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We present eight-band k ·p calculations of the electronic and polarization properties of columnar
InzGa1−zAs quantum dots �CQD� with high aspect ratio embedded in an InxGa1−xAs /GaAs quantum
well. Our model accounts for the linear strain effects, linear piezoelectricity, and spin-orbit
interaction. We calculate the relative intensities of transverse-magnetic �TM� and transverse-electric
�TE� linear polarized light emitted from the edge of the semiconductor wafer as a function of the
two main factors affecting the heavy hole—light hole valence band mixing and hence, the
polarization dependent selection rules for the optical transitions, namely, �i� the composition
contrast z /x between the dot material and the surrounding well and �ii� the dot aspect ratio. The
numerical results show that the former is the main driving parameter for tuning the polarization
properties. This is explained by analyzing the biaxial strain in the CQD, based on which it is
possible to predict the TM to TE intensity ratio. The conclusions are supported by analytical
considerations of the strain in the dots. Finally, we present the compositional and geometrical
conditions to achieve polarization independent emission from InGaAs/GaAs CQDs. © 2010
American Institute of Physics. �doi:10.1063/1.3346552�

I. INTRODUCTION

The effects of strain on the electronic band structure
have been reported for a variety of quantum dot �QD�
shapes, such as flat cylinders,1 pyramids,2 lenses,3 and
cones.4 There exist also examinations of the importance of
the height-to-base ratio for pyramid,5 truncated-pyramid,6

and other realistic dot shapes.7 A common conclusion which
is usually drawn is that the dot volume has the primary effect
on the electronic structure. Even more, the essential features
of the confinement potential are determined mainly by one
geometric parameter, i.e., the aspect ratio, with simultaneous
insensitivity to other details of the QD shape.7 One param-
eter of interest is the orientation of the dipole moment, which
determines the polarization of the emitted light. In self-
assembled QDs, optical transitions between the conduction
and valence band states for in-plane light propagation are
strong in the transverse-electric �TE� mode of the light po-
larization �polarization vector in the structure plane�, with
rather weak transverse-magnetic �TM� component �polariza-
tion vector along the growth direction�. This has been ex-
plained by computer simulations using a multiband Hamil-
tonian to be a direct consequence of the “flat” dot geometry
and of the predominantly heavy-hole �HH� character of the
highest valence band states.8

However, control of the polarization of the emitted light
can be highly beneficial in some optoelectronic applications.

It has been recently demonstrated experimentally that semi-
conductor QDs with large height to base length ratio are able
to emit polarization independent light from the edge of the
wafer. This is of significant potential benefit for semiconduc-
tor optical amplifiers, allowing polarization-independent gain
from a dotlike emitter.9–14 Such “columnar” QDs �CQDs�
with large aspect ratio can, for example, be obtained by
cycled submonolayer deposition,15 and are thus promising
candidates for amplifier applications. On the other hand, the
analysis of the physics responsible for the observed polariza-
tion properties of such nano-objects is still rather limited and
has considered only the influence of the dot geometry within
quite a narrow aspect ratio range of 1–1.8 �height to the base
length� for pure InAs dots on GaAs.16 In particular, the role
of the material surrounding the CQD on the strain and thus
on the polarization properties has not been considered. In-
deed, due to the growth technique employed, CQDs are lat-
erally immersed in a material with a composition intermedi-
ate between that of the matrix and of the CQD.17 In fact, in a
common implementation CQDs are formed by depositing a
short-period InAs/GaAs superlattice on a seeding InAs self-
assembled QD layer. Each seeding dot causes a strain field,
which drives the preferential growth of InAs on top of the
QD, resulting in the formation of In-rich columns immersed
in an InGaAs layer.18,19 A very similar kind of growth can
take place in other material systems, including, e.g., growth
on InP substrates.9,13 The composition of the two-
dimensional �2D� surrounding layer �which we refer to as the
“immersion layer”� can be at least partly controlled by the
growth parameters.19 This is necessary when growing QDsa�Electronic mail: janusz.andrzejewski@pwr.wroc.pl.
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with extremely high aspect ratios, for which values exceed-
ing 10 have been demonstrated.19 Because the existence of
this immersion layer changes not only the carrier confine-
ment directly but also the strain distribution, it affects sig-
nificantly the valence band mixing effects and hence the po-
larization dependent selection rules. In this work, we use
eight-band k ·p numerical calculations, supported also by
analytical considerations of the strain, to investigate the ef-
fects of the immersion layer and of the CQD aspect ratio on
the polarization properties of CQD structures. Our results
show clearly that the compositional contrast between this
layer and the dot is considerably more important than the dot
geometry for the range of high dot aspect ratios considered
here �from 3 to 6�. We present details of the numerical meth-
ods used in the Sec. II. Our analytical and numerical results
are presented in Sec. III. Finally we summarize our conclu-
sions in Sec. IV.

