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Abstract 

The ability to quantify animals’ feeding activity and the resulting changes in their body 

condition as they move in the environment is fundamental to our understanding of a 

population’s ecology. We use satellite tracking data from northern elephant seals 

(Mirounga angustirostris), paired with simultaneous diving information, to develop a 

Bayesian state-space model that concurrently estimates an individual’s location, feeding 

activity, and changes in condition. The model identifies important foraging areas and times, 

the relative amount of feeding occurring therein and thus the different behavioral strategies 

in which the seals engage. The fitness implications of these strategies can be assessed by 

looking at the resulting variation in individuals’ condition, which in turn affects the 

condition and survival of their offspring. Therefore, our results shed light on the processes 

affecting an individual’s decision-making as it moves and feeds in the environment. In 

addition, we demonstrate how the model can be used to simulate realistic patterns of 

disturbance at different stages of the trip, and how the predicted accumulation of lipid 

reserves varies as a consequence. Particularly, disturbing an animal in periods of high 

feeding activity or shortly after leaving the colony was predicted to have the potential to 

lead to starvation. In contrast, an individual could compensate even for very severe 

disturbance if such disturbance occurred outside the main foraging grounds. Our modelling 

approach is applicable to marine mammal species that perform drift dives, and can be 

extended to other species where an individual’s buoyancy can be inferred from its diving 

behavior.  Keywords: body condition; disturbance; drift dives; elephant seals; feeding 

ecology; satellite tracking; Bayesian state-space modelling.
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Introduction 

Marine predators spend most or all of their time at sea, often far from the coast and from 

the surface, where they cannot be easily monitored by human observers (Hays et al. 2016). 

Until recently, these sampling challenges meant that the mechanisms underpinning their life 

history characteristics remained largely unknown, and researchers were forced to infer large 

components of an individual’s ecology from the short windows of time when the animals 

became accessible. Modern technologies increasingly allow these knowledge gaps to be 

filled (Hussey et al. 2015). It is now possible to remotely track the movement and behavior 

of marine predators as they roam their environment and interact with the patchy resources 

they encounter (Block et al. 2011). As a result, it is now feasible to investigate the 

functional processes that regulate animals’ decision-making, and how their behavioral 

patterns translate into variation of their body condition (Shepard et al. 2013; Crossin et al. 

2014). An individual’s body condition reflects the balance between the energy it acquires 

via resource intake and the energy expended to support other life functions, such as growth, 

movement, maintenance and reproduction (Costa 2009; Kooijman 2010). In the long-term, 

the ability to maintain this energy balance will affect individuals’ survival and reproductive 

success, i.e. their overall fitness, which ultimately influences the dynamics of the 

populations to which they belong (Kleiber 1975). 

The movements of animals, as recorded by the various available tracking systems, can be 

grouped into functional units of behavior at multiple spatiotemporal scales (Nathan et al. 

2008). At a large scale, marine predators can migrate between breeding and foraging 

grounds or perform seasonal trips at sea to accumulate body reserves, depending on 
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whether or not they need to return ashore to reproduce (Costa 1993; Boyd et al. 2014; 

Pirotta, Mangel, et al. 2018). Within these large scale movements, shorter bouts of activity 

can be identified. Typically, while moving at sea, an individual will encounter areas where 

resources are scarce, which it will tend to pass through relatively quickly while headed 

towards more profitable regions. Such transiting behavior will result in directed tracks, at 

relatively stable speed (Fauchald and Tveraa 2003). When reaching areas richer in food, 

and because of the patchy nature of resources at sea, an animal will maximize the chance of 

finding prey by exploring these patches with convoluted movements at variable speed, a 

behavior known as area restricted search (ARS) (Kareiva and Odell 1987). The distinction 

between these two fundamental behavioral modes has been one of the main objectives of 

many movement models in the past decade (Patterson et al. 2016). However, behavior can 

be characterized at an even finer scale when pairing telemetry devices with other tagging 

technologies that, for example, can record the animals’ dives (Bestley et al. 2015; Joy et al. 

2015). Diving patterns can provide information on the feeding activity of the animals, i.e. 

their ability to successfully capture food, both when they are actively foraging (in ARS 

mode) and, opportunistically, when transiting (Thums et al. 2011). Moreover, in some 

species, diving data can be used to infer changes in body condition as an animal feeds and 

accumulates lipids that alter its overall buoyancy (Biuw et al. 2003; Schick et al. 2013; 

Miller et al. 2016). These analyses are individual-based by nature of the data collection. 

However, the ability to characterize the functional link between an individual’s behavior 

and the resulting energetic implications means that the variation of fitness among 

individuals in a population, over time and as a function of the environmental context, can 

be evaluated (Biuw et al. 2007; Schick et al. 2013; Crossin et al. 2014). 
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Being able to connect behavioral processes to population dynamics becomes critical when 

predicting how populations may react to increasing alterations in their habitats, following, 

for example, climate changes or expanding human activities in the marine environment 

(National Research Council 2005; New et al. 2014; National Academies 2017; Pirotta, 

Booth, et al. 2018). Assessing the population consequences of short-term changes in 

behavior is a requirement under most regulatory targets (e.g. the European Habitats 

Directive 92/43/EEC, or the U.S. Marine Mammal Protection Act). The disruption of an 

individual’s activity pattern could affect its ability to feed successfully. If these disruptions 

are recurring, or severe enough, the ability to accumulate sufficient body reserves to 

survive and support reproductive efforts can be impacted. Depending on the nature of the 

disruption and what proportion of the population is exposed to such behavioral 

disturbances, these could therefore become relevant from a management perspective (New 

et al. 2014; King et al. 2015; Fleishman et al. 2016; Pirotta, Booth, et al. 2018).  

