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Abstract
Sick neonates admitted to the neonatal intensive care unit (NICU) have their physi-
ological signals monitored. In the case of neonates with brain injury the electroen-
cephalogram (EEG), used to record the electrical activity of the brain, is an important
diagnostic tool. The EEG is a non-invasive procedure where electrodes are placed
on the skin of the head of the neonate. The EEG signals are difficult to interpret
and experienced neurophysiologists are required to interpret the EEG and assess the
brain health of a neonate. However, there is a lack of expertise available in the NICU
to actively monitor all the patients.

There are a wide variety of neonatal EEG patterns that a neurophysiologist must
be able to identify to diagnose an encephalopathy and treat a neonate. Some patterns
may be rarer than others and require additional time to identify the meaning or cause
of the pattern. Neurophysiologists may see a pattern and realise they have seen it
before. The difficulty is that they may not be able to recall where they have previously
seen the pattern. Currently, the only option is to search through atlases of EEG or
prior patient’s EEG records to find a similar pattern, which is a time-consuming
process.

The main aim of this thesis is the development of a system that assists experts in
finding similar EEG events from a database of previously recorded events. The idea
is that the system will speed up the time it takes an expert to find where they have
previously seen a particular neonatal EEG pattern.

The current state of the art for automated neonatal EEG analysis tools focus
on the classification of the signals. These approaches excel at classifying specific
signal types such as seizure or sleep states, but they cannot assist the neurophysiolo-
gist in finding a prior patient’s records that had the most similar EEG pattern type.
There is a requirement for a system that will assist experts in locating similar events
that have previously occurred. A system like this could speed up the diagnosis of
encephalopathies that have a specific morphology.

The first set of data mining techniques developed mimics experts having to
physically search back through old records. To achieve this, systems were developed
that look through the entire database of events to find the closest matching event.
Distance metrics are used to determine the best match. Two distance metric systems
were developed, the first was the fixed point to point Euclidean distance and the
second was the elastic dynamic time warping (DTW) distance.

The second set of data mining techniques developed move towards systems
that do not need to examine every event in the database, while maintaining the
recall accuracy. This is of particular interest as the amount of data grows because it
becomes infeasible to compare the query event to every event in the database. The
particular systems developed, generate hashes from the data and these hashes are
then used to find a match. A hash is an alternative and compressed representation
of the original data. Three different hashing techniques were developed for use with
neonatal EEG.

The final section of the thesis is in the area of machine learning and it focuses
on the development of two multi-class classifiers to classify different neonatal EEG
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event classes. As it is expensive and time consuming for a neurophysiologist to
evaluate neonatal EEG, a proxy system was developed to evaluate the approaches
developed in this thesis. As opposed to finding the nearest matching event, the proxy
used was that of a multi-class classifier problem.

The work in this thesis shows that neonatal EEG recall systems are possible.
They can be quicker than having a neurophysiologist physically search for the most
similar signal. This thesis highlights the importance of compression and shows why
brute force search strategies will not scale well. The strength of hashing systems in
terms of recall accuracy, query speed and memory requirements are also shown.
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Chapter 1

Introduction

1.1 Introduction

In Ireland, there were approximately 62,053 babies born in 2017 [1], of these,

11,000 were admitted to the neonatal intensive care unit (NICU) [2]. In the NICU

monitoring equipment is attached to the neonate that can check heart rate, blood

oxygen saturation, respiration and brain function. There are numerous reasons for

babies to be admitted to the NICU, e.g. being born prematurely, having a low blood

sugar, infection, trouble breathing or suffering from some form of encephalopathy.

An encephalopathy is a disease or disorder of the brain. There are a wide variety

of possible causes such as lack of oxygen at birth, infection or genetics [3]. These

encephalopathies often result in altered brain activity with seizures commonly oc-

curring for different conditions [4].

Babies in the NICU with a higher risk of encephalopathy have their electroen-

cephalograph (EEG) recorded. EEG records the electrical activity of the brain, the

signals are complex and require a neurophysiologist for interpretation. The neuro-

physiologists need to be available on demand to interpret EEGs in the NICU which

is a time consuming and difficult task and can involve searching through old patients’

recordings or searching through books such as [4–6]. The work presented in this the-

sis aims to develop a support tool to assist neurophysiologists in identifying where

they may have previously seen a particular EEG morphology. The tool would ideally

reduce the search time by returning the medical records of previous patients that had

the most similar EEGs morphologies.

The EEG signals enable the brain health and quality to be assessed and it is

an excellent diagnostic tool to help identify the health of the neonatal brain [7].

1
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Seizures are often a symptom of some form of encephalopathy and are typically

associated with clinical signs such as limb movements and convulsions, although

seizures in neonates are challenging to detect as they often do not show clinical signs

[8]. When a baby has a sub-clinical seizure, the EEG is the only way to detect the

seizure. The most common cause of seizure in neonates is due to Hypoxic-Ischemic

Encephalopathy (HIE) [9]. HIE occurs when there is a lack of oxygen to the brain.

Strokes are the second most common cause of neonatal seizures and have specific

characteristics [10]. A stroke occurs when there is bleeding into brain tissue or when

there is an interruption in the blood supply to the brain.

Rare neurological disorders can also cause seizures and irregular brain patterns

that can be initially detected from EEG analysis. These rare condition may be diffi-

cult to identify and a support tool may assist with identification. Examples of rare

epileptic encephalopathies that present early in neonates include Ohtahara syndrome

and early myoclonic encephalopathy [11]. The outlook for neonates with these con-

ditions is poor with a high mortality rate, and surviving children are severely inca-

pacitated. Benign familial neonatal seizures are a rare seizure type that typically

occurs during the first few weeks of life on an otherwise healthy neonate. They are

associated with a previous family history or neonatal seizures [12]. The outlook

for neonates with benign familial neonatal seizures is positive with a normal de-

velopmental outcome [13]. Pyridoxine-dependent seizures occur in neonates as a

form of seizure that does not come under control with conventional treatment via

anticonvulsant drugs [14]. In neonates with this rare condition, they are treated by

administering doses of pyridoxine which is a type of vitamin B6. It is crucial to

treat these neonates fast in order to prevent chronic encephalopathy [14]. It was also

stated in [14] that the neonatal EEG might have features that can aid in the diagnosis

of this condition. Lissencephaly is a rare brain malformation that can result in a

smooth brain surface [15], and which has a very poor prognosis [16]. It is reported

that the EEG can be used in order to make a diagnosis of lissencephaly as there are

three known patterns associated with the condition [17]. Another neonatal disorder

that results in an unusual EEG pattern is Zellweger syndrome. Neonates suffering

from this syndrome typically develop severe neurological deficits or death [18]. This

syndrome has a particular EEG morphology associated with it that could be used to

diagnose the syndrome [19].

There are a wide variety of encephalopathies that exist and many of them have a

general EEG morphology. Some of these encephalopathies result in seizure activity
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and some result in little brain activity. The EEG captures this brain activity and the

neurophysiologists interpret it. There have been attempts at automated EEG analysis

tools, however they focus on detecting specific patterns such as seizures and provide

no guidance in identifying the underlying encephalopathy.

1.2 Prior work in the area of automated analysis of

neonatal EEG

The work presented in this thesis is in the area of automated neonatal EEG analysis.

This is an exciting area with many advancements in recent years. These advance-

ments are made while tackling multiple problem areas within the neonatal EEG

space. The following will introduce and briefly discuss the areas that are most fo-

cused on, which are seizure detection, sleep stage detection and HIE grading.

1.2.1 Seizure detection

As previously mentioned seizures occur frequently in neonates with encephalopathy.

It is vital that neonatal seizures are identified as soon as possible so the neonates can

be treated accordingly, to prevent any further neurological damage. EEG is the best

approach for identifying neonatal seizures [7], though this requires an expert neuro-

physiologist for interpretation. As neonatal seizures often do not show clinical signs,

neurophysiologists are required to monitor the EEG to look for seizure activity. The

problem is that the neurophysiologists are often not able to monitor EEG recordings

in real time and may identify the seizure activity after it has occurred.

This problem has lead to the development of automated neonatal seizure detec-

tion algorithms. Initially, techniques were developed to distinguish neonatal seizures

from background activity [20, 21]. Spectral analysis at the cotside has been used

[20]. This approach enabled people with little or no experience with EEG to notice

changes in the electrical activity of the brain. By using spectral analysis the paper

[20] states that seizures are easily confirmed due to increased amplitudes in certain

energy bands. This data transformation provided an initial decision support for the

detection of seizures. Another approach uses autocorrelation analysis to distinguish

background data from seizure activity [21]. As seizure activity in neonates consists

of rhythmic discharges of the electrical activity of the brain, they are distinctive from

the stochastic normal neonatal EEG. The approach used took advantage of this fact
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and used an autocorrelation scoring technique to identify rhythmic seizure activity.

A high autocorrelation value indicated the presence of rhythmic seizure activity and

a threshold could be applied for the detection of seizures.

In 1997 Gotman proposed an automatic neonatal seizure detection algorithm

[22]. This technique was developed to detect a wide range of patterns. The system

consisted of three types of EEG analysis which included spectral analysis to find

discharges at different frequencies, spike detection and lowpass filtered EEG to

locate slow discharges. The features were extracted using 10 second epochs. This

approach set the standard for neonatal seizure detection algorithms. Seizures were

predicted based on thresholds applied to the extracted features.

A newer method for the detection of seizures in infants which uses extracted

features (10 second epochs) and thresholds to determine if the EEG data contains

seizure activity was presented in [23]. The method is based on singular spectrum

analysis (SSA). The goal of SSA is to decompose the time series signals into oscil-

latory components and noise. This idea of SSA performing well on quasi-periodic

signals was used in order to detect seizure activity. The approach uses singular value

decomposition and minimum description length [24] to determine if the singular

values are from seizure data or more complex background data.

As there were increases in computational power, the approaches used for neona-

tal seizure detection became more advanced. The previous approaches described

applied data transformations and extracted features from the EEG, and then applied

thresholds to distinguish between seizure and non-seizure. The more advanced ap-

proaches use extracted features and different types of machine learning classifiers for

seizure detection such as convolutional neural networks (CNN) [25, 26], Gaussian

mixture models (GMM) [27], hidden Markov models (HMM) [28], support vector

machines (SVM) [29] and random forests [30].

Of these approaches, the SVM approach [29] was demonstrated to offer a perfor-

mance that would be clinically useful [31]. This neonatal seizure detection algorithm

is currently seen as state of the art for neonatal seizure detection. It has undergone

testing as part of a randomised clinical evaluation called ANSeR [32]. The algorithm

initially extracts a set of features from overlapping 8 second epochs of neonatal EEG

[33] and then an SVM is used to generate a probability that a seizure is present on

any one EEG channel.

All of the previously mentioned classification systems require domain knowl-

edge to manually extract the meaningful features that are used to train the classifiers.
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However, recently through the use of CNN, the manually hand-crafted feature ex-

traction step has been removed. This deep learning approach automatically finds

features in the data that distinguishes between seizure and non-seizure. It has been

shown that deep learning outperforms traditional feature extraction and classification

approaches [25]. The caveat is that there needs to be a sufficient amount of training

data available and it can take time to identify the best system architecture.

1.2.2 Sleep states

Neonatal sleep analysis is used to assess brain organisation and maturation [34, 35].

The sleep structure for neonates is different from that of adults [36]. In neonates

there are two main sleep stages; active sleep and quiet sleep [37]. There are several

examples in the literature that developed automated sleep state detection algorithms.

Different visual pattern recognition techniques for an automated detection system

were investigated for sleep state detection in [38]. The pattern they were aiming

to detect was tracé alternant (TA) which is a pattern that alternates between high

amplitude mixed frequency activity and low amplitude mixed frequency activity,

and it occurs in the quiet sleep stage in term neonates. The discrete wavelet trans-

form was used to identify the TA pattern. This approach was based on using feature

extraction to identify the TA pattern. This study was limited in that it had only six

neonates. Then in 2004, the idea of using non-linear analysis for the study of sleep

phases was presented [39], where the fractal dimension and the mean power of the

different spectral bands were used to distinguish sleep states. In [35] an automatic

sleep stage detection algorithm that used the neonatal EEG along with other phys-

iological signals was presented. They extracted frequency-based features from the

EEG signals and then used a HMM to classify the sleep stages. Another neonatal

sleep stage detection algorithm using change point detection and cluster analysis in

order to classify brain states was presented in [36].

More recently in 2017 and 2018 automated sleep stage detection algorithms that

extracted features and used machine learning classifiers to automatically classify

different sleep states [40, 41]. In [40], a system that uses a set of features from the

time, frequency and spatial domains which were extracted from 10 minute epochs

of the neonatal EEG was presented. The extracted features were used in conjunction

with an SVM to classify the sleep states. GMMs and HMMs were evaluated for

the classification of sleep states on features extracted from 30 second epochs across
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the time, information theory and frequency domains with HMMs having the greater

performance [41].

1.2.3 HIE grading

When a neonate suffers a lack of oxygen at birth, this may result in HIE. HIE can

cause long term neurological damage and severe cases of HIE can result in death

[42]. The background EEG of a neonate with HIE is important as it enables the

monitoring of brain recovery [43]. HIE is graded into four different grades, these

determine the severity of the brain injury which helps in deciding the course of

treatment.

Quantitative EEG features were used to grade the severity of HIE [44]. The quan-

titative features that were extracted from 64 second epochs and include: amplitude,

relative delta power, spectral edge frequency, fractal dimension, skewness, kurtosis,

discontinuity, interhemispheric symmetry and synchrony. The features were used

with multiple linear least square analysis to grade the EEG. The performance ac-

curacy of the grading system was improved by Stevenson et al. [45] when using

features extracted from the amplitude modulated and instantaneous frequency com-

ponents of the EEG. The features were extracted using windows of 64 seconds with

a 50% overlap. The automated grading system used multi-class linear discriminant

classifier for classification.

A more recent approach by Ahmed et al. [46] uses a combination of 55 feature

vectors from the time, frequency and information theory domains, each extracted

from 8 second epochs. These short term features were used to create long term

features, 20 non-overlapping short term features which corresponds to approximately

80 seconds are used adapt a GMM EEG background model. The means of the

adapted model become the long term features and SVM classifiers are then used to

automatically grade the severity of HIE.

1.2.4 Prior work summary

The prior work has shown that the earlier techniques described in this section may

have been carried out on smaller amounts of data as proof of concept work such

as [21, 38] where limited amounts of EEG were used, 58.5 minutes and 1080 min-

utes respectively. Following this, large datasets and more advanced systems were

developed overtime that were then able to achieve better generalisation performance.
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In all of the approaches discussed, features are used to classify signals. Initial

approaches use features and thresholds to classify events and then features are used

with classifiers to automatically classify events. An observation was made in relation

to the length of a signal used to make a classification decision. They range from 8

seconds to multiple minutes and depend on the specific classification problem.

The works described in Section 1.2 emphasised the classification of signals.

When classifiers are developed, they use large quantities of data to make classi-

fication models for the particular problems. The classifiers aim is to separate the

different classes as much as possible. When developing these methods, the unique

traits of the particular events may be lost. When the classifiers are trained, the indi-

viduality of each event is lost and there is no way to retrieve it as the output of the

classifiers are for example a binary decision between two event classes.

1.3 Aims and scope of the thesis

While classifiers are valuable decision support tools, they cannot assist in identifying

the underlying cause of some neonatal EEG patterns. The work in this thesis is

focused on capturing and representing the individuality of neonatal EEG events.

The purpose of such a system is to aid in the faster diagnosis of certain neonatal

conditions that may have associated rare EEG patterns such as the conditions which

were discussed in Section 1.1. Of these rare conditions, seizures may be common. A

seizure detection algorithm may be good at identifying when there is a seizure. The

problem is that the seizure detection algorithms will give no indication as to what is

the underlying encephalopathy.

A neurophysiologist may see a particular morphology and relate this to some-

thing similar from a previous case. The difficulty is that there are a vast number

of possible patterns that it could be. They could search through books describing a

range of neonatal EEG signals such as [4–6]. They could also search through the

large quantity of previously saved EEG recordings to look for the familiar pattern.

Both of these approaches are considered as brute force and they are time consuming

approaches. For sick neonates, time can be critical especially for seizing neonates

as the seizures may cause further brain damage. It is important to try to identify the

cause of the different brain conditions so the appropriate treatment can be adminis-

tered.

The focus of this thesis is the development of a support tool to aid neurophysiolo-
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gists in automatically identifying where they may have seen a specific pattern before.

The goal is to find the nearest matching signal of a query to a database of EEG

events. The idea is that such an approach could reduce the search time for clinicians

in finding a similar event. When the most similar event is found, the records belong-

ing to that patient can be examined. These records may contain information about

the diagnosis, medication received and other notes that may aid in the treatment of

the current patient.

This type of tool has been previously developed and tested on other time series

domains [47, 48] but has not been implemented for neonatal EEG. There has been

work that focused on different physiological signals [49–52]. The work in this thesis

is novel as it focuses on the development and application of algorithms with the

primary target being neonatal EEG signals.

Initially, this thesis will investigate brute force systems (searching the query event

against every other event in the database) in order to achieve a baseline performance

for the closest matching result. The idea is that these approaches are the next step

on from having a neurophysiologist perform a brute force search as the computer

can search faster. Following a baseline performance, more advanced data mining

and machine learning techniques, such as hash-based approaches and multi-class

classifiers are investigated to determine if a system with higher accuracy can be

achieved while lowering the query time and memory requirements.

Figure 1.1 gives a high-level flowchart of the systems that are developed. There

are two stages to each system. The first system involves creating a database of neona-

tal EEG events. This step involves taking the raw neonatal EEG time series data,

pre-processing this data to clean the signals, applying some data compression tech-

niques to convert the neonatal time series EEG data into a different representation.

These compressed events are then added to a database in the database generation

stage. In the query stage, the same pre-processing and compression steps are applied.

Instead of just being added to a database, the query event searches the databases for

potentially similar events. Following this, these potentially similar events are sorted

from highest to lowest similarity. The closest match would then be returned to the

user.
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Figure 1.1: General outline of the pattern identification system

1.4 Thesis layout

Chapter 2 aims to introduce and familiarise the reader with neonatal EEG. The

EEG, how it is recorded and the normal characteristics will be discussed. The normal

healthy EEG of a neonate will then be examined. Following this, the characteristics

of abnormal EEG will be detailed, and how these abnormal characteristics indicate

that there is a neonatal encephalopathy. EEG that contains artifacts along with the

causes of the artifacts will be discussed. The database of neonatal events will then

be introduced along with examples of EEG.

Chapter 3 introduces the idea of preparing the EEG signals and extracting mean-

ingful features from the data after the EEG signals are recorded. This preprocessing

removes some unwanted higher frequency noise and filters the signals in the fre-

quency range of interest. Once the signals are prepared, the features are extracted

to compress the time series representation into a more compressed and meaningful

representation. There are 55 features in total and they come from the time, frequency

and information theory domains. A dimensionality reduction technique is then dis-

cussed.

Chapter 4 explores the novel idea of applying brute force techniques for the

task of nearest neighbour EEG recall. In this chapter, novel recall systems are de-

veloped using the Euclidean distance and dynamic time warping distance methods.

This chapter carries out initial testing on the preprocessed time series data. This

chapter then shows that compression techniques are important when working with

the stochastic EEG signals. This is done by the development and evaluation of novel

neonatal EEG recall systems that are carried out in the feature domain and on the

dimensionality-reduced feature set. An alternative data transformation technique to

feature extraction was also developed and tested in this chapter for neonatal EEG.
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This technique transforms the neonatal EEG into a symbolic representation and then

computes the Euclidean distance metric between different compressed events. Na-

tional and international published peer-reviewed conference paper arose from this

work [53, 54].

Chapter 5 introduces the idea of using hashing for neonatal EEG event recall.

This chapter describes in detail the novel coupling of neonatal EEG compression

strategies and hashing techniques which in turn leads to the development of new

neonatal EEG recall systems. These techniques have the advantage of not requiring

a brute force search, thus time is saved as the database grows. There are three varia-

tions of hashing techniques presented. The first technique uses spectrograms from

the preprocessed data to generate hashes from the event. The technique developed to

prepare the spectrogram prior to hashing is detailed. The second technique uses the

quantification of feature data in order to make hashes. Two quantification approaches

are tested. The first approach quantizes the energy in multiple frequency bands and

the second approach quantises using a dimensionality reduced feature sebt. The final

technique developed in this chapter is an approximate nearest neighbour hashing

method that is carried out on data that has been compressed from its original rep-

resentation using one of three compression techniques. The optimisation strategy

is used to ensure the optimal parameters are found for each system detailed in this

chapter. Two internationally published peer-reviewed conference papers arose from

this work [55, 56].

Chapter 6 introduces machine learning classifiers. A high-level overview of

five different classifiers is provided. Following this, a detailed description of the K-

nearest neighbours and GMM classifiers is provided. The methods used to develop

and expand these classifiers to deal with the multi-class problem is then detailed.

There are two types of evaluations carried out on these classifiers, patient specific

and patient independent. Both of these evaluations are explained in detail. A one

page paper was submitted to and presented as a poster at an international conference,

detailing this work.

Chapter 7 presents a summary of the chapters. This chapter includes the main

findings for each chapter. Then the best results for the three previous chapters will be

detailed and compared. With the results obtained, an overall best system is proposed.

Finally, potential areas for some future work are presented.
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Chapter 2

Neonatal EEG

2.1 Introduction

The work presented in this thesis focuses on applying different techniques to the

EEG recordings from neonates for the task of nearest neighbour (NN) neonatal EEG

recall. The EEG detects and records the electrical activity of the brain, which is used

to assess and diagnose whether any neurological problems exist. The neonatal EEG

recordings used in this thesis are from term neonates that have a gestational age

(GA) ranging between 38-42 weeks [4].

An overview of the literature surrounding the different EEG events types along

with the medical equipment and international standards will be presented in this

chapter. This chapter will start with a high-level overview of how the brain pro-

duces electrical signals, the EEG signal and how it is recorded is then discussed.

Healthy term neonatal EEG will be discussed. The idea of abnormal EEG is then

introduced, and artifact EEG is later described. These should give the reader a high-

level overview of the EEG signals. The specific EEG events used in this thesis are

then discussed along with why they were chosen.

