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Abstract—Over the last decade, various detection mechanisms
for spoofed speech have been proposed. Thus far the development
focus has been on detection accuracy, largely ignoring secondary
goals such as computational complexity or storage effort. In this
work, we use empirical mode decomposition to compute intrinsic
mode functions which are then demodulated to obtain features
consisting of short-time statistics of instantaneous amplitude and
instantaneous frequency. These features are then used with a
simple k-nearest neighbours classifier. We further show that
voiced segments from short speech signals can be used in the
feature extraction resulting in a spoofing detection competitive
with top-performing systems while having up to 103× less
computation.

Keywords—Computer security, Biometrics, Speaker recogni-
tion, Speech processing

I. INTRODUCTION

Automatic Speaker Verification (ASV) systems are popular
as a low-cost and flexible technology for biometric authenti-
cation. These systems are known to be vulnerable to spoofing
which can be classified into attacks via impersonation, replay,
speech synthesis, twins, and voice conversion [1].Countermea-
sures to detect spoofed speech and thus prevent an attack, are
in active development and the ASVspoof biannual challenge,
initiated in 2015, has assisted with advancing the research
through organized trials and evaluations [2]. The fourth chal-
lenge organized recently in 2021 focused on discriminating
between genuine and spoofed or deepfake speech. At the time
of writing this paper, ASVspoof 2021 challenge results were
not yet available, hence we present and compare our work
with ASVspoof 2019 challenge results [3]. The development
focus has thus far been on detection accuracy, largely ignoring
secondary goals such as computational and storage effort.
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However, voice control is now added to many digital systems
such as smart speakers (Amazon Alexa), mobile phones (Siri)
and cars (Jaguar). As ASV and spoofing detection are to be
used at scale, either implemented on many small embedded
devices or in a cloud back-end infrastructure, complexity must
be minimised to save resources.

In this paper we propose a novel Empirical Mode De-
composition (EMD) based spoofing detection system which
has low computational complexity and storage requirements
while providing a high detection accuracy. We use short-time
statistics of Instantaneous Amplitude (IA) and Instantaneous
Frequency (IF) from the Intrinsic Mode Functions (IMFs)
resulting from the EMD as features which are fed to a simple
k-Nearest Neighbours (KNN) classifier. We then demonstrate
that classification accuracy can be improved when only us-
ing the voiced regions of the speech signal. Finally, as the
complexity of the EMD is dependant on signal length we
show that a short duration of 2s is sufficient. Our evaluation
shows that the proposed method can compete with state-of-the-
art spoofing detection mechanisms as described in ASVspoof
2019 challenge [3] while reducing computational complexity
by a factor of up to 103× and having negligible storage
requirements.

The contributions of this work are: (i) a low complexity
EMD based spoofing detector; (ii) a novel EMD based feature
vector for spoofing detection; (iii) a demonstration that the
voiced components of a speech signal are best for spoofing
detection; and (iv) an analysis of the impact of signal length
on spoofing detection accuracy.

II. EMPIRICAL MODE DECOMPOSITION AND PROPOSED
FEATURES

Huang’s original definition of the Hilbert spectrum uses
EMD to determine a set of IMFs which are individually
demodulated with the Hilbert Transform (HT) to obtain IAs
{ak(t)} and IFs {ωk(t)} [4]. This analysis is also known as
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Fig. 1. Block diagram of the EMD based feature vector creation for spoofing
detection.

the Hilbert-Huang Transform (HHT) [4]. EMD has been used
before in the context of spoofing detection. However, existing
work has used EMD only as replacement for Mel frequency
Cepstrum Coefficients (MFCC) filter banks [5] and at a pre-
processing stage to reconstruct the signal using a subset of
IMFs [6]. In this work we directly construct feature vectors
from the IMF removing traditional steps such as filter banks
and MFCC.

A. Empirical Mode Decomposition

The EMD algorithm sequentially decomposes the input sig-
nal into a set of IMFs {φk(t)} by iteratively calling the sifting
algorithm [4]. Several improvements have been proposed to
improve the sifting algorithm [7], [8]. However, IMFs are not
orthogonal to each other and as a result, a decomposition into
IMFs is not unique. Due to this ambiguity, the decomposition
returned by EMD does not always capture the assumed/true
underlying signal components as expected. More specifically,
undesirable effects termed mode mixing [9] and component
splitting [10] may be present in the decomposition.

