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Abstract

Phase-locked loops (PLLs) are a crucial component in modern commu-

nications systems. Comprising of a phase-detector, linear filter, and con-

trollable oscillator, they are widely used in radio receivers to retrieve the

information content from remote signals. As such, they are capable of

signal demodulation, phase and carrier recovery, frequency synthesis, and

clock synchronization.

Continuous-time PLLs are a mature area of study, and have been

covered in the literature since the early classical work by Viterbi [1] in

the 1950s. With the rise of computing in recent decades, discrete-time

digital PLLs (DPLLs) are a more recent discipline; most of the literature

published dates from the 1990s onwards. Gardner [2] is a pioneer in this

area.

It is our aim in this work to address the difficulties encountered by

Gardner [3] in his investigation of the DPLL output phase-jitter where

additive noise to the input signal is combined with frequency quantization

in the local oscillator. The model we use in our novel analysis of the

system is also applicable to another of the cases looked at by Gardner,

that is the DPLL with a delay element integrated in the loop. This gives

us the opportunity to look at this system in more detail, our analysis

providing some unique insights into the variance ‘dip’ seen by Gardner

in [3].

We initially provide background on the probability theory and stochas-

tic processes. These branches of mathematics are the basis for the study

of noisy analogue and digital PLLs. We give an overview of the classical

analogue PLL theory as well as the background on both the digital PLL
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and circle map, referencing the model proposed by Teplinsky et al. [4, 5].

For our novel work, the case of the combined frequency quantization

and noisy input from [3] is investigated first numerically, and then ana-

lytically as a Markov chain via its Chapman-Kolmogorov equation. The

resulting delay equation for the steady-state jitter distribution is treated

using two separate asymptotic analyses to obtain approximate solutions.

It is shown how the variance obtained in each case matches well to the nu-

merical results. Other properties of the output jitter, such as the mean,

are also investigated. In this way, we arrive at a more complete under-

standing of the interaction between quantization and input noise in the

first order DPLL than is possible using simulation alone.

We also do an asymptotic analysis of a particular case of the noisy

first-order DPLL with delay, previously investigated by Gardner [3]. We

show a unique feature of the simulation results, namely the variance ‘dip’

seen for certain levels of input noise, is explained by this analysis.

Finally, we look at the second-order DPLL with additive noise, using

numerical simulations to see the effects of low levels of noise on the limit

cycles. We show how these effects are similar to those seen in the noise-

free loop with non-zero initial conditions.

Keywords: Nonlinear dynamics, phase jitter, phase-locked loops, noise,

difference equations.
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Chapter 1

Introduction

Phase-locked loops (PLLs) have been widely used for many years as com-

ponents in electronics, and in communications systems in particular. A

PLL is a closed loop consisting of a phase-detector, linear filter, and a

voltage-controlled oscilllator (VCO) as described and analysed in detail

in [1]. When arranged in the above series within the loop, the feedback

signal entering the oscillator acts as an error signal, and drives the phase

of the oscillator to match that of the input signal. Because of this prop-

erty, PLLs are often used to synchronize clock signals across devices as

well as to extract carrier signals in communications receivers. With some

straightforward modifications to the circuit, a PLL can also be used as a

frequency multiplier or divider.

Most modern communications systems are digital in nature, i.e., rely

on discrete-time sampling of the incoming signal, which are then fed into

the digital PLL (DPLL). In this case the PLL is simply a logic device,

or perhaps even an algorithm operating on a digital computer, operating

over discrete time-steps, and with discretized state values at each point

in the loop. The VCO becomes a number-controlled oscillator (NCO)

where the output frequency is determined by the control word xq that

is presented at the input. Since xq is quantized, i.e., can only take on a

finite number of values, the output frequency will also be quantized, and,

in general, this will prevent the output signal from matching the input

signal exactly. This quantization jitter was examined in detail in [4, 5].
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A block diagram for the DPLL is shown in Figure 3.19. We assume,

initally at least, a first-order DPLL as examined by Gardner in [3], with

delay D = 1 and no downsampling of phase-detector samples (M = 1).

Gardner [3] examined numerically the case where the input signal

was embedded in additive white Gaussian noise, and attempted to derive

some rules of thumb to indicate how this additive noise interacted with

the quantization jitter. In particular, expressions were found for the

variance of the output jitter when no noise was added to the input signal.

It was also noted in numerical simulations that, in the large noise limit,

the variance of the output phase jitter was identical to what would be

expected for an analogue PLL, i.e., without quantization. However, no

general understanding of the overall problem was arrived upon.

This thesis examines the effect of the interaction between the input

noise and the quantization jitter on the DPLL output using a number of

asymptotic methods within the realm of stochastic calculus. We see that

the DPLL operation in its steady-state is a circle rotation map, and show

that the input noise affects the dynamics of this map in a unique and

novel way. We also examine another case considered by Gardner, that is

the DPLL with loop delay. We perform an analysis of this particular non-

linear dynamical system and derive results for a specific case using an

asymptotic approximation. Finally, we look at the second-order DPLL

and see how the limit cycles are disrupted by additive noise. We illustrate

the similarities between the first- and second-order systems. In all cases,

we reproduce earlier numerical results and show how our asymptotic

solutions match to these results.

Note that some texts on PLLs [7] refer to the DPLL we examine in

this work as an all-digital PLL (ADPLL), reserving the DPLL acronym

for a standard analogue PLL modified to use digital sampling of the input

signal and a digital phase-detector. This derives from the early develop-

ment of digital loops in the 1970s [7]; the first attempts at digitization

took place in the phase-detector only, the rest of the loop following in

later decades. In this thesis we use the term “DPLL” to refer to an

all-digital loop as described above and is standard in [2], [3], [4], [5].
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This thesis is organized as follows: Chapters 2 and 3 provide back-

ground material needed for an understanding of our results, which are

presented from Chapter 4 onwards. Chapter 2 recaps some of the fun-

damental mathematical theory used throughout the thesis: probability

theory, stochastic processes, linear systems and filter theory. In Chapter

3 we summarize the published literature in order to provide an intro-

duction to both analogue and digital PLLs, deriving basic equations of

operation, and behaviour of the loop under noisy conditions. We look

at both the full non-linear loop equations as well as the classical linear

approximation. In all cases we draw heavily on the theories introduced in

Section 2, in particular linear filters and stochastic processes. In Chap-

ter 3 we also introduce the basic properties of the circle map and then

show that the DPLL output phase error obeys a circle map under certain

conditions. Additionally, it is shown how the circle map parameters are

related to those of the DPLL.

Our new results are presented from Chapter 4 onwards. Firstly, in

Section 4.1, we write the circle map equation in a novel way and ex-

tend it to include the case corresponding to the DPLL in the presence of

additive input noise. In Section 4.2 the main simulation results for the

circle map output variance are presented and compared to corresponding

plots for the DPLL. From this we can extrapolate ranges of validity for

the approximation of the DPLL by the circle map. Next, in Section 4.3,

by considering the circle map as a Markov process, we use a Chapman-

Kolmogorov equation to derive a delay equation for the steady-state PDF

of the circle map output for a given additive noise type N(t). Several

properties of this PDF are derived, both for general N(t) and for noise

with specific distributions. In Section 4.4 we use asymptotic analysis of

this equation to obtain several approximate solutions, thus giving ex-

plicit results for the circle map output variance in the various ranges of

interest of the DPLL parameters. In Chapter 5 the first-order DPLL

with delay (D > 1 in [3]) is presented, and analyzed as a delayed circle

map. In particular, the initial decrease in the output jitter variance with

increasing additive noise noted in [3] is examined in detail. In our final
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results section, Chapter 6, we look at the second-order DPLL with addi-

tive input noise. Using numerical simulation we see how the limit cycles

are broken up by the noise. We also note that some of the features of the

new steady-state behaviour is similar to the noise-free loop with non-zero

initial conditions, previously investigated in [4, 5]. Finally, conclusions

and opportunities for future work are discussed in Chapter 7.

Both the background material in Section 3.2.4 and the numerical

results in Section 4.2 have appeared previously in preliminary form in

[6]. In addition, a special case of Theorem 7 on page 144 of this work,

for r = 1
2
, appeared in [6]. This result is generalized here.
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Chapter 2

Background theory

This chapter provides the background on the underlying mathematical

material needed for the modelling of analogue and digital PLLs. We start

in Section 2.1 with a recap of basic probability theory, taking in the con-

cepts of random variables, distribution and density functions, moments

and expectations, and the extension from scalar to multivariate random

variables and densities. Section 2.2 then introduces the time-dependent

random variable or stochastic process. We cover the important proper-

ties of random processes, such as autocorrelation, power spectral density,

spectrum as well as introducing the concept of a Markov process. Finally

in Section 2.3, we provide some material on analogue and digital linear

filters, which are crucial to the operation of phase-locked loops. The ma-

terial in this chapter serves to introduce Chapter 3, which provides the

background material on analogue and digital PLLs.

2.1 Probability theory recap

In this section we provide an overview on the theory of probability, a fun-

damental branch of mathematics that is important for the understanding

of later material. A useful introduction to probability theory for signal

detection and processing in noisy environments can be found in Chapter

1 of [8]. We follow roughly the approach taken in that publication in the

overview provided here. We start by introducing the concept of proba-
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bility from first principles, before formalizing the approach with random

variables, distribution and density functions. We go on to cover moments

and expections (averages) as well as multivariable random variables and

distributions.

2.1.1 Basics

Probability theory was devised [9] in order to formalize the notion of the

‘likelihood’ of a particular outcome of a random experiment, e.g., that

‘heads’ would be uppermost on a coin toss. For an unbiased coin it is

found that for a large number of tosses, the ratio of the number of heads

to the total number of tosses was generally very close to 1
2
. Thus, it could

be supposed the the probability of getting heads (or tails) on a particular

coin toss was 1
2
, on a scale where 0 represented certainty that the event

would not occur, and 1 certainty that it would occur.

To introduce the concepts fundamental to probability theory we start

with a set Ω, called the sample space of the random experiment. This is

a set containing all possible elementary outcomes of the experiment. The

elementary outcomes are denoted ζi for discrete (countable) outcomes,

or ζ(ω) for uncountable outcomes. In the case of a single coin toss, the

elementary outcomes could be labelled ζ1 = H, ζ2 = T , and for the

measurement (with infinite accuracy) of the phase of a random signal,

ζ(ω) = Φ ∈ R. For the case of the coin toss the sample space could be

Ω = {H,T}. Similarly, for an experiment involving two coin tosses we

could have Ω = {HH,HT, TH, TT}.
The next component of probability theory is σ, the set of events of

the random experiment, which is the set of all subsets of Ω. In the case

of the double coin toss above, one such event would be {HT, TH, TT},
the event where at least one tail occurs.

In an experiment where we throw a die, we could have Ω = {1, 2, 3, 4, 5, 6}.
Then, A = {1, 3, 5} is the event that an odd number is thrown, B =

{2, 4, 6} an even number, and C = {4, 5, 6} a number greater than 3.

The event that the number thrown is odd AND greater than 3 can be

12



denoted A ∩ C and is {5}. Similarly, the event that the number is odd

OR even is A ∪ B = {1, 2, 3, 4, 5, 6}. This is just Ω and thus represents

the certain event. The event that the number is odd AND even, A ∩B,

is just the empty set, ∅, reflecting the sensible intuition that a number

cannot be both odd and even. We define the complement (or negation)

of an event E ∈ σ, E, as the set of all outcomes in Ω that are not in E.

In this example, taking E = C, we have C = {1, 2, 3}, which is the set of

outcomes where a number less than or equal to 3 is thrown. In general,

for any event E ⊂ Ω, E ∪ E = Ω. Finally, we can define the difference

between two events E1 and E2, E1 \E2, as the set of outcomes in E1 that

are NOT in E2, which is just E1 ∩ E2. In this example A \ C = {1, 3},
odd numbers that are not greater than 3.

Readers familiar with set or measure theory will recognise that σ as

defined above represents a σ-algebra [10] on Ω in that it is closed under

the operations of union and negation. That is, for any E ∈ σ, E ∈ σ

also, and for any collection of events Ei ∈ σ, their union,
⋃
iEi ∈ σ.

The final component of probability theory is a real-valued function,

P , that maps each element of σ to a value such that the following axioms

are satisfied:

P (E) ≥ 0 ∀E ∈ σ,
P (Ω) = 1,

P (∪iEi) = ΣiP (Ei) for Ei ∈ σ and Ei ∩ Ej = ∅ ∀i 6= j.

(2.1)

The last axiom states that the probability of a union of events is

simply the sum of the individual probabilities if the events are disjoint.

From these axioms follow some of the basic properties of probability that

will be familiar to many readers, such as:

P (∅) = 0,

P (E) = 1− P (E).
(2.2)

In our die-throwing example above, for each event E ∈ σ and denot-
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ing the number of outcomes in E as |E|, suppose we define P (E) = |E|
6

.

The function P defined this way satisfies both the basic axioms of prob-

ability (check!) and also our intuitive notion of a ‘fair die’. That is,

P ({1, 3, 5}) = P ({2, 4, 6}) = 1
2
, so that, on average, an odd number

will be thrown one half of the time and an even the other half. Also,

P ({1}) = 1
6
, i.e., one throw in every 6 on average results in a 1. In fact,

we could define an ‘unfair die’ as one having a probability function P

other than the one just described! In general, for a given random ex-

periment {Ω, σ, P} we will define our probability function P to be such

that, for an arbitrarily large number of runs of the experiment and for

any fixed event E ∈ σ, the fraction of outcomes that satisfy event E will

be approximately P (E).

Building on the basic concepts of probability already outlined, we can

next define the conditional probability of the event E1 given that event

E2 has occurred as:

P (E1|E2) =
P (E1 ∩ E2)

P (E2)
. (2.3)

To see that this corresponds to our intuitive notion of conditional-

ity, take E1 = A and E2 = C in our example above. Then, P (A) =

P ({1, 3, 5}) = 1
2

and P (C) = P ({4, 5, 6}) = 1
2
. Also, P (A ∩ C) =

P ({5}) = 1
6
. Then, equation (2.3) gives P (A|C) = 1

6
/1

2
= 1

3
. This makes

sense as C is the event {4, 5, 6} and so if this has occurred, the sample

space has effectively been reduced to this set, and the new probability of

A occurring is |{5}|
|{4,5,6}| = 1

3
.

Two events E1, E2 ∈ σ are called independent if

P (E1 ∩ E2) = P (E1)P (E2), (2.4)

which is to say that the probability of both E1 and E2 occurring is the

product of the individual probabilities of each. From equation (2.3) above

we have P (E1 ∩ E2) = P (E1|E2)P (E2). From (2.4), if the events are

independent, we then must have
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P (E1|E2)P (E2) = P (E1)P (E2).

This is just

P (E1|E2) = P (E1), (2.5)

which says that the probability of event E1 occurring is unaffected by

the knowledge, or lack thereof, that event E2 has occurred, which does

correspond to our standard notion of independence. In the example

above, we found P (A) = P ({1, 3, 5}) = 1
2
, P (C) = P ({4, 5, 6}) = 1

2
,

but P (A ∩ C) = P ({5}) = 1
6
. This means events A and C are not

independent; knowledge, for example, that event C has occurred changes

the probability that event A has also occurred.

2.1.2 Random variables and distribution functions

Probability distribution functions allow us to work analytically with the

abstract concepts introduced in Section 2.1.1 above, e.g., to represent

graphically or analytically the relative probabilities of the occurrence

of various events. In particular, we consider the probability that the

outcome of an experiment is ‘less than’ a particular value.

To put this on a firm footing, we introduce the concept of a random

variable. This is a real-valued function X(ζ) on the elementary outcomes

in the sample space Ω. For example, for our single die-throw experiment

we could just set Xi = X(ζi), where Xi = i ∈ R. Then, we can consider

the event, for example, that the result of the die-throw is less than or

equal to four, D = {ζ : X(ζ) ≤ 4} = {1, 2, 3, 4}. Then, for a fair die,

P (X ≤ 4) = 2
3
.

In general we define the (cumulative) distribution function of the ran-

dom variable X as

PX(x) = P (X ≤ x). (2.6)

Note that in equation (2.6), X is a real-valued function on the ele-

mentary outcomes ζ and, for each real value x, the inequality (X ≤ x)
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represents an event E ∈ σ. We sometimes abbreviate the term “distri-

bution function” to simply “distribution” or CDF.

1 2 3 4 5 6
x

0.2

0.4

0.6

0.8

1.0
PX

Figure 2.1: Distribution function PX(x) for the random variable X = i
in the throw of a fair die.

For the single throw of a fair die, the distribution function is shown

in Figure 2.1 for the random variable X = i, where i is the outcome of

the throw. A number of characteristics are noticeable:

• For x < 1, PX(x) = 0. This reflects the fact that the result of

a die throw cannot be less than 1. In general, for the distribu-

tion function of a single, real-valued random variable, PX , we have

limx→−∞ PX(x) = 0. This follows directly from the basic axioms

of probability 2.1 and 2.2, and the fact that distribution functions

are based on probabilities as in Equation 2.6.

• For x ≥ 6, PX(x) = 1. This follows from the fact that a die throw

always shows a number less than or equal to 6. For the distribution

function of a single real-valued random variable we generally have

limx→∞ PX(x) = 1.

• For this particular distribution, P (X ≤ 3) = 1
2

so that PX(3) = 1
2
.

Also for any x in the range 3 ≤ x < 4, P (x) = 1
2
. This is because,

for example, the events (X ≤ 3) and (X < 3.9) are exactly the

same, i.e., ζ ∈ {1, 2, 3}. The regions between each integer value of

x in Figure 2.1 are constant for this same reason.
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Another characteristic of distributions functions is that they are mono-

tonically non-decreasing, from a value of 0 at −∞ to 1 at +∞. This is

another consequence of the axioms of probability. To see this, consider

the quantity PX(x+ dx), which is:

PX(x+ dx) = P ({ζ : X ≤ x} ∪ {ζ : x < X ≤ x+ dx})
= P ({ζ : X ≤ x}) + P ({ζ : x < X ≤ x+ dx})
≥ P ({ζ : X ≤ x}) = PX(x).

(2.7)

Here we have used the axioms that state that PX(x) ≥ 0 always,

and that the probability of a union of disjoint events is the sum of the

individual probabilities of each event. The manipulations in (2.7) also

reveal another feature of distribution functions:

P ({ζ : a1 < X ≤ a2}) = P ({ζ : X ≤ a2})− P ({ζ : X ≤ a1})
= PX(a2)− PX(aa).

(2.8)

1 2 3 4 5 6
x

0.2

0.4

0.6

0.8

1.0
PX

Figure 2.2: Distribution function PX(x) for a continuous random variable
X.
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2.1.3 Density functions

The distribution function shown in Figure 2.1 is piecewise continuous,

and of constant value wherever it is continuous; it has a number of dis-

continuities and its derivative does not exist everywhere. This is because

the underlying random variable is discrete rather than continuous. Many

of the random variables we deal with in this thesis are continuous and

have CDFs of the type shown in Figure 2.2. For such a distribution, the

derivative exists everywhere. Since the CDF is a non-decreasing function,

its derivative is greater than or equal to zero always.

From the distribution shown in Figure 2.2 it is clear that the probabil-

ity of the random variable X being less than or equal to 2 is quite small,

since PX(2)� 1. Also, the probability that X > 4 is PX(+∞)−PX(4) =

1 − PX(4) which is also much less than 1. Therefore, on a series of ex-

periments with outcome X one would expect a result between 2 and 4

to be more likely than values outside of this range. In particular, PX(x)

is increasing most rapidly around x = 3 so one would expect most of the

probability to be concentrated around this value.

1 2 3 4 5 6
x

0.1

0.2

0.3

0.4

0.5

pX

Figure 2.3: Density function pX(x) for the continuous random variable
X with CDF shown in Figure 2.2.

The derivative of the CDF shown in Figure 2.2 is plotted in Figure 2.3,

and bears this out: the probability is most densely distributed around

x = 3. In general, the derivative of the distribution function is known as

the (probability) density function or PDF of the random variable X.
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By the definition of the density function we have

PX(x) = P (X ≤ x) =

∫ x

−∞
pX(x

′
)dx

′
, (2.9)

which means that

P (a1 < X ≤ a2) = PX(a2)− PX(a1) =

∫ b

a

pX(x)dx. (2.10)

This implies that

pX(x)dx = P (x < X ≤ x+ dx). (2.11)

This last equation represents a basic property of PDFs for continuous

random variables: the quantity pX(x)dx is the probability that the ran-

dom variable X lies in the interval (x, x + dx]. The value of any pX(x)

represents a probability density rather an absolute probability value in

the range [0, 1]. In fact, for a continuous random variable, the proba-

bility that X = a1 for any arbitrary value a1 is always zero. This can

be seen by setting x = a1 and dx = 0 in equation (2.11). This may

seem counterintuitive until the following example is considered: consider

an experiment where a point is chosen at random on the real line in

the interval [0, 1] with a uniform distribution over this interval, i.e., the

probability of the point being in any interval of length dx < 1 is exactly

dx. Suppose the distance of the point from the origin is measured with

infinite accuracy. Then, the probability that the point is at exactly 0.5

(or any other particular value in [0, 1]) must be zero. If it weren’t, then

it would not be possible to satisfy the axioms of probability: the rela-

tionship
∑

i P (Ei) < 1 could not hold for any collection of the i disjoint

events X = ai as the sum taken over i could be an infinite number of

finite values.

Another important property of PDFs is∫ ∞
−∞

pX(x)dx = PX(∞) = 1, (2.12)
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i.e., the area under the PDF is unity always.
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x
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Figure 2.4: Representation of density function pX(x) for the discrete ran-
dom variable X with CDF shown in Figure 2.1. Each impulse represents
a Dirac delta function of weight 1

6
.

For discrete random variables, such as the die-throw experiment with

CDF shown in Figure 2.1, the PDF, defined as the derivative of the CDF,

does not not exist. However, it can be formally defined as:

pX(x) =
∑
i

Piδ(x− xi), (2.13)

where the xi are the points of discontinuity on the CDF and the Pi are

the absolute probabilities of the occurrence of each X = xi, i.e.,

Pi = lim
h→0
{PX(xi)− PX(xi − h)} .

For the die toss experiment {xi} = {1, 2, 3, 4, 5, 6} and Pi = 1
6
∀i. A

representation of the density function is shown in Figure 2.4. Note that

in equation (2.13) δ(x) is the standard Dirac delta function.1

The discrete PDF as defined in (2.13) is more usually referred to as a

1The Dirac delta is a generalized function satisfying
∫∞
−∞ f(x)δ(x − a)dx = f(a)

for every continuous f(x). In particular
∫∞
−∞ δ(x)dx = 1. δ(x) is zero everywhere

except at x = 0 where it is undefined. It may be thought of as the limit of a series of
tall, narrow functions at x = 0 with constant integral. No true function exists with
these properties, but for most purposes we can use the Dirac delta as though it were
a standard function. It was originally introduced as a notation by Dirac in his 1930
work [12].
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probability mass function; see Chapter 26 of [11], for example. It satisfies

two of the basic properties of general PDFs, i.e.,
∫∞
−∞ pX(x)dx = 1 and∫ x

−∞ pX(x
′
)dx

′
= PX(x). A random variable may also be of mixed type,

its PDF containing both non-constant continuous sections as well as delta

functions. In this case we can write for the PDF

pX(x) =
dP c

X

dx
+
∑
i

Piδ(x− xi), (2.14)

where P c
X is the continuous part of the distribution, undefined at the

isolated points of discontinuity, xi, and the train of delta functions are

as in (2.13).

X

0

Π
2

Π

3�Π
2

Figure 2.5: Wheel-spin experiment with mixed random variable result.

As an example of an experiment with a mixed random variable result,

consider a disc with unit radius with a pointer anchored at the centre

point, as shown in Figure 2.5. The pointer is spun around so that it can

eventually come to rest pointing at a random spot on the circumference.

If the pointer is spun fast enough it may land at any point on the circum-

ference with equal probability. Thus the random variable X, the angular

displacement from 0 of the pointer after each spin, would be uniformly

distributed on the interval [0, 2π]. Therefore, the PDF of X is a constant

pX ≡ 1/2π on the interval [0, 2π]. Note that because X is a continuous
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random variable on the real line segment [0, 2π] the probability of the

pointer landing at any particular point with offset x (X = x) is zero. If

we now modify the experiment so that we add a groove or other device at

x = π, so that, on average, one spin in every ten the pointer will come to

rest at exactly X = π, then there is now a non-zero probability that the

pointer will land at x = π, i.e., P (X = π) = 0.1 and P (X 6= π) = 0.9.

So now the PDF for X is changed so that it is a uniform density with

height 0.9/2π at all points in [0, 2π] except at x = π, where it is a delta

function with weight 0.1, as shown in Figure 2.6.
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2 2 Π
x
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Figure 2.6: PDF for the grooved wheel experiment, where X is the angu-
lar displacement along the circumference of the wheel where the pointer
comes to rest.

2.1.4 Moments and expectations

The probabilities for all outcomes of a particular random experiment are

described fully by either the CDF or PDF, detailed in Section 2.1.3. How-

ever, we are often interested in more basic properties, such as the average

value of the experiment’s outcome, or how large the spread of outcomes

is. For example, in the die-toss experiment, we would expect the average

value of X, the value facing upward on a die-throw, to be around 3.5. We

would also expect the values to be spread evenly spread across the set

{1, 2, 3, 4, 5, 6}. Note that the terms “average” and “expectation” used

here are ensemble averages and ensemble expectations, in that they are
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the values predicted a priori, using the known probability distribution of

the experiment’s outcome. Over a sufficiently large number of runs of

the experiment, we would expect the measured value of the average to

be close to the expected value.

First we define the moments of a probability distribution for a random

variable X as

mn = E (Xn) =

∫ ∞
−∞

xnpX(x)dx for n = 0, 1, 2, . . . (2.15)

Note that m0 =
∫∞
−∞ pX(x)dx = 1 for all PDFs pX . We also define the

central moments of a distribution as

µn = E [(X − E (X))n] =

∫ ∞
−∞

(x−m1)npX(x)dx for n = 0, 1, 2, . . .

(2.16)

Clearly, µ0 = 1 and µ1 = 0. Next we define the mean as

E (X) =

∫ ∞
−∞

xpX(x)dx = m1. (2.17)

The mean is also referred to as the ensemble average or expected value of

the random variable X. To see that this corresponds to our usual notion

of an average consider again the die-toss experiment, for which the PDF

is plotted in Figure 2.4 and is
∑6

i=1
1
6
δ(x − i). Then, the mean of the

distribution is

E (X) =

∫ ∞
−∞

x
6∑
i=1

1

6
δ(x− i)dx =

1

6

6∑
i=1

i = 3.5. (2.18)

[Aside: Generalizing this, it can easily be seen that a discrete-uniform

distribution of equal-weight delta functions over the first n natural num-

bers, {1, 2, . . . , n} has mean 1
2
(n+ 1). This result is used later in Section

3.2.4.]

We next define the variance of a distribution as the second central

moment,

µ2 = σ2 = E
[
(X − E (X))2] . (2.19)
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Expanding and taking expectations inside the brackets, this can also be

written as σ2 = E (X2) − (E (X))2. The square root of the variance, σ,

is known as the standard deviation. Both σ and σ2 are measures of how

widely spread a distribution is around its mean.

Using a similar approach to above, the variance of the discrete-uniform

distribution over the first n natural numbers can be calculated as

σ2 = E (X2)− (E (X))2 =
1

n

n∑
i=1

i2 −
[

1

2
(n+ 1)

]2

=
n2 − 1

12
. (2.20)

Again, for the die-toss this is just 35
12

.

Consider now the continuous analog of the die-toss random variable:

the (continuous) uniform distribution on the real line segment [1, L] for

L > 1. This distribution has

pX(x) =

{
1

L−1
for x ∈ [1, L]

0 for x /∈ [1, L]
.

This means that the random variable X is equally likely to lie within any

sub-segment of length dx contained fully within [1, L]. The mean of the

mapping is ∫ L

1

x
1

L− 1
dx =

L+ 1

2
, (2.21)

while the variance is∫ L

1

x2 1

L− 1
dx−

[
L+ 1

2

]2

=
1

3
(L2 + L+ 1)−

[
L+ 1

2

]2

=
(L− 1)2

12
.

(2.22)

Comparing equations (2.18) and (2.20) to these last two, it can be

seen that the discrete-uniform and continuous-uniform distributions over

a given range have the same means and variances; a discrete-uniform

distribution for an L-sided die over values {1, 2, . . . , L} also has mean (L+

1)/2 and variance (L−1)2/12. We will use both discrete and continuous-

uniform distributions when considering the effects of (continuous-uniform

density) additive noise on a (discrete-uniform density) circle rotation map
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in Section 4.1.

As a final example consider the Gaussian (or normal) density :

pX(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 . (2.23)

The first two moments of this distribution can be calculated analytically

using elementary methods:

m1 =
1√

2πσ2

∫ ∞
−∞

xe−
(x−µ)2

2σ2 dx = µ,

m2 =
1√

2πσ2

∫ ∞
−∞

x2e−
(x−µ)2

2σ2 dx = σ2 + µ2.

That is, the mean of the distribution is µ and the variance is σ2. Note

that the distribution is defined fully by its mean and variance; all higher

moments will be functions of the first two. The Gaussian density given

by (2.23) is often written simply as N (µ, σ2). The PDF shown in Figure

2.3 is a Gaussian with mean 3 and variance 1
2
. The CDF is

PX(x) =
1√

2πσ2

∫ x

−∞
e−

(y−µ)2

2σ2 dy,

and cannot be expressed in terms of elementary functions. It must in-

stead be computed numerically for each value of x or represented using

the error function, defined as

erf(z) =
2√
π

∫ z

0

e−y
2

dy.

In this case the CDF can be written as

PX(x) =
1

2σ

[
1 + erf

(
x− µ√

2σ2

)]
.

The Gaussian CDF is that plotted in Figure 2.2.

Figure 2.7 shows several Gaussian distributions, each with the same

mean, but with different variances. It is evident that the smaller the

variance, the more ‘bunched’ the probability about the mean, while for
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Figure 2.7: PDFs for Gaussian distributions with mean 3 and variance
(a) 0.1 (small dash), (b) 0.5 (solid), (c) 2 (large dash).

large variances there is a greater probability that the random variable will

be found further from the mean value. For the uniform distribution of

length (L−1), we found in equation (2.22) that the variance is (L−1)2

12
, so

that, again, larger variances imply a larger range of the random variable

(about the mean). This is true of probability distributions in general.

2.1.5 Multivariate distributions and densities

From a single random experiment we can derive any number of random

variables. In particular suppose that we have two random variables, X(ζ)

and Y (ζ). Then we can define the joint (bivariate) distribution function

as

PXY (x, y) = P ({ζ : X ≤ x} ∩ {ζ : Y ≤ y}) = P (X ≤ x, Y ≤ y) .

(2.24)

Clearly, this can be extended to any number of variables for the multi-

variate distribution

PX1...Xn(x1, . . . , xn) = P (X1 ≤ x1, . . . , Xn ≤ xn) . (2.25)

Similar to the single-variable case, we can define a multivariate prob-

ability density function for distributions that are continuous everywhere
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as

pX1...Xn(x1, . . . , xn) =
∂nPX1...Xn

∂x1 . . . ∂xn
. (2.26)

From this, just as in the single-dimensional case, we can derive absolute

probabilities from the density function. So, for example, the probability

that the random variable X is within a certain range AND the variable

Y is within another range is

P (a1 < x ≤ a2, b1 < y ≤ b2) =

∫ a2

a1

∫ b2

b1

pXY (x, y)dy dx. (2.27)

The most prominent example found in applications is the multivariate

Gaussian, which is just the multi-dimensional analog of equation (2.23):

pX1...Xk(x1, . . . , xk) = pX(x)

=
1

(2π)k/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

(2.28)

Here, Σ is the covariance matrix of x and |Σ| is its determinant. Note

that the quantity inside the exponential involves matrix multiplication,

and Σ is a symmetric k × k positive definite matrix. For the bivariate

case we have

x =

(
x

y

)
, µ =

(
µx

µy

)
, and Σ =

(
σ2
x ρσxσy

ρσxσy σ2
y

)
,

where µx, µy, σ
2
x, σ

2
y are the means and variances of X and Y respectively,

and ρ is their correlation. In this case equation (2.28) for the bivariate

Gaussian becomes:

pXY (x, y) =
1

2πσxσy
√

1− ρ2
exp

(
− 1

2(1− ρ2)

[
(x− µx)2

σ2
x

+

(y − µy)2

σ2
y

− 2ρ(x− µx)(y − µy)
σxσy

])
.