2.2 Electroencephalogram

Figure 2.1 depicts the structure of a neuron and at birth, the brain of a full-term

neonate has billions of neurons. These neurons are responsible for transmitting sig-

nals to other neurons and different parts of the body such as muscles. The dendrites

on the cell body of the neuron seen in Figure 2.1 receive the signal and it then trans-

fers this signal to other neurons via the terminal branches. This process of signal

12
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Figure 2.1: The structure of a neuron. The dendrites on the cell body of the neuron
receive the signal and it then transfers this signal to other neurons via the terminal
branches.

transmission occurs across approximately 100 billion neurons which are present in

a term neonate [57].

The EEG captures the continuous voltage fluctuations that are present at the

scalp, which occur due to signal transmission from the large number of neurons

within the brain [58]. Other methods of examining brain health such as magnetic

resonance imaging (MRI) and computerised tomography (CT) scans only provide

a snapshot of the brain and cannot be used for the continuous monitoring of brain

function. The EEG is a powerful tool that can be used to aid in the diagnosis of

different neurological disorders such as seizures [26, 59–61] and HIE [45, 46] along

with the rarer conditions such as Pyridoxine-dependent seizures [14], lissencephaly

[17] and Zellweger syndrome [19].

The EEG uses electrodes to capture the electrical activity of the brain. The

standard approach is to use non-invasive electrodes that are placed on the scalp.

Initially, the scalp is prepared by using a paste to remove the upper layer of dead skin

from the epidermis to reduce the skin impedance followed by applying a conducting

gel to reduce the impedance further so the electrodes can detect the electrical activity.

The amplitude of the recorded EEG is typically in the region of µV and varies from

patient to patient due to factors including bone density, skin thickness and resistance.
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The averaged electrical activity of the neurons are projected onto the scalp. This

represents averaged activity from particular regions of the brain. An electrode place-

ment system was developed to record the electrical activity from the different regions

of the brain which is known as the 10-20 system of electrode placement [62]. This

system sets principals to be followed when positioning electrodes around the head

to cover different cortical areas, it is presented in Figure 2.2 where each number and

letter used has a specific purpose. The lettering convention comes from the lobes of

the brain Frontal pole, Frontal, Central, Auricular, Temporal, Parietal and Occipital.

The left and right hemispheres of the brain have an odd and even numbering conven-

tion respectively. The numbers then refer to specific locations within the lobes. The

z is used for electrodes that are placed on the mid-line between the hemisphere. The

10-20 system was modified for use with neonates as depicted in Figure 2.2.

When evaluating an EEG, it is the potential difference between electrodes that

is examined where one of the electrodes is used as a reference electrode. The elec-

trodes are arranged in configurations known as montages. Several different types of

montages exist with the most common being the bipolar and referential montages

[63]. The bipolar montage arranges the channels in a traverse arrangement in which

the second lead in the first channel will then be the first lead in the second channel

[63], such as T 4−C4 then C4−Cz. The referential montage then uses a constant

reference electrode that will be common in all the electrode pairs. The montages

shown in Figure 2.2 are bipolar montages.

The work in this thesis used a bipolar montage as the database of EEG events was

annotated using the bipolar montage by the neurophysiologist. The primary reason

for using the bipolar montage is because the data used in this thesis was annotated

by neurophysiologists who used the bipolar montage. This means the annotations

were specifically for the bipolar montage. The channel pairs that were used for the

vast majority of the work were F4-C4, C4-O2, F3-C3, C3-O1, T4-C4, C4-Cz, Cz-

C3 and C3-T3. This montage is presented in Figure 2.2 (a). In this configuration,

it is clear that the electrodes are traversing from the frontal to the occipital lobes

and then from the right hemisphere to the left hemisphere in a connected manner.

There are some EEG events recorded in this thesis that had fewer electrodes and

used the following bipolar montage F4-P4, F3-P3, T4-Cz and Cz-T3. This montage

is presented in Figure 2.2 (b). The data used in this thesis was recorded at the Cork

University Maternity Hospital (CUMH). The EEG machines that are most commonly

used in CUMH are the NicoletOne ICU Monitor, Nihon Kohden Neurofax EEG-
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Figure 2.2: The 10-20 system of electrode placement. The upper montage is for
channel pairs F4-C4, C4-O2, F3-C3, C3-O1, T4-C4, C4-Cz, Cz-C3 and C3-T3. The
lower montage is for the channel pars F4-P4, F3-P3, T4-Cz and Cz-T3
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Figure 2.3: Incubator with EEG machine and other monitoring equipment with per-
mission from the INFANT Research Centre

Table 2.1: Table showing the different EEG bands

Name Frequency range (Hz)
Delta 0 - 4
Theta 5 - 7
Alpha 8 - 13
Beta 13 - 30

1200 Diagnostic and Monitoring Platform and Xltek EEG machine. The commonly

used sampling frequency for the EEG signals is 256Hz. Figure 2.3 shows a baby

connected to multiple monitoring machines including an EEG machine which is

located at the right.

2.3 Normal and abnormal EEG

The EEG varies with both time and frequency. Four frequency groups of the EEG

are used to describe the activity of the signals, and these are presented in Table 2.1

[64]. These frequency bands are used in the literature and by experts to describe

characteristics of the EEG [5, 64, 65].
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2.3.1 Normal characteristics

Normal healthy background EEG is stochastic with a relatively constant amplitude

consisting of mixed frequencies [64] such as that shown in Figures 2.4 and 2.5.

Figure 2.4 shows an example of healthy neonatal EEG from the active sleep (AS)

stage of a neonate and Figure 2.5 shows an example of healthy neonatal EEG from

the quiet sleep (QS) stage. Although healthy EEG is stochastic, it does follow some

general pattern types as seen from Figures 2.4 and 2.5, and more examples can

be found in [5]. Normal EEG typically has symmetry, meaning the left and right

hemispheres should roughly be similar to each other [65]. The range of voltages

and frequencies should be roughly similar on both hemispheres. Figure 2.5 shows

symmetry across both hemispheres, bursts of activity which have similar amplitudes

occur across both hemispheres simultaneously. In a healthy term neonate, the EEG

activity should be synchronous [65], meaning for example when a burst of activity

happens it should happen across all channels simultaneously. An example of this

is also from Figure 2.5 as there are bursts of activity across all channels during the

quiet sleep stage. The burst appears to start and finish around the same time in all

channels. These bursts of higher amplitude activity followed by the low amplitude

sections of EEG are a pattern known as the tracé alternant (TA) pattern which was

discussed in Chapter 1. The TA pattern is typical for normal healthy term neonates,

and this pattern occurs during the QS stage.

Healthy term neonates sleep for approximately two-thirds of their time spent as

a neonate [66]. This sleep consists of four main sleep stages and the amount of time

spent in the different sleep stages can assist in determining maturation [35]. These

four states were described in [37] and are summarised here;

1. Active sleep - combined theta and delta frequency waveforms with intermixed

low-amplitude irregular segments (alpha frequency and faster rhythms) (Fig-

ure 2.4)

2. Quiet sleep - a combination of high amplitude slow waves, predominantly in

the delta band, and TA segments (beta and theta activity alternating with delta

activity) (Figure 2.5)

3. Indeterminate sleep (IS) - features of both AS and QS

4. Wakefulness
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Figure 2.4: A 30 second example of healthy neonatal EEG from the active sleep
stage of a term neonate. The first four traces are EEG in the bipolar montage and the
last trace is ECG.

Figure 2.5: A 30 second example of healthy neonatal EEG from the quiet sleep
stage of a term neonate. The pattern present is the TA pattern. The first four traces
are EEG and the last trace is ECG. On the EEG traces high amplitude bursts of
multi-frequency activity interspersed with periods of more suppressed activity can
be seen.
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Figures 2.4 and 2.5 show examples of the active sleep and quiet sleep stages

respectively wherein Figure 2.5 the TA pattern is seen. The “Burst” and “Supp”

annotations represent the high and low amplitude mixed frequency activity and

do not refer to the burst and suppression activity found in the abnormal EEG of

sick neonates. The two classes of EEG used in this thesis that are not abnormal or

corrupted with artifact are the classic normal background EEG and the TA pattern.

The following section will detail elements of abnormal EEG and provide examples

where necessary.

2.3.2 Abnormal characteristics

The first abnormal characteristic to be discussed is the presence of neonatal seizures.

These signals represent the most distinctive sign that neurological disorder is present

in the neonate [4]. Neonatal seizures are associated with an adverse effect on the

neurodevelopmental outcome [67]. Seizures occur when there is an excessive syn-

chronous electrical discharge of neurons within the central nervous system [4]. In

neonates that have seizures, the majority of the time these seizures show no clinical

signs (66.67%), which is known as subclinical seizures [8]. These seizures need to

be identified through examining the electrical activity of the brain using EEG.

The EEG is known as the gold standard for identifying seizures and can be used

to assist in quantifying the level of brain damage [7]. The EEG is very complex,

difficult to analyse and changes overtime, therefore an experienced neurophysiolo-

gist is needed to diagnose the seizures using the EEG recordings [4]. The seizure

activity seen on the EEG can show a repetitive and evolving pattern of electrical

activity that can be in a specific location (localised) or across the entire EEG (global).

The neurophysiologist can locate the start and end time of the seizure activity from

the EEG recordings. Figure 2.6 shows an example of a seizure in a neonate; the

repetitive discharges of electrical activity are clear. For this particular example, there

is seizure activity present across all channels of the montage and this is therefore

known as a global seizure.

The next abnormal brain activity to be discussed for term neonates is burst sup-

pression. This activity is normal when seen in preterms and how it evolves overtime

is usually an indication of brain health. Term neonates that suffer from HIE also

may have this pattern and it can occur in term neonates with rare disorders such as

Ohtahara syndrome and early myoclonic encephalopathy [68]. The activity has EEG
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Figure 2.6: A 30 second example of rhythmic seizure activity present on all 8 bipolar
channels.

bursts separated by abnormally low voltage (< 5µV ) sections called an interburst in-

terval (IBI) [65]. The burst suppression activity has a resemblance to the TA pattern

in the QS stage of a term neonate [69]. This resemblance is due to the characteristics

of TA pattern which contain high amplitude bursts of multi-frequency activity rang-

ing from 50 - 150 µV, interspersed with periods of more suppressed activity at 25

– 50 µV [65]. Term neonates with an occurring burst suppression pattern typically

have a bad projected outcome although some neonates may only have a mild to

moderate deficit [70]. Comparing Figures 2.5 and 2.7 the resemblance between the

burst suppression activity and the TA pattern can be be seen, although the amplitude

of the suppressed sections is much higher for the TA pattern.

There are other shorter duration abnormal characteristics such as sharp wave

transients, which are a combination of spikes and sharp waves. Abnormal sharp

waves are characterised as high voltage, generally focal, periodic or semirhythmic

activity and would appear as a sudden change from the background activity [4].

Sharp waves typically last from 100 to 200 milliseconds and sharp transients that

last less than 100 milliseconds are commonly called spikes [65].

There are other indicators of abnormal EEG such as abnormal symmetry and a

lack of synchronisation. As opposed to the normal symmetry mentioned in Section

2.3.1, when abnormal symmetry occurs there is a clear difference in the background

activity between the two hemispheres. This difference could be an average voltage



CHAPTER 2. NEONATAL EEG 21

Figure 2.7: Example of burst suppression activity. The bursts are of a short duration
and present across all channels. The respiration and ECG traces were not recorded
for this patient.

difference between the hemispheres greater than 2 : 1 [65]. The asymmetry events

are used in the diagnosis of brain problems as they can occur due to the presence of

focal lesions. Asynchrony is when there is a lack of synchronisation. Healthy term

neonates should have synchronised activity; the presence of asynchronous activity

in a term neonate is abnormal. If the brain activity occurs in some channels and does

not occur in other channels within 1.5 seconds, it is considered as asynchronous

activity [6, 65]. The asynchronous activity would be present in conditions that cause

diffuse encephalopathy [6] where encephalopathy is a disease of the brain that alters

the structure or function.

2.4 Artifact EEG

When an EEG is being analysed the experts are concerned mainly for the unex-

pected behaviour of the EEG, and thus they need to investigate unfamiliar EEG

patterns. Some of the anomalies present in neonatal EEG are due to the presence of

disturbances in the recording of the EEG. Some of these are obvious although some

require more attention to classify as they may resemble seizure or another abnormal

event [27, 29, 59].

EEG is recorded in a hospital setting using equipment powered by mains elec-
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Figure 2.8: Example of the frequency spectrum showing 50Hz mains interference
which was computed from 60 seconds of EEG. The delta band (0−4Hz) has a high
amplitude for this example.

tricity. The frequency of the mains electricity is a common source of electrical

interference [71] and may be more prominent on the EEG if there is poor contact

between the electrode and the head. This reduced contact then appears as a thicken-

ing of the EEG trace. As the mains frequency is known to be 50Hz the artifact can

be easily removed using a notch filter which is inbuilt in EEG recording machines.

When the mains interference is present, it can be seen from the frequency spectrum

as seen in Figure 2.8. An interesting observation from Figure 2.8 is that the delta

band, described in Table 2.1, has a high amplitude for this particular example. Fig-

ure 2.9 shows an example of the mains frequency interference across all the EEG

channels. This figure is 5 seconds in duration, and the disturbance is high-frequency

activity.

When an electrode detaches or “pops”, an artifact is introduced into the EEG.

Often the resulting artifact has a high amplitude and is unpredictable as seen in

Figure 2.10 where electrode T4-C4 was annotated as a bad electrode. An electrode

pop or loose electrode will also pick up the mains frequency more than electrodes

with good contact. These electrode detachments have caused false detections in

seizure classification systems [27].

When a baby is being patted or stroked an artifact may occur on the EEG as a



CHAPTER 2. NEONATAL EEG 23

Figure 2.9: A 5 second example of the mains artifact on all EEG channels. The high
frequency activity has appeared as a thickening of the EEG trace. The ECG trace
(green) was not connected and picked up the mains artifact clearly.

Figure 2.10: Example of the bad electrode artifact on channel T4-C4. This artifact
has caused high amplitude and high frequency interference on T4-C4.
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Figure 2.11: Example of the pulsatile artifact on channels C4-Cz and Cz-C3. The
pulses can be time locked with the ECG trace as depicted by the overlaying dashed
lines.

result. This pattern can look rhythmic and a video recording can be the best way to

distinguish this artifact from a seizure event. The muscle activity that occurs when

a baby is chewing on a pacifier or crying may cause a fast irregular low amplitude

artifact. This type of activity is not normally misclassified as seizure activity.

When an electrode is placed in the vicinity of a pulsing vessel, an artifact may

be present on the EEG trace. This artifact is rhythmic and can be identified when

looking at the electrocardiogram (ECG) trace [5], which is commonly recorded when

a patient is having an EEG recording taken. Figure 2.11 shows an example of the

pulsatile artifact. The pulses can be matched to the ECG trace as the overlaying lines

indicate.

In some EEG recordings, the movement of a baby when it is breathing can cause

an artifact to appear on the EEG trace, which can be hard to detect [72]. This artifact

is known as the respiratory artifact and can occur when a baby is on a ventilator

or breathing on its own. When the baby is on a ventilator, the pattern is regular

and rhythmic. When a baby is breathing on its own, the pattern is less regular but

rhythmic and follows the baby’s natural breathing pattern. This pattern type is known

to be a cause of false detection in seizure detection algorithms [59, 72]. A way in

which this artifact is detected in the clinical setting is by adding a respiratory trace,

this is done by placing a sensor in the area of the baby’s abdomen. Then when

there is a suspected rhythmic pattern, it can be compared against this trace [71].
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Figure 2.12: Example of the respiration artifact on channels F4-C4, C4-Cz and Cz-
C3. The rhythmic pattern of the respiration trace is present on three EEG channels.
Channel F4-C4 provides the clearest depiction of the respiration artifact.

Automated approaches for respiration artifact removal have also been developed

[72]. The respiration trace and the rhythmic activity of the EEG activity should align

if the respiration is the cause of the rhythmic pattern. Figure 2.12 shows an example

of this artifact where F4-C4 is the channel that shows the artifact the clearest. The

trend of F4-C4 is correlated with the respiration trace (”RESP1”).

2.5 Database

The neonatal EEG data that was used in this thesis came from a variety of different

signal patterns including seizure data and sleep data. In seizure classification a

decision is made using short duration epochs such as 8 second epochs [29], in sleep

state classification a decision is made over longer duration epochs like 10 minute

epochs as were used in [40] and in HIE grading a class probability is generated

medium duration epochs such as 80 seconds as was discussed in Chapter 1. As

different classification systems focus on different fixed time durations to make their

decisions, it was decided that the work in this thesis would initially focus on single

channel analysis of events that are 60 seconds in duration. Table 2.2 shows the

six different pattern event types used along with the number of occurrences of that

particular event and the number of patients for each particular event class. There were



CHAPTER 2. NEONATAL EEG 26

50 patients in total with a total of 430 recorded events. Written informed parental

consent was obtained, and the study had ethical approval from the Research Ethics

Committee of the Cork Teaching Hospitals and the data was fully anonymised.

Table 2.2: Event database

Event number Event name Number of events Number of patients
1 Background 274 18
2 Short seizure 12 7
3 Tracé alternant 40 10
4 Long seizure 23 10
5 Pulsatile artifact 55 2
6 Respiration artifact 26 3

The background events (event 1) came from a mix of patients that were one

minute in duration and the annotator deemed them to be normal background activity.

The short seizure events (event 2) consists of approximately 25 seconds of annotated

seizure activity and 35 seconds of what the annotator deemed to be normal data.

Figure 2.13 shows an example of short seizure data, where the seizure is present on

channel T 4−C4 and is highlighted by the pink box located around it. This particular

seizure is localised around the area of T 4−C4 as there is no synchrony with the other

channels. This example figure is 60 seconds in duration. The TA events (event 3) is

the TA pattern that was previously discussed. Figure 2.5 shows an example of the

TA pattern where the high and low amplitude sections are clearly seen. This patient

is healthy, and the signals are symmetrical and synchronous. The long seizure events

(event 4) come from patients that had annotated seizure episodes that were greater

than 60 seconds in duration. Figure 2.6 showed an example of the global seizure

activity as it is present across all the recorded channels. The pulsatile artifact events

(event 5) and respiration artifact events (event 6) came from only two and three

patients respectively. Figures 2.11 and 2.12 are examples of pulsatile and respiration

artifacts respectively.

The six different event classes come from three different types of EEG. The back-

ground and TA events are considered normal events. The short and long seizures

are considered as abnormal events. The respiration and pulsatile events are artifact

events. This gives a mix of events across the normal, abnormal and artifact EEG

event types which can occur during EEG recordings. Pulsatile and respiration arti-

facts were chosen as they have the potential to be misclassified as seizures in some

seizure detection algorithms [59]. Adding these artifacts tests each system’s ability
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Figure 2.13: EEG with a localised short seizure. This seizure occurs on channel
T4-C4, it is approximately 24 seconds in duration and is highlighted by the box.

to identify the same event type correctly.

The work presented in this thesis is aimed at the development and analysis of NN-

of-one recall systems. As it is too expensive and time-consuming, an experienced

neurophysiologist was not able to assess the NN matches found using the systems.

As a proxy, a multi-class classification problem is used, where the performance of

the system is evaluated by checking if the recalled event has the same event class

as the query. This is the reason why multiple different annotated event types were

used.

2.6 Summary

This chapter introduced and discussed the neonatal EEG, from how it was recorded

to the different possible signal types that can occur. The high-level overview was

provided to introduce the reader to a variety of EEG signals to show the complex na-

ture of the neonatal EEG. The neonatal EEG events database that is used throughout

this thesis was also discussed.



Chapter 3

Neonatal EEG feature extraction

3.1 Introduction

As was seen earlier in Chapter 1, automated analysis systems frequently use features.

The advantage of using features is that they have been chosen because they discrim-

inate between different conditions or event classes, such as seizure and non-seizure

for example [33]. The success of automated systems that use features is the reason

why features were used throughout this thesis.

Neurophysiologists develop skills and domain knowledge from extensive train-

ing and practical experience that enable them to easily notice changes in both the

time and frequency of the signals. This domain knowledge was used to extract mean-

ingful features that quantify the data [33, 73, 74]. These features are used to help

encompass what the experts see and use in their evaluations. Before extracting fea-

tures from the EEG, the EEG must first be preprocessed to clean it by removing

unwanted noise and frequencies. Post feature extraction, the features may have their

dimensionality reduced to save computational resources.

This chapter is important as it details how the neonatal EEG time series data

is represented in the feature space. This feature space representation along with a

dimensionality reduction technique was used in the following three chapters of this

thesis.

This chapter will describe all the signal processing steps. Initially, the preprocess-

ing steps are discussed, and an example is presented. Following this, the features

that were extracted are described. Finally, the technique used for dimensionality

reduction is presented with examples.

28
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3.2 Pre-processing of neonatal EEG

Neonatal EEGs are typically recorded using a sampling frequency fs of 256Hz or

higher as noted in [27, 37, 75]. As discussed in the previous chapter there are four

main frequency bands that capture the most information for neonatal EEG. These

bands are alpha (8−13Hz), beta (13−30Hz), delta (0−4Hz) and theta (5−7Hz)

waves [64]. The frequency ranges that are of interest are often far below the recorded

frequency of 256Hz (Nyquist frequency 128Hz). Having higher frequency signals

increases the computational cost and memory requirements of any operations on

the recorded data. Signals with frequencies > 30Hz may also have mains frequency

interference (50Hz) as well as muscular artifact [76].

For this reason, the signal undergoes a two step process of filtering and downsam-

pling [77]. Step one is to apply a low pass filter to the signal to eliminate the higher

frequency components. The low pass filter had a cutoff frequency set to 12.8Hz,

which is used to eliminate aliasing. The second step is to downsample the signal to

32Hz (Nyquist frequency 16Hz). Following this, the signals are high pass filtered

with corner frequency set to 0.5Hz to remove any low frequency and DC compo-

nents. An illustration of the pre-processing stage is given in Figure 3.1. In this image,

the output of the low pass and high pass operations are coupled into a single band-

pass filter. The downsampling provides a significant reduction in the amount of data

needed to represent the data accurately. It is more efficient to downsample the EEG

in order to reduce the amount of data stored and processed by each of the methods

presented in this thesis.

These signals are now in the form of x = (x1,x2, ...,xn) for time t = (1,2, ...,n),

these signals will either be used directly by algorithms which are discussed in later

chapters, or features will be extracted from these signals as is discussed next.