Elephant seals (Mirounga spp.) represent the model species to investigate these questions, 

because most of the conceptual steps between individual behavior and population dynamics 

can be informed using empirical data (New et al. 2014). These long-lived capital-breeding 

phocids follow relatively homogeneous life history patterns. During a year, they spend two 

periods hauled out on land to molt and breed, separated by long trips at sea to feed (Le 

Boeuf and Laws 1994). Of particular interest is the eight-month-long post-molt foraging 

trip that occurs immediately prior to the breeding season. Since elephant seals are capital 

breeders (Costa 1993; Stephens et al. 2009), the amount of lipid mass a female manages to 

accumulate over such a trip is linked to the amount of energy she can transfer to her pup 
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during lactation and thus the pup’s weaning mass. This in turn affects the pup’s probability 

of recruitment into the population (McMahon et al. 2000; McMahon et al. 2003). 

Individuals can be tracked using satellite telemetry and their diving behavior can be 

recorded (Le Boeuf et al. 2000). Crucially, elephant seals perform passive dives for 

digestion and resting, known as drift dives (Crocker et al. 1997). The drift rate, i.e. the rate 

at which the animal sinks or floats during a drift dive, is mainly affected by a female’s 

buoyancy, which varies as she stores positively buoyant lipids (Biuw et al. 2003). 

Therefore, the drift rate can be used to estimate the variation of an individual’s lipid mass 

over the course of a foraging trip. This information can then potentially be paired with 

observed movements and behavior at sea to quantify underlying mechanistic links (Thums 

et al. 2008; Robinson et al. 2010; Richard et al. 2014). Several studies have described the 

spatiotemporal relationships between the accumulation of lipid mass and the associated 

characteristics of the environment in which the animals foraged (Bailleul et al. 2007; Biuw 

et al. 2007; Simmons et al. 2010; Robinson et al. 2012). In addition, Schick et al. (2013) 

and New et al. (2014) developed a state-space model to estimate daily changes in condition 

using information from the changes in drift rate, which New et al. (2014) used to simulate 

the effects of environmental changes on the corresponding populations. While successfully 

tracking the variation of lipid mass over the trip, the models had some fundamental 

limitations when used to simulate the effects of anthropogenic or environmental 

disturbance. Because the portion of the model describing changes in lipid mass did not fully 

capture the behavioral mechanisms regulating this variation, realistic simulations depended 

on the component of the model informed by the drift rate alone. Disturbance could 

therefore only be simulated as the removal of a progressively large portion of the mass 
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accumulated at the end of a trip (New et al. 2014). Consequently, it was not possible to 

assess the effects of disturbance in specific regions or sections of the trip, nor test whether 

the animal could compensate for disturbances that occurred early in the trip.  

The aim of this study was to develop an analytical approach that concurrently estimates the 

location of a female elephant seal, her feeding activity over time and the resulting variation 

of her condition, while accounting for all sampling uncertainties. By integrating the 

processes governing movement, feeding activity and lipid accumulation, the model 

characterizes the functional mechanisms underlying the variation in behavior and body 

condition. This will permit the exploration of a larger set of realistic disturbance scenarios 

(including sporadic disturbance over a trip, or disturbance in specific foraging patches) for 

the evaluation of any population consequences. Moreover, the analytical approach we 

outline here will be applicable to other species that are known to perform drift dives, e.g. 

New Zealand fur seals Arctocephalus forsteri (Page et al. 2005), or to glide during the 

ascent or descent phases of their dives, e.g. deep diving cetaceans (Miller et al. 2004; Miller 

et al. 2016) and baleen whales (Nowacek et al. 2001), allowing the unprecedented 

investigation of their medium-term behavioral and energetic dynamics. 

 

Material and methods 

Study species and data 

The life history of northern elephant seals (Mirounga angustirostris) involves two periods 

on land, to molt and breed, alternating with two long trips at sea to feed (Le Boeuf and 
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Laws 1994). In this study, we focused on the eight-month long foraging trip that follows 

the molt and precedes the birth of a female’s pup and lactation. The timing of the post-

molting trip is approximately between June and January (Le Boeuf et al. 2000).  

For this study, we used data from 26 of the 29 females used by Schick et al. (2013) that 

were tagged at the colony of Año Nuevo (California, USA) between 2004 and 2007. Three 

females from the original study were excluded, because it was not possible to estimate their 

mass at departure and arrival following the procedure described below. While on land to 

molt, females were instrumented with Argos satellite transmitters (Wildlife Computers, 

Redmond, WA, USA or Sea Mammal Research Unit, St Andrews, UK) to track their 

location, and time-depth recorders (TDRs) to record their diving behavior (Wildlife 

Computers MK9). The satellite transmitters returned a set of latitude and longitude 

coordinates, as well as the Argos quality class assigned to each location (Costa et al. 2010). 

