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Abstract. Recently a robustness notion for matching problems based on the con-
cept of a (a, b)-supermatch is proposed for the Stable Marriage problem (SM).
In this paper we extend this notion to another matching problem, namely the Sta-
ble Roommates problem (SR). We define a polynomial-time procedure based on
the concept of reduced rotation poset to verify if a stable matching is a (1, b)-
supermatch. Then, we adapt a local search and a genetic local search procedure
to find the (1, b)-supermatch that minimises b in a given SR instance. Finally, we
compare the two models and also create different SM and SR instances to present
empirical results on the robustness of these instances.

1 Introduction

Robustness to change is an important property that has a variety of definitions in differ-
ent settings [15]. There exist many robustness notions within the context of matching
problems. These robustness notions mostly focus on handling uncertainty and erroneous
data in the input [3,1,2,12]. Genc et al. introduced a novel notion of robustness for the
Stable Marriage problem (SM) where the robustness of a solution refers to its capability
to be repaired at a small bounded cost in case of an unforeseen event [4]. The notion
of (a, b)-supermatches differs from the other robustness notions in this context since it
specifies a degree of repairability. This property is often referred as fault-tolerance. The
(a, b)-supermatch concept defines the notion of robustness for matching problems by
using the fault-tolerance framework [8,9].

The SM is defined by a set of men and a set of women, each of which has a set of
preferences over people of opposite sex. The task is to find a (monogamous) matching
between men and women that is stable. A matching is said to be stable if there are no
two pairs that are not matched to each other, but they prefer being together than being
with their current partners. The robust variant of the problem is called Robust Stable
Marriage (RSM) [4], in which the robustness of a stable matching is measured by the
minimum number of changes required to obtain another stable matching in the case of
break-up of some pairs. If a pair appears in all the stable matchings, the pair is said to be
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fixed, otherwise, non-fixed. An (a, b)-supermatch is a stable matching such that if any a
non-fixed agents (men/women) break-up, it is possible to find another stable matching
by changing the partners of those a agents and also changing the partners of at most b
others. The previous work on the RSM includes the proposal of the problem, a complex-
ity study, a polynomial-time verification procedure for a given (1, b)-supermatch, and
three different models (constraint programming, genetic algorithm, local search) to find
the (1, b)-supermatch that minimises b for a given SM instance [6,4]. We investigate in
this paper this robustness concept further on a generalised version of the SM, namely
the Stable Roommates problem (SR). The Stable Roommates problem is a one-sided
generalisation of SM, where any two agents regardless of their gender can be matched.
We define the Robust Stable Roommates problem (RSR) analogous to the RSM. To the
best of our knowledge, there is no previous research on finding the (a, b)-supermatches
of the SR.

The motivation behind studying RSR is due to the large applicability of SR and the
importance to handle the dynamism of the real world. Take the example of P2P net-
works where peers (computers for instance) are connected to each other for file sharing
purposes [14]. Each peer has a preference list towards the other peers and a matching
that respect stability is required. However, as the network evolves during time, peers
continuously seek new partners. That is, if a peer that provides the file loses the connec-
tion, an alternative peer is needed for downloading a file. In this situation, we have have
to maintain stability with possibly the minimum changes to the current solution. An
(a, b)-supermatch guarantees finding other peers to the broken ones at a small number
of additional changes while preserving stability.

The paper is organised as follows: In Section 2, we give a formal background and
introduce the robust stable roommates problem. Then, in Section 3, we show that one
can verify in polynomial time if a given stable matching (in the SR context) is a (1, b)-
supermatch. Next, we adapt a local search procedure and a hybrid (genetic local search)
model for finding robust solutions in Section 4. Finally, we present in Section 5 our
empirical study.

2 Background and Notation

The Stable Roommates problem (SR) consists of a set of 2×n agents, where each agent
has a preference list in which he/she ranks all other agents in strict order of preference.
In this context, given a set of people P , a matching corresponds to a partition of P into
disjoint pairs (or partners). A matching is stable if it admits no blocking pairs. A pair
{pi, pj} blocks a matching if: pi is unassigned or prefers pj to his/her current partner, or
pj is unassigned or prefers pi to his/her current partner. The solution to an SR instance
is a stable matching. If such a solution does not exist, then the instance is unsolvable.
A pair is stable if it appears in some stable matching. If a pair appears in all stable
matchings, it is called a fixed pair. If a person p has at least two different partners among
all stable matchings, p is said to be non-fixed. We measure the distance between any
two stable matchings M,M ′ by the number of different pairs d(M,M ′) =| M \M |.
The stable matching M ′ among all the stable matchings of the instance that has the
minimum distance to M is said to be the closest stable matching to M.
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Irving defines an O(n2) procedure to find a solution to SR or to report if none
exists [10]. The procedure consists of two phases. Let us first define some notations
to describe these phases. A preference table (denoted by T ) is, for a given problem
instance, a set of preference lists for which zero or more entries have been deleted.
We use Tinit to denote the initial preference table. During the two phases, some pairs
are removed from Tinit. We denote the preference list of a person pi in a table T by
LT (i). Let fT (pi), sT (pi), lT (pi) denote the first, second and last entries of LT (i). The
first phase is based on each person proposing to the first available person in their lists
starting from Tinit until every person has made a proposal that has been accepted, i.e.
became semi-engaged. If a person pi becomes semi-engaged to pj , all pairs {pj , pk}
such that pj prefers pi to pk are deleted from the table. The table obtained after applying
the Phase 1 algorithm is called the Phase-1 table and is denoted by T0.