3.3 Neonatal EEG feature extraction

Many algorithms exist that work well when applied directly to physiological time

series signals [26,78]. There are also some systems that would typically work better

when the data is compressed into a quantitative representation [33, 60, 79]. The

features used in this work were not randomly used quantitative features. The set of

55 features were designed with input from domain experts (neurophysiologists) to

capture the meaning associated with the EEG signals. This input gave the signals a
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Figure 3.1: The pre-processing stages. Initially the bipolar montage is applied to the
individual EEG channels. Following this the bipolar montage channels are band-pass
filtered between 0.5Hz and 32Hz. Finally the signals are downsampled by 8 to make
the new sampling frequency 32Hz.
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more meaningful representation. The feature set used was previously used in other

studies for seizure detection [27, 29, 33, 60], artefact detection [80] and HIE grading

[46].

The feature set is drawn from three domains which are the frequency, time and

information theory domains. Table 3.1 shows a list of 55 features that are used.

Table 3.1: Extracted features

Domain Features

Time

• Non-linear line length
• Number of maxima and minima
• Root mean squared amplitude
• Skewness
• Kurtosis
• Hjorth parameters
• Zero crossings (raw epoch, ∆,

∆∆)
• Non-linear energy
• Autoregressive modelling error

(model order (1-9))
• Variance (∆ and ∆∆)

Frequency

• Total power
• Power in 2 Hz sub-bands((0-2Hz),

(1-3Hz),. . . ,(10-12Hz))
• Normalised power in subbands
• Peak frequency
• Spectral edge frequency

Information

Theory

• Shannon entropy
• Singular value decomposition entropy
• Fisher information
• Spectral entropy

The feature distributions are examined by plotting the probability density func-

tions (PDF) of the extracted features. The work in this thesis primarily focuses on

the six different neonatal EEG types which were discussed in Chapter 2. In order to

carry out feature extraction on each of these event types an 8-second sliding window

with a 50% overlap was used. This window can capture elements of the short seizure

events as the minimum duration is defined as being ten seconds [81]. Each event

recording consists of 13 epochs and results in a compression from 1920 samples (60

second EEG at 32Hz) to 55×13 or 715 feature values in total.

In the coming sections, each PDF plot will contain the PDF for each of the six

EEG events. The aim of this is to highlight the discrimination between the different
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events types. The PDFs shown in this chapter were generated using 150 randomly

sampled feature epochs from each of the six events. The low number of samples

used was because there is only a small database available especially for the short

seizure events.

3.3.1 Time domain

The time domain features described in this section include;

• Line length

• Root mean squared amplitude

• Skewness

• Kurtosis

• Hjorth parameters

• Number of zero crossings

• Nonlinear energy

• Autoregressive modelling error

Line length

The line length (L) as given by Equation 3.1 is a feature used to measure the com-

plexity of a signal,

L(X( j)) =
ns−1

∑
k=1

∣∣x j(k+1)− x j(k)
∣∣ (3.1)

where X( j) is the jth epoch for the feature, x j is the time series data contained in the

jth sliding window and ns is the size of the sliding window. This equation is a sum

of the absolute distances between consecutive data points within the epoch. This

feature was initially used when working with seizures to detect seizure onset [82].

Figure 3.2 shows the PDF for the line length feature for each of the event types. From

this figure, it can be appreciated that there is a lot of overlap with the TA, pulsatile

artifact and long seizure data having a larger line length. An interesting observation

here is that the mode for the short seizure is closer the mode of background data as
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Figure 3.2: Line length PDF plot for the six neonatal EEG event types

opposed to the long seizure mode. This because the short seizure events also have

background data which would typically make up approximately 66% of the overall

event.

Root mean squared amplitude

The root mean square (RMS) amplitude is given by Equation 3.2.

RMS(X( j)) =

√
1
ns

ns

∑
k=1

x2
j(k) (3.2)

The RMS value can be used as a signal strength estimator [83, 84]. It is also known

as the quadratic mean, and it is good at detecting amplitude differences between

different events. Figure 3.3 shows the different event class distributions. There is

considerable overlap between the event classes and the TA pattern, pulsatile artifact

and long seizure events have the highest RMS amplitudes. These high RMS ampli-

tude values were expected as these types of events have higher amplitudes in general

as compared to background data and the slowly changing respiration artifact. The
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Figure 3.3: RMS amplitude PDF plot for the six neonatal EEG event types

long seizure events also have the most spread.

Skewness

Skewness as calculated from Equation 3.3 is a measure of the amount of asymmetry

that exists in the probability distribution of the data about the mean [85]. If the data

is not symmetric, it will either be positively or negatively skewed. Typically data

that has a mean of zero would be symmetric as the data would be evenly distributed

at either side of the mean.

Skewness(X( j)) =
1
ns

∑
ns
k=1(x j(k)−µ j)

3(
1
ns

∑
ns
k=1(x j(k)−µ j)2

)3/2 (3.3)

Where µ j is the mean of the jth epoch x j given by:

µ j =
1
ns

ns

∑
k=1

x j(k) (3.4)

Figure 3.4 shows that the distributions are overlapping and suggests that the data

appears to be symmetric. The data appears to be symmetric as the mode for the
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Tracé Alternant
Long seizure
Respiration artifact
Pulsatile artifact

Figure 3.4: Skewness PDF plot for the six neonatal EEG event types

majority of the event types is in the region of zero and a skewness value of zero

means the data is symmetric and not skewed. The pulsatile artifact, TA pattern and

background data all have narrow distributions around their respected modes. The

PDF of the respiration artifact has a large distribution range, and a mode located just

greater than minus one which is interesting as it differs from all other events.

Kurtosis

Kurtosis is a measure of the peakedness of the distribution of the data [86]. Kurtosis

focuses on the tails of the probability distribution from the data [87]. The kurtosis

for a normal distribution is three. Distributions with few outliers are in the region of

three or lower while distributions with many outliers would have a larger kurtosis

value. Kurtosis is calculated using Equation 3.5:

Kurtosis(X( j)) =
1
ns

∑
ns
k=1(x j(k)−µ j)

4(
1
ns

∑
ns
k=1(x j(k)−µ j)2

)2 (3.5)

Figure 3.5 shows the kurtosis values plotted for each of the event classes. The
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Figure 3.5: Kurtosis PDF plot for the six neonatal EEG event types

repetitive pattern of the pulsatile artifact has the narrowest distribution. The modes

of the background, short seizure and respiration artifact event types are in the region

of three which indicates they a normal distribution. The vertical black line in Figure

3.5 corresponds the kurtosis value of three.

Hjorth parameters

The Hjorth parameters were introduced in [88] as a method to produce a quantitative

description of the EEG trace. The first Hjorth parameter is the activity also known

as the variance, and this measures the spread of the data as given by Equation 3.6.

Activity(X( j)) = σ
2
x j
=

1
ns

ns

∑
k=1

(x j(k)−µ j)
2 (3.6)

The second Hjorth parameter is mobility, calculated using Equation 3.7. This

gives a measure of the standard deviation of the slope with reference to the standard

deviation of the amplitude [88], therefore it is based on the first derivative of the
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EEG signal (∆x j(k) = x j(k+1)− x j(k)).

Mobility(X( j)) = σ
∆x j

/σx j (3.7)

Here σ
∆x j

is the standard deviation of the first derivative of the EEG epoch x j. The

third Hjorth parameter is complexity, calculated using Equation 3.8 and it compares

the signal to a pure sine wave. The higher the dissimilarity to the pure sine wave the

larger the complexity value. A pure sine wave would return a complexity value of

one.

Complexity(X( j)) =
σ

∆2x j
/σ

∆x j

σ
∆x j

/σx j

(3.8)

Where σ∆2x j
is the standard deviation of the second derivative of the EEG epoch x j

(∆2x j(k) = ∆x j(k+1)−∆x j(k)) and denominator is the mobility.

In Figure 3.6 (a) the PDF for the activity is plotted. The activity for background

and short seizure events have modes in similar areas and are highly overlapping. This

may have resulted from the short seizures being partly comprised of background data.

The modes of the other event types are more dispersed. In Figure 3.6 (b) the PDF

for the mobility feature is plotted. The most unique event in this plot is the pulsatile

artifact as it has a narrow distribution range about its mode. The other events have a

more variable distribution. In Figure 3.6 (c) the PDF for the complexity is plotted.

The events are overlapping with the long seizure event having the largest distribution

as it is spread across the full range of values. The pulsatile artifact has a lower mode

than the other events and the background event has the largest mode value.

Number of zero crossings

The number of zero crossings given by Equation 3.9, is the number of occasions

when the signal amplitude has a change of sign within the EEG signal. It is related

to changes in frequency [89].

zero(X( j)) =
ns−1

∑
k=1

{
0, if x j(k+1) · x j(k)≥ 0

1, if x j(k+1) · x j(k)< 0
(3.9)

The number of zero crossings were also computed for the first and second deriva-

tive of the epoch. The first derivative represents the number of local EEG maxima

and minima. Figures 3.7 (a), (b) and (c) shows the zero crossing plots for the epoch,
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Figure 3.6: Hjorth parameters PDF plots for the six neonatal EEG event types. (a) is
activity. (b) is mobility. (c) is complexity

first derivative and second derivative of the epochs respectively. The six event types

are highly overlapping for Figure 3.7 (a), with the pulsatile artifact having the nar-

rowest distribution. Figure 3.7 (b) shows more separation between the events with

the short seizure event having the largest mode value. The TA event is now the

most focused event though there still exists overlap with other events. Figure 3.7 (b)

shows that the TA event group is still the most focused. There appears to be more

separation between the short seizure event and the TA event.

Nonlinear energy

This feature looks at the amplitude as well as the changing amplitude in the signal

as seen in Equation 3.10.

NLE(X( j)) =
1

ns−2

ns−1

∑
k=2

x j(k)2− x j(k−1)x j(k+1) (3.10)

This feature was published by [90] who described it as Teager’s algorithm which

was later used for seizure detection in adult patients with suspected epilepsy [91].

Figure 3.8 shows the nonlinear energy PDF plot. The background and short seizure
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Figure 3.7: Zero crossing PDF plots for the six neonatal EEG event types. (a) Time
series. (b) First derivative of time series. (c) second derivative of time series

events are closely aligned and have the shortest distribution range and the long

seizure event class is more separated as it has a larger mode. The pulsatile artifact

event has a multimodal distribution.

Autoregressive modelling error

An autoregressive (AR) model is used to predict future time series values (x̂(k)) from

a linear combination of past observations x(k− i) and is given by Equation 3.11,

x̂(k) =
np

∑
i=1

ϕix(k− i)+ εk (3.11)

where ϕi is the ith AR coefficient and np is the AR order. White noise with a zero

mean (εk) is added to account for error that may arise in the prediction step. When

performing AR modelling, the data is split into two sections. The first ns
2 samples

are used to train the ϕi parameters using the Yule-walker method [92]. The second

half of the data are used to perform one step ahead prediction. The percentage fit is
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Figure 3.8: Nonlinear energy PDF plot for the six neonatal EEG event types

then calculated using Equation 3.12,

AR f it(X( j)) = 100

(
1−

∑
ns
k= ns

2 +1

∣∣x j(k)− x̂ j(k)
∣∣

∑
ns
k= ns

2 +1

∣∣x j(k)− x̄ j(k)
∣∣
)

(3.12)

where

x̄ j =
1

ns/2

ns

∑
k= ns

2 +1
x j(k) (3.13)

AR modelling has previously been used in the analysis of EEG for the task of

person identification [93]. The approach used in this thesis generated nine features

corresponding to the AR error when using models of order (np) from one to nine.

The error is the difference between the predicted and actual value of the data. Figure

3.9 shows the PDF plot for the second-order model fit. The graph for the second-

order model was chosen as it had the most distinctive distributions for the different

event types. There is a lot of overlap for the features. The mode of the short seizure

distribution is in the region of 50%. The pulsatile artifact event has the narrowest

probability density band with a mode in the region of 70%. The respiration artifact

and long seizure events appear to be multimodal distributions.
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Figure 3.9: 2nd order autoregressive model fit error PDF plot for the six neonatal
EEG event types



CHAPTER 3. NEONATAL EEG FEATURE EXTRACTION 42

3.3.2 Frequency domain

The frequency content of the neonatal EEG can be viewed by computing a Fast

Fourier Transform (FFT) followed by computing the power spectral density (PSD)

of the FFT. The FFT created a frequency representation that contained 256 frequency

bins (n f ), which are complex coefficients and the PSD is then computed. This PSD

is equivalent to squaring the absolute values of the FFT and dividing the resulting

values by n f . The first half of the PSD was used giving n f
2 frequency coefficients

for the feature extraction. The PSD values can be represented in the form a j =

[a j(0),a j(1),...a j(i),...a j(
n f
2 )] where at the frequency i fs

n f
the amplitude is a j(i) when

the sampling frequency is fs. This process enables the frequency components of the

EEG to be visualised. An example of neonatal EEG is seen in Figure 3.10, with

Figure 3.10 (a) showing the time domain representation of 8 seconds of EEG. Figure

3.10 (b) shows the PSD of the frequency spectrum which was computed using a 256

point FFT. Most of the energy is contained in the lower frequency components of

the signal as seen in Figure 3.10 (b).

The frequency domain features described in this section include;

• Total power

• Power in 2Hz sub-bands ((0-2Hz), (1-3Hz), . . . , (10-12Hz))

• Normalised power in 2Hz sub-bands ((0-2Hz), (1-3Hz), . . . , (10-12Hz))

• Peak frequency

• Spectral edge frequency (frequency under which a certain percentage of the

power in the PSD lies)

• Spectral entropy

Total power

The total power is the sum of the frequency bins up to the 12Hz bin and is given by

Equation 3.14.

Ptot(X( j)) =
12
( n f

fs

)
∑
k=0

a j(k) (3.14)
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Figure 3.10: An 8 second epoch from healthy normal EEG (a). The PSD of this
epoch is displayed in (b), which was computed using a 256 point FFT.
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Figure 3.11: PDF plot for the total power contained within the region of 0−12Hz
for the six neonatal EEG event types

Where a j(k) is the power in bin k of epoch X( j) and a j(
12n f

fs
) is the power in the

12Hz bin. Figure 3.11 shows the total power PDF plot for the six different event

types. The short seizure and background events have a similar amount of power. The

mode of the respiration artifact is higher than the modes of the short seizure and

background events although it is lower than the TA event. The background, short

seizure and respiration artifact events have narrower distribution bands than the other

events. The total power is a common feature in neonatal EEG analysis and was used

in various studies including [33, 39, 94].

Power in sub-bands

The previous feature looked at the total power over the frequency bins ranging from

0− 12Hz. This subset of features looks at the power in frequency bands of width

2Hz starting at 0− 2Hz with increments of 1Hz and is calculated using Equation



CHAPTER 3. NEONATAL EEG FEATURE EXTRACTION 45

Sub-band power (W/Hz)
x1040 1 2 3 4 5 6

O
cc

ur
re

nc
es

x10-4

0

0.5

1

1.5
a

Sub-band power (W/Hz)
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

O
cc

ur
re

nc
es

x10-4

0

2

4

6

8
b

Background
Short seizure
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Figure 3.12: PDF plots for the power in sub-bands (a) 0−2Hz and (b) 3−5Hz for
the six neonatal EEG event types

3.15.

P0−2Hz(X( j)) =
2
( n f

fs

)
∑

k=0
( n f

fs

)a j(k) (3.15)

This feature has previously been used for the detection of seizure onset [95] and

epilepsy diagnosis [96]. The events will have different PDFs for different energy

bands. This is demonstrated in Figure 3.12 (a) and (b). Figure 3.12 (a) shows the

PDF for the 0−2Hz frequency band in which the shortest seizure distribution is the

most focused out of all the events. It also has the lowest mode sub-band power. The

TA, long seizure and pulsatile events have the largest distribution range and are the

most overlapping. Figure 3.12 (b) shows the PDF for the 3−5Hz frequency band.

They are different from the 0−2Hz frequency band. The short seizure distribution

still has the lowest mode and is the smallest distribution range out of all the events.

The respiration event has a larger range and is more overlapping with other events.

As the signal frequency increases, the power typically decreases. This decrease in

power is typical for neonatal EEG and is backed up by Figure 3.10 (b) which shows

the lower frequency components having a higher amplitude.
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Figure 3.13: PDF plots for the normalised power in sub-bands (a) 0−2Hz and (b)
3−5Hz for the six neonatal EEG event types

Normalised power in sub-bands

The next set of features that were extracted were the normalised power in the sub-

bands which is given by Equation 3.16.

Pnorm0−2Hz(X( j)) =
P0−2Hz(X( j))

Ptot(X( j))
(3.16)

This equation is merely the power in a specific sub-band divided by the total power

for the epoch Ptot(X( j)). This enables the examination of how much of the total

power is captured in the various sub-bands. This feature has previously been used

for seizure detection [29]. Figure 3.13 (a) and (b) shows the normalised sub-band

power in the bands 0−2Hz and 3−5Hz respectively. There is a lot of overlap in the

PSD images for the normalised sub-band power. In Figure 3.13 (a) the pulsatile and

respiration artifacts appear to have muiltimodal distributions. The background and

TA events have the narrowest distribution bands with modes within a small range of

each other. In Figure 3.13 (b) the modes of the normalised power are all lower than

the modes in Figure 3.13 (a). In Figure 3.13 (b) the pulsatile artifact has a single

mode and it has a narrow distribution band.
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Figure 3.14: Peak frequency PDF plot for the six neonatal EEG event types

Peak frequency

The peak frequency is the frequency component in the FFT that had the highest

amplitude. This feature was initially defined by [97] as the dominant frequency and

is found using Equation 3.17.

fpeak = kpeak
fs

n f
, where kpeak = argmax

k
a j(k) (3.17)

As the peak frequency is the component with the highest amplitude in the FFT, it

would be expected that this frequency would have a significant contribution to the

underlying structure of the EEG signal. Figure 3.14 shows the PDF plots for the

different events which are overlapping although they have different distributions.

The distribution of the pulsatile artifact is the most separated distribution and it has

the largest peak frequency mode value. An explanation for this is that the pulse of

a neonate can be in the region of 170 beats per minute [98] which is approximately

2.8 Hz.
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Figure 3.15: PDF plots for the spectral edge frequency at (a) 80% and (b) 95% for
the six neonatal EEG event types

Spectral edge frequency

The frequency under which a certain percentage of the power in the FFT lies is

defined as the spectral edge frequency (SEF). This feature was initially used to

assess the depth of anesthesia [99]. The SEF feature was extracted for 80%, 90%

and 95% of the power in the FFT. The PDF plots for a SEF of 80%, 90% and 95%

are similar. For this reason, only two were plotted which are shown in Figure 3.15

(a) and (b) which shows the SEF PDF plots for the 80% and 95% SEF respectively.

What is apparent from Figure 3.15 (a) is that there is a high probability that 80%

of the total power for the pulsatile artifact is contained between 0−3.5Hz. Each of

the other events have wider ranges and the modes of all the events are contained

below 3.5Hz. Figure 3.15 (b) shows that there is a high probability that 95% of the

power is contained between approximately 0− 8Hz, showing that the majority of

the power is contained within the lower frequencies of the EEG signal.

3.3.3 Information theory domain

The idea of information theory stemmed from the work published by Claude Shan-

non [100]. The concept of entropy as a measure of uncertainty was described in the

works of Shannon. In this section, it is used for three measures in the EEG domain
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space. The information theory domain features described in this section include;

• Shannon entropy

• Singular Value Decomposition entropy

• Fisher entropy

• Spectral entropy

Shannon entropy

Shannon entropy [100] is a measure of the degree of randomness in a set of data.

The Shannon entropy for a time series signal is calculated from the probability mass

function (PMF) of the signal. The PMF gives the probability that a discrete random

variable drawn from a set of variables is equal to some value within the set. To

generate the PMF the time series signal is initially converted into a set of discrete

values. To convert the signal into a set of discrete values a histogram with
√

ns or 16

bins is computed and Figure 3.16 provides an example of the PMF of an epoch from

a background event. Background EEG activity typically has an average amplitude

of 0µV and this is reflected in Figure 3.16 as the bin around 0µV is the largest. The

Shannon entropy is then calculated using Equation 3.18.

Hsh(X( j)) =−
16

∑
i=1

Pi(x j) logPi(x j). (3.18)

The equation was calculated for the jth epoch where P is the PMF and Pi is the prob-

ability corresponding to the ith histogram bin. Figure 3.17 shows that the majority of

the event types have similar and overlapping distributions with the exception being

the background and short seizure events. The background and short seizure events

have larger distribution bands for the Shannon entropy feature. Low values of Shan-

non entropy indicate low levels of uncertainty and as the uncertainty increases so

does the Shannon entropy. As background EEG is random containing no set patterns

or frequencies, it is expected that there would be a higher level of entropy. The wider

distribution explains this for the background and short seizure events in Figure 3.17.

Singular value decomposition entropy

The SVD is a form of matrix decomposition or matrix factorisation. It was initially

proposed by [101] as a complexity measure for EEG. SVD reduces a matrix A into
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Figure 3.16: Example PMF plot for a random epoch from a background event
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Figure 3.17: Shannon entropy PDF plot for the six neonatal EEG event types
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its constituent parts as given by Equation 3.19.

A =UΘV T (3.19)

Where U is the left singular vectors of matrix A, Θ is a diagonal vector of the sin-

gular values and V is the right singular vectors. U and V are both orthonormal. The

number of non-zero (> low threshold) singular values is a measure of the amount of

information contained the signal. The SVD entropy is then calculated using Equation

3.20 from the singular spectrum {η1...ηdE} where dE corresponds to the number of

singular values in Θ,

HSV D(X( j)) =−
dE

∑
i=1

η̂i log η̂i. (3.20)

where

η̂i =
ηi

∑
dE
j=1 η j

(3.21)

Figure 3.18 shows the PDF plot for the SVD entropy for the six different event

classes being tested. There is overlap although the distributions are different. The res-

piration artifact, pulsatile artifact and long seizures events appear to be multimodal.

The distribution for the TA event is highly concentrated about its mode.

Fisher entropy

Fisher information [102] was published before the works of Shannon. Shannon en-

tropy is heavily influenced by the power of the signals being analysed [103]. Fisher’s

information measure uses the normalised SVD singular values which highlight

changes in the singular spectrum. The idea of using fisher entropy in the analysis of

EEG was introduced in [103]. The normalised SVD singular values as were defined

in Equation 3.21 are used to calculate the Fisher entropy as shown in Equation 3.22.

