content has 470 
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been measured in the most Fe-rich sample (Fig. 4). In a similar geological environment showing 471 

pronounced post paleo-redox elemental redistribution, Banning et al. (2009) found As being 472 

accumulated in Fe hydroxide concretions without yielding any correlation with bulk Fe. 473 

The source of near-surface Fe (and As) is believed to be the reduced Fe phases from the deeper 474 

sediments, i.e. the primary depositional facies, nowadays only accessible in boreholes. Several 475 

“candidate” minerals were identified by XRD: glauconite, pyrite and siderite, additionally goethite 476 

was detected in the uppermost Tertiary sample GW_0201, indicating a redox transition zone (chapter 477 

3.1.2). The potential role of the reduced Fe phases for As behaviour in the Tertiary sediments will be 478 

discussed in the course of a short literature overview in the following. 479 

Glauconite has the highest proportion in Fe phases in the fully reduced sediments, whereas siderite 480 

seems to be more abundant in the oxidation cap (Fig. 3). Greensands containing significant amounts of 481 

glauconite are known to have a potential for As accumulation. Dooley (1998) found As contents in 482 

New Jersey greensand one order of magnitude higher than in average soils of the area. Barringer et al. 483 

(2009) consider these glauconites as one source of elevated As concentrations in groundwater. In a 484 

creek near Brussels, Belgium, Cappuyns et al. (2002) detected As accumulations in soil Fe hydroxides 485 

and attributed them to mobilization from As-rich glauconites in the subsurface. Patyk-Kara et al. 486 

(2008) found “abnormally high As” contents in glauconite samples from central Russia. Conducting 487 

SEM analysis of single grains, they measured up to 72 wt.% (!) As in glauconite surface coatings and 488 

attributed that to the mineraĺ s high sorption capacity. This is supported by Spoljaric and Crawford 489 

(1978) who found a nearly quantitative As retention from basic solution when filtering it through 490 

greensand containing 80 % glauconite. Hence, the mineral has the potential to act as As sink and 491 

source, as was suspected in an earlier study (Banning 2008). Nevertheless, to the authors  ́knowledge 492 

and despite all these indications, no distinct mechanism for As uptake by glauconite is known so far. 493 

Independent from its role in As behaviour, it has been shown that glauconite loses large amounts of Fe 494 

to solution during weathering (Courbe et al. 1981, Patyk-Kara et al. 2008, Hutton and Seelye 1941). 495 

Thus, it is probable that glauconite from the primary reduced facies of the Grafenberg-layers is the 496 

major source for Fe accumulations in the oxidized near-surface part. 497 
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Siderite mostly represents secondary precipitates in reducing environments (Fisher et al. 1998). In 498 

marine milieu, it may be formed during early diagenesis and then contributes to the sediment cement, 499 

partly replacing calcite, and can be accumulated to concretionary levels (Hounslow 2001). Siderite has 500 

the potential to strongly sorb As(V) at circumneutral pH conditions (Jönsson and Sherman 2008). 501 

However, the affinity towards As(III) is much weaker and it can be assumed that As in the primary 502 

facies of the Grafenberg-layers was mainly present as As(III) during deposition and diagenesis as well 503 

as under present hydrochemical conditions (pH around 7.6, Eh around -50 mV; Mäurer and Wisotzky 504 

2007). Consequently, formation of siderite in such a milieu does not retain significant As quantities 505 

(Tufano and Fendorf 2008) although it cannot be excluded that the carbonate may act as a secondary 506 

sink in adequate redox niches. Supporting the former, analysis of siderite concretions from a 507 

geological environment very similar to the Grafenberg-layers yielded low As contents (Banning et al. 508 

2009). 509 

Natural pyrite is well-known for its ability to host As and numerous other minor and trace elements. 510 