(2.29)

We can relate the multivariate distribution and density functions to
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those for a single variable by noting, in the bivariate case for example,

that

PX(x) = PXY (x,+∞) =

∫ x

−∞

∫ ∞
−∞

pXY (x′, y′)dy′ dx′. (2.30)

From this follows the marginal density

pX(x) =
dPX(x)

dx
=

∫ ∞
−∞

pXY (x, y′)dy′, (2.31)

and similarly for y,

pY (y) =
dPY (y)

dy
=

∫ ∞
−∞

pXY (x′, y)dx′. (2.32)

For multivariate densities we are often interested in getting the statis-

tics of one variable conditioned on the others. That is, fixing one variable,

say Y = y, we would like to find the resulting density for the other vari-

able X. To do this, we start with equation (2.3) and take E1 as the event

X = x and E2 as y < Y ≤ y + dy. Then, from equation (2.3) we have

PX|Y (x | y < Y ≤ y + dy) =
P (X ≤ x, y < Y ≤ y + dy)

P (y < Y ≤ dy)

=
PXY (x, y + dy)− PXY (x, y)

PY (y + dy)− PY (y))
.

Now if we let dy → 0 we get

PX |Y (x |Y = y) =
∂PXY (x |Y = y)/∂y

pY (y)
.

Finally, taking partial derivatives with respect to x on each side, this

becomes

pX|Y (x |Y = y) =
pXY (x, y)

pY (y)
. (2.33)

Two random variables X and Y are said to be independent if the

events x < X ≤ x + dx and y < Y ≤ y + dy are independent (as in
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equation (2.4)) for all x, y. The joint probability in question is

P (x < X ≤ x+ dx, y < Y ≤ y + dy) = PXY (x, y) dx dy,

where we assume that dx, dy → 0. However, since the events are inde-

pendent, we have from (2.4):

P (x < X ≤ x+dx, y < Y ≤ y+dy) = P (x < X ≤ x+dx)P (y < Y ≤ y+dy).

Again, under the assumption that dx, dy → 0, this last is just

PX(x) dxPY (y) dy,

so that we have

PXY (x, y) = PX(x)PY (y), (2.34)

which is the analog of equation (2.4) for random variables. Taking partial

derivatives ∂2

∂x∂y
of each side, we get the equivalent relation for densities:

pXY (x, y) = pX(x)pY (y). (2.35)

Now, for independent random variables equation (2.33) becomes

pX|Y (x |Y = y) = pX(x). (2.36)

This is just the analog of equation (2.5) for random variables, and says

that the probability density for X = x is not affected by knowledge that

a particular value of Y has occurred, as would be intuitively expected for

independent variables.

From Section 2.2 onwards, we frequently dispense with some of the

cumbersome notation used above when dealing with probabilities in ap-

plications. So, for example, we use p(x) to mean pX(x), and p(x | y) for

pX|Y (x |Y = y). For CDFs we often write, for example, P (x) as short-

hand for PX(x) = P (X ≤ x). In each case, all references to the random

variable X are suppressed to simplify the notation; however this does
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result in the P (or p) symbol being overloaded somewhat. In general,

it should be clear from the context which function is involved and what

the underlying random variable is. This notation is standard in almost

all texts on probability theory and its applications.

2.2 Stochastic processes

In this section we extend the basic concepts of probability theory to pro-

cesses that are ongoing in time. The random variables of Section 2.1 be-

come random functions or random vectors, and quantities like mean, vari-

ance, and moments become time-dependent. A dynamical system, such a

a phase-locked loop, can often be represented by a difference equation for

a discrete-time process, or a differential equation for a continuous-time

system. Often of interest in the engineering world is where the operation

of these systems is dependent on some randomness, either from external

noises or inherent in the system. Thus the state variables of the system

become time-dependent random variables, or stochastic processes. We

again follow the approach taken in [8], where the material on stochas-

tic processes can be found in Chapter 2. Another useful reference on

stochastic processes, particularly for stochastic differential equations, is

the very readable work by C.W. Gardiner [13].

2.2.1 Random vectors and random functions

In Section 2.1 we had a random experiment with sample space Ω and

elementary outcomes ζ. Random variables were then real values X(ζ)

on which probability distributions were based. In many cases we need to

deal with time processes that are random, such as a dynamical system

described by the solution x(t) of the differential equation

dx(t)

dt
= f [x(t), η(t)] ,
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where η(t) is a random noise process. In this scenario, we can consider

a random function X(t, ζ), where ζ is the outcome of the experiment,

or simply the outcome nature has chosen by chance. Each outcome ζ

determines a standard function of time, X(t, ζ), called a realization or

sample function of the random, or stochastic, process. The collection of

all such time functions for all possible ζ is called the ensemble of sample

functions. Indeed, the stochastic process itself can be defined as X(t, ζ),

the ensemble of all possible sample functions of the process.

Often we deal with discrete-time processes. These may be sampled

versions of the continuous time functions described above, or processes

that are inherently time-discrete such as a system described by a differ-

ence equation in time:

x(ti) = xi = f [x(ti−1), η(ti−1)] .

In this example, the value of the scalar process x at a particular time is

a function of x and the value of the random noise process at the previous

time step. In general, the evolution of the process xi may be a function

of all previous xi as well as all previous noise values, i.e.,

x(ti) = f [x(ti−1), x(ti−2), . . . , x(t0), η(ti−1), η(ti−2), . . . , η(t0)] .

In either case, each outcome of the chance experiment, ζ, defines a mul-

tidimensional random variable X(ζ) = {Xi(ζ)}, where each Xi(ζ) is the

value of the random process at time instant ti. Hence, each realization of

the discrete-time random process can be thought of as a random vector

X(ζ), and the random process itself is the ensemble X(ti, ζ).

In both discrete and continuous time, as with basic random variables,

the realizations of a random process may be finite, countably infinite, or

uncountably infinite. In the case of the first two, the outcomes of the

random experiment may be denoted ζj, so the random process may be

written as X(t, ζj) or X(ti, ζj). In general, where the process takes place

in the analogue domain its values tend to be real numbers and thus the
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number of possible realizations is uncountably infinite. For example, an

analogue signal in a noisy communications channel may be received as

X(t, ζ) at the analogue front-end, and sampled thereafter as X(ti, ζ). In

both cases the number of possible ζ is uncountably infinite, under the

assumption that the measurement of X can be performed with infinite

precision at the receiver.

2.2.2 Probability distribution for random processes

At any particular time t (or t = ti) a random process X(t, ζ) has a value

x(t) that is determined by the particular realization, ζ. That is, fixing

a particular t = τ , X(τ, ζ) can be treated as a random variable as in

Section 2.1. As such, X(τ, ζ) has a CDF, PDF, moments etc. in the

same way as for any simple random variable.

For stochastic processes we usually use a shorthand to simplify the

notation, and write just x(t) instead of X(t, ζ) on the understanding

that x(t) is a random quantity for each t. We can also write p (x(t), t), or

simply p(x, t), for the density function of the process at time t. Similarly,

the distribution function of the process at time t can be denoted P (x, t).

Finally, since for each fixed t = τ , x(τ) is just a random variable (denoted

X in Section 2.1), we can just write p(x) and P (x) for the density and

distribution functions of simple random variables for the remainder of

this thesis.

As with random variables, we can now define the time-dependent

moments of a random process as

mn(t) = E (x(t)) =

∫ ∞
−∞

[x(t)]n p(x, t)dx. (2.37)

Similarly, the central moments are

µn(t) = E [(x(t)− E (x(t)))n] =

∫ ∞
−∞

(x(t)−m1(t))np(x, t)dx, (2.38)

and, as before, the mean of the process is the first moment m(t) = m1(t)
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and the variance is σ(t) = µ2(t).

For both continuous-time and discrete-time random processes, we are

often interested in the statistics of the process at more than one time

instance. So, for two particular time instances, we have a joint PDF

p(x1, x2; t1, t2), which should be read as “the probability density for the

process having value x1 at time t1 and value x2 at time t2”. This is just a

standard joint probability distribution as in equation (2.26) and can be

extended to n time instants p(x1, . . . , xn), where we omit the time indexes

for brevity. All of the usual properties of multivariate distributions apply,

such as ∫ ∞
−∞
· · ·
∫ ∞
−∞

p(x1, . . . , xn)dx1 . . . dxn = 1, (2.39)∫ ∞
−∞
· · ·
∫ ∞
−∞

p(x1, . . . , xn)dxk+1 . . . dxn = p(x1, . . . , xk). (2.40)

2.2.3 Basic properties of random processes

For a stochastic or random process, how the statistics of the process

varies over time is of primary importance. Of particular interest is how

the value of the process at one time instant is related to its value at

another, if at all.

As with multivariate distributions in general, the values of a random

process over a certain time interval may be independent if its values over

another; in particular if

p(x1, . . . , xn) = p(x1, . . . , xk)p(xk+1, . . . , xn), (2.41)

then it can be said that the process over the time interval {xk+1, . . . , xn} is

independent of its values over {x1, . . . , xk}. Equation (2.41) is equivalent

to

p(xk+1, . . . , xn |x1, . . . , xk) = p(xk+1, . . . , xn). (2.42)
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Figure 2.8: Sample realizations for random processes consisting of (a)
random real numbers in the range [−1, 1], and (b) the cumulative sum
of random real numbers in the range [−1, 1].

Next we define the autocorrelation function of the process x(t) as

Rx(t1, t2) = E [x(t1)x(t2)] =

∫ ∞
−∞

∫ ∞
−∞

x1x2 p(x1, x2; t1, t2)dx1 dx2.

(2.43)

An important property of a stochastic process is whether its statistics

change over time. In particular, if

p(x1, . . . , xn; t1, . . . , tn) = p(x1, . . . , xn; t1 − τ, . . . , tn − τ) (2.44)

holds true for all possible n, x1, . . . , xn, t1, . . . , tn, and τ ∈ R, then the

process x(t) is said to be (strictly) stationary. The mean and variance

of stationary processes are constant for all time, and the statistics of the

process across multiple time instants is dependent only on the difference

between the time instants, i.e., is independent of the absolute times, or

position of the origin. For such a process, if we take two time instants,

t1 and t2 = t1 − τ , then we have the joint density

p(x1, x2; t1, t2) = p(x1, x2; t1, t1 − τ) = p(x1, x2; τ),

so that equation (2.43) becomes

Rx(t1, t1 − τ) = E [x(t1)x(t1 − τ)] = Rx(τ), (2.45)
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where we have used the definition of stationarity, (2.44). Rx(τ) can

equivalently be written as Rx(t1 − t2). This means that the autocorre-

lation is a function only of the time difference rather than any absolute

times. In Figure 2.8 sections from realizations for two different random

processes are plotted; the first is a stationary process while the second is

non-stationary.

For real processes found in applications, strict stationarity is quite a

difficult property to satisfy or prove in many cases. It is often reasonable

to use a more limited definition of stationarity that still leads to simpli-

fications in the analysis. A process is said to be wide-sense stationary

if its mean is constant and its autocorrelation is a function only of the

time difference, i.e., E [x(t)] = mx and Rx(t1, t2) = Rx(t1 − t2). Clearly,

from (2.44), all moments and the mean of a strictly stationary process

are constant, and from the result for the autocorrelation in (2.45), it can

be seen that processes that are strictly stationary are also wide-sense sta-

tionary, as would be expected. However, the converse is not necessarily

true.

For any general random process with autocorrelation functionRx(t1, t2)

then the variance is

σ2
x(t) = E

[
(x(t)−m(t))2

]
= E

[
x2(t)

]
−m2(t) = Rx(t, t)−m2(t). (2.46)

For a stationary or wide-sense stationary process, this simplifies signifi-

cantly to

σ2
x = Rx(0)−m2

x, (2.47)

where mx = m(t) is the constant mean value of x(t).

Some random processes we deal with in this thesis have the property

that

Rx(t1, t2) = 0 ∀t1 6= t2.

Any process that has such a property is said to be uncorrelated. In

particular, we often have, for a continuous-time process, Rx(t1, t2) ≈
δ(t1−t2), or for a wide-sense stationary continuous process, Rx(τ) ≈ δ(τ).
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These are called white noise processes for which more details are given in

Section 2.2.4. The discrete-time equivalent of the continuous-time white

noise is Rx(ti, tj) = δij, where δij is the Kronecker delta, which has a

value of 1 for i = j and 0 otherwise.

If the values of a zero-mean process at two time instants t1 and t2 are

independent then they are also uncorrelated, since

Rx(t1, t2) = E [x(t1)x(t2)] = E [x(t1)] E [x(t2)] = 0.

However, the converse is not necessarily true; the values of a process at

two points in time may be uncorrelated without being independent.

Often when dealing with random processes we only have a single,

sample realization available for analysis. For example, we may have a

single capture of a random waveform, x(t), of arbitrary duration. In

this situation we may calculate a time average over a duration T of the

realization as 1
T

∫ T
0
x(t)dt. One might expect that if T is taken to be large

enough we might always have, for a process we assume to be wide-sense

stationary:

〈x〉 = lim
T→∞

(
1

T

)∫ T

0

x(t)dt = E [x(t)] = mx. (2.48)

That is to say, the average of a single realization over a sufficiently long

period of time is equal to the ensemble average for the process. In prac-

tice, this is not always the case, and is often difficult to prove one way

or the other. It is often simply assumed in the case where only a sin-

gle sample function is available. This assumption is reasonable in many

cases, particularly for processes that are expected to be stationary; mul-

tiple time segments of a single sample function can double as separate

realizations of the same process. Processes for which equation (2.48)

hold exactly are said to be mean ergodic. If the ensemble average of any

functional of the process is equal to the limit of the time average, then
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the process is ergodic. That is, for any h(x) we have

E [h (x(t))] = 〈h (x(t))〉 = lim
T→∞

(
1

T

)∫ T

0

h (x(t)) dt. (2.49)

2.2.4 Power spectral density

Translation to the frequency-domain is often instructive in the analysis

of random processes. More insight may be gained into the properties of a

process by visualization in the frequency domain rather than in the time

domain in many cases. Frequency-domain analysis generally starts with

the Fourier transform, which for a realization of the random process x(t)

is

X̃(ω) =

∫ ∞
−∞

x(t)e−iωtdt. (2.50)

X̃(ω) is a complex quantity and exists provided∫ ∞
−∞
|x(t)|dt <∞. (2.51)

To visualise how the components of x(t) are distributed across the fre-

quency range, ω, we would generally plot the magnitude or square-

magnitude of this, e.g.,

S(ω) =
∣∣∣X̃(ω)

∣∣∣2 =

∣∣∣∣∫ ∞
−∞

x(t)e−iωtdt

∣∣∣∣2 . (2.52)

The issue with this approach is that for the real random processes we

are interested in, condition (2.51) is rarely met; our processes generally

continue as t→∞ with average amplitude that does not decay to zero.

If we take instead the requirement that the average power of the process

is finite

lim
T→∞

1

T

∫ T/2

−T/2
|x(t)|2dt <∞, (2.53)
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we can consider a frequency-domain representation of the process as

X̃T (f) =

∫ T/2

−T/2
x(t)e−2πiftdt. (2.54)

Here f = ω/2π. This is a truncated Fourier transform of a realization of

the process, x(t), and is a random variable for each T . This leads to the

definition of the truncated power spectral density of the process as

ST (f) = E

[
1

T

∣∣∣X̃T (f)
∣∣∣2] . (2.55)

We would like to be able to define the power spectral density (PSD) of

the process, x(t), as

Sx(f) = lim
T→∞

ST (f). (2.56)

However, without further analysis, it isn’t clear that the limit (2.56)

exists, or what the range of convergence in f might be.

The Wiener-Khintchin theorem [14] states that, for a wide-sense sta-

tionary process subject to condition (2.53), the limit always exists for all

f , and identifies its value as

Sx(f) =

∫ ∞
−∞

Rx(τ)e−2πifτdτ, (2.57)

where Rx(τ) is the autocorrelation function of the process. That is to

say, the Fourier transform of the autocorrelation function gives the power

spectral density of the process as defined by (2.56).

A detailed proof of the Wiener-Khintchin can be found in many texts

on signal analysis and communications theory. A sketch of the proof

from [14] goes as follows:
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Proof (sketch). Firstly, note that

E
∣∣∣X̃T (f)

∣∣∣2 = E

∣∣∣∣∣
∫ T/2

−T/2
x(t)e−iωtdt

∣∣∣∣∣
2

= E

∫ T/2

−T/2

∫ T/2

−T/2
x(t)x(τ)e−iω(t−τ)dt dτ

=

∫ T/2

−T/2

∫ T/2

−T/2
Rx(t− τ)e−iω(t−τ)dt dτ

=

∫ T

−T
(T − |τ |)Rx(τ)e−iωτdτ,

(2.58)

where this last step follows after some elementary calculus. This leads to

E

[
1

T

∣∣∣X̃T (f)
∣∣∣2] =

∫ ∞
−∞

Rx,T (τ)e−iωτdτ, (2.59)

which looks almost like the result we need except that we have the mod-

ified autocorrelation function

Rx,T (τ) =


(

1− |τ |
T

)
Rx(τ) if |τ | < T

0 if |τ | ≥ T
. (2.60)

As we let T → ∞ across equation (2.59), the functions Rx,T become a

sequence of functions that converge (pointwise) to Rx and such that

|Rx,T (τ)| ≤ |Rx(τ)| ∀T.

In this case we can use Lebesgue’s dominated convergence theorem [15]

to interchange the limiting and integration operations in the following to

obtain the result:

Sx(f) = lim
T→∞

E

[
1

T

∣∣∣X̃T (f)
∣∣∣2] = lim

T→∞

∫ ∞
−∞

Rx,T (τ)e−iωτdτ

=

∫ ∞
−∞

Rx(τ)e−iωτdτ.

(2.61)
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Clearly, the relation (2.57) is invertible so that the autocorrelation

function may be obtained as the inverse Fourier transform of the PSD

where the latter is known. In particular, the first two moments are related

to the PSD according to

Rx(0) = σ2
x +m2

x =

∫ ∞
−∞

Sx(f)df. (2.62)
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(a) Sample realization of random
process x(t) with small correla-
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Figure 2.9

The concept of white noise was introduced briefly in Section 2.2.3.

A zero-mean, wide-sense stationary continuous white noise process has

autocorrelation function Rx(τ) = δ(τ), where δ(τ) is the Dirac delta

function as introduced in Section 2.1.3. Inserting into (2.57), this yields

S(f) = 1, i.e., the frequency response is flat across all frequencies. This is

where the term “white” originates; white light contains an equal energy

distributions across all frequencies in the visible spectrum.

In practice, true continuous-time white noise is impossible to synthe-
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sise or observe. For example, equation (2.62) yields

δ(0) = σ2
x =∞,

which says that the variance of the process is infinite, a consequence of

having constant energy across the (infinitely large) frequency domain.

However, white noise is a useful concept, and is often approximated by

real processes with a sufficiently short correlation time, for example, pro-

cesses with autocorrelation function

Rx(τ) =
1

m
√
π
e−τ

2/m2

, (2.63)

for sufficiently small m. Normally we refer to noise as “white” if its

observable spectral density is flat, or it is flat across the bandwidth of

the medium in question, e.g., the PSD of white light is flat across the

portion of the electromagnetic (EM) spectrum that is in the visual band.

However, it decays to zero away from this band.

As an example of an approximate while noise process, we can consider

a real random process with autocorrelation function given by (2.63) with

m = 0.03, which is plotted in Figure 2.9(b). It may have time-domain

realization similar to the process shown in Figure 2.8(a), shown again in

Figure 2.9(a). Then, using (2.57) the PSD for the process is found to be

Sx(ω) =
1

2π
e−

1
2
m2ω2

.

So, while the autocorrelation is a very narrow Gaussian curve centred

at τ = 0, the PSD is a very wide Gaussian centred at ω = 2πf = 0.

As shown in Figure 2.9(c), this is clearly not the constant PSD required

for true white noise. However, when viewed over a sufficiently narrow

frequency range centred at ω = 0 it appears approximately flat, as seen

in Figure 2.9(d).

Often, the level of additive white noise in a system is specified by its

one-sided spectral density, N0. This means simply that, for the real noise

process n(t), its spectral density is given by Sn(ω) = N0/2. Alternatively,
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if we take n(t) to be complex with Sn(ω) = 0 ∀ω < 0, then Sn(ω) = N0

for ω ≥ 0. While true continuous-time white noise does not exist, an

approximate white noise process with spectral density N0 within the

band of interest, and negligible power outside this band, has variance

that is proportional to N0. This is a consequence of (2.62), which gives,

for a zero-mean process band-limited to f ∈ [B1, B2]

σ2
x ≈

∫ B2

B1

N0

2
df =

B2 −B1

2
N0. (2.64)

Thus, in many cases in this thesis where we use the terms “level” or

“intensity” of ‘white noise’ in a system, we may be referring to either the

variance, σ2
x, or (constant) spectral density, N0, of the approximate white

noise process. The actual measurement in question should generally be

clear from the context.

It should be noted that specification of the autocorrelation function

or PSD of a random process imposes no restrictions on its probability

density. In Section 2.2.2 it was observed that at any time t, the value of

the process x(t) is a random variable and thus has a probability distri-

bution and density. In many cases we consider, this density is Gaussian,

as in equation (2.23). In fact, very often we assume that noise added

to a system is, at least approximately, a white, Gaussian stochastic pro-

cess. Such noise is called additive white Gaussian noise (AWGN). This

assumption is necessary, for example, in the derivation of the Fokker-

Planck equation in Section 2.2.5.

It is equally possible, notwithstanding the above, to have non-white

(correlated, coloured) Gaussian noise. It is also possible to have white,

non-Gaussian noise, e.g., uncorrelated noise samples from a uniform den-

sity on [−1, 1]. We will have occasion to use such a noise source later

in this thesis, in Chapter 5. Finally, noise, or a general process, may be

Gaussian and non-stationary, in which case the PSD doesn’t even exist

and spectral considerations don’t arise. The process x(t) shown in Figure
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2.8(b), for example, has a probability density that is approximately

p(x, t) = N (0, t/3) =
1√

2πt/3
e−

x2

2t/3 . (2.65)

This is a Gaussian distribution with variance that increases linearly with

time. Thus, the energy of the process grows unbounded as t → ∞,

equation (2.53) is violated and the PSD is not defined.

2.2.5 Markov processes

In general, the future evolution of a random process depends (in a prob-

abilistic sense) on all its previous values. For example, if it is known

that the process had values xi at times ti for i = 1, . . . , n, in general the

probability density of the process at future times will be a function of

these past values, namely

p(xn+1; tn+1 |xn, . . . , x1; tn . . . , t1).

However, many real random processes have the property that the future

evolution depends only on the current value, rather than all previous

values, i.e., the process has no ‘memory’. This may be expressed as

follows:

p(xn+1; tn+1 |xn, . . . , x1; tn . . . , t1) = p(xn+1; tn+1 |xn; tn). (2.66)

Another way of interpreting this is that that future development of the

process can be predicted (in a probabilistic sense) from the current state

alone. Such processes are said to have the Markov property and their

analysis is greatly simplified as compared to general random processes.

A discrete-time process with the Markov property is known as a Markov

chain. The probability distribution in equation (2.66) is known as the

transition probability at time tn; the function describes the probability of

transitioning from value xn at time tn to the value xn+1 at a later time

tn+1.

43



Suppose next that {Xi : i = 1, 2, . . . } is a series of independent

identically-distributed (i.i.d.) random variables. That is, PXj(x) =

PXk(x) ∀j, k,∀x, and P (xj |Xk = xk) = P (xj) ∀j, k. Now if we con-

struct a discrete-time sequence

x(t) = xt = Xt for t = 1, 2, . . .

then the process is called a (discrete-time) white noise process. A sample

realization from such a process is plotted in Figure 2.8(a). Clearly, the

process is Markov; in fact, not only does the future evolution of the

process not depend on past values, but it doesn’t even depend on the

current value! That is, the value of the process at any time is dependent

only on a probability distribution that is constant over time.

Now let us take another random process, y(t), where y(t) = y(t−1)+

x(t), and x(t) as above. Then we have a process that is the summation

of a series of i.i.d. random variables. A sample plot of such a process is

shown in Figure 2.8(b). This belongs to a class of stochastic processes

with independent increments and thus is a Markov chain since the dis-

tribution of each value of the process is dependent only on its previous

value, as well as the distribution of each increment. As it happens, in

this case the distribution of each increment is identical, but in general

the distribution may vary over time. For a process to have independent

increments, the increments need only be independent of the past values of

the process. By construction, all processes with independent increments

are Markov. Note finally that, while the increments y(t)−y(t−1) = x(t)

are i.i.d., the random variables Yt = y(t) are in no way i.i.d.! Indeed, one

might guess this from a perusal of Figure 2.8(b).

It is typical for Markov chains to be defined via their increments. For

example, the random process

w(t+ 1) =

{
w(t) + 1 with probability p

w(t)− 1 with probability 1− p
for t = 1, 2, . . . (2.67)
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is a Markov chain known as a random walk. If p = 1
2

it is called a

symmetric random walk. As constructed, the random walk process has

independent increments. In fact, the increments are i.i.d. with probabil-

ity density p(x) = p δ(x− 1) + (1− p)δ(x+ 1). Random walks are a good

model for many real processes, such as stock market movements, particle

dispersion and are also used in search algorithms on computer networks

[16].

ts ti te

xs

xi

xe

t

x�t�

Figure 2.10: Sample start, intermediate and end points for a Markov
process x(t).

Suppose that a Markov process has values xs, xi, and xe at discrete

time instants ts, ti, and te respectively, as illustrated in Figure 2.10.

Then, the joint probability density is

p(xe, xi, xs) = p(xe |xi, xs)p(xi, xs).

Here, the time indexes have been omitted for brevity but it should be

understood that the density functions refer to the process having each

value at the corresponding time index. Because the process has the

Markov property, the density at any time depends on the density at the

previous known time only, and so the expression for the joint distribution

can be simplified to

p(xe, xi, xs) = p(xe |xi)p(xi, xs).

Finally, if we divide across by p(xs) and integrate both sides over xi, we
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get

p(xe |xs) =

∫ ∞
−∞

p(xe |xi)p(xi |xs) dxi. (2.68)

This equation states that the transition probability from xs at time ts to

xe at te can be found by choosing an arbitrary time between ts and te and

integrating the product of the individual transition probabilities across

all possible values of the process at that intermediate time. Equation

(2.68) is known variously as the Smoluchowski equation or Chapman-

Kolmogorov equation [17] and is effectively an integral equation for the

time evolution of p(x, t) given an initial condition.

Let us next assume that an initial condition for the process is given,

i.e., that at t = 0 we have x = x0 so that the initial condition on its

density is

p(x; 0 |x0; 0) = δ(x− x0). (2.69)

For brevity we now use the notation p(x, t) for the transition probability

from the initial condition, i.e., p(x, t) is shorthand for p(x; t |x0; 0), so

that (2.69) can be written more simply as

p(x, 0) = δ(x− x0). (2.70)

Now, taking equation (2.68) as a starting point we can obtain, using some

non-trivial manipulations, a partial differential equation for p(x, t):

∂p(x, t)

∂t
=
∞∑
n=1

(−1)n

n!

∂n

∂xn
[An(x)p(x, t)] . (2.71)

In this, each An is the growth rate of the nth moment of the process x(t).

That is,

An(x) = lim
∆t→0

∫ ∞
−∞

(x′ − x)np(x′; t+ ∆t |x; t)dx′

= lim
∆t→0

E [(∆x)n |x]

∆t
.

(2.72)

In (2.72), the density and expectation are taken for the increment of the
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process from x at time t to x′ at time t+ ∆t.

It can be shown (see [13], for example) that, under mild assumptions

about the process x(t), namely that it has continuous paths, all but

the first two moments, A1 and A2, in equation (2.71) are zero, i.e., the

resulting process x(t) is slowly-varying enough that moments higher than

the second vanish more quickly than ∆t. In this case (2.71) reduces to the

Fokker-Planck equation, also called the differential Chapman-Kolmogorov

equation in [13]:

∂p(x, t)

∂t
= − ∂

∂x
[A1(x)p(x, t)] +

1

2

∂2

∂x2
[A2(x)p(x, t)] . (2.73)

A full derivation of the Fokker-Planck equation as well as methods of

solution are given in [18]. This text also deals with the multi-dimensional

Fokker-Planck equation and its applications in the physical sciences.

Random processes often result from a deterministic system with an

additional driving noise source n(t). We will encounter such situations

later in this thesis. These systems are often modelled as differential

equations with a noise term, known as a Langevin equation [19], for

example
dx

dt
= a(x, t) + b(x, t)n(t). (2.74)

In the theory of stochastic differential equations (SDEs) this is inter-

preted as the SDE:

dx(t) = a[x(t), t]dt+ b[x(t), t]dW (t),

which is shorthand for

x(t) = x(0) +

∫ t

0

a[x(τ), τ ]dτ +

∫ t

0

b[x(τ), τ ]dW (τ). (2.75)

In these, dW (t) represents the increment of a Wiener noise process [20],

and the last term in (2.75) is either an Itô or Stratonovich stochastic

integral, depending on the interpretation. Both Itô and Stratonovich in-
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terpretations of the Langevin equation as an SDE are self-consistent –

the ambiguity arises because of the way the idealized white noise process

enters the Langevin equation (2.74) – and the theory used in a par-

ticular case generally depends on the application. Itô calculus is most

often used for proofs and rigorous theory, financial mathematics, cases

where the noise is indeed assumed to be white, and where b[x(t), t] is con-

stant. For a good grounding in SDE theory using Itô calculus, see [21].

The Stratonovich interpretation naturally arises in physical applications,

where white noise is considered as the limit of a coloured (correlated)

noise as the correlation time vanishes to zero. Stratonovich SDEs are

generally used in engineering applications, for coloured noise sources,

and where b[x(t), t] is not constant (‘multiplicative noise’). Stratonovich

theory is well covered in many texts on random processes in the physical

sciences, see, for example, [22].

Using either Itô or Stratonovich interpretations, a similar Fokker-

Planck equation as in (2.73) can be derived ([13], [18], [19], [20]) as was

found using the Markov assumption. Moreover, the quantities A1(x)

and A2(x) in (2.73) can be found in terms of the Langevin coefficients

a[x, t] and b[x, t] in (2.74). Finally, a Fokker-Planck equation found us-

ing the Stratonovich interpretation can relatively easily be transformed

to an equivalent Itô version and vice versa; the equations are identical

in the case where b[x, t] is constant, but differ in the case of so-called

multiplicative noise.

2.3 Linear filters

Linear filters are of great importance in communications systems, phase-

locked loops, and dynamical systems in general. Many systems are nat-

urally linear, or designed to be linear for easy analysis and predictable

behaviour. More complicated systems are often linear or approximately

linear over a limited range of parameters of interest, thus making them

amenable to analysis under certain conditions.

This section is intended only as an introduction to the basics of linear
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filters. There are several engineering texts covering this extensive sub-

ject in more detail; [23], for example, is a commonly-used reference for

electronic engineers.

2.3.1 Analogue linear filters

If x(t) is the input to a linear system, the output y(t) is related to it

according to

y(t) =

∫ ∞
−∞

h(t, τ)x(τ)dτ. (2.76)

Here, for example, the linear system may be a linear radio-frequency

(RF) amplifier, x(t) and y(t) the time-varying voltages of the input and

output RF signals. In equation (2.76) the function h(t, τ) is known as

the impulse response of the linear system in that, if the input signal is

the Dirac delta function applied at time t1, then x(t) = δ(t− t1) and

y(t) =

∫ ∞
−∞

h(t, τ)δ(τ − t1)dτ = h(t, t1). (2.77)

That is, the output of the system in response to the impulse at t1 is

h(t, t1).

If we denote the action of the linear system by the operator F , equa-

tion (2.76) above can be written more compactly as y(t) = F{x(t)}.
Clearly F is a linear operator in that F{ax1(t)+bx2(t)} = aF{x1(t)}+

bF{x2(t)} for inputs x1(t), x2(t), and a, b ∈ R.

In the usual case, and all cases we will be concerned with in this thesis,

the response at any time of the linear system to an impulse depends only

on the difference between the current time and the time of the impulse.

In this case the system is said to be linear time-invariant (LTI) with

impulse response h(τ) and (2.76) may be rewritten as the convolution

integral

y(t) =

∫ t

0

h(t− τ)x(τ)dτ. (2.78)
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Here, we have restricted all signals to be defined for t > 0 only. It

can easily be seen that the impulse response is sufficient to define the

action of an LTI filter if we consider the following: any input x(t) can be

written as x(t) =
∫ t

0
δ(t− τ)x(τ)dτ . Then,

y(t) = F

{∫ t

0

δ(t− τ)x(τ)dτ

}
=

∫ t

0

F {δ(t− τ)}x(τ)dτ

=

∫ t

0

h(t− τ)x(τ)dτ.

(2.79)

The Laplace transform of a function z(t) is defined as

Z(s) =

∫ ∞
0

e−stz(t)dt,

where s ∈ C. The transform is usually interpreted as an operator that

converts a time-domain function of t to a complex frequency-domain

function of s. This is simply a generalization of the Fourier transform

from equation (2.50). The relationship between the two is straightfor-

ward: Z̃(ω) = Z(iω).

We can take Laplace transforms of equation (2.78) to obtain an equa-

tion of operation for the linear system in the Laplace domain:

Y (s) = H(s)X(s). (2.80)

[Note: we can equivalently use Fourier transforms to obtain

Ỹ (ω) = H̃(ω)X̃(ω),

for ω ∈ R in the frequency domain.] In this equation, H(s) [or H̃(ω)] is

known as the transfer function or frequency response of the filter.

