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On the Convergence of the Chi Square and
Noncentral Chi Square Distributions to the Normal Distribution

Donagh Horgan and Colin C. Murphy

Abstract—A simple and novel asymptotic bound for the max-
imum error resulting from the use of the central limit theorem
to approximate the distribution of chi square and noncentral
chi square random variables is derived. The bound enables the
quick calculation of the number of degrees of freedom required
to ensure a given approximation error, and is significantly
tighter than bounds derived using the Berry-Esseen theorem.
An application to widely-used approximations for the decision
probabilities of energy detectors is also provided.

Index Terms—Probability, statistics, random variables, closed-
form solutions, upper bound, cognitive radio, spectrum sensing,
energy detection.

I. INTRODUCTION

THE central limit theorem is a useful tool when dealing
with sums of random variables, allowing the distribution

of the result of the summation to be approximated using the
well-known normal distribution [1]. However, the resulting
error can be difficult to quantify accurately, and so the region
of applicability of such approximations is often unclear.

Generally, this difficulty can be circumvented by using the
Berry-Esseen theorem [2], which states an upper bound on the
magnitude of the error resulting from the use of the central
limit theorem. However, the theorem is a general one, applying
to sums of random variables of any distribution, and so it
can often significantly overestimate the actual error. Thus, one
might be led to believe that the error resulting from the use
of the central limit theorem is much larger than it actually
is and avoid using approximations where it may have been
convenient to do so. Consequently, rules of thumb for the
minimum number of summands, above which the central limit
theorem gives an accurate approximation, are often proposed.
For instance, in the case of chi square random variables, Box et
al. suggest that as few as fifty degrees of freedom are necessary
[3, p. 118], while Urkowitz proposes that 250 are required [4].
However, such rules cannot be relied upon generally: while
a certain number of degrees of freedom may give sufficient
accuracy for one application, it may not for another. Without
quantifying the approximation error resulting from a given
rule, one can only make subjective assessments of its accuracy.

In spectrum sensing literature, Urkowitz’s proposed rule has
found widespread use in the approximation of the decision
probabilities of energy detectors [5]–[8]. Typically, it is stated
that such approximations are valid when the number of
samples is large, but no specific guarantees are made about the
magnitude of the error one should expect when using them.
While Urkowitz argues that 250 samples are sufficient to give
good accuracy, as will be shown in this letter, this can result
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in an absolute approximation error of as large as 0.012, which
may be significant, depending on the application.

Thus, the aim of this letter is two-fold: firstly, we will
quantify the approximation error resulting from the application
of the central limit theorem to chi square and noncentral chi
square distributed random variables and, secondly, we will
apply this bound to derive further bounds for the normal ap-
proximations to the decision probabilities of energy detectors
that are in widespread use in the literature.

II. NORMAL DISTRIBUTION APPROXIMATIONS TO THE

CHI SQUARE AND NONCENTRAL CHI SQUARE

DISTRIBUTIONS

Consider a noncentral chi square distributed random vari-
able, χ2

k(s), with k degrees of freedom and noncentrality
parameter s. We can write χ2

k(s) as

χ2
k(s) =

k∑
i=1

X2
i , (1)

where X1, X2, . . . Xk are independent and identically dis-
tributed (i.i.d.) Gaussian random variables with finite common
mean, μ =

√
s
k , and unit variance [1, p. 46].

When the noncentrality parameter is equal to zero, the
noncentral chi square distribution is equivalent to a chi square
distribution, i.e. χ2

k � χ2
k(0), where χ2

k is a chi square
distributed random variable with k degrees of freedom. Thus,
we can represent both distributions using the notation χ2

k(s).
Typically, the cumulative distribution function (CDF) of

χ2
k(s), P [χ2

k(s) > x], is represented as

P [χ2
k(s) > x] = Qν(

√
s,
√
x), (2)

where ν = k
2 and Qm(a, b) is the Marcum Qm function1 [1,

Eq. 2.3-36].
However, using the central limit theorem [1, p. 63], we can

approximate the CDF as

P [χ2
k(s) > x] ≈ Q

(
x− (k + s)√
2(k + 2s)

)
, as k → ∞, (3)

where Q(x) is the Gaussian Q function [1, Eq. 2.3-10].