An overview is given by Abraitis et al. (2004). Arsenic in pyrite is commonly present at µg g-1 to wt.% 511 

levels with a measured peak value of almost 10 wt.%. In contrast to the Fe minerals introduced before, 512 

arsenic is incorporated into the pyrite structure by substitution of S. In particular, pyrites formed under 513 

relatively low temperatures can have strongly elevated As. They often show habits arguing for rapid 514 

precipitation, e.g. framboids, which have a reactive surface area 4-6 times larger than euhedral (cubic) 515 

pyrite grains (Merinero et al. 2009), explaining high As and other element enrichments. Huerta-Diaz 516 

and Morse (1990) introduced the term “degree of trace metal pyritization” (DTMP) to assess the 517 

importance of incorporation of different trace metals into sedimentary pyrite. They found that the 518 

disulphide is an important sink for As, Hg and Mo which are rapidly and essentially completely taken 519 

up by pyrite. The sink function is significant, but less important, for Co, Cu, Mn and Ni and “generally 520 

unimportant” for Cr, Pb, Zn and Cd, although at least for Pb and Zn, contents close to 1 wt.% have 521 

been detected in pyrite (Abraitis et al. 2004). 522 

Considering this discussion on the identified reduced Fe phases and their potential impact on As 523 

behaviour, framboidal pyrite is suspected to represent the main As host in the reduced deep part of the 524 

Grafenberg-layers and thus, the source of As accumulation in the oxidized upper facies. To check this 525 
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hypothesis, relationships between Fe, S and As were analyzed for these sediments (Fig. 8). In the Fe-S 526 

scatter plot (Fig. 8a), the line of stoichiometric pyrite was implemented for comparison. Most samples 527 

plot along a line parallel to that. The shift from the pyrite line indicates “excess Fe” hosted by further 528 

Fe phases. This is attributable to glauconite and, to a lesser extent, siderite, being present in relatively 529 

homogenous concentrations in the reduced samples. Two distinct outliers were identified, samples 530 

GW_0201 and GW_0212. To reiterate, GW_0201 is the only sample to contain goethite (interpreted to 531 

derive from the redox transition zone), GW_0212 is the sample showing by far the highest glauconite 532 

content (11.1 %, compared to an average of 2 % in the other samples analyzed by XRD). These results 533 

were accounted for in the As-S scatter plot (Fig. 8b). Samples yielding a pyrite-like development in 534 

figure 8a showed a very close As-S correlation of R2=0.94, whereas the total dataset, including the 535 

outliers, only provided R2=0.56. This indicates that pyrite is indeed the major As host in large parts of 536 

the reduced Grafenberg-layers. Nevertheless, it also suggests that glauconite, if available in larger 537 

quantities, is able to adsorb at least part of the As to its surface. Furthermore, it is probable that 538 

goethite, derived from oxidation of Fe(II) phases, is an important As sink in the redox transition zone. 539 

Here, also siderite may act as a secondary host mineral as it is present in significant quantities and As 540 

is likely to at least partly occur as As(V).    541 

Assuming that all As is bound in pyrite and using whole rock As and sediment pyrite contents as 542 

determined by Rietveld analysis, it is possible to calculate maximum As contents in pyrite. Ignoring 543 

the outliers, an average value of 0.21 ± 0.04 wt.% Aspyr has resulted which plots in the range of Aspyr 544 

given by Abraitis et al. (2004) and is very similar to the average Aspyr value (0.23 wt.%) in a limestone 545 

aquifer studied by Price and Pichler (2006).      546 

 547 

Figure 8: Fe-S scatter plot for the reduced part of the Grafenberg-layers (a), As-S scatter plot of the same 548 
samples (b). 549 

 550 

All these considerations indicate a secondary As enrichment in the near-surface Grafenberg-layers, i.e. 551 

an accumulation long after original deposition of the sediments in Oligocene times. The paleo-redox 552 

process under terrestrial conditions in late Miocene/Pliocene (chapter 1.2.2) caused mobilization of Fe 553 
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(mainly from glauconite) and As (mainly from pyrite) and reaccumulation in the upper part. The fact 554 

that in large part, Fe and As are probably from different sources may have contributed to the lack of 555 

Fe-As correlation in the oxidized sediments. Trace metals showing stronger relationships with Fe, i.e. 556 

Cd, Zn and Cr, belong to the group of heavy metals not preferentially accumulated in pyrite (Huerta-557 

Diaz and Morse 1992). Instead, at least Zn and Cr are known to be potentially enriched in glauconite 558 

(Dooley 1998) and like Fe, may have derived in largest part from the weathering of this mineral. 559 

Consequently, heterogenous distribution of Fe, As and trace metals results from mobilization through 560 

oxidation, transport and subsequent reaccumulation up to concretionary levels; existing and missing 561 

interrelationships of elements can be attributed to different primary sources.   562 