The TDRs recorded pressure every 8 s, from which dive information was derived as 

described in Robinson et al. (2010). Particularly, diving data were summarized at a daily 

scale to obtain median ascent rate, median descent rate, median time spent at the bottom 

during a dive, total number of dives per day and median dive duration (Thums et al. 2008; 

Robinson et al. 2010; Viviant et al. 2014; Vacquié-Garcia et al. 2015). Moreover, the daily 

median drift rate and total number of drift dives were estimated (Thums et al. 2008; 

Robinson et al. 2010). A female’s weight and body morphometrics were also measured at 

deployment and recovery of the devices (Robinson et al. 2010), from which the lipid and 

non-lipid mass were estimated. Since the elliptical shape of the seals was not measured 

prior to 2013, estimates of lipid mass using circular truncated cones were adjusted to lipid 
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mass estimates using elliptical cones via a function that relates the two methods (Schwarz 

et al. 2015). Individual trips were assigned to one of three foraging regions (coastal, North-

eastern Pacific and pelagic transition zone) based on the classification by Schick et al. 

(2013). More details on data collection and processing are provided in Robinson et al. 

(2010) and Schick et al. (2013). 

Modelling approach 

We developed a hierarchical state-space model to analyze location, diving and mass data 

from tracked female elephant seals at a daily temporal resolution. The state-space model 

comprised a process model, which represented the underlying functional processes 

governing the variation in an animal’s behavior and body condition, and an observation 

model, which accounted for the measurement error associated with the sampling process. 

The process model was composed of three interlinked components: 

1) The horizontal movement component was adapted from the discrete-time, hierarchical 

switching state-space model developed by Jonsen et al. (2005, 2013). Under this approach, 

animal movements are modelled as the sum of multiple first-difference correlated random 

walks. Each random walk describes the dynamics of the first difference d of the locations x 

(a vector of latitude and longitude coordinates) at time step t: 

dt ~ γ∙T∙dt-1 + N2(0, Σm), 

where γ indicates the degree of autocorrelation in direction and speed; T is the transition 

matrix describing the rotational component of the walk and depends on the turning angle θ, 

i.e. ; and N2 is a bivariate Gaussian distribution representing 
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process error, with covariance matrix , characterized 

by variance in longitude σ2
lon, variance in latitude σ2

lat and correlation between the two, ρ. 

The switch between different correlated random walks is then regulated by a set of 

transition probabilities. For more details on the analytical approach the reader should refer 

to Jonsen et al. (2005), while the corresponding JAGS code for this component was derived 

from package bsam for R 3.3.2 (Jonsen et al. 2013; R Development Core Team 2016). 

Here, the model was used to estimate the location of individual i on day t, xi,t, and its 

movement mode bi,t. On each day of the trip, the individual could be in one of two 

movement modes (transit or area restricted search, ARS), characterized by two first-

difference correlated random walks with different autocorrelation γb and turning angle θb. 

Specifically, transit behavior was assumed to show high autocorrelation and small turning 

angle, capturing directed travelling, while ARS behavior corresponded to lower 

autocorrelation (i.e. γ2 = γ1∙g, where g is a deviate in [0, 1]) and large turning angle, 

representing encamped exploratory movements (putatively in search of food). Dummy 

variables, h, were used to ensure turning angle values, θ, were limited to a circle (see Table 

S1 in Supplementary material). The movement mode of each individual in the first time 

step, bi,1, was estimated using a vector of initial probabilities, λ. For all other steps, the 

vector α represented the transition probability from either movement mode to transiting, 

while the transition probabilities to ARS were defined as 1 – αb. 

2) The feeding component modelled the amount of feeding activity of individual i on each 

day t (fi,t), expressed as a value between 0 and 1. This could be interpreted as the proportion 

of some maximum feeding that an individual can achieve on a day, although it remains a 
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relative measure, whose absolute value depends on model formulation. Feeding activity 

was modelled as a logistic function of movement mode (bi,t), because feeding was expected 

to be higher when the animal was in ARS mode, but it also remained possible while the 

animal was transiting (Thums et al. 2011; Adachi et al. 2017). In the absence of more 

proximate measures of prey capture attempts, feeding activity was further informed by the 

daily average characteristics of the dive profile (see available dive metrics in section “Study 

species and data” above) (Thums et al. 2008; Gallon et al. 2013; Viviant et al. 2014; 

Vacquié-Garcia et al. 2015). For parsimony, and because preliminary data exploration 

highlighted a strong correlation among the various dive metrics, we chose to include the 

effect of only one of these variables. We sought to identify the dive metric that best 

correlated with the median daily drift rate on the following day (ri,t+1), assuming that it 

would be the most representative of the individual’s success at finding food. The variable 

was selected using a mixed-effects model fitted using package lme4 in R (Bates et al. 2012; 

see Appendix S1 in Supplementary material for details). Preliminary data exploration also 

suggested that the relationship between the dive metrics and the drift rate varied based on 

the sign of the drift rate, possibly indicating different underlying behavioral processes 

depending on the condition (and resulting buoyancy) of the animal. Therefore, we fitted a 

separate feeding model depending on whether the animal was positively or negatively 

buoyant. As a result of this procedure, the total number of dives on a given day (when the 

animal was negatively buoyant; ni,t) and ascent rate (when the animal was positively 

buoyant; si,t) were included in the final model as covariates. In alternative to this data-

driven approach, we ran a different version of the model where we selected a priori the 

daily median time spent at the bottom during a dive as a mechanistic indicator of successful 
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feeding (Austin et al. 2006; Gallon et al. 2013; Vacquié-Garcia et al. 2015). This also 