It is often of interest to be able to describe the action of an LTI filter

on a random process. For example, when we write the action of a filter

as

y(t) =

∫ t

0

h(t− τ)x(τ)dτ,
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the functions x(t) and y(t) in question may be either deterministic, or

sample functions of a random process. We can take expectations across

this equation to find that, in the case that x is wide-sense stationary, for

example

E [y(t)] =

∫ t

0

h(t− τ)E [x(τ)] dτ = H(0)mx = my. (2.81)

That is, the mean of the output signal is a multiple of the (constant)

mean of the input signal. Here, H(0) is the transfer function of the fil-

ter evaluated at the zero frequency (also known as DC or direct-current

frequency). For a wide-sense stationary input process there is a simple re-

lationship between the power spectral density of the steady-state filtered

output signal and input signal. To see this, first take the general case of

a non-stationary input signal x(t). Then, the filtered output signal y(t)

has autocorrelation function

Ry(t, t+ τ) = E {y(t)y(t+ τ)}

= E

{∫ t

0

∫ t+τ

0

x(t− t1)x(t+ τ − t2)h(t1)h(t2) dt2 dt1

}
=

∫ t

0

∫ t+τ

0

Rx(t− t1, t− t2 + τ)h(t1)h(t2) dt2 dt1.

(2.82)

If we now take the case where x(t) is wide-sense stationary and let t→∞,

then the right-hand side of (2.82) becomes independent of t, so the the

autocorrelation becomes

Ry(τ) =

∫ ∞
0

∫ ∞
0

Rx(τ + t1 − t2)h(t1)h(t2) dt2 dt1. (2.83)

Thus, from (2.81) and (2.83), for a wide-sense stationary input, the

steady-state output of an LTI filter is also wide-sense stationary. Note

that this is not necessarily true if the input has been driving the output

for only a finite time. The PSD of the steady-state output can now be

found by inserting (2.83) into equation (2.57):
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Sy(f) =

∫ ∞
−∞

Ry(τ)e−iωτdτ

=

∫ ∞
−∞

∫ ∞
0

∫ ∞
0

Rx(τ + t1 − t2)h(t1)h(t2)e−iωτ dt2 dt1 dτ

=

∫ ∞
−∞

∫ ∞
0

∫ ∞
0

Rx(τ + t1 − t2)e−iω(τ+t1−t2)eiωt1e−iωt2

h(t1)h(t2) dt2 dt1dτ

=

∫ ∞
−∞

Rx(τ1)e−iωτ1 dτ1

∫ ∞
0

h(t1)e−iωt1 dt1

∫ ∞
0

h(t2)e−iωt2 dt2

= |H̃(ω)|2Sx(f).

(2.84)
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(a) Frequency-response of low-
pass filter with transfer function
H̃(ω) = exp[−ω2].
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(b) Frequency-response of high-
pass filter with transfer function
H̃(ω) = exp

[
−(ω − 10)2

]
.

Figure 2.11

Most analysis and characterization of LTI filters takes place in the

frequency domain. In particular, certain types of transfer functions are

common, for example functions that decay to zero as |ω| → ∞ [23]. These

are known as low-pass filters in that they pass signals of low frequency

with little attenuation, but block high-frequency components. They are

frequently used for noise reduction in the event where a signal of interest

is disturbed by random fluctuations; these fluctuations are often modelled

as high-frequency additive noise. For example, the signal of interest may

be a low-frequency sinusoid or modulated carrier with most of its energy
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centred at a single frequency. Even if the noise is taken to be white,

with its energy spread across a wide range of frequencies as in Figure

2.9(d), most of this energy will be outside the frequency band of the

signal. Then, a low-pass filter may be used to eliminate most of noise,

while passing the signal unaltered plus any small noise components in

its frequency band. As such, the magnitude of the fluctuations will be

greatly reduced.

5 10 15 20
t

�2

�1

1

2
x�t�

(a) Input signal.
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(b) Low-pass output.
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(c) High-pass output.

Figure 2.12: Operation of filters from Figure 2.11 on input signal (a)
x(t) = sin t+ sin 10t to produce output signals (b) y(t) ≈ (1/e) sin t, and
(c) y(t) ≈ sin 10t.

As an idealized example of this, consider a filter with transfer function

H̃(ω) = exp[−ω2],

as shown in Figure 2.11(a). This is a function that decays quickly to zero

outside the range |ω| > 2. By inspection of the transfer function and

considering that the filter operates in the frequency domain according to

equation (2.80), one might expect that this filter would block signals, or
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components of signals, that have frequencies outside the range |ω| ≤ 2,

the passband of the filter. If we now take the input signal to be

x(t) = sin t+ sin 10t,

as shown in Figure 2.12(a), then the filter’s input signal has frequency

components at |ω| = 1 and |ω| = 10 only. Indeed, we have

X̃(ω) ∼ δ(ω ± 1) + δ(ω ± 10).

Given that the |ω| = 10 component is well outside the passband of the

filter we would expect to see this to be eliminated from the filter’s output,

y(t). In fact, it is found that when simulating this in the time domain

that the output is

y(t) =
1

e
sin t+

1

e100
sin 10t,

which is plotted in Figure 2.12(b). Thus, the high-frequency component

has been attenuated by a factor of e100, and effectively eliminated. The

low-frequency component passes unaltered, though attenuated by a fac-

tor of e. A frequency-domain representation of the process is shown in

Figure 2.13(a); the delta spike at ω = 10 has essentially been eliminated,

while the tone at ω = 1 has simply been attenuated.

In general low-pass filters are designed to pass the signal of interest

with an attenuation factor of as close to unity as possible, while eliminat-

ing as effectively as possible frequencies outside the signal’s bandwidth.

The ideal low-pass filter is one with a rectangular shape, with a vertical

cutoff at the edge of the frequency band of interest. This type of filter is

impossible to realise in practice, though it is possible to synthesize filters

that approach this behaviour. Low pass filters are commonly used in

phase-locked loops.

Another important type of low-pass filter is an (ideal) integrator, that
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is a filter that has an output equal to the integral of the input signal:

y(t) =

∫ t

−∞
x(τ)dτ. (2.85)

For this filter, the response to an impulse applied at time t = 0, x(t) =

δ(t), will be a constant h(t) = y(t) ≡ 1 for t > 0. Taking a Laplace

transform yields the frequency response

H(s) =
1

s
, (2.86)

and frequency magnitude response

|H(iω)| = 1

ω
. (2.87)

Clearly this is similar to the low-pass filter of Figure 2.11(a) in that the

response of the filter falls off for large ω, so an integrator will similarly

allow through slow variations in the input signal but eliminate high-

frequency oscillations.

A second category of filter that is commonly used is a high-pass filter.

As its name suggests, it eliminates slow variations in the incoming signal

and allows through the rapidly-changing components. A sample transfer

function, H̃(ω) = exp[−(ω − 10)2] is shown in Figure 2.11(b). When

this filter is applied to the input signal x(t) = sin t+ sin 10t from Figure

2.12(a), the output is approximately y(t) = sin 10t as shown in Figure

2.12(c), i.e., the low-frequency component is eliminated. The action of

the high-pass filter is shown in Figure 2.13(b); the high-frequency tone

passes unaltered, while the delta spike at ω = 1 is all but eliminated.

It is often a requirement to recover a high-frequency sinusoid or mod-

ulated carrier in the presence of high- and low-frequency noises as well

as in-band noise. For this, a bandpass filter may be employed. This is

a filter that passes signals close to a given centre frequency only. For

example, an FM radio receiver may be tuned to receive a signal at 90

Mhz, the signal being embedded in white noise. A bandpass filter that
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(a) Low-pass filter action.
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Figure 2.13: Action of (a) low-pass and (b) high-pass filters from Figure
2.11 on signal from Figure 2.12(a) shown in the frequency domain.

passes frequencies in the range 89.5-90.5 Mhz could be employed to al-

low the signal through, while largely eliminating the white noise. A more

common approach, however, is to mix (multiply) the 90 Mhz signal with

a 90 Mhz reference sinusoid in the receiver, thus producing replicas of

the input signal shifted to baseband (0 Mhz) and 180 Mhz. A low-pass

filter can then be used to eliminate the double-frequency term as well as

most of the noises.

2.3.2 Digital linear filters

Filters are very often implemented in the digital domain, on a computer

or similar digital system, in which case the filter is an algorithm that

runs on discrete samples of the input signal {xi} to produce samples

of an output signal {yi}. In some cases the signals and filter may be

inherently digital, and a digital implementation is the only option. In

many other cases, the digital method is the preferred option; for exam-

ple, in a telecoms receiver an analogue signal may be sampled using an

analogue-to-digital converter (ADC), with resulting signal samples then

fed into a digital filter. Further processing may then performed in order

to extract the information content of the input signal. In other digital

signal-processors, the output digital samples might be fed into a digital-

to-analgue converter (DAC) to produce an output analogue signal.

Digital implementations are usually chosen to avoid the practical is-
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sues encountered in the synthesis of analogue filters. A perfect integrator,

for example, is impossible to realise exactly. In contrast, a digital inte-

grator is a simple mathematical process, easily programmed on a digital

computer. Digital algorithms are also far more flexible than analogue

circuits; very often, changing the characteristics of a digital filter is as

simple as changing a few lines of computer code!

The integrator of equation (2.85) can be written for digital signals as:

yi =
i∑

n=−∞

xn. (2.88)

Clearly, each yi is function of all previous values of the input signal

xj. However, such an integrator would be implemented using the simple

recursive relation

yi = yi−1 + xi. (2.89)

The advantage of the digital version is obvious: the filter can simply be

a single variable, which is the running sum of all input signal samples.

The digital equivalent of the Dirac delta impulse, δ(x), is the Kro-

necker delta δi0. Taking the input signal to the integrator to be such

an impulse (so that x0 = 1, xi = 0 ∀i 6= 0), then we have the output

signal yj = 1 ∀j ≥ 0. Thus, the impulse response never decays to zero.

Such filters are called infinite impulse response (IIR) filters, to distin-

guish them from finite impulse response (FIR) filters. These classes also

exist for analogue filters but the differences are more pronounced in the

digital domain. For example, the IIR property of filter (2.89) can easily

be deduced from the feedback in the equation, i.e., each value of the out-

put signal is dependent of the previous value of the output signal. FIR

filters cannot be written in such a form.

A general digital filter can be written as a difference equation

N∑
n=0

an yi−n =
M∑
n=0

bn xi−n. (2.90)

In this, N is the order of the feedback filter, and the an the feedback
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coefficients. The value M is the feed-forward filter order and the bn the

feed-forward coefficients. In general, we have a0 = 1 so that the equation

can be written in the form yi = . . . as in equation (2.89).

Many of the concepts for analogue filters outlined in Section 2.3.1

carry through for digital filters also. For example, frequency domain and

transfer function analysis can be performed similarly using Z-transforms,

which are the digital, discrete-time equivalent of Laplace transforms. The

Z-transform of a time-discrete signal {xi} is defined as the power series

X(z) =
∞∑
n=0

xn z
−n. (2.91)

Note that, like the Laplace tranform, the Z-transform is a function of the

complex, continuous variable z even though the underlying time variable

is discrete. The Z-transform of the difference equation (2.90) is Y (z) =

H(z)X(z), where the transfer function H(z) is, assuming a0 = 1,

H(z) =

∑M
n=0 bn z

−n

1 +
∑N

n=1 an z
−n
. (2.92)

An FIR filter has an = 0 for all n ≥ 1 so that H(z) =
∑M

n=0 bn z
−n.

An IIR filter has at least one an 6= 0 for n ≥ 1. A common type of FIR

filter is the moving average filter, which is often used to smooth input

signals and works by simply taking the average of the previous M input

samples so that bi = 1
M

for i = 0, . . . ,M − 1 and bn = 0 for n ≥ M . In

this case we have

yi =
1

M

M−1∑
n=0

xi−n,

and

H(z) =
1

M

M−1∑
n=0

z−n.

The digital integrator of equation (2.89) has a0 = 1, a1 = −1, b0 = 1,

58



and all other an and bn set to zero. Thus, its Z-tranform is

H(z) =
1

1− z−1
. (2.93)

Another component commonly used in digital circuits is a delay el-

ement, which simply gives as an output a delayed version of the input,

i.e.,

yi = xi−D.

This simply produces a delay of D time intervals. The delay element has

all an and bn coefficients set to zero apart from a0 = 1 and bD = 1. Thus

the Z-transform is

H(z) = z−D. (2.94)

Real-time digital systems are always causal, i.e., cannot produce an

output instantaneously in response to a given input. For example, in

practice the digital integrator described earlier might actually incur a

delay of a single time interval, in which case equation (2.89) is modified

as

yi = yi−1 + xi−1, (2.95)

which, in contrast with (2.93), has Z-transform

H(z) =
z−1

1− z−1
. (2.96)

There is further reading on the general topic of digital filters in the

“Digital PLLs” chapter of [2], and for a more in-depth text on the topic,

for example, see [24].
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Chapter 3

PLL theory

This chapter provides the background material on phase-locked loops

(PLLs) needed for an understanding of our results, which are presented

from Chapter 4 onwards. The PLL introduction is split into two sections:

analogue and digital loops are described separately as the mathematics

used in their analysis is quite different in each case.

Analogue PLL theory is a mature area of study and literature on the

topic is extensive, from the early pioneering works by Viterbi in the 1950s

and 60s [1] through to the present day [25]. The underlying mathematical

theory used in the analysis of analogue PLLs is also quite mature, from

linear and non-linear ODEs to continuous stochastic processes, Fokker-

Planck equations etc. ([13], [18], [19], [20], [21], [22]).

Digital PLLs, in contrast, are a much newer area of study, stemming

from the rise of computing and other digital systems in the 1980s. Few

complete works on digital PLLs exist at this time; a good reference is an

earlier work on analogue PLLs by Gardner [2], which has recently been

updated to include several chapters on digital theory. Most of the current

literature is in the form of journal papers such as those by Teplinsky et

al. [4, 5].
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3.1 Analogue PLL summary

The section summarises the basics of analogue phase-locked loops, re-

quired for an understanding of the remainder of this thesis. This sum-

mary is based largely on the approach taken in the first four chapters of

[1], chapters 1, 2, and 6 of [2], as well as some additional material from

the later work by Gardner [3].

3.1.1 Basics

Figure 3.1: Simplified block diagram of a phase-locked loop.

A phase-locked loop consists of three main components arranged in

a closed loop as shown in Figure 3.1. The output of the loop is a time-

continuous sinusoidal signal which is generated by a voltage-controlled

oscillator (VCO). Oscillators are widely used in analogue circuits for

the generation of radio-frequency (RF) signals. A standard oscillator

generates a sinusoid at a fixed frequency. A VCO, however, accepts an

input control voltage that is used to adjust its output frequency. The

control voltage is shown as e(t) in Figure 3.1. Typically, a VCO will

have a quiescent frequency, ω0, that will be output in the case where the

control voltage is zero, and the frequency is adjusted linearly about ω0

in response to positive or negative control voltages.

In the simplest case, the aim of the loop arrangement is to match the

output signal of the VCO to a reference input signal as closely as possible.
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The input signal is shown in Figure 3.1 as
√

2A sin θi(t) entering the loop

at the top left, where A represents the amplitude of the signal. n(t) as

shown in the diagram represents any noise that may be added to the input

signal; for now we assume there is no noise present so that n(t) ≡ 0. The

output signal of the VCO is denoted
√

2K1 sin θo(t). The loop aims to

keep φ(t) = θi(t)− θo(t) as close as possible to zero under all conditions,

i.e., the output signal is continually adjusted such that its frequency and

phase matches the input signal as closely as possible. In general, the

input signal may be embedded in noise, and recovery of this input signal

is the main function of the loop. This is considered later, from Chapter

4 onwards. In other cases, a more advanced loop containing a frequency

multiplier or divider is used to, for example, produce an output signal

that is phase-locked to the input but at a multiple of the frequency; this

is not considered here.

In order to drive the output signal towards the input, a compara-

tor is needed to produce an error signal. This is implemented in the

phase detector (PD) in Figure 3.1. Ideally, this would output simply

x(t) = θi(t)− θo(t) = φ(t), and this is often realised in practice in digital

circuits. However, for analogue loops the phase detector is often simply

a multiplier operating on the input and output sinusoids, producing a

combination of sinusoids involving sums and differences of the input and

output phases. It will be seen later how this is usually sufficient for our

purposes.

Figure 3.2: Second-order PLL block diagram.
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The linear filter block is simply an LTI filter as described in Section

2.3. It is generally the filter type and tuning of its parameters that

determine the overall dynamics of the loop. The filter takes as an input

the difference signal produced by the PD and gives a filtered version of

the difference signal as the output, an error signal e(t) that is used to

adjust the VCO. In the simplest case of the first-order loop, the filter may

simply be passthrough or proportional gain path, e.g., e(t) = Kx(t). This

would result in an instantaneous adjustment of the VCO in response to

a change in the input signal. This may be appropriate in some, but not

all cases. Sometimes a different response is required, e.g., a “smoother”

response where the output signal is adjusted more slowly in response to

any input changes, or we might also require a non-zero response where

the error signal is zero, to hold to VCO at a particular frequency. There

are many ways this can be achieved in the loop filter, including the use of

an integrator so that the filter output contains both a proportional and

integral path. In this case the PLL is described as a second-order loop.

Such a loop is shown in Figure 3.2; in this case the linear filter consists

of a summation of a straight-through path and an integrator. A full

exploration of the basic first- and second-order loops will be undertaken

in Sections 3.1.2 and 3.1.3.

Note that, throughout this thesis, the order of a PLL, both analogue

and digital, refers to the number of integrators in the loop. The VCO

is essentially an integrator per equation (3.3) below, since it produces a

signal with phase that is an integral of the input error signal. Therefore,

a PLL will always be of order at least 1. The number of integrators is

sometimes referred to in the literature as the type of the PLL, e.g., in [2].

In Figure 3.1 the input signal is

√
2A sin θi(t), (3.1)

while the output is
√

2K1 sin θo(t). (3.2)
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As described above, the VCO output frequency is given by

dθo(t)

dt
= ω0 +K2e(t), (3.3)

where ω0 is the quiescent frequency and K2 is the VCO gain. For a

multiplier-type PD, the output is

x(t) = AK1 {sin [θi(t)− θo(t)] + sin [θi(t) + θo(t)]} (3.4)

The second term in equation (3.4) involves the sum of the input and

output phases, and when the loop is locked or close to locked, this is a

term that is at double the input frequency. For PLLs of order higher

than 1, the loop filter is generally a low-pass filter, which eliminates

high-frequency components in order to provide the necessary smoothing

action. As such, it would be arranged that it effectively eliminated the

double-frequency term in (3.4). Just as often, the PD itself would have

a built-in filter that would eliminate this term so that only the zero-

frequency term may be considered for all loop types, including those of

first order. The error signal produced by the filter is, as in equation

(2.78)

e(t) = e0(t) +

∫ t

0

x(t− u)f(u)du, (3.5)

where f(t) is impulse response of linear filter, and e0 is the initial output

of the filter, often assumed to be zero. Combining (3.3)-(3.5), we get

dθo(t)

dt
= w0 +K2

∫ t

0

f(t− u)AK1 sin [θi(u)− θo(u)] du (3.6)

Now if we take the phase error

φ(t) = θi(t)− θo(t), (3.7)

the loop gain

K = K1K2, (3.8)
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and the normalized input and output phases

θ1(t) = θi(t)− ω0t

θ2(t) = θo(t)− ω0t

we get, finally

dφ(t)

dt
=
dθ1(t)

dt
− AK

∫ t

0

f(t− u) sinφ(u)du. (3.9)

This last is a non-linear integro-differential equation for the phase

error, φ, in terms of the loop parameters A, K, and f(t), as well as the

input signal phase, θ1(t). The loop is said to be in lock when the phase

error is at zero.

3.1.2 Linear approximation

Figure 3.3: Laplace domain representation of linearized PLL.

If the loop as described in Section 3.1.1 remains close at all times to

the locked state, so that φ(t)� 1 rad, then we can use the approximation

sinφ(t) ' φ(t). In this case (3.9) becomes the linear equation

dφ(t)

dt
=
dθ1(t)

dt
− AK

∫ t

0

f(t− u)φ(u)du. (3.10)

This can be analyzed most simply by taking Laplace transforms of each
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side, assuming from the outset that the transforms exist, to obtain

sΦ(s) = sΘ1(s)− AKF (s)Φ(s), (3.11)

where Φ, Θ1, and F , are the transforms of φ, θ1, and f respectively.

Alternatively, this can be written in the following form:

Φ(s) =
1

1 + AKF (s)/s
Θ1(s). (3.12)

Noting now that Φ(s) = Θ1(s)−Θ2(s), where Θ2(s) is the transform of

θ2(t), we can also write

Θ2(s) =
AKF (s)/s

1 + AKF (s)/s
Θ1(s). (3.13)

These last two equations give directly the phase error (3.12) and phase

of the loop’s output signal (3.13), where the input phase and loop pa-

rameters are known. In particular, because the equation of operation

(3.13) can be written in the form given in (2.80), it is clear that the PLL

is itself a LTI filter with transfer function

H(s) =
AKF (s)/s

1 + AKF (s)/s
, (3.14)

so that the equations for the output phase and phase error can be written

more concisely as

Θ2(s) = H(s)Θ1(s), (3.15)

Φ(s) = [1−H(s)] Θ1(s). (3.16)

For a PLL, H(s) is known as the closed-loop tranfer function.

3.1.2.1 First-order loop

If we take firstly the simplest case of a loop without a filter — a standard

first-order loop — then we have F (s) ≡ 1 and f(t) = δ(t). This gives a

closed-loop transfer function of
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H(s) =
AK

s+ AK
. (3.17)

If we further assume an input signal that is a sinusoid of constant

frequency ω and initial phase θs, then we have

θ1(t) = (ω − ω0)t+ θs.

This is, equivalently, in the Laplace domain

Θ1(s) =
ω − ω0

s2
+
θs
s
,

where it is assumed that the input signal starts at t = 0. Equation (3.12)

now yields, for this example,

Φ(s) =
ω − ω0

s(s+ AK)
+

θs
s+ AK

.

It is possible to take inverse Laplace transforms of this to return to the

time domain, where we find the phase error is given by

φ(t) =
ω − ω0

AK

(
1− e−AKt

)
+ θse

−AKt. (3.18)

Clearly, this expression for φ(t) contains two terms that decay as t→∞,

which means that for this first-order loop we have a steady-state phase

error ω−ω0

AK
. For the linear approximation to be valid requires φ(t) to be

small for all t, so in particular ω−ω0

AK
must be small, as must φs. The

form of the steady-state phase error means that the first-order loop will

not lock exactly as t → ∞ unless ω = ω0, i.e., the frequency of the

input frequency is identical to the quiescent frequency of the VCO. This

is difficult to realise in practice. This non-zero static phase error is a

property of first-order loops in general, as we shall see in later sections.
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3.1.2.2 Second-order loop

As a further example, consider a PLL where a loop filter has been in-

serted, where the filter consists of a perfect integrator as well as the

passthrough path. Such a PLL is shown in Figure 3.2. This gives

F (s) = 1 +
a

s
.

In operator notation, this is

F{i(t)} = i(t) + a

∫ t

0

i(t
′
)dt

′
.

Now, inserting the expression for F (s) for this example into equation

(3.14), the closed-loop transfer function for the second-order loop is ob-

tained as

H(s) =
AK(s+ a)

s2 + AKs+ aAK
. (3.19)

Note that for a = 0 this reduces to the transfer function for the first-

order loop (3.17) as expected. Now, for a constant-frequency sinusoid

as before, the phase error in the Laplace domain can be obtained from

(3.16) as

Φ(s) =
s2

s2 + AKs+ aAK

(
ω − ω0

s2
+
θs
s

)
=

(ω − ω0) + θss

s2 + AKs+ aAK
. (3.20)

Again, this can be inverse-transformed to obtain the phase error, φ(t),

in the time-domain. However, typically we are interested only in the

steady-state phase error, in which case we can make use of the final-

value theorem for Laplace transforms [26], which is

lim
t→∞

φ(t) = lim
s→0

sΦ(s).

For the second-order loop, with Φ(s) as in (3.20), and assuming a,A,K 6=
0, this is just limt→∞ φ(t) = 0. So, unlike the first-order loop, this loop

can lock with zero static phase error to a signal that differs in frequency

to the VCO quiescent frequency. This is made possible by the inclusion
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of the integrator in the loop; the filter can produce a non-zero output for

phase error of zero, which maintains the VCO frequency at ω.

3.1.2.3 Varying input frequency

Next, we return to the example of the first-order loop, but now take the

input signal to have a frequency that is varying linearly with time with

rate R. That is, the input signal is of form

√
2A sin

[∫ t

0

(ω +Rt
′
)dt

′
+ θs

]
,

which yields

θ1(t) =
1

2
Rt2 + (ω − ω0)t+ θs. (3.21)

This characteristic would be typical of signals received from a sinusoidal

generator when the transmitter and receiver are accelerating relative to

one another. Inserting once again into equation (3.16) with F (s) ≡ 1 for

the first-order loop, gives the phase error in the Laplace domain

Φ(s) =
s

s+ AK

(
R

s3
+
ω − ω0

s2
+
θs
s

)
.

Application of the final-value theorem for Laplace transforms shows that

φ(t) grows unbounded at t → ∞, so the first-order loop is never able

to lock to a signal with linearly-varying frequency. If we use instead

a second-order loop for this input signal, the transformed phase error

becomes

Φ(s) =
s2

s2 + AKs+ aAK

(
R

s3
+
ω − ω0

s2
+
θs
s

)
,

which gives

lim
t→∞

φ(t) =
R

aAK
. (3.22)

This says that the second-order loop is able to lock with a static phase

error that is proportional to the radial acceleration, R. In general, the

order of a PLL is equal to the number of integrators in the loop, includ-
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ing the VCO. It can be shown that a third-order loop could lock to a

signal with linearly-varying frequency with zero static phase error. For

an input signal with non-zero n-th phase derivative, a n-th order PLL

can generally lock with (possibly) non-zero static phase error, and any

higher-order loops will lock with zero phase error. Higher-order loops are

more difficult to realize in practice, particularly in analogue circuits and

are more prone to instabilities than those of lower-order.

3.1.3 Non-linear PLLs in the absence of noise

For this section we return to the full non-linear equation of operation

for the PLL, (3.9), and take specific examples of loop types and input

signals. Use of the full equation removes any restriction on the size of

the phase error, φ(t), thus allows for analysis of PLLs over the full range

of behaviours. This is important, for example, for examining the dy-

namics during acquisition, various transients, and loops that cannot lock

with zero or small phase error. The nonlinearity in equation (3.9) arises

from the multiplier type PD, which, when filtered appropriately, gives

an error signal proportional to sinφ(t). Note that there exist PDs with

characteristics other than the sinusoidal one assumed here. However, the

multiplier PD is the one most commonly used [2], so for the remainder

of this thesis it is assumed the PD is of this type.

3.1.3.1 First-order loop

If we first consider the non-linear version of the simplest example consid-

ered in Section 3.1.2, the first-order loop with constant-frequency input

signal, we have, for equation (3.9), f(t) = δ(t) so that F (s) ≡ 1 and

θ1(t) = (ω − ω0)t+ θs. Thus, (3.9) becomes

φ̇(t) = (ω − ω0)− AK sinφ(t), (3.23)

where φ̇(t) represents dφ(t)/dt.

The behaviour of this system can be understood most easily by look-
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Figure 3.4: Trajectory of first-order loop on phase plane.

ing at its trajectory on a phase plane plot. Phase plane analysis is a

standard method for visualizing and understanding non-linear systems.

A very readable introductory text on the subject is [27], where Chapter 6

deals with the phase plane. If we plot φ̇ against φ, it can be seen that the

trajectory is a sinusoid, shifted in the horizontal and vertical directions.

While the trajectory is above the horizontal axis φ̇ is positive, so φ will

increase along the curve, and vice-versa. At the points of intercept with

the axis, the derivative will be zero and the system will have reached an

equilibrium point. It can be seen from the directional indicators along

the curves that alternate points are stable and unstable, i.e., any trajec-

tory in the vicinity of the first intercept to the right of the origin will

converge to that point, whereas any trajectory near the next equilibrium

point will diverge from that point and settle instead near the first or

third point. The system will remain at the unstable equilibrium points

only if the derivative is exactly zero at the outset.

It should be clear from equation (3.23) and Figure 3.4 that the points

of stable equilibrium for the first-order loop are

φn = 2nπ + sin−1 ω − ω0

AK
,
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and the points of unstable equilibrium

φn = 2(n− 1)π + sin−1 ω − ω0

AK
, (3.24)

where n ∈ Z. The stable equilibrium point for n = 0 is

φ0 = sin−1 ω − ω0

AK
. (3.25)

If this φ0 is small compared to 1 radian, then we have

φ0 ≈
ω − ω0

AK
,

which was exactly the static phase error found in the linear model. This

approximation in turn imposes a requirement on the input signal’s fre-

quency, as would be expected, i.e., that its frequency offset from the VCO

frequency is small as compared to the loop parameters:

|ω − ω0| � AK.

Note that, even without any approximations, for any stable or unstable

equilibrium points to exist for this first-order loop, we must have

|ω − ω0| ≤ AK.

Were this not the case, the sinusoid in Figure 3.4 would lie entirely either

above or below the horizontal axis, and any trajectory would continue

indefinitely in one direction along the curve.

3.1.3.2 Second-order loop

If we next take again the example of the second-order loop with constant-

frequency input, so that F (s) = 1 + a/s and θ1(t) = (ω − ω0)t + θs so

that (3.9) in this case is

d2φ(t)

dt2
+ AK

(
d

dt
+ a

)
sinφ(t) =

d2θ1(t)

dt2
= 0, (3.26)
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which becomes

d2φ

dt2
+ AK cosφ

dφ

dt
+ aAK sinφ = 0. (3.27)

Using the normalization τ = AKt, this can be simplified further as fol-

lows

φ̈+ φ̇ cosφ+ a′ sinφ = 0, (3.28)

where φ̇ = dφ/dτ and a′ = a/AK. We can eliminate the independent

variable, τ , from this and consider φ̇ and φ to be independent variables

to be plotted on the phase plane according to

dφ̇

dφ
= − cosφ− a′ sinφ

φ̇
. (3.29)

This equation is most easily visualized on a phase-plane plot. Because it

is periodic in φ with period 2π it is sufficient to plot it only in the range

−π ≤ φ ≤ π. Some other properties of the plot are also notable from

(3.29):

• The slope of the trajectories across the φ = 0 axis is −1 always.

• For large φ̇ the trajectories are almost sinusoidal.

• At the origin — and at at all points (φ = nπ, φ̇ = 0) — the last

term in (3.29) is indeterminate, and at this singularity the system

has either a stable equilibrium point or unstable saddle point.

An examination of the plot in Figure 3.5 bears out the observations

above as well as several other interesting properties:

• Away from the φ-axis, the trajectories are almost sinusoidal. In

the upper half-plane, φ̇ is positive, so φ will increase. That is, in

the upper half-plane, trajectories move from left to right, and in

the lower half-plane the opposite is the case.

• Above the φ-axis, any trajectory that begins below the separatrix

(plotted in bold) will be pulled in to the φ-axis to the right of the
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Figure 3.5: Trajectory of second-order loop on φ − φ̇ phase plane for
a′ = 1.

origin and from there attracted back around to the stable equi-

librium point at the origin. Clearly, the stable equilibrium point

corresponds to the locked state of the PLL, since φ = 0 and the

point is attractive.

• In the lower half-plane a similar characteristic is evident: any tra-

jectory that begins (on the right) between the φ-axis and the sep-

aratrix will be pulled into lock.

• Trajectories that begin in the upper-half plane but above the sep-

aratrix will not be pulled into the origin on this period. However,

note that any such trajectory will end closer to the φ-axis at the

end of the period than it was at the start, i.e., φ̇(π) < φ̇(−π).

Thus, any such trajectory will eventually start below the separa-

trix on some period, and from there will be pulled into lock. Such

a phenomenon is called cycle slipping and is a well-known charac-

teristic of the acquisition phase of a PLL: while a PLL starts trying

to lock on an input signal with an arbitrary frequency, the phase

error will go through several cycles of 2π until the integrator sum

builds up sufficiently to match the VCO frequency to that of the
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input frequency. Once frequency lock as been achieved, phase lock

will be achieved without any further cycle slips.

• Symmetry again applies in the lower half-plane. The PLL will slip

cycles for large negative frequency errors before eventually achiev-

ing frequency lock, and then phase lock on the same cycle

• Clearly the second-order loop can lock to a signal with any input

frequency with zero static phase error. This is the same result we

found earlier using the linear approximation for small φ. In this

case, however, we have allowed for large φ and φ̇, and the graphical

approach shows that, although lock will always be achieved even-

tually, it may take arbitrarily long for the cycle slipping to stop,

depending on how large φ̇ is, which is usually determined by the

input signal frequency. Usually, an acquisition aid is required to

get reasonable pull-in performance for a second-order loop. Once

such method is to sweep the VCO frequency linearly with time. A

variant of this problem is considered in the next section.

• Finally note that any point near the unstable equilibria at φ =

±(2n + 1)π will be taken quickly away from that point and either

back toward the origin, or off into the next cycle, depending on

which side of the φ-axis the point was on.