 563 

4.2 Scale of accumulation 564 

In order to assess the degree of As accumulation in the Fe (hydr)oxidic sediments of both study areas 565 

and to estimate its relative importance compared to other trace elements, two approaches were applied 566 

as used for heavy metals in dam reservoir bottom sediments by Loska et al. (1997) and for As in soils 567 

by Loska et al. (2003): Enrichment Factor (EF) and cumulative Contamination Factor (CF). 568 

The EF is used to evaluate element contents in the studied environment in relation to a reference 569 

environment (Eq. 1). 570 

ref
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EF    (Equation 1) 571 

where 572 

Csam is the concentration of the examined element in the studied environment 573 

Cref is the concentration of the examined element in the reference environment 574 

Bsam is the concentration of the reference element in the studied environment 575 

Bref is the concentration of the reference element in the reference environment 576 

EF < 2 characterize element depletion to minimal enrichment, EF=2-5 moderate enrichment and 577 

EF=5-20 significant enrichment (Loska et al. 2003). The reference element used for normalization 578 
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must be of low variability and present in trace amounts. Alternatively, elements occurring in higher 579 

concentrations can be used if they do not show any correlation towards the examined elements. 580 

Fulfilling the latter condition in this study, Mg was used as a reference element for the Jurassic Fe ores 581 

and Al for the oxidized Tertiary sediments (Fig. 7). Reference environments were defined as the 582 

average of non-ore sediments in the Jurassic profile, weighed according to their thicknesses, and the 583 

reduced part of the Grafenberg-layers, respectively. 584 

The CF is applied to evaluate the impact of single contaminants on an environment. It is used to 585 

identify major pollutants and to estimate the total degree of contamination, mainly of anthropogenic 586 

nature, compared to pre-industrial times (Loska et al. 1997; Eq. 2).  587 

0C

C
CF

av
   (Equation 2) 588 

where 589 

Cav is the average content of the examined element in the studied environment 590 

C0 is the pre-industrial content of the examined element 591 

Like for EF, “pre-industrial” contents in this study are equal to “pre-enrichment” contents, i.e. non-ore 592 

sediment layers in the Jurassic profile and the original reduced facies of the Tertiary sediments were 593 

defined as reference environments. Summing up the CFs of all contaminants allows for estimating the 594 

contribution of single elements to the total contamination of the examined environment. This method 595 

offers a potential impact appraisal as only bulk concentrations and no information on element mobility 596 

or actual availability are included.     597 

 598 

4.2.1 Jurassic Fe ores 599 

Results for EF and CF calculations for the Jurassic Fe ores are shown in Figure 9. Enrichment factors 600 

are presented for all Fe ore samples and the six most enriched trace elements, contaminations factors 601 

were calculated for average contents of all Fe ore samples and the relative contribution of each heavy 602 

metal to the overall “contamination pool” was deduced. 603 
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 604 

Figure 9: Enrichment Factors of 6 elements for Jurassic Fe ore samples. Pie chart: Single elements´ contribution 605 
to total “contamination pool” (UOL: upper ore layer, LOL: lower ore layer; HEL: Haupterzlager, main 606 
Fe ore body). 607 

 608 

 609 

Copper and Pb show average EF of 0.76 and 1.39, respectively. Therefore, they are not enriched in the 610 

Fe ores. Cadmium is not included in the calculations because contents in the reference environment 611 

are broadly below or close to the analysis detection limit (0.3 µg g-1). Nevertheless, ore samples have 612 

an average Cd content of 1.5 µg g-1, suggesting the element ś (in this case not quantifiable) 613 

enrichment. EF average values for Zn (2.11), Ni (2.21), Co (2.30) and Cr (2.41) indicate very 614 

moderate accumulation in ore layers. While Co and Ni are evenly distributed, Cr and Zn are preferably 615 

enriched in HEL. Manganese is accumulated to a higher level (average EF=3.91), where highest 616 

values are reached in the UOL. However, arsenic is the most enriched element, yielding an average EF 617 

of 6.36 and being the only trace element plotting in the “significant enrichment” category of EF. While 618 

the factors are relatively stable within the thinner ore layers (UOL=7.48, LOL=4.97), they are variable 619 

in HEL (EF=2.6-12.7), indicating shifting degrees of favourability for As accumulation during main 620 