allowed us to explore the sensitivity of our results to the choice of the dive metrics that 

informed the feeding component (Appendix S5). In order to facilitate convergence, the dive 

variables were standardized. The model included an intercept term (also different 

depending on the sign of the drift rate) and a Gaussian distributed error term (εi,t) with 

standard deviation σf. Preliminary investigation supported the use of a correlated random 

effect by individual i on the intercept and slope term of the dive covariates (β parameters in 

the equation below). Therefore, for each individual i, βi,p ~ N2(Bp, Σp) and βi,n ~ N2(Bn, Σn), 

where the subscripts p and n stand for ‘positive’ and ‘negative’ (i.e. the sign of the drift rate 

ri,t), Bp and Bn are the vectors of means, and Σp and Σn are the corresponding covariance 

matrices. Feeding activity was then obtained from the linear predictor using a logit link 

function. The equation for the feeding activity of individual i at time t (fi,t) was thus: 

logit(fi,t) = I(ri,t)∙[β1,i,p  + β2,i,p∙si,t + υp∙(bi,t - 1)] + [1- I(ri,t)]∙[β1,i,n + β2,i,n∙ni,t + υn∙(bi,t - 1)] + εi,t 

εi,t ~ N(0, σf
2), 

where bi,t is the behavioral state (equal to 1 for transiting and 2 for ARS), υp and υn are the 

effects of being in ARS mode when positively and negatively buoyant, respectively, and I() 

is a step function that returns a value of 0 if the argument is negative and 1 if the argument 

is positive. 

3) The condition component modelled the lipid mass of individual i on each day of the trip 

t (li,t). The lipid mass depended on the lipid mass in the previous day (li,t-1) and varied as a 

function of the amount of feeding activity on that day (fi,t), with Gaussian distributed 
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uncertainty κi,t characterized by standard deviation σl. As for the feeding component, we 

included a correlated individual random effect for the intercept and slope parameters of this 

component (ζi). Therefore, for each individual i, ζi ~ N2(C, Σc), where C was the vector of 

means and Σc was the corresponding covariance matrix. The lipid mass at departure and 

arrival was known with error (see below). The equation for the condition component was: 

li,t = li,t-1 + ζ1,i + ζ2,i∙fi,t + κi,t 

κi,t ~ N(0, σl
2). 

Observation models 

The observation models relate the underlying processes to the recorded data. For the 

horizontal movement component, an individual’s location on each day xi,t was inferred 

from Argos satellite fixes Yi,t (the Zi,t x 2 matrix of longitude and latitude measurements on 

day t for individual i), each characterized by an associated location quality q (Costa et al. 

2010). Following Jonsen et al. (2005), the zth measured location on day t (yz,i,t) was assumed 

to lie on the straight line between location at t and location at t – 1, at jz proportion of a day, 

i.e.: 

yz,i,t = (1 – jz)∙xi,t + jz∙xi,t + ηz,i,t.  

ηz,i,t is the vector of t-distributed observation errors on the two coordinates (longitude and 

latitude), scaled by an individual-specific parameter ψi. i.e.: 

ηlat,z,t,i ~ t(0, ψi∙τlat,q, νlat,q) and ηlon,z,t,i ~ t(0, ψi∙τlon,q, νlon,q). 
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where τlat,q and τlon,q are the scale parameters of the t-distribution, and νlat,q and νlon,q 

represent the corresponding degrees of freedom (Jonsen et al. 2005). These parameters 

were derived from published data on the accuracy of each Argos location class (Costa et al. 

2010) (Appendix S2 in Supplementary material). 

For the observation model of the condition component, the lipid mass (li,t) was informed by 

the drift rate (ri,t). Following Schick et al. (2013), we took: 

ri,t = δ0 + δ1∙(li,t/ai,t) + ωi,t 

ωi,t ~ N(0, σr
2/Di,t) 

where li,t/ai,t represents the buoyancy of individual i on day t, i.e. the ratio between the lipid 

and the non-lipid (hereafter lean; ai,t) mass. Observation variance σr
2 was scaled by the 

number of drift dives on that day Di,t (Schick et al. 2013). While drift rate is known to be 

also affected by other environmental factors (e.g. salinity and temperature), previous work 

has shown that this relationship offers a good approximation in the absence of such 

information (Schick et al. 2013). The values of the lean mass at departure and arrival were 

known, but the model could not concurrently estimate the variation of both the lipid and the 

lean mass over the course of the trip. A seal’s buoyancy results from the relative proportion 

of lipid to lean mass, and therefore changes in lean mass were not identifiable from changes 

in lipid mass (Schick et al. 2013). As in Schick et al. (2013), we assumed that lean mass 

followed a known trajectory between the measured initial and final values. We tested the 

use of two functional forms for the variation of lean mass over the trip: 1) linear increase of 

female lean mass but accounting for pup mass in the final third of the trip (New et al. 
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2014), 2) accumulation of the female’s lean mass in the first third of the trip with no 

influence of pup mass (Schick et al. 2013) (Fig. S1 in Supplementary material). These 

forms were selected because they have been used in previous work by Schick et al. (2013) 

and New et al. (2014), and because preliminary investigation suggested they caused the 

largest differences in the final results. We present the results obtained using the first 

functional form, because the pup’s mass is expected to have an influence on the female’s 

density and diving behavior (Hückstädt et al. 2018). However, we also fitted the model 

using the second form and compared the estimated temporal patterns of feeding activity and 

lipid mass. The lipid mass at departure (t = 1) and arrival (t = Ti) were estimated with 

uncertainty as described in section “Study species and data” above. We assumed these had 

a Gaussian distribution: li,1 ~ N(mi,1, φi,1) and li,Ti ~ N(mi,Ti, φi,Ti), where mi and φi are the 

vectors of empirical mean and standard deviation estimates at the start and end of the trip.  