IFisher(X( j)) =
dE−1

∑
i=1

(η̂i+1− η̂i)
2

η̂i
(3.22)

In signals that are more deterministic such as seizure, pulsatile artifact and res-

piration artifact, there will be a small number of dominant singular values. More

deterministic signals usually lead to a higher fisher entropy as there is usually a

larger difference between the singular values. Figure 3.19 shows the PDF plot for

the Fisher entropy for the six different event classes being tested. There is much
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Tracé Alternant
Long seizure
Respiration artifact
Pulsatile artifact

Figure 3.18: SVD entropy PDF plot for the six neonatal EEG event types

overlap between all the events and events such as long and short seizures are more

drawn out.

Spectral entropy

Spectral entropy is based on the Shannon entropy. This feature could also be de-

scribed as a frequency based feature as it uses the power spectral components a j as

were described in Section 3.3.2. It is a measure of the spectral power distribution of

the signal and calculated from Equation 3.23,

Hspec(U j) =−

n f
2

∑
k=0

ã j(k) log2 ã j(k) (3.23)

where

ã j(i) =
a j(i)

∑

n f
2

l=0 a j(l)
(3.24)

Figure 3.20 shows the PDF plot for the spectral entropy of each of the six classes.

The distributions are overlapping in Figure 3.20. The TA event has the narrowest

distribution and the long seizure event has the widest distribution. This feature was
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Figure 3.19: Fisher entropy PDF plot for the six neonatal EEG event types

used in EEG applications for seizure detection [33] and sleep stage detection [36]

while also having uses in other biomedical signal processing applications [104].

3.4 Principal component analysis

The set of features that were described were originally designed for seizure detection

and were used in the studies [27,29,33]. The features did prove useful at capturing the

general characteristics of EEG and were used in studies other than seizure detection

such as artifact detection [105] and HIE grading [46].

This thesis is focused on the nearest neighbour search of neonatal EEG events.

The performance of each system is important, but the memory requirements are

also important. The work in this thesis was carried out on a small database, but the

assumption that the database will grow is considered when designing systems. With

this in mind after the feature extraction step, there are 55 features for each epoch

that need to be stored. In the ideal scenario, the lowest amount of storage possible

would be used. Feature selection is not considered in this thesis as it may bias the

features to the classes currently present in the event database. For this reason, the
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Figure 3.20: Spectral entropy PDF plot for the six neonatal EEG event types

dimensionality reduction technique of principal component analysis (PCA) [106]

was used to reduce the memory requirements. As seen from the PDF plots in this

chapter, some features are highly overlapping and have narrow distributions and

other distributions are wider with more separation between the event classes. As not

all the features may not be providing valuable information, PCA helps reduce the

dimensionality by removing features that have little variance.

The dimensionality reduction technique PCA was initially proposed by [107].

The PCA algorithm transforms the features into an orthogonally separated uncorre-

lated space with each new feature known as a principal component (PC) retaining

information that was originally within the features. The PCs are ordered by the vari-

ance they retain, with the first PC having the most significant variance [106]. This

PC order acts as a dimensionality reduction technique where typically the last few

components have minimal variance and therefore do not positively contribute to the

performance. Using this approach the dimensionality is reduced by removing the

PCs that have little variance. With any dimensionality reduction technique, data will

be lost. However, the PCA algorithm is a useful compression tool to reduce the data

while keeping as much information as possible.
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The PCA transformation process is computed in the following manner. Initially,

the data is normalised to have a zero mean and unit standard deviation using Z-score

normalisation [86] as given by Equation 3.25.

X f (i) =
X f (i)−µ f

σ f
(3.25)

Where X f (i) is the ith feature value for feature f , µ f and σ f are the template mean

and standard deviation respectively which are calculated from all the data and X f (i)

is the ith normalised feature value for feature f . The normalisation process is re-

peated for each of the Fn feature epochs and all of the F feature. Normalising each

event individually without the templates loses important amplitude information main-

tained within the features.

The next stage is to compute the covariance matrix. The covariance is a measure

of the variability of two variables or features in this case. The covariance between

feature vectors X j and Xk is computed using Equation 6.10.

σX j,Xk
=

Fn

∑
i=1

(
X j(i)−µ j

)
−
(
Xk(i)−µk

)
Fn−1

(3.26)

The F dimensional covariance matrix will be of the form

Σ =


σX1,X1

. . . σX1,XF
... . . . ...

σXF ,X1
. . . σXF ,XF


From the matrix Σ, the eigenvectors and eigenvalues are computed. They are of the

form

Σ~v = λ~v (3.27)

Where~v is the eigenvector and λ is the corresponding eigenvalue. The eigenvectors

are orthogonal to one another. When they are plotted, they cut through the centre

of the data as seen in Figure 3.21. In Figure 3.21 (a) the original data can be seen,

it is clear that the data points are correlated. In Figure 3.21 (b) the eigenvectors

are plotted as the red and black lines. These eigenvectors represent the primary

directions that the data is moving. The eigenvector with the highest eigenvalue is

the first principal component. The eigenvalues sort the eigenvectors from highest

to lowest. This sorting is essential for the dimensionality reduction stage as the
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Figure 3.21: Example of the PCA process. (a) correlated raw feature data. (b) nor-
malised feature data and eigenvectors. (c) orthogonally separated data

components will be in the order of importance or the amount of variance maintained

[108]. When a lower dimension is required the last or lowest eigenvector will be

removed. In Figure 3.21 (b) the red eigenvector corresponds to the axis for the first

principal component. The black line corresponds to the second principal component.

The next stage in the PCA algorithm is to transform the data into a new orthogonally

separated space based on the eigenvectors. This transformation is carried out using

Equation 3.28.

X ′ =~vT X (3.28)

This equation rotates the feature matrix X around the new axis based on the

eigenvectors as seen in Figure 3.21 (c) where the data from Figure 3.21 (b) is

simply rotated. Now the x-axis represents the first principal component and the

y-axis represents the second principal component. The data is no longer correlated.
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Figure 3.22: Cumulative variance retained as the number of principal components is
increased

When performing dimensionality reduction, the eigenvalues are important. These

contain the amount of variance each principal component maintains and the percent-

age contained is given Equation 3.29.

Var(i) =
λ (i)

∑
F
j=1 λ ( j)

100 (3.29)

Where Var(i) is the percentage variance maintained when keeping principal com-

ponents 1 to i and F is the number of principal components. An example of this

for the feature set given in Table 3.1 is shown in Figure 3.22 where it can be seen

that the variance maintained is monotonically increasing. Figure 3.22 was generated

using all the feature data from each of the 430 events. The first 25 components pro-

vide 99.3% of the total variance within the features, meaning that there are a lot of

principal components that contain very little variance.

A point worth noting here is that PCA is a dimensionality reduction technique

and removes the components that contain the lowest variance. Components that

contain little variance still have the potential to positively contribute to the task.

When performing dimensionality reduction using PCA the user can decide the
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percentage of variance they would like to maintain and then the number of associated

components can be found by using Equation 3.29. The work carried out in this thesis

used a relatively small database and as such the experiments were quick to compute.

As the experiments were quick to compute, the performance was able to be evalu-

ated when using a single component, then the top two components up until using the

full 55 components. This approach was used to pick the number of components to re-

tain. The number of components retained was the set that gave the best performance

as will be described in the following chapters.

3.5 Summary

In this chapter, the idea of converting the raw EEG signal into quantitative features

was discussed. Quantitative features were created using help from experts with

domain knowledge in the area of neonatal EEG. The features that were used in this

work were chosen due to their proven success in the area of neonatal EEG [27,29,46].

These features helped describe the signals in the time, frequency and information

theory domains. Each feature was described, and the equations used were provided.

There are also a wide variety of other potential features that could have been

investigated for the work carried out in this thesis. In [60] the authors used features by

[33] and an additional 19 features were used for neonatal seizure detection. These

features were spike correlation and time-frequency correlation features. Features

have also been designed for the detection of temporal lobe seizures [89]. Complexity

and spectral features have been used to detect early stages of the Alzheimer’s disease

[109]. Nonlinear features have been developed for use in the examination of sleep

in children [110].

Following a description of the features, the PCA dimensionality reduction pro-

cess was described. The important normalisation step before the application of the

PCA process was also described. This normalisation prevents high amplitude fea-

tures from biasing the data. This process is important as it helps in the reduction of

data that carries little variance.

The following chapters use the feature set described in this chapter, along with

the PCA technique to achieve the maximum performance while using as little data

as possible.



Chapter 4

Brute force nearest neighbour EEG
recall

4.1 Introduction

The work presented in this chapter is the development of brute force tools to extract

information from neonatal EEG data using distance metrics. A brute force approach

is a way in which all combinations of a particular system can be tested. Examples of

this include cracking databases by trying all password keys [111], finding vulnera-

bilities in systems [112], time series motif discovery [113] and finding shapelets for

human gait recognition [114] to name a few. The work in this chapter employs brute

force search techniques to locate the nearest neighbour (NN) neonatal EEG event

from a database of EEG events.

This chapter is laid out as follows: Section 4.2 gives a brief introduction into

the area; Section 4.3 discusses the fixed point Euclidean distance approach for both

the time series and feature-based representations. Following this, in Section 4.4

the elastic dynamic time warping (DTW) approach is also detailed for both time

series and feature-based representations. Next, in Section 4.5 a data transformation

approach called the bag of patterns (BOP) approach is discussed. The results for

each approach are presented and discussed in Section 4.6.

4.2 Background

In this work, the goal is to return a similar event from an existing EEG database in

response to a query event; effectively a similar pattern is mined from a database of

60
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patterns. The concept of data mining will first be introduced along with the tech-

niques that have been used in various areas of research. The pros and cons of each

system will be discussed along with the reasons for further investigating each imple-

mented system in this chapter.

4.2.1 Data mining

Knowledge discovery in datasets (KDD) is used to discover useful information from

data [115]. KDD refers to the whole discovery process, with data mining forming

a particular step in the KDD process, in which algorithms extract patterns from

the data [115]. Data mining has attracted much attention in recent years as large

amounts of data have started to be collected and there existed a need to extract

useful information from this data [116].

Data mining has uses in many different areas such as stock trading [117], text

mining [118], fraud detection [119], music data mining [120] and for mining time

series data [121, 122]. There are a plethora of data mining techniques that exist

for each of the data mining areas mentioned previously. As the work in this thesis

focuses solely on time series data, it is this area that will be explored further.

4.2.2 Time series data

The following are examples where time series data mining is used; prediction [123,

124], subsequence searching [125, 126], motif discovery [127, 128], classification

[61, 129], clustering [130, 131] and anomaly detection [132, 133]. These approaches

span different areas within the time series domain. The work in this thesis is carried

out on physiological time series data and the EEG in particular with examples in

the area including [46, 61, 134]. Examples of data mining techniques that have

been applied to physiological signals include [127] in which the authors use motif

discovery on ECG data. Classification can be carried out on EEG signals for the

detection of seizures [61]. Clustering has previously been used to cluster six different

ECG beat types [135].

The work presented in this thesis is based on the idea that there is a query event

that is searched against a database of events to find the most similar event. The

methods such as motif discovery and anomaly detection typically do not deal with

labelled data, as these are employed to find useful information in the data. Motif

discovery looks for unique repeating patterns in the data, while anomaly detection
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looks at detecting differences from the normal operating conditions. Prediction ap-

proaches are used to predict future values from current trends. Clustering approaches

are designed to cluster events based on their similarity and there are many useful

ideas present in this area [131].

Fixed point distance approaches

For physiological time series data, the problem is one of identifying sequence sim-

ilarity. This approach effectively compares the query sequence with every other

sequence in the database by computing a distance metric in a similar way as was

carried out by [136] on time series data. An example of a distance measure is the

fixed point Lp distance measures, which are commonly used in data mining. The

L1 (p = 1) or Manhattan distance is effectively the sum of the absolute difference

between points in a set [137]. It is suggested that the Manhattan distance (L1) may

be preferable to the Euclidean distance for high dimensional data as the distance be-

tween the points is not squared [138]. The Euclidean distance, also known as the L2

(p = 2) distance is a fixed point or point to point distance measure. Meaning it is the

straight line distance from one point to another point, therefore it directly compares

time series points that have the same time index. The Euclidean distance (L2) mea-

sure is widely used in the data mining field as it is one of the most straightforward

measures to implement [48, 139].

The Euclidean distance has been previously used on physiological signals ei-

ther directly on the time series data or on a feature representation of the data

[134, 140, 141]. In [134] the authors investigate the use of the Euclidean distance

and the DTW distance as pattern matching approaches for use in biometric applica-

tions. The minimal distance value between the comparison subjects is used to either

accept or reject the individual identification. A distance threshold value can be used

as a method to vary the strictness of the approaches. The paper by [140] investi-

gates similarity measures for clustering ECG complexes. The paper compared the

performance of the Manhattan distance (L1), Euclidean distance (L2), normalised

correlation coefficient and the simplified gray rational grade for use as similarity

measures. The authors stated that the Euclidean distance had the fastest execution

time and each comparison approach was able to achieve an accuracy of over 99%

for clustering correctly. In [141] the authors classified epileptic seizures using EEG,

the Euclidean distance between EEG samples was used as a feature for the neural

network classifier.
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Figure 4.1: Example demonstrating the need for elastic approaches (a) two beats in
an ECG, (b) same beats with 16 sample delay.

As the Euclidean distance is widely used, simple to compute and was previously

used with EEG data it was decided to explore this distance metric further for the task

of NN neonatal EEG recall.

Elastic distance approaches

A problem that exists with fixed point approaches such as the Euclidean distance

approach is that alignment steps may need to be carried out prior to computing

the Euclidean distance. Figure 4.1 shows an example of this where there are two

ECG QRS complexes that are identical but have a delay of 16 samples. The Eu-

clidean distance between these two signals is 480.29 as it cannot account for the

misalignment. Elastic approaches exist that overcome the alignment problem of the

Euclidean distance approach such as DTW [142], edit distance approaches [143] and

longest common subsequences [144]. Using the DTW elastic approach to compare

the signals in Figure 4.1 results in a distance of 25.03. The reason for this lower

distance is that each elastic approach is dynamic and not a fixed point to point pro-

cess. DTW can warp signals which reduces a misalignment problem and can work

with signals of different sizes [145]. The amount of warping is the distance measure

used for DTW, with a lower warping distance considered as a closer match. The dis-

advantage of DTW is that it is more computationally expensive than the Euclidean
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distance search. Much work has been carried out to reduce the computation time of

DTW [52, 146, 147]. The edit distance was initially developed for string similarity

measures and it is the number of operations needed to transform one sequence into

another sequence [148]. The authors of [143] expanded the edit distance idea from

the string similarity area to time series applications. This edit distance approach

shares some similarities with the DTW algorithm in the warping ability. The longest

common subsequence is another elastic approach that can be used for time series

similarity. This approach does not require the events to be aligned. The similarity

between two time-series events is determined by the longest common subsequence

between the events [144]. It has been shown that the longest common subsequence

performs well for noisy signals and outperforms the Euclidean distance approach in

similarity problems [149].

What is common for all the elastic approaches is that they can be computationally

expensive. Constraints can be implemented to decrease the computational cost of

elastic measures although these can change the behaviour of each method. DTW

has been demonstrated to have a slight advantage over other elastic approaches

depending on the constraint system used [150]. There has been a significant amount

of work carried out in the area of DTW in terms of increasing the performance and

computational speed of the algorithm [52]. In this work both Euclidean distance and

DTW methods will be used for NN EEG recall.

4.2.3 Transforming time series data

Computing distance measures on time series data can be computationally expensive

and can also return poor results [78, 151]. It has been shown that calculating the Eu-

clidean distance between feature representations as opposed to using the direct time

series representation yields improved performance [151]. The poor performance of

using the raw time series is also backed up in [139] where it is said that data mining

approaches require a higher level representation of the data.

Feature representation

The idea of features was introduced in Chapter 3. In a summarised version, features

are used to represent the data in a compressed and meaningful manner. The features

then become the new representation of the data and the distance measurements

would be carried out directly on the sequence of features [151].
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There exists a broad range of possible features that can be extracted from phys-

iological time series signals. The extracted features are generally engineered with

input from a domain expert, examples include; seizure detection in neonatal EEG

[33], ECG arrhythmia detection [152], EMG pattern recognition [153] and EEG

emotion recognition [154] to name a few. These features may share come common-

alities although in most cases they are designed and fine-tuned for each particular

application. The neonatal EEG features from Chapter 3 [33] were used for this work,

as they were specifically designed to help capture meaningful information from the

neonatal EEG.

Compressed representation

Apart from feature extraction other techniques have previously been employed to

transform physiological signals into a more compressed representation. These tech-

niques involve reducing the length of the time series signal or using the structural

representation to index the signals [155]. These methods include different sampling

techniques to reduce the amount of original time series data points [121], compress-

ing the signal by averaging subsections [156], transforming the time series signals

into symbolic representations [157], transforming the time series into a compressed

binary representation [158] and more techniques can be found in [131].

Each method has its strengths and weaknesses, with each type of transforma-

tion or compression resulting in a loss of data. The work in this chapter focuses

on using a combination of averaging subsections and transforming the signal into

symbolic representations. A reason for this is that both the averaging and symbolic

representations can be fine-tuned to decide what level of compression the application

requires.

4.3 Euclidean distance

The first method presented is the Euclidean distance approach, which is a popu-

lar and straightforward point to point distance measurement [48]. The Euclidean

distance has many uses spanning several different fields including image recogni-

tion [159], DNA sequencing [160], speaker identification [161] and EEG biometric

identification [134] to name a few.

In this work, the Euclidean distance is used as a distance metric to locate the NN
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neonatal EEG event. It is also used to generate an ordered list of the most similar

events based upon their distance.

The distance between two points of time series signals x and q where x is a

database event and q is the query event are of the form x = (x(1),x(2), ...,x(n)) and

q = (q(1),q(2), ...,q(m)) for time t = (1,2, ...,m) is computed using Equation 4.1.

d(x(i),q(i)) =
√
(x(i)−q(i))2 (4.1)

This is the Euclidean distance between points x(i) and q(i). Equation 4.2 is used to

compute the Euclidean distance for a whole time series event, this computation is

computed for each point and summed together to give a single distance value over

the m points in the sequence.

d(x,q) =
m

∑
i=1

√
(x(i)−q(i))2 (4.2)

This single value d(x,q) can be used as a measure of how similar the signals x and

q are, and for the fixed point distance metrics m must equal n. Figure 4.2 shows two

example calculations of d(x,q), with m = n = 50. The distance for corresponding

points d(x(i),q(i)) is computed as indicated by the vertical lines. Summing the

distance for each of the point pairs between the two signals gives a distance of 7.07

units for example Figure 4.2 (a) and 1.86 for Figure 4.2 (b). It was expected that

Figure 4.2 (b) would have the lowest distance as the signals are very similar.

The distance between a query event q and every event in the neonatal EEG event

database is computed based on Equation 4.2. This will produce a distance metric for

every event in the database against the query q. The event with the lowest distance

will then be returned as the NN. There exists two main problems with this approach;

1. Signals have to have the same number of samples (n = m).

2. Additional alignment steps would need to be carried out.

The problem with alignment is that if the signals are slightly misaligned a cost

will develop and grow as the signal length increases. To demonstrate this idea, Figure

4.3 shows two signals with the same frequency of 0.5Hz but with a phase delay of

π/2. The Euclidean distance between these signals thus grows as the signal increases

in duration despite being very similar.

The Euclidean distance can work well with smooth and slowly changing time

series signals. Signals with higher and mixed frequencies such as EEG can lead to
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Figure 4.2: Example demonstrating how the Euclidean distance is computed for (a)
signals with different frequencies, (b) signals with similar frequencies. The query
is represented by q and the database signal is represented by x. The length of the
vertical lines between the points indicate the associated distance.
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Figure 4.3: Euclidean distance with constant phase delay.

relatively poor performance in the time domain, notably for more extended time

series [78].

4.3.1 Extending to feature domain

When extending an EEG time series distance-based approach to a feature-based

approach, it is important to use meaningful features. The features offer a more in-

formed and compact representation of the neonatal EEG signals. The features that

were extracted were discussed in Chapter 3. These are extracted for signals x and q

to give feature sequences X = [X1, ...,XF ]
ᵀ ∈ RF×Fn and Q = [Q1, ...,QF ]

ᵀ ∈ RF×Fn

respectively where F is the number of features, Fn is the number of feature epochs in

the feature domain representation and X f ∈ RFn is the vector sequence correspond-

ing to feature f . As mentioned in Chapter 3 the features are extracted from the time

series signals with 8-second epochs and a 50% overlap.

The next task was how to incorporate the features into a NN recall system. Each

feature has different units of differing sizes. To overcome this problem each feature

from each event is normalised using the Z-score normalisation [86]. This normalisa-

tion is performed using Equation 4.3

X( f , i) =
X( f , i)−µ f

σ f
(4.3)
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Figure 4.4: Euclidean flowchart for when a query is being carried out. The area where
the query is brute force searched through the database of events is highlighted.

where X( f , i) is the normalised feature value of X( f , i) for the ith epoch of feature f ,

µ f and σ f are the template mean and standard deviation respectively for feature f

and were computed using all the data in the database. This normalises the features

and using template means and standard deviations ensures that the relative ampli-

tudes for each event is maintained. Normalising each event individually without

the templates loses important amplitude information maintained within the features.

Equation 4.3 thus eliminates bias from larger amplitude features. To compute the

Euclidean distance between the feature sets of event x and query q represented in

the feature space as X and Q respectively, Equation 4.2 is extended to sum together

the distance from each of the Fn feature epochs for each of the F features as shown

in Equation 4.4.

D Euclidean(X ,Q) =
F

∑
f=1

√√√√ Fn

∑
i=1

(
X( f , i)−Q( f , i)

)2 (4.4)

This equation, similar to Equation 4.2 provides a single distance measure value be-

tween events X and Q. The query process is the same as was carried in the time

domain. The query q has its features extracted followed by the query Q being com-

pared to every event in the database using Equation 4.4.

As was discussed in Chapter 3, some features may not contain valuable infor-

mation. It was for this reason that the system was also evaluated using a lower

dimensional feature set. The dimensionality of the feature set was reduced using

principal component analysis (PCA) as it is essential that the amount of data re-

tained is kept as small as possible for when the database grows. The results obtained

and dimensionality reduction are discussed Section 4.6.
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Figure 4.5: Cost matrix for 2 example signals. The colour at each cell in the matrix
indicates the difference between the points, with the colour bar providing a guide to
the differences.