II. NUMERICAL MODEL

For the calculations of the electronic states and optical
transitions in CQDs we have developed a three-dimensional
�3D� strain-dependent eight-band k ·p model. The model is
implemented and all physical equations are numerically
solved using the finite difference method. The model in-
cludes strain fields, piezoelectric effects, and the spin-orbit
interaction. This type of model has previously been applied
successfully to the analysis of various types of zinc-blende
material QDs.8,16,20,21

A. Calculation of the strain

The linear strain field has been calculated using con-
tinuum mechanical elastic theory. The detailed description of
such calculations is given, for instance, in Refs. 22 and 23 or
Refs. 2 and 8. The elastic energy U comes from the depen-
dence of the intrinsic lattice parameter on the alloy compo-
sition in the system and is given by24

U =
1

2
�
V

�
i,j,k,l

Cijkl�r���ij�r���kl�r��dr� , �1�

where Cijkl�r�� is the elastic constants tensor, �ij�r�� is the elas-
tic strain tensor, V is the total volume of the system, and i, j,
k, l run over the spatial coordinates x, y, and z. To account
for the lattice mismatch, the strain tensor �ij�r�� is represented
as

�ij�r�� = �ij
u �r�� − �ij

o �r�� , �2�

where �ij
o �r�� is the local intrinsic strain induced by the

changes in the lattice constant. For a material with a cubic
symmetry �ij

o �r�� is given by

�ij
o �r�� =

a�r�� − amatrix

amatrix
�ij , �3�

where a�r�� equals the lattice constant at position r� and amatrix

is the lattice constant of the matrix in which the QD is em-

bedded. The six components of the strain tensor �̂ are not
independent quantities but are determined from the three
components of the displacement vectors u� as follows:

�ij
u �r�� =

1

2
� �ui

�xj
+

�uj

�xi
� . �4�

The strain field can be obtained by inserting Eqs. �2�–�4� into
Eq. �1�, as is done, for example, in Refs. 22 and 23, U is then
minimized with respect to u� throughout the entire solution
space and the displacement vector field can be obtained. By
using Eq. �4�, the local strain tensor can be calculated and
then the physical strain can be obtained by using Eq. �2�.23

Numerical solution of Eq. �1� requires discretization of
the structure. The displacements ui are discretized at the
mesh nodes, with their first derivatives represented by finite
differences. As suggested in23 central differences are
avoided, so the first derivative is averaged over the eight
permutations of the forward and backward differences.

The integration of Eq. �1� is performed in a rectangular
parallelepiped �numerical box� large enough to completely
enclose the QD or dots so that the faces of the box should
have negligible influence on the strain field. Furthermore, at
the faces of the numerical box the appropriate boundary con-
dition have to be applied.24 A fixed boundary condition is
used at the base of the box while free-standing boundary
conditions are implemented at the other faces of the box. The
entire parallelepiped is divided into a rectangular mesh, with
the principal axes along the �100�, �010�, and �001� direc-
tions.

Minimization of the elastic energy reduces Eq. �1� to a
system of linear equations25

dU

dux�ijk�
=

dU

duy�ijk�
=

dU

duz�ijk�
= 0, �5�

in which u��ijk� represents the value of the �= �x ,y ,z� com-
ponent of the displacement vector at the ijk node. Each node
is coupled with 26 neighboring nodes,23 which when multi-
plied by the three components of the displacement vectors
gives a total of 81 nonzero coefficients in each equation. The
system of linear equations is efficiently solved by the pre-
conditioned conjugate gradient method.

B. Piezoelectricity

Piezoelectricity arises when the effects of strain in a
crystal lacking a center of symmetry leads to the generation
of electric polarization. The zinc-blende structure is one of
the simplest lattice examples in which the strength of the
resulting polarization in the linear case is described by one
parameter e14. The second-order piezoelectric effect26 is only
included in the effective values of the experimental linear
piezoelectric coefficients we used in our calculations, i.e.,
they mimic a combined contribution of both the first and
second-order piezoelectric effects. The polarization P� is re-
lated to the strain tensor field by

P� �r�� = 2e14�r����yz�r��,�xz�r��,�xy�r��� . �6�

Piezoelectric charges, �piezo arise from the polarization
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�piezo�r�� = − � · P� �r�� . �7�

The resulting piezoelectric potential VP is obtained by solv-
ing Poisson’s equation

�piezo�r�� = �0 � · ��s�r�� � VP�r��� , �8�

where �s�r�� is the static dielectric constant. The right hand
side of Eq. �8� is represented by the direct finite difference,27

where the material dependence of the dielectric constant is
also taken into account. In the one-dimensional case �for
instance along the x-axis, at the point x=x0+ ih, where h is
the mesh length� the direct finite difference for the second
derivative is given by

	 d

dx
�

d

dx
V	

x=x0+ih
=

1

2h2 ���i + �i−1�Vi−1 − ��i−1 + 2�i

+ �i+1�Vi + ��i + �i+1�Vi+1� , �9�

where �i=��x0+ ih� and Vi=V�x0+ ih�. The resulting linear
set of equations is solved by the conjugate gradient method.

C. Calculation of energy levels

Calculation of the energy levels in the CQDs is per-
formed by using an eight-band k ·p model, as described by
Bahder.28 This is a multiband effective mass theory, which
exactly includes the spin down and spin up Bloch waves
from the lowest conduction band and the spin up and spin
down functions from each of the three degenerate highest
p-like valence bands �set A�. The other �remote� bands are
included via perturbation theory �set B�. In the framework of
the envelope function approximation, the states of the system
��r�� are described as29

��r�� = �
N

set A

�N�r��uNk�0
�r�� = �

M
�
j=1

2

�M
j �r��uMk�0

j �r�� , �10�

where uMk�0

j �r�� are bulk band edge Bloch functions �central

cell� at the k�0 point in the Brillouin zone and �M
j �r�� are

envelope functions. The most common choice for the k�0

point is the � point �k�0=0� and all the parameters which
enter into the theory are taken at the � point. The central cell