In addition to the improvements proposed to the sifting
algorithm, several researchers have also proposed variations
on the original EMD algorithm. For example, the Ensem-
ble Empirical Mode Decomposition (EEMD) [9] introduced
ensemble averaging in order to address the mode mixing
problem via an additive noise and an averaging of IMF
estimates. In our prior work [11], we have also proposed
improvements to Complementary Ensemble Empirical Mode
Decomposition (CEEMD) including: 1) a modification to the
ensemble averaging which guarantees that the average IMF is
a true IMF [9] and 2) a change from the additive noise used
in ensemble averaging to a complimentary pair of narrowband
tones [12] which we termed “tone masking”. For a clear
presentation of EMD and the sifting algorithm, the reader is
referred to [11].

B. Feature Extraction

In this work, we propose to use short-time statistics of the
IA/IF from the IMF resulting from EMD. The HT approach
to demodulation is used in the HHT, however, others have
proposed alternatives to the HT in order to improve local
behavior [7]. In [11], the authors proposed numerical stabi-
lization techniques for Huang’s iterative IA estimation and
direct IF estimation algorithms which give good estimates for
the IA/IF parameters. MATLAB® codes for EMD and IA/IF
estimation of resulting IMFs may be found at [13], [14].

Fig. 1 shows a block diagram of the proposed feature
extraction process. We begin by estimating the IA/IF param-
eters {ak(t), ωk(t)} from the first ten IMFs that result from
the sifting operation in EMD of the speech signal x(t). It
is observed that the speech signals under investigation, in
general, yielded ten IMFs. Next, feature vectors are formed
as follows. First, {ak(t), ωk(t)}, 1 ≤ k ≤ 10 are framed into
20ms windows and the mean, variance, skewness, and kurtosis
are computed resulting in eight statistics per IMF per frame.
Second, for each IMF, the statistics are then averaged over the
frames. Finally, the eight statistics from each IMF are stacked
resulting in a feature vector of length 80. In the case where
fewer than ten IMFs result from EMD, we zero pad the feature
vector.

Phonemes in a speech signal are created by the vocal
cords and the vocal tract. Voiced speech is created when the
vocal cords vibrate while a phoneme is pronounced. Unvoiced
speech does not make use of vocal cords. We label the frames
as voiced or unvoiced using Zero Crossing Rate (ZCR). The
use of statistics only stemming from voiced speech when
averaging statistics per IMF improves detection results as we
will show in our evaluation.

III. EXPERIMENTS AND EVALUATION

The ASVspoof 2019 challenge database consists of a logical
access (LA) partition containing voice conversion and speech
synthesis examples in addition to the physical access (PA)
partition which contains replay examples. The training and de-
velopment subsets of LA are used for conducting experiments
related to the development of the detection model while the
evaluation set is utilized for measuring detection performance.
For additional information, please see [2].

The evaluations includes: 1) examination of spoofing de-
tection accuracy using voiced or unvoiced speech segments;
2) examination of spoofing detection accuracy as function of
speech signal length; 3) comparison of the detection accuracy
with state-of-the-art algorithms as described in ASVspoof
2019 challenge; 4) analysis of computation complexity and
storage requirements.

A. Results with Voiced vs. Unvoiced Speech

For the first experiment we consider feature extraction from
voiced or unvoiced speech segments that is, the average IA/IF
statistics are computed only for voiced or unvoiced speech
segments. Our motivation in considering voicing is based
on fundamental differences in the production and properties
of voiced and unvoiced segments. We consider the simple
classifiers KNN, Neural Network (NN), and Support Vector
Machines (SVM). The NN Classifier has a single hidden layer
with 10 neurons and SVM does classification by selecting
the most matching hyper plane using quadratic kernel. We
partition the ASVspoof 2019 training set data for each spoof-
ing algorithm, i.e. A01 - A06 into 80% for classifier training
and 20% for testing. We note that classifiers are trained for
each spoofing algorithm. The average results of 100 trials of
randomized partitioning are determined.



