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Highlights

 Rapid progress of xanthan from recent discovery to major food hydrocolloid

 Accompanying evidence of both single-helix and double-helix structures

 Proposed interpretation in terms of 2-stage process of conformational ordering

 Stage 1: coil–single helix transition; stage 2: conversion to 51 double helices
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1 Abstract

2 During the progress of xanthan from a recent discovery to its present status as a well-

3 established food hydrocolloid, some investigations have indicated that the ordered structure, 

4 which underlies most of the practical applications of xanthan, is a single helix stabilised by 

5 ordered packing of sidechains along the polymer backbone, giving first-order kinetics for the 

6 disorder–order transition. Others favoured a coaxial double helix, whose formation causes a 

7 doubling of molecular weight and mass per unit length. It is proposed here that both 

8 interpretations are correct, and that ordering is a 2-stage process: formation of single helices 

9 followed, under favourable conditions, by enthalpically-driven conversion to coaxial double 

10 helices. Comparison of recent evidence from atomic force microscopy with models from 

11 analysis of X-ray fibre diffraction data suggests that the most likely coaxial arrangement is an 

12 antiparallel 51 double helix.

13

14

15 Keywords

16 Xanthan; Conformation; Single helix; Double helix; Light scattering; Optical rotation
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18 1. Introduction

19 Although now firmly established as one of the repertoire of polysaccharides available for use 

20 in food, xanthan is a comparatively new arrival. Indeed, its progress from a recent discovery 

21 to one of the major food hydrocolloids occurred during the span of my own scientific career.

22 As background for addressing the question raised in the title, this article gives a historic 

23 account of the accompanying progress in developing molecular understanding of the 

24 functional properties  of xanthan, including my own personal involvement in the xanthan 

25 saga. It is based closely on a lecture I gave at the international conference "Gums and 

26 stabilisers for the food industry 19", Berlin, 27-30 June, 2017.

27 2. Discovery of xanthan

28 Xanthan was identified as a potentially useful material during an extensive bacterial screening 

29 programme carried out in the USDA Northern Regional Research Laboratory in Peoria, 

30 Illinois (Jeanes, Pittsley & Senti, 1961). The work had two complementary aims: (i) to reduce 

31 the reliance of the USA on imported gums; and (ii) to develop a new outlet for US corn 

32 production by using hydrolysed corn (maize) starch as growth substrate for the bacteria.

33 The screening programme was led by Dr. Allene Jeanes, and also resulted in the discovery of 

34 dextran, used as a plasma-extender in blood transfusions, notably for treatment of American 

35 troops wounded in the Korean conflict. For her services to US science, Dr. Jeanes received 

36 the Federal Women's Service Award in 1962 (Fig. 1a).

37 Xanthan is an anionic exopolysaccharide produced in high yield by the bacterium 

38 Xanthomonas campestris (cabbage blight) on aerobic fermentation. In early publications 

39 it was known as polysaccharide B-1459, and was first produced commercially by Kelco, 

40 San Diego (now part of CP Kelco) as Kelzan (for industrial use, mainly in the oil industry) 

41 or Keltrol (food grade). Since expiry of Kelco's patent protection it has become commercially 

42 available from other suppliers, notably in China.

43 3. Start of my own involvement with xanthan

44 In 1970, after completing my PhD on an entirely different topic (gas-phase reaction kinetics) 

45 in Edinburgh University, I was taken on for a Post-doc with a charismatic young lecturer, 

46 Dr. D.A. Rees (Fig. 1b), now Sir Dai Rees, FRS, who was carrying out ground-breaking 

47 research on polysaccharide conformation. This included showing that the intermolecular 

48 junctions in iota carrageenan gels are double helices whose formation and melting are 
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49 accompanied by large, sigmoidal changes in optical rotation (McKinnon, Rees & Williamson, 

50 1969; Rees, 1972). 

51 A few months after I had started my project, Dr. Rees was head-hunted by Unilever, and 

52 asked me to join his new group in their Colworth Laboratory in Bedfordshire, UK. Early in 

53 1971 I was invited to visit Dr. Allene Jeanes in Peoria to hear about her work on xanthan, and 

54 shortly after received a sample from one of the first production batches of Keltrol.