Bloch functions are expressed as28

uEL
1 = 
s��↓. �11a�

uEL
2 = 
s��↑. �11b�

uLH
1 =

− i
�6

�
x� + i
y���↓ + i�2

3

z��↑. �11c�

uHH
1 =

i
�2

�
x� + i
y���↑. �11d�

uHH
2 =

− i
�2

�
x� − i
y���↓. �11e�

uLH
2 =

i
�6

�
x� − i
y���↑ + i�2

3

z��↓. �11f�

uSO
1 =

− i
�3

�
x� − i
y���↑ +
i

�3

z��↓. �11g�

uSO
2 =

− i
�3

�
x� + i
y���↓ −
i

�3

z��↑. �11h�

In the above equations, 
s� is the s-like conduction band
function, and 
x�, 
y�, and 
z� are p-like valence band func-
tions, �↑ and �↓ are the eigenspinors of the Pauli spin matrix
	z and M runs over EL, LH, HH, SO for electron, light hole,
heavy hole, and spin-orbit, respectively. It should be noted
that the Bloch states are doubly degenerate, due to time-
reversal symmetry. The time-reversal operator for our basis
functions is given by28

T = 

J 0 0 0

0 0 J 0

0 J 0 0

0 0 0 J
�K̂ , �12a�

where

J = �0 − 1

1 0
� and 0 = �0 0

0 0
� , �12b�

and K̂ denotes complex conjugation.
As a result of this approximation the Schrödinger equa-

tion is converted into a set of eight coupled differential equa-
tions for the envelope functions, where the Hamiltonian H
has the form
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H =

⎣
⎢
⎢
⎢
⎡

A 0 V� 0 �3V − �2U − U �2V�

0 A − �2U �3V� 0 − V �2V U

V − �2U − P + Q − S� R 0 �3

2
S − �2Q

0 − �3V − S − P − Q 0 R − �2R
1
�2

S

�3V� 0 R� 0 − P − Q S�
1
�2

S� �2R�

− �2U − V� 0 R� S − P + Q �2Q �3

2
S�

− U �2V� �3

2
S� − �2R�

1
�2

S �2Q − P − 
 0

�2V U − �2Q
1
�2

S� �2R �3

2
S 0 − P − 
 ⎦

⎥
⎥
⎥
⎤

, �13�

where

A = EC + �C�kx
2 + ky

2 + kz
2� + aC��xx + �yy + �zz� . �14a�

U =
1
�3

P0kz +
1
�3

P0�
j

�zjkj . �14b�

V =
1
�6

P0�kx − iky� +
1
�6

P0�
j

��xj − i�yj�kj . �14c�

P = − EV +
1

2
�1

�2

m0
�kx

2 + ky
2 + kz

2� + aV��xx + �yy + �zz� .

�14d�

Q =
1

2
�2

�2

m0
�kx

2 + ky
2 − 2kz

2� + bV��zz −
1

2
��xx + �yy�� .

�14e�

R = −
�3

2

�2

m0
��2�kx

2 − ky
2� − 2i�3kxky� +

�3

2
bV��xx − �yy�

− idV�xy . �14f�

S = �3�3
�2

m0
kz�kx − iky� − dV��xz − i�yz� . �14g�

In Eqs. �13� and �14�, EC and EV are the unstrained positions
of the conduction and valence band energies, respectively,
Eg=EC−EV is the energy band gap, 
 is the spin-orbit split-
ting energy, and P0 is the k ·p matrix element describing the
conduction-valence band coupling. The constants �1, �2, and
�3 are the modified Luttinger parameters and are related30 to
the original Luttinger parameters �1

L, �2
L, and �3

L, by

�1 = �1
L −

EP

3Eg
, �15a�

�2 = �2
L −

EP

6Eg
, �15b�

�3 = �3
L −

EP

6Eg
, �15c�

where the optical matrix element EP is given by

EP =
2m0

�2 P0
2. �15d�

aC is the conduction band hydrostatic deformation potential,
aV is the valence band hydrostatic deformation potential
�where the energy gap deformation potential ag=aC+aV�, bV

is the valence band axial deformation potential associated
with strain along the �100� crystallographic direction, and dV

is the shear deformation potential, for strain along the �111�
direction. In the Hamiltonian of Eq. �13� the parameters B
�connected with the inversion symmetry� and b� �connected
with the coupling of the conduction band with shear defor-
mations� are neglected.20

As this theory was originally developed for strained
zinc-blende crystals, the equations must be augmented for
heterostructures by boundary conditions, which describe how
the envelope functions are to be joined at the boundaries of
adjacent regions.31–37 For QDs, the operator of Eq. �13� is
converted into a differential operator via the replacement

k
 →
1

i

�

�x


, �16�

and all of the parameters are considered as functions of po-

sition. The partial derivatives for a position dependent P̃ and

Q̃ are then symmetrized according to the scheme38

P̃
�

�x


→
1

2
�P̃

�

�x


+
�

�x


P̃� , �17a�
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Q̃
�

�x


�

�x�

→
1

2
� �

�x


Q̃
�

�x�

+
�

�x�

Q̃
�

�x

� , �17b�

where

P̃ = P0,�zx,�zy,�zz, �17c�

Q̃ = �C,�1,�2,�3. �17d�

For one dimension along the x-axis at the point xi=x0+ ih,
the harmonic finite difference method27 was used to define
the second derivative in Eq. �17b�

d

dx
Q̃

d

dx
� =

1

2h2�� 1

mi
+

1

mi−1
��i−1 − � 1

mi−1
+

2

mi

+
1

mi+1
��i + � 1

mi
+

1

mi+1
��i+1� , �18�

and for the first derivatives of Eq. �17a� the second-order
upwind scheme39 was used

d

dx
P̃�

= �
1

2h2 �3P̃i�i − 4P̃i−1�i−1 + P̃i−2�i−2� for P̃ � 0

1

2h2 �− P̃i+2�i+2 + 4P̃i+1�i+1 − 3P̃i�i� for P̃ � 0� ,

�19�

where �i=��xi�, P̃i= P̃�xi�, and Q̃i= Q̃�xi�.
After discretization of the eight-band k ·p Hamiltonian

using the above prescription, the resulting secular equation is
solved using the Jacobi–Davidson40 algorithm.

