

Title	HexA is a versatile regulator involved in the control of phenotypic heterogeneity of Photorhabdus luminescens
Authors	Langer, Angela;Moldovan, Adriana;Harmath, Christian;Joyce, Susan A.;Clarke, David J.;Heermann, Ralf
Publication date	2017-04-27
Original Citation	Langer, A., Moldovan, A., Harmath, C., Joyce, S. A., Clarke, D. J. and Heermann, R. (2017) 'HexA is a versatile regulator involved in the control of phenotypic heterogeneity of Photorhabdus luminescens', PLoS ONE 12(4), e0176535 (23pp). doi: 10.1371/ journal.pone.0176535
Type of publication	Article (peer-reviewed)
Link to publisher's version	10.1371/journal.pone.0176535
Rights	© 2017 Langer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. - https://creativecommons.org/licenses/by/4.0/
Download date	2025-08-02 06:57:52
Item downloaded from	https://hdl.handle.net/10468/3945

University College Cork, Ireland Coláiste na hOllscoile Corcaigh

Supporting Information

HexA is a versatile regulator involved in the control of phenotypic heterogeneity of *Photorhabdus luminescens*

Angela Langer¹, Adriana Moldovan¹, Christian Harmath¹, Susan A. Joyce², David J. Clarke² and Ralf Heermann^{1*}

¹Bereich Mikrobiologie, Biozentrum Martinsried, Ludwig-Maximilians-Universität München, München, Germany ²School of Microbiology and Microbiome Institute, University College Cork, Cork, Ireland

*Corresponding author <u>heermann@lmu.de</u>

Figure A. P_{hexA} activity in *P. luminescens* TT01-1°, TT01-2° and TT01-1° Δ hexA at the single cell level. P_{hexA}-mCherry activity in TT01-1°, TT01-2° and TT01-1° Δ hexA after 24 h of growth. The scale depicts 10 µM. Representative images from one of three independently performed experiments are shown.

Figure B. Proteome analysis of *P. luminescens* TT01-1° and TT01-1° Δ *hexA*. Cells were cultivated and harvested in exponential (A) and in the stationary phase (B). Cytosolic proteins were extracted and then subjected to 2D-PAGE. Gels were scanned, and compared for protein spots of different sizes. Proteins with enhanced production (Δ), with reduced production (∇) or overproduced (\Diamond) in the Δ *hexA* mutant and proteins that were completely absent in the Δ *hexA* mutant (\Box) or in the wildtype (\circ) were analyzed via MALDI-TOF.

Figure C. Cell clumping in *P. luminescens* TT01-1°, TT01-2° and TT01-1° Δ *hexA* after 7 days. P_{pcfA} activity and cell clumping in TT01-1°, TT01-2° and TT01-1° Δ *hexA*. The scale depicts 10 μ M. Representative images from one of three independently performed experiments are shown.

Figure D. Effect of HexA on the P_{pcfA} activity in the heterologous systems of *E. coli* $\Delta IrhA$. In *E. coli* $\Delta IrhA$ the constructs pBAD24- P_{lac} -pluR_ P_{ara} -hexA and pBBR- P_{pcfA} -lux were tested. The expression of pluR was achieved via the addition of 1 mM IPTG and hexA expression was induced via the addition of 0.02 and 0.2% arabinose (Ara). The figure represents three biological replicates. All values are given in percentage, relative to the maximum *pluR* induction. The values were measured as Relative Light Unit [RLU] divided by OD_{600nm}.

Figure E. Investigation of an effect of HexA on the *lac* promoter and the *luxCDABE* operon. The constructs pBAD24-P_{*lac-pluR-Para-hexA* and pBBR-P_{*lac-lux*} were tested in *E. coli* Δ *lrhA* and 1 mM IPTG was added. Expression of *hexA* was induced via the addition of 0.02-0.2% arabinose (Ara). The graph corresponds to measurements performed 3 hours after induction. The figures represent three biological replicates. All values are expressed in percentages, relative to the values of the *pluR* maximum induction upon addition of 1 mM IPTG.}

Figure F. Purification and biochemical investigation of HexA-6His. Purification of HexA via Ni-NTA affinity chromatography. Left panel shows a Coomassie blue stained SDS gel; right panel shows a Western blot with α HexA antiserum. C=cytosolic fraction; W1=washing fraction 1; W2=washing fraction 2; E1=elution fraction 1; E2=elution fraction 2; E3=elution fraction 3; E=pooled elution fraction (A). Gel filtration of purified HexA-6His (E) using Superdex 200 column (B). Size and molecular weight determination of "HexA" peak fraction (gel filtration) using Dynamic Light Scattering (DLS) (C). Stability measurement of HexA-6His in different buffers using a fluorescence-based thermal stability assay. Tm=melting temperature, TN=50mM Tris/HCl pH 7.5, 200 mM NaCl; G=glycerol; β -MeOH = 2 mM β -mercaptoethanol (D).