Prior distributions and model fitting 

We defined prior distributions and constraints for the model parameters to incorporate 

existing knowledge and optimize sampling from the posterior distribution. For the 

horizontal movement component, we used the same priors as in the R package bsam 

(Jonsen et al. 2013). Where there were missing values in the total number of dives per day, 

truncated Gaussian priors were provided, centered on the median value of the variable for 

the corresponding individual, with standard deviation 1 and truncation at the extremes of 

the observed range for that variable. All other priors and constraints are summarized in 

Table S1 in Supplementary material. 
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The model was fitted in a Bayesian framework using JAGS run from R (library runjags) 

(Denwood 2016). Markov Chain Monte Carlo (MCMC) algorithms were first optimized 

during 5,000 adaptation iterations, and then iterated until convergence of the parameters. 

We ran three parallel chains, starting at different initial values. Convergence was assessed 

by visually inspecting trace and density plots, in order to identify an appropriate size of the 

burn-in, which was then set to 50,000 iterations. Convergence was also confirmed by 

checking that the Brooks-Gelman-Rubin diagnostic fell below 1.1, and that the Monte 

Carlo error was less than 5% of the sample standard deviation. There was substantial 

autocorrelation in the posterior samples for some of the parameters (e.g. δ) despite several 

attempts at re-parameterizing the model, which required us to run each chain for 900,000 

iterations in order to obtain a large enough effective sample size (≥ 400) to approximate the 

posterior distribution (Lunn et al. 2013). For ease of computation and storage, we thinned 

the chains. We retained one in every 150 iterations, since preliminary investigation 

suggested this would make the posterior samples independent. The joint likelihood (as in 

McClintock et al. (2013)) and the JAGS code for the model are provided in Appendices S3 

and S4 in Supplementary material. 

Using the feeding component to simulate the effects of disturbance 

Understanding the fine scale temporal dynamics of an individual’s feeding activity and 

changes in condition is critical when simulating the effects of disturbance. In particular, 

disturbance can be quantified in terms of the lost feeding opportunities a female 

experiences and their effect on her condition when she returns to shore to pup (New et al. 

2014). In order to use the model presented here to this purpose, it is first necessary to verify 
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that the feeding component (i.e. the estimates of feeding activity over a trip) can reasonably 

predict the changes in lipid reserves in the absence of the information provided by the drift 

rate in the observation model. Therefore, we computed the lipid mass at each time step 

using the posterior estimate of feeding activity in that day and the individual-specific 

parameters, starting from the estimated value of lipid mass at departure. We then compared 

these projected estimates with the posterior estimates of lipid mass obtained using the full 

(process and observation) model. We sampled 10,000 random values of feeding activity, 

lipid mass at departure and model parameters from the posterior distribution to account for 

the observed uncertainty in these quantities. 

To demonstrate the ability of the model to predict the consequences of disturbance, we 

chose one individual with a typical lipid gain trajectory and for which estimated and 

projected lipid mass matched well (individual 10, ID 2005027). We then simulated five 

scenarios of increasing disturbance, i.e. corresponding to 10, 30, 50, 70, 100 lost feeding 

days. On these days, the feeding activity was set to the minimum observed for that 

individual. We then used the same procedure described above to calculate the time series of 

lipid mass based on feeding activity and the estimates of the model parameters. We 

distributed disturbed days over the course of a foraging trip in five different ways: 

randomly, in the first part of the trip (starting on day 1, forward), in the last part of the trip 

(starting on the last day, backward), removing the days when feeding activity was lowest, 

or removing the days when feeding activity was highest. 
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Results 

The 26 tracks of female northern elephant seals corresponded to 21,733 satellite fixes. All 

model parameters showed satisfactory convergence (Table S2 in Supplementary material). 

The horizontal movement component of the model returned the animals’ corrected and 

regularized locations, resulting in 5,827 daily positions (Fig. 1). Moreover, it identified 

periods where individuals engaged in transit and ARS behavior (Fig. 1). Behavioral state at 

each location was extracted from the posterior estimates, following the criteria suggested 

by Jonsen et al. (2007) to reflect uncertain classifications (i.e. whenever the posterior mean 

was ≥1.25 and ≤1.75). As a result, the behavioral state was uncertain in 12% of all 

locations. The seals spent 27% of the remaining time, on average, in ARS behavior, with 

large individual variability (Table S3 in Supplementary material).  

The feeding component of the model characterized the variation in feeding activity over the 

duration of a trip (Fig. 2). Most individuals were found to increase their feeding activity in 

the central part of the trip, but there was a large degree of heterogeneity in fine-scale 

individual strategies (Fig. 2). As expected, being in ARS mode had a positive effect on 

feeding activity and 40% (SD = 18) of the total feeding activity occurred while in this 

mode, but animals were also estimated to be feeding in transit, particularly while returning 

to the colony. On average, the total number of dives had a negative relationship with 

feeding activity when an animal was negatively buoyant, while ascent rate had a positive 

effect when the animal was positively buoyant. However, the individual random effect on 

the βi,p parameters suggested substantial individual differences in both the mean feeding 

activity (as represented by the model intercept) and the effects of the covariates. The results 
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of the alternative version of the model that used bottom time to inform this component 

highlighted some fine-scale differences in the relative amount of feeding activity on any 

given day, although the overall pattern across the trip remained comparable (Appendix S5 

and Fig. S6). 