TABLE I
SPOOFING DETECTION RESULTS FOR THE PROPOSED FEATURE VECTOR
EXTRACTED FROM THE FULL SPEECH SIGNAL AS WELL AS VOICED AND
UNVOICED SEGMENTS FROM THE ASVSPOOF 2019 ALGORITHMS A01-
A06. ON AVERAGE, KNN CLASSIFICATION USING FEATURE VECTORS

EXTRACTED FROM VOICED SPEECH, PERFORMED BEST.

Spoofing
Algorithm

Full(%) Unvoiced (%) Voiced (%)
KNN NN SVM KNN NN SVM KNN NN SVM

A01 95.9 96.8 96.4 89.0 88.2 90.9 97.2 96.5 97.6
A02 98.5 98.7 97.6 77.8 79.6 82.9 96.0 98.7 98.7
A03 96.7 97.7 97.6 81.5 84.2 87.0 97.2 98.1 98.3
A04 92.0 92.7 93.9 60.2 59.1 61.2 93.5 93.3 95
A05 93.2 96.7 96.0 72.8 76.0 78.3 95.2 97.2 97.6
A06 76.4 79.1 77.9 66.7 68.1 70.9 95.0 78.4 82.1

Average 92.1 93.6 93.2 74.7 75.9 78.5 95.7 93.7 94.8

As a baseline, detection accuracy using the proposed feature
vector extracted from the full speech signal (voiced and
unvoiced segments), is provided in Table I columns 2-4 and
along with results using only the voiced segments (columns 5-
7) or only unvoiced segments (8-10). We find that in general:
1) classifiers using feature vectors extracted from voiced
speech segments perform better than when using unvoiced
speech segments, 2) classifier accuracy is lower for A04-
A06 (waveform concatenation and voice conversion spoofing
algorithms) than with A01-A03 (Text-to-Speech (TTS) spoof-
ing algorithms), and 3) With the exception of A06, all three
classifiers have similar accuracy, however, KNN performs best
with A06. Although we have not investigated further, other
proposed features extracted from voiced speech may improve
accuracy with other detection algorithms. In the subsequent
work presented in this paper, we use feature vectors extracted
only from voiced speech segments and the KNN classifier
since, on average, this performed best.

B. Detection Accuracy as a Function of Signal Length

The duration of the speech signal under analysis affects the
quality of the feature vector and has also a direct impact
on the computational complexity (We discuss computation
complexity separately in Section III-D). To better understand
the role of signal length, experiments are conducted using three
sets of speech signals with an approximate duration of 2s,
4s, and 6s from the training data set of each of the spoofing
algorithms (A01-A06). The EMD analysis is performed on
each of the three sets of speech signals and features are
extracted over lengths which are increasing by 100ms starting
with a length of 500ms. Detection accuracy is normalized
against the KNN voiced results in Table I, meaning that 100%
implies results are equal to when using the entire speech
signal. Results of detection accuracy as a function of signal
length are shown in Fig. 2 for speech duration of 2s; although
not shown results using 4s and 6s speech signals are similar
to 2s. We find that the relative accuracy increases with speech
signal duration and reaches saturation around 2s for all the data
sets of spoofing algorithms. Thus with the proposed feature
vector extracted from the voiced segments of at least a 2s
signal, accurate detection of spoofed speech is possible. Other
speech processing applications such as speaker recognition
[15] have also considered speech signal length. However, to

Fig. 2. Relative detection accuracy as a function of signal length for genuine
and spoofed speech. In this plot, EMD is performed over speech signals of
length 2s and features are extracted over lengths which are increasing by
100ms.

the best of our knowledge spoofing detection with short signals
has not been previously explored but is important for resource-
limited scenarios or cases where spoofing detection with short
delay is required.