The second phase of the algorithm is based on finding and eliminating rotations
starting from T0. A rotation ρ is a circular list denoted as ρ = (x0, y0), (x1, y1), . . . ,
(xr−1, yr−1), where all xi, yj ∈ P . Each rotation has the property that yi = fT (xi)
and yi+1 = sT (xi) in a table T for all i, 0 ≤ i ≤ r − 1, where i+1 is taken modulo r.
The set of people {x0, . . . , xr−1} is called the X-set of ρ, denoted by X(ρ). Similarly,
{y0, . . . , yr−1} is called the Y-set of ρ, denoted by Y (ρ). Additionally, given a set of
rotations R, X(R) = ∪ρ∈RX(ρ). Similar for the Y-set. The elimination of a rotation
ρ from a table T means for each pair {pi, pj}, where pi = xm and pj = ym and
(xm, ym) ∈ ρ, the deletion of {pi, pj} and all pairs {ym, z} such that ym prefers xm−1
to z from T . In this case, ρ is said to be exposed on T and the table after eliminating ρ
is denoted by T/ρ. If after Phase 1 or Phase 2, all lists in T contain exactly one entry,
then T represents a stable matching. Note that sometimes we use (pi, pj) and (xm, ym)
interchangeably. The notation (xm, ym) is used for denoting the position of the pair
(pi, pj) in ρ. Lemma 4.4.1 from [7] states that {pi, pj} is a stable non-fixed pair if and
only if (pi, pj) or (pj , pi) is in a non-singular rotation.

There are two types of rotations: singular and non-singular. A rotation ρ = (x0, y0),
(x1, y1), . . . , (xr−1, yr−1) is called a non-singular rotation if ρ̄ = (y1, x0), (y2, x1), . . . ,
(y0, xr−1) is also a rotation. In this case, ρ and ρ̄ are called as duals of each other. If a
rotation does not have a dual, then it is a singular rotation. We denote by TS the table
where all singular rotations are eliminated from T0. A rotation ρ′ is said to precede
another rotation ρ (denoted by ρ′ ≺ ρ) if ρ′ is eliminated for ρ to become exposed. In
this case, we say ρ′ is a predecessor of ρ and ρ is a successor of ρ′. A rotation ρ′ is
an immediate predecessor of ρ, and ρ is an immediate successor of ρ′, if ρ′ ≺ ρ and
there does not exist a ρ∗ such that ρ′ ≺ ρ∗ ≺ ρ. All predecessors and successors of a
rotation, not necessarily immediate, are denoted by N−(ρ) and N+(ρ). The set of both
singular and non-singular rotations under ≺ defines the roommates rotation poset. The
set of non-singular rotations under ≺ defines the reduced rotation poset and is denoted
by Π = (V, E). We refer to any two rotations as incomparable if none of them precede
the other one, comparable otherwise. Let us illustrate these concepts on an SR instance
I. We use a sample instance of 10 people from page 180 in [7]. Fig. 1 represents the TS
of I. Fig. 2 represents the reduced rotation poset of I, where the pairs involved in the
rotations are given next to their corresponding rotations for convenience.
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Fig. 1. The TS for an SR in-
stance I of size 10.

pi LTS (i)

1 3 4 7
2 4 3 8 9
3 5 6 2 1
4 9 1 6 2
5 7 10 8 3
6 8 3 4 10
7 1 5
8 10 2 5 6
9 2 10 4

10 6 5 9 8

Fig. 2. Reduced rotation poset of I given in Table 1.

ρ3 ρ5 ρ4

ρ7 ρ6 ρ7 ρ6

ρ4 ρ5 ρ3

(1, 3), (2, 4) (8, 10), (9, 2) (3, 5), (10, 6)

(2, 3), (6, 8)

(9, 10), (1, 4), (5, 7) (3, 6), (8, 2)

(4, 9), (7, 1), (10, 5)

(6, 3), (5, 10) (2, 8), (10, 9) (4, 1), (3, 2)

Table 1. A list of all the stable matchings and their corresponding complete closed subsets of I.

M1 = {(1, 3), (2, 4), (5, 7), (6, 8), (9, 10)} S1 = {ρ̄3, ρ4, ρ5, ρ6, ρ7}
M2 = {(1, 7), (2, 8), (3, 5), (4, 9), (6, 10)} S2 = {ρ3, ρ̄4, ρ5, ρ̄6, ρ̄7}
M3 = {(1, 4), (2, 9), (3, 6), (5, 7), (8, 10)} S3 = {ρ3, ρ4, ρ̄5, ρ6, ρ̄7}
M4 = {(1, 4), (2, 3), (5, 7), (6, 8), (9, 10)} S4 = {ρ3, ρ4, ρ5, ρ6, ρ7}
M5 = {(1, 4), (2, 8), (3, 6), (5, 7), (9, 10)} S5 = {ρ3, ρ4, ρ5, ρ6, ρ̄7}
M6 = {(1, 7), (2, 3), (4, 9), (5, 10), (6, 8)} S6 = {ρ3, ρ4, ρ5, ρ̄6, ρ7}
M7 = {(1, 7), (2, 8), (3, 6), (4, 9), (5, 10)} S7 = {ρ3, ρ4, ρ5, ρ̄6, ρ̄7}

A subset of the rotations in Π , containing one of each dual rotations and all their
predecessors, is called a complete closed subset, denoted by S. There exists a 1-1 cor-
respondence between the complete closed subsets of Π and the stable matchings of
the underlying instance [7]. Any stable matching can be obtained by eliminating one
of each dual rotations starting from TS . A rotation ρ is said to eliminate {pi, pj} if
there exists a table T such that {pi, pj} ∈ T and {pi, pj} 6∈ T/ρ. On the other hand,
a rotation ρ is said to produce {pi, pj} if there exists a table T such that |LT (i)| > 1,
|LT (j)| > 1, LT/ρ(i) contains only pj , and LT/ρ(j) contains only pi. We use the term
flipping ρ from S as the process of removing ρ ∈ S from S and adding its dual ρ̄ to S. A
neighbour rotation ρ is ρ 6∈ S and either the rotation has no predecessors (N−(ρ) = ∅)
or for all predecessors ρ′ ∈ N−(S), ρ′ ∈ S. The set N(S) denotes the set of neighbour
rotations. The set of all sink nodes of the graph induced by S is referred as the sink
rotations of S, denoted as L(S). Table 1 presents all the 7 stable matchings of I given
in Fig. 1 and their corresponding complete closed subsets.