III. PREVIOUS WORK

As k is usually finite, there is some error, ε(k, s, x), result-
ing from the use of (3), which we can write as

ε(k, s, x) = Qν(
√
s,
√
x)−Q

(
x− (k + s)√
2(k + 2s)

)
. (4)

1As the Marcum Qm function is defined for m ∈ N
+ only [1], ν must be

a positive integer.
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Fig. 1. A log-log plot of the maximum absolute error, the Berry-Esseen
error bound and the proposed asymptotic error bound, as functions of k, for
different values of s.

While (4) precisely describes the error resulting from the
use of the central limit theorem, both the exact and approx-
imate CDFs must be calculated in order to evaluate it, and
deeper insight into the behaviour of the error with varying k,
s and x is not readily apparent.

However, we can use the Berry-Esseen theorem to simplify
the problem. While the theorem can often overestimate the
actual error by a large amount, recent refinements by Korolev
and Shevtsova have led to increased accuracy and so, to the
best of the authors’ knowledge at the time of writing, the
tightest Berry-Esseen type bound on ε(k, s, x), ε

BE
(k, s), is

given by

εmax(k, s) ≤ ε
BE

(k, s) � 0.33477(β + 0.429)√
k

, (5)

where εmax(k, s) � max
x

|ε(k, s, x)| and β is a function of the

distribution of X2
i , and is given by

β = E

⎡
⎣
∣∣∣∣∣X

2
i − (1 + s

k )√
2(1 + 2 s

k )

∣∣∣∣∣
3
⎤
⎦ , (6)

where E[·] is the expectation operator. To the best of the
authors’ knowledge, (6) does not have a closed form and so
must be evaluated numerically.

In Fig. 1, we have plotted both εmax(k, s) and ε
BE

(k, s)
for various values of k and s. As can be seen, ε

BE
(k, s) >

εmax(k, s) in each case, but the bounds are by no means tight,
and consistently overestimate the magnitude of the error. For
s = 0, the Berry-Esseen bounds are approximately 6.23 times
larger than the actual error across the entire range of values
of k.

IV. PROPOSED ASYMPTOTIC ERROR BOUND

To avoid the use of the Berry-Esseen bound, we propose a
novel, asymptotic error bound, which we will state here as a
theorem, and is proved in Appendix A.
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Fig. 2. Approximation error resulting from the use of (10), for different
values of N and Pf . The dashed line represents the bound given in (11) for
N = 88, while the dotted line represents it for N = 354 and the dot-dashed
line for N = 1414.

Theorem 1: For noncentral chi square random variables, the
maximum absolute error resulting from the use of the central
limit theorem, ε∞(k), is given by

ε∞(k) ≈ 1√
9πk

, as k → ∞, (7)

where ε∞(k) � max
s,x

|ε(k, s, x)| ≥ εmax(k, s).

In Fig. 1, we have also plotted ε∞(k) across the entire range
of values of k. As can be seen, when k is small (e.g. k ≤ 4),
the relation in (7) is approximate; however, it becomes more
accurate as k becomes larger, and is a much more accurate
estimate of the actual error than any of the Berry-Esseen
bounds, even for small values of k. Consequently, henceforth,
we will use (7) to describe the maximum error resulting from
the use of (3).

V. APPLICATION: ENERGY DETECTION

One common application of (3) is to approximate the
distribution of the received energy in energy detector-based
spectrum sensors operating on additive white Gaussian noise
(AWGN) channels [4]. This, in turn, enables the derivation of
simple approximations for the probabilities of false alarm and
detection.

Consider the scenario where the energy detector must
decide between one of two hypotheses:

H0 : r[n] = w[n] n = 1, 2, . . .N
H1 : r[n] = s[n] + w[n] n = 1, 2, . . .N,

(8)

where r[n], w[n] and s[n] represent the discrete samples of the
received, noise only and transmitted signals, respectively, N
is the total number of samples, H0 is the null hypothesis, and
corresponds to the channel being unoccupied, and H1 is the
alternative hypothesis and corresponds to the channel being
occupied.
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Fig. 3. Two dimensional error resulting from the use of approximations for
both decision probabilities.