55 In view of the success of optical rotation in detecting changes in conformation of carrageenan, 

56 I tried the same approach for xanthan. To economise on polarimeter time, I built a rather 

57 cumbersome, but effective, device to run the instrument overnight, with automated control of 

58 temperature and direct output of point-by-point measurements on an X–Y recorder (this being 

59 long before laboratory computers were available to control instruments and record data). 

60 One of the recorder traces obtained (complete with the original hand-lettering) for a solution 

61 of xanthan on repeated cycles of heating and cooling is reproduced in Fig. 2a, and shows a 

62 thermally-reversible sigmoidal transition with no detectable thermal hysteresis. This was 

63 the first direct evidence that xanthan undergoes a conformational transition on heating and 

64 cooling, and I reported it briefly in a book chapter (Morris, 1973), along with preliminary 

65 accounts of ongoing research in Colworth on the conformation and functional interactions of 

66 other polysaccharides.

67 The changes in optical rotation shown in Fig. 2a are accompanied (Fig. 2b) by loss of 

68 detectable high-resolution NMR signal on cooling (Morris, Rees, Young, Walkinshaw & 

69 Darke, 1977), demonstrating conversion from mobile, disordered coils at high temperature 

70 to a rigid, ordered conformation. The disorder–order and order–disorder transitions of 

71 xanthan have been characterised subsequently (e.g. Holzwarth, 1976; Milas & Rinaudo, 1979; 

72 Morris et al., 1977; Muller, Anrhourrache, Lecourtier & Chauveteau, 1986; Norton, Goodall, 

73 Frangou, Morris & Rees, 1984) by a wide range of physical techniques, including circular 

74 dichroism (CD), differential scanning calorimetry (DSC), potentiometric titration, viscosity 

75 measurements, and light scattering, as well as optical rotation and NMR. 

76 In addition to thermal denaturation, ordered xanthan can be converted to the disordered coil 

77 form by cadoxen (Sato, Norisuye & Fujita, 1984), a strongly alkaline solvent which is capable 

78 of dissolving cellulose.
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80 4. Rheology of ordered xanthan

81 Solutions of xanthan have unusual, characteristic, rheological properties (Whitcomb & 

82 Macosko, 1978) which can be traced to weak association of the ordered structures. Figure 3a 

83 shows mechanical spectra from low-amplitude oscillation for typical polysaccharide solutions 

84 at concentrations where the individual coils are forced to interpenetrate and entangle with one 

85 another (as in most practical applications), and conventional gel networks. For gels, 

86 solid-like response, characterised by storage modulus (G'), predominates over viscous flow 

87 (loss modulus, G"), both moduli show only slight variation with frequency of oscillation (), 

88 and complex dynamic viscosity [* = (G'2 + G"2)½
 /] decreases steeply with increasing 

89 frequency, with a slope close to -1 on a log–log plot.

90 For solutions of entangled coils, both moduli increase steeply with increasing frequency, with 

91 G' rising above G". A characteristic feature of such solutions is that the frequency-dependence 

92 of * is closely superimposable on the shear-rate dependence of viscosity () from rotational 

93 measurements at equivalent numerical values of shear rate (s-1) and frequency (rad s-1). This 

94 generality of behaviour is known as "Cox–Merz superposition" (Cox & Merz, 1958).

95 As shown in Fig. 3b, mechanical spectra of ordered xanthan (Ross-Murphy, 1984; Ross-

96 Murphy, Morris & Morris, 1983) more closely resemble those of gels than of conventional 

97 polysaccharide solutions, with G' > G" and little frequency-dependence of either modulus. 

98 This combination of gel-like response to small deformation coupled with the ability to flow 

99 freely in response to higher stress is known as "weak-gel" rheology (Ross-Murphy, 1984) and 

100 underlies most of the practical applications of xanthan (e.g. in pourable dressings that cling to 

101 the surface of salad, rather than running off). The "weak gel" rheology of xanthan can be 

102 weakened or eliminated by urea, but promoted selectively by different cations (in the order 

103 Na+ < K+ < Ca2+), indicating specific association between the ordered structures to form a 

104 continuous network (Ross-Murphy et al., 1983).