Table A. Bacterial Strains.

Bacterial Strain	Genotype	Reference
P. luminescens subsp.	Wild-type 1° variant, Rif ^R	[1]
laumondi TT01-1°		
<i>P. luminescens</i> subsp. laumondi TT01-2°	Wild type 2° variant, Rif ^R	Lab collection, Dr. David Clarke, University College Cork
P. luminescens TT01-1°	Wild-type 1° variant containing a	Lab collection, Dr.
ΔhexA	deletion of hexA (plu3090)	David Clarke, University College Cork
P. luminescens TT01-1°	TT01-1° harboring P _{hexA} -mCherry	[2]
P _{hexA} -mCherry	reporter integrated at the <i>rpmE/gImS</i> site, Kan ^R , Gent ^R	
P. luminescens TT01-2°	TT01-2° harboring P _{hexA} -mCherry	This study
P _{hexA} -mCherry	reporter integrated at the $rpmE/glmS$	
D luminococo TT01 1º	TT01 1° A box A barbaring D	This study
P. $ummescens + 101-1$	mChorry reporter integrated at the	This study
Diexa Phexa-incherry	<i>rpmE/gImS</i> site, Kan ^R , Gent ^R	
P. luminescens TT01-1°	TT01-1° harboring P _{hexA} -hexA-	This study
P _{hexA} -hexA-mCherry	mCherry reporter integrated at the	
P luminescens TT01-2°	$TT01-2^\circ$ harboring P_{1} \rightarrow here A_2	This study
P_{1} $hev \Lambda_{-}mCherny$	mCherry reporter integrated at the	This study
r hexA-nexA-moneny	<i>rpmE/gImS</i> site, Kan ^R , Gent ^R	
P. luminescens TT01-1°	TT01-1° $\Delta hexA$ harboring P _{hexA} -hexA-	This study
Δ hexA P _{hexA} -hexA-mCherry	mCherry reporter integrated at the	
	<i>rpmE/gImS</i> site, Kan ^R , Gent ^R	
P. luminescens TT01-1°	TT01-1° harboring P _{luxC} -mCherry	[2]
P _{luxC} -mCherry	reporter integrated at the <i>rpmE/glmS</i>	
	site, Kan ^R , Gent ^R	
P. luminescens TT01-2°	TT01-2° harboring P _{luxC} -mCherry	This study
P _{luxC} -mCherry	reporter integrated at the <i>rpmE/gImS</i>	
	site, Kan ^R , Gent ^R	

