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Abstract—We describe and characterize a multi-micron silicon 

photonics platform that has been designed to combine 

performance, power efficiency, manufacturability and versatility 

for integrated photonic applications ranging from data 

communications to sensors. We outline the attributes needed for 

broad applicability, high-volume manufacturing, and large-scale 

deployment of silicon photonics, and describe how the platform is 

favorable with respect to these attributes. We present 

demonstrations of key technologies needed for the 

communications and sensing applications, including low-loss fiber 

attach, compact low-loss filters, efficient hybrid wavelength 

division multiplexed lasers, and high-speed electro-absorption 

modulators and integrated photodetectors. 

 
Index Terms—Photonic integrated circuits, Integrated optics, 

silicon photonics, photonic integration, optical interconnects, 

optoelectronics, hybrid lasers, III-V hybrid integration 

 

I. INTRODUCTION 

ILICON photonics is now widely regarded as the key 

technology to bring planarized photonic integrated circuits 

to a wide range of photonic applications ranging from cost- and 

power-efficient optical transceivers, co-packaging of optics 

with high-speed ASICs, and compact sensing and 3D imaging 

solutions [1, 2, 3]. 

Over the past two decades, and in particular in the last few 

years, a multitude of silicon photonic companies have emerged, 

each having differences in their approach to making 

commercial products in silicon photonics and having 

waveguide heights ranging from 220 nm up to 4 µm [4-19]. But 

no one company has yet demonstrated large-scale deployment 

of silicon photonic integrated circuits across many applications 

achieving the large economies of scale similar to those attained 
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by Application Specific Integrated Circuits (ASICs) in 

microelectronics. Even in the communications market space 

alone, silicon photonics has yet to displace the established III-

V-semiconductor micro-optic-packaged technologies [20].  

Why hasn’t silicon photonics yet realized the expectations of 

rapid growth across a wide range of applications?  To scale up, 

silicon photonics still has to prove it is better in terms of device 

assembly process and manufacturing yields over conventional 

optical solutions while maintaining good or better performance 

and delivering on the promise of high levels of integration and 

significant size and cost reduction. 

We suggest that a silicon photonics solution that achieves the 

goals of broad applicability and large-scale deployment should 

have all of the following attributes: 

1. High-yield wafer processing with low device 

sensitivity to process variations 

2. Integration of a large number of components 

3. High integration densities 

4. Low optical losses  

5. Polarization independence 

6. Efficient integration of III-V materials  

7. Broad (> 300 nm) operating wavelength range  

8. High power handling 

9. High-speed, compact, and low-power modulator 

and detector technologies and interface electronics 

for ≥ 200 Gb/s/mm data throughput densities 

10. Low-loss ( ≤ 1 dB) fiber coupling with simple high-

yield high-throughput fiber assembly  

The majority of Si photonics platforms today use a top silicon 

guide layer height of less than or equal to 0.3 µm [4-16, 21, 22] 

with the main established foundries converging on 220 nm.  The 

choice of this waveguide dimension is mainly because of i) a 

push to have waveguides that cut-off higher order modes to 
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achieve “pure” single-mode behavior, ii) the perceived 

importance of using existing capital-intensive CMOS foundry 

infrastructures (which can not process multi-micron Si 

topographies), and iii) a reliance on Si pn-junction Mach-

Zehnder structures or ring-resonators for high-speed 

moadulators [1].  However, unlike CMOS electronics, losses do 

not go down in a photonics circuit when the size of the 

waveguide is shrunk.  Indeed, it is somewhat the opposite: 

beyond a certain size, the losses go up in a photonic waveguide 

if the size is reduced.  Multi-micron waveguides have losses 2-

10 times lower than sub-micron waveguides [23, 24, 23, 25]. 

Also filter reproducibility and repeatability significantly drop 

for sub-micron photonics waveguides, because of a much larger 

effective index sensitivity at these dimensions. Furthermore, 

sub-micron silicon photonics platforms cannot achieve 

polarization dependence simultaneously with acceptable 

fabrication tolerances [21] [26], whereas multi-micron 

wavguides can.  Lastly, as predicted in [27], it has proven to be 

challenging to this day to achieve low-loss (~ 1 dB or less) 

coupling from a 220 nm waveguide to standard single-mode 

fiber with a mode ~50 times larger, as state-of-the-art out-of-

plane grating couplers are achieving at best 1.5-2.5 dB coupling 

lossess to SMF fiber and also suffer from polarization 

dependance and limited optical bandwidth [7, 4, 6, 5].  Good 

progress has recently been made with broader-band polarization 

independent losses in the 1.5-2.0 dB range coubling from sub-

micron wavegudies directly to SMF fiber in commercial 

platforms using edge-copuling with sub-wavelength gratings 

and/or multi-level silicon nitride [28, 29, 30, 31], but the 

processes are somewhat complex and requiring small feature 

sizes in the lithography.  

In this paper we will describe and demonstrate the Rockley 

Photonics multi-micron silicon photonics platform which is 

favorable for combining all of these attributes. It is therefore an 

attractive platform for realizing large-scale integrated and 

planarized photonics technologies for a wide range of 

applications and high-volume manufacturing. 

II. MULTI-MICRON PLATFORM DESCRIPTION 

A. Single-mode behavior 

The multi-micron silicon-on-insulator (SOI) rib-waveguide 

that maintains mono-mode operation is based on the principles 

described in a seminal paper by Soref, Schmidtchen, and 

Petermann in 1991 [27].  The generic rib-waveguide cross-

section in our platform and the basic parameter definitions are 

shown in Fig. 1. In our platform the height of the top silicon 

guide layer ℎ = 2𝑏𝜆 is chosen to be ≥ 1 µm. The main 

advantages gained by using this multi-micron waveguide size 

is simultaneous  achievement of polarization independence, 

low-loss coupling to standard single mode fiber (SMF) and III-

V actives, very low propagation losses, and high tolerance to 

fabrication variations.  