C. ASVspoof 2019 Evaluation and Results

For the third experiment, we developed models using both
the training and development sets of ASVspoof 2019 chal-
lenge. Following the ASVspoof 2019 challenge evaluation
plan [2], the model is tested on the evaluation data set to
analyze detection performance on unknown attacks in addition
to the known attacks (A16 and A19). The results of the
experiment are given in Table II using t-DCF and EER metrics
as defined by ASVspoof. Our model, using the proposed
feature vector extracted from voiced segments using a KNN
classifier ranks in the top five (see Table III). We note that
systems T05, T45, T60, T24, and T50 are all ensemble
classifiers unlike the proposed system which uses a single,
simple KNN classifier. The proposed model performs well on
all the spoofing attacks except A17, A18, and A19. Among
these, A19 is a known attack that uses the same algorithm
as A06 but with different data hence the similar performance
to A06. The same reasoning explains the performance of the
proposed model on known attack A16 that uses the same
algorithm as A04.

D. Computation Complexity and Storage Requirements

Among the best performing systems in the ASVspoof
2019 challenge, only the architecture details for T45 [16]
and T60 [17] systems are available. T45 is a fusion of
four Deep Neural Networkss (DNNs) that each differ in the
front-end features. By our estimate, the detector requires a
total of 40.8M parameters and at least 3.99G Multiply And
Accumulate (MAC) units where we have only counted MAC
units for the convolution layers that contribute significantly to
the computation. The T60 is an ensemble model consisting
of four DNNs, an i-vector based SVM, and two Gaussian
Mixture Model (GMM) classifiers that use MFCCs and inverse
MFCCs as features. By our estimate, the DNNs require 2.59M
parameters and 604.22M MAC units.



TABLE II
PROPOSED COUNTERMEASURE’S EQUAL ERROR RATE (EER) AND TANDEM-DECISION COST FUNCTION (T-DCF) RESULTS FOR SPOOFING

ALGORITHMS IN ASVSPOOF2019.

A07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 Pooled
EER 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09 2.09 11.90 10.15 6.63 3.51

t-DCF 0.0509 0.0542 0.1732 0.0528 0.0563 0.0516 0.0502 0.0515 0.0563 0.0594 0.7489 0.3370 0.1564 0.0953

TABLE III
RESULTS OF THE PROPOSED COUNTERMEASURE WITH THE TOP

PERFORMING AND BASELINE SYSTEMS FROM THE ASVSPOOF 2019
CHALLENGE. IN TERMS OF POOLED EER AND T-DCF VALUES, THE

PROPOSED SYSTEM RANKS IN THE TOP FIVE.

System EER (%) t-DCF (%)
T05 0.22 0.0069
T45 1.86 0.0510
T60 2.64 0.0755
T24 3.45 0.0953

Proposed System 3.51 0.0953
T50 3.56 0.1118

B01: LFCC - Baseline system 8.09 0.2116
B02: CQCC - Baseline system 9.57 0.2366

As depicted in Fig. 1, the computational complexity of
the proposed method is dominated by EMD; we consider
spoofing detection of 2s signals and an average number of
sifting iterations per IMF for a total of ten IMFs. Following
[18], [19], we estimate the EMD requires 38.40M MAC
units and negligible requirement for parameter storage. Taken
together, the proposed system requires far fewer computational
resources and storage, as compared to T45 and T60, which
makes it a suitable counter measure for low resource scenarios
such as client-side detection in personal voice assistants.

IV. CONCLUSIONS

In this paper we have proposed a new countermeasure which
uses features consisting of short-time statistics of IA/IF pa-
rameters of IMFs resulting from the EMD and a simple KNN
classifier. The proposed spoofing countermeasure ranks 5th in
terms of detection performance (EER and t-DCF) compared
with algorithms reported in ASVspoof 2019. However, all
better performing algorithms use ensemble classifiers which
are generally demand significantly more computational effort
and storage space. We are certainly aware that DNN based
models can learn features and can outperform our proposal
in terms of detection performance. However our aim was to
reduce the computation complexity and our method requires
103× and 15× less computation than T45 and T60 algorithms
respectively. The proposed resource-efficient method may be
used as an alternative or to augment published ensemble
classifiers. Given the rise of personal voice assistants such
as Alexa, Siri and Cortana, spoofing detection is now required
at scale. A better balance of resource efficiency and detection
accuracy is required. Finally, we investigated feature extraction
from only voiced segments and found this improves detection
accuracy and we found accurate detection was possible with
signals as short as 2s. Spoofing detection with short signals
has not been previously explored but is important for resource-
limited scenarios or if spoofing detection with short delay is
required.
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