105 A characteristic feature of such "weak gels" is that they violate the Cox–Merz rule: as shown 

106 in Fig. 3b, * of the gel-like network exceeds  from rotational measurements where the 

107 network is broken down by the imposed shear. 

108 5. Primary structure of xanthan

109 When the disorder–order transition of xanthan was first detected (Fig. 2a), the primary 

110 structure of the polymer had not been determined, so the nature of the ordered conformation 

111 was unknown. The structure was elucidated by Jansson, Kenne & Lindberg (1975), with 
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112 confirmatory evidence from concurrent research in Unilever (Melton, Mindt, Rees & 

113 Sanderson, 1976). Xanthan consists of a linear backbone of (1 → 4)-linked -D-glucose 

114 residues (identical to cellulose), but is solubilised by charged trisaccharide sidechains attached 

115 at O(3) of alternate glucose residues to give a pentasaccharide repeating unit (Fig. 4). The 

116 sidechains have the structure: -D-Manp - (1 → 4) - -D-GlcAp - (1 → 2) - -D-Manp-(1→, 

117 with variable, non-stoichiometric substitution by pyruvate and acetate groups. Pyruvate is 

118 attached predominantly to the outer mannose as 4,6-linked ketal substituents and acetate 

119 predominantly at C(6) of the inner mannose (as in Fig. 4), but other patterns of substitution 

120 have been identified recently (Kool, Gruppen, Sworn & Schols, 2013) and influence the 

121 stability of the ordered conformation (Kool, Gruppen, Sworn & Schols, 2014).

122 6. X-ray fibre diffraction in comparison with early solution studies

123 Diffraction of X-rays from oriented fibres in the solid state is the only technique that can 

124 characterise the ordered structures of polysaccharides at atomic resolution. This approach was 

125 applied to xanthan by a group established and led by Professor Struther Arnott (Fig. 1c) in 

126 Purdue University, Indiana, USA (Moorhouse, Walkinshaw & Arnott, 1977). Oriented fibres 

127 were produced by gradual stretching to induce alignment while drying under conditions of 

128 controlled humidity. The diffraction patterns obtained from these fibres showed a 5-fold helix 

129 structure (i.e. pentagonal in cross-section) with a pitch of 4.7 nm. The nature of the helix was 

130 then explored by computer modelling (Arnott & Mitra, 1984) using these parameters in 

131 conjunction with known constraints of ring geometry and required separation between atoms. 

132 Best agreement with measured diffraction intensities was obtained for a single-helix structure 

133 stabilised by ordered packing of sidechains along the polymer backbone (Fig. 5a).

134 Adoption of single-helix geometry in solution was proposed by Morris et al. (1977), based 

135 on the observation that the temperature of the conformational transition is independent of 

136 xanthan concentration. Subsequently, Milas & Rinaudo (1979) found that the hydrodynamic 

137 volume of both the ordered and disordered conformations was almost constant on varying 

138 temperature, and concluded that "the mechanism proposed by Morris is confirmed, and a 

139 multichain process is excluded". 

140 There was, however, conflicting evidence from concurrent investigations. Holzwarth & 

141 Prestridge (1977) reported that electron micrographs of disordered xanthan showed strands of 

142 width ~2 nm, but the ordered conformation had a width of ~4 nm, indicating a multi-stranded 

143 structure, most probably a double helix. Analysis of intrinsic viscosity data from the same 
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144 group (Holzwarth, 1978) suggested that the mass per unit length of ordered xanthan is about 

145 twice that of the single helix proposed from X-ray. 