The condition component of the model estimated the variation in lipid mass over the 

duration of the trip (Fig. 3). Model intercept was negative, reflecting the decrease in lipid 

mass from one day to the next as the result of energy expenditure, while feeding activity led 

to an increase in lipid mass. As highlighted in Schick et al. (2013), lipid mass initially 

declined as a seal left the colony, rapidly increased during the main foraging phase of the 

trip and then decreased slightly while the individual was returning to the colony. The 

relative magnitude of the decrease in lipid mass during the outward and return phase of the 

trip is affected by the shape of the functional form for the lean mass (here, a linear increase 

of female lean mass, accounting for pup mass in the final third of the trip). Individual 11 

(ID 2005028) and 22 (ID 2006057) were exceptions to this overall trend, showing an initial 

short burst of lipid accumulation (corresponding to a burst in feeding activity) but returning 

from the trip with less than average lipid mass. Individual 11 also showed a different spatial 

use of the range, engaging in a shorter trip in the coastal area close to the colony, during 

which it appeared to feed at a high rate (Fig. 4). In contrast, individuals foraging in the 

pelagic transition zone performed longer trips, with lower but highly variable mean daily 

feeding activity, leading to a larger but variable accumulation of lipids (Fig. 4). Finally, the 

trips of individuals foraging in the North-eastern Pacific showed intermediate features (Fig. 

4). Estimates from the three model components were combined to visualize the spatial 
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variation in feeding activity and lipid mass over the course of the foraging trip (Fig. S2 in 

Supplementary material). 

The posterior estimates of the lipid mass across the trip showed a satisfactory match with 

the projected estimates calculated using the posterior estimates of feeding activity (Fig. S3 

in Supplementary material). The mean difference between the lipid mass measured at the 

end of the trip and the final lipid mass estimated using the time series of feeding activity 

was 3.4 kg (SD = 3.5), corresponding to 4% of the mean total lipid gain over a trip. The 

choice of functional form for the variation in lean mass over the trip had an effect on both 

the lipid mass and the feeding activity estimates (Fig. S4 in Supplementary material). While 

the overall trend remained similar, the relative difference in lean mass in different portions 

of the trip affected buoyancy and the resulting estimate of lipid mass. As a result, the 

corresponding feeding activity required to support the changes in lipid mass also shifted. 

Under the second functional form (accumulation of the female’s lean mass in the first third 

of the trip with no influence of pup mass (Schick et al. 2013)), lean mass was assumed to be 

higher earlier in the trip (Fig. S1 in Supplementary material). Therefore, individuals were 

estimated to accumulate more lipid mass in this phase, to ensure sufficient buoyancy to 

justify the observed drift rate. Similarly, their decrease in lipid mass in the return phase of 

the trip was more marked. 

When simulating the effects of disturbance for a sample individual, the severity of the 

effect increased with the number of lost feeding days, during which feeding activity was 

minimized (Fig. 5). However, the way in which lipid mass was affected was highly 

dependent on when disturbance occurred (Fig. 5). The disturbed female was found to be 
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able to compensate better overall when disturbance occurred in the first phase of the trip, 

leading to a reduction of the final lipid mass ranging between 3% (for a 10-day disturbance) 

and 82% (for a 100-day disturbance) compared to the lipid mass in the baseline scenario. 

However, severe disturbance (≥ 50 days) at the start of the trip was predicted to cause the 

lipid mass to approach or even fall below 0, which would correspond, in reality, to the 

individual dying of starvation. This outcome resulted from the animal not having sufficient 

reserves shortly after leaving the colony to buffer the lack of feeding activity. In contrast, 

disturbance concentrated in the last phase of the trip or randomly over the trip led to a 

higher reduction in the final lipid mass (6-88% and 7-87%, respectively), although lipid 

mass followed a different temporal pattern. In both scenarios, the animal was not at risk of 

starvation, except under the most extreme disturbance (100 days). If the disturbance 

occurred on days when feeding activity was lower, a large number of disturbed days had a 

relatively smaller effect (ranging between 1% for a 10-day disturbance and 52% for a 100-

day disturbance). Conversely, removing days with high feeding activity had a strong impact 

on the accumulation of reserves (corresponding to a 12-100% reduction in lipid mass at the 

end of the trip), even when the number of disturbed days was comparatively low (e.g. 30 

days; Fig. 5). In this scenario, more than 70 disturbed days were predicted to lead to 

starvation.  