P. luminescens TT01-1°	TT01-1° Δ <i>hexA</i> harboring P _{luxC} -	This study
$\Delta hexA P_{luxC}$ -mCherry	mCherry reporter integrated at the	
	<i>rpmE/gImS</i> site, Kan ^R , Gent ^R	
P. luminescens TT01-1°	TT01-1° harboring P _{hfq} -mCherry	This study
P _{hfq} -mCherry	reporter integrated at the rpmE/glmS	
	site, Kan ^R , Gent ^R	
P. luminescens TT01-2°	TT01-2° harboring P _{hfq} -mCherry	This study
P _{hfq} -mCherry	reporter integrated at the rpmE/glmS	
	site, Kan ^R , Gent ^R	
P. luminescens TT01-1°	TT01-1° $\Delta hexA$ harboring P _{hfq} -	This study
ΔhexA P _{hfq} -mCherry	mCherry reporter integrated at the	
	<i>rpmE/gImS</i> site, Kan ^R , Gent ^R	
P. luminescens TT01-1°	TT01-1° harboring P _{pcfA} -mCherry	This study
P _{pcfA} -mCherry	reporter integrated at the rpmE/gImS	
	site, Kan ^R , Gent ^R	
P. luminescens TT01-2°	TT01-2° harboring P _{pcfA} -mCherry	This study
P _{pcfA} -mCherry	reporter integrated at the rpmE/gImS	
	site, Kan ^R , Gent ^R	
P. luminescens TT01-1°	TT01-1° ΔhexA harboring P _{pcfA} -	This study
$\Delta hexA P_{pcfA}$ -mCherry	mCherry reporter integrated at the	
	<i>rpmE/gImS</i> site, Kan ^R , Gent ^R	
<i>E. coli</i> Dh5α λ <i>pir</i>	recA1, gyrA (laclZYA-argF) (80d lac	[3]
	[lacZ] M15) pir RK6	
<i>E. coli</i> S17-1 λpir	Tp ^R Sm ^R recA, thi, pro, hsdR-M+RP4:	Biomedal S.L.
	2-Tc:Mu: Km Tn7 λpir	Sevilla, Spain
E. coli ST18	E. coli S17 λpir ∆hemA	[4]
<i>E. coli</i> BL21 (DE3) Star	F^- ompT hsd $S_B(r_B^- m_B^-)$ gal dcm	Invitrogen
	<i>rne</i> 131 (DE3)	
E. coli JW2284	Kan ^R , BW25113 <i>IrhA::npt</i>	[5]
E. coli ΔlrhA	Removal of the npt cassette in E. coli	Dr. Sophie
	JW2284 by P1 transduction	Brameyer,
		unpublished
Sh. oneidensis MR1 S79	Wild type isolate	[6]

Table B. Plasmids.

Plasmid	Genotype	Reference
pPINT- <i>mCherry</i>	Km ^R , Gm ^R and <i>mCherry</i> in pPINT	[2]
pPINT-P _{hexA} -mCherry	Km ^R , Gm ^R , <i>hexA</i> (<i>plu3090</i>) promoter	[2]
	upstream of <i>mCherry</i>	
pPINT-P _{hexA} -hexA-mCherry	Km ^R , Gm ^R , <i>hexA</i> promoter upstream	This study
	of hexA (plu3090)-mCherry	
pPINT-P _{luxC} -mCherry	Km ^R , Gm ^R , <i>luxC (plu2079)</i> promoter	[2]
	upstream of mCherry	
pPINT-P _{hfq} -mCherry	Km ^R , Gm ^R , <i>hfq (plu4581)</i> promoter	This study
	upstream of mCherry	
pPINT-P _{pcfA} -mCherry	Km ^R , Gm ^R , <i>pcfA (plu4568)</i> promoter	This study
	upstream of mCherry	
pBAD24- <i>pluR</i>	Ap ^R , <i>pluR</i> (<i>plu4562</i>) in pBAD24	[7]
pBAD24- <i>yehU</i>	Ap ^R , <i>yehU</i> -6His in pBAD24 with a C-	[8]
	terminal HisTag	
pBAD24- <i>hexA</i>	Ap ^R , <i>hexA-</i> 6His (<i>plu3090</i>) in pBAD24	This study
	with a C-terminal HisTag	
pCOLA-ppyS-His-pluR	Km ^R , <i>ppyS (plu4844</i>) and 6His- <i>pluR</i>	Dr. Sophie Brameyer,
	(<i>plu4562</i>) in pCOLA, IPTG inducible	unpublished
pBAD24-P _{ara} - <i>pluR_</i> P _{lac} -	Ap ^R , <i>pluR</i> (<i>plu4562</i>) under the control	This study
hexA	of an arabinose inducible promoter,	
	hexA (plu3090) under the control of	
	an IPTG inducible promoter	
pBAD24-P _{lac} -pluR_P _{ara} -	Ap ^R , <i>pluR</i> (<i>plu4562</i>) under the control	This study
hexA	of an IPTG inducible promoter, hexA	