Throughout the paper, we denote byM a given stable matching, and its correspond-
ing complete closed subset by S. If there are any subscripts or superscripts for M such
as M∗i , then they are applied to the corresponding complete closed subset (i.e. S∗i ).
Lemma 1 and 2 are included here to be used in our proofs later.

Lemma 1 (Lemma 4.1.1 [7]). Given an instance of the stable marriage problem in-
volving n men and n women, there is an instance (in fact there are many instances) of
the stable roommates problem involving those 2n persons such that the stable room-
mates matchings are precisely the stable matchings for the original SM instance.
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Lemma 2 (Lemma 4.3.7 [7]). If ρ, σ are non-singular and π is a singular rotation,
then: (1) ρ 6≺ ρ̄; (2) ρ ≺ σ ⇐⇒ σ̄ ≺ ρ̄; (3) τ ≺ π =⇒ τ is singular.

Robust Stable Roommates: We refer the problem of finding an (a, b)-supermatch to a
given SR instance as the Robust Stable Roommates problem (RSR). A stable matching
of an RSR instance is called an (a, b)-supermatch if any a non-fixed pairs do not want
to be partners anymore (i.e. leave the stable matching), it is possible to find another
stable matching by changing the partners of the people involved in those a pairs and at
most b other pairs.

Definition 1 ((a, b)-supermatch). Given an SR instance I, and two positive integers
a, b ∈ N, a stable matching M of Iis said to be an (a, b)-supermatch if for any set
Ψ ⊆ M of non-fixed stable pairs, where |Ψ | = a, there exists a stable matching M ′

such that M ′ ∩ Ψ = ∅ and d(M,M ′) ≤ b+ a.

The intractability result of the RSM is lifted to the RSR as the SR is a generalisation
of the SM.

Theorem 1. RSR is NP-hard.

Proof. The proof is straightforward as it is possible to create an SR instance ISR from
any given SM instance ISM with the exact same stable matchings in polynomial-time
by padding every other person of the same sex to the preference list of each person (see
Lemma 1). Every (a, b)-supermatch in the ISM is also an (a, b)-supermatch in the ISR
and vice versa. Hence, RSR is NP-hard because RSM is NP-hard [6]. ut

3 Verification of (1, b)-supermatch in Polynomial Time

We prove in this section that checking if a stable matchingM is a (1, b)-supermatch can
be done in polynomial time. Indeed, we show in Theorem 3 how to construct the closet
matching to M if any non-fixed pair in M wants to leave.

In order to show our main result, we first prove in Theorem 2 that any non-fixed
pair can be:(1) produced by a unique rotation and eliminated by another one; or (2)
eliminated by two different rotations and produced by two others (see later Example 1).
In the first case, we shall denote by ρe the elimination rotation and by ρp the production
rotation. In the second case, we shall denote by ρp1, ρp2 the two production rotations
and by ρe1, ρe2 the two elimination rotations.

We assume w.l.o.g that the input instance admits at least two stable matchings. For
any non-fixed stable pair (pi, pj), there are two possible cases to consider:

Case 1: (A) fTS
(i) = pj and lTS

(j) = pi, or (B) lTS
(i) = pj and fTS

(j) = pi;
Case 2: Otherwise.

Case 1 is a special case indicating that if one of the persons in the pair is the other
ones’ most preferred person in TS (respectively, the other one is the least preferred
person in TS). Note that, in both cases LTS

(i) > 1 and LTS
(j) > 1, because the pairs

are non-fixed. Later, we refer to these cases for identifying scenarios. In Lemma 3, we
show how to identify the elimination rotation(s) for a given pair regardless of its case.
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Lemma 3. A non-fixed stable pair {pi, pj} is eliminated by a rotation ρ if and only if
(pi, pj) ∈ ρ or (pj , pi) ∈ ρ.

Proof. → Let ρ = (x0, y0), (x1, y1) . . . , (x|ρ|−1, y|ρ|−1) be a rotation that eliminates
{pi, pj}. Observe first that ρ is non-singular (otherwise {pi, pj} is not stable). Recall
that the elimination of ρ from a table T means for each pair (xm, ym) ∈ ρ, the deletion
of {xm, ym} and all pairs {ym, z} such that ym prefers xm−1 to z from T . Table 2 gives
an illustration of the preferences of xm and ym. The eliminating ρ moves xm from ym to
ym+1 and deletes some {ym, z}. In a similar way, eliminating ρ̄ moves ym from xm−1
to xm and deletes some {xm, z′}. Since every close complete subset contains either ρ
or ρ̄, then any pair {ym, z} and {xm, z′} cannot be part of any solution. Therefore, if
ρ eliminates {pi, pj} and {pi, pj} /∈ ρ then {pi, pj} is not stable. This contradicts the
fact that our pair {pi, pj} is a non-fixed stable pair.