Because of numerical instabilities with �C�0,41 we res-
cale EP to a value that keeps �C�1. The fitting equation for
the optical matrix parameter

�C�r�� =
1

mC�r�� − EP�r��

Eg�r�� +
2

3

�r��

Eg�r���Eg�r�� + 
�r���
� 1, �20�

then gives

EP�r�� = � 1

mc�r��
− 1�Eg�r���Eg�r�� + 
�r���

Eg�r�� +
2

3

�r��

. �21�

D. Calculation of polarization properties

In order to calculate the TE-mode and TM-mode transi-
tion intensities in the CQDs, we first calculate the oscillator
strength fS for the electron-hole transition between the two
states, �i and � f, with energies Ei and Ef, respectively, as29

fS =
2

m0


�� f
e� · p� 
�i�
2

Ef − Ei
, �22�

where e� is the direction unit vector for the electric field �po-
larization� of the light.

The momentum matrix element is calculated as42

�� f
e� · p� 
�i� = �
N,N�

set A
m0

�
e� · ��N

f 

�HN,N��k��

�k�

�N�

i � , �23�

where �l= ��EL1
l ,�EL2

l ,�LH1
l ,�HH1

l ,�HH2
l ,�LH2

l ,�SO1
l ,�SO2

l �
is the vector of envelope functions for state l, and l runs over
the initial �i� and final �f� states.

For the QD the operator e� · p� can be written in the form42

e� · p� =
m0

2�
e� · �2P� + �Q�1

i

d�

dz
� + �1

i

d�

dz
��

Q�
+ �R�1

i

d�

dx
� + �1

i

d�

dx
��

R� + �S�1

i

d�

dy
�

+ �1

i

d�

dy
��

S�� , �24�

where the arrows indicate the direction in which the deriva-
tives should be taken. It should be emphasized that this equa-
tion is valid for both intraband and interband transitions. The
matrices for P, Q, R, and S could be calculated using the
Hamiltonian of Eq. �13�. It should be noted that for interband
transitions, the main contribution to the momentum matrix
element comes from the first term in Eq. �24�. The first term
could be written down as �N,N�

set APNN���N
f 
�N�

i �. It is a sum of
the overlapping of the fth final envelope function with the ith
initial envelope function, with the weights given by the ele-
ments of the matrix PNN�, where N and N� are the first �EL1�
and second �EL2� electron, first �LH1� and second �LH2�
light hole, first �HH1� and second �HH2� heavy hole, first
�SO1� and second �SO2� spin orbit components of the final
and initial total wave functions, respectively. The second,
third, and fourth term have a similar form to the first one but
the overlap is taken between the envelope function and the
derivative of the envelope function.

For degenerate states a and b which satisfy Eq. �12a�,

�a1�=T
�a2� and 
�b1�=T
�b2� the momentum matrix ele-
ments 
e� · p�ab
 for nonexcitonic transitions are obtained by
incoherent averaging8


e� · p�ab
 =
1

4
�
e� · p�a1b1
 + 
e� · p�a1b2
 + 
e� · p�a2b1


+ 
e� · p�a2b2
� . �25�

All corrections due to excitonic effects are neglected in our
calculations, and we assume a Gaussian broadening of each
transition peak at energy Ef −Ei

Ik�Et� = �
i,f


e · pfi


	�2
exp�−

�Et − �Ef − Ei��2

2	2 � , �26�

where 	 �the standard deviation� is applied in order to simu-
late the experimental spectra and to allow for more direct
comparison to the published experimental data on ensembles
of dots, which are always affected by inhomogeneities in the
dot properties.
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III. RESULTS AND DISCUSSION

A. Analytical considerations

We consider a columnar Inx+yGa1−x−yAs dot embedded in
an InxGa1−xAs quantum well �QW� �which plays the role of
the 2D surrounding layer, i.e., an immersion layer� between
GaAs barriers, with dot composition z then given by z=x
+y. In linear elastic theory, the strain distribution can be
treated as the sum of the strain due to a InxGa1−xAs QW plus
the strain distribution due to an InyGa1−yAs CQD embedded
in pure GaAs material. If we assume isotropic elastic con-
stants, the strain distribution in the cuboid of height h and
base area d�d can be calculated analytically.43

We estimate that the minimum requirement for a polar-
ization insensitive QD is that the bulk HH and LH band
edges are degenerate in the center of the QD. In practice, it is
rather required for several reasons that the bulk LH band
edge is the highest valence state at the center of the CQD.
The larger HH mass in the growth �z� direction gives a
smaller contribution to the total HH confinement energy than
that due to the smaller LH mass in the z direction. The strain
distribution varies through the CQD, with the LH band edge
reaching its highest energy at the center of the CQD. When
moving toward the top or bottom of the dot, the LH band
edge will shift down in energy while the HH band edge shifts
upwards in energy. There are two factors which affect the
lateral contribution to the confinement energy, one of which
pushes the LH down and the other of which pushes the LH
up in energy. First, the larger lateral barrier for LHs, due to
the compressive strain in the QW, pushes the LH down. On
the other hand, the HH has a slightly lower in-plane mass
than the LH, so this will tend to increase the lateral contri-
bution to the HH confinement energy compared to the lateral
contribution to the LH energy.