	(plu3090) under control of an	
	arabinose inducible promoter	
pBBR1-P _{pcfA} -lux	Gm ^R , IuxCDABE under the control of	[7]
	the <i>pcfA</i> (<i>plu4568</i>) promoter	
pBBR1-P _{pcfA} -s1 <i>-lux</i>	Gm ^R , <i>luxCDABE</i> under the control of	Dr. Sophie Brameyer,
	the truncated promoter construct	unpublished
	P _{pcfA} -S1	
pBBR-P _{pcfA} -s2- <i>lux</i>	Gm ^R , <i>luxCDABE</i> under the control of	Dr. Sophie Brameyer,
	the truncated promoter construct	unpublished
	P _{pcfA} -S2	
pBBR-P _{lac} -lux	Gm ^R , <i>luxCDABE</i> under the control of	This study
	the lac promoter	
pACYC-Duet1	Cm ^R , Expression vector, IPTG	Novagen®
	inducible	
pACYC- <i>hexA</i>	Cm ^R , <i>hexA</i> (<i>plu3090</i>) in pACYC-Duet1	This study
pACYC-P _{lac} -hexA_P _{ara} -pluR	Cm ^R , <i>pluR</i> (<i>plu4562</i>) under the control	This study
	of an arabinose inducible promoter,	
	hexA (plu3090) under the control of	
	an IPTG inducible promoter	
pEYFP	Ap ^R , <i>lac</i> -promoter upstream of <i>eYFP</i>	Takara-Clonetech,
		Saint-Germain-en-
		Laye, France)
pD132	Cm ^R , ori R6K, oriT RK2, sacB	[9]
pDS- <i>hexA</i>	Flanking regions of hexA (plu3090) in	This study
	pD132	

Table C. Oligonucleotides.

Primer name	Sequence (5`-3`)
PhexA-BamHI_fwd	GCTGGATCCTCTTACCTTATCTTGGTAAA
hexA-Xmal _rev	GCTCCCGGGCTCATCAATAATATCGTCATCATCA
Phfq-Nhel_fwd	GCGGCTAGCTCACTGAACTGACTACATTG
Phfq-BamHI_rev	GCTGGATCCTCTATATTTTCCTTATTTTGTT
PpcfA-Nhel_fwd	AATGGAGCTAGCAGCAGAATTCGGGTTAGTTATCTATGC
PpcfA-Xmal_rev	ACTAAGCCCGGGACCAGCTTTATCCCTTATGTC
check-mcherry_ins_fwd	CTGGTTTCATAATTTCGCC
check-mcherry-ins_rev	GGULTIUTUTUTUAU
check-rpmE_fwd	CTCCCAAATAAAGTTTAGG
check-glmS_rev	GTACGTGAATCTGATTTTG
oriT_fwd	CAGGGTTATGCAGCGGAAA
gmRpNPTS_fwd	GATAAGCTGTCAAACATGAGAGTAGCGTATGCGCTCAC
Plac(h)_fwd	ATTGCATTTATCATGGTATATCTCCTTATTAAA
Placl-Sall_rev	GCTGTCGACTCACTGCCCGCTTTCCAGTC
hexA_fwd	ATGATAAATGCAAATCGTC
hexA-PstI-rev	GCTCTGCAGTTACTCATCAATAATATCG
pBAD24_seq_fwd	GCCGTCACTGCGTCTTTTACTGG
pBAD24_seq_rev	CGCTACGGCGTTTCACTTCTG
hexA-EcoRI_fwd	GCTGAATTCATGATAAATGCAAATCGTCC
hexA-Ndel_rev	GCGCATATGCTCATCAATAATATCGTCATCATC
Plac-PluR_fwd	TCTTCAAAGCTTGCGGCCGCATAATG
PluR-Pstl_rev	GCGCTGCAGGTTATATGATTAGATTATATGCTATTGC
lacl_fwd	CAAGCTTTGAAGATCGAATGGCGCAAAACCTT
lacl-Sall_rev	GCTGTCGACTCACTGCCCGCTTTCCAGTC

check-PlachexA_fwd	CTACCAGAGAAGTTGAAGT
hexA-Ncol_fwd	GCTCCATGGATGATAAATGCAAATCGTCC
hexA-Sall_rev	GCGGTCGACTTACTCATCAATAATATC
check-pACYC_fwd	ATTCACCACCCTGAATTGA
check-pACYC_rev	CTAGTTATTGCTCAGCGGT
araCPluR_fwd	GCGCATATGACTCCGTCAAGCCGTCAA
pluR-Xhol_rev	TAGCCCTCGAGCTGTGATGATGATGATGATGATGATGATGATG
	ACGACCTTCGATATGGCCGCTTATATGATTAGATTATATGC
PpcfA-Btn_fwd	ΤΑΤΤΤGTCTTTATAATGATAAT
PpcfA_rev	ACCAGCTTTATCCCTTATGTC
sacB-Btn_fwd	GCAGAAGTTTTTGACTTTCTTG
sacB_rev	ACATCTGACGGAAAAATCCGT
Plac-Nhel_fwd	GCGGCTAGCGCGCAACGCAATTAATGTG
Plac-BamHI_rev	CGCGGATCCAGCTGTTTCCTGTGTGAAA
check-pBBR-Plac_fwd	CCGTCGTATTAAAGAGGGG
FA_hexA_fwd	GAATTGTTGTTGTTTTTA
FA_hexA_rev	CATTGTTTATTCATCACTTT
FB_hexA_fwd	TAATATCTGAAACACTTCTC
FB_hexA_rev	AATCAATGATTGATGGAGTG