Table 2. An illustration of the preferences

p Preference lists
. . . . . .
xm . . . , ym, z

′, ym+1 . . .
. . . . . .
ym . . . , xm−1, z, xm, . . .
. . . . . .

← By the definition of eliminating a rotation ρ from a table T , where (pi, pj) ∈ ρ,
the elimination results in the deletion of pj from pi’s list. Similarly, if (pj , pi) ∈ ρ then
it results in the deletion of pi from pj’s list. ut

Lemma 4 identifies the production rotations.

Lemma 4. If a non-fixed stable pair {pi, pj} is eliminated by ρe, then {pi, pj} is pro-
duced by the dual of it, ρp = ρ̄e.

Proof. A rotation is said to produce {pi, pj} if eliminating it from a table T reduces
LT/ρ(i) to a single entry, namely to pj and LT/ρ(j) to pi. We prove the existence of
the production rotations over the two cases (Case 1 and Case 2) identified above.

We have two sub-cases in Case 1. First case is when fTS
(i) = pj , lTS

(j) = pi. In
order to reduce pi’s list to only pj , we need a rotation that moves pi from his/her second
best choice up to the first choice. We refer to this operation as limiting pi from right.
Similarly, to reduce the pj’s list to only pi, we need a rotation that moves pj from his/her
second least-preferred person to the least preferred person. We refer to this operation as
limiting pj from left. Referring back to Table 2 for notation, the production rotation ρp of
the pair {pi, pj} = (xm, ym) must contain the pair (ym+1, xm) ∈ ρp to limit xm from
right. Additionally, it must contain (ym, xm−1) to limit ym from left. To illustrate, the
production rotation has the shape: ρp = . . . , (ym, xm−1), (ym+1, xm), . . .. Note that,
each ordered pair can only appear in exactly one rotation. Observe that, the dual of ρp
contains the pair (xm, ym) by definition of dual. By Lemma 3, we know that the rotation
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that contains (xm, ym) is the elimination rotation of the pair {pi, pj}. Therefore, ρp =
ρ̄e The proof for the second sub-case is similar, where (ym, xm) ∈ ρe.

For a pair {pi, pj} of Case 2, each person has both more and less preferred people
in their lists. Therefore, in order to produce a pair, their lists must be limited from both
left and right. Let ρp1 denote the rotation that limits pi from left and pj from right, and
ρp2 denote the rotation that limits pi from right and pj from left, respectively. Let the
preference lists for the pair {pi, pj} denoted by LTS

(i) = [. . . , ym−1, ym, ym+1] and
LTS

(j) = [. . . , xm−1, xm, xm+1] where {pi, pj} = (xm, ym). The pair (xm, ym−1)
must be in ρp1 to limit pi from left and (xm+1, ym) be in ρp1 to limit pj from right.
Additionally, the pair (ym+1, xm) must be in ρp2 to limit pi from right and (ym, xm−1)
to limit pj from left. Note that, the dual of ρp1 contains (ym, xm), the dual of ρp2
contains (xm, ym) by the definition of a dual rotation. By Lemma 3, we know these
rotations are elimination rotations of the pair {pi, pj}.

Note that the two rotations ρp1 and ρp2 do not require one of them to be eliminated
from the table first; they are incomparable. Therefore, depending on the order of elimi-
nation, both of them are production rotations. ut

We sum up the findings above for the non-fixed stable pairs. If a pair is of Case
1, then there exists only one elimination rotation for this pair and only one produc-
tion rotation as the dual of the elimination one. Because the preference list needs to be
limited in only one direction. However, for the pairs of Case 2, there exist two elimi-
nation rotations for this pair, and also two other production rotations. Observe that, for
each non-fixed stable pair {pi, pj} in a stable matching M, the corresponding complete
closed subset of M contains all production rotations of {pi, pj}. It is important to note
that, especially for the pairs of Case 2, including one production rotation in the com-
plete closed subset and not the other one, results in producing other partners for that
pair. Subsequently, Theorem 2 is an immediate result of Lemmas 3 and 4.

Theorem 2. Let {pi, pj} be a non-fixed stable pair. If {pi, pj} is of Case 1, then there
exists a unique elimination rotation ρe, where (pi, pj) ∈ ρe or (pj , pi) ∈ ρe, and a
unique production rotation ρp, where ρp = ρ̄e. Otherwise (Case 2), there exist two
different elimination rotations ρe1 and ρe2, where (pi, pj) ∈ ρe1, (pj , pi) ∈ ρe2 and
two rotations ρp1 = ρ̄e1, ρp2 = ρ̄e2 that produce the pair.

Let SP denote the set of all the complete closed subsets for the underlying SR
instance. Lemma 5 gives a characterisation for the complete closed subsets.

Lemma 5. Let S ∈ SP . For each sink rotation ρ of S, the set S \ {ρ} ∪ {ρ̄} ∈ SP .

Proof. By definition of closed subset, every predecessor ρ′ ∈ N−(ρ) is in S. Since ρ
is a sink rotation, any successor ρ∗ ∈ N+(ρ) is not in S. Therefore, by definition of
the complete closed subset, we have ρ̄∗ ∈ S and ρ̄ is not in S. Using Lemma 2, we
know that ρ̄∗ ≺ ρ̄. Hence, all predecessors of ρ̄ are already in S, making ρ̄ a neighbour
rotation and results in S \ {ρ} ∪ {ρ̄} ∈ SP . ut

The distance between two stable matchings d(M,M ′) is previously defined in Sec-
tion 2 as the number of different pairs betweenM andM ′. Observe that the distance can
be calculated by also using their corresponding complete closed subsets. If S\S′ = {ρ},
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it means ρ ∈ S and ρ̄ ∈ S′. We know that, X({ρ}) = Y ({ρ̄}) and Y ({ρ}) = X({ρ̄}).
Therefore, between M and M ′, only the people in ρ (or ρ̄) have different partners. This
can also be generalised to a set of rotations. Hence, the distance can also be denoted as
d(S, S′) = |X(S \ S′) ∪ Y (S \ S′)|/2. Note that d(S′, S) = d(S, S′).