The HH and LH bulk edge energies are given in a
strained structure as

ELH = EV + b�ax�z� , �27a�

EHH = EV − b�ax�z� , �27b�

where EV�z� is the mean energy of the HH and LH valence
band maximum states and �ax�z� is the axial strain compo-
nent at z, with

�ax�z� = �zz�z� − 1
2 ��xx�z� + �yy�z�� , �28�

and where �ii�z� is the ith component of the axial strain ten-
sor. We, therefore, require as a minimum for degenerate HH
and LH character that the total axial strain is zero at the
center of the dot.

We have for a strained InxGa1−xAs QW on a GaAs sub-
strate that

�xx = �yy = x�0, �29a�

�zz = −
2	

1 − 	
x�0, �29b�

�ax = −
1 + 	

1 − 	
x�0, �29c�

Where �0 is the fractional difference in lattice constant be-
tween InAs and GaAs and 	 is Poisson’s ratio.

For zero net axial strain at the center of the CQD it is
required that the axial strain there due to the InyGa1−yAs
CQD is equal and opposite to that due to the strained
InxGa1−xAs QW.

Assuming isotropic elastic constants, the axial strain can
be calculated at the center of the cuboid QD, following the
analysis in Ref. 43. It can be shown for a lattice mismatch
strain �0 that

�xx = �0 −
2�0�1 + 	�
��1 − 	�

tan−1� h
�2d2 + h2� . �30a�

�zz = −
2�0	

1 − 	
+

4�0�1 + 	�
��1 − 	�

tan−1� h
�2d2 + h2� . �30b�

�ax = −
�0�1 + 	�
��1 − 	� �1 −

6

�
tan−1� h

�2d2 + h2�� . �30c�

Comparing Eqs. �29c� and �30c�, it can be seen that with an
infinitely high dot �i.e., a wire� we get zero net strain at the
center of the dot and degenerate LH and HH band edges
when y=2x. This sets the first, lower limit on the difference
in composition required between the dot and surrounding
QW in order to achieve polarization insensitivity.

For a dot of finite height the net axial strain is zero
��ax=0� at the center of the dot when

−
�0�1 + 	�
��1 − 	�

x −
�0�1 + 	�
��1 − 	� �1 −

6

�
tan−1� h

�2d2 + h2��y

= 0.

Solving for y as a function of x it is therefore required that

y =
x

6

�
tan−1� h

�2d2 + h2�
,

in order to obtain �ax=0 at the center of a dot of finite height.
Figure 1 shows, as a function of the aspect ratio h /d, the

FIG. 1. Analytical calculation of contrast ratio of In composition z=x+y in
a CQD to In composition x in QW required in order to achieve zero net axial
strain in center of dot as a function of ratio of dot height h to dot base length
d.
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value of the contrast ratio �y+x� /x required in order to
achieve zero net strain at the center of a columnar
Inx+yGa1−x−yAs dot embedded in an InxGa1−xAs QW between
GaAs barriers. It can be seen that the contrast ratio ap-
proaches three with increasing aspect ratio, implying that the
TM and TE polarization intensities should be approximately
equal in an infinitely high QD when the In composition in
the dot is three times that in the well. For reasonably realistic
aspect ratios �h /d�3–6�, we estimate that the In content in
the QD should be approximately four times larger than that
in the QW in order to get equal intensity TE and TM emis-
sion.

B. Numerical simulations

The geometrical model of the columnar QD with 2D
surrounding �immersion� layer is presented in Fig. 2, includ-
ing an illustration of the linear polarization directions. The
TE-mode polarization vector lies in the x-y plane, while the
TM-mode is polarized along the growth �z� direction. Light
is considered to be emitted from the CQD along either the

�110� or �11̄0� direction. The CQD is placed in the center of
the box and the height of the 2D immersion layer is assumed
the same as the height of the CQD �see the transmission
electron microscopy images in Refs. 17, 19, and 44�. All the
simulations presented assume a cuboid QD with a square
base of diagonal length 20 nm �14.14 nm base length�, and
with the aspect ratio �height to base length� changed from 3
to 6 �height between 42.42 and 84.84 nm�. All the material
parameters used in the calculations are taken from Ref. 45,
assuming room temperature values for the lattice constants
and energy band gaps. We use a larger numerical box for the
calculation of the strain field than for the energy levels. For
the former, the box has a border of 45 nm width and a mesh
length of 4 Å, whereas for the latter the box border is 15 nm
wide and the mesh length 5 Å. In all cases, fourteen conduc-
tion band energy levels are calculated and forty valence band
levels. The assumed geometry and the material compositions

are taken in the ranges around the experimentally determined
values, focusing on values which are promising from the
point of view of polarization independent emission in GaAs-
based CQD structures.18,19,44

Figure 3 shows the calculated total intensities of the op-
tical transitions and the fraction of the intensity in the TM
polarization for a CQD with an aspect ratio of 3 and In
content of 45% inside the dot. The In content in the immer-
sion layer is changed from 15% down to 9% in Figs.
3�a�–3�c�, respectively, �which corresponds to the composi-
tional contrast between the dot and the 2D surrounding
changing from 3 to 5�. For clarity, only those transitions
which have a significant intensity are shown. In addition, we
also plot on the right hand axes in Fig. 3 the LH contribution
to each valence band wave function, where the EL, HH, LH,
and SO components �CEL, CHH, CLH, and CSO, respectively�
�� = ��EL

1 ,�EL
2 ,�LH

1 ,�HH
1 ,�HH

2 ,�LH
2 ,�SO

1 ,�SO
2 � have been cal-

culated as16

CM = �
V

�
j=1

2


�M
j 
2d3r� .