146 This evidence of double-helix geometry prompted re-analysis of existing data by the X-ray 

147 fibre diffraction group in Purdue (Okuyama, Arnott, Moorehouse, Walkinshaw, Atkins & 

148 Wolf-Ullish, 1980). The findings were (i) that contrary to conclusions from the initial analysis 

149 by Moorehouse et al. (1977), multistranded structures are sterically feasible, and (ii) that the 

150 most likely of these is a 51 double helix with the two strands running antiparallel to one 

151 another (Fig. 5b). As in the original single-helix model, the polymer chains are highly 

152 extended (i.e. not wound together in a tight "spiral staircase" arrangement).

153 Agreement with observed diffraction intensities was similar for both models. Thus X-ray fibre 

154 diffraction does not give conclusive evidence of either single or double helix geometry.

155 7. Kinetics of the xanthan disorder–order transition

156 As shown if Fig. 6, the conformational transition of xanthan (like those of other charged 

157 polysaccharides) moves to higher temperature with increasing ionic strength. Thus ordering 

158 can be induced at fixed temperature by addition of salt. This was the basis of an investigation 

159 of the kinetics of the disorder–order transition in a research collaboration between York 

160 University, UK and Colworth (Norton et al., 1984). Measurements were made at a 

161 temperature where xanthan is disordered in the absence of added salt. The solution of 

162 disordered xanthan was loaded into a syringe on custom-built apparatus; a second syringe was 

163 filled with a concentrated salt (KCl) solution; both syringes were fired simultaneously through 

164 an ultra-high-speed mixer into an observation cell and the time-course of conformational 

165 ordering in response to salt was monitored by optical rotation. 

166 Reaction-progress curves (Fig. 7a) were analysed by first-order and second-order kinetic 

167 schemes. As shown in Fig. 7b, the first-order plot gave good linearity, arguing for 

168 intramolecular conversion from disorder to order (i.e. coil → single helix), whereas the 

169 second-order plot showed obvious curvature, which is inconsistent with an intermolecular 

170 2 coil → double helix process. 

171 Linear second-order plots were, however, obtained in the same laboratory, using the same 

172 apparatus and same experimental procedure, for iota carrageenan (Norton, Goodall, Morris & 

173 Rees, 1983a), kappa carrageenan (Norton, Goodall, Morris & Rees, 1983b) and agarose 

174 sulfate (Norton, Goodall, Austen, Morris & Rees, 1986), all of which are known to form 
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175 double helices. The first-order kinetics observed for xanthan (Fig. 7) therefore strongly 

176 suggests single-helix formation as the rate-limiting process in conformational ordering.

177 8. Proposed solution to an acrimonious controversy

178 Later evidence remained inconclusive. For example, Muller et al. (1986), using light 

179 scattering, observed no change in molecular weight on conformational ordering of xanthan. 

180 However, Sato et al (1984), also using light scattering, found that the molecular weight of 

181 ordered xanthan (in 0.1 M NaCl) was about twice that of the disordered form in cadoxen, and 

182 analysis of intrinsic viscosity data by the same group (Sato, Kojima, Norisuye & Fujita, 1984) 

183 gave a value of mass per unit length for ordered xanthan that agreed well with the value 

184 calculated for the 51 double helix from X-ray (Fig. 5b).

185 The nature of the ordered conformation of xanthan has been the subject of heated controversy, 

186 including the comment "No clear thinking person can consider the ordered xanthan 

187 conformation as anything other than a double helix [Professor E.D.T. Atkins, 7th Harden 

188 Discussion Meeting, 1992, as quoted by Professor John Mitchell in a report on the conference 

189 for Carbohydrate Polymers (Mitchell, 1993)]. There is, however, evidence that the proposals 

190 of single-stranded and double-stranded ordered structures may both be correct.

191 Figure 8a shows a direct comparison of the temperature-course of changes in molecular 

192 weight from low-angle laser light scattering and the conformational transition monitored by 

193 optical rotation (Norton et al., 1984) for the same solution of xanthan (1 mg/ml in 10 mM 

194 KCl). Increase (approximate doubling) in molecular weight on cooling occurs only in the final 

195 stages of conformational ordering. Similarly, when conformation is varied by varying 

196 concentration of cadoxen, change in molecular weight occurs (Fig. 8b) at substantially lower 

197 cadoxen concentration than change in optical activity. The two plots in Fig. 8b are taken 

198 from Kitagawa, Sato, Norisuye & Fujita (1985), where they are presented in separate frames 

199 and the increase in molecular weight (again an approximate doubling) with decreasing 

200 concentration of cadoxen was adduced as evidence for conversion from a disordered 

201 conformation to a double-helix structure. 