Lemma 6 identifies the closest stable matching to a stable matching M, when a
rotation from its corresponding complete closed subset is to be removed.

Lemma 6. Given a stable matching M and its corresponding complete closed subset
S, if ρ ∈ S is a rotation to remove from S, the closest stable matching M ′ to M such
that ρ 6∈ S′ is found by the formula4:

C(S, ρ) = S′ = (S \ ({ρ} ∪N+(ρ))) ∪ {ρ̄} ∪
⋃

ρ∗∈N+(ρ)

ρ̄∗ (1)

Proof. The proof of the defined set S′ being a complete closed subset is obvious by
using Lemma 2 and Lemma 5 as flipping a sink rotation of S yields in another complete
closed subset. However, if ρ is not a sink rotation in S, we must flip all the successors
of ρ to obtain a complete closed subset.

Let M∗ denote the stable matching after flipping ρ ∈ S. Then, d(M,M∗) =
d(S, S∗) = |X({ρ}) ∪ Y ({ρ})|/2. Now, let M∗ denote the stable matching after flip-
ping both ρ, σ ∈ S. Then, d(M,M∗) = |X({ρ}) ∪ Y ({ρ}) ∪X({σ}) ∪ Y ({σ})|/2.
Observe that, flipping more rotations can only increase the distance between matchings.
In Formula 1, the required number of flips is minimum. Therefore the function C(S, ρ)
returns the closest stable matching to M when ρ ∈ S to be removed from S. ut

Finally, Theorem 3 concludes how to find the closest stable matching M ′ to M if
{pi, pj} ∈M wants to leave the M.

Theorem 3. Given a stable matching M and a pair {pi, pj} to leave M, the closest
stable matching M ′ to M is identified by its corresponding S′ using the Formula 1 as
follows:

1. If Case 1, then S′ = C(S, ρp).
2. If Case 2, let M1 and M2 be the two stable matchings s.t. S1 = C(S, ρp1) and
S2 = C(S, ρp2). Then S′ = S1 if d(M,M1) < d(M,M2), otherwise S′ = M2.

Proof. The proof is immediate from Theorem 2 and Lemma 6. ut

In order to verify if a given M is a (1, b)-supermatch, all closest stable matchings
to the given stable matching are found under the assumption that each non-fixed pair
wants to leave the stable matching, one at a time. For each pair, its production rotation
is identified and then Theorem 3 is applied to find the closest stable matching. Among
all the closest stable matchings, the matching that results in the maximum distance to
M sets the robustness of M, i.e. b = d(M,M ′)−1, where 1 denotes the pair that wants
to leave.

4 The parentheses are used to indicate priority.
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Example 1. Computing robustness Let us calculate the closest matching to M6 given
in Table 1. In Table 3, we identify the cases, and the production/elimination rotation(s)
for assuming each pair leaves the M6 at a time, and we apply Theorem 3 to find the
robustness. The pair that has the maximum cost to be repaired sets the robustness value
of the matching. Therefore, for this case, the robustness of M6 is 3.

Table 3. Computing the closest matching to M6

{pi, pj} Case ρp ρe C(S,ρ) S d(M,M ′) S′ b
{p1, p7} 1 ρp = ρ̄6 ρe = ρ6 {ρ3, ρ4, ρ5, ρ6, ρ7} S4 4 S4 3

{p2, p3} 2 ρp1 = ρ7
ρp2 = ρ3

ρe1 = ρ̄7
ρe2 = ρ̄3

{ρ3, ρ4, ρ5, ρ̄6, ρ̄7}
{ρ̄3, ρ4, ρ5, ρ6, ρ7}

S7

S1

2
4

S7 1

{p4, p9} 1 ρp = ρ̄6 ρe = ρ6 {ρ3, ρ4, ρ5, ρ6, ρ7} S4 4 S4 3
{p5, p10} 2

ρp1 = ρ4
ρp2 = ρ̄6

ρe1 = ρ̄4
ρe2 = ρ6

{ρ3, ρ̄4, ρ5, ρ̄6, ρ̄7}
{ρ̄3, ρ4, ρ5, ρ6, ρ7}

S2

S1

3
4

S2 2

{p6, p8} 1 ρp = ρ7 ρe = ρ̄7 {ρ3, ρ4, ρ5, ρ̄6, ρ̄7} S7 2 S7 1

The production and elimination rotations of each pair can be identified in a prepro-
cessing step. We show that checking if a stable matching is a (1, b)-supermatch can be
performed in O(n×|V|) time after the O(n3log(n)) preprocessing step for an instance
where 2 × n people are involved. The preprocessing step consists in identifying the
rotations and building the reduced rotation poset (O(n3logn)) [7]; identifying all the
predecessors and successors of each rotation ρ (O(|V|2)); and identifying elimination
and production rotations for each pair {pi, pj}whenever applicable in (O(n2)). Given a
stable matching M, its corresponding complete closed subset S is found by finding and
adding the production rotation(s) of each pair and their predecessors into S by starting
from an empty set (O(n× |V|)). Conversely, given a closet complete S, M can be con-
structed by eliminating all the rotations in S from TS by respecting their precedence
order. The order is found by applying sorting (O(|V| × log|V|)). The main algorithm
is to compute for each pair in M, the closest stable matching M ′ by using Theorem 3.
Observe that computing the distance between two stable matchings takes O(n) time
and flipping a rotation takes a constant time. Moreover, the worst case of finding the
closest stable matching is to flip all the non-singular rotations in S, where the number
of all non-singular rotations is |V|/2. Therefore, this computation takes O(|V|) time.