 

As discussed in [27] it is a misconception that a height less 

than 0.3 µm is required to have a single-mode rib waveguide. 

Indeed in [27] it is explained that for “large” silicon guide layer 

thicknesses, higher order vertical modes do not propagate as 

long as 𝑟 > 0.5 because they will leak into slab modes.  Fig. 2 

shows eigenmode expansion (EME) simulations (performed in 

Lumerical MODE solutions) of light propagation down a 

waveguide with ℎ = 𝑤 = 3 𝜇𝑚 and 𝑒 = 0.6ℎ over a distance 

of 2000 𝜇𝑚, excited by a circular fiber mode with 3 um spot 

size, offset from the waveguide mode center by 1 µm in both 

the horizontal and vertical directions, for light at a wavelength 

of 1300 nm (as in [27]).  This shows that, even though higher 

order modes exist immediately after off-center excitation, as the 

light propagates these modes leak into unguided slab modes and 

eventually only the fundamental mode propagates. Comparing 

the propagation in the 3 µm height to the 4 µm simulated in [27] 

we see that the 3 µm height waveguide is more tolerant to off-

center excitation and less coupling to higher order slab modes 

occurs. It should be noted that losing light to slab modes would 

normally be undesirable as it would represent power loss from 

the waveguide, so it is also important to take care to only excite 

the fundamental mode when coupling into waveguides of this 

size to ensure power-efficient operation. 

 

 

B. Polarization independence 

In this platform, to achieve polarization independence, the 

ratio of the rib width to silicon layer height simply needs to be 

chosen to be close to or greater than unity (𝑎 𝑏⁄  ≥ 1 so that 

𝑤 ℎ⁄ ≈ 1) to ensure the TE and TM fundamental modes have 

similar effective index values. The waveguide rib is formed by 

etching Si outside the rib area to a depth 𝑒 = 𝑟ℎ.  Parameters a, 

b and r are as defined in [27]. Fig. 3 a) and b) show simulated 

TE and TM mode profiles for a waveguide with ℎ = 𝑤 = 3 𝜇𝑚 

and 𝑒 = 0.6ℎ.  

The mode profiles are indistinguiable from each other 

indicating near polarization degeneracy. Fig. 3 c) and d) show 

the mode size and shapes for a typical 220 nm sub-micron 

waveguide on the same scale as a) and b) for comparison.  

These modes are clearly highly polarization dependent, with the 

TM mode being cut-off and existing in the cladding layer. The 

small size of the modes in the 220 nm height waveguides in c) 

and d) compared to the multi-micron mode size in a) and b) also 

illustrates the magnitude of the size difference that must be 

overcome to couple to an SMF fiber mode, which is still 

significantly larger than the modes in a) and b). 

 

 
Fig. 1. Cross-section of the multi-micron SOI waveguide structures used in this 
paper.  Parameter definitions follow those in [27]. 

Si substrate

BOX

e = rh

w = 2aλ ≈ h

h = 2bλ

> 1 µm
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C. Euler bends for tight bend radii 

Another misconception associated with a multi-micron bend 

radius is that the bend radii need to be large to enable low loss 

bends and avoid mode leakage.  However tight bend radii with 

bend losses comparable to those readily achieved in standard 

sub-micron platforms can be readily achieved in the multi-

micron platform by converting to strip or wire waveguides (r < 

0.15) for some portions in the circuit where a bend is needed 

and narrowing the waveguide width [32, 23]. Rib-to-strip 

converters have similarly been used in sub-micron waveguides 

to combine low-loss rib waveguides with tight bends [33]. In 

[32, 23] Cherchi et al. have reported Euler bend effective radii 

as low as 1.3 µm with losses of 0.09 dB per 180° bend in a 4 

µm waveguide platform, and lower losses of 0.02 dB per bend 

with larger bend radii. Larger bend radii can be chosen to 

minimize losses if ultra-tight bends are not needed. Fig. 4 shows 

transmission measurements of Euler bend test structures in our 

3 µm height strip waveguides consisting of varying numbers of 

Euler L-bends with effective bend radius Reff = 86 µm. The 

measurements show an average 0.018 dB per 90° bend for TE 

polarization and < 0.01 dB for TM polarization over full C-band 

wavelengths with little to no wavelength dependence 

confirming the excellent practicality of these bends for use in 

low-loss high density photonic integrated circuits in the multi-

micron platform. Smaller bend radii can also be used if needed 

with a penalty of slightly higher losses [23]. 

 

 

D. Low propagation loss 

 

Low propagation losses are critical in particular when 

making photonic integrated circuits integrating multiple 

components and functions together, which is a key need for 

making photonic integrated ciruits applicable to a large range 

of applications, and to achieve high volumes. Many critical 

photonic elements involve lengthy passive regions and have 

performance benefits associated with low waveguide losses, for 

example arrayed-waveguide grating (AWG) filters [34], higher 

order tapped-delay-line filters and cascaded Mach-Zehnder 

filter arrays [35, 36, 37], and optical phased arrays [3]. Resonant 

devices requiring high quality factors and low roundtrip losses, 

such as ring-resonator filters and narrow lindewidth external 

cavity lasers also have a critical dependance on loss. Many 

silicon photonics applications involve the use of these 

                     
Fig. 2. (a-e) 2D mode profiles at varying propagation distances z after a 3 µm 

diameter circular excitation at a wavelength of 1300 nm off-center by 1 µm 
in both horizontal and vertical directions for rib waveguide height and width 

of 3 µm, e=0.6h. n = 3.5 is used for the material index of bulk Si at 1300 nm. 