Figure 4.4 shows the system flowchart when a query is being carried out. This

brute force search approach is linear and in this flowchart, a single closest match

or NN is presented. The performance accuracy of this system is based on the NN

match alone.

4.4 Dynamic time warping

The next technique to be developed is an elastic distance method [162]. DTW was

chosen as it is the most widely used elastic distance method for comparing time

series signals [142].

In this work, DTW was used to locate a NN neonatal EEG event from a database

of EEG events when a query is presented. DTW can be divided into multiple stages

[163]. A n×m cost matrix c is first generated by comparing the n elements in x

(x(1), ...,x(i), ...,x(n)) to the m elements in q (q(1), ...,q( j), ...,q(m)). Note, m does

not need to be equal to n for elastic methods.

c =


d(x(1),q(1)) . . . d(x(1),q(m))

... . . . ...

d(x(n),q(1)) . . . d(x(n),q(m))


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Where d(x(n),q(m)) is calculated using Equation 4.1. Figure 4.5 shows an example

of a cost matrix for the signals depicted in Figure 4.2 (a). Figure 4.5 shows that

when a peak is aligned with a trough, it results in a considerable distance, which is

apparent while looking at the cost intensity at approximately (12,12) in Figure 4.5

indicated by the bright yellow intensity. Similarly aligned peaks or troughs have a

low associated cost which can be seen at approximately (12,25) in Figure 4.5 where

the intensity is dark blue.

From the cost matrix c, the goal is to find the minimum alignment cost. This

is achieved by creating a warping path {w1, ...,wL}, where wk = (i, j)k, for k ∈
{1, ...,L} under the following conditions:

1. Boundary condition: w1 = (1,1) and wL = (n,m)

2. Monotonicity: wk = (a,b), wk−1 = (a′,b′) where a−a′ ≥ 0 and b−b′ ≥ 0

3. The set of possible steps: (wl+1 - wl) ∈ {(1,0),(0,1),(1,1)} for l ∈ [1:L-1]

It is worth noting that the length of the warping path (L) is dependent on the warp-

ing path that is chosen. There are many possible warping paths available with the

warping distance defined as Dw is shown in Equation 4.5.

Dw(x,q) =
1
L

L

∑
k=1

cwk (4.5)

The value cwk is the kth warping path position (i, j)k from variables x and q in the cost

matrix c. With a large number of possible warping paths available, an accumulated

cost matrix is used as a faster and less computationally intense method of computing

every possible warping path. The accumulated cost matrix Ac is of the form:

Ac =


c(1,1) . . . ∑

m
j=1 c(1, j)

... . . . ...

∑
n
i=1 c(i,1) . . . D(n,m)


When 1 < i ≤ n with j = 1 and 1 < j ≤ m with i = 1 the accumulated cost is

calculated as the sum of the costs along the axis. For all the other positions Equation

4.6 is used.

D(n,m) = min(D(n−1,m−1),D(n−1,m),

D(n,m−1))+ c(n,m)
(4.6)
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Figure 4.6: Accumulated cost matrix with optimal warp path example. As both
signals move from the origin the associated cost increases. The optimal warp path is
shown in red. This is the path that has the least distance when warping the signals to
be as similar as possible.

This accumulated cost matrix Ac is of the size (n,m) and shows the evolving cost

over the sequence. The optimal warping path is then found by working back from the

end to the start of this matrix while keeping the lowest cost [163]. Figure 4.6 shows

the accumulated cost matrix for the signals depicted in Figure 4.2 (a). It is apparent

in the image that the cost increases with distance from the start point. The optimal

warp path is the red line. In the ideal case when the signals being compared are very

similar the optimal warp path would traverse the diagonal of the accumulated cost

matrix. It would be expected that the optimal warp path for Figure 4.2 (b) would

nearly traverse the diagonal as the signals are very similar.

The optimal warp path alignment of signal x to signal q is shown in Figure 4.7,

and this has a distance of 3.74 units for this particular example. The mapping lines

are the lines connecting time series signals x and q. The angle and magnitude of the

mapping lines indicate the associated cost. There are vertical and near vertical lines at

the start and end indicating a higher cost in these regions. The more horizontal lines
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Figure 4.7: Example demonstrating DTW mapping between time series signals x
and q.

with a slight angle indicate a small cost. It can be noticed that often two mapping

lines from signal x are going to the same location on time series q. This mapping

is occurring as it appears time series x is being compressed onto time series q. The

mapping is clearly different to that of Euclidean approach in Figure 4.2 (a) which

are all vertical.

Figure 4.8 (a) shows the original signals before warping. Following the applica-

tion of DTW, the optimal warp path was attained which is shown in Figure 4.8 (b).

It is clear that a large portion of the warping cost occurred at the start and end of the

lower frequency signal. This warping was because the lower frequency component

was compressed to fit the central section of the higher frequency signal, which is

consistent with the vertical lines seen in Figure 4.7.

What is interesting between Figure 4.8 (a) and (b) is that there is a different

number of samples between the two images. This difference occurs as a result of

computing the optimal warp path. If the warp path or red line in Figure 4.6 traversed

the diagonal, it would indicate the signals are the same and would have the same

number of samples. As the warp path drifts from the diagonal, it introduces more

samples into the warping path. The warp path in Figure 4.6 does not travel along the

diagonal during the start and end of the warping process, and this is where the extra

samples were introduced in Figure 4.8 (b). Table 4.1 (a) shows a simple example
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Figure 4.8: (a) Signals before warping, (b) signals warped according to the optimal
warping path.

of the optimal warp path traversing the diagonal. Table 4.1 (b) shows the pessimal

path while following the boundary conditions and monotonically increasing. The

numbers in Table 4.1 correspond to the samples required to complete the warping.

One observation is that traditional DTW is an expensive process to compute and

this becomes more expensive with more extended sequences. There has been much

work in this area to speed up the process by using bounding and early abandoning

techniques. The work presented in [52] has utilised these techniques and developed

them into the publicly available UCR suite. The UCR suite was used for the DTW

computation in this work.

Table 4.1: Tables showing optimum (a) and pessimal (b) warping path.

(a) Optimal path

5
4

3
2

1

(b) Pessimal path

5 6 7 8 9
4
3
2
1
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Figure 4.9: Sakoe-Chiba band and Itakura parallelogram bounding.

4.4.1 Bounding

There are several types of DTW bounding approaches that exist. The traditional and

well know methods include the Sakoe-Chiba Band [142] and the Itakura parallel-

ogram [164]. These are global constraints on the warping path, that constrain the

warping of the query event q to be kept within a specific region of the database event

x as depicted by the shaded regions in Figure 4.9.

The warping region allowed (the reach), is denoted by e, and the indices of warp-

ing path position wk = (i, j)k have a reach as follows: j− e≤ i≤ j+ e. This reach

allows warping of e positions before and after the current point in the warping win-

dow. The warping reach e for the Sakoe-Chiba band is fixed whereas the warping

reach e for the Itakura parallelogram varies, depending on the position i. These

methods allow the signals to be warped by a certain margin and must be kept within

the boundary as depicted by the shaded region. The bounding creates an envelope

around the signal that the query must lie within. This approach prevents poor align-

ments as seen in Table 4.1 (b) where minimal warping takes place. A more explicit

example of this is presented in [165] where they show the envelope created by the

Sakoe-Chiba band around the query. The bounding region can be expanded or com-

pressed depending on what the user wants. As the bounding region is compressed

the distance measure approaches the Euclidean distance.

Two bounding techniques used in the UCR suite are known as LBKim [166]

and LBKeogh [47]. The LBKim bounding technique computes a four point vector
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from each sequence being compared. The first point in the bounding vector is the

difference between the start points of the two signals being compared. The next point

in the bounding vector is the difference between the end points of the two signals

being compared. The next point is the difference between largest amplitudes of both

signals. The last point in the bounding vector is the difference between the lowest

amplitude points of the signals being compared. This bounding vector now consists

of four values and the largest absolute value of these four points is taken as the lower

bound. When the signals are normalised the maximum and minimum values tend to

be similar, it is for this reason they are not used in the UCR suite [52]. The LBKim

bound is quick to compute and is used as an initial bounding measure before the

application of the LBKeogh.

The LBKeogh method uses the reach e of the global constraints such as the Sakoe-

Chiba band or Itakura parallelogram to create two sequences u and l standing for

the upper and lower respectively represented by Equations 4.7 and 4.8.

u(i) = max(q(i− e) : q(i+ e)) (4.7)

l(i) = min(q(i− e) : q(i+ e)) (4.8)

When these sequences are available, they are then used in the LBKeogh method

as a part of the distance measure. This measure takes the aggregate distance of the

event and either the upper u or lower l sequences when the event is outside these

sequences. This measure is represented by Equation 4.9:

LBKeogh(x,q) =

√√√√√√√ n

∑
i=1


(x(i)−u(i))2 if q(i)> u(i)

(x(i)− l(i))2 if q(i)< l(i)

0 otherwise

(4.9)

Here x and q represent two time series signals of length n and m respectively, q(i)

is the ith time series point from the q time series and values u(i) and l(i) represent

the upper and lower envelope sequence positions for the ith time series point. More

information and graphical demonstrations on these bounding techniques are pre-

sented in [47,52,166]. In the UCR suite, the envelope sequences are computed more

efficiently using the method provided in [167].

The LBKim and LBKeogh bounding techniques can then be used as a form of
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early abandoning to the DTW computation to save computational effort as will be

discussed next.

4.4.2 Early abandoning

When searching a database of neonatal EEG events, it is essential to be as efficient

as possible. It is for this reason that early abandoning is important. If the user of the

system decides only to return the most likely match, then early abandoning can be

used to reduce the computational time of the brute force search if specific criteria

are met.

In general, a Best So Far (BSF) value is initially set to infinity. After the distance

is computed between the query and the first event in the database the BSF value is

updated to be this new calculated distance. The NN has the lowest BSF value, so the

aim is therefore to find events that have a lower DTW distance than the BSF.

When working through the accumulated cost matrix to find the optimal warping

path between a query and an event in the database, a cost or distance is developing.

If this distance surpasses the BSF distance, the DTW distance computation can be

abandoned for this event as it is no longer a suitable candidate for the NN. It can be

abandoned because the optimal warp path can only monotonically increase, meaning

the distance will never drop below the BSF distance. In essence early abandoning

halts the computation of the DTW distance if the distance is higher than a specified

value (BSF) [168, 169].

The lower bound measures LBKim and LBKeogh are used for early abandoning. If

the values of LBKim or LBKeogh are higher than the BSF value, the DTW computation

can stop. In [166] they state DTW (x,q) ≥ LBKim(x,q) always holds. In [47] they

showed that LBKeogh(x,q) ≤ DTW (x,q) and that is why LBKeogh can be used for

early abandoning when the value of LBKeogh(x,q) > BSF . If LBKeogh(x,q) < BSF

the full DTW distance calculation will be calculated and the BSF value will be

updated to the new value. If five nearest neighbours were required the BSF value is

set to the lowest distance in the top five results. When testing if a new event performs

better than the BSF, the event with the highest distance is removed from the list.

4.4.3 Extending to feature domain

DTW can work well for short physiological time series data as discussed in [52,170].

As the time series grow in length, it becomes unrealistic to use DTW on the direct
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time series data [52, 171]. One reason for this is that if a physiological time series

signal such as neonatal EEG is warped too much the signal loses its originality, and

it may effectively be creating a new random signal. The other problem faced by

DTW is that as the signal lengths increase the computational cost increases as stated

in [172].

Neonatal EEG time series signals can be transformed into a feature space rep-

resentation. This transformation was achieved by extracting the features that were

discussed in Chapter 3. Since the features are not randomly chosen the feature set

thus represents a compressed representation of the original signal. The DTW is then

applied to the feature domain representation as was similarly carried out in [171].

Figure 4.10 gives an illustration of the process for two signals x and q. Initially, the

time series signals x and q have the 55 features extracted. Before the DTW algorithm

is applied to the feature vectors these need to be normalised as different features

have different units and higher amplitude features dominate. This normalisation is

the same method as previously discussed for the Euclidean approach in Section 4.3.1.

The template normalisation step is omitted in Figure 4.10 for simplicity. Then the

DTW distance is calculated for each feature, where “DTW-1” is the distance when

computing the DTW distance for feature 1 between both signals. As the features

would have been normalised it enables the distances from each feature to be summed

together without being biased from higher amplitude features and a single distance

metric between the two signals can be returned.

To compute the DTW distance between the feature sets of event X and query Q,

the optimal warp path Equation 4.5 is extended to sum together the distance from

each of the F features as shown in Equation 4.10.

D DTW (X ,Q) =
F

∑
f=1

Dw(X f ,Q f ) (4.10)

It is worth noting that each of the F features have an optimal warp path. Thus L f is

the warping path length for feature f . Using Equation 4.10 will thus provide a single

distance value between the feature events X and Q.

The PCA dimensionality reduction technique is needed for the same reasons as

described in Section 4.3.1. To be consistent with the Euclidean distance method the

same dimensionality reduction approach of PCA was carried out and the results are

presented in Section 4.6.

Figure 4.11 shows a flowchart of the DTW system when a query is present. This
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Figure 4.10: Example of the DTW process using a set of features extracted from the
EEG signals.
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Figure 4.11: DTW flowchart showing the steps involved in the DTW search algo-
rithm. The area where the query is brute force searched through the database of
events is highlighted.
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flowchart is very similar to the Euclidean distance flowchart in Figure 4.4 with the

difference being the DTW block in the brute force section.

4.5 Bag of patterns

Brute force distance metric approaches can be expensive in terms of both time and

memory to compute on time series signals and this increases as the size of the

database increases [172].

Sections 4.3 and 4.4 discussed brute force distance metric based searches based

in the time and feature domains. These sections included the idea that applying the

approaches directly to the time series data would yield poor results. It was for this

reason that the time series events were transformed into a compressed feature-based

representation.

An alternative transformation approach known as Bag of Patterns (BOP) [78]

was applied to the neonatal EEG with the aim of reducing computational effort and

memory burden while maintaining a similar level of performance.

The premise for the BOP came from the Bag of Words (BOW) concept, which

has been used to represent the structure of documents for text classification [173].

Essentially all the words in the document are thrown into a “Bag” and then sorted by

the occurrences of each word, completely disregarding the order of the words. The

output array is a fixed size, and this is the vocabulary size or the range of possible

values. The output array is then the frequency of occurrence of all the potential

words. This output array may be sparsely filled if a large vocabulary exists. Table

4.2 shows an example of BOP where the first column contains the set of possible

words. The second column then contains the frequency of occurrence for event 1. If

a word is not present in the event, that table entry is zero.

The paper by [78] stated two problems that exist when trying to apply the Bag

of Words approach to time series data;

1. What pattern vocabulary will be used?

2. Breakpoint (delimiters) between patterns?

Time series data are data points that are indexed by time. These can consist of

random or definite patterns. Therefore, an infinite vocabulary could be required.

The second problem is how to divide a pattern into words. In the text space, these

are known delimiters, as follows:
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Table 4.2: BOP example showing how the N events of a fixed size are stored.

Event 1 Event 2 . . . Event N
1111 0 15 . . . 8
1112 9 2 . . . 11

...
...

...
...

...
3124 6 3 . . . 12
3131 4 5 . . . 0

...
...

...
...

...
4444 1 0 . . . 0

• After each letter

• The end of a word

• A paragraph break

• Special characters (full stop, comma, brackets)

• HTML tags

The delimiter used depends on the applications such as word segmentation which

could use any of the first four shown above [174] and website text extraction that

could use HTML tags [175]. Delimiters are unfortunately not present in time series

signals.

It is hard to know how long or how many samples of the EEG should be used to

form a word. It is for this reason that the EEG is transformed into a compressed repre-

sentation, from which words are generated. The symbolic aggregate approximation

(SAX) algorithm is used to generate words [157].

4.5.1 SAX

The SAX algorithm is applied to the time series event x using a sliding window p of

length ns to transform the signal into a collection of unique words. This technique

is a form of lossy compression where the original time series data undergoes an

irreversible encoding process. The user can define the level of compression, and

different applications may require different amounts of encoding. Before the SAX

algorithm transforms the subsection of data p, it undergoes a normalisation to ensure
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the data has a mean of zero and a standard deviation of one. This normalisation is

carried out using Equation 4.11

y(i) =
p(i)−µ

σ
(4.11)

where µ and σ are the mean and standard deviation of the subsection data p and y is

the normalised signal p. Following the normalisation step, the piecewise aggregate

approximation (PAA) [156] as a dimensionality reduction step is applied using

Equation 4.12.

p̄(i) =
ω

ns

ns
ω

i

∑
j= ns

ω
(i−1)+1

y( j) (4.12)

Where p̄ is the new compressed representation of the normalised time series signal y

and p̄ has ω sections. The PAA algorithm takes the average of the samples contained

in each of the ω sections. The size of ω is user-specified and can be changed de-

pending on the signal used. The PAA algorithm compresses p of length ns samples

to ns
ω

samples.

The next task is to transform the ω samples from PAA into ω symbols. At this

point in the algorithm, there exists a real-valued array p̄, which is a compressed

representation of the original data as shown in Figure 4.12. The task is now to

transform this real-valued array into a fixed sized vocabulary. The transformation

assumes a Gaussian distribution to determine the ω SAX symbols by dividing the

Gaussian distribution into α equally sized areas (and hence have equal probabilities),

where α is the alphabet size.

Figure 4.13 shows the distributions for each of the subsections for the six differ-

ent EEG events being examined. This justifies the usage of the Gassian distribution

to divide the signal into α possible symbols. Transforming p̄ into an alphabet will

give a vocabulary size of αω . The symbols used in Figure 4.12 are the integer

numbers from 1 to 4 and in this particular example symbol 4 never occurs.

4.5.2 Transformation

If the SAX transformation was carried out on the whole time series data x it would

either lead to an unrealistically large data reduction (low ω) or an unrealistically

large vocabulary size (large ω). Instead, the SAX transformation is performed on a

subsequence of the data p using a sliding window of length ns with a user-defined
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Figure 4.13: Distribution of data for all subsections of length ns for each event
group. (a) Background, (b) Short seizure, (c) Tracé Alternant, (d) Long seizure, (e)
Respiration artifact, (f) Pulsatile artifact.
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shift ρ . Figure 4.14 shows an example of how this is carried out on real data. Here,

the SAX computation is carried out using windows of length ns with a shift of ρ

between SAX computations. The SAX operation is carried out a total of n−ns
ρ

for

each event.

The size of the sliding window is dependent on the data type. As highlighted in

[172], smooth slowly changing data has the potential to have many occurrences of

the same SAX pattern. It was suggested in [78] that it is feasible for smooth patterns

to be described with a small ω and higher frequency patterns would use a large ω to

capture the critical changes. When carrying out the SAX step there may be several

consecutive sequences that have the same SAX sequences, the first sequence is kept,

and the others are ignored. This step is known as numerosity reduction and is carried

out to reduce the amount of “trivial matches” as stated in [78].

Once the original time series has undergone dimensionality reduction using SAX

with a sliding window, the resulting set of sequences is used to create the BOP ma-

trix entry for that particular time series event. Initially, an array of zeros which is

the size of 1 x αω is generated. Each entry in the array corresponds to one of the

αω sequences. Next, the frequency of each sequence present in the generated SAX

sequences list is counted. The frequencies are then entered into their corresponding

locations in the array. This 1 x αω array is the new higher level structural represen-

tation of the original data.

The above approach is repeated for all the N files that are in the database. Once

this is complete a full BOP matrix of size N x αω is developed as depicted in Table

4.2. This is now the “database” which is to be searched. It is possible to add new

events to this table without needing to regenerate the BOP matrix. If either the ω or

α parameters are to be changed the whole matrix needs to be regenerated.

Figure 4.15 (a) shows background EEG data and Figure 4.15 (b) shows pul-

satile artifact EEG data. The pulsatile waveform is more rhythmic and appears less

stochastic than Figure 4.15 (a). Figure 4.16 (a) and (b) show the BOP transforma-

tion for the signals in Figure 4.15 (a) and (b) respectively. Figure 4.16 (a) is more

densely populated than Figure 4.16 (b). The different distributions in the words is

what assists the system to distinguish different event types, as different events will

have different SAX sequence distributions. The pulsatile event has a higher density

in some areas and is not as dispersed as the background event. This example used

an alphabet size of 3 and a sequence length of 7. In the implementation that was

used to generate the results that are presented in Section 4.6, an alphabet size of 3, a
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Figure 4.15: Example time series signals. (a) Background event. (b) Pulsatile artifact
event

sequence length of 7, a window length of 89 samples and the window is shifted by

3 samples for each SAX computation. As there was a small number of parameters,

these parameters were found via a brute force search of the parameter space.

When a query is carried out, the data q is converted into a BOP representation

(1 x αω array). This BOP representation is brute force searched against the N x αω

matrix to find the best match. The Euclidean distance is the analysis metric that is

used. The event that has the lowest Euclidean distance is then seen as the closest

candidate or the NN. Figure 4.17 shows the flow graph for the BOP approach.

4.6 Results

This section will describe and detail the results obtained for each system discussed

in this chapter. Each of the systems were evaluated using the neonatal EEG event

database. The performance of each system will be evaluated looking at three key

areas;

• Accuracy

• Query running time

• Memory requirements
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Figure 4.16: BOP transformation examples for (a) background event and (b) Pulsatile
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Figure 4.17: BOP flowchart for when a query is being carried out. The area where
the query is brute force searched through the database of events is highlighted.
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When evaluating the accuracy two measures were examined. The first measure

was the group majority. This measured the event type that was recalled the most

when evaluating the event types 2 to 6. For example, when evaluating all respiration

artifact events (event 6), the class that was returned the most for this event group

is seen as the event majority. It enables the evaluation into which event is recalled

the most. Over half of the database was background data (event 1), therefore it is

of interest to evaluate if this had much of an impact or bias on the performance of

the different systems. The background events (event 1) were not tested in the query

search. The reason being is that in a real system the background data or meaningless

data would not be queried and with a large number of background events in the

database it could skew the results. The second accuracy measure evaluated was the

system recall accuracy and this accuracy is defined as the ability to recall the correct

event type when testing events 2 to 6. This accuracy was calculated for each event

group individually using Equation 4.13.