4 Finding Robust Solutions to the SR

We consider in this section two meta-heuristic approaches to solve the problem of find-
ing a (1, b)-supermatch to a given Stable Roommates instance that minimizes the value
of b.

4.1 Local Search

Considering the structural similarities between the RSM and the RSR, we tailored the
local search model (LS) for the RSM, as it is shown that the LS model produces near
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optimal solutions for RSM and is better than the proposed genetic algorithm [4]. In
the generic LS model, there exists a neighbourhood N for the current solution. The
algorithm works by searching the neighbourhood of the current solution, finding the
best neighbour Mn in the neighbourhood and then proceeding the search by checking
the neighbourhood of Mn. The aim is to find the stable matching that has the minimum
b value. The search is restarted by a random stable matching at every few iterations
to avoid getting stuck at a local optimum. The search continues until a termination
criterion is met.

In our model, we have four termination criteria. The first one is a cut-off limit
limcutoff , which ”counts” the number of steps since the last best solution is found.
The second one is the depth limit limdepth, which indicates the depth of the neighbour-
hood search starting from a random stable matching. Another criterion is the optimality
opt, which indicates if the algorithm has already found a solution with b = 1. Finally,
we use a time limit limtime for each instance.

The procedure starts by creating a random stable matching Mc as follows. We first
mark all the non-singular rotations as available. Let A denote the set of rotations that
are available. Then, we randomly select a rotation ρ from A and add it to the initially
empty Sc. Subsequently, we remove ρ and ρ̄ from A. We also add all predecessors ρ′

of ρ that are not in Sc to Sc and remove ρ′ and ρ̄′ from A. This operation operates in a
loop until |Sc| = |V|/2. Once the complete closed subset Sc is found, its corresponding
stable matching is computed by eliminating all rotations in Sc from TS by respecting
their precedence order.

After creating a random stable matching Mc, the neighbourhood N of Mc is found
by checking all the sink rotations in Sc. By using Lemma 5, we know that flipping any
sink rotation in Mc creates another stable matching Mn, which we refer as a neighbour
of the Mc. The general procedure is the same as the one developed for the RSM [5].
In brief, the process starts by descending from the Mc by finding N of Mc. The next
iteration descends from the neighbour of Mc that has the lowest b value. This loop is
restarted every limdepth iteration by a random Mc. The stable matching that has the
minimum value of b as found during the search is returned as the solution.

The complexity of the LS procedure depends on the computation of the b values.
Finding neighbours is based on the identification of the sink rotations of Sc, where
there can be at most |V|/2 sink rotations and then a constant cost for flipping each
sink rotation. The best neighbour is identified after computing b values of |N | stable
matchings. This procedure takes O(k × n × |V| × |N |), where k is the number of
iterations and n is the number of non-fixed people.

4.2 Genetic Local Search (Hybrid)

Combining different search techniques to enhance the performance of a single model
is proven to improve solution quality and the models [13,18]. Genc et al. propose three
different models (constraint programming, local search and genetic algorithm) for find-
ing (1, b)-supermatches to the RSM in [4]. The results indicate that genetic algorithm
(GA) procedure has poor performance when compared to the LS. In this work, we con-
sider combining the two metaheuristics: the genetic algorithm and the local search to
provide a hybrid procedure. We denote this hybrid model as HB. The overview of the
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GA procedure we use in the HB model is the same as the one used for RSM (details
can be found in [5]).

The procedure begins by initialising a population of random stable matchings. Then,
the population is evolved by randomly selecting individuals from the population, apply-
ing crossover, searching for neighbours of the products of crossover, applying mutation.
This process is repeated until some termination criteria is met (no improvement, time-
limit exceeded, optimal solution found). The procedure below gives a pseudo-code of
the evolution phase of HB.

1: procedure EVOLUTION()
2: M1 ← SELECTION()
3: M2 ← SELECTION()
4: if M1 6= M2 then
5: (Mc1,Mc2)← CROSSOVER(M1,M2)
6: N ←FINDNEIGHBOURS(Mc1)
7: Mc1 ← BEST(N)
8: N ←FINDNEIGHBOURS(Mc2)
9: Mc2 ← BEST(N)

10: REFINE(Mc1,Mc2)
11: EVALUATION()
12: Mfit ← GETFITTEST(P )
13: Mm ← SELECTION()
14: rand← RANDOM(0, 1)
15: if Mm 6= Mfit and rand < pm then
16: MUTATION(Mm)

As can be seen from the procedure, the only LS enhancement to the GA algorithm
is the search for the neighbours of the stable matchings after crossover (see Lines 6-9).
Let Mc1,Mc2 be the two stable matchings produced by the crossover. We update Mc1

by its best neighbour after the neighbour search (same applies to the Mc2). Creating a
random stable matching and finding neighbours are already discussed in Section 4.1.