a)

b)

c)

d)

e)

z=0

z=250 µm

z=500 µm

z=1000 µm

z=2000 µm

n0=1.00

n1=3.50

n2=1.45

x (microns)
-4              -2             0              2              4

 
Fig. 3.  a) TE and b) TM Mode shapes and effective indices in our multi-

micron rib waveguide at a wavelength of 1550 nm (h = w = 3 µm, r = 0.6); 
c) TE and d) TM mode shapes for the common 220 nm height waveguide 

platform for comparison (h = 220 nm, w = 450 nm, r = 0.6). 
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Fig. 4. a) Euler bend test circuit mask layout, and b) loss spectra and average 

transmission loss versus bend count (inset) of Euler bend test structures with 48 

and 96 Euler bends in our 3 µm waveguides (h=3 µm). In the Euler bends the 
waveguide width was reduced to w=1.5 µm.  Two chips from two different 

wafers were measured, each chip having one structure with 48 bends and two 

with 96 for a total of 6 data points. 

Euler L-bend 

Reff = 86 µm

96 total 

bendsEuler L-bend 

Reff = 86 µm

a)

b)
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components, and in some cases scaling to larger circuit sizes or 

scaling of the performance for future applications and use cases 

require pushing the losses as low as possible.  The multi-micron 

waveguide platform is the platform of choice for lowest 

propagation losses in silicon. As propagation losses are 

dominated by the electromagnetic field scattering from side-

wall roughness, decreasing modal overlap with the waveguide 

sidewalls leads to lowering of propagation losses.  Larger 

waveguides lead to higher confinement and less field overlap 

with waveguide side walls.  As seen in Fig. 2, both TE and TM 

modes are highly confined in a waveguide with h = w = 3 µm, 

as is evident by the mode effective index being very close to the 

refractive index of bulk silicon (nSi = 3.476).  For the sub-

micron platforms the much lower effective indices of neffTE ≈ 

2.4 indicates a much weaker confinement and intrinsically 

higher overlap with waveguide sidewalls.  

 

 
 

Fig. 5 shows results of characterizations of waveguide spirals 

to assess losses of the rib waveguides, rib-to-strip converters, 

and strip waveguides necessary to combine low-loss 

waveguides with tight-radius Euler bends.  The spirals have 40 

loops with each loop having two regions of rib waveguides, four 

150-µm-long rib-to-strip converters to convert to two strip 

waveguide regions and four Euler bend regions to make tight 

bends with Reff = 86 µm on each corner. Two spirals that have 

identical designs with only different lengths in the low-loss rib 

regions, the second spiral having 800 µm additional length of 

rib waveguide in each loop, are measured.  The difference in 

losses between the two loops allows for an accurate 

measurement of the rib-waveguide loss. An additional spiral 

having only strip waveguides and Euler bends, with no rib 

waveguide regions and no rib-to-strip convertors, is used to 

determine the loss of the strip waveguide, by subtracting the 

Euler bend loss for 160 bends using the known bend loss value 

determined in section C.   Once the rib and strip waveguide 

losses are determined, the rib-to-strip convertor losses can 

approximately be determined by subtracting these losses from 

the total waveguide loss and dividing by the number of 

convertors.   

The losses of the various passive building blocks in our 

platform are summarized in TABLE 1. 

E. High power handling 

The capacity of a photonic integrated circuit waveguide to 

handle high powers is an important topic not often discussed.  

For some PIC applications such as LiDAR, high output power 

translates to longer imaging ranges and faster frame rates, and 

high power handling in these applications can be important for 

PICs to compete against current free-space optics solutions, or 

to enable performance scaling for future needs and applications.   

Silicon has a significant two-photon absorption (TPA) co-

efficient, and therefore silicon has non-linear absorption (i.e. 

absorption dependent on power per unit area in the waveguide) 

which results in self-heating which can limit the performance 

of silicon photonic integrated circuits in the presence of high 

power levels in the waveguide.  This non-linear two-photon 

absorption leads to field-intensity-dependent free carrier 

generation, which not only causes absorption of light but also 

causes self-heating and a change in the phase of propagation by 

changing the refractive index.   

According to [38, 39, 40], for a waveguide having effective 

mode area �̅� and material TPA absorption coefficient 𝛽𝑇, the 

absorption in a silicon waveguide in the presence of two-photon 

absorption is given by 𝛼 = 𝛼𝑠 + 𝛼2𝐼(3) where 𝛼𝑠 is the linear 

absorption due to waveguide scattering, 𝛼2 is the non-linear 

absorption coefficient and is related to 𝛽𝑇 according to 𝛽𝑇 =

𝛼2ℏ𝜔0𝑣𝑔, and 𝐼(3) is the nonlinear intensity in the waveguide.  