Usually, the energy detector computes a test statistic, T ,
from the samples of the received signal, that is

T =
1

σ2

N−1∑
n=0

|r[n]|2 , (9)

where σ2 is the power of the noise only signal.
Under H0, T follows a chi square distribution with N

degrees of freedom while, under H1, it follows a noncentral
chi square distribution with N degrees of freedom and noncen-
trality parameter Nγ, where γ represents the signal to noise
ratio [8]. Consequently, we can approximate the probability
of detection using (3) as

Pd(γ) = P [T > λ|H1] ≈ Q

(
λ−N(1 + γ)√
2N(1 + 2γ)

)
, (10)

where λ is the decision threshold. An approximation for the
probability of false alarm, Pf , can be obtained in a similar
manner by letting γ = 0 in (10), i.e. Pf = P [T > λ|H0] =
Pd(0).

Urkowitz states that N = 250 is sufficient for the approx-
imation error resulting from the use of (10), which we will
denote by ε

CLT
, to be considered negligible. However, as the

magnitude of the error is unclear, this is a subjective statement.
Now, using Theorem 1, we can write

max |ε
CLT

| ≈ 1√
9πN

. (11)

Thus, the maximum error can be bounded quite simply, as
shown in Fig. 2. As can be seen, the bound in (11) describes
the maximum error quite well. Furthermore, for N = 250, as
proposed by Urkowitz, |εCLT | ≤ 0.012. Whether this error is
negligible or not depends on the system designer’s willingness
or freedom to tolerate error, and so the decision to use (10)
or not should be made on a case by case basis.

If the approximations for both the probability of false alarm
and the probability of detection are used, e.g. in a receiver op-
erating characteristic (ROC) plot, then further caution should
be exercised. Fig. 3 illustrates the problem in more detail:
given a decision probability pair, (Pf , Pd), and an approximate
decision probability pair, (P̂f , P̂d), the Euclidean distance
between the two, εROC , is given by

ε
ROC

=
√
ε2(N, 0, λ) + ε2(N,Nγ, λ). (12)

Typically, ε
ROC

must be calculated numerically. However,
using Theorem 1, it is not difficult to show that

max
γ,λ

|ε
ROC

| ≤
√
2 max |ε

CLT
|. (13)
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Fig. 4. Approximation error resulting from the simultaneous use of
approximations for both decision probabilities, for different values of γ. The
dashed line represents the bound given in (13) for N = 176, while the dotted
line represents it for N = 708 and the dot-dashed line for N = 2828.

The bound in (13) is illustrated in Fig. 4 for several different
scenarios. As can be seen, ε

ROC
can be bounded both simply

and accurately using (13).

VI. CONCLUSION

In this letter, we derived a novel asymptotic bound for
the error resulting from the use of the central limit theorem
to approximate the distribution of chi square and noncentral
chi square random variables. The bound is in a simple form
and describes the resulting error much more accurately than
existing Berry-Esseen type bounds. Thus, it is possible to
quickly and accurately quantify the number of degrees of
freedom required for the normal approximation to meet a
specified accuracy, and so relying on rules of thumb can be
avoided.

Using the new bound, a further simple, accurate bound
for central limit theorem approximations for the decision
probabilities of energy detectors operating on AWGN chan-
nels was derived. Issues arising from the simultaneous use
of approximations for both decision probabilities were also
discussed, and a simple, accurate bound on the maximum Eu-
clidean distance between the exact and approximate decision
probabilities was derived.

APPENDIX A
PROOF OF THE ASYMPTOTIC BOUND

In order to prove Theorem 1, we must find the critical
points, (s, x) = (s0, x0), of ε(k, s, x) as k → ∞. For a given
value of k, these may be found using the first partial derivative
test [9, Eq. 1.5.19], that is

δε

δs

∣∣∣∣
s=s0,x=x0

= 0,
δε

δx

∣∣∣∣
s=s0,x=x0

= 0. (14)

Letting k = 2ν in (4), it can be shown, without loss of
generality, that (14) is satisfied by

2(ν + s0)
√
x0 Iν(

√
s0x0) = (s0 + x0)

√
s0 Iν−1(

√
s0x0), (15)



4 IEEE COMMUNICATIONS LETTERS, ACCEPTED FOR PUBLICATION

where In(z) represents the modified Bessel function of the
first kind.

Letting s0 = 0 is a satisfactory solution of (15), but is by
no means guaranteed to be the only solution2, and so may
not always maximise |ε(k, s, x)|. However, for large values of
ν or, equivalently, for large values of k, the problem can be
simplified.