If the original methods from LS and GA as described in [5], where the evolution
phase is updated with the one here are used, we obtain the HB model for the RSM. In the
RSR model, only the crossover and mutation operations are different than the original
GA model defined for RSM. Instead of defining the crossover by adding rotations to the
closed subset or removing them as we did for the RSM, we use the terminology flip for
the RSR. Considering the Lemma 6, we define the crossover procedure for two stable
matchings M1,M2 as follows. First, we find a random rotation ρ1 ∈ S1, and a random
rotation ρ2 ∈ S2. If ρ1 /∈ S2, then ρ̄1 ∈ S2 due to the completeness property of the
closed subsets in SR. Therefore, we flip ρ̄1 in S2 and the duals of all of its predecessors
ρ′ ∈ N−(ρ) if ρ′ is not included in S2. We apply the same procedure to the other stable
matching as well. Moreover, for the mutation operation, we select a random rotation ρ
from the reduced rotation poset of the underlying instance and also a stable matching
M. If ρ ∈ S, we flip ρ and all the required predecessors. If its dual ρ̄ ∈ S, then we flip
ρ̄ and the predecessors.



12 Begum Genc, Mohamed Siala, Gilles Simonin, and Barry O’Sullivan

5 Experiments

In this section, we first compare the performances of the HB and the LS proposed for the
RSR. Then, we investigate the robustness of different sets of RSM and RSR instances 5.
The code is implemented in Java, reusing the RSM experiments from [4]. All experi-
ments are performed on a Dell M600 with 2.66 Ghz processors under Linux, using three
different randomisation seeds and fixing time limit limtime = 20 mins, number of it-
erations without improvement limcutoff = 10000, the number of stable matchings in
LS that descend from a random stable matching limdepth = 50. We use the population
size for the HB as |P | = 30 and the mutation probability as pm = 0.7. We use a high
pm as GA is suffering from getting stuck at local minima and randomisation helps with
it. We discuss the size of the population for HB later.

HB v. LS for the RSR. Our first experiment is about the comparison of LS and HB
models. Random SR instances have only a small number of stable matchings as we
verify on the dataset RANDOM later [16]. For the comparison of HB and LS models, we
look for instances that are likely to contain many stable matchings to gain more insight
on their performances. For this purpose, we first created a dataset of purely random SM
instances as each SM instance contains at least one stable matching, then we converted
these instances to the SR. This conversion tackles the problem of random SR instances
having only a few stable matchings, while preserving the randomness. Our SM dataset
consists of 30 random instances of each size n ∈ {100 × k | k ∈ {1, . . . , 10}}. Note
that, the resulting SR instances have size 2× n.

Fig. 3 and Fig. 4 provide detail on the comparison between the LS and the HB. 6

Fig. 3 compares the average minimum b value found by the two models for each in-
stance in the set. In the x-axis, the range shows the size of the instances such that all
the instances that have x-values between [0, 200] is of size 200, [201 − 400] is of size
400, etc. We confirm by our experiments and also observe in Fig. 4 that for each in-
stance that has size 200 ≤ n ≤ 600, both models complete the search within the given
time limit. Additionally, they either produce similar results (b values) or HB performs
slightly better as can be observed in Fig. 3. The reason for exceeding the time limit in
Fig. 4 is due to us not interrupting the construction of a stable matching. The construc-
tion of a stable matching consists of exposing all rotations in its complete closed subset
in order starting from TS . Then, the b value is computed. For large stable matchings,
this computation becomes very costly. We can conclude that for small instances, both
HB and LS perform well in terms of finding solutions with low b values. If the time is
essential, HB model can be preferred over LS as it converges faster. Additionally, HB
is able to find better solutions for larger instances.

Random RSM v. Random RSR. Next, we perform some tests for SM-SR comparison
on our dataset RANDOM. Our dataset RANDOM consists of 30 purely randomly created
SM and SR instances for each size n ∈ {100× k | k ∈ {1, . . . , 10}}. Note that, for an
SM instance of size n, there exists n men and n women in the problem. We have 2× n

5 Our datasets are publicly available at: github.com/begumgenc/rsmData
6 The reader is referred to the online version for coloured version.
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Fig. 3. Avg min b value found by LS and HB.
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Fig. 4. Average time spent by LS and HB.
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Table 4. Results on uniformly random in-
stances for RSM.

n |V| sm np b ratio tbest
100 22.02 47.9 75.12 48.27 0.64 0.02
200 41.59 116.9 166.19 115.34 0.69 0.10
300 60.22 182.4 263.94 193.08 0.73 0.37
400 74.51 244.1 356.58 265.98 0.74 0.77
500 91.47 322.5 456.00 350.16 0.76 2.18
600 103.82 394.9 551.10 425.51 0.77 3.67
700 117.08 449.6 646.69 505.61 0.78 5.89
800 131.81 527.6 749.98 595.64 0.79 9.09
900 146.34 585.5 848.32 679.82 0.80 14.60

1000 156.00 632.4 943.23 758.82 0.80 21.16

Table 5. Results on uniformly random in-
stances for RSR.

n |V| sm np b ratio tbest
100 3.91 3.78 17.91 5.31 0.3 0.003
200 3.87 3.94 26.76 8.52 0.32 0.003
300 4.36 4.56 35.53 11.22 0.32 0.017
400 4.71 5.92 37.64 10.93 0.29 0.048
500 4.29 4.81 37.62 11.70 0.31 0.066
600 4.16 4.48 42.44 14.47 0.34 0.130
700 4.58 5.50 48.71 16.02 0.33 0.312
800 4.93 5.99 55.02 17.39 0.32 0.498
900 4.82 7.07 57.64 18.50 0.32 0.662

1000 4.60 5.19 55.16 18.36 0.33 0.557

people in the corresponding SR instance. However, both have n pairs. All SR instances
in RANDOM have at least two stable matchings. Considering the good performance of
LS for small instances, we used the LS models for both RSM and RSR.