The characteristics of the plot shown in Figure 3.5 vary depending

on the loop parameters, in particular the value of a′. Further plots are

shown in [1]. However the observations above apply to all second-order

loops.

If we take as a final example again the case where the input signal

has constant radial acceleration, which gives, as in (3.21)

θ1(t) =
1

2
Rt2 + (ω − ω0)t+ θs.

Note that this same form for θ1(t) would result if the input frequency

had constant frequency input ω, and the VCO frequency was swept with
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rate −R. Then the general non-linear PLL equation of operation (3.9)

becomes
d2φ

dt2
+ AK cosφ

dφ

dt
+ aAK sinφ = R. (3.30)

This is identical to (3.27), except that now we allow the right-hand side

to be non-zero. Proceeding exactly as before, this yields the analog of

(3.28):

φ̈+ φ̇ cosφ+ a′ sinφ = R′, (3.31)

where R′ = R/(AK)2. For phase-plane analysis, this can be written as

dφ̇

dφ
= − cosφ+

R′ − a′ sinφ
φ̇

, (3.32)

which reduces to (3.29) for R = 0. The singular points now become

φ̇ = 0, φ = sin−1

(
R′

a′

)
± 2nπ, n = 0, 1, 2, · · · ,

and

φ̇ = 0, φ = π − sin−1

(
R′

a′

)
± 2nπ

If R′ = 0, these reduce to the stable and unstable equilibrium points of

Figure 3.5. For R′ = a′ (R = aAK), the two sets of singularities coincide,

and for R′ > a′ there are no singularities.

In Section 3.1.2 the linear approximation for the second-order loop

with linearly-varying input frequency yielded (3.22), which showed that

the static phase error was R/aAK. This approximation requires φ to

be small, and in particular in the range [−π, π]. Our stable equilibrium

point in this range for the non-linear case is

φ = sin−1

(
R′

a′

)
= sin−1

(
R

aAK

)
.

For the linear approximation to be valid we must have small R/aAK,

and so we have

sin−1

(
R

aAK

)
≈ R

aAK
,
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i.e., our exact solution agrees with the linear approximation.
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Figure 3.6: Trajectory of second-order loop on φ − φ̇ phase plane for
a′ = 1

2
and R′

a′
= 1

2
.

The phase-plane plot for (3.32) is shown in Figure 3.6. Some obser-

vations can be made regarding this system:

• From (3.32), the graph is still periodic in φ, so it is sufficient for

plot for φ ∈ [−π, π].

• The singularities are of exactly the same nature as those of Figure

3.5, but they are shifted on the φ-axis. The stable singularity on the

left in Figure 3.5 is shifted to the right be an amount sin−1 (R′/a′),

while the unstable one on the right is shifted to the left by the same

amount.

• Like the case where R′ = 0, any trajectory between the upper

and lower separatrix will be pulled into phase lock for this set of

parameters (R′/a′ = 0.5). This, however is not true for larger

values of R′ (1/2 < R′ < 1), for which some plots are shown in [1].

• Any trajectory that begins above the upper separatrix ends the

[−π, π] period higher than where it began, i.e., with larger φ.
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Therefore, these trajectories, taken over several periods, will di-

verge from the separatrix and phase lock will never be achieved for

these initial conditions.

• For the R′/a′ = 1/2 case shown, all trajectories below the lower

separatrix move upwards on each cycle until they are eventually

above the separatrix on some cycle, from where they will be pulled

into phase lock. The rate at which the trajectories move upwards

in Figure 3.6 is greater than it was in Figure 3.5.

• These last two observations confirm the intuition that, where the

input frequency is linearly increasing with time, it is better to have

that frequency initially lagging the VCO frequency (negative φ̇), so

that it will increase towards the VCO frequency. A frequency with

initial negative frequency offset will be acquired by the PLL faster

for R′ > 0 than for the case of R′ = 0.

• For R′/a′ → 1 the upper separatrix moves towards the φ-axis,

thus reducing the number of trajectories that can achieve phase

lock. There are also more trajectories above the lower separatrix

that get pulled above the φ-axis, above the upper separatrix, from

where frequency and phase-lock are lost. This corresponds to a

loop that is close to phase lock being pulled out of lock because the

frequency sweep rate is too great

• For R′/a′ ≥ 1 there are no singularities and no stable points. Any

trajectory will have monotonically-increasing or decreasing φ de-

pending on the sign of φ̇.

• For the acquisition of a signal with fixed frequency ω, sweeping the

VCO frequency with rate −R yields an identical system that shown

in Figure 3.6. Therefore it can be seen that, if we start the VCO

at a fixed frequency and sweep it linearly towards that of the input

signal, the acquisition time will be reduced. This approach is often

used as an acquisition aid in real systems [1]. However, this comes

78



at the price of reduced stability; for large values of R (R′/a′ ≈ 1)

there is the risk of the VCO frequency being swept right past that

of the input signal without ever achieving lock.

3.1.4 Additive noise in PLLs

Figure 3.7: Simplified block diagram of a phase-locked loop from Figure
3.1, showing equivalent addition of noise after phase detector.

We return now to the block diagram shown in Figure 3.1 and take the

case where noise is added to the input signal, that is n(t) 6= 0. In order to

derive useful analytical results it is necessary to make some assumptions

about the properties of the additive noise. These assumptions may only

be approximated by the noise processes in real systems. Under these

assumptions, to be outlined below, the system with noise added to the

input signal in Figure 3.1 is equivalent to the system shown in Figure 3.7,

where the noise is instead added after the phase detector. This means

the noise enters as an additional term in equation (3.9), which means we

can often use the tools of stochastic calculus to obtain useful results.

We assume firstly that the noise can be represented as a zero-mean

stationary Gaussian stochastic process. The simplest analytical results

are typically derived by assuming the noise process to be white with

spectral density N0/2, i.e., having a flat spectral density of N0/2 across

the entire frequency range. One could assume this to be the case here

also. However, the linear filter in a PLL will typically result in the PLL
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passing only a certain range of frequencies, centred at the VCO quiescent

frequency, ω0. So, even if the original additive noise is white, one could

equally assume it to have a flat PSD equal to N0/2 across a small fre-

quency range around ω0 only, that is a narrowband Gaussian process. The

reasoning here is similar to that used in the elimination of the double-

frequency term in equation (3.4). It can be shown (see Appendix A of

[1], for example) that such a process, n(t), can be represented as

n(t) =
√

2n1(t) sinω0t+
√

2n2(t) cosω0t+ ñ, (3.33)

where ñ is the mean of the process n(t) and n1(t) and n2(t) are zero-mean,

stationary narrowband Gaussian processes centred at the zero frequency

(DC) with PSDs identical to that of n(t) but shifted to DC. Figure 3.8

shows the PSD of a sample narrowband noise process n(t) centred around

frequency ω0 as well as the PSD of the corresponding process n1(t) shifted

to DC.

Sn�Ω�Sn1�Ω�

0 Ω0
Ω

S�Ω�

Figure 3.8: Power spectral densities of sample narrowband noise process,
n(t) centred at frequency ω0 and process n1(t) with spectrum shifted to
DC.

Taking all of this, the expression (3.1) for the input signal becomes,
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in the noisy case,

√
2A sin θi(t) + n(t) =

√
2{A sin [ω0t+ θ1(t)] +

n1(t) sinω0t+ n2(t) cosω0t}.
(3.34)

In this, we have used the normalized input phase θ1(t) and the fact that

the noise process is zero-mean to set ñ in (3.33) to zero. The output of

the VCO is, as in (3.2)

√
2K1 sin [ω0t+ θ2(t)]. (3.35)

We can combine (3.34) and (3.35) to find that the multiplier output,

after eliminating double-frequency terms as before, is

x(t) = K1 {A sinφ(t)− n1(t) sin θ2(t) + n2(t) cos θ2(t)} , (3.36)

where φ(t) = θ1(t)− θ2(t) is the phase error. Defining a new noise term

n̆(t) = n1(t) sin θ2(t) + n2(t) cos θ2(t), the error signal input to the VCO

is

e(t) = K1

∫ t

0

[A sinφ(u) + n̆(u)] f(t− u)du, (3.37)

so we get a integro-differential equation for the phase error as before, but

now with an additional noise term:

dφ(t)

dt
=
dθ1(t)

dt
−K

∫ t

0

[A sinφ(u) + n̆(u)] f(t− u)du, (3.38)

where K = K1K2.

It is shown in [1] that, under the assumptions above on n1(t) and

n2(t), namely that they are Gaussian processes with flat PSDs with den-

sity N0/2 within the bandwidth of the loop, n̆(t) is similarly a Gaussian

process with flat spectrum N0/2 within the loop bandwidth. This implies

that for practical purposes we may treat it as AWGN in our loop equa-

tion (3.38). This last is the equivalent of the integro-differential equation

(3.9) found earlier in the noise-free case, but in this case has an extra

AWGN term. The PSD and variance of this loop phase error term, n̆(t),
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are identical to those of the original additive noise on input, n(t).

From (3.9) we were able to obtain ODEs for the phase error, φ, for

specific types of PLL, e.g., equation (3.23) for the first-order loop. Now,

considering the noisy signal scenario, these ODEs become Langevin equa-

tions, which can be treated using the tools of stochastic differential equa-

tions. Some examples are detailed later in Section 3.1.6. Where we use

the linear approximation sinφ ≈ φ, further simplifications are possible:

we can apply the principle of superposition to treat the signal and noise

separately and work in the Laplace domain as we did in Section 3.1.2.

The next section explores this in more depth.

3.1.5 Additive noise in the linear model

Figure 3.9: Conceptual representation of signal+noise passing through
linearized PLL.

In the linear model, we use the approximation sinφ ≈ φ and so the

equation of operation for the PLL (3.38) becomes

dφ(t)

dt
=
dθ1(t)

dt
−K

∫ t

0

[Aφ(u) + n̆(u)] f(t− u)du. (3.39)

Rather than work directly in the time domain with (3.39), results can

more easily be obtained by working in the Laplace domain, as we did in

the noise-free case in Section 3.1.2. There we found that the linearized
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PLL is an LTI filter with transfer function

H(s) =
AKF (s)/s

1 + AKF (s)/s
,

so that the output of the loop is related to the input as

Θ2(s) = H(s)Θ1(s).

This relation applies to all input signals Θ1. Because the system is

linear it also applies to all sums of input signals. In particular, we can

consider the action of the PLL on the signal and noise separately. For

example, Figure 3.9 shows the action of the linear PLL on an input that

is the sum of a signal of interest plus noise. Here, the response of the

filter to the signal, Θ1(s) is Θ2S(s), and the response to the noise, N(s)

is Θ2N(s), the total output being Θ2(s) = Θ2S(s)+Θ2N(s). Therefore, to

investigate the response of the loop to an input signal plus noise, we can

equivalently look at the response to noise alone and so can set θ1(t) = 0.

We saw in Section 3.1.4 that, under certain conditions on the noise,

a noise term n(t) added to the input signal was equivalent to adding the

noise term n̆(t) to the phase error φ(t) after the phase detector, which

was in that case non-linear. This equally applies to the linear phase

detector. In that case, assuming θ1(t) = 0 so that the PLL’s input is

noise only, the loop shown in Figure 3.7 becomes the one in Figure 3.10.

Now If we take the additive noise, n̆(t), to be white, zero-mean, with

one-sided spectral density N0 so that Sn(ω) = N0/2, then the spectral

density of the input signal is N0/2A
2 (we are scaling the input noise

by 1/A as we include a scaling factor of A inside the loop itself). The

spectral density of the output error signal, φ(t), caused by the noise is

found from equation (2.84) as

Sφ(ω) =
N0

2A2
|H(iω)|2 . (3.40)

The variance is then calculated as
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σ2
φ =

N0

2A2

∫ ∞
−∞
|H(iω)|2 dω

2π
=
N0

A2

∫ ∞
0

|H(iω)|2 dω
2π
. (3.41)

Defining the noise bandwidth of the loop as

BL =

∫ ∞
0

|H(iω)|2 dω
2π
, (3.42)

we get, finally, a simple relation between the variance of the output error

signal and the input noise level:

σ2
φ =

N0BL

A2
. (3.43)

Note that the noise bandwidth is a property of the loop only and can be

applied independently to any input signal.

Figure 3.10: PLL from Figure 3.7, linearized, and equivalent noise process
shown as input.

Using the fact that for real, approximate noise processes, the noise

variance, σ2
n, is proportional to the spectral density within the bandwidth

of interest, N0. Thus, we have, from (3.43)

σ2
φ =

κσ2
nBL

A2
, (3.44)

where κ ∈ R is a constant. Thus, the output phase error variance plotted

against the input noise variance would be a straight line of slope κBL/A
2.
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3.1.6 Analysis of additive noise in non-linear model

We now return to the full non-linear equation of operation (3.38) for the

PLL
dφ(t)

dt
=
dθ1(t)

dt
−K

∫ t

0

[A sinφ(u) + n̆(u)] f(t− u)du.

Following the approach taken in [1], the most useful analytical results are

obtained with the the simplest case: the first-order loop with sinusoidal

input of frequency ω.

3.1.6.1 First-order loop

In this case the loop filter disappears so that F (s) ≡ 1 and f(u) = δ(u),

in which case (3.38) becomes

dφ(t)

dt
= (ω − ω0)− AK sinφ(t)−Kn̆(t). (3.45)

This is a first-order system driven by white Gaussian input noise, n̆,

with spectral density N0, and is modelled in [1] as a Markov process. In

general, a process that is described by an nth order ODE with AWGN

driving function can be modelled as an n-dimensional system of Markov

random processes. Under the Markov assumption on φ in (3.45), its

probability density satisfies the Fokker-Planck equation (2.73) and its

exact form can be obtained by calculating the moments according to

(2.72). In particular, these are

A1(φ) = lim
∆t→0

E [∆φ |φ]

∆t
= (ω − ω0)− AK sinφ(t),

A2(φ) = lim
∆t→0

E [(∆φ)2 |φ]

∆t
= lim

∆t→0

K2

2

∫ t+∆t

t

∫ t+∆t

t

E [n̆(u)n̆(v)] du dv

= lim
∆t→0

K2N0

2∆t

∫ t+∆t

t

∫ t+∆t

t

δ(u− v) du dv =
K2N0

2
.

(3.46)
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In these, the quantity ∆φ has been calculated directly from (3.45) as

∆φ =

∫ t+∆t

t

dφ(u)

du

∣∣∣∣
u=v

dv,

and the fact that the noise is white has yielded the simplified noise term

in A2. It is also possible to show directly in this case [1] that all higher

moments vanish, i.e., An(φ) = 0 for n ≥ 3. This is also true in the

general case of a first-order ODE with white Gaussian driving function

[18]. The moments yield the Fokker-Planck equation for the first-order

loop:

∂p(φ, t)

∂t
= − ∂

∂φ
[(ω − ω0 − AK sinφ)p(φ, t)] +

K2N0

4

∂2p(φ, t)

∂φ2
. (3.47)

This is an exact PDE for the time-dependent probability distribution of

the phase error, φ. Knowledge of this function would allow us to calculate

all statistics relating the the loop’s output. Note that the Fokker-Plank

equation (3.47) could also have been derived directly from the Langevin

equation (3.45) using the calculus of Itô or Stratonovich.

Π 2 Π 3 Π 4 Π�4 Π �3 Π �2 Π �Π 0
Φ

p�Φ, t�

Π 2 Π 3 Π 4 Π�4 Π �3 Π �2 Π �Π 0
Φ

pΠ�Φ,t�

Figure 3.11: Examples of phase error densities for a first-order non-linear
PLL with additive noise and ω = ω0 at sample value of t for (a) full phase
error density p(φ, t), and (b) density of phase error wrapped to a single
cycle, pπ(φ, t).

For the noisy first-order PLL we would expect the phase error proba-

bility density to be centred around the expected steady-state phase error,

which, in the first cycle, is φ0 = sin−1 ω−ω0

AK
from (3.25). Because of the
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additive noise, there will also be a non-zero probability that the trajec-

tory will get pushed out of the first cycle, onto a higher or lower part of

the trajectory shown in Figure 3.4, and eventually towards an equilibrium

point in a different cycle. This phenomenon is known as cycle slipping

and results in a probability distribution that looks like that shown in Fig-

ure 3.11(a). The probability density in the first cycle [−π, π) generally

decreases with increasing t (assuming the system starts in the first cycle),

with the density in all other cycles correspondingly increasing. The rate

of ‘leakage’ of probability from the first to secondary cycles depends on

the level of the additive noise.

Rather than solving for the absolute phase φ ∈ (−∞,∞), we are in-

stead more interested in the phase within a particular cycle, i.e., ignoring

the effects of cycle-slipping. So, if we take the sum

pπ(φ, t) =
∞∑

n=−∞

p(φ+ 2nπ, t), (3.48)

then each term in the sum is a solution of (3.47) for the initial condition

φ = φ0 + 2nπ, and so also is the sum, pπ(φ, t). pπ(φ, t) taken over just

the interval −π ≤ φ < π represents the wrapping of the full probability

distribution p(φ, t) into a single cycle [−π, π), an example of which is

shown in Figure 3.11(b). Since, as shown in Figure 3.11(b), the full form

(3.48) of pπ(φ, t) is periodic in φ with period 2π it is enough to solve the

Fokker-Planck equation (3.47) for pπ(φ, t), with the initial condition

pπ(φ, 0) = δ(φ− φ0),

boundary condition for all t,

pπ(π, t) = pπ(−π, t),

and normalizing condition for all t,∫ ∞
−∞

pπ(φ, t) dφ = 1.
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The solution of most interest generally is the steady-state solution, if it

exists. This is

p∞(φ) = lim
t→∞

pπ(φ, t).

To check that such a solution exists we substitute this into the Fokker-

Planck equation, which reduces the ∂/∂t term on the left-hand side to

zero. That is, we obtain

d

dφ

[
(α sinφ− β)p∞(φ) +

dp∞(φ)

dφ

]
= 0, (3.49)

where

α =
4A

KN0

,

and

β =
4(ω − ω0)

K2N0

.

Equation (3.49) is readily solvable as

p∞(φ) = Ceα cosφ+βφ

[
1 +D

∫ φ

−π
e−α cosx−βx dx

]
, (3.50)

for φ ∈ [−π, π). Here, C and D are arbitrary constants of integration to

be determined using the conditions

p∞(π) = p∞(−π), (3.51)

and ∫ ∞
−∞

p∞(φ) dφ = 1. (3.52)

In the special case where the PLL’s quiescent frequency is matched to

the input signal frequency, we have ω = ω0, and thus β = 0. In this case,

the conditions above give

D = 0,

and

C =
1∫ π

−π exp (α cosφ) dφ
=

1

2πI0(α)
,
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where I0 is the zeroth-order modified Bessel function. This gives, for the

special case of ω = ω0, the solution

p∞(φ) =
exp (α cosφ)

2πI0(α)
. (3.53)

Clearly the solution is characterized entirely by the parameter α. For a

first-order loop, from (3.17) the closed loop transfer function is AK/(s+

AK), and the noise bandwidth of the loop is AK/4, using (3.42). The

parameter α can be written as

α =
A2

N0(AK/4)
=

A2

N0BL

.

Since A represents the magnitude of the input signal, and N0 the level of

the input noise, the value of α is exactly the signal-to-noise ratio (SNR)

within the loop bandwidth.
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Figure 3.12: Steady-state phase error densities for first-order loop with
ω = ω0, and α values 1 (large dash), 3 (smaller dash), 10, 30, and 100
(solid).

The steady-state density is shown in Figure 3.12 for a number of

different values of the signal-to-noise ratio. As expected for the case of

ω = ω0, the density is concentrated around the value φ = 0; our work

leading to Figure 3.4 predicts a stable equilibrium point at φ = 0, the

density in this case being a delta spike at φ = 0. Indeed for large values of
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the signal-to-noise ratio, such as α = 100, the resulting density is a tall,

narrow Gaussian-like curve centred at φ = 0, as shown in Figure 3.12.

For lower signal-to-noise ratios, the density is a wider and less peaked

curve with more probability density at values away from φ = 0. This

corresponds to the additive input noise disturbing the operation of the

loop so that the output phase error is thrown away from the noise-free

locked state φ = 0.
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Figure 3.13: Steady-state output phase error variance from first-order
loop with ω = ω0 for (a) exact theory (solid), and (b) linear model
(dashed).

The variance of the zero-mean output phase error process is calculated

as

σ2
φ =

∫ π

−π
φ2p∞(φ) dφ =

1

2πI0(α)

∫ π

−π
φ2eα cosφ dφ. (3.54)

The integral in (3.54) can be evaluated numerically, or alternatively, the

exponential term may be expanded as a Fourier series, an expansion

known as the Jacobi-Anger formula [11]. Thus, the variance may be

written in the form:

σ2
φ =

1

2πI0(α)

∫ π

−π
φ2

[
I0(α) + 2

∞∑
n=1

In(α) cosnφ

]
dφ

=
π2

3
+ 4

∞∑
n=1

(−1)nIn(α)

n2I0(α)
.

(3.55)

This series converges very rapidly, so only a few terms are needed for
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accurate numerics. A plot of the output variance against the inverse

of the SNR, 1/α, is shown in Figure 3.13. Note that the linear PLL

theory in Section 3.1.6 predicted, from equation (3.43), σ2
φ = 1/α. The

linear output variance, a line of slope 1, is also shown in Figure 3.13

for comparison. It can be seen from the plot that for high SNR (small

noise), the linear model is a good match to the exact, non-linear theory.

For moderate SNR, the variance output of the non-linear PLL is higher

than that of the linear model. As the SNR approaches zero (high noise),

the output noise variance, σ2
φ, approaches the asymptote π2/3. This

is exactly the variance that would result from the output phase error

being uniformly distributed in the range [−π, π); see equation (2.22),

for example. In contrast, the output variance of the linear model grows

unbounded.

For ω 6= ω0 we have β 6= 0 and equation (3.50), together with condi-

tions (3.51) and (3.52) must be solved numerically to obtain p∞(φ) and

associated statistics, such as σ2
φ. As an example, we can take β/α =

(ω − ω0)/AK = sin (π/4). From our work on the noise-free situation

for the non-linear model, using (3.25) we would expect to find the phase

error probability density to be centred around φ0 = π/4. Solving (3.50)

and plotting p∞(φ) as before bears this out as shown in Figure 3.14.

3.1.6.2 Second-order loop

To examine the case of the second-order loop we first note that it is

possible to derive, for a multi-dimensional Markov process y(t), where

y(t) = [y0(t), y1(t), . . . , yn−1(t)],

a vector equivalent of the Fokker-Planck equation (2.73). The derivation

is sketched, for example, in [1], and yields
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Figure 3.14: Steady-state phase error densities for first-order loop with
(ω − ω0)/AK = sin (π/4), and α values 1 (large dash), 3 (smaller dash),
10, 30, and 100 (solid).

∂p(y, t)

∂t
= −

n−1∑
k=0

∂

∂yk
[Ak(y)p(y, t)] +

1

2

n−1∑
j=0

n−1∑
k=0

∂2

∂xj∂xk
[Ajk(y)p(y, t)] ,

(3.56)

subject to the initial condition

p(y, 0) =
n−1∏
k=0

δ [yk − yk(0)]

for an initial vector of real values [y0, y1, . . . , yn−1]. In equation (3.56) the

moments A(y) are defined similarly to the scalar versions (2.72). That

is, we have

Ak(y) = lim
∆t→0

E [(∆yk) |y]

∆t
,

Ajk(y) = lim
∆t→0

E [(∆yj ∆yk) |y]

∆t
.

(3.57)

Once again, in the derivation of (3.56) it has been assumed that the

process is sufficiently slowly-varying that all higher moments vanish, e.g.,
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Ajkl(y) = 0.

The relevance of the vector Markov process to the second-order PLL

is that, in general, an n-th order ODE can be written as a system of n

first-order ODEs, which in this case are driven by white noise. For the

2nd order PLL, equation (3.38) becomes

dφ(t)

dt
= (ω − ω0)−K [A sinφ(t) + n̆(t)]− aK

∫ t

0

[A sinφ(u) + n̆(u)] du,

(3.58)

where the loop filter is F (s) = 1 + a/s. This can be split as follows:

dy0(t)

dt
= y1(t)

dy1(t)

dt
= −AK sin [ay0(t) + y1(t)]−Kn̆(t),

(3.59)

where φ(t) = ay0(t)+y1(t). Then, y(t) = [y0(t), y1(t)] is a vector Markov

process driven by white noise n̆(t) = [0, n̆(t)], n̆ having spectral den-

sity N0. Calculating the moments involved, the Fokker-Planck equation

becomes

∂p

∂t
= −y1

∂p

∂y0

+
∂

∂y1

[AK sin (ay0 + y1)p] +
K2N0

4

∂2p

∂y2
1

, (3.60)

subject to initial condition p(y0(t), y1(t), 0) = δ[ŷ0 − y0(0)]δ[ŷ1 − y1(0)].

Here [ŷ0, ŷ1] is the fixed, initial value of [y0(t), y1(t)].

Equation (3.60) can be solved only by using advanced numerical

methods (see [18]). However, using the substitution z(t) = ay0(t) and

considering only the steady-state probability distribution p∞(y0, y1) =

limt→∞ p(y0, y1, t), equation (3.60) leads to

a(φ− z)

(
∂

∂φ
+

∂

∂z

)
p∞(φ, z) = AK

∂

∂φ
[sinφ p∞(φ, z)]

+
K2N0

4

∂2p∞(φ, z)

∂φ2
,

(3.61)

which, when we integrate over all z to obtain the marginal density
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p∞(φ) =
∫∞
−∞ p∞(φ, z) dz, becomes

a

[
d

dφ
[φp∞(φ)]− d

dφ

∫ ∞
−∞

zp∞(φ, z) dz

]
= AK

d

dφ
[sinφ p∞(φ)]

+
K2N0

4

d2p∞(φ)

dφ2
.

(3.62)

The second term on the left,
∫∞
−∞ zp∞(φ, z) dz can also be written as∫ ∞

−∞
zp∞(φ, z) dz = p∞(φ)E (z |φ).

Since z = φ− y1, this last expectation in turn is φ−E (y1 |φ), and, going

back to the original equations (3.59) for y0, y1, the expectation is found

to be

E [y1(t) |φ(t)] = AK

∫ ∞
t

E [sinφ(u) |φ(t)] du.

Inserting now back in (3.62), we get an ODE for the steady-state density

of the phase error, φ that involves terms in φ only:

d

dφ

(
4A

KN0

[
sinφ− a

∫ ∞
0

E [sinφ(t+ τ) |φ(t)] dτ

]
p∞(φ) +

dp∞(φ)

dφ

)
= 0.

(3.63)

Like the case of the first-order loop, we can take φ in equation (3.63) to

be in the range [−π, π) by wrapping all values of the phase back into the

first cycle of the PLL. The same boundary and normalization conditions

on p∞(φ) apply as did in the case of the first-order equation.

Even equation (3.63) is not particularly amenable to analysis, though

some useful approximate results can be found. First of all, note that as

a→ 0 equation (3.63) reduces to the corresponding equation for the first-

order loop (3.49) with β = 0. This has solution (3.53) as before, which

is to say that the second-order loop equation reduces to the first-order

loop with ω = ω0 as we would expect.

For an arbitrary value of a, for large SNR φ will be small and so we

can use the approximation sinφ ≈ φ. This is the same approximation

as was used for the linear PLL but now we use it in equation (3.63),
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which was derived using the non-linear analysis. Then, for wide-sense

stationary φ, the expectation within the integral is proportional to the

autocorrelation function Rφ(τ). That is∫ ∞
0

E [sinφ(t+ τ) |φ(t)] dτ ≈ 1

2σ2

[∫ ∞
−∞

Rφ(τ) dτ

]
sinφ(t), (3.64)

where σ2 is the variance of the process φ. Using the Wiener-Khintchin

theorem, the integral in (3.64) is found to be related to the spectral

density of the process, φ. Specifically, we have∫ ∞
−∞

Rφ(τ) dτ = Sφ(0).

Because we’ve used the linear approximation, we can use the results from

Section 3.1.5 to find the spectral density. For the second-order loop with

F (s) = 1 + a/s, equation (3.40) gives

Sφ(ω) =
N0K

2

2

∣∣∣∣ iω + a

−ω2 + AKiω + aAK

∣∣∣∣2 ,
which gives Sφ(0) = N0/2A

2 and

σ2 =
1

2π

∫ ∞
−∞

Sφ(ω) dω =
N0

4A2
(AK + a).

Using these simplifications, equation (3.63) now reduces to

d

dφ

(
4A

KN0

[
sinφ

(
AK

AK + a

)]
p∞(φ) +

dp∞(φ)

dφ

)
= 0. (3.65)

This is again has the same form as the equation for the first-order density

(3.49), with β = 0 and modified SNR α:

α′ =
A2

N0(AK + a)/4
=

A2

N0B′L
.

Note that α here has the same form as for the first-order loop, now

inversely proportional to the bandwidth of the second-order loop, B′L.

95



The solution of (3.65) has exactly the same form as found previously,

namely

p∞(φ) =
exp (α′ cosφ)

2πI0(α)
. (3.66)

Thus, the approximate solution indicates that the response of the

second-order loop is identical to that of the first-order loop with ω = ω0.

This is borne out by empirical results; the effect of changing from a

first- to a second-order loop is to eliminate the static phase error at the

expense of some loop stability. However, when the loop does lock, the

noise output from the second-order system is similar to that of the first.

3.2 Digital PLL summary

In modern communications and other electronic devices, phase-locked

loops are more commonly implemented in digital form rather than in the

traditional analogue version, summarized in Section 3.1. The predom-

inance of the digital version is for reasons of cost, flexibility of design,

deterministic behaviour, and the tendency towards all-digital systems, of

which PLLs are a component [7].

A digital PLL (DPLL) may be implemented on dedicated hardware,

in which case the circuitry replaces the equivalent analogue circuit of

lumped elements, such as resistors, capacitors and oscillators. In this

case, the input signal is sampled using an analogue-to-digital converter

(ADC), with the PLL operations taking place digitally on these samples.

The output of the loop is another set of samples representing the output

signal, which may be fed into a digital-to-analogue converter (DAC) to

convert back to an analogue signal if required.

Alternatively, the PLL may be run simply as an algorithm on a

general-purpose computer or processor, taking an input that is a sequence

of samples of the input signal and providing a corresponding sequence

of output signal samples as an output. This scenario is most often used

in all-digital systems, where the input signal is sourced in the previous

digital block, and the DPLL’s output samples are fed directly into the
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next processing block in the chain. No conversion from or to analogue

signals are needed in this case.

In either case, all DPLL operations are computations, i.e., the oper-

ations of phase-detector, linear filter and VCO all take place as digital

operations within the circuit or processor. These are generally sequences

of basic operations such as additions, subtractions and multiplications.

All operations take place on sequences of samples, representing the input

signal, to produce another set of samples, representing the output. The

input samples, output samples, and intermediate values used in computa-

tions are digital numbers, and thus quantized. In particular, the interme-

diate representing the “voltage” to be fed to the VCO is quantized, which

means the frequency of the output signal is similarly quantized. Quanti-

zation at any point in the loop introduces an immediate non-linearity in

the system. The effects of quantization may be reduced by increasing the

resolution of the digital values, e.g., by storing all samples and interme-

diates as 64- or 128-bit values. This, however, adds complexity and cost

to the circuit, and increases power requirements. A common approach

when analyzing the behaviour of DPLLs is to assume that the effects of

external, additive noise will always be much greater than the effects of

quantization. In this case, quantization can be ignored, and the DPLL

essentially treated like an analogue loop. However, as we will see later,

this assumption is not always valid, and often additive and quantization

noises can interact in unexpected ways.

The following sections provide a detailed introduction to DPLLs,

based largely on the new material added in the latest edition of the book

by Gardner [2], leading on to the work by Teplinksy et al. [4], [5]. This

material provides the background to our new results, which are presented

from Chapter 4 onwards. As is standard in these publications, the all-

digital loop we examine is referred to in this thesis simply as a “DPLL”,

whereas in some texts [7] this is classified as an (all-digital) ADPLL. This

is to distinguish it from earlier incarnations of loops that had digitization

in the phase-detector only [7]; we don’t make the distinction in this work.
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3.2.1 Basics

Figure 3.15: Block diagram of a first-order DPLL.

The basic elements of a first-order DPLL are shown in Figure 3.15.

The corresponding diagram for the analogue version of this loop is Figure

3.1, where the loop filter is absent so that the straight-through path gives

e(t) ≡ x(t). The DPLL may be used in an all digital circuit, in which case

the input consists of a sequence of discrete-time quantized representations

of a sinusoidal signal, sinφi(t), for t = 0, 1, 2, . . .. Alternatively, the

DPLL may be part of an analogue signal receiver, in which case the

input signal is fed to an ADC, which samples the signal and produces

an equivalent set of discrete samples. In either case, the operation of the

DPLL from the phase detector onwards is the same. The analogue-to-

digital conversion option is shown on the top left of Figure 3.15.

The components of the digital loop directly correspond to their ana-

logue counterparts from Figure 3.1. The principal differences are:

• The input and output of each component are series of discrete val-

ues representing signal samples, whereas in the analogue case, the

signals themselves are transmitted across the loop.