When we assumed females accumulated all lean mass during the first third of the foraging 

trip, the effects of disturbance were generally predicted to be smaller (Fig. S5 in 

Supplementary material). Specifically, the lipid mass at the end of the trip was, on average, 

6% (SD = 6), 8% (SD = 10) and 4% (SD = 2) greater than under the first functional form 
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for the scenarios with disturbed days distributed randomly, when feeding activity was lower 

and when feeding activity was higher, respectively. Because individuals were predicted to 

accumulate a larger lipid mass in the first phase of the trip, the difference was even more 

pronounced when disturbance was concentrated at the end, with a 16% (SD = 11) larger 

final lipid mass under the second functional form. For the same reason, the difference was 

less pronounced when disturbance concentrated in the first part of the trip. In this scenario, 

the final lipid mass was greater (2.6%; SD = 2.4) using the first functional form, but the 

larger buffer under the second form kept the animal further away from starvation during the 

disturbed period. The results of simulated disturbance were also partly affected by the 

choice of dive metrics for the feeding component: using bottom time resulted in the lipid 

mass at the end of the trip being larger across scenarios (Appendix S5 and Fig. S7). 

 

Discussion 

We developed a spatially-explicit behavioral model to monitor how a marine predator’s 

condition varies as it moves through the environment encountering prey resources. The 

approach has the advantage of including an explicit model for feeding activity, which 

represents the intermediate step between movement and condition. It explores the 

reciprocal influences of movement on feeding activity and of feeding activity on condition 

and, as a result, captures the underlying functional processes that regulate an individual’s 

ecology and decisions while it uses its habitat.  
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The model can therefore be used to answer fundamental questions on the feeding ecology 

of the target species. Particularly, it allows the identification of the areas and times that are 

most important for foraging, as well as the relative amount of feeding activity occurring at 

these locations. Moreover, our results shed light on how movements are paired with 

feeding. Seals were found to exploit localized feeding grounds, but also feed 

opportunistically while travelling if the opportunity arose (Thums et al. 2011), especially 

during the return trip to the colony. Importantly, the fitness implications of these behavioral 

strategies can be assessed by looking at the resulting variation in condition, which in turn 

affects the condition and survival of their offspring (McMahon et al. 2000; McMahon et al. 

2003). In the case of the elephant seals analyzed here, individuals in the pelagic transition 

zone showed larger variability in feeding and condition compared to animals in the North-

eastern Pacific, suggesting that feeding in the latter region could be more reliable. 

However, some individuals in the pelagic transition zone could achieve higher feeding 

activity and lipid deposition than animals in the North-eastern Pacific, as indicated by 

higher maximum values in Fig. 4. The single animal that remained along the coast travelled 

a shorter distance and was estimated to feed more per day, but was able to accumulate 

smaller lipid reserves compared to animals in the two other regions, a finding that matches 

the results for coastal animals in Schick et al. (2013). However, a larger sample is needed to 

draw robust conclusions regarding this strategy. Some of these patterns could also emerge 

from the animals losing lean mass (resulting in a buoyancy gain), a process that cannot be 

detected by the model. The hierarchical structure of the model explicitly quantifies 

individual differences in behavioral strategies, which have been shown to interact with 

environmental variability to affect individual fitness (Abrahms et al. 2018). 
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Our modelling approach is directly applicable to the marine mammal species that are 

known to perform drift dives (Lesage et al. 1999; Page et al. 2005). Many other species of 

diving animals swim by alternating stroking and gliding during the ascent or descent phases 

of their dives (Williams et al. 2000). The gliding rate, which is also affected by an 

individual’s buoyancy, could therefore be used to track the variation of condition over time 

(Nowacek et al. 2001; Miller et al. 2004; Miller et al. 2016), although this would require the 

appropriate modification of the observation model. In addition, gliding periods can only be 

characterized using high-resolution tags, which currently have short deployment durations 

in cetaceans. New analytical techniques for more efficient onboard processing and data 

transmission will help overcome some of these limitations (Cox et al. 2018). 

Because the main objective of this study was to develop an approach to model movement, 

feeding and condition within the same analytical framework, we chose to inform the 

feeding component by parsimoniously selecting the dive metrics that best correlated with 

drift rate, under the assumption that successful feeding would lead to higher accumulation 

of lipid mass and thus higher buoyancy. Therefore, these metrics acted as data-driven 

proxies of feeding activity, in line with other studies that found features of the diving 

behavior (here the number of dives per day and the median ascent rate) and of the 

horizontal movement (comparable to the use of transit rate in previous studies) to correlate 

well with feeding activity (Thums et al. 2008; Robinson et al. 2010; Gallon et al. 2013; 

Viviant et al. 2014; Vacquié-Garcia et al. 2015). However, dive metrics could be partly 

confounded with the effects of buoyancy on animals’ diving abilities. Future work could re-

parameterize the feeding component using data from accelerometer sensors, which lead to a 
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more direct identification of successful prey capture events (Naito et al. 2013; Guinet et al. 

2014), allowing feeding activity to be interpreted in absolute, functional terms and 

translated to an explicit measure of energy intake. Moreover, when we tested the sensitivity 

of our results to the dive metrics selected (Appendix S5), we found that, while the overall 

pattern was retained, differences in the estimated feeding activity could substantially affect 

the predicted effects of disturbance. Therefore, when using the model to predict the effects 

of disturbance, more proximate measures of feeding success should be used, or the use of 

multiple dive metrics could be explored (Robinson et al. 2010). Our analysis also suggests 

that what constitutes a suitable proxy may change over the course of the trip, particularly as 

the condition and buoyancy of the animal (and thus its diving performance) changes 

(Adachi et al. 2014), and that the relationship of these proxies with feeding may vary 

among individuals (Robinson et al. 2010). Future work should also explore whether the 

selected metrics are consistent proxies of feeding activity at different temporal scales 

(Viviant et al. 2014; Vacquié-Garcia et al. 2015) and across the range of habitats used by 

the animals, as this may affect the estimation of feeding activity in space and time.  