In [38] the TPA coefficient was measured in a 4-µm-high 

silicon waveguide and has the value 𝛽𝑇 = 0.45 𝑐𝑚/𝐺𝑊 at a 

wavelength of 1550 nm. Using this simple formalism, we can 

calculate the field intensities at which the TPA-induced loss 

𝑒𝑥𝑝(−𝛼2𝐼(3)) results in significant absorption as a function of 

different waveguide effective mode areas �̅�.  For the 2 cm long 

chip in [38] which has �̅� = 6.2 𝜇𝑚2 the input peak power 

threshold for a 1 dB TPA-induced loss is 18 W. For a 2 cm long 

chip in a 3 µm height platform which has �̅� = 3.5 𝜇𝑚2 this 

corresponds to 10W, and in a 220 nm height platform (�̅� ≈

0.1 𝜇𝑚2) the same threshold is 300 mW.  Thus the 1-dB TPA 

loss threshold is 30 times lower for a 220 nm height waveguide, 

due a mode area that is 30 times smaller than in a 3 µm height 

waveguide.  In LiDAR applications for example, high constant-

wave powers above 100 mW are desired and the onset of TPA 

 

 
Fig. 5. a) 40-loop Spiral with and Euler bends and 100 µm long rib waveguides 

in the uniform rib region, b) 40-loop Spiral with and Euler bends and 500 µm 

rib waveguides in the uniform rib region, equivalent to 3.2 cm longer rib 
waveguide length; c) measured spiral loss spectra over C-band wavelengths. 

Uniform rib region Uniform rib region

Uniform rib region Uniform rib region

a) b) 
In b) Out b)

In a) Out a)

TABLE 1 

LOSSES OF PASSIVE WAVEGUIDE BUILDING BLOCKS 

Quantity Value Unit 

Rib waveguide loss 0.18 dB / cm 

Tight Bend loss 0.01 dB per 90° bend 

Strip waveguide loss 0.31 dB / cm 

Rib-to-strip convertor loss 0.01  dB  

 

 



1077-260X (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTQE.2019.2911432, IEEE Journal
of Selected Topics in Quantum Electronics

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

5 

at these power levels in sub-micron waveguides begins to 

degrade efficient laser operation. 

F. Low phase errors and wavelength variations 

Interferometric or resonant devices perform basic critical 

functions in photonic integrated circuits, such as filtering, 

modulation, beam steering (in optical phased arrays), and 

creating laser cavities.  These devices rely on precise control of 

optical phase, and phase is determined by the refractive index 

seen by the light propagating of the waveguide, and the length 

of the propagation distance.  Length can be precisely controlled 

in the patterning process during optical lithography, but the 

effective refractive index is determined not only by the 

dielectric constants of the materials inside and surrounding the 

waveguide, but more importantly the shape of the waveguide. 

In photonic integrated circuits, waveguide shape non-

uniformities across a wafer translate to phase and therefore 

optical path length non-uniformities, which translate to 

variations in free-spectral ranges and therefore filter center 

wavelengths for filters and resonator-based modulators, lasing 

wavelengths for lasers, and loss of coherence in optical phased 

arrays. 

Similar to scattering loss as discussed in section D, the higher 

the confinement of the light in the waveguide, the less sensitive 

it is to waveguide shape variations.  Simulated and measured 

values of refractive index change and wavelength change due 

to percentage changes in waveguide height, width, and etch 

depth are given in TABLE 2.  In our analysis we find it 

convenient to represent in % both index and wavelength 

changes due to relative waveguide dimension changes. 

Following from [21], waveguides in the 220 nm platform on 

200 mm wafer sizes using 193 nm lithography, a ±1.5% change 

is representative of typical 3σ width variations, and ±2.5% is 

typical for 3σ height variations. Our results in this paper are 

based on work on 150 mm wafer sizes using 365 nm i-line 

lithography, and, conveniently, we find that our 3σ variations 

in width and height in our h = w = 3 µm waveguides expressed 

in % are approximately the same as those mentioned above for 

the 220 nm platform in 193 nm lithography. Etch depth 

variations for these etch depths can range from ±2.5% to ±5%, 

and in this analysis we assume they are ±2.5% (as above). 

Modelling of the effective index variations shows a 20-40x 

lower change in effective index in a 3 µm waveguide compared 

with that in the 220 nm waveguide, and there is a corresponding 

reduction in center wavelength variations in optical filters in the 

3 µm waveguide platform.  This result is confirmed by 

comparing measurements of the variation of AWG filters with 

200 GHz and 400 GHz channel spacings around 1550 nm made 

in our platform to center wavelength variations of filters with 

similar channel spacings and operating wavelengths reported 

from foundries running 220 nm waveguide processes.  We find 

a 25x lower 3σ wavelength variation of 0.3 nm amongst AWGs 

in our platform across multiple wafers and multiple sites per 

wafer, whereas a value of 7.8 nm 3σ variations for filters in the 

220 nm platform has been reported [22]. Fig. 6 plots the 

simulated index changes and associated wavelength changes 

versus waveguide platform height, where the 220 nm height 

point corresponds to the standard h = 220nm w = 450 nm 

waveguide dimension. The dotted line shows a curve fit to the 

data points and reveals the dependence of index sensitivity 

roughly fits a 𝑥−1.5 relationship, verifying that there is a rapid 

increase in the index sensitivity and wavelength variability 

when the waveguide height goes below 1 µm assuming the 

waveguide width is ≤ 2h. It should be noted that, as in  [22], 

variability in filters can be compensated for by adding active 

tuning circuits that use for example thermal phase shifters but 

this adds significant complexity, additional electrical circuits 

and drives up the number of electrical interfaces to the 

photonics PIC. 