• All sample values are quantized and all operations take place on

quantized values using finite-precision arithmetic. This results in
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possible truncation of results, which represents an immediate non-

linearity.

On the first point, we can write the discrete time samples of a signal

x(t) as the set {x(t0), x(t1), . . . , x(ti), . . .}. However, we generally use

equally spaced time instants so that the interval can be normalized and

we can deal with signal samples {x(t) | t = 0, 1, 2, . . .}. The second point

above deserves further elaboration. The simplest component in the loop

shown in Figure 3.15 is the scaler K. This corresponds to an analogue

attenuator or amplifier, and simply multiplies each input sample by K.

Thus, in the analogue case, the operation of the scaler is simply

e(t) = Kx(t),

where x(t) is the output of the phase detector and e(t) is the output of

the scaler. In the digital case, if we assume x(ti) is the b-bit quantized

phase detector output and the output of the scaler, e(ti), is also b-bit

quantized, then the corresponding relationship is

e(ti) =
1

2b
Int[2bKx(ti)],

where Int[x] denotes the integer part of x.

All other loop operations are subject to similar truncation. As a re-

sult, the equations describing the overall loop behaviour are both nonlin-

ear and unwieldy, and not particularly amenable to analysis. A common

approach in the analysis of digital systems is to assume the effects of

quantization are negligible. This is usually achieved in practice by using

a sufficiently high number of bits, b. If this number is high enough, the

nonlinear loop noise introduced by quantization is often much smaller

than the magnitudes of either the signals themselves or external additive

noise. In such cases it is often valid to ignore the quantization noise.

For the initial stages of this introduction to digital loops we will ignore

the quantization as standard. However, we will re-introduce it later in

Section 3.2.3.
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The digital phase detector may be one of several types, but is typically

based on a multiplier, which produces, at each time instant t the output

sin [φi(t)− φo(t)] + sin [φi(t) + φo(t)], (3.67)

for t = 0, 1, 2, . . .. Similar to the analogue case, the second, double-

frequency term in (3.67) is usually virtually eliminated by either the

loop filter or an internal filter in the PD, so that the PD output is

sin [φi(t)− φo(t)] = sin Φ(t). (3.68)

In cases where the phase error remains small we can use the linear ap-

proximation sin Φ(t) ≈ Φ(t) in the loop equations as we did in the

analogue case. In other loops, the phase detector may simply output

φ(t) = φi(t)−φo(t) always, by performing appropriate operations on the

inputs sinφi(t) and sinφo(t). However, this is less common; multiplier-

type PDs are generally easiest to implement in both analogue and digital

circuits (see, e.g., [2], Ch. 13).

After scaling the output by K, the error signal enters the delay com-

ponent, which delays the input value by D clock cycles, where D ≥ 1.

Thus, the input to the NCO at time t is

K sin [Φ(t−D)]. (3.69)

In any digital loop, there must be at least one delay element. This is to

maintain causality, i.e., the output φ0 fed back into the phase detector

at time t can only affect subsequent values of φ0. Otherwise, the value of

φo(t) could not be calculated until the value of φo(t) was known! Also,

in general a real-time digital component cannot produce an output value

based on an input value at the same clock cycle. Usually the component

will take in an input value at time t to produce an output at the next clock

cycle t + 1, or at some later time again. This often results in delays of

several clock cycles through the loop operations. For example, the scaler

may produce e(t) = Kx(t − 1), where x(t) is the output of the phase
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detector. This per-component delay may not be present, for example,

in a post-processing situation, where the PLL algorithm is run on a list

of digital samples that have all been captured before the algorithm is

run. In other cases, a real-time component may produce its output at

a fractional clock cycle later than the input, in which case it may be

well modelled as producing the output instantaneously. However, there

always needs to be a delay of at least one clock cycle across the entire

circuit to maintain a causal loop.

Here we model the delays in the various components by combining

them all in a single delay element before the NCO. Not all DPLL models

allow for the assorted loop delays to be combined in this manner, but

this was the only model considered by Gardner in his most complete work

on DPLLs [2]. The model covers the case where the delay is positioned

as shown in Figure 3.15, or in the output of the phase detector and\or

scalers K, K1 in Figures 3.15 and 3.16. To keep the analysis tractable,

this model of loop delay is the only one we use in this thesis. The delay

element is over D clock cycles, where D ≥ 1 for causality. Most of our

results in this thesis are based on the simplest case of D = 1, but we do

also consider the non-trivial delayed D > 1 case in Chapter 5.

A numerically-controlled oscillator (NCO) is the digital equivalent

of a VCO, that is a component that produces discrete samples of the

signal sinφo(t). The frequency of the signal, the rate of change of phase

[φo(t)− φo(t− 1)], is proportional to the NCO input value or control

word, x(t), where x(t) is given by (3.69), i.e.,

φo(t) = φo(t− 1) + 2πKvx(t) mod 2π. (3.70)

Without loss of generality we may take Kv = 1 by including it in the

scaling factor K. Note that the operation of the NCO is essentially the

same as that of the digital integrator given by equation (2.89). This is to

be expected as the input is proportional to the output signal’s frequency,

and the output is the signal phase. Now, if we take the input signal to
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be a sinusoid of constant frequency, ν, then we have

φi(t) = 2πtν mod 2π, (3.71)

and so

φi(t) = φi(t− 1) + 2πν mod 2π. (3.72)

Combining equations (3.68), (3.69), (3.70), and (3.72), we obtain finally

a difference equation for the phase error Φ:

Φ(t) = Φ(t− 1) + 2π [ν −K sin Φ(t−D)] mod 2π. (3.73)

The equations for the input signal phase, φi, and output phase, φo,

use the modulo operation to remove any differing integer number of cycles

in each since time t = 0. While the DPLL is in the locked state, or close

to locked, we expect φo to remain forever close to φi, and certainly to

remain on the same cycle. Thus, for the purposes of this thesis, where we

expect the phase difference, Φ, to remain close to zero, the modulo-2π

operation is redundant; this is needed only to handle the case of cycle

slipping.

In the simplest case where D = 1, (3.73) becomes an equation for

Φ where the value at time t depends only on the previous value at time

t − 1. If we shrink the normalized time interval in (3.73) back towards

the case where we have continuous time, the equivalent equation would

be
dΦ

dt
≈ 2π [ν −K sin Φ] . (3.74)

It should be noted that, up to a constant, this is the same as equation

(3.23) for the analogue, first-order non-linear PLL obtained in Section

3.1.3.

The second-order DPLL is shown in Figure 3.16. It is identical to

the first-order loop apart from the inclusion of an additional integrator

on the right-hand side of the diagram. The equation of operation for the
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Figure 3.16: Block diagram of a second-order DPLL.

first-order DPLL (3.73) is modified accordingly:

Φ(t) = Φ(t− 1) + 2π [ν −K1 sin Φ(t−D)− u(t−D)] mod 2π, (3.75)

where u(t) is the output of the integrator at time t. The integrator output

is given by

u(t) = u(t− 1) +K1K2 sin Φ(t). (3.76)

For D = 1, these become a pair of first-order equations for the loop, as

can be seen by taking the continuous-time equivalents:

dΦ

dt
≈ 2π [ν −K1 sin Φ− u] ,

du

dt
≈ K1K2 sin Φ.

(3.77)

These can be combined to form a single, second-order equation for Φ(t):

d2Φ

dt2
≈ −2πK1 cos Φ

dΦ

dt
−K1K2 sin Φ. (3.78)

This equation is again a version of equation (3.27) found earlier for

the analogue, non-linear second-order PLL. In general, a digital PLL

with n integrators (including the NCO) will be described by a system

of n first-order equations, for the phase error Φ and (n − 1) other state

103



variables.
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(c) Path to steady-state.

Figure 3.17: (a) Time-domain plot of phase error for second-order DPLL
with ν = 0.0021875, K1 = 2−6, K2 = 2−5, and {Φ(0), u(0)} = {0, 0},
(b) corresponding integrator output, (c) path to steady-state on phase
plane.

Figure 3.17 shows an example of the behaviour of the second-order

DPLL. The plots show the dynamics of the system as is starts from

{Φ, u} = {0, 0} at t = 0. Plot (a) is a time-domain plot of the phase

error, while plot (b) is a similar plot for the integrator output. It can be

seen that the phase error initially grows from 0 until a maximum value

is reached, while the integrator output climbs towards steady-state. As

the steady-state integrator output is approached, the phase error starts

to decrease again and is pulled in towards zero. This is the same be-

haviour as we would get with the second-order analogue PLL of Section

3.1.3, where the frequency of the input signal differs from the quiescent

frequency of the VCO (the latter is normalized to zero here in the case

of a DPLL). This is as would be expected since the DPLL is simply a
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time-discrete version of the analogue case. The corresponding behaviour

for the analogue PLL can be seen by taking a trajectory in Figure 3.5

that begins on the positive-φ̇ axis (φ = 0, φ̇ > 0); on such trajectories

φ increases initially before being pulled into the stable equilibrium point

at φ = 0. The steady-state integrator output is that which is needed to

keep the NCO frequency-locked to the non-zero input frequency.

Figure 3.17(c) shows the combined behaviour on the (φ − u) phase

plane. We will return to similar phase-plane plots for the frequency-

quantized DPLL in the following sections.

3.2.2 Linear approximation

The digital PLL can be linearized in exactly the same way as outlined

in Section 3.1.2 for the analogue version. If the phase error Φ(t) remains

small for all t, then we can use the approximation sin Φ(t) ≈ Φ(t). Then

all elements in the digital loop are linear and can be represented as op-

erators in the Z-domain as shown in Figure 3.18. Here, the Z-transforms

of the digital integrator and delay element are 1/(1 − z−1) and z−D re-

spectively, from (2.93) and (2.94) in Section 2.3.2.

With linearization, equation (3.70) for φo in the case of the first-order

loop becomes

φo(t) = φo(t− 1) + 2πK [φi(t−D)− φo(t−D)] mod 2π. (3.79)

This is a linear equation, and Z-transforms can be used to obtain a

closed-form solution in the Z-domain

Φo(z) = H(z)Φi(z), (3.80)

where Φi(z) and Φo(z) are the Z-transforms of the corresponding time-

domain sequences. For this first-order case we have

H(z) =
2πKz−D

1− z−1 + 2πKz−D
. (3.81)
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The Z-transform of a sinusoidal input with constant frequency ν is

Φi(z) =
2πνz

(z − 1)2
,

so that, for example, the output of the first-order linear loop with minimal

delay D = 1 is

Φo(z) =

[
2πKz−1

1 + (2πK − 1)z−1

] [
2πνz

(z − 1)2

]
.

Inverse transforms may be used to to obtain the time-domain output,

φo(t). When Φo(z) is a rational function of z (ratio of polynomials) as it

is in this case, the inverse transform may be calculated using elementary

methods, i.e., by re-writing Φo(z) as a partial fraction expansion [23] and

transforming each of the simpler terms individually. However, evaluation

in this case is cumbersome and is best performed using a computer pack-

age such at Matlab or Mathematica. More often, once the system has

been transformed to the Z-domain, the analysis tends to remain there

rather than being inverse transformed back to the time domain [23].

Figure 3.18: Z-domain representation of linearized second-order DPLL.

Similarly to the analogue case, the linearization of the DPLL allows

us to use the principle of superposition to consider separately the action

of the system on the sums of input signals. In particular, if the input
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signal is subject to phase noise, ni(t) with Z-transform Ni(z), then the

output is

Φo(z) + αNo(z) = H(z) [Φi(z) + αNi(z)] ,

where Φo(z) = H(z)Φi(z) and No(z) = H(z)Ni(z).

This predictability of linear loops yields huge simplifications in the

analysis. However, in this thesis we focus mainly on systems where this

linearity is broken. Examples of such systems are illustrated in the fol-

lowing sections, these being central to our results which are presented

from Section 4 onwards.

3.2.3 Quantization effects

In an all-digital loop, any signal sample passed between elements is rep-

resented by a digital value and thus subject to some quantization. For

example, the phase detector output, sin Φ may be passed to the scaler as

a b-bit value
1

2b
Int[2b sin Φ], (3.82)

where Int[x] denotes the integer part of x. In general, this means the

PD output will not exactly equal sin Φ, and the difference between sin Φ

and (3.82) represents the quantization or rounding error. The errors

in the loop may be made arbitrarily small by increasing the number of

bits, b. However, this increases the cost and complexity of components.

In general, a value of b in the range 16-64 is used depending on the

application.

The presence of the quantization in the output of each component,

as in (3.82), greatly complicates the DPLL equations. This is because

the rounding error from each block enters the next block as an input,

so the quantization accumulates across the loop. For example, assuming

all loop elements are b-bit quantized, the NCO output for the first-order

loop (3.70) may be modified as
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φo(t) =
1

2b
Int[2bφo(t− 1)] +

1

2b
Int

[
2π

2b
Int[2b sin Φ(t−D)]

]
mod 2π.

(3.83)

Such expressions are unwieldy and direct use of quantization in the

loop equations makes analysis impossible. The situation is complicated

further by the fact many components use intermediate values internally

in order to produce their outputs. The PD, for example, may digitally

multiply the two signals sinφi(t) and sinφo(t), and then apply some filter-

ing to eliminate the high-frequency term. This would involve performing

several other additions and multiplications, each stage of which would

result in an intermediate value being stored as a quantized value. Thus,

in practice, the PD output would often not exactly equal the value given

by (3.82).

The effect of the accumulated quantization in the loop is an additional

contribution towards the phase error, Φ(t). Thus, even with no external

additive noise, the output signal may never lock exactly to the input

signal because of the quantization in the NCO output, (3.83) for example.

This may be viewed as a form of noise or ‘quantization jitter’ in the phase

error. However, because the effect of the loop is to drive the phase error

Φ towards zero, and the quantization effects are generally small, the

overall effect is not to drive the loop away from lock entirely, rather the

introduction of this quantization jitter around the lock point.

A common approach to handling the complications introduced by

quantization is to handle it as a form of additive noise in the loop equa-

tions. The simplest model is to treat this ‘quantization noise’ as AWGN

of an appropriate level. This relies on the external signal or additive

noise being large enough that the quantization is uncorrelated with it, so

the quantization effects can be added in a linear fashion. However, this

small external stimulus approximation is most often not true in practice

as quantization may be the dominant effect. Furthermore, the quanti-

zation is inherently non-linear and, as we will see later, interacts with

external additive noise in a decidedly non-linear way.
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A study model chosen by Gardner [3] as well as Teplinsky et al. [4]

is to concentrate the effects of quantization into a single block before

the NCO. The quantization block could be placed at any location in

the loop and the analysis would be similar. However, NCO quantization

seems to be the predominant model in the literature, with little having

been published to date on any other form of quantization. Gardner also

argues [2] that in certain circumstances, quantization in the output of the

phase detector or loop filter may be combined with the quantizer at NCO

input in which case it can also be treated using this same model, though

possibly with a lower number of bits. This “frequency quantization”

model is the one we use throughout our results in this thesis. This means

that the NCO control word is a quantized value and can only take on a

finite number of values, and the same is then true of the NCO’s output

frequency.

3.2.3.1 First-order loop

A block diagram of a first-order DPLL with frequency quantization is

shown in Figure 3.19. Following [4], we assume a noise-free sinusoidal

input signal of frequency ν so that its phase, φi(t) in Figure 3.19, is

φi(t) = 2πtν mod 2π, (3.84)

for t = 0, 1, 2, . . .. The quantizer produces a b-bit quantized version of

the loop filter output xf (t)

xq(t) =
1

2b
Int[2bxf (t)], (3.85)

where Int[x] denotes the integer part of x. The quantized loop filter

output, xq, is used as the input control word for the NCO, whose output

frequency is proportional to the input, so that its phase is

φo(t) = φo(t− 1) + 2πxq(t) mod 2π. (3.86)
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Figure 3.19: Block diagram of a first-order DPLL with frequency quan-
tization.

Since xq is quantized, so also are the NCO phase and frequency. This

implies that the NCO output signal will, in general, not be able to lock

exactly to the input signal. Instead, the difference between the phases

of the input and output signals, the phase error Φ(t), will incur a jitter

about the locked position.

For the first-order loop in Figure 3.19, and taking the simplest case

initially of the minimal delay, D = 1, the loop filter output xf is

xf (t) = K sin Φ(t− 1), (3.87)

where K is the loop gain. Combining equations (3.84)-(3.87) we have,

finally, as in [4]

Φ(t+ 1) = Φ(t) +
2π

2b
(
µ− Int[2bK sin Φ(t)]

)
mod 2π for t = 0, 1, 2, . . .

(3.88)

where µ = 2bν. This is a non-linear difference equation for the phase

error of a frequency-quantized first-order DPLL in the absence of ex-

ternal additive noise. A time-domain plot of this phase error is shown

in Figure 3.20(a). From the graph, it would appear that Φ initially con-

verges to a range of values in which it remains indefinitely, approximately

[0.245, 0.265] in the example shown. This is in contrast to the analogue

case where the phase error converged to a single value if the input fre-

quency was small enough; see, for example, Figure 3.4. However, note

from Figure 3.4 that in general the first-order analogue loop settles to
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a non-zero value of Φ, i.e., incurs a static phase error. Similarly, it can

be seen that, although the loop does not settle exactly, it does converge

to a range of values not necessarily centred about Φ = 0. We will see

later how the dynamics in this steady state are described by a map on

the circle provided the input frequency ν is sufficiently small, the jagged

nature of the trajectory corresponding to the steps in the VCO output

frequency needed to minimise the phase error.
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(a) Phase error.
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(b) Phase error, no quantization.

Figure 3.20: (a) Time-domain plot of phase error for frequency-quantized
first-order DPLL with b = 8, µ = 0.56, K = 2−6, and Φ(0) = 0.3, (b)
similar plot for DPLL without quantization.

For now, note also the similarity of equation (3.88) to the one found

earlier (3.73) where no quantization was involved; this is a simplifica-

tion brought about by concentrating all quantization effects on the NCO

input. The behaviour of the corresponding non-quantized map (3.73)

for D = 1 is shown in Figure 3.20(b) for comparison. The similarities

in behaviour between the two systems is clear: starting from the initial

condition, the phase error quickly tends towards a constant, non-zero

value. However, for the non-quantized case (b), the the transition occurs

smoothly, without the ‘sawtooth’ pattern of the quantized system. Also,

steady-state is reached more slowly, and to a different static phase error

than in the quantized case. Because of the truncation in equation (3.88),

this higher average phase error in steady-state in (a) is required to keep

the NCO’s average output frequency equal to that of the input signal.

The phase error trajectory may also be visualized on the Φ(t+1)−Φ(t)

111



phase plane, as was done in [4]. This is shown in Figure 3.21, where

equation (3.88) is graphed as the bold line segments. The map (3.88) can

be iterated by stepping between the bold line segments and the identity

line Φ(t+ 1) = Φ(t). Steady-state is reached when the graph of Φ(t+ 1)

lies on both sides of the identity line.

We shall investigate the quantized first-order system more fully in

Section 3.2.5.
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(a) Phase error trajectory.
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(b) Limit cycle detail.

Figure 3.21: Plots of phase error trajectory on Φ(t)− Φ(t+ 1) plane for
frequency-quantized first-order DPLL with b = 8, µ = 0.56, K = 2−6,
and Φ(0) = 0.

3.2.3.2 Second-order loop

For the frequency-quantized second-order DPLL in the absence of exter-

nal additive noise with D = 1, equations (3.75) and (3.76) found earlier

are similarly modified as:

Φ(t+ 1) = Φ(t) +
2π

2b
(
µ− Int[2b (K1 sin Φ(t) + u(t))]

)
mod 2π,

u(t+ 1) = u(t) +K1K2 sin Φ(t+ 1),
(3.89)

where u(t) is again the integrator output.

The steady-state dynamics of this particular system were studied in

great detail by Teplinsky et al. in [4], [5]. In these papers, the precise

nature of the periodic and non-periodic limit cycles of the map were
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described for a range of loop parameters, bounds found on the phase

error and integrator output etc. Because the first-order loop is simply a

special case of second-order loop (K2 = 0) a study of the second-order

DPLL also reveals details of the corresponding first-order loop behaviour.
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(a) Phase error.
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(b) Integrator output.
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(d) Steady-state behaviour.

Figure 3.22: (a) Time-domain plot of phase error for frequency-quantized
second-order DPLL with b = 8, µ = 0.56, K1 = 2−6, K2 = 2−5, and
{Φ(0), u(0)} = {0, 0}, (b) corresponding integrator output, (c) path to
steady-state region on phase plane, (d) steady-state phase error and in-
tegrator output on phase plane.

For now the second-order loop behaviour can be summarized by the

various plots in Figure 3.22. In this, it can be seen from graph (a) that,

although the phase error, Φ first jumps from its zero value to a positive

value, it eventually tends towards a corridor around Φ = 0. This is

in contrast to the first-order loop, which remained forever in a corridor

centred at a non-zero Φ. However, for the second-order loop, both its

eventual limit cycle and the path taken towards that limit, follow a similar

‘sawtooth’ pattern as the first-order case. The force that pulls the phase
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error back towards zero for the second-order system is provided by the

integrator, whose output climbs gradually towards a limit cycle that is

reached as Φ nears zero. This is shown in plot (b). This “restoring force”

is the component that is missing from the first-order system in order to

cancel the static phase error.

The similarities and differences between these plots and those in Fig-

ure 3.17 for the quantization-free case should be noted. While the macro

behaviour is identical there are some significant differences in the detail.

For example, the maximum phase error excursion for the quantized case

is over twice as large as the corresponding value for the DPLL without

quantization. This is because, with quantization, the phase error ini-

tially increases by an amount 2πν until the quantizer output becomes

1. This can be seen by an examination of equations (3.89). However

from equation (3.75), without the quantizer in place, the increment in

the phase error starts to get smaller as soon as the integrator output

becomes non-zero. The result is a much smaller maximum excursion in

Φ and a smaller steady-state value of the restoring force, u.

Using numerical simulations only, Gardner made the following obser-

vations in [2] which are applicable to the limit cycles of both first- and

second-order loops:

1. The pattern of the limit cycles (of both phase error and integrator

output u(t), for the second-order loop) are dependent on Frac[µ],

where Frac[x] denotes the fractional part of x.

2. For the second-order loop, the limit cycles are independent of Int[µ].

For the first-order system, the limit cycles are also independent of

Int[µ] apart from the particular non-zero value of Φ the phase error

settles to (static phase error). However, for this loop we must have

Int[µ] ≤ 2bK − 1 for the loop to achieve lock.

3. Apart from amplitude and any static phase error, the limit cycle

waveforms are also unaffected by any changes to b, K, K1, K2 if

the value of µ is maintained.
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4. If Frac[µ] is rational and is equal to p/q in its lowest form, then the

limit cycles are periodic with period q.

5. If Frac[µ] is irrational then the limit cycles are not periodic, but are

instead said to be quasi-periodic; the values do not repeat exactly

but are instead densely distributed within a finite range. In the

general case where the input frequency is independent of the PLL

clock, µ will be irrational with probability 1.

6. For loop parameters of practical interest the NCO output signal

takes only two output frequencies, i.e., Int[µ] and 1 + Int[µ]. The

loop adjusts the frequency between the two values such that the

average output frequency is exactly µ. The loop parameters of

interest have K, K1, K2 sufficiently small as to allow stable lock

and non-integer input frequency µ.

7. For most loop parameters the range (peak-to-peak excursion) of

the phase error Φ is approximately 2πD/2b.

8. There is no straightforward formula or approximation for the out-

put phase error variance in the case where additive input noise is

combined with the internal quantization jitter. However, for in-

put noise levels greater than σ2
N =

(
1/2bK1

)2
, the additive noise

dominates and the digital PLL behaves like an analogue PLL.

We re-visit some of these findings in our results Chapters 4, 5, and 6.

Of particular interest for the second-order case is the combined Φ−u
behaviour in steady-state, shown in plot (d) of Figure 3.22. The dynamics

in this region were studied in great detail in [4], [5]. In these papers, it

was shown that, from its initial state, the system transitions through

a corridor as shown in plot (c) to a “trapping region” from which it

never emerges. Within this trapping region, it finally settles to a region

that is invariant under the map. The dynamics within the region are a

combination of circle maps in Φ and u, the exact details being dependent
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on the system parameters, µ, b, K1, K2, and the initial conditions. An

example of the invariant region dynamics are shown in plot (d). We will

go into more detail on the circle map dynamics in the following sections.

Of most interest to engineers is the range, or magnitude, of the phase

errors in this trapping region. However, the precise nature of the limit

cycles are also of interest since periodic behaviour often introduces un-

wanted spectral effects. An understanding of the dynamics in this regime

is also crucial for analysis of how external additive noise might interact

with these quantization effects. We will see this later from Chapter 4

onwards.

3.2.4 Circle rotation map preliminaries

In this section we provide the definition of the circle rotation map as

well as outlining some of its basic properties. Maps of the circle are well

studied in the literature – further reading on circle rotation maps and

similar dynamical systems is available, for example, in [28] – and what

is presented here is just a summary of the existing material using our

notation.

The circle rotation map on [0, 2π) is defined as:

x(t+ 1) = {x(t) + 2πη} mod 2π, for t = 0, 1, 2, . . . (3.90)

The circle rotation map is periodic with period q if η is rational and equal

to p/q in its lowest form. Otherwise, the mapping is quasi-periodic and

is dense in [0, 2π). The parameter η is called the rotation number of the

map.

In this thesis we frequently deal with circle maps that are placed arbi-

trarily on the real line. We can define a circle rotation map on [M,M+S)

as

x(t+ 1) =

{
x(t) + α for M ≤ x(t) < M + S − α
x(t) + α− S for M + S − α ≤ x(t) < M + S,

for t = 0, 1, 2, . . .
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This second form of the circle map is equivalent to the first except

shifted from [0, 2π) to [M,M +S) and is periodic if the rotation number,

r = α/S, is rational, and quasi-periodic otherwise.

Lemma 1. For a circle rotation map with parameters (M,S, α) as be-

fore, where r = α/S is rational and equal to p/q in its lowest form, the

arithmetic mean value of the map is

(M + γ) +
(q − 1)S

2q
,

and the variance is
(q2 − 1)S2

12q2
,

where γ ∈ [0, 1
q
) is the minimum value of the map on [M,M + S).

Proof. Note that the “mean” and “variance” here are those obtained us-

ing time-averages, i.e., are not the expectations of Section 2.1.4 since the

circle map output is not a random variable. The proof is straightforward

once it is noted that the set of values taken on by the map over a single

period is {M + γ,M + γ + S
q
,M + γ + 2S

q
, . . . ,M + γ + (q−1)S

q
}, though

not necessarily in this order. For example, the mean is then calculated

as
1

q

q−1∑
n=0

(M + γ +
nS

q
)

= (M + γ) +
S

q2

q−1∑
n=1

n

= (M + γ) +
(q − 1)S

2q
,

where the last equality uses a result for the sum for the first q−1 natural

numbers as found in Section 2.1.4. The variance is calculated in a similar

fashion.

Note that in Lemma 1 that as q → ∞, γ → 0, the mean → M + S
2

and the variance → S2

12
as would be expected for a uniformly distributed

quasi-periodic mapping on [M,M + S).
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3.2.5 Circle rotation map and DPLL

This subsection continues our review of the existing literature on DPLLs

and circle rotation maps in the absence of additive input noise. It was

noted in [4] that the output of the noise-free first and second-order DPLLs

obeyed a circle map once it reached its steady-state limit cycle. Here we

look at the basic DPLL equations and show that this is indeed the case.

3.2.5.1 First-order loop

The following straightforward result was assumed without proof in [4].

For completeness, we provide the details here.

Lemma 2. For a sufficiently small input frequency and loop gain, the

steady-state first-order DPLL phase error obeys a circle rotation map.

Proof. Firstly we make the following assumptions regarding the input

frequency and loop gain:

Int[µ] ≤ 2bK − 1, (3.91)

K <
1

2π
. (3.92)

Equation (3.91) is a hard limit on the input signal’s frequency and reflects

the fact that, in general, a first-order PLL can only lock to a finite range of

frequencies. Equation (3.92) is a sufficient but not a necessary condition

for the DPLL to remain in steady-state and is used here to simplify the

analysis. In practice, all DPLLs we consider in our numerical examples

satisfy this constraint. Suppose that Φ(t) is such that Int[2bK sin Φ(t)] =

Int[µ]. This is possible by (3.91). Then, from (3.88), we have

Φ(t+ 1) = Φ(t) +
2π

2b
Frac[µ], (3.93)

where Frac[x] is the fractional part of x. Because Φ(t + 1) > Φ(t), we
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will now have the following:

Int[2bK sin Φ(t+ 1)] =

{
Int[µ] if Φ(t+ 1) < arcsin Int[µ]+1

2bK

Int[µ] + 1 if Φ(t+ 1) ≥ arcsin Int[µ]+1
2bK

.

This is, the quantizer value for Φ(t+1) either remains unchanged from

the previous value, or increases by 1. That only two states are possible

is guaranteed by (3.92), which ensures that Int[2bK sin Φ] never changes

by more than 1 for changes of Φ less than 2π
2b

as in equation (3.93). In

the case where the quantizer increments at Φ(t+ 1), we then have, from

(3.88)

Φ(t+ 2) = Φ(t+ 1) +
2π

2b
Frac[µ]− 2π

2b
. (3.94)

In general, equations (3.93) and (3.94) will hold for some t, as, in steady-

state, Φ cannot continue to increase indefinitely as in (3.93) alone. That

is to say, in this steady-state regime, Φ obeys the mapping

Φ(t+ 1) =

{
Φ(t) + 2π

2b
Frac[µ] for Φ(t) < arcsin Int[µ]+1

2bK

Φ(t) + 2π
2b

Frac[µ]− 2π
2b

for Φ(t) ≥ arcsin Int[µ]+1
2bK

,

for t = 0, 1, 2, . . .

This is a circle rotation map with M = arcsin Int[µ]+1
2bK

+ 2π
2b

(Frac[µ]−1),

S = 2π
2b

, and α = 2π
2b

Frac[µ], so that the rotation number r = α
S

= Frac[µ].

It should be noted from Lemma 2 above that the nature of the motion

(periodic, quasi-periodic) depends only on r = α
S

= Frac[µ] = Frac[2bν].

Therefore, if the level of quantization, b, is changed and the input fre-

quency altered to compensate such that µ remains constant, only the

scale (S) and base (M) of the map changes. Lemma 1 may be used to

calculate the variance of the map when µ is known, or to obtain bounds

on the variance when it is not.

It should also be noted here that the fact that the DPLL obeys a

circle map with size S = 2π/2b agrees with Gardner’s observation (7)

as noted in Section 3.2.3, that the peak-to-peak excursion of the phase
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error is approximately 2πD/2b.

3.2.5.2 Second-order loop

We return again in this section to the equations (3.89) for the second

order loop:

Φ(t+ 1) = Φ(t) +
2π

2b
(
µ− Int[2b (K1 sin Φ(t) + u(t))]

)
mod 2π,

u(t+ 1) = u(t) +K1K2 sin Φ(t+ 1).

Following the approach of Teplinksy et al. [4], we first make some

assumptions.

Assumption 1. b ≥ 8

This simply says that the number of bits in the NCO quantization is

not too small. Typical hardware implementations or software algorithms

work with 32- or 64-bit values.

Assumption 2. K2 <
2
q+1

This is a restriction on the integrator gain, implying that it must be

smaller the ‘less rational’ µ is.

Assumption 3. K1 <
1

2π[Max{µ,1−µ}+K2]

Dependent on the input frequency µ, the gain of the proportional path

is not too large. At a minimum, this assumption requires K1 < 1/π.

With these assumptions in place, from equations (3.89) we see that

u(n) continues to increase as long as sin Φ(t) is positive and decreases

when it is negative, and the rate of change of Φ(t) alters when the tra-

jectory of the map (in Φ-u state space) crosses one of the ‘switching

curves’ given by

Si : u = 2−bi−K1 sin Φ, (3.95)

for i ∈ Z.

120



The rate of change of Φ(t) will change sign will change sign when the

trajectory crosses the curve with index i = Int[µ] + 1. Throughout this

thesis, we assume that µ is not an integer as this case requires special

treatment as noted in [4]. This is an unlikely scenario in practice as it

would require an input signal that was already frequency-locked exactly

to the DPLL reference clock. For the cases of practical interest that we

consider here we generally have Int[µ] = 0 so this change of sign occurs

across S1: to the left of this curve Φ(t) increases, and to its right it

decreases. The Si are examples of critical curves, as described in many

books on nonlinear dynamics, e.g., [29].

Assuming a trajectory that begins at the origin, we see from equations

(3.89) that Φ(t) will continue to increase by an amount (2π/2b)Frac[µ]

until it crosses the switching curve S1. Meanwhile, u(t) will increase by an

amount sin Φ(t+ 1) ≈ Φ(t+1) for small Φ. This initial transient is shown

in in Figure 3.22(c). Once the trajectory crosses S1, Φ decreases by an

amount (2π/2b)(1−Frac[µ]) and u continues to increase by approximately

Φ while Φ remains positive.