Characterizing these links is critical to developing predictive tools for assessing the effects 

of human activities and environmental changes on species that are exposed to an increasing 

variety of stressors (Crain et al. 2008; National Academies 2017). Anthropogenic 

disturbances are known to interfere with the natural activity patterns of animals (Frid and 

Dill 2002), particularly by interrupting their feeding activity (e.g. DeRuiter et al. 2016). 

Therefore, the ability to simulate reduced feeding activity during a trip allows explicit 

modelling of the processes mediating the effects of disturbance. Similarly, changes in 
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climate will affect prey availability and distribution, which might also impact feeding 

activity (Crocker et al. 2006; Hazen et al. 2013). A strength of our approach is that 

disturbance can be simulated at any point during a foraging trip, with variable pattern and 

duration. Therefore, the animals’ vulnerability during different phases of a trip or in 

different regions and their ability to compensate for missed feeding opportunities can be 

explicitly explored. As an example, we used the time series of feeding activity from one 

female to simulate different patterns of disturbance. We found large variability in the 

predicted effect of disturbance on the final lipid mass depending on when it occurred during 

a trip. The female was predicted to compensate more efficiently for disturbance occurring 

early on in the trip, when feeding activity was also lower, but during this phase she was 

found to be at a higher risk of starvation due to the limited buffer reserves available at 

departure from the colony. In contrast, disrupting the individual’s feeding activity in 

important foraging patches (as exemplified in the scenario where disturbance concentrated 

on days of high feeding activity) was shown to potentially lead to dramatic consequences. 

Female elephant seals have been shown to decrease their residence times in prey patches as 

a result of environmental disturbance from El Niño Southern Oscillation (Crocker et al. 

2006). Simulating the effects of disturbance by reducing an individual’s feeding activity on 

given days is therefore appropriate to model behavioral responses to anthropogenic and 

environmental stressors. However, an exhaustive simulation across all individuals should 

be carried out before drawing any general conclusion on the predicted consequences of 

disturbance. Such simulation should also consider the ability of individuals to compensate 

for disrupted foraging by increasing the duration of their foraging trip (Crocker et al. 2006).  



27 
 

The functional form assumed for the variation in lean mass over the trip was found to have 

a substantial influence on model results. A mechanistic understanding of the patterns of 

female and fetus growth over the trip will be required to clarify this uncertainty, but, in the 

absence of such information, multiple functional forms can be used to provide a range of 

severity of the predicted effects of disturbance.   

Tracking animals’ condition and how it varies as the result of their behavior and the 

environment they encounter is one of the key challenges for marine organisms (Crossin et 

al. 2014). From a theoretical perspective, it allows us to understand the functional processes 

that regulate an individual’s decision-making and resulting fitness. From an applied 

perspective, quantifying these functional links forms the basis for predicting the effects of 

the environmental and anthropogenic stressors on their populations (Halpern et al. 2008). 

Here, we presented an analytical approach that tackles this challenge and can be extended 

and adapted to multiple species and contexts.   
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Figure legends 

 

Figure 1. Results of the horizontal movement component of the model. Locations are 

colored based on the posterior estimate of the categorical behavioral mode. The gradation 

of colour between the extremes (blue for state = 1, transit, and yellow for state = 2, area 

restricted search [ARS]) indicates the ability of the model to assign a univocal state to each 

location (Jonsen et al. 2007). The uncertainty around the estimated locations is shown in 

white. a) All tracks; b) separate tracks of four animals, as an example.   
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Figure 2. Results of the feeding component of the model. Feeding activity varies between 0 

and 1, and can be interpreted as the proportion of some maximum feeding that an individual 

can achieve on a day. a) Results for all tracked seals, with the black line representing 

median feeding activity, and the grey region the uncertainty around these estimates. In red, 

the overall trend estimated as a thin-plate regression spline fitted using function gamm in 

package mgcv, with a random effect by individual (Wood 2006). b) Variation of feeding 

activity for four individuals, as an example.  
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Figure 3. Results of the condition component of the model. a) Variation in lipid mass for 

each individual as the trip progresses, with the black line representing the median 

individuals’ lipid mass (kg), and the grey region the uncertainty around these estimates. b) 

Variation in lipid mass of four individuals, as an example. 
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Figure 4. Characteristics of the foraging trips by region where most of the foraging 

occurred. a) Total distance travelled; b) mean daily feeding activity; c) total change in 

lipids over the trip. The foraging region was classified as either coastal (1 individual), 

North-eastern Pacific (NEP; 7 individuals) or pelagic transition zone (PTZ; 18 individuals). 

The distribution of the response variables was summarized using box plots, where the box 

represents the inter-quartile range, the whiskers extend to 1.5 times the inter-quartile range 

from the box, and the black line is the median.  
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Figure 5. Simulated effects of an increased number of disturbed days on the lipid mass of 

individual 2005027. a) Posterior estimates of the lipid mass overlaid with the time series of 

lipid masses obtained using the estimated feeding activity on each day. In b)-f) disturbed 

days are distributed randomly, at the start of the trip, at the end of the trip, on days of low 

feeding activity and on days of high feeding activity, respectively. The shaded areas 

represent the uncertainty around the lipid mass predicted for each scenario. The horizontal 

dashed line represents a lipid mass of 0 kg. 