 

G. III-V integration 

A critical capability needed for versatile silicon photonics 

PICs is III-V integration. Lasers cannot efficiently be made in 

Si, and III-V semiconductor laser diodes provide the most 

efficient light sources.  Existing III-V waveguide devices such 

as lasers and modulators optimized for performance and power 

efficiency naturally have a multi-micron mode size, thus power-

efficient integration of III-V components is fundamentally well 

suited to our multi-micron platform.  Various techniques for 

integration of III-V actives to Si photonic waveguides have 

been demonstrated, with the techniques generally falling into 

two categories, i) bonding unprocessed III-V materials placed 

above the Si waveguide with evanescent coupling between the 

 

 
Fig. 6. Simulated change in effective index per percent change in waveguide 

width, and associated wavelength change for 1.5% change in waveguide width, 
as a function of waveguide width.  Waveguide height of 220 nm assumes 

waveguide width of 450 nm.  
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TABLE 2 

COMPARISON OF VARIATIONS OF WAVEGUIDE DIMENSIONS AND WAVELENGTH VARIATIONS IN FILTERS IN THE DIFFERENT SI PHOTONIC PLATFORMS  

Structure 
dn/d%∆w 

(simulated) 

∆λ(∆w=1.5%) 
[nm] 

(simulated) 

dn/d%∆h 

(simulated) 

∆λ(∆h=2.5%) 
[nm] 

(simulated) 

dn/d%∆e 

(simulated) 

∆λ(∆e=2.5%) 
[nm] 

(simulated) 

∆λ [nm] 
Measured 

(3σ) 

3 µm rib (h = w = 3 µm, r > 0.5) 9.0E-05 0.06 2.5E-04 0.28 6.0E-05 0.07 0.3 
3 µm strip (h = w = 3 µm) 1.8E-04 0.12 1.80E-04 0.12      
220 nm rib 3.9E-03 3.56 5.00E-03 7.61 3.0E-03 4.57 7.8a  

Values are for TE only and are all 3σ values consistent with [21].  Values for 3 µm waveguides are for 150 mm wafers and 365 nm i-line lithography. 
a From [22] 
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Si waveguide and III-V waveguide, and ii) attaching processed 

III-V devices in a recess in the Si waveguide layer and 

performing edge coupling.   

The edge coupling scheme in the multi-micron silicon 

waveguide platform provides multiple advantages for high 

volume silicon photonic integrated circuits, namely i) direct 

compact coupling between III-V and Si (no evanescent tapers 

or spot-size converters needed), ii) active III-V device 

processing in existing III-V foundries, iii) ‘back-end’ 

integration of known good and reliable III-V devices (tested 

before integration), and iv) more favorable thermals owing to a 

direct thermal path to the Si substrate since the recess can be 

etched through the BOX layer. Manufacturable hybrid external-

cavity lasers with good performance and narrow line-widths 

can be realized in the multi-micron platform by using a simple 

III-V flip-chip bonding process [41, 18].   

Fig. 7 plots the coupling efficiency between a standard III-

V multiple-quantum-well (MQW) device waveguide and a 

multi-micron silicon photonic waveguide with height ranging 

from h = 1 µm to h = 3 µm and width w = 3 µm. The coupling 

losses range from 0.2 – 2 dB for heights ranging from 1 to 3 

µm, respectively, for waveguides as-is (without any mode 

conversion), and from 0.2-0.3 dB when a local spot-size 

converter is added to the SOI or III-V waveguide to optimize 

the mode height at the coupling interface, assuming ideal 

placement accuracy of the III-V element.  Fig. 6 and Fig. 7 

together show that efficient III-V coupling, compactness, and 

high manufacturing tolerances can be achieved simultaneously 

for any desired application by using milt-micron silicon 

waveguide heights in the 1 to 3 µm range. High performance 

hybrid integrated lasers and modulators made in this way in 3 

µm waveguide heights are described further in section III.C and 

III.D. 

 

III. PLATFORM TECHNOLOGIES 

A. Fiber Attach 

Many current and future applications of silicon photonics 

PICs involve interfacing to standard single-mode optical fiber 

(SMF). For these PICs to be used in high-volume applications, 

the attach to SMF must be simple, low loss, and the attach 

assembly process must be low-cost and easy to perform, ideally 

without lengthy active alignment steps. The multi-micron 

platform is naturally well-suited to meet these requirements as 

the mode size in the waveguide is within one order of 

magnitude of the mode size in SMF fiber. Because of this a 

single-stage spot size convertor can be used to expand the mode 

to a 13x13 µm large waveguide and facilitate mode-matching 

to SMF fiber. Anisotropic wet-etched V-grooves can also be 

formed in the silicon substrate at the ends of the expanded 

waveguides [24] to facilitate passive alignment of SMF fiber to 

the 13x13 µm waveguide end. Since the angle of the V-groove 

is defined by the crystal planes of the silicon, the depth of the 

V-groove can be precisely controlled to lithographic tolerances 

by optimizing the V-groove width. When a stripped SMF fiber 

is placed in the V-groove, the center of the SMF fiber mode is 

aligned to the center of the 13 x 13 µm waveguide mode.  The 

theoretical coupling loss between the mode of the SMF fiber 

and the 13 x 13 µm waveguide is only 0.15 dB, and when 

combined with the loss of the spot-size converter and additional 

loss tolerance for fiber dimension and V-groove etch 

variabilities, the theoretical loss of the fiber attach chain in high 

volume production can be < 1 dB per interface for both TE and 

TM polarizations.  

We fabricated spot-size convertor (SSC) test chips that have 

h = w = 13 µm high waveguides aligned to deep-etch V-grooves 

on either end of the chip coupled to a h = w = 3 µm high 

waveguide in between using two single-adiabatic taper spot-

size convertors which transition the mode between the two 

waveguide sizes.  The chip schematic is shown in Fig. 8 a). An 

SEM picture of the V-groove structure is shown in Fig. 8 b).   

Fig. 8 c) shows the measured fiber-to-fiber optical transmission 

through the SSC chip, with the fiber coupling optimized.  The 

measured total fiber-to-fiber loss is 1.8 dB, corresponding to 0.9 

dB coupling per fiber interface.  