Both the electron and SO components typically contribute of
the order of 1%–2% or less to the overall probability density
of the different valence band states. Therefore, they are ne-
glected in the further discussion because the linear polariza-
tion selection rules �and hence the TE-mode and TM-mode
intensities� are then determined primarily by the contribu-
tions from the HH and LH states only.

Several conclusions can be drawn directly from Fig. 3.
We see that there is a significant TM polarization contribu-
tion when both the aspect ratio and the content contrast

FIG. 2. �Color online� Schematic image of an InGaAs CQD in center of
image �red� with InGaAs 2D surrounding �immersion� layer in the plane
�blue� and GaAs host material above and below �gray�. The arrows show the
direction of the considered in-plane emission and the respective linear light
polarization directions �TE and TM�.

FIG. 3. �Color online� Total �red empty bars� and the z �TM� component
�blue filled bars� of the transition oscillator strength �left axis� of a cuboidal
QD with aspect ratio equal to 3 and with QD In content equal to 45% for
three different In contents in the 2D surrounding layer. The full green
squares joined by lines show the light hole contribution to the total valence
wave function �right axis�.
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equals 3 �Fig. 3�a�� but this contribution is mainly found in
the higher order transitions, and so TM will definitely not
dominate over TE recombination in the full �i.e., integrated
intensity� spectrum. Decreasing the In content in the sur-
rounding layer causes a significant increase in the TM com-
ponent of the lowest energy transitions �Figs. 3�b� and 3�c��.
In most cases the enhanced TM intensity is correlated with
an increased LH contribution to the valence wave function
�see the right axis in Fig. 3� but transitions with a LH con-
tribution of about 50% and with corresponding very small
TM component are also present. Such transitions can be
found in Fig. 3�b� at energy around 1.178, 1.213, and 1.218
eV, and in Fig. 3�c� at 1.183, 1.193, and 1.217 eV. For Fig.
3�a�, there are transitions at 1.186 and 1.199 eV with LH
contribution about 20% but again with very small TM com-
ponent. In order to explain these cases we will discuss the
wave function properties for one example in more detail.

Figure 4 shows the calculated modulus of the different
components of two conduction and two valence band wave
functions, plotted along the z-axis through the center of a
cuboid with aspect ratio 3 and with In content equal to 45%
and 9% in the QD and immersion layer, respectively. Figure
4�a� shows the LH and HH components, 
�LH
 and 
�HH
 of
the 19th valence band wave function which, with the first
conduction wave function, corresponds to the transition at
1.178 eV in Fig. 3�c�. It is seen that there is a dip in 
�LH
 in

the middle of the QD, suggesting that this is an odd function
along the z-axis, whereas 
�HH
 is clearly an even function.
The first conduction function is also even along the z-axis.
As a result it has a significant overlap with the HH compo-
nent but despite a large LH contribution to the valence wave
function the TM related intensity remains negligible. Figure
4�b� shows the electron component of the third conduction
band state for the CQD of Fig. 3�b�. This wave function,
together with the 21st valence band function �also presented
in the same figure�, gives the transition at 1.193 eV. It can be
seen that the LH part is an even function whereas the HH
part is predominantly an odd function along the z-axis. Be-
cause the EL contribution to the third conduction wave func-
tion is odd, we have again a similar situation to the previ-
ously discussed transition.

Hence, we conclude that there can be a large LH contri-
bution to a valence state but due to the symmetry properties
of the components of the initial and final states, some tran-
sitions involving this state can still have a very small TM
related polarization intensity. This property is independent
both of the In content in the QD or 2D immersion layer and
also of the aspect ratio. Figure 4 shows that there is not
always a direct connection between the contribution of LHs
to a valence states and the TM intensity of a given transition.

In order to allow for a more direct comparison with ex-
perimental data on an ensemble of dots, the calculated tran-
sitions from Fig. 3 have been broadened by Gaussians with
standard deviation equal to 20 meV. This imitates the inho-
mogeneous broadening in real structures, which is mainly
related to the nonuniformity of the dot properties within the
ensemble. As the experiments are usually performed at room
temperature �as indeed needed in applications�, we simulate
the effects of temperature by introducing the Boltzmann
function �for 300 K�, which imitates the temperature depen-
dent carrier distribution over the conduction and valence
band states, and makes the calculated results easier to com-
pare with emission spectra from photoluminescence or elec-
troluminescence. The calculated Gaussian broadened room
temperature spectra are shown in Fig. 5 for both the TE and
TM intensity components. It can be seen that the TM inten-
sity approaches the TE one for the highest In contrast ratio.
Because of the carrier distribution effect, the stronger TM
intensity associated with higher energy transitions in Fig. 3 is
less notable in the more realistic emissionlike spectra of Fig.
5. With decreasing In content in the immersion layer �in-
creasing content contrast� the TM related intensity becomes
stronger and the effective TE peak position shifts to higher
energy while the TM one shifts to lower energy, giving al-
most equal TM and TE intensities in the low energy part of
the spectrum for a content contrast of 5 �Fig. 5�c��.