Table 4 and Table 5 present a summary of the robustness of random RSM and RSR
instances. The columns report for each size the average value of: the total number of
pairs in the instance (n), the number of rotations in the rotation poset or the reduced
rotation poset (|V|), the number of different stable matchings found during the search
of LS (sm), the number of non-fixed pairs (np), the b value of the solution found (b),
the ratio b

np (ratio), and the time spent until finding the best solution by LS in seconds
(tbest).

Observe from the tables that the random RSM instances contain many more sta-
ble matchings than the random RSR instances of similar sizes. Recall that, the value
of sm denotes only the number of a subset of the stable matchings found during the
search. However, we can confirm the RSR instances not containing many stable match-
ings by looking at the number of rotations in their rotation posets. Note that, for the
RSR instances, when 1000 pairs are included, the corresponding rotation posets, on
the average, contain |V| ≈ 5 rotations. This is mainly caused by the large numbers of
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Table 6. Summary of the results on large instances for RSM.

instance LS HB, |P | = 10 HB, |P | = 60

n np |V| b t (min) b t (min) b t (min)
16 15.99 100.43 1.12 0.003 1.21 0.003 1.1 0.004
32 31.99 447.26 1.03 0.054 1.30 0.024 1.04 0.029
64 64 1889.95 1.685 3.158 1.74 0.824 1.28 0.916

128 128 7788.02 14.055 8.367 1.02 13.989 1.01 17.609

fixed-pairs in the random RSR instances. For instance, the average number of non-fixed
pairs in the RSM instances of size 100 is np = 75.12. However, we observe in the large
RSR instances that contain 1000 pairs that there are only 55.16 non-fixed pairs on the
average, which is less than the smallest sized RSM instances that we tested. Note that,
we measure the robustness ratio over the non-fixed pairs of the instances. It is desirable
to obtain a smaller value for the ratio to indicate a better robustness for the instance.
Because a smaller ratio indicates that a smaller proportion of the people that have al-
ternative partners need to change their partners for a repair. Observe that, the ratio of
the RSR instances is lower when compared to RSM. The ratio shows that the breakage
of the pairs in the RSR instances are less costly to be repaired. Thus, we conclude that
purely random RSR instances require a smaller proportion of the people to change their
partners in the case of a breakage, when compared to the RSM.

Large RSM and RSR instances. In this experiment, we search for instances with po-
tentially many number of stable matchings and low b values. Therefore, we generated a
dataset called MANY consisting of 100 SM instances for each size n = {16, 32, 64, 128}
using the family described by Irving and Leather [11], and then used in [17]. Note that,
each SM instance in this set has a corresponding SR instance (see Lemma 1), where the
corresponding SR instance has a reduced rotation poset of twice the size of the rotation
poset of the SM instance. First, let us introduce this family of instances described by
Irving and Leather. They prove that any instance in the original family contains at least
2n−1 stable matchings for an instance of size n = 2i. They define this family over two
matrices for the preferences of each gender, and the preference lists of these large in-
stances are obtained recursively by appending the following matrices until the desired
instance size is found. In our dataset MANY, we slightly modify each instance of this
original family by first randomly selecting two random men mi,mj . Then, we modify
mi’s preference list by swapping the positions of two randomly selected women within
the list. We repeat the same for mj . We also modify the preference lists of two random
women in the same way. In other words, the original preference set between the original
and the modified instances have a Hamming Distance of 8.

Table 6 reports for each size the average value of: the number of all men or women
(n), the number of non-fixed men(np), the number of rotations in the rotation poset
(|V|). Additionally, it reports the average minimum b found by the model LS, HB where
population size |P | = 10, and HB where population size |P | = 60 (b); followed by the
total time spent in minutes for each of the three models (t (min)).
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This dataset shows that the robustness of instances that have many stable matchings
is very high (i.e the value of b is low). For each instance size, our best model for that
size is able to find solutions whose average b values evaluate to a b value that is opt =
1 < b < 2. For instance, for size n = 16, the LS model finds solutions such that for
the breakage of any man on the solution, on the average, 1.12 other men need to break-
up from their current partners. Similarly, for size n = 128, HB models find that the
solution is guaranteed to be repaired by only 1.02 additional men’s break-up.

As one can observe from Table 6, we ran the HB model by using different sizes
of population. Observe that, reducing the number of individuals in the population of
HB (60 to 10) causes the algorithm to find slightly worse solutions (i.e. larger b). For
instance, for size n = 64 , the average minimum b is found as 1.74 by a population of
size 10, and 1.28 by a population of size 60. This is due to having an increased chance
of getting stuck at local minima for a smaller population. On the other hand, LS finds
competitive values for b for sizes 16 ≤ n ≤ 64. However, as we can see for n = 128,
LS finds solutions that are far away from the optimal solution. We conclude that, an
improvement for HB by changing population size is possible in exchange of obtaining
slightly worse solutions. LS performs well for smaller instances.

Recall that, each SM instance in MANY has a corresponding SR instance that has
exactly the same stable matchings. We do not run the RSR models on this dataset as
they are much slower. However, this test provides an insight to some RSM and RSR
instances that are repairable at low additional costs.

6 Conclusions

We study the notion of (a, b)-supermatch in the context of Stable Roommates problem.
We propose a polynomial-time algorithm based on the reduced rotation poset to verify
if a stable matching is a (1, b)-supermatch. Next, we use this procedure to design local
search (LS) and hybrid genetic local search (HB) models to find robust solutions for
the (1, b) case (i.e., (1,b)-supermatch with (possibly) the minimum b). We empirically
show that the HB model usually performs better than LS for RSR. Furthermore, we
perform an RSM/RSR comparison and identify a family of instances that are rich in
stable matchings and very robust.
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