 
 

The SSC chip in Fig. 8 was fabricated in a starting wafer 

having an h = 13 µm top Si guide layer and etching down to the 

h = 3 µm height to make the tapers. The spot size converters 

 

 
Fig. 7  Coupling loss between standard III-V active device waveguide and 

silicon waveguide with varying silicon waveguide height and fixed width w 

= 3 µm (circles), and with local vertical spot-size convertor added to 
optimize height at coupling interface (squares), assuming ideal alignment.  
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Fig. 8  a) Schematic of spot-size-convertor chip which converts 13x13 µm 

waveguides aligned to deep-etched V-grooves at the edges to a 3x3 µm 

waveguide in the middle; b) SEM picture of a fabricated V-groove aligned 
with a 13x13 µm waveguide; c) measured fiber-to-fiber optical transmission 

spectrum of the chip over full C-band wavelengths (TE polarization only). d) 

measured fiber-to-waveguide optical transmission spectrum for buried SSC, 
TE and TM polarization. d) was measured as half the transmission through 

two SMF fibers placed passively in V-grooves coupled with on-chip buried 

SSCs to either end of a U-bend w=h=3 µm rib waveguide. 
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and 13 x 13 µm waveguides can also be inverted and integrated 

into an SOI wafer structure with 3-µm-high top Si layer, 

creating a buried SSC allowing for planar integration and 

seamless process integration with other elements in the 

platform, facilitating PICs with low-loss fiber attach structures 

at the chip edges and integrated with other platform elements as 

desired. We have achieved loss from passively aligned SMF 

fiber through buried SSCs to w=h=3 µm waveguides in 3-µm 

SOI of nominally 1.1 dB with ±0.2 dB PDL as shown in Fig. 8 

d). 

B. AWG Filters 

Filters are a key element for performing multiplexing and 

demultiplexing functions in PICs, for example for wavelength 

division multiplexing (WDM) in data communication systems 

or to make spectrometers, and are commonly implemented in 

silicon photonics using arrayed waveguide gratings (AWGs) 

[34, 24]. 

AWG filters are particularly well suited for the multi-

micron silicon photonics platform. AWGs have been reported 

in thin (sub-micron) SOI platforms and have seen good 

performance and compact size [34], but they have not yet been 

deployed commercially because of the large sensitivity of the 

channel wavelengths to fabrication variations in this platform, 

and the large polarization dependence due to the large 

birefringence in these waveguides. The multi-micron SOI 

waveguides on the other hand have little to no birefringence, 

low phase errors due to waveguide fabrication variations, and 

low propagation loss as described in section II. For AWGs these 

properties enable high performance, high repeatability and high 

yields, even with relaxed manufacturing capabilities. Indeed, 

for these reasons AWGs in multi-micron SOI waveguides were 

deployed commercially already in the late 90s [24]. 

An historical issue with AWGs in a thick-silicon SOI 

platform is the fact that the bend radius of the waveguide is also 

large (typically few mms) and this results in a device with a 

large footprint, which is not compatible with the stringent size 

requirements of high-density optical I/O photonic chips. Also 

the lower waveguide dispersion in the multi-micron 

waveguides results in a further ~2x relative increase in the 

waveguide array length compared to AWGs made in sub-

micron waveguides. However, the use of the Euler bends 

discussed in section II.C now unlocks the possibility of still 

extremely compact and novel AWG layout schemes. Error! 

Reference source not found. shows rectangular-shaped 

AWGs implemented by using two 90-degree Euler bends on 

each waveguide in the waveguide array. Shallow-etched rib 

waveguides were used for the waveguides leading to the 

interface between the free-propagation-region and the 

waveguide array. Square deep etched slab waveguides were 

used to implement the actual delay sections in the array which 

have zero birefringence and allow polarization independent 

operation. In the Euler bend regions, the waveguide width was 

reduced to 1.5 µm to facilitate tight bend radii of Reff = 86 as 

discussed in section II.C. Rib-to-strip converters were used 

inside the waveguide array to transition from one cross section 

to the other, and were optimized for minimal reflections and 

minimal excitation of higher order modes. 

 
 

The devices in Fig. 9 were fabricated in SOI wafers having 

a 3 µm top Si guiding layer using an i-line wafer stepper (348 

nm lithography linewidth) on 150 mm wafers. The devices were 

characterized using a broadband source in combination with an 

optical spectrum analyzer. Light was coupled directly to 

waveguides using a lensed optical fiber, and a polarization 

switch was used to control the input polarization state to both 

TE and TM states. Fig. 9 b) and d) show the spectral response 

for both polarizations of a 1x4 - 400GHz and 1x16 100GHz 

AWGs respectively. The losses are normalized to a reference 

straight waveguide measured with the same input and output 

lensed fibers to ensure equal coupling efficiencies to the devices 

and reference waveguides. The insertion loss across all 

 

 
Fig. 9  Top-view chip micrographs a), c) and optical spectrum measurements 

b), d) for both TE and TM polarizations of Arrayed Waveguide Gratings 
(AWGs) fabricated in the Rockley Photonics multi-micron platform.  

a)

b)

c)

d)
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channels and both polarizations is < 3 dB. The crosstalk 

(defined as power from adjacent aggressor channel leaking into 

the center of the victim channel) is better than -25dB across all 

channels for both polarization states. The polarization-

dependent frequency shift (PDF) is below 10GHz and the PDL 

is below 0.5dB.  