For further analysis we integrated the TM and TE spec-
tral functions �as those in Fig. 5� and calculated the TM to
TE total intensity ratio for several structures. The solid lines
in Fig. 6 show the calculated intensity ratio as a function of
the aspect ratio for different composition contrasts �obtained
by changing the 2D immersion layer In content from 15% to
11% and 9%�. It can be seen �red line, squares�, that if the
difference in the In content between the dot and the sur-
rounding is too low �45% and 15% in the QD and immersion

FIG. 4. �Color online� The cross-sections along the z-axis through the
middle of the QD of the modulus of the 3D wave functions for a cuboid with
aspect ratio 3 and with In content equal to 45% in the QD and to 9% in the
surrounding layer. �a� the EL components �solid black line� of the 1st con-
duction wave function and the LH �dash dot red line�, and HH �dashed red
line� components of the 19th valence wave function and �b� the EL compo-
nents �solid black line� of the 3rd conduction wave function and the LH
�dash dot red line� and HH �dashed blue line� components of the 21st va-
lence wave function.
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layer, respectively�, then changing the aspect ratio will not
affect the TM and TE intensities significantly, and it will not
be possible to achieve polarization insensitivity. This result
qualitatively explains the experimental results reported in
Ref. 14. On the other hand, when the content contrast ratio is
high enough �45% to 9%� it enhances the intensity for TM
polarization for even relatively low dot heights and, the
larger the composition contrast, the stronger the influence of
the aspect ratio of the dot. For an aspect ratio between 5 and
6 �and contents 45% to 9%�, the TM to TE intensity ratio
reaches 1. The dashed lines show the value of the biaxial
strain in the middle of the CQD �numerically calculated�,
which is included for comparison with the analysis made in
Sec. III A. It can be seen that the computed results agree with
the general conclusions of the analytical model. For instance,
the decrease in the biaxial strain with increasing dot height is

correlated with the increase in the TM to TE ratio. Further,
compressive strain �positive values� in the middle of the dot
always leads to TE domination and, the more tensile the
strain becomes �with increasing In contrast ratio between the
dot and the surrounding immersion layer�, the stronger be-
comes the TM component in the transition intensity. How-
ever, there are some details of these dependences, which
could not be calculated within the model in the Sec. III A.
The numerically calculated biaxial strain in the middle of the
dot does not change much with aspect ratio, e.g., the strain
changes only by approximately 0.001 for the content contrast
5 as the aspect ratio increases from 3 to 6 �see the green
dashed line in Fig. 6�, whereas the TM/TE ratio changes
from approximately 0.7 to 1.3. Also the change in the biaxial
strain is approximately the same for each considered content
ratio while the polarization ratio becomes stronger for higher
compositional contrast. Moreover, as we discussed qualita-
tively in Sec. III A, full compensation of the biaxial strain in
the middle of the dot will probably not be enough, and some
overcompensation �tensile strain� will be necessary to favor
the LH contribution. Here, the numerical results give the
quantitative measure. They show for the examples consid-
ered here that the TM and TE integrated intensities become
equal for a tensile strain on the level of 0.0075 in the middle
of the dot.

In order to understand the reasons for the behavior ob-
served in Fig. 6, we plot the calculated biaxial strain distri-
bution values through the center of the CQD along the
growth direction, i.e., z-axis, and along an in-plane direction,
i.e., x-axis, for a fixed aspect ratio of 3 and different compo-
sition contrasts in Fig. 7, and for a fixed content ratio of
about 4 and different aspect ratios in Fig. 8. Both these fig-
ures show already a coincidence between the results on the
TM and TE intensities and the strain distribution. However,
it is not so direct because there are areas inside the dot where
the biaxial strain can change sign. In general, the more nega-
tive is the biaxial strain and the larger the fraction of the dot
for which it is negative �especially near the dot center� then
the stronger the TM intensity will be. This is understandable
because the increased tensile character leads to a greater LH
contribution to the valence wave functions inside the dot. In
order to have a better insight into the relationship between
strain and polarization, we introduce a new figure of merit,
defined as the integral of the biaxial strain function over the
QD volume �in 3D�. Because this value measures the strain

FIG. 5. �Color online� TE �solid blue� and TM �dashed red� intensities for a
QD with In content of 45%, aspect ratio equal to 3 and different immersion
layer In contents. The transition energies are broadened by a Gaussian func-
tion with standard deviation equal to 20 meV. The Boltzman distribution
function has been applied to simulate the carrier distribution at room
temperature.

FIG. 6. �Color online� Calculated TM to TE polarization total intensity ratio
at room temperature �solid lines� for a QD In content of 45% and for various
In contents in the 2D surrounding layer vs the dot aspect ratio. The dashed
lines show the value of the biaxial strain in the middle of the CQD.

FIG. 7. �Color online� Biaxial strain distribution along the x and z axes
through the center of the QD with In content of 45% and with aspect ratio
equal to 3 for various In contents in the surrounding layer.
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over the entire QD and not only at a single position, it thus
gives a more appropriate indication of the overall strain state.

Figure 9 compares the simple biaxial strain at the center
of the CQD with the integrated biaxial strain over the QD for
In content equal to 45% and for various In contents in the
immersion layer. For In content contrast equal to 4 and 5, an
increase in the aspect ratio causes a decrease both of the
biaxial strain and of the integrated biaxial strain �the de-
crease in the latter is much stronger� while for In contrast
equal to 3 an increase in the aspect ratio causes a decrease in
the biaxial strain at the center, but an increase in the inte-
grated biaxial strain. This behavior is found for all cases
which we have investigated. For other In contents in the QD
�60% and 75%� and In content contrast equal to 3 the simple
and integrated biaxial strain have opposite dependences on
the aspect ratio. For In contrast equal to 4 and 5, both strain
values decrease with increasing aspect ratio. The importance
of the integrated biaxial strain can be explained in the fol-
lowing way. The carrier wave function samples a large frac-
tion of the total volume of the QD rather than just one par-
ticular point in the QD. Therefore, the total strain affects the
electronic states rather than its value at just one point, and
hence correlates better with the overall TM/TE behavior.
Moreover, the variation in the biaxial strain with aspect ratio
is approximately the same in the dot center regardless of the
In contrast ratio, whereas the slope of the TM/TE intensities
ratio dependence is much more sensitive to the content con-
trast and aspect ratio, and is therefore, much better described
by the integrated biaxial strain function.