ore body deposition. Consequently, the studied ooidic Fe-rich sediments do not only contain 621 

significant amounts of As – they also seem to favour As uptake over heavy metals. Ruling out Mn, 622 

which has been shown to reside in the calcite matrix (chapter 4.1.1), and thus only regarding elements 623 

hosted in Fe ooids, arsenic enrichment potential is ~3 times higher than that of heavy metals. This 624 

finding is supported by CF calculations showing that As accounts for 29 % of the “contamination 625 

pool” and thus is the by far most important “pollutant” (Fig. 9, pie chart). 626 

 627 

4.2.2 Tertiary sediments 628 

Results of EF, ordered by Fe enrichment factor (values not shown) and CF calculations are shown in 629 

Figure 10.    630 

 631 
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Figure 10 Enrichment Factors of 6 elements for samples from the oxidized part of the Grafenberg-layers. Upper 632 
pie chart: single elements´ contribution to total “contamination pool” in one Fe hydroxide concretion, 633 
lower pie chart: single elements´ contribution to total “contamination pool” of oxidized sand samples 634 
without concretions. Note changes of scale on the x-axis.  635 

 636 

The pronounced heterogeneity in the oxidized sediments is underlined once more when regarding EF 637 

values, even if concretion GG_0103 is ruled out. Lead, Cr and Cu, nevertheless, are constantly quite 638 

low (average values around 1, none is exceeding 2) and thus show no enrichment compared to the 639 

reduced deeper sediments. Like for the Jurassic rocks, Cd was not included in the calculations due to 640 

numerous samples in both redox facies showing contents below the detection limit. The other metals 641 

are more variable in accumulation behaviour ranging from depletion to moderate enrichment: Ni (0.4-642 

6.6), Co (0.5-7.0), Mn (0.4-3.9), As (0.5-3.9), Zn (0.5-8.6). However, a general trend towards higher 643 

overall heavy metal enrichment coming with increasing Fe EF is observable, although not 644 

comprehensible for single elements. This situation results in relatively balanced contributions of single 645 

metals to the total “contamination pool” (Fig. 10, lower pie chart), where As has a proportion of 12 %. 646 

Calculating these proportions for the most Fe-rich concretion, the findings are completely different: 647 

here, arsenic is by far the most important contributor, accounting for 58 % of the total contaminant 648 

pool (Fig. 10, upper pie chart). An EF of 166 for As confirms extremely high accumulation. Although 649 

to a lesser extent, other metals are at least significantly enriched with EFs in the range of 10-50. It is 650 

most probable that highly enriched concretions like that are very abundant in the oxidized facies of the 651 

Grafenberg-layers, also in larger sizes than the exemplar analysed in this study (Fig. 4). Quaas (1917) 652 

describes occurrences of banked “dark iron sandstone containing hard Fe concretions” from several 653 

former quarries backfilled today and thus unfortunately not accessible for sampling anymore. 654 

From these findings, it can be concluded that during elemental redistribution after the paleo-redox 655 

event, arsenic was initially not preferentially adsorbed to the ubiquitary Fe hydroxides coating the 656 

quartz grains in the oxidized zone. These coatings only offer a limited number of sorption sites which 657 

were not renewed as further hydroxide attachment did not happen. The sites available were probably 658 

occupied by more abundant, competing phosphate ions as suggested by a close correlation between Fe 659 

and P in the bulk sediments (Fig. 7b). Moreover, it is known that rapidly formed Fe oxyhydroxides at 660 

pH>6.5 can precipitate without significant As adsorption to the fresh surfaces (Peters 2000). 661 



 25 

Relatively high pH should have prevailed during weathering due to calcite dissolution from the 662 

original facies, leading to fast and ubiquitary precipitation of Fe coatings without elevated As around 663 

quartz grains. Nevertheless, when it came to formation of Fe concretions in the course of ongoing 664 

oxidation, arsenic was favoured for adsorption over other elements. Continuous replenishment of Fe 665 

made sure that fresh Fe hydroxide precipitates constantly offered new reactive surfaces for arsenate 666 

complexation, while oxyhydroxides slowly aged, i.e. polymerization led to higher degrees of 667 

crystallinity. This is supported by As being dominantly present in hardly extractable fractions in 668 

concretions, whereas higher proportions of NH4-oxalate soluble As were detected for the non-669 