Thermal management of filters is also important in a silicon 

photonics platform as Si has a relatively large thermo-optic co-

efficient of 80 pm/°C and power-efficient thermo-optic phase 

shifters are desired. Thermal management and thermo-optic 

phase shifting can be performed by introducing localized 

heaters into the Si waveguides, and we have achieved efficient 

~1 mW/π waveguide heaters with doped regions and undercuts 

similar to what has been shown in [42].  All-Si a-thermal AWGs 

with little/no channel wavelength drift versus temperature can 

also be made in our platform. Details of our efficient thermo-

optic waveguide heater technologies and a-thermal AWGs will 

be published in future works. 

Fig. 10 shows the AWG channel registration measured across 

multiple dies and wafers in a fabrication run.  The wavelength 

variation is better than σ = 0.1nm.  Waveguide variations are 

estimated to be ∆w3σ = 54 nm, and height variations ∆h3σ +/- 75 

nm. 

 

C. Hybrid III-V lasers 

As mentioned in section II.G we perform III-V integration 

using an edge coupling scheme to make hybrid lasers in our 

platform.  Hybrid laser devices were made by fabricating InP-

based RSOAs and DFB lasers in a standard III-V foundry and 

integrating them into h = 3 µm silicon rib waveguides using 

well known flip-chip integration methodologies (see e.g. [18]) 

but using modern solder processes and commercial die-bonder 

tools with high alignment accuracy.  

External cavity lasers were made with the RSOAs coupled 

to DBR gratings etched in the silicon rib waveguide, and a wall 

plug efficiency of 15% and output power exceeding 50 mW at 

25°C was achieved, as shown in Fig. 11 a) through c). Anti-

reflection coatings (composed of single-layer silicon nitride 

films) and angled waveguides at the output facets were used on 

both the Si and III-V sides to suppress facet reflections. Such 

lasers can have very narrow linewidths due to the fact that the 

hybrid edge-coupling scheme provides the ability to decouple 

the length of the gain region from the passive region in the 

cavity, and therefore a significant portion of the cavity length 

can be composed of our low-loss silicon waveguides. Results 

from a linewidth measurement on one of our external cavity 

DBR lasers is shown in Fig. 11 d). Linewidths of < 40kHz are 

obtained. Fig. 11 e) shows the spectrum of a 4-channel WDM 

laser PIC created with hybrid integration of an RSOA with an 

array of 4 waveguides coupled to an array of 4 waveguides 

having gratings of different pitches.  An SEM micrograph of a 

similar 8-ch WDM laser PIC is shown in Fig. 11 b).   

 
The performance of hybrid DFB structures fabricated in the 

platform is shown in Fig. 11 f) and g). Output powers greater 

than 15 mW over a full chip temperature range of 25C – 75C 

are obtained.  These lasers have an SMSR > 50 dB and are 

tolerant to -20dB of return loss at the laser facet. Tolerance to 

back-reflection at these levels is a key attribute for commercial 

silicon photonic lasers as the lasers need to maintain 

performance in the presence of multiple sources of scattering 

 
Fig. 10. AWG peak wavelengths for a single AWG design measured across 

multiple dies and 150 mm wafers. 

 
Fig. 11  Schematic drawing a), SEM micrograph b), and performance 

measurements c)-g) of our silicon photonic hybrid laser platform;  

 
 

System on Silicon PIC

a)

b)

c)

d) e)

f)

g)

AR coatings
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and back reflection on the silicon chip and from the external 

link beyond the transmitter chip. 

Owing to this hybrid scheme, our silicon photonic laser 

platform is capable of integration of III-V dies of different 

designs or material systems on the same PIC. By combining 

with multi-cavity wafer scale integration techniques, we can 

make many-channel laser PICs covering a broad range of 

wavelengths for ultra-broadband applications. 

D. High speed modulators and detectors  

III-V integration on silicon is a key technology enabler for 

silicon photonics.  Several techniques have been used for 

integration of III-V on silicon for lasers and EAMs on sub-

micron waveguide platforms. These typically require 

specialized processing techniques to be developed in a silicon 

fab and involve removal of large areas of the III-V material 

resulting in high costs. We have developed 1310 nm electro-

absorption modulators fabricated in standard III-V foundries 

with excellent performance over temperature at 25Gbaud, and 

with performance that can scale to higher speeds for future 

generations, which are hybrid flip-chip integrated into the Si 

waveguides in the same way as the RSOAs and lasers as 

described in section C. The performance of these devices is 

shown in Fig. 12. The figure shows open eye-diagrams at 25C 

and 75C with low TDECQ penalties for 25 Gb/s NRZ and 50 

Gb/s PAM-4 modulation. The DC extinction ratio of the 

devices show broadband performance at O-band wavelengths. 

Our EAM platform is also capable of good performance at 50 

Gb/s NRZ and 100 Gb/s PAM-4 modulation rates, details of 

which will be published in future works.  

 
Polarization independent and broadband germanium 

waveguide photodetectors (PDs) were realized with monolithic 

Ge diode waveguides having monolithic integration of 3-µm-

thick Ge epitaxially grown inside our w=h=3 µm Si 

waveguides.  The performance of our Ge PDs is shown in Fig. 

13. The devices show S21 bandwidths in excess of 40 GHz, 

sufficient for detection of 50 Gb/s PAM-4 signals, and high 

responsivities of  >1 A/W and >0.85 A/W in the C-band and O-

bands respectively. High-speed monolithic Ge PDs with similar 

performance in multi-micron SOI waveguides have been 

reported previously in [25]. 

PMD electronics for our high speed EAM and PDs are 

described in [2]. 