202 However, ordering of xanthan cannot occur as a simple 2 coil → double helix process, 

203 otherwise change in conformation and increase in molecular weight would follow the same 

204 temperature course and show the same dependence on cadoxen concentration. The obvious 

205 interpretation is that ordering is a 2-stage process (Fig. 9). The first step is conversion of coils 

206 to single helices, an intramolecular process giving rise to the observed first-order kinetics 
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207 (Section 7). The second step is conversion of single helices to dimers, causing doubling of 

208 molecular weight.

209 The dimerisation process envisaged originally (Norton et al., 1984) was side-by-side 

210 association into structures analogous to the highly-stable "egg-box" dimers in calcium-

211 induced gels of alginate (Morris, Rees, Thom & Boyd, 1978) and low-methoxy pectin 

212 (Morris, Powell, Gidley & Rees, 1982). However, I now suggest that coaxial dimerisation 

213 would be more favourable enthalpically, by allowing more-extensive non-covalent bonding to 

214 occur between the two participating strands, and is indeed more consistent with recent 

215 evidence from atomic force microscopy (Moffat, Morris, Al-Assaf & Gunning, 2016).

216 Figure 10a shows one of the AFM images obtained. The dominant feature is the presence of 

217 long, extended structures with obvious periodicity. Running the probe along the contour 

218 length of these structures gave a repeat distance of 4.7 nm, as found by X-ray fibre diffraction 

219 (Section 6). There are two clear indications that the structures are dimeric. The feature circled 

220 in Fig. 10a shows unravelling of a short stretch of ordered structure into two strands, and 

221 separation into two disordered chains at the end of an ordered sequence can be seen at the top 

222 right-hand corner of the image. Scanning backwards and forwards along the zig-zag path 

223 marked on the micrograph showed the expected large reduction in height on going from the 

224 ordered to the disordered regions (Fig. 10b). 

225 The visual impression of a coaxial double-helix structure in Fig. 10a was reinforced by 

226 quantitative agreement between the height measured by AFM and the lateral dimensions of 

227 the double helix modelled by Okuyama et al. (1980). Other images obtained by Moffat et al. 

228 (2016) showed "hairpin loops" at the ends of ordered regions, which is consistent with the 

229 antiparallel double-helix structure that emerged as the most likely coaxial arrangement from 

230 re-analysis of X-ray fibre diffraction data

231 The controversy surrounding the ordered structure of xanthan appears to be predicated on the 

232 implicit assumption that biopolymers can have only one type of ordered conformation, which 

233 is demonstrably wrong. Interconversion of protein sequences between -helix, -sheet and 

234 non-repeating structures is common, and extensively documented. In the polysaccharide field, 

235 the 2-fold "egg box" junctions in calcium pectinate gels convert on drying to a 3-fold 

236 conformation (Alagna, Prosperi, Tomlinson & Rizzo, 1986; Morris et al., 1982). The 

237 experimental findings summarised here suggest similar interconversion between single-helix 

238 and double-helix structures of xanthan.
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240 9. Conclusions

241 The main conclusions from this brief review of xanthan conformation can be summarised as 

242 follows.

243 Conformational ordering of xanthan is a 2-step process.

244 Step 1: conversion of disordered coils to single helices stabilised by ordered packing of 

245 side-chains along the polymer backbone. Since this is an intramolecular process, it has 

246 first-order kinetics.

247 Step 2: dimerisation, giving a doubling of molecular weight and mass per unit length. 

248 The dimer is most probably the 51 antiparallel double helix proposed from re-analysis 

249 of X-ray fibre diffraction data.

250 Under some experimental conditions, the ordering process stops after Step 1, which would 

251 explain why some groups have observed a disorder–order transition without increase in 

252 molecular weight. 

253
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