Table D. Proteins with altered production in the proteome of TT01-1° Δ hexA compared to TT01-1°. Differences in the cytosolic proteome were detected in the exponential (EX) and stationary (STAT) growth phase.

Protein	Putative function	Growth phase	ΔhexA/wild-type
Plu0184	Role in Carbapenem biosynthesis		+4.2
(CpmC)			
Plu0261	Similiarities with type 1 fimbrial	EX	n.d. in ∆ <i>hexA</i>
	protein precursor		
Plu0269	Unknown, hypothetical secreted	EX	n.d. in ∆ <i>hexA</i>
	protein		
Plu0885	Pyocin S3 protein, "killer protein"	EX	n.d. in ∆ <i>hexA</i>
Plu0888	Colicin/Pyocin protein, "killer protein"	EX	n.d. in ∆ <i>hexA</i>
Plu1395	Cystein Synthase A	STAT	-1.7
Plu1561	Ca2+-dependent cell adhesion	STAT	-2.6
	molecule		
Plu1840	unknown	STAT	-1.6
Plu2016	PAS4-LuxR regulator	EX	n.d. in ∆ <i>hexA</i>
Plu2248	Carbonic anhydrase	EX	+4.0
Plu3102	methyltransferase	EX	n.d. in WT
Plu3104	unknown	EX	n.d. in WT
Plu3110	Succinylornithine transaminase	STAT	-1.4
(ArgM)			
Plu3254	Hcp family T6SS protein CtsH1	EX	-2.7
Plu3622	dihydrolipoamide acetyltransferase;	STAT	-2.2
(AceF)	pyruvate dehydrogenase subunit E2		
Plu3739	Aldehyde Dehydrogenase B	EXP	+1.8
(AldB)			
Plu3795	unknown	STAT	+2.4
Plu4078	Dimethylmenaquinone	EXP	n.d. in ∆ <i>hexA</i>
	methyltransferase		
Plu4081	Putative aldolase		-3.2
Plu4565	Cysteine synthase	STAT	+2.0

(PcfA)			
Plu4567	Ariginosuccinate synthase	STAT	+2.0
(PcfB)			
Plu4566	Glycine amidino transferase	STAT	+2.1
(PcfC)			

References

- 1. Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A et al. (2003) The genome sequence of the entomopathogenic bacterium *Photorhabdus luminescens*. Nature Biotechnol 21 (11): 1307–1313.
- 2. Glaeser A, Heermann R (2015) A novel tool for stable genomic reporter gene integration to analyze heterogeneity in *Photorhabdus luminescens* at the single-cell level. BioTechniques 59 (2): 74–81.
- 3. Miller VL, Mekalanos JJ (1988) A novel suicide vector and its use in construction of insertion mutations: osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J Bacteriol 170 (6): 2575–2583.
- 4. Thoma S, Schobert M (2009) An improved *Escherichia coli* donor strain for diparental mating. FEMS Microbiol Lett 294 (2): 127–132.
- 5. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y et al. (2006) Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2: 2006.0008.
- 6. Venkateswaran K, Moser DP, Dollhopf ME, Lies DP, Saffarini DA et al. (1999) Polyphasic taxonomy of the genus Shewanella and description of *Shewanella oneidensis* sp. nov. Int J Syst Evol Microbiol 49 Pt 2: 705–724.
- 7. Brachmann AO, Brameyer S, Kresovic D, Hitkova I, Kopp Y et al. (2013) Pyrones as bacterial signaling molecules. Nat Chem Biol 9 (9): 573–578.
- 8. Fried L, Behr S, Jung K (2012) First insights into the unexplored two-component system YehU/YehT in *Escherichia coli*. J Bacteriol 194 (16): 4272–4284.
- 9. Philippe N, Alcaraz J, Coursange E, Geiselmann J, Schneider D (2004) Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmid 51 (3): 246–255.