 

 

IV. APPLICATIONS 

Silicon-photonic PICs incorporating high-data-rate 

modulators and detectors can revolutionize optical I/O solutions 

for datacenters by co-packaging high-density I/O PICs with 

switch ASICs [2]. In these optoASIC applications there is a 

need for high (>200) Gb/s/mm integration densities in the PICs 

to allow edge integration with the ASIC.  This drives the need 

for silicon photonics modulators and detectors that can be 

integrated with pitches of ≤ 300 µm, data rates of 50 Gb/s per 

wavelength, integrating an increasing number of components 

per chip.  Moreover, to be viable for this application the high 

speed modulators and detectors must have the ability to scale to 

smaller integration densities and high data rates that are needed 

to keep pace with the generational throughput increases of the 

switch ASICs.  Our compact III-V-based EAM modulators and 

monolithic Ge PDs are well suited for these requirements, and 

transceiver Tx and Rx PICs made in our platform have sizes < 

30 mm2, planar fiber attach included, comparable to or smaller 

than most transceiver PICs made in sub-micron silicon 

photonics platforms. 

Our multi-micron silicon photonics platform also has 

advantages for sensing applications and in particular 3D 

imaging and LiDAR. First, these applications can require large 

transmitted optical powers of at least +30 dBm in a single 

output waveguide, due to the 1/R2 dependence of the power 

received at a detector placed at a distance R up to a few hundred 

meters from the target, as well as fast steerable narrow beams 

to provide high spatial resolution at fast frame rates [3]. The 

much higher power handling capability of the multi-micron 

platform discussed in section II.E enables higher performance 

LiDAR systems that have longer range and/or higher received 

powers enabling faster frame rates. We have measured over 2 

W of peak optical power handling without observable TPA 

saturation in our platform. Second, to achieve a large number 

of diffraction limited sampling spots with an optical phased 

array (OPA), a large number of single emitters is needed on a 

tight pitch for a large field of view. Placing single emitters on a 

 
Fig. 12  a) DC Extinction ratio at 70C versus wavelength for our III-V EAMs 

with 2V peak-to-peak drive swing.  EAM eye-diagram with 50 Gb/s PAM-4 
signaling at b) 25C and c) 75C. 

70C

75C

Outer ER: 4.7dB, TDECQ 1.29dB

a)

b) c)

  
Fig. 13  a) SEM micrograph of Ge PDs PIC, with PDs integrated on a 250 

µm pitch with the help of Euler bends. b) eye diagram and c) S21 plot 

measured on one PD at 25 Gb/s at –2V bias.  
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tight pitch requires very good confinement in the emitting 

silicon waveguides so that the emitters do not couple to each 

other. As the multi-micron waveguide platform has a mode with 

very high confinement for waveguide widths down to 0.5 µm, 

the platform is ideally suited for tight pitch emitters. Combined 

with the high manufacturing yields and reduced phase errors, 

this means large emitting arrays with wide field of view and 

shorter calibration times can be produced with good 

manufacturability. Third, to scan a far field with a large number 

of sampling points at a large frame rate, fast steering of an OPA 

is needed, with a steering speed < 1µs per sample point desired. 

While thermo-optic phase shifters are commonly used to 

implement beam steering in many OPAs [43, 3], they are not 

fast enough for many applications. Fast phase shifters based on 

silicon p-i-n or p-n waveguide diodes, or more exotic materials, 

should ideally be used to achieve fast phase-based steering. 

Silicon p-i-n or p-n waveguide diodes capable of 1 to 10s of ns 

response time, lengths in the range 0.5-5 mm, and VπL 

efficiencs (for p-n diodes) similar to sub-micron-waveguide 

high-speed phase modulators can also be made in the large 

waveguide platform. Fourth, the waveguides and fiber couplers 

have large optical bandwidth of operation, providing the 

capability to operate over a wide range of wavelengths. Finally, 

on the receive side, the platform is well suited to implement 

coherent receivers for Frequency-Modulated Continuous Wave 

(FMCW) LiDAR. Coherent receiver PICs can easily be made 

with 2x2 MMIs to mix the signal with the local oscillator and 

integrated waveguide photodiodes. The inherent polarization 

independence of the circuit will allow the receiver performance 

to be independent of the polarization state coming from the 

target. In addition, the wide wavelength range supported by the 

waveguides makes our platform very well suited for other 

sensing applications such as wideband spectroscopy. 

V. CONCLUSION 

We have described and characterized a multi-micron-size 

silicon photonic integrated circuit platform that has been 

designed to provide the maximum combination of performance, 

power efficiency, manufacturability and versatility. This has 

been achieved by developing a silicon photonics process that is 

separate from and unconstrained by CMOS processes. Instead, 

it has been optimized for photonic circuit performance and 

manufacturability.  Specifically, compared to conventional sub-

micron waveguide platform integrated circuits, our platform 

has 2-10 times lower waveguide losses, 25 times less variability 

of performance due to equivalent percent changes in waveguide 

dimensions, polarization independence for the key technology 

elements, and a monolithic fiber attach technology which has < 

1 dB insertion loss and is ultra-broad-band.  

Using this platform we have demonstrated i) compact AWGs 

up to 16 channels with insertion losses < 3 dB across all 

channels and polarizations and very low channel center 

wavelength variability, ii) hybrid DBR and DFB lasers 

providing high output powers of 15–50 mW, wall plug 

efficiencies of 15% at 25C, narrow linewidths of < 40 kHz, and 

WDM capability, and iii) high speed EAM modulators and Ge 

detectors that are compact, power efficient, and have good 

performance for 50 Gb/s PAM-4 data modulation and detection. 

The platform and demonstrated technologies pave the way 

for the deployment of planar photonic integrated circuits across 

a diverse range of applications ranging from data 

communications to sensors. This enables integrated photonics 

to begin to leverage the economies of scale for high volume 

manufacturing, which has been key to the success of the 

microelectronics industry. 
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