Accuracy(%) =
Number of correct NN in group

Number of events in group
∗100 (4.13)

For example, when testing the short seizure event group (event 2) the numerator

is the number of correct NN matches where the event recalled came from group 2.

The denominator is the total number of group 2 events in the database. The average

accuracy was taken for event groups 2 to 6, and this was the metric used for the

evaluation.

The query running time is the time it takes each system to carry out queries on

the data. This measure is important as it enables estimations to be made about how

each system will scale with an increasing database size. The memory requirements

refers to the amount of memory required by each system. Again, this measure is

important as it enables estimations to be made about how each system will scale

when there is a larger database. If the systems take too long to compute queries or

require too much memory alternate approaches may need to be implemented.

4.6.1 Accuracy

The results for the group majority and recall accuracy are presented in Tables 4.3 and

4.4 respectively. This subsection will detail the performance of the three systems.

Firstly, the Euclidean and DTW time series and feature representation results are

discussed. Secondly, the PCA results for the Euclidean and DTW approaches are
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discussed. Thirdly, the BOP results are discussed.

Time series and feature accuracy

Previous work has shown that using time domain signals yields a poor performance

[52,78] and this poor performance was observed in the group majority results shown

in Table 4.3. The Euclidean time series approach failed to identify the correct group

majority for four groups and the DTW time series approach failed to detect the short

seizure group. The Euclidean and DTW time series approaches failed to identify

the correct group majority for the short seizure data as they both identified the

short seizure data as background data. Since the short seizure data is a mixture

of background and seizure data it would have been expected that the background

data could have influenced the group majority. The feature approaches had perfect

group recall for all of the event groups.

Performance accuracy provides a more informative insight into the event group

performance and is presented in Table 4.4. In this table for example for the DTW

TS test, if the query event is event 2 (short seizure) then the performance accuracy

is 25%, meaning that when all the short seizure events were tested, only 25% of the

recalled events were from the same event type. However, when testing event 3, it

was able to correctly recall an event from the same event type 90% of the time. The

value reported in the bottom row is the average over all the five groups that were

tested.

The results in Table 4.4 are consistent with the results in Table 4.3. The time

series Euclidean distance test performed the poorest in each table and has an accuracy

of 30.25%. There was a surprising result for the DTW time series system as it

achieved a recall accuracy of 71.11%. It was expected that the time series results

would be poor [151].

There was a large increase in performance when going from the Euclidean time

series representation to the feature representation. The accuracy increased by≈ 50%

to 80.24%. There was a reduction in performance of 0.32% for the DTW system

when going from the time series domain to the feature domain. It was expected that

DTW would have performed better in the feature space as opposed to applying DTW

directly to time series signals. A reason for the drop in performance is because the

UCR suite normalises each of the signals being compared and important amplitude

information contained in the template normalised features is lost.
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Table 4.3: Group majority results for each system evaluated in this chapter

Event
Euclidean

(TS)
DTW
(TS)

Euclidean
(55 F)

DTW
(55 F)

Euclidean
(19 PC)

DTW
(54 PC) BOP

2 1 1 2 2 1 2 2
3 1 3 3 3 3 3 3
4 1 4 4 4 4 4 4
5 5 5 5 5 5 5 5
6 1 6 6 6 6 6 6

Average
(%) 20 80 100 100 80 100 100

Table 4.4: Performance accuracy for each system evaluated in this chapter

Event
Euclidean

(TS)
DTW
(TS)

Euclidean
(55 F)

DTW
(55 F)

Euclidean
(19 PC)

DTW
(54 PC) BOP

2 33.33 25 50 75 41.67 75 58.33
3 20 90 90 70 95 85 90
4 30.43 47.83 73.91 82.61 78.26 86.96 52.17
5 63.64 92.73 87.27 76.36 89.09 87.27 94.54
6 3.85 100 100 50 100 57.69 96.15

Average
(%) 30.25 71.11 80.24 70.79 80.80 78.38 78.24

PCA accuracy

A standard method of choosing how many dimensions or components to retain in

PCA is decided by the amount of variance the user would like to maintain. With the

small database size used in this work it was possible to evaluate the recall accuracy

while focusing on one component, then two components and evaluating the recall

accuracy in this way until a recall accuracy evaluation is carried out using all 55

components. The number of PCs that resulted in the best recall accuracy was chosen

as the number of components to retain.

Figure 4.18 shows the recall accuracy of both the Euclidean and the DTW sys-

tems as the number of PCs is increased from 1 PC to all 55 PCs. The two individual

markers indicate the recall accuracy when testing with the full 55 features without

the application of PCA. The y-axis represents the accuracy of the recall system. The

first thing that is clear in Figure 4.18 is that the Euclidean approach performs better

than DTW approach when working in the feature domain either with or without

using PCA. As stated previously, a contributing factor to this is that the UCR suite

normalises the data before computing the warping distance. As the UCR suite is one
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of the fastest DTW search algorithms, it was decided to proceed with the algorithm

without modification. The short number of samples in the PCs of only 13 samples

could have also attributed to the weaker recall accuracy as little warping would take

place, thus nullifying the main advantage of DTW over the Euclidean distance.

After the feature data is transformed using PCA, it is expected that the compo-

nents with low variance would not contribute much to the recall accuracy. This is

seen for the Euclidean approach which achieved the best recall accuracy when using

19 PCs with the recall accuracy only slightly fluctuating from that point on. The

highest accuracy for the DTW approach occurred when maintaining 54 components.

The UCR suite normalisation step is a contributing factor as to why there is a low

dimensionality reduction. The effect of the renormalised PCs is seen in Figure 4.18

as the recall accuracy continues to rise gradually.

For the full 55 features without PCA, the accuracy for the Euclidean and DTW

approaches was 80.24% and 70.79% respectively as seen by the single markers in

Figure 4.18. The highest accuracy occurs using 19 PCs for the Euclidean distance

metric, and this was 80.8%. There was an increase in recall accuracy of approxi-

mately 0.56%. Therefore, the recall accuracy increase was negligible, however there

was a substantial dimensionality reduction. The DTW approach had the best result

when using 54 PCs which was 78.38%. The dimensionality was reduced from 55 to

54, this is small but the recall accuracy increased by approximately 7.59% from that

of when using all 55 features.

It is clear that the application of PCA had a positive impact with only a slight

increase in the Euclidean distance case. The Euclidean distance method had a sig-

nificantly higher dimensionality reduction compared to the DTW method. It was

expected that using a much lower number of components would yield better results

in terms of accuracy due to the curse of dimensionality [176].

Since the UCR suite normalises the data, it only considers the shape and not the

amplitude. Figure 4.19 demonstrates this as it shows the first PCs of the Euclidean

and DTW methods while carrying out a query on an event. There is a correlation

between the shapes in the match presented in Figure 4.19 (b). However, there is a

significant difference between the original principal component and the match found

in terms of amplitude and it is not a correct match. Figure 4.19 (a) is the Euclidean

distance match, the shapes are not as similar, but it is a correct match.

As regards to the group majority results in Table 4.3, when using PCA and 19

components for the Euclidean distance approach the short seizure data had an incor-
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rect group majority. The background event type was chosen as the group majority.

The group majority for the DTW approach with 54 components resulted in perfect

group majority results.

In Table 4.4 it is seen that the Euclidean PCA approach has the highest overall

performance. One surprising result is the fact that there is only a 0.56% increase

in performance from using 55 features to using just 19 PCs. It was expected that a

higher performance would have been attained when switching from using the full

55 features to 19 PCs [176]. The PCA DTW approach had an accuracy increases of

approximately 7.6% to 78.38% when using 54 PCs.

BOP accuracy

In Tables 4.3 and 4.4 the last results columns are for the BOP approach. Perfect

group majority results were achieved and the average recall accuracy was 78.24%,

which is 2.56% below the best performing Euclidean distance PCA approach. The

BOP ranks third in performance with the Euclidean and DTW PCA distance tests

performing better.

4.6.2 Query run time

The performance accuracy of a system is essential but, if the time taken to compute

the query is too long the answer may become irrelevant. For this reason, the speed of

the search algorithms was investigated. The speed being referred to is the time taken

to compute a query. To get an accurate representation of the speed, each system has

the time measured to compute 25 queries which was then repeated 25 times to get an

average. All the query run time tests carried out in this thesis were run on a windows

7 machine that had a 3.6 GHz Intel i7 processor and 12 GB of RAM.

As the database used for testing is small, speed tests were carried out while in-

creasing the database size by 1 event each time, starting with an initial two events.

This test will give an idea of how the speed of the system changes as the database

grows and enables an evaluation of how the system will scale. Figure 4.20 shows

these results. The Euclidean time series test and BOP test have very similar perfor-

mance speeds, with the BOP being slightly slower due to the BOP transformation

process. The Euclidean distance tests with features or PCA are very similar in per-

formance and have nearly flat slopes. These slope values were expected as the point

to point operations are fast to compute. These lines are highly overlapping in Figure
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Table 4.5: Slopes of the query timing plots depicted in Figure 4.20

Method
Euclidean

(TS)
DTW
(TS)

Euclidean
(55 F)

DTW
(55 F)

Euclidean
(19 PC)

DTW
(54 PC) BOP

Slope
s/event 5.66E-04 7.74E-02 4.25E-03 1.40E-02 3.73E-03 1.40E-02 6.02E-04

Time
DB = 10000

(s)
5.67 774.00 109.44 214.52 104.40 215.93 6.84

4.20.

Interestingly enough the DTW tests with features or PCA start with a similar

time to the Euclidean approach; however as the database increases in size so too

does the time required by the DTW approach. This difference in time was expected

as the DTW algorithm is more computationally intense than the Euclidean distance

computation. This same trend of the DTW speed decreasing as the database in

increased in size is echoed in the DTW time series test. The time taken for the DTW

time series test increases rapidly and if the size of the database were either doubled

or tripled the time to compute 25 queries for the DTW time series approach would

have surpassed the DTW features approach.

The feature and PCA tests appear to have an initial offset. This offset is caused

by the feature extraction process and will always be present. This offset is a once off

computational cost that does not impact the systems as the database grows in size as

these features have already been extracted for the database before the queries being

performed.

Table 4.5 shows the slopes for the results depicted in Figure 4.20. These provide

a more concise form of the results. Table 4.5 shows how the systems will scale with

database size. As expected the time series DTW approach has the largest slope as it

is performing the DTW operation on the longest signals. Following this is the DTW

computation on the features and PCs. The slope for the DTW features and PCA

approach is very similar due to the poor dimensionality reduction of 1 dimension

and the added cost of the application of the PCA transformation. These similar

slopes are evident in Figure 4.20. The next best performing slope is the features

Euclidean distance test followed by the PCA Euclidean distance test. The features

test is slightly slower as the PCA Euclidean approach has a dimensionality reduction

of 36 dimensions. The fastest approaches are the Euclidean distance applied directly

to the time series and the BOP test. The time series Euclidean distance approach is

only marginally faster than the BOP approach. It is worth noting that this system has



CHAPTER 4. BRUTE FORCE NEAREST NEIGHBOUR EEG RECALL 95

10 50 90 130 170 210 250 290 330 370 410
Database size (events)

0

10

20

30

40

50

60

70

80

Ti
m

e
(s

)

Euclidean TS
Euclidean features
Euclidean PCA
DTW TS
DTW features
DTW PCA
BOP

Figure 4.20: Database timing graphs for increasing database size for each system
evaluated in this chapter



CHAPTER 4. BRUTE FORCE NEAREST NEIGHBOUR EEG RECALL 96

only 430 events and therefore the slopes will help examine how each method scales.

In Table 4.5 under the slopes, there is the projected time to compute 25 queries

on a database of 10000 events. This projected time is based on the assumption that

the lines in Figure 4.20 are linear. The time series DTW approach is the worst with

it taking 774 seconds or nearly 13 minutes per query. The Euclidean PCA approach

which has the best performance accuracy takes 104.4 seconds to compute the queries

whereas the BOP approach takes 6.84 seconds. This BOP approach is approximately

15 times faster than the Euclidean PCA approach.

Note, the BSF early abandoning technique described for the DTW approach in

Section 4.4.2 could be applied to the Euclidean approach to potentially achieve a

slight query run time improvement.

4.6.3 Memory requirements

Another parameter that was investigated was the memory required by each system to

store the database files. The metric used was bytes. The memory value was computed

by saving the event database as a MATLAB .mat format file. The size of the file was

then read into the computer and stored.

This method of getting the database size was repeated for a database of size one

and incremented by one until the full database size of 430 events and was carried

out for each of the systems. The results are plotted in Figure 4.21. Since the time

series Euclidean and DTW approaches use the same data only one set of memory

values was computed and plotted in Figure 4.21, this is noted as “Brute force TS”.

The Euclidean and DTW feature-based approaches use the same features, so they

also have a single set of values called “Brute force 55 features”.

The results show that the time series method required the most substantial amount

of memory and the memory requirements increase at the fastest rate. The DTW PCA

and brute force feature approaches have very similar memory requirements with the

DTW PCA method requiring marginally less memory, as the DTW PCA method

only requires 54 components as compared to 55 features.

The Euclidean PCA approach saves 19 components and thus requires much less

memory to store each event. The BOP approach requires N x αω memory where

N is the number of events in the database, and αω is the vocabulary size. In this

case, the size is Nx2187. This size is in the region of the size of the time series

signals (Nx1920), but the memory is much lower. The reason for this is that the BOP
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Table 4.6: Slopes of the database memory plots depicted in Figure 4.21

Method
Brute force

(TS)
Brute force

(55 F)
Euclidean
(19 PC)

DTW
(54 PC) BOP

Slope
bytes/event 14850.81 5033.55 1919.92 4931.68 293.29

Size
DB = 10000

(MB)
141.63 48.00 18.31 47.03 2.80

approach works with integers and each of the other systems work with 64 bit floats.

Working with integers enables a significant reduction in the memory needed to save

the database.

The slopes of the lines in Figure 4.21 are presented in Table 4.6. With the slopes,

it is possible to get an idea of the scalability of the algorithms. The slopes show that

the BOP approach is the best performing system in terms of memory usage. Using

the direct time series data requires the most memory.

The projected memory requirement for a database of 10000 events, is provided

in Table 4.6, based on the assumption that the lines in Figure 4.21 are linear. This

projection shows that storing the original time series events would require the most

memory. This result was expected as the other techniques are focused on the com-

pression of the data. As there was not a substantial dimensionality reduction for

the DTW feature space the size of the DTW features and DTW PCA are similar

and in the region of 48 MB. The Euclidean PCA uses only 19 components and

would require approximately 18 MB for storage. The BOP approach requires the

least amount of storage at a projected value of approximately 3 MB. The Euclidean

PCA approach requires approximately 7 times the amount of storage than the BOP

approach.

4.7 Summary

In this chapter, fixed point and elastic brute force NN neonatal EEG recall systems

were developed and evaluated. The two distance metric approaches were extended

to the feature domain which showed a significant performance increase over the time

series domain. The goal of this work was for NN neonatal EEG recall, although an

event classifier had to be used as a proxy as too much time and money would be

required to get an experienced neurophysiologist to evaluate the nearest neighbours
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from each query.

This chapter focused on the performance accuracy of each system but also looked

at other essential aspects of the systems such as query running time and memory

requirements. The query running time and memory are essential and need to be

considered if it is decided to scale systems to work with large databases.

The primary findings of this work are that the Euclidean approach applied to

the principal components gives the best results while not requiring much memory

with only a little overhead in time for a moderately sized database. The state of the

art UCR suite that was used in the DTW experiments worked better than expected

on the time series tests. The DTW tests did not outperform the Euclidean features

and PCA tests as it was designed for shape similarity and disregards scale. Longer

feature vectors may have increased the DTW systems recall accuracy. DTW was

the slowest algorithm tested and would not be suitable while working with larger

databases when a brute force and event ranking test is being carried out. The BOP

approach came third in terms of accuracy by a narrow margin, but it is both the

fastest and least dependant on memory. For these reasons, it would be recommended

as a strong contender for use when working with large databases.

Brute force tests may well be unrealistic for large databases. They do provide a

solid base as to what needs to be reached in terms of accuracy, speed and memory

for non-brute force NN searches.



Chapter 5

EEG self identification using hashing

5.1 Introduction

In Chapter 4 the concept of brute force methods for nearest neighbour (NN) recall

based on distance metrics was introduced. These approaches were evaluated in

terms of performance accuracy, query time and memory requirements. The latter

two elements need to be considered when an extensive database exists. This chapter

introduces, describes and evaluates NN neonatal EEG recall methods that are not

based on brute force approaches.

The approach used to combat the growing query time and memory requirements

of brute force systems, while maintaining recall accuracy, was the use of hashing

for the task of NN neonatal EEG recall. The chapter is laid out as follows; Section

5.2 introduces the concept of hashing for NN recall systems, Section 5.3 provides

an introduction into the area, Section 5.4 discusses the spectrogram based hashing

approach, Section 5.5 presents the feature quantisation based approach, Section

5.6 discusses the locality sensitive hashing (LSH) method and data transformation

approaches tested. The performance of each system is discussed in Section 5.7.

5.2 What is hashing?

In brute force methods, the concept is to compare the query event with every other

event in the database. In the evaluation of brute force systems, the performance,

query time and memory required were examined. A problem exists when there is a

database that grows in size, where the query time and memory requirements then

become a concern. If the database is large, it may become unrealistic to store each

100
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event in memory, or it could take too long to carry out a query. This chapter aims to

address these potential problems as brute force applications are not always practical

when there is a large database [177].

To overcome the limitations of brute force search techniques, the application of

hashing approaches to neonatal EEG were investigated. In general, hashing is the

process of converting an input, such as an EEG event into a fixed size representa-

tion known as the hash value. This conversion process is achieved using a set of

mathematical operations which are known as a hash function. This basic idea is

represented in Figure 5.1 (a) where the “EEG event 1” is the input block, the “Hash

function” block represents the set of mathematical operations and the “h1” block

represents the generated hash value. This hash function can be seen as h = H(M)

where h is the generated fixed length hash value, H is the hash function and M is

the input data that is to be hashed. Hash functions are used to map data to fixed-size

values.

When the term hashing is mentioned, the initial thought is of some form of

secure hashing technique such as SHA-192 [178]. Secure hashing schemes have a

property called strong collision resistance, which means that it is computationally

infeasible for two different sets of data to generate the same hash values. However,

this property is not required in the use of hashing in this thesis. The goal of the thesis

is to find the “nearest” match and not the “exact” match. There will not be an exact

match to a real-time query as the EEG varies from person to person even if they

exhibit the same EEG event type, thus making exact matching impossible. To find

the nearest match, it is necessary to lower the collision resistance. By doing this,

it enables similar hashes to be generated for similar data such as the less secure or

non-exact song identification hashing algorithm originally used by Shazam [179].

The authors found that using this non-exact hashing scheme enabled the correct

identification of data even after the query suffered from distortion.

As discussed in Chapter 4 applying brute force techniques directly to longer

time series results can result in poorer NN accuracy results versus when applied to

a compressed representation such as that of a feature representation [151]. Chapter

4 introduced the idea of compressing the EEG data into both feature representation

and the bag of patterns (BOP) representation. Both approaches resulted in increased

performance accuracy for the NN problem. This concept is investigated here for the

hashing space. Due to the stochastic nature of EEG, applying a hashing technique

directly to the EEG has the potential to return poor results when performing a NN
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Figure 5.1: (a) Basic hashing idea where the raw EEG data is passed directly through
a hash function and a single hash value is returned. (b) Hashing system is expanded
with a compression step to reduce the amount of data being hashed into a single
value. (c) The hashing system now generates several hash values from the same
event. (d) The final stage in the basic hashing system is the storage of the hashes,
this is done via the database.
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search. In Figure 5.1 (b), the idea of compression is introduced into the hashing

framework. The type of compression used is dependant on the application and user

requirements. If features are to be used to compress the data, it is beneficial that the

features used are generated with domain knowledge. Arbitrary features not relating

to the underlying characteristics of the signal have a higher probability of returning

poor matches. There exist several data compression techniques not based on feature

extraction in the literature with many examples listed in [131] such as singular

value decomposition (SVD), discrete cosine transformation, piecewise aggregate

approximation (PAA) and symbolic aggregate approximation (SAX) to name a few.

In Figure 5.1 (a) and (b) there is a single hash value generated for the entire

event. This approach works for a single secure hash. As the work in this chapter

is interested in nearest neighbours and not exact matches, a less secure non-exact

hashing scheme is implemented. If using a non-exact hashing scheme and only a

single hash to represent each database event, there will be a large number of matches

to a query event and no way to assess the strength of the match. This problem is

addressed in Figure 5.1 (c) where many simpler hashes are generated from the event.

For this particular example, there are six hashes. The hashing system can now be

more robust for the NN search problem by using multiple non-exact hashes.

Before NN EEG recall using hashing can be discussed the method in which

the hashes are stored needs to be described. Each hash that is generated from an

EEG event is stored in a database with their event identifier which makes it easy

to distinguish which hash was identified. These form a pair known as a key-value

pair and these are used to store events in a hash table [180]. For example purposes,

assume the hash generated is an integer number. This integer number is the key to

the hash table. The event identifier is then stored in the location indexed by that

key. If multiple different events have the same hash number, the event identifier

is appended to the row in the matrix indexed by the hash number. Figure 5.1 (d)

demonstrates the idea of storing hashes from each event in a database. Each of the

generated hashes from the event are added to the database individually. The same

process is then repeated for all the events that are to be added to the database. Figure

5.2 demonstrates how a key-value pair is added to a hash table. In this example, the

hash key or number generated is 2, and it is already in the database. There are three

event identifiers associated with this hash number. The new event identifier will then

be appended to the three existing event identifiers.

The idea of using hashing for the process of NN recall is straightforward. First



CHAPTER 5. EEG SELF IDENTIFICATION USING HASHING 104

H
ash

Keys

1

2

.

.

.

232

Item

Item

Item

Item

Item Item

Values

2

Figure 5.2: Example showing how a key-value pair is added to a hash table. In this
example the key is 2 and it already has values associated with it. The new value is
appended to the existing list of values.

there is a database development stage. Next, when there is a query, the hash is not

added to the database, the database matrix row corresponding to the hash number

generated is checked. If there are event identifiers at that hash indexed row, they are

returned as potential matches. This idea is portrayed in Figure 5.3 (a). In Figure

5.3 (a), the hash function generated a single hash h1. When this hash searched the

database, it found that the EEG event 7 has generated the same hash. The EEG event

7 was the only other event to have the same corresponding hash, meaning that EEG

event 7 is the NN to the query event.