concretion sediments (Fig. 6b). In this late stage of the weathering process, buffer function of calcite 670 

probably became unimportant because of calcite supply running short. This led to decreasing pH 671 

values, allowing for slower Fe precipitation and thereby higher As accumulation (Peters 2000). It can 672 

be assumed that calcite depletion was a quite rapid process, because even in the redox transition zone 673 

tapped by the borehole, calcite was depleted by 95 %, compared to the reduced deeper sediments, 674 

while glauconite and pyrite contents remained on the same level. Calcite dissolution in this zone may 675 

also provide CO3
2- for the observed intensified siderite formation (Fig. 3). In consequence, large 676 

amounts of Fe and As would still have been available for precipitation after the period of pH 677 

buffering. This genetic model would explain the heterogenous As distribution in the sediments and 678 

allocate the formation of rather punctiform high As enrichments to a late stage of the weathering 679 

process.   680 

 681 

4.3 Implications for potential As remobilization 682 

4.3.1 Jurassic sediments 683 

Presently, groundwater milieu around the former quarry Kahlenberg is oxidizing. An artificial lake, 684 

located 1 km downstream of the quarry in highly conductive Quaternary gravels (K = 1*10-2 – 1*10-3 685 

m/s) is in proven hydraulic contact with the Jurassic Fe ores. Nevertheless, transport of As or other 686 

contaminants was not detected so far (LGRB 2001), and Fe concentrations are constantly below 0.02 687 

mg L-1 in wells (information from local water supplier), indicating no output from the ores. This is in 688 
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good agreement with general hydrochemical conditions in Middle Jurassic aquifers of the region (Tab. 689 

6). Average readily (NH4H2PO4-) soluble As was calculated for UOL, LOL and HEL, applying 690 

thickness-weighted mean values, to be 4.8 µg g-1. Assuming a change to reducing redox conditions, 691 

the average short- to medium-term mobilizable As amount (steps 1-3) would be 15.9 µg g-1. With an 692 

average density of 3.3 g cm-3 (calculated for an average mineral composition), this would equal ~16 g 693 

m-3 of easily soluble As and ~52 g m-3 of potentially soluble As in the ores. Although it was shown 694 

that As is mainly hosted by Fe ooids (chapter 4.1.1), it cannot be excluded that a minor part of reactive 695 

As is present in the matrix, since SEP analysis was conducted for whole rock samples. Nevertheless, 696 

this proportion seems to be negligible as no As was found in downstream groundwater. To access the 697 

pool of potentially mobile As, i.e. to make contact with As-rich Fe ooids, water would have to solve 698 

the calcite matrix first and then would only be successful in leaching As when bringing reducing 699 

conditions along. Both is hardly possible under present physico- and hydrochemical conditions in the 700 

aquifer, which is supported by very low Fe and As background values in groundwater (Tab. 6). The 701 

risk of As remobilization is estimated to be generally insignificant under present conditions because of 702 

an oxidizing and circumneutral groundwater milieu, arsenic being trapped in hardly extractable 703 

mineral fractions and the “protection function” of the As-poor calcite matrix.  704 

 705 

Table 6: Typical groundwater chemistry in the s tudied aquifers. 706 

 707 

4.3.2 Tertiary sediments 708 

Step 1-soluble As in the reduced part of the Grafenberg-layers is 0.8 µg g-1 on average, leading to an 709 

amount of ~1.8 g m-3 sediment. It was shown in chapter 4.1.2 that As in these sediments is largely 710 

hosted by pyrite. Thus, it must be assumed, at least for a worst case szenario, that sediment bulk As is 711 

potentially mobilizable when oxidizing conditions arise. In such an aquifer milieu, pyrite can dissolve 712 

rapidly and thereby release its As to solution (Jones and Pichler 2007). This process may even be 713 

accelerated, relative to pure pyrite, when significant As contents are present in the lattice (Savage et al. 714 