The overall effect of the motions in Φ and u is, from the system’s

initial state, to carry the trajectory in a jagged path towards a ‘trap-

ping region’ centred around Φ = 0 and a non-zero u. This was shown

previously in Figure 3.22(c) and is reproduced in more detail in Figure

3.23(a). The trapping region is marked “T” in Figure 3.23(a). Once the

trajectory enters the trapping region, it never emerges, i.e., the region is

invariant under the map.

It is easy to show that the trajectory is always bounded to the left

and right by curves, also shown in Figure 3.23(a):

L1 : u = 2−b −K1 sin

[
Φ +

2π

2b
(1− µ)

]
+K1K2 sin Φ,

R1 : u = 2−b −K1 sin

[
Φ +

2π

2b
(−µ)

]
+K1K2 sin Φ.

The trapping region is reached when the switching curve, S1 is close
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to the axis Φ ≡ 0. Then, in addition to the trajectory being bounded by

the curves L1 and R1, it is also contained within the lines

u =
1

2b
−K1 sin

2π

2b
(1− µ),

u =
1

2b
+K1 sin

2πµ

2b
,

Φ = −2π

2b
,

Φ =
2π

2b
.

It should be noted here again that, near Φ = 0, the width of the

L1 − R1 corridor is approximately 2π/2b, which agrees with Gardner’s

earlier observation (7), noted in Section 3.2.3, on the size of the peak-to-

peak excursion of the phase error.

Inside the trapping region the trajectory tends towards a motion that

is contained entirely within a smaller invariant region. Within the trap-

ping region the exact nature of the motion depends very much on the

system parameters. The integrator output, u increments or decrements

depending on what side of the switching curve the system is on. Φ will

obey a circle rotation map, similar to the first-order case; apart from

the location of the switching curve, the motion in Φ is independent of u.

Φ will increment by an amount
(
2π/2b

)
Frac[µ] to the left of the curve

and decrement by
(
2π/2b

)
(1− Frac[µ]) to its right. For cases where the

rotation number Frac[µ] is rational, and equal to p/q in its lowest form,

this circle map is periodic. After q iterations, the map will repeat. For

systems that start at the origin, the circle map will be centred at Φ = 0,

i.e., one of the points on the map will be at Φ = 0 and the (q− 1) points

will be equally distributed each to the left and right of the axis at inter-

vals of (2π/2b)(1/q). From the equation (3.89) for u, and for small Φ we

have sin Φ ≈ Φ, so that in this case u also obeys a circle rotation map.

The maps for Φ and u are periodic, both with period q. Thus the overall

motion is periodic with period q as shown in Figure 3.23(b) for the case

where q = 25. Here, the invariant region is simply this period-25 limit
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cycle.
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(a) Path to steady-state.
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(b) Steady-state behaviour.

Figure 3.23: Plot of phase error for frequency-quantized second-order
DPLL with b = 8, µ = 0.56, K1 = 2−6, K2 = 2−5, and {Φ(0), u(0)} =
{0, 0}, showing on phase plane (a) path to steady-state region, (b) steady-
state phase error and integrator output.

Nearby trajectories do not however settle to similar periodic orbits.

For example, Figure 3.24(a) shows the invariant region for the same map

when the trajectory starts from Φ = 10−4, u = 0 rather than the origin.

While Φ in general follows the same period-25 cycle, the same periodic

motion in u has been lost and instead varies across a much wider range of

values than before. Compared to the periodic map, an additional value

of Φ is added to the far left of the plot. This corresponds to a position

on the map that is reached after a point with Φ = (2π/2b)(−2/q) gets

pushed to the positive side of the switching curve due to the rotation in

u.

In general, where the circle map in Φ is q-periodic, the qth iterate

of the map is a circle rotation map in u. The rotation number of this

map depends on the initial conditions. For example, for the period-25

map that started at the origin, the rotation number was 0; the motions

of Φ and u repeated together so that the 25th iterate of the map gave a

fixed point in u. For the map in Figure 3.24(a) that starts at {Φ, u} =

{10−4, 0}, the rotation number is irrational. Therefore, while the motion

in Φ is periodic, the motion in u is quasi-periodic. Thus the combined

trajectory is quasi-periodic also. For the map shown in Figure 3.24(b),

µ = 0.4 so that the motion in Φ is a period-5 circle map. However, the
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(a) Irrational rotation in u.
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(b) Rotation number 1/2 in u.

Figure 3.24: Similar plots to Figure 3.23(b) except with (a) µ =
0.56, {Φ(0), u(0)} = {10−4, 0}, (b) µ = 0.4, {Φ(0), u(0)} =
{2π/(2b.10), 0.002}.

overall motion is 10-periodic because the 5th iterate of the map is a circle

map in u with rotation number 1/2. That is, when Φ has completed two

full 5-cycles, u has returned to its original value.

It was shown in [4] that all limit cycles for reasonable system parame-

ters and initial conditions are contained within an absorbing set D within

the trapping region. This applies to all rational input frequencies (i.e.,

Int[µ] = p/q) whether the overall motion was periodic or quasi-periodic.

The set D is invariant under the 2-dimensional map. The invariant set

is shown in Figure 3.25 and is a rather complicated construction, derived

from first principles in [4]. It consists of q + 1 narrow strips within the

trapping region that contain all trajectories. The q+ 1 strips correspond

to the values in the rotation map for Φ, which is generally q-periodic

with an additional point reached for a rotation in u as in Figure 3.24(a).

Figure 3.25 shows the invariant region for µ = 2/5 and so in this

case consists of 6 strips. The steady-state trajectories for three maps all

with µ = 2/5 are overlaid. The first, at the bottom of the plot, is for

the trajectory that starts at the origin. This is the simplest trajectory

for µ = 0.4 where both Φ and u repeat together with the same period-5

motion. This is similar to the 25-periodic limit cycle shown earlier in

Figure 3.23(b). The middle trajectory is the same as the one shown in

Figure 3.24(b), i.e., has {Φ(0), u(0)} = {2π/(2b.10), 0.002}. Here, again
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Figure 3.25: Plot showing invariant region from [4] for b = 8, µ = 0.4,
K1 = 2−6, K2 = 2−5. Overlaid are plots for (from bottom) {Φ(0), u(0)} =
(a) {0, 0}, (b) {2π/(2b.10), 0.002}, (c) {10−3, 0}.

the motion in Φ is 5-periodic and the 5th iterate of the map is a rotation in

u with rotation number 1/2. Thus, the overall motion is 10-periodic. The

uppermost trajectory fills out a range of values for u for each value taken

on by Φ and results from the system starting from {Φ, u} = {10−3, 0} so

that the 5th iterate of the map results in an irrational rotation in u. This

is similar to the quasi-periodic map shown earlier for q = 25 in Figure

3.24(a). In all three cases in the plot here, the trajectories are contained

within the invariant region.

Teplinsky et al. [5] also looked at the case where the input signal

frequency, µ, is not a low-denominator rational; that is, µ is either a

large-denominator rational (so that Assumption 2 above does not hold)

or an irrational number. In both cases, there is still an absorbing set,

D, though it has a more complex structure than what is shown for the

low-denominator case in Figure 3.25. For the large-denominator rational

frequency, the dynamics for Φ are again governed by a periodic circle

map. However, the motion in u is no longer a circle map, but is instead

a piecewise discontinuous circle rotation. The combination of the two

leads to behaviour in the phase-plane that is not yet fully understood.
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For irrational input frequencies, Φ is governed by a quasi-periodic circle

map while the motion in u is more complex again.

3.3 Summary

In this chapter we have introduced the phase-locked loop, starting in

Section 3.1 with a summary of the existing literature on the classical

analogue system. We showed how the basic equation of operation can be

derived, and then linearized in the case where the phase-error remains

small. Using the linear approximation, the steady-state behaviour of the

PLL can easily be found in the cases of both first-order and second-order

loops, where the input signal has either a constant or linearly-varying

frequency. Analysis of the full non-linear system is significantly more

complex; the phase-plane approach used by Viterbi [1] was recapped in

Section 3.1.3 and we noted both the similarities and differences between

the linear and non-linear systems.

In Section 3.1.4 we saw how, under some mild conditions, noise added

to the input signal is equivalent to noise of the same variance added to the

output of the phase detector. In the case of a linear PLL, the entire loop

can be viewed as a simple linear filter, and the output response of the

loop to input noise can easily found using the standard frequency-domain

analysis for linear systems. For non-linear loops, once again the situation

is not so straightforward; the tools of stochastic calculus are immediately

employed to obain a Fokker-Planck equation for the steady-state PDF of

the phase error. Analytical results can only be obtained in the simplest of

scenarios, e.g., the first-order loop with constant-frequency input, though

some useful approximate results may also be found for the second-order

system.

Building on this knowledge of the analogue loop, the digital PLL was

introduced in Section 3.2. Once again, the basic equations of operation

for the first- and second-order loops were derived and similarities to the

equivalent equations for the analogue case were illustrated. In Section

3.2.3 we introduced the concept of quantization, as well as the study
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model used by Gardner [3] and Teplinsky et al. [4] where this quantization

is applied to the NCO input only. We summarized the previous findings

on the steady-state limit cycles of the first- and second-order loops with

NCO quantization. Finally, in Section 3.2.5 we showed how the steady-

state behaviour of both loops obeys a map on the circle. For the first-

order system, the phase error follows a circle rotation map, while for the

second-order loop, both the phase-error and integrator output obey circle

maps with rotation numbers that depend on the initial conditions. For

different combinations of rotation numbers, various types of limit cycle

can be observed, as seen in [4], [5].

Our new material begins in the next chapter, where we consider the

first-order digital loop with noise added to the input signal. Just as in

the analogue case, we will see that this external noise is equivalent to

the same noise added after the phase detector. Using simulations, we

will show how digital loops with various levels of quantization respond to

additive noise, recreating some of the earlier work in [3]. Similarities to

the analogue case will be apparent, but also some differences where the

additive noise and quantization interact in a manner that has not hitherto

been understood. To gain an insight, we will formulate the DPLL as a

unique form of noisy circle rotation map. The map can be treated as a

Markov chain, and its Chapman-Kolmogorov equations yield a number

of new results. In later chapters we will also look at the first-order loop

with delay, as well as the second-order DPLL, and see how each system

is affected by external noise using a number of analytical approaches as

well as numerical simulations.
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Chapter 4

Results for the first-order

DPLL without loop delay

This section marks the beginning of our new material and results. In

this chapter we present our results for the frequency-quantized, non-

linear first-order DPLL with additive input noise. The following chapters

continue on to the case where we have a delay D > 1 in the first-order

loop, and finally to the second-order DPLL.

Building on the existing literature, summarized in the preceding chap-

ters, here we use the assumption that, under reasonable conditions, the

steady-state behaviour of the non-linear, frequency-quantized DPLL of

Section 3.2.3 is well approximated by the circle rotation map as shown

in Section 3.2.4. In Section 4.1 it is shown how the equation for the

first-order DPLL with additive noise can be written as a modified circle

map with probabilistic jumps at each time interval. This unique way

of writing the noisy DPLL equations forms the basis for our subsequent

analysis from Section 4.3 onwards.

In Section 4.2 the main numerical results for the DPLL are shown,

agreeing with earlier results from [3]. In addition, simulation results from

the corresponding circle maps are shown, and it is seen that they agree

well with the DPLL for a large range of additive noise levels.

Our analysis of the noisy circle map equations starts in Section 4.3.

First we show that the circle map is a Markov chain and that its PDF
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Figure 4.1: Block diagram of a first-order DPLL with additive noise.

obeys a Chapman-Kolmogorov equation. We proceed to derive several

properties of the steady-state PDF. We then continue in Sections 4.4.1

and 4.4.2 with some approximate, asymptotic solutions for the steady-

state using results from the previous section. We see that these solutions

agree with the earlier numerical results within the valid parameter ranges

for each approximation.

4.1 Circle map and the first-order DPLL

with additive input noise

We are interested in the behaviour of the DPLL when noise is added

to the input signal, since this is what is encountered by designers, and,

as mentioned in [3], there is no clear understanding of this problem in

the existing literature. The situation is shown in Figure 4.1. As de-

scribed in [3], it is equivalent to model the additive input noise noise as

being added after the phase detector in Figure 3.19. This was also the

approach we used for the analogue PLL in Section 3.1.4 and is a stan-

dard model for PLL analysis, though it is strictly accurate only when

the noise is Gaussian with the bulk of its power at frequencies greater

than the loop bandwidth. We use this approximation to simplify both
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the analysis and simulation of the problem. Additionally, the input noise

used in the simulation results presented here is uncorrelated and from a

uniform distribution. We use this distribution as it allows us to derive

some particular results in later sections, such as Theorem 7. However,

results obtained using the more usual Gaussian-distributed input noise

were virtually indistinguishable from those shown below.

Using the approximation of adding the noise after the phase detector,

the noise term enters equation (3.88) as an additional delayed input to

the quantizer Int[...]. Therefore, the numerical results in the following

section involve simulating the difference equation (4.2) below, allowing

Φ(t) reach steady state, when at each time step the noise sample N(t) is

drawn randomly from a uniform density with bounds determined by the

input noise variance.

An alternative way of writing the circle rotation map in equation

(3.90) is as follows:

x(t+ 1) = x(t) + α +Q(x(t))S, for t = 0, 1, 2, . . . , where

Q(x) =

{
−1 if x ≥M + S − α,

0 if x < M + S + α.
(4.1)

Here, Q(x) represents the quantizer and provides the corresponding func-

tion to the modulo operation in (3.90).

In the case where noise is added to the DPLL input signal, equation

(3.88) governing the behaviour of the output phase error is modified as

follows:

Φ(t+ 1) = Φ(t) +
2π

2b
{µ− Int[2bK(sin Φ(t) +N(t))]}. (4.2)

Here N(t) is the noise sample added after the phase-detector at time-step

t, and, again, is statistically equivalent to adding it to the input signal. A

similar equation exists for the analogue case, equation (3.45) in Section

3.1.6, for example.
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Remark 1. For large noise, i.e., N(t) � sin Φ(t) and N(t) � ν
K

, (4.2)

can be approximated by

Φ(t+ 1) = Φ(t)− 2πKN(t). (4.3)

In this case φ(t) obeys a random walk and thus is non-stationary so

no steady-state variance exists. This thesis considers only cases where

steady-state solutions occur, these being the cases of engineering interest.

The addition of the random noise sample in (4.2) will sometimes cause

the quantizer (Int[. . .]) to output a value other than what it would have

done in the noise-free case. The DPLL can therefore be modelled by a

noisy circle rotation map as follows:

x(t+ 1) = x(t) + α +Q(x(t))S, for t = 0, 1, 2, . . .

x(0) = x0,

where

Q(x) =

{
−1 with probability FN(x),

0 with probability 1− FN(x).
(4.4)

In the above, the function FN(x) represents the cumulative distribution

T�L T T�L

1

(a) Function FN (x) in case where
additive noise is uniformly dis-
tributed in [−L,L].

M M�ST

1
S

(b) Initial distribution p(x, 0) in case
of quasi-periodic circle rotation map.

Figure 4.2
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function (CDF) of the noise N(t) as follows

FN(x) = PN(x−T ), where T = (M+S−α), and PN(x) =

∫ x

−∞
pN(y)dy,

(4.5)

where pN(y) is the PDF of N(t).

The function FN(x) is shown in Figure 4.2(a) for the case where N(t)

is uniformly distributed in [−L,L]. The noise variance, σ2
N , is L2

3
in

this case. Note that in the range [T − L, T ) the probability of getting a

quantizer value of−1 is in the range [0, 0.5), whereas in the noise-free case

it would have been 0: the quantizer would output zero always. Similarly,

above x = T , the probability of a quantizer value of −1 increases from

0.5 to 1. At x = T , the probability of a jump in either direction is 0.5.

On the other hand, in the case where the additive noise is zero the PDF

of N(t) is the delta spike δ(0), and so FN(x) is a step function at x = T .

In this situation, definition (4.4) for the noisy circle map reduces to the

original (4.1).

We are interested in finding the statistics of x(t), given those of N(t),

and its variance in particular. Therefore it makes sense to define the

time-dependent PDF of x(t) as p(x, t), where x ∈ R, t = 0, 1, 2, . . .

Equation (4.4) above is similar to that studied recently in the liter-

ature for a first-order digital bang-bang PLL with zero loop delay and

non-zero loop detuning, in [30], [31]. Combining equations (1)-(3) of

[31], and setting D = 0, yields an equation similar to (4.4) in this paper,

though x(t) in the latter corresponds to the auxiliary variable ∆t∗k of

[31], rather than actual output timing jitter, ∆tk. Our quantizer here

also differs slightly, taking on values 0 and 1, rather than the ±1 of the

sgn[.] function of [31]. This latter paper, however, focusses primarily on

the case of non-zero delay. The same system with zero delay was con-

sidered earlier by Da Dalt in [30]. In this thesis our main results involve

approximations of the output jitter variance, rather the phase-detector

gain of [30].

The behaviour of the noisy first-order DPLL (4.2) may also be visu-

alized on the Φ(t + 1) − Φ(t) phase plane, similar to the noise-free case

132



that was plotted earlier in Figure 3.21. This is shown in Figure 4.3. As

before, steady-state is reached when the graph of (4.2) without the noise

term lies on each side of the identity line. However, with noise noise

now added, there is a region of uncertainty at the transition point where

additional points now lie above and below the identity line beyond the

bounds of the original map. This is indicated by the shaded region in

Figure 4.3. The behaviour within this region is described by the noisy

circle map (4.4) and will be investigated further in Section 4.3.
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Figure 4.3: Plot on the Φ(t) − Φ(t + 1) plane of frequency-quantized
first-order DPLL with b = 8, µ = 0.56, K = 2−6, and Φ(0) = 0, with
additive noise variance σ2

N = 10−5 .

4.2 Numerical results for circle map and

the first-order DPLL with noise

The main numerical results of the first-order DPLL are shown in Fig-

ure 4.4(a). The response of the variance of the output jitter, σ2
O, to

input noise variance, σ2
N , is displayed for various DPLL quantization lev-

els. As mentioned in the previous sub-section, the noise is uncorrelated

and drawn from a uniform-density distribution with variance σ2
N ; the

variance response obtained using this uniform-density input is virtually

indistinguishable from that using the more standard Gaussian.
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(a) DPLL variance response.
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(b) DPLL with circle maps.

Figure 4.4: Variance of output jitter, σ2
O, as a function of input noise

variance, σ2
N , for (a) DPLL with µ = 0.56, K = 2−6, and b = 14 (solid),

b = 12 (large dash), b = 10 (med dash), b = 8 (small dash), and for (b)
DPLLs with corresponding circle rotation maps.

Three distinct regions can clearly be identified. The first is on the

left of the graphs where the additive noise has little or no effect, and

the output variance can easily be calculated or bounded using Lemma 1.

Unsurprisingly, the DPLLs with lower quantization values have a higher

noise-free variance, but are also less sensitive to the input noise, i.e., it

requires a higher level of input noise to affect the output. The PDF of

the output jitter in this region is dependent on whether the correspond-

ing circle rotation map is periodic or quasi-periodic, which in turn is

determined by Frac[µ].

The second, intermediate, region is where the additive noise starts

to have an effect, but there is also still a significant dependency on the

quantization level, demonstrating that the additive noise and inherent

jitter are interacting in some way. The region encompasses several orders

of magnitude on both the input and output variance axes, and there

are points where, for example, the output variance has risen to over an

order of magnitude above the noise-free level, but quantization still has

a significant effect. Given this, an understanding of the behaviour in

this region should be of interest to PLL designers. In addition it was

noted that the PDF of the output jitter becomes closer to Gaussian as

this intermediate region is traversed, as can be seen, for example, in the

histogram plots of Figure 4.5.
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The final region is where the output variance is independent of quan-

tization, and the graph of the output variance is a line of slope 1 on

log-log axes. This, as expected, and as noted in [3], is exactly the re-

sponse of a linear, analogue PLL. It can also be seen from an examination

of equation (3.44): since the variance of the output jitter is proportional

to that of the input noise, this gives a line of slope 1 on a log-log plot.

The PDF of the output in this region is close to Gaussian.

It should be noted that the parameter µ (and ν) has little effect on

these plots. The exact details of the transition from the noise-free to the

intermediate region does depend on µ, as the DPLL obeys a circle map

in the absence of noise, the dynamics of which are determined entirely

by µ. However the overall behaviour for increasing σN is essentially the

same for all input frequencies.

While equation (4.2) describes the noisy DPLL, the noisy circle map

is governed by equation (4.4); the correspondence in parameters between

the two equations is given by the result of Lemma 2. In Figure 4.4(b)

the responses of the corresponding circle rotation maps to the same input

noise levels are shown, the noise being added to the circle such that it

corresponds exactly to the DPLL additive noise. In general the circle

map plots track the DPLL plots until the noise levels become large,

whereupon they start deviating from the DPLL plots, each circle map

plot continuing in a straight line with slope of approximately 1
2
. That

the line has slope 1
2

indicates that the output variance of the circle map

is proportional to the square root of the input noise variance, when the

noise is added according to equation (4.4). This will be investigated later

in Section 4.4.1.

The measured output variance of the circle maps fluctuates and be-

comes more unstable as the additive noise level is increased and the sys-

tem’s output becomes non-stationary. This is of little importance as this

behaviour is evident only in the region where each DPLL is responding

like an analogue PLL. It should be clear from the plot that the regime

where the circle map variance begins increasing with slope 1
2

corresponds

to the intermediate region in the DPLL response, so the behaviour of the
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DPLL in this region may be explained by an analysis of the large-noise

response of the circle map.
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Figure 4.5: Histograms of steady-state circle map output for M = 0,
S = 1, α = 0.1387, and input noise variance (a) 0.0001, (b) 0.001, (c)
0.01, (d) 0.1, (e) 1.0, (f) 2.0.

We also examine in some detail in Figure 4.5 the PDF of the circle

map output when subjected to the additive DPLL noise. When no noise

is added, and in the general case where r = α
S

is irrational, the output

has a uniform distribution on [M,M + S]. As noise is added, and its

variance increased, the region within [M,M + S] of uniform probability

shrinks as the range of non-zero probability increases and ‘tails’ form, as

shown in Figure 4.5. As the input noise level is increased further, the

region of constant probability vanishes entirely, and the PDF appears

Gaussian. Indeed, the measured kurtosis becomes close to 3, and the

Gaussian approximates the measured PDF very closely as the noise vari-

ance increases. The PDF of the circle map output is analyzed in more

detail later in Section 4.4.

Another feature noticeable from the sequence in Figure 4.5 is that the

mean of the output, µO, decreases as the input noise level is increased.

This is better illustrated in Figure 4.6. In general, as the input noise-

level is increased, the mean increases or decreases according to the noise-
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independent circle map parameter sgn(r−1). This is investigated further

in Theorem 7 on page page 144.
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Figure 4.6: Mean of circle map output, µO, for M = 0, S = 1, α = 0.1387
plotted against input noise variance, σ2

N .

4.3 Analysis of circle map with additive

noise

Starting with equation (4.4) we may derive an equation for the time-

dependent PDF p(x, t) of x(t). Firstly, note that we can write

x(0) = x0,

and

x(t+ 1) =

{
h1[x(t)] with probability FN(x)

h2[x(t)] with probability 1− FN(x).
(4.6)

Here we have

h1(z) = z + α− S,

h2(z) = z + α.

Clearly, x(t) defined this way describes a Markov chain as defined in

Section 2.2.5, since the next state, x(t + 1), depends only on x(t). In
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particular, we can use the Chapman-Kolmogorov equation (2.68) for this

particular process, x(t), to obtain the next result.

Theorem 3. For the noisy circle rotation map as defined in (4.4), the

PDF, p(x, t), of x(t) obeys the following equation

p(x, t) = p(x−α, t−1)[1−FN(x−α)]+p(x−α+S, t−1)FN(x−α+S).

(4.7)

Proof. Since x(t) is a Markov chain we can write its Chapman-Kolmogorov

equation as follows:

p(x, t) =

∫ ∞
−∞

q(x|z, t− 1)p(z, t− 1)dz, (4.8)

where q(x|z, t− 1) is the transition PDF of p(x, t) conditioned on x(t−
1) = z. From (4.6) we can write

q(x|z, t− 1) = FN(z)δ(x− h1(z)) + (1− FN(z))δ(x− h2(z)), (4.9)

and substituting for h1 and h2 we obtain

q(x|z, t− 1) = FN(z)δ(x− z−α+S) + (1−FN(z))δ(x− z−α). (4.10)

Finally, inserting (4.10) into (4.8), and integrating, the result follows.

This result may be used to simulate the behaviour of the PDF of x

by evolving it over time from an initial condition p(x, 0). For example, in

the case of an irrational Frac[µ], the noise-free mapping is quasi-periodic,

and the ensemble will initially be uniformly distributed in [M,M +S) as

shown in Figure 4.2(b).

Figure 4.7 shows the evolution of the initial PDF p(x, 0) to a steady-

state PDF over 500 time steps. In this case, the circle map parameters

and noise level used are the same as in Figure 4.5(d), and the noise CDF

FN(x) is as shown in Figure 4.2(a). For all such cases, the circle map

PDF quickly reaches steady-state and for larger levels of input noise the

PDF is approximately Gaussian, as measured by its kurtosis.
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Figure 4.7: Initial PDF, and PDF after 500 time steps, of output for
circle map with M = 0, S = 1, α = 0.1387 and input noise variance,
σ2
N = 0.1.

If the PDF in (4.7) reaches a steady-state (as it is observed to do in

numerical simulations) then this state p∞(x) is described by the solution

of the non-local equation

p∞(x) = p∞(x−α)[1−FN(x−α)]+p∞(x+S−α)FN(x+S−α) (4.11)

or, equivalently

p∞(x)FN(x) = p∞(x+ α− S)− p∞(x− S)[1− FN(x− S)]. (4.12)

Since p∞(x) is a PDF, it obeys p∞(x) ≥ 0 ∀x, and the normaliza-

tion condition
∫∞
−∞ p∞(x)dx = 1, which requires the limiting behaviour

limx→±∞ p∞(x) = 0.

We next derive a symmetry result for the solution, p∞(x), of (4.11).

In the case of additive noise N(t) of mean 0, with PDF symmetric about

y = 0, the noise CDF, FN(x), has the following symmetry property as

shown in Figure 4.2(a)

FN(T + x) + FN(T − x) = 1. (4.13)
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Let us now make the following transformations:

α 7−→ (S − α)

FN(x) 7−→ f (x+ (S − 2α)) .

These are the transformations that result from interchanging α and (S−
α) in the physical circle map, the latter transformation following because

FN(x), which was centred at x = T = (M + S − α) (see Figure 4.2(a))

is now centred at (M + α). With these changes equation (4.11) for the

new solution q∞ becomes the symmetry equation:

q∞(x) = q∞(x−(S−α))[1−FN(x−α)]+q∞(x+α)FN(x+(S−α)). (4.14)

The next result relates the solution q∞(x) of the symmetry equation to

the original solution, p∞(x) of equation (4.11).

Theorem 4. For p∞(x) that is a solution of (4.11), FN(x) that satisfies

(4.13), q∞(x) = p∞(2M + S − x) is a solution of symmetry equation

(4.14).

Proof. Firstly note that equation (4.13) for the noise symmetry can be

written as

FN(M + S − α + x) + FN(M + S − α− x) = 1. (4.15)

Using a simple transformation of variable in each case, this yields the

equivalent pair of relations

FN(x− α) + FN(2M + 2S − α− x) = 1, (4.16)

FN(x+ S − α) + FN(2M + S − α− x) = 1. (4.17)

Now setting q∞(x) = p∞(2M+S−x), we have p∞(x) = q∞(2M+S−x),
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and, substituting in (4.11), we get

q∞(2M + S − x) = q∞(2M + S + α− x)[1− FN(x− α)]+

q∞(2M + α− x)FN(x+ S − α).
(4.18)

Using relations (4.16) and (4.17), this is

q∞(2M + S − x) = q∞(2M + S + α− x)FN(2M + 2S − α− x)+

q∞(2M + α− x)[1− FN(2M + S − α− x)].

(4.19)

Changing variables reduces the equation to

q∞(x) = q∞(x+α)FN(x+(S−α))+q∞(x−(S−α))[1−FN(x−α)]. (4.20)

This is precisely equation (4.14). Finally, we note that the boundary and

normalization conditions satisfied by p∞(x) of (4.11), limx→±∞ p∞(x) = 0

and
∫
p∞(x)dx = 1, are also satisfied by Q(x) = p∞(2M + S − x).

This result means that we can restrict our attention in the remainder

of this section to the case α ≤ S
2
, since the symmetry result immediately

gives us the solution for the corresponding case where α ≥ S
2
. The next

result gives a further property of solution p∞ for a particular noise CDF

FN(x).

Theorem 5. For the steady-state distribution p∞(x) given in (4.12),

FN(x) that is identically 0 in (−∞, T − L] and identically 1 in [T +

L,∞) (such as the uniform distribution in Figure 4.2(a)), and initial

distribution P (x, 0) that is zero outside the range (M − L,M + S + L)

(e.g., that given in Figure 4.2(b)), p∞(x) is also identically zero outside

the region (M − L,M + S + L).

Proof. For x ≤ T − L + α − S = M − L we have FN(x − α + S) = 0

and FN(x − α) = 0 from Figure 4.2(a). Then (4.7) becomes p(x, t) =

p(x − α, t − 1) and hence p(x, t) = p(x − tα, 0). Since x ≤ M − L,
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x − tα ≤ M − L also, so p(x − tα, 0) = 0 from Figure 4.2(b). Hence

p(x, t) = 0.

Similarly, for x ≥ T + L + α = M + S + L we have FN(x − α) = 1

and FN(x−α+S) = 1, so (4.7) becomes p(x, t) = p(x+S−α, t−1) and

hence p(x, t) = p(x+ t(S−α), 0). Since x ≥M +S+L and (S−α) ≥ 0,

x + t(S − α) ≥ M + S + L also, so p(x + t(S − α), 0) = 0 from Figure

4.2(b). Hence p(x, t) = 0.

Therefore ∀t, p(x, t) = 0 for x ≤ M − L and x ≥ M + S + L. The

same is true of p∞(x) if this steady-state solution exists. Clearly, the

only region where p∞(x) can be non-zero is in (M − L,M + S + L), a

region of size 2L+ S containing T = M + S − α.

The following result serves to verify that (4.12) holds for the noise-free

circle map, i.e., that the uniform PDF is a solution of (4.12).

Lemma 6. For FN(x) as in Figure 4.2(a) in the noise-free case, i.e.,

L = 0, the uniform PDF on [M,M + S], as given in Figure 4.2(b), is a

solution for the steady-state p∞(x) in (4.12).

Proof. Firstly, note that the result of Theorem 5 can be derived directly

from (4.12) by considering separately the cases x ≤ T − L and x ≥
T + L + S. In the first case, both FN(x) and FN(x − S) are identically

0, so (4.12) gives

p∞(x+ α− S) = p∞(x− S). (4.21)

Equivalently, this is, for x ≤M − L

p∞(x) = p∞(x− α). (4.22)

Since p∞(x) → 0 as x → −∞, must have p∞(x) = 0 for x ≤ M − L.

Similarly, considering the case x ≥ T + L + S yields p∞(x) = 0 for

x ≥ M + S + L. Hence (4.12) is consistent with (4.7) in that it gives

p∞(x) = 0 outside of the range (M − L,M + S + L).

For the noise-free case, L = 0 (the linear ramp of Figure 4.2(a) be-

comes a step function), and this range reduces to (M,M+S). Clearly, the
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uniform distribution on [M,M+S] satisfies this, so all that remains to be

shown is that a constant p∞(x) = 1
S

is a solution of (4.12) on (M,M+S).

This may be done by again considering two cases, x ∈ (T, T + α) and

x ∈ [T + α, T + S). The first case gives FN(x) ≡ 1, FN(x− S) ≡ 0, and,

from above, p∞(x− S) ≡ 0. Equation (4.12) then becomes

p∞(x) = p∞(x+ α− S). (4.23)

So, for x ∈ (M + S − α,M + S) we obtain

p∞(x) = p∞(x− (S − α)). (4.24)

Similarly, considering the range [T +α, T +S), gives for x ∈ [M+α,M+

S),

p∞(x) = p∞(x− α). (4.25)

Equations (4.24) and (4.25) define two pairs of regions within (M,M +

S) where p∞(x) must repeat. Specifically these are (M,M + α) and

(M + S − α,M + S), shown as the smaller dotted regions in Figure 4.8,

and (M,M + S − α) and (M + α,M + S), the larger hatched regions in

the same figure. Clearly the uniform PDF on (M,M + S) satisfies these

requirements.

Figure 4.8: Solution domains for steady-state PDF in noise-free case, as
discussed in Lemma 6.

Remark 2. In the case of a noise-free circle map with r = α
S

rational,

and equal to p
q

in its lowest form, the steady-state PDF is the train of
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discrete delta functions as in Lemma 1:

p∞(x) =
1

q

q−1∑
n=0

δ

(
x−

(
M + γ +

nS

q

))
.

By substituting α = rS it is clear that this PDF satisfies relations (4.24)

and (4.25).