The purpose of this basic single hash query stage was to familiarise the reader

with the query process. Next, the idea of multiple hashes per event is introduced.

This idea is represented in Figure 5.3 (b), where there are six hashes generated for

the query event. Each of these hashes is individually searched through the databases.

Database events that have the same hash number as the query are added to the list

of potential matches. If a database event has multiple hashes in common with the

query event, the number of common hashes is stored. In the example in Figure 5.3

(b) the EEG event 4 had five hashes in common with the query hashes out of a total

possible number of six hashes. Whereas events 1 and 15 only had a single hash in

common with the query event.

The final stage of the query process is to return the NN to the query event. A

straight forward approach is to count the number of matching hashes to the query

and choose the event with the highest number of hashes in common. In the example

in Figure 5.3 (b), this would return EEG event 4 as the NN. The number of hashes

in common with the query event can thus be treated as a confidence measure. The
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Figure 5.3: (a) Basic hashing based query idea. (b) Hashing when events create
multiple hashes.

more hashes in common, the more confident the NN match.

There are examples where counting the number of matching hashes may not

return the actual NN match. An example of this is when the hash function used

has little variability in the hash values generated. When cases like this occur, other

techniques of choosing the correct NN need to implemented. This chapter covers

cases where further processing steps are needed to generate more likely NN matches.

This chapter details multiple hashing approaches at a hashing system level. Inside

each system, every stage of the hashing process will be discussed in the following

order;

1. Compression technique

2. Hashing method

3. Database development

4. Search algorithm
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5.3 Review of hashing systems

Hashing techniques have been used in many different domains such as audio [179,

181, 182], text [183–186], physiological signals [50, 158, 187–190] and image [191–

193] to name a few.

A commonality between each method is that they check the similarity between

the query hash or hashes and the hashes in the database. The uniqueness of the

hashes depends on the application. For example, hashing for biometric authentication

[188] systems needs to be secure and so may use secure hashing algorithm such as

SHA-192 [178] in order to create highly unique hashes, so there is high confidence

in having a correct match when a similar hash is found. Due to the variability in

neonatal EEG from patient to patient, this approach would not be suited for use

as a NN neonatal recall system as the hashes are too exact. An example that uses

non-exact hashes is [191], which uses binary hashes to map similar images. As this

approach uses non-exact hashes, the system can find similar hashes that do not come

from the same source. This style of hashing is suited to the problem of NN EEG

recall.

In the majority of hashing systems, the primary purpose is based around similar-

ity. For example, the proposed hashing in [179] is to find the most similar song within

an extensive database of songs. In [186], the primary purpose of the algorithm is to

hash sentences so they can be used as an efficient plagiarism checker. In [188], they

extract EEG features and then generate hash keys to be used as a biometric-based

cryptographic key.

In this chapter, popular hashing approaches from the audio domain and text

similarity domain are focused on, as these represent time series data which is similar

to EEG. There is a large amount of work published in the areas of audio and text

similarity. Biometric authentication approaches [187, 188] were not investigated as

it was determined that the generated hashes are too unique due to the nature of the

application.

5.3.1 Audio hashing

Audio hashing is used to create a compact representation of audio recordings [181].

Audio hashing has been used for areas such as speech and speaker identification

[194–196] as well as the more commonly known area of song identification [179,

182, 197, 198].
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The goal of speaker identification is to identify a speaker from a recording. In

the speaker identification method described in [194], the authors investigated the

use of hashing to identify telephone spam calls. The methods of hashing used stems

from the hashing concept which was initially developed for audio identification

[197]. The authors created a binary hash from the extracted Mel Frequency Cepstral

Coefficients (MFCC) which are used commonly in speaker recognition [199]. The

MFCCs are features that are used in the audio domain to represent the frequency

content of the signal as humans perceive it. These MFCC features represent the

compression step described in Section 5.2 as these features now represent the raw

data. The speaker identification method described in [195] was used as a speech

authentication algorithm. The hashing technique implemented is based on linear

prediction analysis as it is known to be effective for speech signal analysis [195].

In [196], a speaker identification system for use on a large scale is presented. This

methods couples a known speaker identification approach with a method of hashing

known as LSH that is used for approximate NN searches with the aim of improving

the search speed, memory and processing requirements of traditional NN search

algorithms [200]. LSH preserves the relationships that exist in the data through

the hashing scheme, which makes it more scalable than true NN search algorithms.

It uses multiple random projections or random hash functions from a family of

hash functions to generate hashes from the data. These hashes are then stored in a

database for later recall. When creating hashes from the data, the idea is that similar

sets of data have similar hashes so in essence h(q) = h(x) if similar and h(q) 6= h(x)

if not similar, where h(x) stands for the hash generated from event x [201]. There

is a possibility that different event types may have the same hash and so, multiple

hashes from the hash family are computed. The authors showed that when using their

framework, they were able to achieve faster speaker identification with the sacrifice

of a small identification accuracy. This paper has shown that using an LSH scheme

that uses random projections to hash time series signals can yield fast and accurate

results.

In song identification, hashing has been used to identify a song name which had

uses in music information retrieval (MIR) and digital rights management (DRM)

[202]. MIR systems typically extract and store hashes for each song in an extensive

database ranging from thousands to millions of songs. When a song has to be iden-

tified from a snippet of audio, the MIR system generates hashes for the snippet of

audio and matches this against the database to return the best match, according to
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specific metrics. The aim is to reduce the size of the original song while retaining ro-

bustness in the face of potential signal distortions [203]. The diversity of song styles,

beats and tempos, for example, make the creation of a unique hash for identification

a difficult task. The compression methods used for hash generation are numerous, in-

cluding, for example, zero crossing rate, energy, loudness, or perceptually significant

features [204]. The choice and number of features have an impact on the success of

the system.

The most robust hashing technique described in [182] computes the factorisation

and summation technique of SVD on the MFCC features. The MFCC is the compres-

sion step, as seen in Section 5.2 and SVD is the hash function as it is a summarised

version of the MFCC features. A hashing technique which is based on the quanti-

sation of energy bands from the audio source was used in [197]. This technique is

robust as the hash generation via quantisation can be used for many different types of

features, provided there are no dominant features. This method works well for audio

identification, but there are concerns about the number of hashes generated due to

the large amount of overlap between the small sub-sequences of data. Two problems

can arise if there are many hashes. The first problem is that the memory required can

approach that of loading the whole event in memory. The second problem is that if

the hashes generated are not very unique, there could be too much overlap between

the hashes in the database. This overlap could cause problems when recalling events

as the query event could have many matches to the events in the database. However,

this quantisation idea has been implemented in other audio identification techniques

[205] and speaker identification [194] systems. The approach has shown overall that

quantisation can be used for the hash generation following a time-series compression

step.

The well-known song identification system Shazam uses a method of hashing

based on the spectrogram of the audio data [179]. The generated hashes are made

from a combination of time and frequency components from the spectrogram. An

audio hashing method that is similar to the Shazam spectrogram hashing approach

was presented in [198], which used spectrograms calculated with constant Q trans-

forms rather than the standard spectrogram. This type of transform is more suited to

audio signals as the constant Q transform will have a constant number of bins per

note. The hashes made from this spectrogram are then made in a similar manner

to [179]. As spectrograms can represent time-series data, this opens up the idea

of using spectrograms as a means to generate hashes for time series signals from
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different domains. The authors of [206] proposed the idea of using a spectrogram

to represent the audio. This spectrogram is then compressed by taking the top 50

to 800 wavelet coefficients. The compression step is needed to summarise the most

important sections of the spectrogram. These wavelets are then compressed down

further into sequences using min-hashing [207]. An example using binary data is

that the data is initially randomly permutated, the first location of a 1 is the min-hash

value. This process can then be repeated several times to generate a signature for the

event consisting of several min-hash values. For the system in [206], this min-hash

signature is the output of the compression block described in Section 5.2. The LSH

hashing technique is then used to store and find similar matches efficiently. Overall

this paper showed that hashes do not need to be generated directly from the spectro-

gram data. The use of LSH on min-hash signatures allows for approximate matches

as opposed to exact matches. This approximate match is of interest as it accounts for

noise that can be present in the compressed representation of the signal.

The audio signals have a more structured signal when compared to EEG signals.

Applications of audio hashing for song identification include broadcast monitoring,

audience measurement, finding song name, duplicate detection and metadata collec-

tion [181, 208]. The work presented in this chapter stems from three different audio

hashing techniques. These techniques were chosen due to their success in the audio

domain and their adaptability for use on neonatal EEG data. These approaches used

different techniques to generate hashes from a compressed data representation.

The first approach is based on the popular Shazam song identification algorithm,

which creates hashes from spectrograms of the songs [179]. The second approach

came from Philips, and it is also a song identification algorithm that creates binary

hashes using feature quantisation [197,209]. The third approach is based around the

idea of applying LSH to a compressed representation of the time-series data. All of

these methods follow the steps described in Section 5.2. They each compress the

data into a different representation, this is followed by hashing and storing events in a

database and lastly, each method has a query scheme developed for each application.

Unlike the previous two hashing techniques, LSH has previously been used with

physiological signals. LSH was applied to mean arterial blood pressure signals to

retrieve similar signals and the results showed that a good retrieval accuracy was

achieved [50]. Likewise LSH was used as an approximate-NN system for ECG data

and GAIT (the pattern of how a person walks) data for subsequence matching [210].

LSH was evaluated with adult EEG in [51], which looked at the correlation between
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EEG patterns and alcoholism; a problem with this dataset is that it only has two

EEG classes (alcoholic and non-alcoholic). The methods used and implemented are

discussed in more detail in sections 5.4, 5.5 and 5.6 respectively.

5.3.2 Text similarity

The concept of text similarity is to measure the similarity between pieces of text,

be it words, sentences, paragraphs or full documents [211]. As more digital data

is created, there is a need to efficiently arrange and file the data for fast recall and

similarity. There are a wide variety of distance measures available for computing

text similarity [211]. In text similarity, the goal is to find similar sections of text or

similar documents. The text or document is typically compressed, and then a distance

measure can be computed. This approach is similar to the idea of brute force NN

searching as was discussed in Chapter 4. An example compression technique is to

create n-grams, which are sub-sequences from either characters or words [212]. The

similarity is measured by counting the number of similar n-grams divided by the

total number of n-grams [211]. Alternative similarity searches on text can be based

on the semantic similarity of the content [213]. Semantic similarity is for example

when there are text files that use different words but have the same overall meaning

[214]. When text or documents are compressed into a binary hash representation,

the Jaccard distance can be used to compare similarity [215]. This is a measure of

the similarity between two sets and it provides a measure to compare compressed

time-series signals. The problem with this similarity measure is that to find the most

similar events, the Jaccard distance needs to be computed for the whole database.

There are numerous examples in the literature where hashing is used for faster

text similarity. Comparing text or documents directly with other documents will lead

to poor similarity results due to variations such as words used and the sentence struc-

ture. This is the same with EEG as seen in Chapter 4, when compression techniques

are applied, the NN results improved. The idea is that compressed data is more ro-

bust to the noise and distortions present in the raw data. The method of compression

and search techniques will impact the results obtained. The remainder of this section

looks at common compression and search strategies that are used in the area of text

and document similarity and assesses their applicability to neonatal EEG for NN

recall.

In [216], a privacy-preserving hashing system for document similarity compar-
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isons is presented. This paper expanded an approach called simhash. Simhash can

be seen as a dimensionality reduction technique as it compresses the document into

a fixed size bit-string using document terms and frequencies [214,217]. The authors

[216] expanded the simhash idea and used it as a secure way to check for similar doc-

uments in different databases. The scalability for a large database is unknown from

this paper although the compression into a fixed sized bit string could be adapted and

potentially used in an EEG compression scheme. SimseerX [218] was developed

to find similar documents from large databases. It has a web interface where the

user uploads a document and the system then uses CiteSeerExtractor [219] to extract

text and metadata from a document corpus and returns similar documents. The web

interface gives users four different similarity measures. Two measures that stand out

are the simhash and key phrase search. These perform the quickest search in practice

through the website and the author presented results of how the key phrase approach

scales. The key phrase search extracts high-level descriptions of the documents after

being trained on a document database. The simhash approach generates a 64−bit

binary code to represent documents, and the Hamming distance is then used to find

the most similar documents. This paper showed that using compression systems and

brute force searches can return results fast for large databases. The negative aspect

is that this approach is still brute force as it requires every binary code to be com-

pared. Different compression techniques will yield different performances in terms

of speed, accuracy and data compression.

A novel document summarisation algorithm [183] was developed which used

a compression strategy comprising of n-gram extraction and min-hashing. An n-

gram is a sub-string of a sentence and multiple n-grams would be extracted from

the sentence. LSH is then applied to the min-hash string to find similar sentences;

it could be computationally expensive to find all the matching min-hash signatures.

The LSH algorithm would hash min-hash signatures into the same bin if they are

similar, reducing the need for a brute force search. When they have the sentence

similarity, a ranking system was used before summarising the results. This paper

has an interesting use of LSH here in order to avoid a brute force search. If LSH

were applied to neonatal EEG, different compression techniques would need to be

investigated. Text similarity hashing is also used in document similarity. A system

for sub-linear time NN search in a very large collection of documents was presented

in [185]. Initially, the documents are represented by tokens. Following this, the LSH

approach is used to reduce the search pool. Once the search pool is reduced, there
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is still a chance that the LSH matches have low precision and therefore, a method

called iterative quantisation is used to re-rank the search pool.

An alternate approach for finding similar documents, which stems from the idea

of using semantic hashing to design binary codes to represent the documents was

presented in [220]. Here, hashing both the documents and terms simultaneously ac-

cording to their semantic similarity was proposed. This approach offers an intelligent

document compression scheme although the similar document retrieval stage may

still require brute force searching on the extracted hashes from the query document.

A semi-supervised hashing method for use on huge databases that does not rely

on random projections like that of an LSH hashing scheme was proposed in [193].

This system uses hash functions that maximise the separation between classes on the

training dataset. The training dataset is a collection of data that is labelled to belong

to a specific class and it is used to train the system to have the best separation between

the classes. The hashes aim to map the data into a Hamming space using weighted

projections. The weights on the projections are optimised to ensure documents from

the same classes have similar hashes. This hashing approach provides an interesting

solution to the similarity problem. As the system is semi-supervised, it does require

labelled documents to achieve the best results. If new event classes were to be added,

the training phase would need to be rerun to find the best class separation. Adding

new event classes would lead to problems as there would need to a sufficient amount

of data for the training phase. This particular approach was evaluated on an image

database, although the underlying ideas can be applied in different domains.

When searching the literature and as seen from the examples above the main

hashing types are simhash, LSH, semantic hashing and semi-supervised hashing. For

the particular application to neonatal EEG, the concept of LSH is most appealing as

it is an approximate search algorithm as opposed to brute force. LSH can be directly

applied to neonatal EEG and also to different compressed representations of the data.

The simhash approach has shown promising results in the text domain although it is a

brute force method and neonatal EEG is stochastic and less structured; compressing

it down into a Hamming representation has the potential to lose variable information.

If the data is compressed too much, the similarity search results would be trivial

and if there is not enough compression, then it becomes no better than a brute force

search problem as was described in Chapter 4. As simhash is a data compression step,

this technique or other binary compression techniques could be used to compress

the neonatal EEG data before the application of LSH. Semantic hashing cannot be
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applied to EEG and semi-supervised hashing could possibly provide more accurate

results, but training data is needed and requires a brute force search to be carried out.

For these reasons, the LSH approach will be investigated for use as a NN neonatal

EEG recall system. The application of LSH to neonatal EEG for event recall will be

discussed in Section 5.6.

5.3.3 Review summary

There has been much research in the audio and text domains that focused on sim-

ilarity using hash-based techniques. These hash-based similarity techniques were

researched as they yield faster results than carrying out a query directly on the data.

A main observation from the literature is that the hashing techniques apply com-

pression steps before hashes are generated. The method in which the compression

is carried out can be varied depending on the hashing approach chosen. In both the

audio and text domains, compression techniques specific to each particular domain

was carried out, such as MFCCs [221] for audio and n-gram [212] generation for

text. The methods of compression for neonatal EEG will need to be investigated

when implementing the different hashing schemes.

The hashing techniques that are explored further in this chapter were chosen as

they are not brute force methods and they have achieved good performance in their

respected areas. These approaches are all adaptable for use within the neonatal EEG

domain. The first approach is a spectrogram hashing technique [179]. The second

approach uses quantisation to generate hashes from an extracted feature [197]. The

third approach investigated is the application of LSH to neonatal EEG to generate

approximate matches [201]. It is worth noting here that no previous work has been

found in the literature that applies any of these three hashing techniques to neonatal

EEG. The work in this chapter will show how the techniques were adapted to work

with neonatal EEG and will also show the strengths and weaknesses of the three

hashing systems.

5.4 Spectrogram hashing of neonatal EEG

This method was initially developed as a commercial product for the identification

of songs which was used by the music identification company Shazam which was

founded in 1999. A general overview of the system was published in 2003 [179].
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Due to its success in the audio domain for NN, it was decided to investigate the

performance of the spectrogram hashing system when used with neonatal EEG.

As the audio and neonatal EEG domains are very different and as the paper [179]

provides a high-level overview of the algorithm, several steps needed adapting for

EEG and optimisation of the parameters to be selected was required. This section of

the chapter will present in detail the steps involved in the algorithm. Following this,

the optimisation technique will be presented.

The spectrogram hashing algorithm is a multi-stage system that uses both the

time and frequency content of the signal to represent it and store it in a database.

This method has three stages;

1. Hash creation

2. Database development

3. Search algorithm

5.4.1 Data compression and hash creation

The EEG signals are preprocessed using the preprocessing steps discussed in Chapter

3. Once the signal is ready, the hashes can be generated. The following is a list of

the steps involved:

1. Spectrogram generation

2. Spectrogram cleaning

3. Peak location

4. Hash generation

Steps 1−3 resemble the compression box from Figure 5.1.

Spectrogram generation

Spectrograms show the time-frequency relationship of signals using the Short-Time

Fourier Transform (STFT). The signal was initially split into overlapping epochs,

with a Hamming window applied to reduce edge effects. The overlap, epoch length

and the number of points in the FFT will affect the resolution of the spectrogram.

Figure 5.5 shows an example spectrogram representation for the 8 second EEG
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Figure 5.4: An example 8 second window of an EEG time series signal at sampling
rate 32 Hz

time series signal shown in Figure 5.4, where the sampling frequency is 32Hz. The

colour intensity indicates the energy at the corresponding time and frequency energy

point. As seen in Figure 5.5, the lower frequency region of the spectrogram contains

the highest concentrations of energy. The spectrogram in Figure 5.5 focuses on the

frequency range 0Hz−8Hz. The energy peaks with higher intensities contribute to

the structure of the EEG event.

Hashes are generated from the energy peaks contained within the spectrogram.

At this point in the algorithm, there exists an extensive collection of spectrogram

energy peaks, and thus every point in the spectrogram could potentially be used to

make hashes. Using every spectrogram energy point to make hashes leads to no data

compression and long query times.

To achieve data compression, some of the energy peaks need to be removed from

the spectrogram. Many approaches could be implemented to remove energy peaks.

However, it is important to keep the energy peaks that contain information about the

EEG event and remove the energy peaks that contain little information.

Spectrogram cleaning

In the original paper [179] the authors do not describe the methods they used for peak

location following the computation of the spectrogram. They state the following “A
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Figure 5.5: The spectrogram of the 8 second EEG time series signal seen in Figure
5.4

time-frequency point is a candidate peak if it has a higher energy content than all its

neighbors in a region centered around the point”.

The spectrogram is 2-D, it can be seen as an image. For this reason, image

processing techniques were implemented to reduce the number of energy peaks

from the spectrogram. A log transform is applied to reflect relative change and thus

prevent very large energy components from dominating and skewing the hashing

process. The spectrogram is then normalised between zero and one using Equation

5.1.

ŝ(t, f ) =
s(t, f )−min(s)
max(s)−min(s)

. (5.1)

Where s is the log transformed spectrogram. The lower energy components of

the spectrogram are then removed as they contain little information. Removing the

lower energy components saves resources rather than storing and processing useless

information. Energy peaks with an energy of zero are not considered as peaks, and

this is why the spectrogram was normalised between zero and one as it ensures the

lowest possible energy peak is at zero. The following energy peak removal step was
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Figure 5.6: Spectrogram after application of a peak removal threshold of 71.4%

applied:

ŝ(t, f ) =

{
ŝ(t, f )×1, (ŝ(t, f )− (( 1

T ∑
T
t=1 ŝ(t, f ))×T hreshold))≥ 0

ŝ(t, f )×0, (ŝ(t, f )− (( 1
T ∑

T
t=1 ŝ(t, f ))×T hreshold))< 0

(5.2)

where T is the number of spectrogram time windows and ŝ(t, f ) is the energy peak at

time t and frequency f . This equation has taken into account the fact that the lower

frequency components of neonatal EEG have higher amplitudes than the higher

frequency components. This is done by taking the mean of the frequency band

corresponding to ŝ(t, f ) as opposed to the mean of the whole spectrogram. Taking

the mean of the whole spectrogram could remove some potentially important higher

frequency energy peaks.

The dark sections in Figure 5.6, which have an intensity of zero, show the result-

ing graph after the application of the spectrogram threshold. The lowest intensity

pixels are showing (dark blue) as the blocks that did not satisfy Equation 5.2 when

using a threshold of 71.4%. This threshold parameter and all the other parameters

for the system were found using an optimisation strategy that will be discussed in

Section 5.4.4. The parameter values used for this system are also detailed in Section

5.4.4.

Figure 5.7 shows an example of the system after a threshold of 100%. The
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Figure 5.7: Spectrogram after application of a peak removal threshold of 100%

number of energy peaks has drastically reduced. This example shows that as the

threshold is increased, more data is discarded. Compressing the data is important for

speed and storage requirements and varying this threshold is an example of how the

data compression can be controlled.