2000). Thus, an As content of 11.6 µg g-1 is potentially mobilizable, corresponding to ~27 g m-3 715 

sediment. Mäurer and Wisotzky (2007) found that present groundwater milieu in the vicinity of the 716 
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sampled borehole is reducing below a depth of ~35-40 m below ground surface, thus correlating well 717 

with the proposed redox transition zone derived from geochemical results of this study. Below that 718 

depth, water is undersaturated with respect to Fe(OH)3 and around SI=0 for FeCO3, both change to 719 

significant oversaturation around 40 m. This data modelled by Mäurer and Wisotzky (2007) is in good 720 

agreement with the mineralogical findings in this work. Consequently, pyrite is rather stable and thus 721 

should not be an active As source under the given conditions. Nevertheless, in spite of their rather low 722 

hydraulic conductivity of 4.2*10-5 m/s on average (Mäurer and Wisotzky 2007), the Oligocene 723 

sediments are used for drinking water extraction. In a pumping well near the sampled outcrops, the 724 

groundwater table is lowered by up to 25 m during pumping. It was described in chapter 1.2.2 that the 725 

depth of the paleo-redox boundary is variable in the study area, but mostly around 20-30 m below 726 

ground surface. Therefore, groundwater extraction might change redox conditions to rather oxidizing 727 

in the top of the reduced primary facies, thus enabling Fe(II) phases dissolution and output of Fe and 728 

hosted As into solution. It is unlikely that this happened in case of the mentioned pumping well, with 729 

the raw water showing stable Fe concentrations and As constantly below the detection limit 730 

(information from local water supplier). Nevertheless, the redox boundary should be considered when 731 

constructing and operating pumping wells in the area. A clear positive correlation between Fe and SO4 732 

as well as an increase of both parameters in deep wells of one waterworks in the study area since the 733 

start of water extraction from the Grafenberg-layers as described by Mäurer and Wisotzky (2007) hints 734 

towards successive pyrite oxidation and thus, potential As mobilization. Although no critical As 735 

concentrations have been measured so far, continuous groundwater monitoring for As and other 736 

potential contaminants is mandatory. An additional problem arises from the surface input of 737 

agricultural nitrate being transported to deeper aquifers and triggering pyrite oxidation therein. This 738 

phenomenon was described by Cremer et al. (2003) for a fluvial Pliocene aquifer in the vicinity of the 739 

study area. They measured groundwater As concentrations up to 130 µg L-1 and identified pyrite as the 740 

As source. It has also been shown from other regions that anthropogenic disturbance of subsurface 741 

redox conditions in an aquifer containing pyrite as a trace mineral and yielding average bulk sediment 742 

As even below the values in this work, can lead to significantly elevated As concentrations in 743 

groundwater (Price and Pichler 2006).         744 
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Due to the very heterogenous element distribution and limited number of samples in the upper part, 745 

calculations for potential As mobilization must be considered a rough estimate. In the oxidized facies, 746 

unconsolidated sands show an average of 0.9 µg g-1 step 1-soluble As, corresponding to ~2.2 g As per 747 

m3 sediment. For Fe hydroxide concretions, the NH4H2PO4-soluble As is 8.9 µg g-1 on average, 748 

resulting in ~28 g m-3. Assuming a concretion proportion of 1 % of the total sediment, concluded from 749 

own observations in outcrops and earlier geological descriptions (Quaas 1917), an average value for 750 

bulk oxidized sediment may be calculated: 2.5 g m-3. Thus, ~12 % of the total easily mobilizable As in 751 

bulk sediments is contributed by concretions. Conducting these calculations for potentially short- to 752 

medium-term soluble As, sands yield 5.5 µg g-1 (~12 g m-3) and concretions 20.8 µg g-1 (~67 g m-3) on 753 

average. Bulk sediment would have 12.6 g m-3. Here, concretions contribute only ~5 % to the 754 

potentially mobilizable As pool. This can be attributed to the higher degree of hydroxide crystallinity 755 

as indicated in chapter 4.2.2. Calculated As values for concretions are very similar to those established 756 

for the Jurassic Fe ores (chapter 4.3.1). But in contrast to those, the As bound to concretions is much 757 

better available for water-rock-interaction as the sands hosting the Fe accumulations represent an 758 

unconsolidated pore aquifer allowing for larger contact areas. Surface-bound As in the bulk oxidized 759 

part (2.5 g m-3) is slightly higher than in the reduced facies (1.8 g m-3). The larger pool of short- to 760 

medium-term mobilizable As in the near-surface sediments, however, will only be accessible for 761 

solution if reducing groundwater conditions occur. Therefore, depth-dependent Eh monitoring in wells 762 

is recommendable for water suppliers.   763 

Comparing both redox facies of the Grafenberg-layers in terms of risk assessment for As 764 

remobilization from sediments, the reduced deeper material has a higher potential for causing elevated 765 