4.4 Approximate solutions for steady-state

circle rotation map

We present in the following section various analytical approximations

of the solution for the circle map PDF introduced in Section 4.3. In

particular, our next results, Theorem 7 and Remark 3, provide the most

useful approximations to the behaviour of the circle map output variance

as shown in Figure 4.4(b).

4.4.1 Large-L approximation

Theorem 7. For the steady-state distribution p∞(x) given in (4.12),

FN(x) as in Figure 4.2(a), p∞(x) is approximately Gaussian with a vari-

ance of (r − r2)SL+ S2

8
, where r = α

S
.

Proof. Using the change of variable y = x− z, (4.12) becomes

p∞(y+z)FN(y+z) = p∞(y+z+α−S)−p∞(y+z−S)[1−FN(y+z−S)].

(4.26)

Using a Taylor expansion p∞(y + z) = p∞(y) + zp′∞(y) + z2

2
p′′∞(y) + . . .,

similarly for p∞(y−z), FN(x+z), and FN(x−z), neglecting higher-order

terms, and choosing z = S
2
, we get

K1p
′′
∞(y) + (SFN(y)− α)p′∞(y) + SF ′N(y)p∞(y) = 0, (4.27)
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where K1 = Sα
2
− α2

2
+ S3

16L
. Equivalently, this is

K1p
′′
∞(y) +

d

dy
[(SFN(y)− α)p∞(y)] = 0. (4.28)

Next, if we integrate, and demanding p∞(y) and p′∞(y)→ 0 as y → ±∞,

we obtain

K1p
′
∞(y) + (SFN(y)− α)p∞(y) = 0, (4.29)

which we can rearrange as

p′∞(y)

p∞(y)
=

(α− SFN(y))

K1

. (4.30)

Next, if we substitute for linear FN(y) = 1
2
(y−T+L

L
) as in Figure 4.2(a),

we get
p′∞(y)

p∞(y)
=
K2 − Sy

2LK1

, (4.31)

where K2 = 2Lα+S(T−L). Integrating again, we get, for some constant

C̃

p∞(y) = C̃ exp

[
2K2y − Sy2

4LK1

]
. (4.32)

Finally, if we complete the square and rearrange, and let C = C̃ exp
[

K2
2

4LK1

]
,

we obtain

p∞(y) = C exp

[
−S

4LK1

(
y − K2

S

)2
]
. (4.33)

This is a Gaussian of mean µO = K2

S
and variance σ2

O = 2LK1

S
. Substitut-

ing for K1 in the expression for the variance, we obtain

σ2
O =

2L

S

(
Sα

2
− α2

2
+

S3

16L

)
. (4.34)

Rearranging, we get the result

σ2
O =

(
α

S
− α2

S2

)
SL+

S2

8
. (4.35)
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Figure 4.9: Plots of DPLL output jitter variance with b = 14, b = 8, and
corresponding circle maps from Figure 4.4 with noise-free limits S2

12
from

Lemma 1 and large-L asymptotes (dashed) found in Theorem 7.

Remark 3. The output variance can be written in terms of the input

variance, σN , by substituting for L in (4.35), i.e.,

σ2
O = (r − r2)S

(
3σ2

N

) 1
2 +

S2

8
. (4.36)

As the variance of the additive noise becomes large, the output vari-

ance increases proportional to the square root of the input, i.e., σ2
O ≈

(r − r2)S (3σ2
N)

1
2 . This agrees with the observation from the numeri-

cal simulations that, on the log-log plot of Figure 4.4(b), the output

variance was asymptotically linear in the input, with slope 1
2
. Also, in

the noise-free limit, the output variance in (4.36) is S2

8
. This does not

correspond to the actual variance of the noise-free circle map as found

in Lemma 1, S2

12
, in the general case where r is irrational. This indi-

cates that approximations were made in the workings of Theorem 7 that

are not valid for small L; see Section 4.4.2 below for further discussion

of a case where L is small. Figure 4.9 shows two of the earlier DPLL

and circle map plots, along with the corresponding asymptote (4.36) and

noise-free limit S2

12
, as found analytically. Note our asymptotic formula

(4.36) accurately characterises the jitter in the intermediate region be-
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tween the (well-understood) limits of quantization jitter and analogue

PLL behaviour. As discussed in Section 4.2, this regime is of significant

interest to PLL designers, and has previously only been examined via

numerical simulation.

Remark 4. The output mean was found to be K2

S
during the workings

of Theorem 7. This is T + (2r − 1)L. This implies that the output

mean changes linearly with L and increases or decreases depending on

whether r > 1
2

or r < 1
2
. This corresponds with the observation noted

earlier in Section 4.2 and illustrated in Figure 4.6. Indeed, similar to the

asymptotic variance above, the mean found here approximates the mean

obtained from direct simulation of the circle map very well for large L.

This is illustrated in Figure 4.10, where it is clear that the asymptotic

mean is a good match for the direct simulation, even for small L. Also

shown is the mean for the DPLL corresponding to the same circle map.

The DPLL mean matches that of the circle map for low levels of input

noise, but diverges for larger L, just as the variance diverged in Figure

4.9.

Remark 5. There are two approximations made in the proof of Theorem

7. The first is in the Taylor series truncation of the unknown function

p∞(y) in obtaining (4.27). [Note: the truncation of the expansion for

FN(y) is exact in the case where it is linear]. The second is the assump-

tion in (4.31) that FN(y) is a linear function with slope 1
2L

for all y,

whereas in fact this is true only in the range [T −L, T +L], as in Figure

4.2(a). This approximation may be accurate in the large-noise limit, but

will fail in the case where L is small.

4.4.2 Small-α approximation

Working directly from (4.11), and again assuming FN(x) that is identi-

cally 0 in (−∞, T − L] and identically 1 in [T + L,∞) as in the uniform
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Figure 4.10: Plots of output mean for circle map corresponding to DPLL
with b = 10, and large-L asymptote for circle map mean (dashed) noted
in Remark 4. Also shown is mean for DPLL which matches circle map
for low noise but diverges for large σ2

N .

CDF of Figure 4.2(a), we can write piecewise equations for p∞(x) for var-

ious combinations of the system parameters, S, α, and L. Specifically,

these combinations are

Case 1: L < α
2
, L < S−α

2

Case 2: L > α
2
, L < S−α

2

Case 3: L < α
2
, L > S−α

2

Case 4: L > α
2
, L > S−α

2
, L < S

2

Case 5: L > α
2
, L > S−α

2
, L > S

2

Here, Case 5 above corresponds to the large L limit considered in The-

orem 7. Case 3 is equivalent to Case 2, replacing α with (S − α) and

using the result of Theorem 4. Case 2 represents the situation where α

is small, and L is also small, but not vanishingly small. The full set of

equations for Case 2 are:

Case 2: L > α
2
, L < S−α

2
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p∞(x) =

p∞(x+ S − α)FN(x+ S − α) M − L < x ≤M − L+ α

p∞(x− α) + p∞(x+ α1)FN(x+ α1) M − L+ α < x ≤M + L

p∞(x− α) + p∞(x+ S − α) M + L < x ≤M + L+ α

p∞(x− α) M + L+ α < x ≤M + S − L
p∞(x− α)[1− FN(x− α)] M + S − L < x ≤M + S + L

Here, for brevity, we set α1 = (S −α). For this case, and for all cases by

Theorem 5, we have p∞(x) ≡ 0 for x ≤M − L and for x ≥M + S + L.

We next consider a small-α expansion of the equations in Case 2.

Note that this corresponds to the case for the original DPLL where the

fractional part of the input frequency, Frac[µ], is small. In particular, for

α � 2L and α � (S − 2L) the regions of size α are neglected and we

obtain:

p∞(x) =
p∞(x− α) + p∞(x+ α1)FN(x+ α1) M − L < x ≤M + L

p∞(x− α) M + L < x ≤M + S − L
p∞(x− α)[1− FN(x− α)] M + S − L < x ≤M + S + L

Re-writing, and ignoring an offset of size α in the endpoints of each

region, the equation set becomes:

p∞(x+ α) =
p∞(x) + p∞(x+ S)FN(x+ S) M − L < x ≤M + L

p∞(x) M + L < x ≤M + S − L
p∞(x)[1− FN(x)] M + S − L < x ≤M + S + L

Substituting for linear FN as in Figure 4.2(a), and Taylor expanding to
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first order for small α we can obtain the explicit piecewise solution:

p∞(x) =


p3(x) M − L < x ≤M + L

p1(x) M + L < x ≤M + S − L
p2(x) M + S − L < x ≤M + S + L

where

p3(x) = C3 − C2 exp

[
−(S + x− α)(2L− 2M − S + x+ α)

4Lα

]
, (4.37)

p1(x) = C1, (4.38)

p2(x) = C2 exp

[
2(M + S − L− α)x− x2

4Lα

]
. (4.39)

We can determine two of the arbitrary constants in this solution set

immediately by matching p2 and p3 to the constant region p1, i.e., by

solving {
p3(M + L) = p1(M + L)

p2(M + S − L) = p1(M + S − L)

This gives  C2 = C1 exp
[
− (M+S−L)(M+S−L−2α)

4Lα

]
C3 = C1

(
1 + exp

[
−L
α

+ α
4L

])
At this point we may proceed to integrate (4.37)-(4.39) numerically and

find C1 by normalizing the PDF. Equations (4.37)-(4.39) together then

give a complete piecewise solution for the PDF in this small-α case.

We can check the accuracy of the solution by numerically integrating

(4.37)-(4.39) to find the normalized piecewise solution and comparing to

histograms of the noisy circle map ouput. Figure 4.11 shows the piecewise

PDF as compared to the histogram obtained from direct simulation of the

same circle map as in Figure 4.5. Clearly, the piecewise approximation

is a good match for the numerical result.

Using numerical integration, the piecewise solution can also be used to

calculate the moments, from which the mean and variance may be found.

Figure 4.12 shows plots of the approximated mean and variance of the
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(a) Piecewise PDF found from
(4.37)-(4.39) for M = 0, S = 1,
α = 0.04162, L = 0.31. p1 and p3

regions are dashed.
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(b) PDF compared to histogram of
directly-simulated steady-state cir-
cle map output.

Figure 4.11

output circle map determined in this way, and from direct simulation,

e.g., as in Figure 4.4. Both are plotted against input noise parameter, L.
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Figure 4.12: (a) Mean and (b) variance of directly-simulated steady-state
circle map (solid) vs numerical solution of piecewise PDF (dashed) for
M = 0, S = 1, α = 0.04162.

Instead of numerically integrating as we did in obtaining Figure 4.12,

we may continue analytically by defining the nth moment of the PDF

p∞(x) as

I∞(n) = I3(n) + I1(n) + I2(n), (4.40)

where

I3(n) =

∫ M+L

M−L
tnp3(t)dt, (4.41)

I1(n) =

∫ M+S−L

M+L

tnp1(t)dt, (4.42)
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I2(n) =

∫ M+S+L

M+S−L
tnp2(t)dt. (4.43)

It is clear that we can find C1 using the normalization condition I∞(0) =

1.

Substituting for p1, p2, and p3 in (4.41)-(4.43) from (4.37)-(4.39) we ob-

tain

I3(n) ≈ C3
(M + L)n+1 − (M − L)n+1

n+ 1
−

C2

√
πLα(M − L)ne

−1
2L

(M+S−L)e
(M+S−L)2

4Lα ,

(4.44)

I1(n) = C1
(M + S − L)n+1 − (M + L)n+1

n+ 1
, (4.45)

I2(n) ≈ C2

√
πLα(M + S − L)ne

−1
2L

(M+S−L)e
(M+S−L)2

4Lα . (4.46)

Here, (4.45) has been obtained by direct evaluation of (4.42), whereas

(4.44) and (4.46) are leading-order terms in the asymptotic expansions

of the integrals for α→ 0 [32]. Substitution for C2 from above simplifies

these to

I3(n) ≈ C3
(M + L)n+1 − (M − L)n+1

n+ 1
− C1

√
πLα(M − L)n, (4.47)

I1(n) = C1
(M + S − L)n+1 − (M + L)n+1

n+ 1
, (4.48)

I2(n) ≈ C1

√
πLα(M + S − L)n. (4.49)

Normalization now gives the value of C1 explicitly:

C1 =
eL/α

2e
α
4LL+ eL/αS

. (4.50)

By evaluating I∞(1) and I∞(2) we finally arrive at expressions for the

mean and variance of the PDF obtained by small-α asymptotic expan-
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sion. That for the mean is

4MLe
α
4L +

(
2(M − L+

√
παL) + S

)
SeL/α

4Le
α
4L + 2SeL/α

. (4.51)

We may check the accuracy of this expression by plotting it against

the mean found from direct simulation of the circle map. The result,

plotted against input noise parameter L, is shown in Figure 4.13. It can

be seen that the approximation is quite accurate, displaying characteris-

tics similar to that of the mean found by numerical solution as shown in

Figure 4.12.
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0.45

0.50
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Figure 4.13: Mean of directly-simulated steady-state circle map (solid) vs
numerical solution of piecewise PDF using asymptotic integral expansion
(dashed) for M = 0, S = 1, α = 0.04162.

The expression for the variance, found by evaluating I∞(2) is not

accurate, however, in contrast to the case where we found the PDF

numerically rather than asymptotically expanding the integrals (Figure

4.12(b)). This indicates that use of the leading-order asymptotic inte-

gral expansions for the left- and right-hand sections of the PDF is not

sufficiently accurate for moments of order higher than 1. A noteworthy

feature of the plots of Figures 4.12 and 4.13 is that for L > 0.1 there is

an almost constant offset between the mean and variance obtained us-

ing our asymptotic expansion and that obtained using direct numerical

simulation. The reason for this is unclear, but is evidently an effect of

neglecting the regions of size α in the piecewise PDF, or the use of the

first-order Taylor expansions in obtaining equations (4.37)-(4.39).
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4.5 Summary

In Section 4.1 we formulated the steady-state behaviour of the noisy,

non-linear DPLL as a modified circle map with probabilistic jumps at

each time step. This is the first of our new results, and allows us, in later

sections, to perform analysis previously not undertaken on the DPLL

behaviour in this noisy regime. In Section 4.2 we recap on the earlier

numerical results from [3] and overlay the corresponding circle map re-

sponses and show how they agree for a range of input noise levels.

Continuing with our analysis, we show in Section 4.3 that the modified

circle map is a Markov chain and we write the Chapman-Kolmogorov

equation for its time-dependent PDF. We show numerically that the PDF

reaches a steady-state and find a non-local equation for PDF in this state.

From the equation we derive some interesting properties of the PDF, and

continue in Section 4.4 to find two separate approximate solutions, one

in the large-noise limit, and the other in the small-α limit with small but

not vanishingly small noise. In each case we illustrate how the asymptotic

solutions for the mean and variance, as well as the PDF, agree well with

the direct simulation results with their range of validity.
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Chapter 5

Results for the first-order

DPLL with loop delay

This chapter continues the presentation of our results. Here, we consider

the same frequency-quantized first-order DPLL we had in the previous

chapter, but where the delay D in the loop is greater than 1. This was

the case previously investigated by Gardner in [3] where a ‘dip’ in the

phase error variance was noted as the variance of the additive noise was

increased.

In the implementation of the DPLL as a digital electronic circuit, the

delay is inherent in the loop, i.e., the output value from the NCO cannot

be fed back into the NCO via the phase detector and loop filter until

at least the next DPLL clock cycle. Often loop design and processing

constraints may result in a greater lag across the circuit components.

Therefore, the case where D > 1 is of interest from an engineering per-

spective.

The cumulative delays in the loop are modelled as a single delay el-

ement before the NCO as shown in Figure 4.1. As outlined in Section

3.2.1, this combination of all loop delays into a single block is not valid

for all DPLL models. However, it does apply to a number of different sit-

uations, including where the delay is in the output of the phase-detector

or loop filters for the first- and second-order loops [2]. The single delay

element is the only model we consider in this thesis.
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In Section 5.1 of this chapter, we introduce the equations governing

the operation of the first-order DPLL with delay and recap on the results

from numerical simulation, as in [3]. We also see from simulations that

the corresponding delayed circle maps exhibit the same behaviour in the

regions of interest, in particular the curious ‘variance dip’ seen for the full

DPLL. In Section 5.2 we take a more detailed look at the time-domain

behaviour of the delayed circle map and see how the additive noise causes

a reduction in the range of output phase errors. Finally, in Section 5.3

we use a small-α approximation to perform a detailed analysis of the

time-domain behaviour for a sample delay value D = 6. We find an

approximate PDF for the output phase error for this case, and also show

how the approach extends to general D 6= 6. We see that the mean and

variance obtained from this PDF compares well to the plots found from

direct simulation of the circle map.

5.1 Preliminaries

Equation (3.87) from Section 3.2.3 is now generalized to the following:

xf (t) = K sin(Φ(t−D)). (5.1)

Proceeding as in Section 3.2.3, we obtain the full delayed-difference equa-

tion of operation for the DPLL:

Φ(t) = Φ(t− 1) +
2π

2b
{
µ− Int

[
2bK (sin Φ(t−D) +N(t−D))

]}
,

for t = 0, 1, 2, . . .

(5.2)

Again, as in Section 4.1, we can define a corresponding delayed circle

map as

x(t) = x(t− 1) + α +Q(x(t−D))S, for t = 0, 1, 2, . . .
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x(0) = x0,

where, as before, we have

Q(x) =

{
−1 with probability FN(x),

0 with probability 1− FN(x).
(5.3)
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(a) DPLL variance response.
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(b) DPLL with circle maps.

Figure 5.1: Variance of output jitter, σ2
O, as a function of input noise

variance, σ2
N , for (a) DPLL with µ = 0.56, K = 2−6, b = 8 for the no-

delay (D = 1) case (solid), D = 2 (large dash), D = 4 (med dash) , D = 8
(small dash), and (b) for DPLLs with corresponding circle rotation maps.

In (5.3), the CDF, FN(x), is dependent on the distribution of the

additive input noise exactly as before, described in Equation (4.5).

Numerical simulations, similar to those conducted in Section 4.2, once

again confirm that the delayed circle map is a good approximation for

the delayed DPLL. As in the Section 4.2 simulations, the noise here is

uncorrelated and uniformly distributed with zero mean to match our

analysis later. However, the response obtained with Gaussian noise was

virtually indistinguishable from our plots here.

Figure 5.1 shows the equivalent variance responses to those shown

earlier for the D = 1 case in Figure 4.4. The plot in Figure 5.1(b) shows

that, for the DPLL with b = 8 and various delay values, the output

variance plots for the corresponding circle maps track those of the DPLLs

very closely for all but very large additive noise levels. In these latter

regions, the DPLL variance increases with slope 1, in the same manner
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as for an analogue PLL.

A striking feature of Figure 5.1 is that within the intermediate re-

gion, between the flat, quantizer-only output jitter on the left and the

analogue limit on the right, the DPLLs with higher delay values exhibit a

significant decrease in output jitter variance. This is particularly evident

in the case where D = 8. This was also seen previously in the numerical

results of Figure 2 in [3]; the phenomenon was left unexplained in this

work. It is certainly not intuitive that certain additive input noise would

actually cause a decrease in the digital noise inherent in the loop! As is

clear from Figure 5.1(b), the delayed circle map exhibits the same effect,

and appears to capture the DPLL behaviour very well in this region. The

remainder of this section focusses on the dynamics of the delayed circle

map in the low and intermediate additive noise level regions.

�8 �6 �4 �2 2
Log10 ΣN

2

�0.2

�0.1

0.1

0.2

0.3

0.4

0.5
Log10 ΣO

2

Figure 5.2: Variance of output jitter, σ2
O, as a function of input noise

variance, σ2
N , for delayed circle map M = 0, S = 1, D = 6, and α values

0.056 (solid), 0.11, 0.21, 0.56 (dashed).

The output variance response for a particular delayed circle map (D =

6) is shown in Figure 5.2. It is evident that the size of the dip in variance

depends greatly on α, the dip being larger for small α. For α
S

= 0.056 the

addition of input noise reduces the output variance by a factor of almost

5 in the case where D = 6. In order to investigate this variance dip, the

analysis and results that follow all assume that α is small, i.e., α � S.

Note that this corresponds to the case for the original DPLL where the
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fractional part of the input frequency, Frac[µ], is small.

Additive input noise is generally considered an unwanted nuisance

that can at best be mitigated. In this context the dip in the output

variance is unusual phenomenon since it is a system response that would

generally be considered desirable, i.e., a reduction in output noise, caused

by the addition of noise at the input. In this sense the effect looks

similar to dithering [33], a technique used in signal processing where

noise is intentionally added in order to remove patterns in quantization

noise. However, dithering removes harmonics by whitening the spectrum

of quantization noise, rather than actually reducing its magnitude. The

phenomenon noted here also bears a resemblence to stochastic resonance

[34]; here we see a local minimum in output noise for a certain level of

input noise, while a system exhibiting stochastic resonance has a critical

level of input noise where the output SNR has a local maximum [35].

However, in this case we do not have a signal of interest that we are

trying to detect in a noisy environment, and nor is there any apparent

‘cooperation’ between an input signal and additive noise. Instead, we

have an output noise in the form of limit cycles that simply seem to get

disrupted, as we will see in the following section.

5.2 Analysis

Figure 5.3(a) shows the steady-state behaviour of the circle map with

delay in the small-α case where the output is unaffected by additive

noise. The ‘sawtooth’ output pattern is similar to the case of the circle

map without delay (D = 1). The main change in behaviour is that x(t)

will continue to increase in steps of α as long as x(t − D + 1) < T .

Similarly, x(t) will decrease in much larger steps of (S − α) as long as

x(t−D+1) > T . This is illustrated in Figure 5.3(b); for the non-delayed

case, the map would have started to decrease once the output exceeded

T = (M + S − α), i.e., at point C. However, in the case shown, where

D = 6, the map continues upwards in α-steps until 6 sequential output

values have exceeded T , i.e., point H is reached. At that point, the map
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(a) Multiple iterations of limit cycle.
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(b) Limit cycle detail.

Figure 5.3: Time-domain plots of delayed circle map output for M = 0,
S = 1, D = 6, α = 0.056 with no additive noise.

x(t) jumps downwards in 6 steps of (S − α) until x(t − D + 1) > T ,

leading to the pattern shown in Figure 5.3(a).

In this case, therefore, the range of the output jitter is bounded by

[M+(1−D)S+(2D−2)α,M+S+(D−1)α]. This is a region of size DS+

(1−D)α ≈ D(S −α) ≈ DS for small α. This range is approximately D

times greater than the range of the non-delayed map, which was S. This

agrees with Gardner’s observation (7), noted in Section 3.2.3, that the

peak-to-peak jitter for the DPLL was approximately 2πD/2b; in Section

3.2.5 we saw that the DPLL with D = 1 obeys a circle rotation map with

S = 2π/2b.

If α
D(S−α)

is irrational (i.e., α
S

irrational as before), the jitter is roughly

uniformly distributed in a region of size DS − (D − 1)α with variance
(DS−(D−1)α)2

12
. This result relies on the assumption that α is small, so

that the majority of the map output points are on the upwards portion

of trajectory, i.e., we can ignore the downward (S − α) steps for the

purposes of calculating the PDF.

With the addition of noise to the quantizer, some points on our noisy

delayed circle map (5.3) are now subject to having their quantizer values

modified. In the simulations shown in Figure 5.4 the noise is uncorrelated

and uniformly distributed in [−L,L] so that its variance is L2/3. In this

case, the noise CDF FN(x) is the the linear ramp as shown in Figure 4.2,
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and only points that fall within the noise ramp are subject to changes in

quantizer values.

Figure 5.4 shows how the dynamics of the map are changed by the

addition of the quantizer noise. The change occurs – circled in Figure

5.4(a) – when one of the points within the noise-affected region [T−L, T+

L] has its quantizer changed from the noise-free value. In this case, points

A, B, C, and D are within the noisy region, C being marginally above the

line x = T . Without noise, the quantizer value at B would have been 0 so

that the trajectory would have continued to increment from G to H as in

Figure 5.3. However, in this case noise has changed the quantizer value

at B to −1 so that the trajectory decrements by (S − α) instead. From

there it decrements again, as shown in Figure 5.4(b), indicating that the

quantizer value at C is −1, the same as its noise-free value. However, at

the next step, the trajectory increments, because the noise has changed

the quantizer value at D (circled) to 0 from its normal value of −1. After

this, the map decrements a further 3 times, corresponding to points E,

F, and G earlier in the map. Thus, the map has decremented 5 times in

total, rather than the usual 6. The reason for this is the change of the

quantizer value at D from −1 to 0, which has reduced the total number

of downward steps.

In general, when a point on the upward part of the trajectory has its

quantizer value changed from 0 to −1 (such as point B in Figure 5.4),

the effect will be to reduce the range of the map from the upper end of

the range, e.g., point H is removed in Figure 5.4(c). However, it does

not lead to an increase in the number of downward steps since, while the

trajectory starts decreasing earlier than usual, there will also be fewer

points above the line x = T yielding further downward steps in the map.

The result of this change is to reduce both the upper and lower endpoints

of the map by α, which we are assuming to be small. On the other hand,

if a point on the trajectory has its quantizer changed from −1 to 0, as in

point D in Figure 5.4, the result is a reduction in the number of (much

larger) downward steps of size (S−α). This causes a significant reduction

in the range of the map for that particular iteration, by increasing the

161



����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
���

�

�

�

�

�

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
��

�

�

�

�

�

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
��

�

��

�

�

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
�

�

�

�

�

�

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
��

�

�

�

�

�

����
����
����
����
����
��

M�ST

M

M��D�1�S

100 200 300 400 500
t

�5

�4

�3

�2

�1

1
x�t�

(a) Multiple iterations of limit cycle.

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
�

�

�

�

�

�

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �

�

�

�

�

�

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �

�

� �

�

�

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

�

�

�

�

�

�

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �

�

�

�

�

�

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �

T
M�S

M
260 265 270 275 280

t

�1.0

�0.5

0.0

0.5

1.0

x�t�

(b) Reduction in limit cycle range.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�

�

�

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�

�

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�
�

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�

�

�

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

�

�

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

T

M�S

M

T�L

T�LA B
C

D
E F G

H
270 272 274 276 278 280

t
0.2

0.4

0.6

0.8

1.0

1.2
x�t�

(c) Limit cycle detail.

Figure 5.4: Time-domain plots of delayed circle map output for M = 0,
S = 1, D = 6, α = 0.056 with input noise variance σ2

N = 0.04.
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lower endpoint, as shown in Figure 5.4(a).

Since the overall effect of the noise is to either leave the range of the

map almost unchanged, or to reduce it by a number of (S − α)-steps

from the lower endpoint, the result is both an increase in the mean and a

decrease in the variance of the output jitter within this particular noise

regime. This accounts for the dips seen in Figures 5.1 and for the larger

dips for small α values in 5.2. Note that the analysis here relies on the

asymmetry brought about by the small-α approximation. It means that

our upward α-steps are much smaller than the downward (S − α) steps,

and we also assume that a single downward step takes the map below the

switching region [T − L, T + L] in all cases, e.g., in Figure 5.4(b). This

requires

Dα� S − L. (5.4)

The histograms from direct simulations of the delayed circle map

are shown in Figure 5.5 and confirm the analysis above. For low noise

as in Figure 5.5(a), the distribution is essentially uniform on the range

[M + (1 − D)S + (2D − 2)α,M + S + (D − 1)α] apart from ‘spikes’

corresponding to the larger (S−α) downward steps of each iteration. As

the noise level is increased, as shown in (b)-(d), the distribution becomes

more concentrated at the upper end of the range. This corresponds to

the analysis performed above. The entire distribution remains contained

within the original range. As the noise level is increased further (e)-(f),

the distribution becomes more symmetric, and approximately Gaussian.

The mean also begins to shift significantly as the noise level is increased,

i.e., the entire distribution moves downwards. This corresponds to the

similar result in Theorem 7 for large-L in the case of the circle map

without delay, where the mean was shifted according to sgn(α
S
− 0.5).

163



�4 �3 �2 �1 0 1

50

100

150

200

250

(a)

�4 �3 �2 �1 0 1

50

100

150

200

250

(b)

�4 �3 �2 �1 0 1

50

100

150

200

250

300

(c)

�5 �4 �3 �2 �1 0

100

200

300

400

(d)

�7 �6 �5 �4 �3 �2

100

200

300

400

500

(e)

�16 �14 �12

50

100

150

200

250

300

350

(f)

Figure 5.5: Histograms of steady-state circle map output for M = 0,
S = 1, D = 6, α = 0.056, and input noise variance (a) 0.001, (b) 0.01,
(c) 0.05, (d) 1.0, (e) 10, (f) 100, similar to those of the D = 1 case in
Figure 4.5. The predicted uniform distribution for the noise-free case is
also shown (shaded) for comparison.
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5.3 Small-α results

We can derive some quantitative results by looking at a specific case in

more detail, in particular the case where D = 6 and where α is small,

i.e., α� S and Dα� S − L. In addition to these assumptions, we also

assume the magnitude of the additive input noise is such that the exact

number of points on the circle map trajectory closest to the switching

curve x = T that fall within the linear ramp of the noise PDF, nL, is 4.

For this, we necessarily have

3α < 2L < 4α. (5.5)

This is the situation shown in Figure 5.4(c). Note that the particular

values of D and nL chosen here are to ease the presentation of the analysis

only. The same approach extends seamlessly for general D and nL; we

use other values of nL to obtain the PDFs in Figure 5.6 below. Also, in

general nL is a function of L, the additive noise magnitude, as well as the

precise position of the points on the upward portion of map trajectory.

Here, however, we ignore the latter dependency, as between iterations

the upward-trajectory points will vary in position by at most α, which is

small. Therefore, each integer value of nL defines a an input noise level

L ∈
[

(nL−1)α
2

, nLα
2

]
for which that value of nL is valid.

In Figure 5.3(b), where there is no noise, the values of the quantizer

at each of the points A-D are:

Q(xA) Q(xB) Q(xC) Q(xD)

0 0 −1 −1

With these noise-free quantizer values we simply get the trajectory shown

in Figure 5.3(a). However, when noise is added with nL = 4, the quan-

tizer outputs become random variables with probability distribution de-

pendent on the noise PDF FN(x). However, the quantizer values can

only be -1 or 0, leading to a total of 16 possible combinations of quan-

tizer values across the four points.
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With the noise-free quantizer values above, the range of the next

iteration of the delayed circle map is 6(S − α), as noted in Section 5.2

and shown in Figure 5.3(a). For each of the other cases, the ranges of

the maps, Ri, can be found be calculating the trajectory from the point

A onwards. These may be enumerated as shown in Table 5.1.

Next, if we define δ as xA − (T − L), where we have

0 ≤ δ ≤ 2L− 3α ≤ α, (5.6)

we can find the probabilities of the occurrence of the quantizer values

from the linear noise PDF, FN(x), as follows:
P (Q(xA) = −1) = δ/2L

P (Q(xB) = −1) = (δ + α)/2L

P (Q(xC) = 0) = (2L− δ − 2α)/2L

P (Q(xD) = 0) = (2L− δ − 3α)/2L

i Q(xA) Q(xB) Q(xC) Q(xD) Ri Yi
0 0 0 0 0 6S − 6α M + S + 7α
1 0 0 0 −1 6S − 6α M + S + 6α
2 0 0 −1 0 5S − 6α M + S + 5α
3 0 0 −1 −1 6S − 6α M + S + 5α
4 0 −1 0 0 4S − 6α M + S + 4α
5 0 −1 0 −1 5S − 6α M + S + 4α
6 0 −1 −1 0 5S − 6α M + S + 4α
7 0 −1 −1 −1 6S − 6α M + S + 4α
8 −1 0 0 0 3S − 6α M + S + 3α
9 −1 0 0 −1 4S − 6α M + S + 3α
10 −1 0 −1 0 4S − 6α M + S + 3α
11 −1 0 −1 −1 5S − 6α M + S + 3α
12 −1 −1 0 0 4S − 6α M + S + 3α
13 −1 −1 0 −1 5S − 6α M + S + 3α
14 −1 −1 −1 0 5S − 6α M + S + 3α
15 −1 −1 −1 −1 6S − 6α M + S + 3α

Table 5.1: Per-iteration ranges and upper bounds for each quantizer value
in case of circle map with D = 6 and nL = 4.
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From this, we can get the expected value of the range, R, as follows:

E [R] = P (Q(xA) = 0)P (Q(xB) = 0)P (Q(xC) = −1)P (Q(xD) = −1)R1 + . . .

+ P (Q(xA) = 0)P (Q(xB) = −1)P (Q(xC) = 0)P (Q(xD) = 0)R16

(5.7)

We can extend this analysis by noting that in Table 5.1 the range of

the iteration in each case, Ri, is (D−l0)S−Dα, where l0 is the number of

zeros following the leading −1 in the set {Q(xA), Q(xB), Q(xC), Q(xD)},
the quantizer values in that particular case. As enumerated, this is the

number of zeros following the leading 1 in i, when i is represented in

binary form. Indeed, this follows in general, for cases both were the

number of points within the linear ramp, nL, does not equal 4, and for

different delay values, D. In general, we require nL
2
≤ D and S �

(nL + D)α. In cases where (D − l0) < 1 we set Ri to (S − α) to reflect

that fact that there will always be at least one downward (S − α)-step

per iteration of the map.