For large orders, the modified Bessel function of the first
kind may be approximated [9, Eq. 10.41.1] as

In(z) ≈ În(z) =
1√
2πn

( ez
2n

)n
, as n → ∞. (16)

We also note the following useful identity [9, Eq. 4.4.17](
n− 1

n

)n

≈ 1

e
, as n → ∞. (17)

Using (16) and (17), (15) can be simplified to

(ν + s0)(
√
s0)

ν(
√
x0)

ν+1 =√
ν(ν − 1)(s0 + x0)(

√
s0)

ν(
√
x0)

ν−1, as ν → ∞. (18)

Thus, for large values of ν, (18) is equivalent to (15).
Assuming that ν ≥ 2, (18) admits three unique solutions.

Two of these are immediately clear: s0 = 0 and x0 = 0; the
third can be found by cancelling the common terms (which
lead to the solutions s0 = 0 and x0 = 0) on both sides of (18)
to give

x0 =

√
ν(ν − 1)s0

ν + s0 −
√
ν(ν − 1)

≈ ν, as ν → ∞. (19)

Using (14), it can be shown that, for the solution x0 = 0, the
only value of s0 that satisfies both first partial derivative tests,
as ν becomes large, is s0 → ∞ which, as we noted previously,
is a trivial solution. Similarly, it can be shown that, if x0 = ν,
then (14) also requires that s0 → ∞ when ν is large, and so
x0 = ν is a further trivial solution.

The value of x0 corresponding to s0 = 0 can be found
using the identity [9, Eq. 10.30.1]

lim
s0→0

((
x0

s0

) ν−1
2

Iν−1 (
√
s0x0)

)
=

(
x0

2

)ν−1

Γ(ν)
, (20)

where Γ(n) represents the gamma function. Using (20), it can
be shown that the first partial derivative test, with respect to
x, reduces to the condition

e−
x0
2

(
x0

2

)ν−1

Γ(ν)
=

e−
(x0−2ν)2

8ν√
2πν

, (21)

which can be solved for x0 using a numerical method, but
admits the solution x0 = 2ν for large values of ν. This
can easily be shown by letting x0 = 2ν in (21) to give the
condition

ν!√
2πν

(
ν
e

)ν = 1, (22)

which is simply the limit of Stirling’s approximation [9, Eq.
5.11.3], and so is satisfied for large values of ν.

2For instance, (15) is also satisfied when s0 → ∞ for arbitrary 0 ≤ x0 <
∞ and when x0 → ∞ for arbitrary 0 ≤ s0 < ∞. However these solutions
are trivial as ε(k, s0, x0) = 0 in both cases.

Substituting (s, x) = (0, 2ν) into (4), it can be shown that

ε(2ν, 0, 2ν) =
Γ(ν, ν)

Γ(ν)
− 1

2
, (23)

where Γ(k,z)
Γ(k) represents the regularised incomplete gamma

function of order k.
For large values of n, the following identity [9, Eq. 8.11.12]

holds

Γ(n, n)

Γ(n)
≈ 1

2
− 1√

18πn
, as n → ∞, (24)

and so we can write (23) as

ε(2ν, 0, 2ν) ≈ − 1√
18πν

, as ν → ∞, (25)

which suggests that the sign of the error with maximum
magnitude is negative and so (s, x) = (0, 2ν) results in a
minimum.

To prove that this intuition is correct, we can perform the
second partial derivative test [9, Eqs. 1.5.20 and 1.5.21]. Using
(4), it can be shown that

δ2ε

δx2

∣∣∣∣
s=0,x=2ν

=
1

4ν

(
ν
e

)ν
ν!

, (26)

δ2ε

δx2

∣∣∣∣
s=0,x=2ν

δ2ε

δs2

∣∣∣∣
s=0,x=2ν

−
(

δ2ε

δxδs

)2
∣∣∣∣∣
s=0,x=2ν

=
1

8ν2

(
ν
e

)ν
ν!

(
1√
2πν

−
(
ν
e

)ν
2(n+ 1)Γ(ν)

)
− 1

32πν3
, (27)

and both of which can be shown to be positive for ν ≥ 1.
Consequently, (s, x) = (0, 2ν) results in a local minimum for
large ν (ν ≥ 1, at least). However, as (s, x) = (0, 2ν) are the
only non-trivial critical points for large ν (ν ≥ 2, at least),
this local minimum must be a global minimum under these
conditions, and so we can bound the maximum absolute error
as

max
s,x

|ε(k, s, x)| ≈ 1√
9πk

, as k → ∞. (28)
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