As concentrations in groundwater. It is more probable for pyrite-oxidizing conditions to reach the 766 

primary facies as a consequence of groundwater extraction or nitrate input then for the As hosted in 767 

the oxidized facies to be dissolved under reducing conditions (the latter may be imaginable in the 768 

course of rising groundwater table or input of organic matter into the system triggering 769 

microbiologically induced reduction). Moreover, the reduced part hosting As-laden pyrite in a 770 

relatively homogenous distribution would act as an As area source, thus potentially releasing bulk 771 

sediment As to solution. In contrast, the source function in the oxidized facies is rather punctual. 772 
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Showing partly very high As accumulations, the hosting Fe hydroxide concretions occur rather locally. 773 

Nevertheless, they contribute a measurable proportion to bulk sediment reactive As, yet the absolute 774 

addition is not significant enough to substantially rise this pool. Additional information on the 775 

distribution, amount and geochemistry of these Fe concretions would be needed to better quantify their 776 

impact on As behaviour in the study area.  777 

The groundwater background As concentration in the study area is 1.5 µg L-1 (LUA NRW and 778 

MUNLV 2000; Tab. 6). If we assume that this is caused by solution of surface-bound As from 779 

Tertiary rocks (~2 g m-3), we can calculate that, referring to 1 m3 sediment (with a known effective 780 

drainage porosity of nf=0.13; Mäurer and Wisotzky 2007), approximately 10000 pore volumes are 781 

needed to produce the background concentration. Further assuming bulk As solubility (~27 g m-3) in 782 

the reducing sediments, i.e. generation of an oxidizing milieu, this water volume would produce an As 783 

groundwater concentration of ~21 µg L-1, thus exceeding threshold guidelines by more than factor 2. 784 

Again, this calculation must be regarded a rough estimation which, nevertheless, points to the 785 

significant impact of changing redox conditions on As concentration in groundwater.  786 

 787 

5 Conclusions 788 

Two different As accumulation processes have been identified in Jurassic Fe ores (Aalenian/Bajocian) 789 

at the margin of the Upper Rhine Graben and in Tertiary sediments (Grafenberg-layers, Chattian) in 790 

the Lower Rhine Embayment. The primal As input into the study areas, both of which are 791 

characterized by shallow marine deposition, was accomplished by terrestrial weathering of Variscan 792 

mainlands (first-order sources). Primary, i.e. syndepositional, enrichment is responsible for the 793 

Jurassic Fe ores showing high As which is hosted by mainly goethite ooids (first-order sinks/second-794 

order sources). While these ooids were slowly formed during condensed sedimentation under mainly 795 

oxidic conditions, thereby offering reactive surfaces for accumulation, arsenic in the Oligocene 796 

sediments was enriched in a reducing milieu and is mainly hosted by framboidal pyrite (first-order 797 

sinks/second-order sources). Secondary As accumulation, i.e. during element redistribution in a late 798 

stage of a paleo-redox event in the late Tertiary, led to partly high As in Fe hydroxide concretions 799 
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(second-order sinks/third-order sources) occurring in near-surface Tertiary sands. Both accumulation 800 

processes favoured As enrichment over other contaminants, underlining preferential As sorption on Fe 801 

hydroxides. In spite of higher bulk As in oxidic rocks, i.e. Jurassic ooidic ores and Fe oxihydroxide 802 

concretions in the upper Tertiary redox facies, the mainly pyrite-hosted As pool within the reduced 803 

deeper part of the Grafenberg-layers has been shown to be the most probable candidate for potentially 804 

creating elevated As concentrations in groundwater, especially if the present redox milieu is 805 

anthropogenically disturbed through groundwater extraction.   806 

This study highlights the importance of geological processes millions of years ago for present day 807 

distribution (sources and sinks) and availability of potential groundwater contaminants, especially As. 808 

Moreover, it underlines the necessity to assess risks arising from single contaminants not on the basis 809 

of bulk contents alone, but also to account for the element fractionation as well as the present 810 

hydrogeochemical situation. The comprehension and distinction of geological As accumulation 811 

processes provides the basis for understanding and forecasting As behaviour in natural systems.    812 
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