Figure 10 shows, as a function of aspect ratio, the inte-
grated TM to TE intensity ratio for different In contents in
the QD �45%, 60%, and 75%� and for the composition con-
trast in the range of 3–5. Based on that and the previous
discussion, the necessary condition for getting polarization
independent emission from a CQD �efficient TM intensity�
can be drawn, the integrated biaxial strain over the QD needs
to be negative—the strain value in the dot center can then be
treated as a first approximate requirement. The behavior of
the TM/TE ratio depends primarily on the In composition
ratio, and is rather independent of In composition in the QD
itself. Figure 10 shows also what are the conditions for ob-
taining equal TM and TE intensity. For a composition con-
trast close to 5, polarization independent recombination can
be obtained for moderate aspect ratios of around 4, as al-
ready demonstrated experimentally.19 When the contrast ratio

is closer to 4, a very high aspect ratio ��6� is then required.
Additionally, for composition contrasts of three and below
tuning the aspect ratio will not help to make the TM intensity
of the transitions comparable to the TE related ones.

There are some details which are not seen directly in
Fig. 10. Figure 11 shows the normalized transition intensities
in both polarizations for contrast ratio equal to 5, for various
In contents in the QD and aspect ratios of 5 or 6, i.e., for
parameters which are in the range to give almost equal total
TM and TE intensities. However, as can be seen, this does
not necessarily mean that both spectral response functions
are identical. Usually, as was already seen in Fig. 5, the TE
and TM lineshapes are slightly different and the peak posi-
tions can be shifted by several milli-electron-volt. From the
application point of view, where we aim for equal gain in
both polarizations over a broad wavelength range, it would

FIG. 8. �Color online� Biaxial strain distribution along the x and z axes for
the QD with In content of 45% and with In content of 11% in the surround-
ing layer, for various aspect ratio values.

FIG. 9. �Color online� Biaxial strain �solid line� in the middle of the QD and
integrated biaxial strain �dashed line� over the QD for an In content in the
QD equal to 45% and various In content in 2D surrounding layer, plotted as
a function of QD aspect ratio.

FIG. 10. �Color online� TM/TE intensity ratio �at room temperature� for QD
In content 45%, 60%, and 75%, and content contrast ratio between 3 and 6
as a function of the dot aspect ratio.
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be optimal to avoid these differences. This can be achieved
by two approaches. The first of these requires precise struc-
ture engineering and proper choice of aspect ratio and In
contents, as in Fig. 11�f�, where there the QD has 75% In
content, aspect ratio of 6 and a composition contrast of 5
with the surrounding 2D immersion layer. Second, it should
be possible to use postgrowth fine tuning of actual device
structures for instance by postgrowth annealing or applica-
tion of an electrical bias. Either of these could modify the
TM and TE intensities for each transition, and hence affect
the effective peak shapes and their relative energy positions.

The theoretical results presented here are in good quali-
tative agreement with the available but still limited experi-
mental data on InGaAs/GaAs CQDs, including the depen-
dence both on aspect ratio and on composition contrast,14

showing the practical applicability of our modeling. It has
for instance been observed that increasing the aspect ratio,
for an approximately constant composition contrast, can
cause a significant enhancement of the TM polarization in-
tensity in the edge-emitted electroluminescence. The abso-
lute values of TM to TE intensity ratio are actually higher in
the experiment compared to our theoretical predictions. This
could be due to additional factors, which can occur in the
real structures but which were not included in the calcula-
tions, such as composition inhomogeneities and gradients in
the vertical �growth� direction within both the dot and the
immersion layer. For instance, effects as indium segregation
between the higher content columnar dot and lower content
immersion layer can cause an effective increase in the com-
position contrast due to depleting with indium atoms the
nearest neighborhood of the dot and hence enhance the TM
to TE ratio.

IV. CONCLUSIONS

We have theoretically studied the optical properties of
InzGa1−zAs /GaAs CQDs from the point of view of their pos-
sible application in polarization independent optical amplifi-
ers. We have taken into consideration and shown the impor-

tance of a 2D InxGa1−xAs layer of lower composition �x
�z�, which surrounds such dots in-plane in real structures.
We have shown how this immersion layer strongly affects
the linear polarization properties and controls the selection
rules for optical transitions in such dots for light propagation
in the growth plane. We have shown not only how important
is the composition contrast z /x between the dot material and
this 2D layer, but also given the necessary condition to ob-
tain full polarization independence in the emission spectrum.
This requires that the biaxial strain integrated over the CQD
volume has a negative value. We find that the value of the
integrated biaxial strain correlates well with the dependence
of the TM/TE intensity ratio on dot aspect ratio and on com-
positional contrast. We have shown that for an aspect ratio
equal to 5 and for an In composition contrast equal to 5 it is
possible to obtain efficient TM emission from a CQD, re-
gardless of the In content in the QD. Conditions for achiev-
ing equal TE and TM intensities have been found, confirm-
ing the potential value of CQDs for use in polarization
insensitive semiconductor optical amplifiers.
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