The probability of each case, as well as the expected range for the

resulting map iteration, were used in the calculation of E [R] above. This

could be used to calculate a variance, assuming a uniform output distri-

bution within the expected range. However, looking at the histograms

in Figure 5.5, this does not seem to be a valid assumption. It was found

that much better numerical results were obtained if, rather than simply

using the magnitude of the range for each case, the expected lower and

upper endpoints of the range were used instead to derive an overall PDF

for the map. The PDF can then be used to calculate the moments in

order to find the mean and variance of the distribution.

In the noise-free case, the upper bound on the map output is M+S+

(D − 1)α, and the maximum value actually attained be the map will be

within α of this limit. In the case where noise is added with nL = 4, the

upper bound depends on which of the points A-D has the first quantizer

167



�6 �5 �4 �3 �2 �1 1

0.05

0.10

0.15

(a) nL = 2.

�6 �5 �4 �3 �2 �1 1

0.05

0.10

0.15

(b) nL = 5.

�6 �5 �4 �3 �2 �1 1

0.05

0.10

0.15

0.20

(c) nL = 7.

�6 �5 �4 �3 �2 �1 1

0.05

0.10

0.15

0.20

0.25

(d) nL = 9.

Figure 5.6: PDFs found numerically from D = 6 analysis for delayed
circle map M = 0, S = 1, α = 0.056 for nL values (a) 2, (b) 5, (c) 7, (d)
9. The uniform distribution expected for the noise-free, nL = 0, case is
also shown for each.

output of −1. In the noise-free case this is point C but this will vary

when noise is added. In Table 5.1, the upper bound is determined by

the position of the leading −1 in the set {Q(xA), Q(xB), Q(xC), Q(xD)}.
Again, this is exactly the position of the leading 1 in i when represented in

binary form, which is easily found as floor [log2(i)]. These upper bounds

are shown as Yi in Table 5.1. This approach once again generalizes for

arbitrary D and nL.

Knowledge of the probabilities, upper endpoints and ranges of the

map for each of the 24 = 16 cases is sufficient to numerically calculate

the expected PDF of the map. This is because we can assume, for small

α, that the map is uniformly distributed between the upper and lower

endpoints. It is reasonable to use the Yi values as approximations to the

upper endpoints as these incur an error of at most α, which is small. In
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general, the probabilities are functions of the unknown δ, which is less

than α. However, it was found that the numerical results that follow were

not sensitive to varying values of δ so a random value of δ was chosen in

the range [0, α]. The results may be improved slightly by averaging over

δ in this range.

Therefore, the approximate PDF may be simulated simply as

P (x) =
15∑
i=0

Pi U(Yi −Ri, Yi, x),

where Pi is the probability of each of the 16 cases and U(a, b, x) is the

uniform distribution on [a, b]. The simulated PDFs for fixed delayed

circle map parameters and various values of nL are shown in Figure 5.6.
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(b) L = 0.225.

Figure 5.7: PDFs from graphics (c) and (d) in Figure 5.6 compared with
histogram of direct circle map simulation for M = 0, S = 1, α = 0.056
and (a) L = 0.169, (b) L = 0.225.

These PDFs can be directly compared with histograms of the direct

map simulation as in Figure 5.5, by choosing a value of L in in the

simulation within the valid range for the particular value of nL, i.e.,[
(nL−1)α

2
, nLα

2

]
. In the simulations here we chose L = (nL − 1)α/2 to

obtain the best fit for the data, based on a visual inspection of the plots.

The match between the PDFs and the histograms are shown in Figure 5.7

for nL = 7 and nL = 9. The plots indicate that our analysis captures the

actual map dynamics very well within the noise regime of interest. The

main difference between the simulation output and our PDFs are the six
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‘spikes’ in the histogram at the left-most corner of each of the probability

‘steps’. These are simply an artefact of the downward portion of the map

trajectory, which we have ignored in our analysis.

The PDFs of Figure 5.6 can be used to derive the mean and variance

of the map for each value of nL. The variance is plotted in Figure 5.8

and compared with the variance curve from the direct simulation of the

delayed circle map. Again, the variance obtained for each nL is placed on

the graph at a position corresponding to L = (nL − 1)α/2 to obtain the

best fit to the data. It is clear from the graph that the analysis provides a

good fit to the numerical data for smaller values of nL. However, for larger

noise levels the approximation breaks down somewhat as condition (5.4)

is violated and the switching region, [T − L, T + L], is entered multiple

times in a single iteration.
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Figure 5.8: Variance of output jitter, σ2
O, plotted against input noise

variance, σ2
N , for direct simulation of the circle map circle map with

M = 0, S = 1, D = 6, and α = 0.056. Numerical results from D = 6
analysis also shown (boxes) where variance is calculated from histograms
as in Figure 5.6.

The mean can similarly be found from the PDF and is shown in

Figure 5.9. Figure 5.9(a) shows a large-scale plot of the mean for the

D = 6 case along with the corresponding case without delay (D = 1),

the latter being similar to what was plotted previously in Figure 4.6. For

the delayed map, in general, as the input noise level increases the mean

decreases in a similar way to the non-delayed map. In general, the mean
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will increase or decrease according to sgn
[
α
S
− 1
]
, corresponding to an

earlier result found in Figure 4.6 and Theorem 7.
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Figure 5.9: (a) Mean of output jitter, µO, plotted against input noise
variance, σ2

N , for direct simulation of the delayed circle map circle map
with M = 0, S = 1, D = 6, α = 0.056, compared with corresponding
non-delayed case D = 1 (dashed). (b) Comparison with numerical results
from D = 6 analysis (boxes).

However, for the delayed case, there is a regime where a small amount

of additive noise causes the mean to increase rather than decrease, i.e.,

the region σ2
N < 0.1, shown in Figure 5.9(b). This corresponds to the

region where the analysis performed in this section is a good match to

the direct simulation. Indeed, the analysis does predict an increase in

the mean, as the additive noise causes a ‘loss’ in downward (S−α) steps,

in turn leading to a reduction in the range of the circle map from the

lower end point. The result is that the lower end of the distribution

gets pulled upwards. This is clearly evident in the PDFs of Figure 5.6

also; the distribution gets ‘pulled’ towards the upper end of the range

for increasing noise levels within this initial regime. It is clear, once

again, from Figure 5.9(b), that the predicted mean from our analysis of

this section is a good match for the simulation results for small σ2
N but

starts breaking down once we approach σ2
N = 0.1. For additive noise

levels greater than this, the mean begins decreasing again (and variance

increasing) until the analogue characteristics take over, as in the right-

hand side of Figure 5.1(b). The behaviour here is identical to that in the

non-delayed case, which was investigated in Theorem 7.
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5.4 Summary

We began this chapter by recapping the previous results found by Gard-

ner in [3] on the variance response of the first-order DPLL with delay.

In particular, our numerical simulations confirm the variance ‘dip’ pre-

viously observed and otherwise match well to Gardner’s results. For our

new results, we extend to this D > 1 case our previous analysis where we

formulated the steady-state DPLL behaviour as a unique form of noisy

circle map. Here, the delayed noisy DPLL can be modelled as a delayed

noisy circle map, just as for the non-delayed case in Section 4.1. Numeri-

cal simulations of the circle map with delay show similar results to those

for the non-delayed map in Section 4.2, i.e., the variance response of the

circle map tracks that of the DPLL for low levels of noise through an

‘intermediate’ region that includes the variance dip for this delayed case.

Only for large additive noise levels, in the analogue PLL limit, do the

responses of the DPLL and circle map diverge. We also show histograms

of the noise-affected circle map output and we see that, in the region of

the variance dip, the distribution gets pulled towards the upper end of

the range, causing a reduction in the output variance and an increase in

the mean.

From our simulations we also see a new result: the size of the vari-

ance dip is dependent on α, the dip being greater for smaller α. To

gain an insight into this behaviour we perform an analysis, looking at

the steady-state of the delayed circle map in detail and seeing how the

additive noise disrupts the limit cycles. We see how the noise has the

effect of asymmetrically reducing the range of the limit cycles, from the

lower endpoint only so that the variance is decreases and the mean in-

creases with increasing additive noise. The magnitude of the asymmetry

is greater for smaller α, explaining why the variance dip is greater for

small α.

Finally, we derive some quantitative results for a particular case, D =

6. We see that, for a sample input noise level, where exactly 4 points

of the circle map are within the noise-affected region, we can obtain an
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approximate PDF for the circle map output by considering each of the

24 possible iterations individually. We show how the analysis extends to

arbitrary D and number of noise-affected points. For D = 6 we obtain

PDFs for a range of noise-affected points, which allows us to graph the

approximate output mean and variance as functions of the input noise.

Comparing with the direct simulation runs on the circle map, we see the

approximate mean and variances are good matches with the direct results

for small noise levels, but become less accurate as the noise increases due

to a breakdown in the assumptions on which our analysis was based.

Beyond this noise level lies the region where additive noise dominates

over quantization effects and the variance increases as an asymptote with

slope 1/2, just as it did in the non-delayed case; this behaviour is well

understood.
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Chapter 6

Results for the second-order

DPLL

This chapter completes the presentation of our results. In Section 6.1 we

return to the second-order DPLL that we introduced in Section 3.2.5 and

show how the equations of operation are modified in the case of additive

input noise. In Section 6.2 we present some numerical results, similar

to those for the first-order loop in Section 4.2, showing the input-output

variance response of the second-order loop and comparing it to the first-

order case. Finally, in Section 6.3 we look again at the limit cycles we

had in Section 3.2.5 and, using numerical simulations, show how they are

affected by additive noise.

6.1 Preliminaries

We return again in this section to the equations (3.89) for the second-

order DPLL with minimal loop delay D = 1:

Φ(t+ 1) = Φ(t) +
2π

2b
(
µ− Int[2b (K1 sin Φ(t) + u(t))]

)
mod 2π,

u(t+ 1) = u(t) +K1K2 sin Φ(t+ 1).
(6.1)

We saw in Section 3.2.5 and in Figure 3.22 how, on a phase-plane plot,
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the trajectory moves from the initial conditions (assumed to be close to

{Φ, u} = {0, 0}) into a corridor bounded by the lines:

L1 : u = 2−b −K1 sin

[
Φ +

2π

2b
(1− µ)

]
+K1K2 sin Φ,

R1 : u = 2−b −K1 sin

[
Φ +

2π

2b
(−µ)

]
+K1K2 sin Φ.

Between L1 and R1 lies the switching curve S1. This curve corre-

sponds to a change of direction in the motion of Φ: to the left of the

curve, Φ increases, and to its right it decreases, the overall effect being

to keep the trajectory between L1 and R1. From the initial condition

where u is close to zero, we can see from equation (6.1) that u will

continue to increase as long as Φ is positive. When the L1-R1 corridor

intersects with the Φ = 0 axis, u reaches a steady state, incrementing or

decrementing depending on the sign of Φ. It should be noted that, close

to Φ = 0, the width of the L1-R1 corridor is approximately 2π/2b.
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Figure 6.1: Phase-plane plot for frequency-quantized second-order DPLL
with b = 8, µ = 0.56, K1 = 2−6, K2 = 2−5, {Φ(0), u(0)} = {0, 0}, and
without additive noise.

Figure 6.1 shows a particular case of the steady-state motion in Φ

and u, that is the situation where µ is rational and the system starts

from the origin. As seen in Section 3.2.5, for a low-denominator rational

µ, the combined motions in Φ and u result in a steady-state trajectory

that is a circle rotation map for both Φ and u. The map for Φ has period
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q, where Frac[µ] = p/q in its lowest form. The qth iteration of the map

is also a circle map in u, with rotation number that in general depends

on the initial conditions. The combined period-25 circle map for Φ and

u that we had in Section 3.2.5 is shown again here; the rotation in Φ has

period 25, and the 25th iterate in the map gives a fixed point in u. We

will see in Section 6.3 below how this limit cycle is disrupted by additive

input noise.

In the same way as the equation for the first-order loop was modified

to obtain (4.2), the equations for the noisy second-order loop become

Φ(t+ 1) = Φ(t) +
2π

2b
(
µ− Int[2b (K1 {sin Φ(t) +N(t)}+ u(t))]

)
mod 2π,

u(t+ 1) = u(t) +K1K2 {sin Φ(t+ 1) +N(t+ 1)} .
(6.2)

Here again N(t) is the noise added to input signal sin (2πtν), which can

equivalently be modelled here as being added after the phase detector.

We would like to be able to investigate the behaviour of this system for

various levels of the input noise N(t). In particular, we would like to be

able to characterize the variance of the output phase error, Φ, as well as

understand how the steady-state limit cycles are disrupted by the input

noise. We investigate both aspects in the following sections.

6.2 Numerical results

The pair of equations (6.2) describing the second-order system are easily

simulated for various levels of input noise, N(t). To compare to the cor-

responding results for the first-order loop, the particular noise we choose

is uncorrelated at each time step and drawn from a uniform density. We

chose the uniform density for the first-order case as it allowed us to derive

some particular results, such as Theorem 7. For the numerical simula-

tions, the results obtained using the uniform distribution and the more

standard Gaussian (normal) distribution are virtually indistinguishable.

Therefore we persist with the uniform density here.
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Simulation results for the variance are shown in Figure 6.2. The

overall response of the second-order loop is remarkably similar to that

of the first-order loop. However, this is quite intuitive, given that the

steady-state behaviour of Φ for both in the noise-free case is essentially

the same as remarked in Section 3.2.5.
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Figure 6.2: Comparison of output variance, σ2
O, of first-order (solid)

and second-order (dashed) DPLLs as a function of input noise variance.
DPLLs have b = 8, µ = 0.56, K1 = 2−6, and K2 = 2−5 for the second-
order loop.

For low levels of additive noise, the output of the second-order system

is identical to that of the first, namely a flat response with value equal

to the variance of the original circle map in Φ. For a rational input

frequency, for example, this is ((q2 − 1)/12q2)
(
2π/2b

)2
using Lemmas 1

and 2, and in this case we have q = 25.

Through the intermediate region, where the output variance first

starts to rise in response to an increase in input noise, the output of

the second-order loop continues to follow that of the first. This indicates

that the analysis performed on the first-order system in Section 4 likely

applies in an approximate way to the second-order loop also.

Finally, for large input noise levels, both first- and second-order loops

have a similar response, with output variance increasing linearly with

slope 1 as would be expected for linear, analogue systems, and as noted

in [3].
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It is clear from the plots that there is little or no penalty incurred

by using a second-order loop as opposed to a first. This is important for

cases where a frequency offset between the PLL and the source causes

an undesired static phase error. This can be readily eliminated by use of

a second-order loop.

As previously mentioned, the fact that the low-noise response of both

loops is identical should come as no surprise given the analysis of the

second order loop in Section 3.2.5. Additionally, the slope-1 large-noise

asymptote is to be expected in both cases as the quantization effects are

swamped by the input noise and both loops behave as standard linear,

analogue systems. The only slight surprise is how close the responses

of both systems are through the intermediate region. However, we saw

previously in Section 3.1.6, by looking at the Fokker-Planck equations,

that the response of the second-order analogue PLL was approximately

the same as the first for moderate levels of input noise; see equation

(3.66), for example. Therefore it may not be entirely surprising that

there are similarities in the digital case also. We look at the dynamics in

this regime in more detail in the following section.

6.3 Analysis

6.3.1 Second-order limit cycles

It is instructive to examine the steady-state phase-plane plots of the

second-order loop at the point where the additive noise first starts to

disrupt the limit cycles. Some of these are shown in Figure 6.3 for the

low-denominator rational input frequency we had in Section 3.2.5, and

recapped in Section 6.1 above.

Looking first at Figure 6.3(a), where the variance of the additive noise

N(t) is 10−10, it is clear that the same period-25 motion is present in Φ,

unaffected by the low level of noise. However, for each value in the cycle

for Φ there is a greater range in the values of u as compared to the

noise-free case in Figure 6.1, where the motion in u was also periodic.

178



(a) σ2
N = 10−10. (b) σ2

N = 10−9.

(c) σ2
N = 10−7. (d) σ2

N = 10−4.

Figure 6.3: Similar phase-plane plots as in Figure 6.1 with additive noise
variances, σ2

N equal to (a) 10−10, (b) 10−9, (c) 10−7, and (d) 10−4.

This effect is quite similar to that seen in the noise-free limit cycle shown

earlier in Figure 3.24(a) where the system started from Φ(0) = 10−4.

Hence, both a non-zero starting point for Φ or a small amount of additive

noise have a similar effect: the rotation in Φ is unaffected while the

perturbation is enough to break the periodic cycle in u and instead lead to

a circle map with irrational rotation number. The variance of the output

phase jitter is simply that of the original circle map, corresponding to

the flat part of the graph in Figure 6.2.

We saw in Section 4.1 how the noisy first-order DPLL corresponds

to a circle map with a ‘noisy quantization’; see, for example, equations

(4.1) and (4.4). In that case, the quantizer that originally changed its

output at x = M + S + α became noisy; values of x < M + S + α gave

values of Q(x) = −1 rather than the original 0, and similarly for points
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x ≥M + S + α. The point x = M + S + α corresponds to our switching

curve, S1, in the second-order case.

In Figure 6.3(a), the noise in the steady-state points (visible in the u

direction only) is not yet great enough to move any of the points across

the switching curve to result in a new value for Φ. Note that in equation

(6.2) for Φ, the noise enters the quantizer in two separate terms: explicitly

as N(t) and also via the noisy u(t). The quantizer value will be modified

either when the noise in u (visible in Figure 6.3(a)) pushes the trajectory

across the switching curve, or when the trajectory is close enough to the

switching curve so that the N(t) term results in a change of quantizer

value.

In Figure 6.3(b) the noise level is high enough to cause sporadic

changes in quantizer values. The section of the time series plotted shows

several iterations of the original period-25 orbit (with noise in the u di-

rection) before the trajectory jumps to another similar periodic orbit at

higher values of u. It would seem that this orbit is more stable in that

the trajectory remains there for all observable time.

Figure 6.4: Larger-scale plot of Figure 6.3(b).

A larger-scale plot of the transition between orbits is shown in Figure

6.4. It can be seen that the last point on the trajectory before it jumps to

the higher orbit is very close to the switching curve. This was the point

on the original period-25 orbit that was closest to the switching curve,

slightly to its right. The result was that, in the absence of noise, the next
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point on the trajectory would have been to the left of the curve, for a

lower value of u. However, in this case, the noise has caused the quantizer

to return the value associated with the left-hand side of the switching

curve, sending the trajectory off in the opposite direction. This results

in an new value for Φ, which is (2π/2b)(1/q) to the right of the original

period-25 map. This is very similar to what happened in the noise-free

case in Figure 3.24(a) where the irrational rotation in u caused a point to

move across the switching curve, resulting in a modified quantizer value.

A similar period-25 orbit to the noise-free case then resumes for higher

values of u. Because the switching curve is now further from the Φ = 0

axis, no further orbit jumps occur; the point on the new orbit correspond-

ing to the original jump is now safely to the right of the switching curve.

The effect of the noise in this case is to cause a jump between two stable

periodic orbits. Using numerical simulation, it can be shown that, in the

noise-free case, a number of stable period-25 orbits exist depending on

the initial value of u (Φ(0) = 0 in all cases) and that these orbits differ

in values of u only, i.e., are shifted on the vertical axis. Additive noise

has triggered a jump between two of these orbits, which is an interesting

phenomenon. At this noise level, with input variance equal to 10−9, the

output jitter variance is still on the flat part of the graph in Figure 6.2,

which is to be expected since, apart from the single jump-point, the orbit

in Φ is still the original circle map.

The input noise is increased by a further two orders of magnitude in

Figure 6.3(c). The first thing to note is that, although the simplicity

of the dynamics looks to be lost because of the large variation in u,

the motion in Φ is still bounded mostly by L1 and R1. Thus, from input

noise variances of 10−10 to 10−7 there is no appreciable increase in output

jitter. This corresponds well to the graph of Figure 6.2. If we remove the

transitions between points on the trajectory, we can see that the system’s

steady-state output still has a relatively simple structure as shown in

Figure 6.5(a). It is clear that Φ essentially follows the same period-

25 map with only the occasional excursion outside the L1-R1 corridor.

The motion in u is more complex; the pattern of the lighter and darker
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regions indicate more jumps between orbits. The clustering of the u-

values corresponds to time spent within each orbit. The fact that more

jumps occur is to be expected as more points on the period-25 horizontal

circle map become susceptible to being pushed close to or across the

switching curve.

(a) σ2
N = 10−7. (b) σ2

N = 10−4.

Figure 6.5: Similar phase-plane plots as in Figure 6.1 with additive noise
variances, σ2

N equal to (a) 10−7, and (b) 10−4.

Finally, if the input noise is increased by, for example, a further three

orders of magnitude, the map eventually gets pushed outside the L1-R1

region. This is shown in Figure 6.3(d) and Figure 6.5(b). While the input

noise is now beginning to dominate, it is clear that the underlying discrete

dynamics have not been entirely lost. The motion in Φ is still generally

confined to a grid of points with a spacing of (2π/2b)(1/q). Many more

points are now added both to the left and right of the original circle map

as multiple points on that map are now subject to the switching curve

noise. At this level of input noise (variance 10−4), the increase in output

jitter is now noticeable as can also be seen in Figure 6.2.

Above this noise level it becomes more difficult to discern discrete

patterns in the general noise. This is to be expected as from input noise

levels greater than 10−3 we enter the region where the analogue behaviour

takes over.
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6.3.2 Comparison to first-order case

The similarities between the behaviour of the first- and second-order

loops can be seen by an examination of Figure 6.6. Plot (a) shows the

steady-state behaviour of the same second-order map as in Figure 6.5,

except with an additive noise level of σ2
N = 10−5. Again, the transitions

between points have been omitted so that the distribution of the points in

steady-state can be seen. Similar to the case where we had σ2
N = 10−4 in

Figure 6.5(b), even though the distribution in the noisy u direction seems

to lack pattern, much of the structure of the original period-25 circle map

in Φ remains. Some additional points outside the original L1-R1 region

have appeared, but are still on the grid with spacing (2π/2b)(1/q).

Also illustrated on this plot is the region where the behaviour of the

map is affected by noise. This is a corridor of width approximately 2L,

centred about the switching curve, S1, where L =
√

3σ2
N . This shaded

region on the plot corresponds to the points on the phase plane where

noise can cause the quantizer in the equation (6.2) for Φ to output a dif-

ferent value to the noise-free case, assuming N(t) is uniformly distributed

with variance σ2
N . The concept here is identical to that we used earlier

to modify the equation for the simple circle map (4.1) to account for the

linear noise ramp (4.4).

(a) Second-order plot. (b) First-order plot.

Figure 6.6: (a) Similar phase-plane plot as in Figure 6.1 with b = 8,
µ = 0.56, K1 = 2−6, K2 = 2−5, {Φ(0), u(0)} = {0, 0}, and with additive
noise variance σ2

N equal to 10−5, with noise-affected region shown. (b)
Equivalent plot for first-order case.
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Without noise the behaviour of the map (6.2) was simple: to the left

of S1 the map moved right, by an amount 2π
2b

Frac[µ] in Φ, and to its right

it moved left by an amount 2π
2b

(1− Frac[µ]). With the noise added, there

is a region of uncertainty, just as we had in the first-order case, where

the motion is altered; if the map is within the noise-affected region to the

left of S1, it may occasionally move left again by 2π
2b

(1− Frac[µ]) rather

than moving right as per usual. Similarly, if the map is to the right of

S1, it may move right again. The result is that the range of the circle

map in Φ is extended to each side of L1 and R1. The points furthest

to the left and right are least densely distributed as these correspond to

jumps from the edges of the noise corridor, where the probability of an

‘erroneous’ jump is least (c.f. noise ramp in Figure 4.2(a)). As a first-

order approximation, the size of the extension is L on each side. The

roughly equal distribution to each side is a result of the fact that our µ

in this case (14/25) is close to 0.5. This is in contrast to our earlier case

of a first-order delayed loop (Figure 5.5), where the noise-induced range

extension was highly asymmetric about the original circle map.

For comparison, a representation of the equivalent first-order DPLL

is shown in Figure 6.6(b). Here, all parameters relevant to the first-order

system are identical to those of the second, and the additive noise level

is again σ2
N = 10−5. Although there is just the single state variable, Φ,

the steady-state distribution is displayed on a notional phase plane for

comparison with the second-order case, simply by extending the plot in

the vertical direction. Shown on the plot are the lines corresponding to

the circle map bounds we had in Section 3.2.4 for the first-order DPLL

and circle map:

Φ = L1 = M = arcsin
Int[µ] + 1

2bK
+

2π

2b
(Frac[µ]− 1) ,

Φ = R1 = (M + S) = L1 +
2π

2b
,

Φ = S1 = T = (M + S − α) = arcsin
Int[µ] + 1

2bK
.

(6.3)

This is to say, our previous lower and upper bounds on the circle map
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for the first-order loop, M and (M + S), correspond to our L1 and R1

curves in the second-order case. Also, our previously unnamed point

at the centre of the noise ramp for the circle map, T = (M + S − α),

corresponds to the switching curve of the second-order loop. Just as

in the second-order case, the noise-affected region is also shown for the

first-order loop; here, it is a region of width exactly 2L, corresponding

to the linear noise ramp of Figure 4.2(a). The steady-state distribution

of phase error of the first-order loop is shown along a horizontal axis in

the centre of Figure 6.6(b). The distribution is similar in many ways to

the second-order case of Figure 6.6(a): the points are centred about S1,

in the absence of noise are fully contained within the circle map bounds,

L1-R1, and in the presence of noise are sent outside this range by an

amount approximately equal to L on each side, the distribution thinning

further out from the original L1-R1 region.

The obvious difference between the two cases is that, for the first-order

loop, whether or not the map is within the noisy region is determined by

Φ alone, while for the second-order loop it also depends on u. For the

first-order case, the probability of a jump in either direction depends on

whether Φ is currently within the region [S1−L, S1 +L] = [T −L, T +L],

and where within that region it is. For the second-order loop, it is easy

to show that, near the steady-state region, the curves L1, S1, R1, and

the bounds on the noisy region, are all approximately linear with slope

K1(K2−1). Because the bounds on the noise region are no longer vertical

lines, it means that they may span several values of Φ within the steady-

state region, as can be seen in Figure 6.6(a). Here, the noise region

boundaries span approximately 4 points of the period-25 circle map in

Φ, so that now, whether a particular point on the map is within the noise

region, or what its probability of an ‘erroneous’ jump is, depends on what

the value of u is at that time. However, because the width of the noise

region is almost constant, the number of points on the period-25 map in

Φ that are within the noise region does not vary with u. The overall effect

of this is that the number of points thrown outside the L1-R1 corridor is

similar to that in the first-order case, with a distribution that is similar.
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6.3.3 Future work

For large-denominator or irrational input frequencies, µ, the overall out-

put jitter variance follows a curve almost indistinguishable from that in

Figure 6.2. However, the details of how the steady-state dynamics are

affected by low- and medium-level additive noise differs significantly from

what we have seen here for the low-denominator rational frequency. In

general, the increase in range of both the jitter, Φ, and integrator output,

u, occurs more gradually as the additive noise increases. This is to be

expected as the horizontal circle map is now densely distributed between

L1 and R1 and so points on this map will get moved across the switching

curve for arbitrarily small levels of input noise. Therefore, we do not see

the orbit jumps we had for the period-25 case. However, these differ-

ences in dynamics are not significant enough in magnitude to be seen on

a logarithmic variance plot.

We believe there is significant scope for further research into the

case of additive noise in discrete second-order loops, for low- and high-

denominator rational, irrational, and integer input frequencies.

6.4 Summary

We have first presented a recap of the background material in Section

3.2.5 on the second-order loop in the case of no external additive noise.

Proceeding to our new results, we have shown how, on a macro level,

the response of the second-order loop to additive input noise is remark-

ably similar to that of the first-order system; the output variance of

the second-order loop generally tracks that of the first, with only minor

deviations. Finally, in Section 6.3 we use numerical simulations of the

second-order DPLL to look in detail at how the period-25 limit cycle

is disrupted by additive input noise. We see that, for a large range of

noise levels through our ‘intermediate’ region, while the pattern of the

motion in u is lost quite easily, the structure of the orbit for Φ remains

quite simple and largely confined to the original grid. As the noise level
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increases, additional grid points are added to each end of the map. Only

for large noise levels, as we approach the analogue limit, does the sim-

ple, quantized structure break down completely. Finally, we compare the

steady-state behaviour of first- and second-order loops within the inter-

mediate region. For sample loop parameters of interest and a particular

input noise level, we look at the behaviour of the phase error, Φ in each.

By visualising the first-order system on a notional 2-dimensional phase

plane, we see how the similarities in the two systems come about.
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Chapter 7

Conclusions and future work

In this thesis we devoted two chapters to an in-depth review of the math-

ematical theories required for an understanding of our later work. In

Chapter 2 we covered basic probability theory, random variables, distri-

bution and density functions, moments and expectations. We extended

the presentation to include multivariate distributions and stochastic pro-

cesses. In our summary of the latter, a vast area of study in its own

right, we focused particularly on the concepts of autocorrelation and

power spectral density, as well as Markov processes and the Chapman-

Kolmogorov equation. In our final section of base material, we provided

a quick introduction to analogue and digital filters, which are central to

the PLLs and DPLLs of the following chapter.

In Chapter 3 we gave an extensive overview of PLL theory, treating

the traditional analogue and more modern digital theories separately.

The background section on the analogue PLL relies heavily on the seminal

work by Viterbi [1], covering both linearized and non-linear PLLs in the

absence of noise and also with additive input noise. In particular, the case

of additive input noise to the non-linear loop uses much of the theory of

stochastic processes covered in the previous chapter. For the summary of

the digital loop, we referenced the work of Gardner [2], one of the noted

experts in this field. We looked at the difference equations describing each

of the loop components and derived the full loop equations for first- and

second-order loops in the case of frequency quantization. We saw how, in
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steady state and under certain conditions, the loop obeys a circle rotation

map. This map was reviewed and some of its properties examined, in

particular its noise-free variance and we showed how this can be used to

predict the phase-jitter variance of the DPLL output due to quantization

alone.

Chapter 4 marks the beginning of the presentation of the novel as-

pects of our work. In Chapter 4 itself we focused on the original case

considered by Gardner [3], namely the first-order, frequency-quantized

DPLL without loop delay in the presence of additive input noise. It was

shown that under certain conditions, the steady-state dynamics of the

first-order DPLL are identical to the circle rotation map. In addition

it was illustrated how additive input noise in the case of the first-order

DPLL corresponds to a unique form of quantization noise in the case of

the circle map.

An equation for the time-dependent PDF of the noisy circle map’s

phase jitter was obtained, and, using this equation, bounds and asymp-

totic approximations for the variance of the phase jitter were found. A

non-local equation was found for the steady-state PDF, and various as-

pects of its solution were examined using asymptotic methods. In partic-

ular, the PDF itself, and associated mean and variance of the noisy circle

map output were found, the result being to accurately describe the be-

haviour in the large-noise, small-α limit of the circle map, and thus also

characterize the intermediate regime response of the first-order DPLL.

The asymptotic results of Section 4.4 — in particular equation (4.36)

for the large-L limit and equations (4.37)-(4.39) for the small-α case —

are expected to be of significant benefit to DPLL designers, as they con-

stitute the first analytical results describing the jitter in this important

operational regime where additive and quantization noise interact non-

trivially.

In Chapter 5 we looked at the first-order DPLL with loop delay, pre-

viously introduced by Gardner in [3]. This was also examined and ana-

lyzed as a delayed circle map. A unique — and previously unexplained

— feature of the delayed case, a dip in output variance as a response to
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additive input noise similar to a stochastic resonance, was highlighted. A

full analysis from first principles was performed for the case where the dip

is most prominent, i.e., where α, representing the fractional part of the

DPLL input frequency, is small. From this small-α approximation, the

resulting PDF, mean and variance found to accurately match numerical

simulations of the DPLL equations.

Finally, in Chapter 6, the second-order DPLL with noisy input was

examined. While the dynamics of the map in steady state are consid-

erably more complicated than for the first-order loop, the magnitude

response of the output phase jitter to additive input noise was seen to be

very similar to that of the first-order DPLL. The complexity of the dy-

namics under noisy conditions was shown on the phase plane and should

serve as motivation for further study to students of non-linear dynamics.

190



Bibliography

[1] A. J. Viterbi, Principles of Coherent Communication, New York:

McGraw-Hill, 1966.

[2] F. M. Gardner, Phaselock techniques, 3rd ed., New York: Wiley, 2005.

[3] F. M. Gardner, “Frequency granularity in digital phase-locked loops”,

IEEE Trans. Commun., vol. 44, pp. 749-758, June 1996.

[4] A. Teplinsky, O. Feely and A. Rogers, “Phase-jitter dynamics of dig-

ital phaselocked loops”, IEEE Trans. Circuits and Systems, Part I:

Fundamental Theory and Applications, 46, pp. 545-558, May 1999.

[5] A. Teplinsky and O. Feely, “Phase-jitter dynamics of digital phase-

locked loops: Part II”, IEEE Trans. Circuits and Systems, Part I:

Fundamental Theory and Applications., 47, pp. 458-473, April 2000.
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