Peak location

The next step in the hash generation is finding energy peaks that have the highest

significance. To do this, the image processing technique of dilation was applied

[222]. Dilation is a morphological operation and it was applied across the spectro-

gram. A morphological operation is a technique used to alter images or in this case

spectrograms. The dilation operation applies a quadrilateral structuring element to

each pixel in the spectrogram image and sets the pixel value to the maximum value

contained in the structuring element. This approach places more emphasis on the

higher energy peaks in the spectrogram. Figure 5.8 shows an example of the dilation

process. The original image is a cross, and the structuring element is a rectangle

with the anchor pixel being the rightmost pixel in this example. As the structuring

element is moved across the image, if it comes into contact with at least 1 pixel of

the same colour, the anchor pixel will be activated. When this was applied over the

original image, the result can be seen in the dilated image in Figure 5.8. The green
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Figure 5.8: Binary dilation example showing the original image, structuring element
used and the resulting dilated image

pixels are the new pixels that were added.

The dilation process is applied to the spectrogram with Figure 5.9 showing the

resulting image. The higher amplitude regions in the spectrograms are now more

dominant.

This new representation is then compared to the spectrogram before dilation was

applied. Matching energy peaks between the original and dilated spectrograms are

seen as the most significant energy peaks with the other peaks being discarded. This

process reduces the spectrogram data to a collection of energy points. The size of

the dilation window can be varied independently for both the time and frequency

components of the spectrogram. The black dots in Figure 5.10 are now the energy

peaks that will be used for hash generation.

Hash generation

Each point contains a time, frequency and energy component. Using the time and

frequency components of each individual energy peak would make the matching

process difficult and may require a vast database. A significant problem here is that
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Figure 5.9: Spectrogram after the dilation was applied showing the dominating
higher amplitude components

exact time alignment is required, which is not feasible. In [179], the authors solved

this problem using combinatorial hashing which combines information from two

energy peaks to make a hash.

The system loops through each of the energy peaks and attempts to find point

pairs. For example, on iteration i, energy peak i known as point(i) needs at least one

other energy peak to make a hash. The energy peak it needs, has to be contained

within a specific region of the spectrogram as opposed to anywhere in the spectro-

gram. By doing this, it makes the hashes define the particular area they reside in and

ensure they are not spread across the whole spectrogram or drawn to particular en-

ergy peaks throughout the event. This region is known as the target area. The energy

peaks ( fp) contained within the target area must meet the following conditions in

order to be used to create a hash, with the energy point, point(i) considered to be

located at (t0, f0);

1. The energy peak has to be bounded within t0+1 and to+tlim.

2. The energy peak has to be bounded within either f0+1 ≤ fp ≤ fo+ f lim or

f0−1 ≥ fp ≥ fo− f lim

3. The energy peaks with the highest energy are chosen.
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The parameters tlim and f lim are tunable and application specific, and these

represent the target area. They should be tuned so on average point(i) has a set

number of points contained within the target area. Using a target area also reduces

the possibility of the database exploding in size. The target area may contain many

other energy peaks and to limit the number of hashes generated, point(i) was limited

to generate a set number of hashes which is discussed in Section 5.7.1.

When there are more than the set number of energy peaks within the target area,

a method was needed to choose which energy peaks to use. The most straightforward

approach is to choose the closest energy peaks. In this work however an alternate

approach that utilised the energy component of the energy peaks was used, which

picked the energy peaks that had the largest energy components. This puts extra

emphasis on the higher amplitude energy peaks as they are seen to contain more

information. The reason point(i) and another energy peak cannot be located on

either the same time or frequency values is to prevent an influx of similar points

when there may be noise or other disturbances in the time series. If a section of the

time series was corrupted or if there were a constant frequency interference in the

system, the hashes would be attracted to them.

Each point pair is used to make a hash using Equation 5.3

Hash = (Fanc−1)×29 +∆F×24 +∆T (5.3)

with Fanc being the anchor point frequency, ∆F is the frequency difference between

the points which can be positive or negative and ∆T is the positive time difference.

This hash equation is used to create the hashes for the events. The idea of using this

type of hash came from [179]. By applying Equation 5.3 the relative time between

the point pair is reserved alleviating the need for the query to be initiated at the same

time as when the initial time series event was added to the database. The landmarks

are seen in Figure 5.10 which are the red lines between the peak points. These

landmarks form the hash.

The spacing of the hash in Equation 5.3 was designed to prevent overlap from

different combinations of Fanc, ∆F and ∆T . The values displayed in Equation 5.3

are application specific as ∆T and ∆F may vary for other applications. The time and

frequency resolution of the spectrogram, along with the size of the target area when

generating the point pairs were taken into consideration when designing the hash.

Figure 5.11 shows the final product of the full spectrogram hashing algorithm
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Figure 5.10: Spectrogram with the energy peak landmarks overlaid. The energy
peaks are the black circles and the red lines connecting the two energy peaks show
the peak pairs that were used to create the hashes.

that was applied to a chirp signal ranging between 0Hz−16Hz, that is repeated three

times. This spectrogram is 60 seconds in duration and the frequency ranges from

0Hz−16Hz. The landmark hashes are overlaid. The three higher intensity diagonal

lines correspond to the three cascaded chirp signals. What is clear from Figure 5.11

is that the hashes or landmarks are drawn towards the higher energy sections of the

spectrogram.

5.4.2 Database development

The hash value generated using Equation 5.3 is used as a key for the hash table [180].

This key, along with the time series event identifier, coupled with point(i) start time,

are stored in a hash table as the value for quick recall in the query stage. The hash

table is an ideal storage type for systems where memory is limited. Section 5.2 and

Figure 5.2 described the process of adding hashes to a hash table.

The process described above in Section 5.4.1 is run iteratively over all the time

series events that are to be stored in the database. This extraction process is the most

time-consuming step in the system, albeit it has only to be carried out once for the

database development. New events can easily be added to the database without the

need to recreate a whole new database. Once the hash table is generated, and the
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Figure 5.11: Spectrogram with landmarks overlaid for a longer signal consisting of
three cascaded chirp signals from 0Hz to 16Hz

events are indexed, querying is then possible.

It is worth noting that with this method, there is a likelihood that the same hash

can occur multiple times for multiple different events. When they occur, they are

merely appended to the value list in the hash table for that particular hash key.

5.4.3 Search algorithm

The original purpose of the Shazam algorithm described in [179] was to recall the

closest matching song from a database of songs, it was, therefore, a NN of one search

algorithm. This work has a similar aim with the exception that it is being carried

out in the neonatal EEG domain. Starting with an unprocessed query time series,

it undergoes the same processing that has occurred for the time series events that

were used to build the database. A group of hashes are then generated in the same

manner as described in Section 5.4.1. This collection of hashes now represents the

query time series event. Each hash in the query collection is compared against the

database; if the hash key exists in the database, the values associated with it are

returned as potential matches. This hash query is repeated for all the hashes, and a

list of candidate matches is generated.

The hashes are initially sorted by the candidate event. The times from the query

hashes are compared to the times embedded in the values retrieved from the hash
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table. Then the candidate event with the most frequently occurring time differences

between the query and stored times is considered as the most likely match. This

simple and effective method is quickly able to return the first nearest neighbour.

Using this method to sort the events eliminates potential matches that do not have

an associated time correlation. These potential matches can be frequent and occur

by chance, as the original hashing (Equation 5.3) only takes into account the time

difference and not the occurrence time.

A flow graph of when a query is being carried out is given in Figure 5.12. When

there is a query, this process is carried out with the same parameters as were used

when developing the database. The hash generation block can be divided into four

stages described in Section 5.4.1. The lookup block is responsible for checking if

the query hashes exist in the database. The best-connected matches block arranges

the returned matches in order of most likely to least likely. The most likely match is

then returned as the final match and this is the NN event.

Raw
data

Pre-
processing

Hash
generation Lookup

Matches

Best connected
matches

Final match

Hash
database

Spectrogram
generation

Spectrogram
cleaning

Peak
location

Hash
Generation

Figure 5.12: Spectrogram based method query flow graph showing the steps involved
in the hashing process
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5.4.4 Optimisation

The method developed in [179] has several tunable parameters which are optimised

for the audio application. In this section an optimisation technique is proposed to

optimally tune these parameters for use on neonatal EEG.

A brute force parameter optimisation technique is not a feasible option, although

a coarse search may provide insight into the optimisation space. Another option is

to optimise individual parameters by fixing the other parameters with the advantage

that multiple tests could be run in parallel. This method may lead each parameter

being stuck in a local minimum, mainly when there are interdependencies among the

parameters. Different search approaches, like the Monte-Carlo sampling approach

[223] could be used. There are two circumstances where the Monte-Carlo method

produces good results; the first by coincidence and the second is by taking a large

number of samples. As the Monte-Carlo method relies on chance or a large number

of samples, there is little chance that the optimum parameters found are the global

optimum parameters.

A metaheuristic optimisation algorithm which locates the optimal or near opti-

mal parameters was investigated [224]. Metaheuristic algorithms are gradient free

problem independent optimisation techniques and so are suited to this general param-

eter optimisation problem. There are various types of metaheuristic methods such

as simulated annealing [225], evolutionary algorithms [226] and swarm intelligence

methods [227].

In this work, a form of swarm intelligence called particle swarm optimisation

(PSO) [228] was used to locate an optimal or near optimal solution. PSO was chosen

as it is a multi-objective optimisation technique that has a lower chance of getting

stuck in a local optimal parameter position due to the use of multiple particles

searching the parameter space. This method is based on the flocking patterns of

birds, where the particles or “birds” would work through the parameter space or cost

function while in search of the optimal parameter set to minimise the function cost.

Each particle has a personal memory of their best position Pbp and a social memory

component which is the global best parameter set within the whole swarm Gb. These

memory components and the previous particles’ velocities guide the particle to its

next position. Each particle is initially assigned random values.

An inertia weight (Iw) [229] or a constriction factor (K) [230] is used to help

prevent the explosion and encourage the convergence of particles. These are two
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well-known methods for controlling the velocity of particles. If the velocity of the

particles is not controlled, an optimal solution where the particles converge may not

be found; the particles could keep exploring in different directions on the parameter

plane.

The PSO particle velocity (vp) is given by Equation 5.4

vp(i) = K× [Iw× vp(i−1)+φp× rp× (Pbp−ℵp(i−1))

+φg× rg× (Gb−ℵp(i−1))]
(5.4)

for particle p on iteration i and it combines both inertia weights and constriction. The

parameters φp and φg are the personal and social acceleration constants respectively.

These constants will determine whether to perform a more personal search by having

each particle put further emphasis on their own best Pbp as opposed to the global

best Gb which would not lead to a convergence of the particles. Alternatively, more

emphasis can be placed on the social aspect of the global best. This social aspect

leads to fast convergence, albeit to a potential local optimum. In this work φp = φg

as this is typically done [231, 232] to balance the exploration and convergence. The

variables rp and rg are random numbers with a uniform distribution between [0, 1]

which are used to introduce randomness into the system. The particle position (ℵp)

is given by Equation 5.5.

ℵp(i) = ℵp(i−1)+ vp(i) (5.5)

The constriction factor K is calculated using Equation 5.6,

K =
2∣∣∣2−φ −
√

φ 2−4φ

∣∣∣ ,where φ = φp +φg,φ > 4 (5.6)

and the inertia weigh Iw is user-defined. The inertia weight or constriction approach

can be disabled by fixing the inertia weight Iw = 1 for all iterations, similarly fixing

constriction factor K = 1 will disengage this damping. Algorithm 1 shows the pseudo

code for PSO with D dimensional particles. It is worth noting that the D dimensional

particles are initially set to random positions within a specified range as can be seen

in the pseudo code in Algorithm 1 from lines 1− 8. The cost function that is to
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be minimised is given by f (ℵi). As seen in Algorithm 1 after each iteration the

particles personal best (Pbp) (line 16) and global best (Gb) (line 19) are updated if

the cost function produces f (ℵi) has a new minimum value.

Figure 5.13 shows an example of the PSO algorithm using 10 particles for 15

iterations on the parameter plane shown. The dark regions in Figure 5.13 indicate

a low cost and as the colour moves towards a yellow the cost increases. The x-

axis and y-axis correspond to particular parameters that are being optimised. In

Figure 5.13 (a), it is clear that the particles are spread out around the parameter

plane. The personal, global and net acceleration from each particle is shown via

the arrows protruding from each particle. The arrows are pointing in the direction

where the acceleration is taking them and the size of the arrow represents the level

of acceleration. In 5.13 (b), it is clear that the majority of particles converge to the

global minimum. Due to the constriction, the acceleration has decreased and this is

evident from the shorter arrows. The final particle is trying to reach the global best as

seen from the large personal and global arrows. Due to constriction, it cannot make

it as the net acceleration is vastly reduced. For more detail on PSO, please refer to

[228].

The optimised parameter set for the spectrogram hashing algorithm found using

PSO are presented in Section 5.7.1.

5.5 Feature hashing

The algorithm chosen for this work was initially presented in [197]. It has shown

promising results for the audio domain and was one of the audio hashing techniques

discussed in the audio hashing review in Section 5.3.1. It is a hash-based system and

therefore it is expected to be faster than the brute force systems presented in Chapter

4. The overall algorithm consists of four main steps;

1. Data compression

2. Hash generation

3. Database development

4. Search algorithm

These four steps are the same as mentioned in Section 5.2.
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Algorithm 1 Particle Swarm Optimization
1: for all i in 1..Ω do // Initialize population position and velocity
2: for all j in 1..D do
3: ℵi, j ∼U(ℵ jlo,ℵ jhi);
4: vi, j ∼U(−|ℵ jhi−ℵ jlo|, |ℵ jhi−ℵ jlo|);
5: Pbi, j = ℵi, j;
6: end for
7: Gb = argmin f (Pbi);
8: end for
9: for all ii in 1..T do // Number of Iterations

10: for all i in 1..Ω do // Loop through of particles
11: for all j in 1..D do // Loop through each dimension
12: rp ∼U(0,1); rg ∼U(0,1);
13: vi, j = K[Iwvi, j +φprp(Pbi, j −ℵi, j)+φgrg(Gb j −ℵi, j)];
14: ℵi, j = xi, j + xi, j’;
15: end for
16: if f (ℵi)< f (Pbi) then
17: Pbi ←ℵi
18: end if
19: if f (Pbi)< f (Gb) then
20: Gb← Pbi

21: end if
22: end for
23: Iw = Iw ∗wdamp // Inertia weight damping
24: end for
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Figure 5.13: PSO on a two parameter mathematical function using constriction with
10 particles and 15 iterations. (a) showing after the first iteration. (b) Showing after
the 15th iteration.

5.5.1 Data compression and hash creation

This section investigates two different hash techniques. The first technique is based

on quantising the signal using the energy in different frequency bands [197]. The

second approach used the same principal of quantising a feature but extended this

from one feature to a full set of features that were designed for use on neonatal EEG

[33].

Frequency based hash

Hash extraction is used to make the events identifiable within large databases. The

method used by [197] uses the energies in different sub-bands to quantise the signal

and is depicted in Figure 5.14.

The signal is initially divided into fixed size overlapping segments. A Hanning

window was used to smooth the epochs by reducing edge effects. The overlap helps

capture the transition of time series over time and helps rectify any misalignment

between the query and original event.

As this method focuses on the frequency content, the Fourier Transform was
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Figure 5.14: Frequency hashing algorithm shows the multiple stages involved

computed for each of the overlapping epochs to capture the frequency spectrum.

The spectrum is then sub-divided and this is where differences exist between the

audio and neonatal EEG domains. In the audio domain, the bark scale [233] or the

Mel scale [234] could be used to divide the spectrum. Then the MFCC are typically

used as audio identification features [221]. As the frequency range for neonatal EEG

is low, the bark and Mel scales cannot be applied. In place of this linearly spaced

bands across the neonatal EEG spectral range were used. As seen in Figure 5.14

following the band division, the energy inside each frequency band is computed.

There are in total m+1 energy bands.

The quantisation block represents the final stage of this hashing algorithm in
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Figure 5.15: Example of the hashes generated from the EEG signal and how they
are converted into integer numbers

Figure 5.14. This quantisation is represented mathematically by Equation 5.7.

z( j,k) =

1 if E( j,k)−E( j,k+1)− (E( j−1,k)−E( j−1,k+1))> 0

0 if E( j,k)−E( j,k+1)− (E( j−1,k)−E( j−1,k+1))≤ 0
(5.7)

The output bit z( j,k) is generated where E( j,k) is the summed energy in the kth

frequency band for epoch j. In Figure 5.14, the block containing Z−1 stands for

a delay of one epoch. A hash is created for epoch j by computing z( j, i) for the

bands i = 1 to m. A hash block is constructed by repeating the process for each of

the epochs which then represents the event. The parameters for this system were

optimised using PSO and are presented in Section 5.7.1.

Figure 5.15 shows an example of the hash block that was generated for an EEG

event. Each row in Figure 5.15 corresponds to a single hash, which is a seven bit

binary number. The black pixels correspond to zeros and the white pixels correspond

to ones. The leftmost bit corresponds to the least significant bit. Each hash is then

converted into an integer using the conversion shown for the second and 25th hashes.

It is these integers that are later used as keys to the hash tables where they are

stored. There are in total 374 hashes per event. With 7 bits there are 128 possible

hash values. This number can be increased or decreased by changing the system

parameters. Increasing the number of possible hash values could make the hashing

too unique, leading to incorrect NN or no matches if the hashes are too unique.
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Feature based hash

The approach described in Section 5.5.1 primarily focused on using the energy in

frequency bands as a method to quantise events. This can be extended by using a

neonatal feature set to quantise an event. A feature set that was previously devel-

oped and optimised to describe neonatal EEG would compress the neonatal EEG

in a more meaningful manner. It was the assumption that quantising these features

would result in more information being captured. Quantising energy features across

multiple energy bands, might cause noise to be introduced into the system mainly

for the higher frequencies. The feature set introduced in Chapter 3 is used. It was the

assumption that using these features would encode more information into the binary

quantised hashes.

Features were extracted from 8-second epochs with a 50% overlap giving thirteen

feature epochs per one minute event. PCA was applied to the features in an attempt

to reduce the dimensionality. The principal components could be quantised using

the basic quantisation algorithm of Equation 5.8

z(n,m) =

1 if X(n,m)−X(n,m+1)> 0

0 if X(n,m)−X(n,m+1)≤ 0
(5.8)

where z(n,m) is the mth hash bit for principal component n from the principal

components vector X . The problem with this algorithm is that the hash size is not

fixed as it is determined by the number of epochs in the event. If an event exists

with a large number of epochs, then the hash will be large and this may make it

very unique, which in turn will make it very hard to find a NN match. When using

Equation 5.8 for the database described in Chapter 2, all the hashes for this system

will be twelve bits in length and there will be up to a maximum of 55 hashes per

event, one hash for each principal component. There is a trade-off between hash

length and events recalled.

Another quantisation approach was implemented as the hash approach using

Equation 5.8 does not have a fixed size that can be controlled. The ability to vary the

number of bits in a system enables the user to tune the system to have either more or

less events returned in the query stage. This control of the number of bits in a hash

is crucial as it impacts the memory and query speed as will be discussed in further

detail in Section 5.5.3.

The approach used to resolve this is to divide the signal into S sections to generate
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S bits. Within a section, the first half of the section is subtracted from the second half

of the section. If the value was greater than zero, the binary bit was set to one or else it

was set to zero. This approach is then repeated for the remaining sections to generate

a hash corresponding to an individual principal component. The whole process is

then repeated for each of the principal components. This process is represented by

Equation 5.9.

z(n,m) =



1 if 1
B−A ∑

B
i=A X(n, i)− 1

D−C ∑
D
i=C X(n, i)> 0 S≤ Fn

2 m≤ S

0 if 1
B−A ∑

B
i=A X(n, i)− 1

D−C ∑
D
i=C X(n, i)≤ 0 S≤ Fn

2 m≤ S

1 if X(n,m)> 0 S > Fn
2 m≤ (2S−Fn)

0 if X(n,m)≤ 0 S > Fn
2 m≤ (2S−Fn)

1 if X(n,M−1)−X(n,M)> 0 S > Fn
2 m > (2S−Fn)

0 if X(n,M−1)−X(n,M)≤ 0 S > Fn
2 m > (2S−Fn)

(5.9)

where the following were used to make the equation more presentable A=
⌊
(m−1)Fn

S

⌋
+

1, B =
⌊

Fn+2Fn(m−1)
2S

⌋
, C =

⌊
Fn+2Fn(m−1)

2S

⌋
+1, D =

⌊mFn
S

⌋
and M = 2m− (2S−Fn).

The mth hash bit for principal component n is z(n,m), Fn is the number of principal

component epochs, and there is a total of S hash bits. It is essential that each principal

component for each event is normalised to have a zero mean before the application

of Equation 5.9. Failure to normalise could result in some hashes being entirely ones

or entirely zeros. This problem is mainly the case when S > Fn
2 and m ≤ (2S−Fn)

as the bit decision is being made from a single value as opposed to the difference

between two or more values. The hash generated is similar to that of Figure 5.15

with the exception that the hash for this approach has a fixed size of S× the number

of principal components, where S is the number of bits per hash and the number

principal components is also the number of hashes in the hash block. Unlike the

spectrogram hashing algorithm from Section 5.4, the number of hashes generated

can be controlled and set to a fixed number of hashes by varying S. As the value of

S increases so too does the variability that can exists in the hashes. The optimised

parameters for this system are presented in Section 5.7.1.
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5.5.2 Database development

Following the extraction of the hashes from the training EEG events, the hashes need

to be stored in a manner that enables quick recall. The approach for the database

storage and search is similar to that of [197] where they use the idea of candidate

matches. A candidate match occurs when there is a match between at least one

hash of the event in the database and the query event. This hash comparison can be

achieved by using a hash table [180] where the key is the unique hash generated

and the value associated with the key is a file index number. By using a hash table

as described in Section 5.2, new events can be quickly added with ease and a fast

search where only the relevant candidate matches are returned can be carried out.

There is a wide variety of unique hashes possible. Using a hash table can be more

memory efficient than traditional storage methods where the hash space can be

sparse. Traditional storage methods require all the memory to be pre-allocated for

every possible hash value. If the hash space is sparsely filled, the memory will still be

allocated. Hash tables do not require the pre-allocation of memory to every possible

hash before they exist. The hash table is of the same type as described in Section

5.2, where Figure 5.2 was used to display it visually.

5.5.3 Search algorithm

When a neonatal EEG event has to be identified, the hashes are extracted. Each hash

from the query event is searched against the developed database. First, the system

checks if the hash key exists; if it does, the indices associated with that hash are then

returned. This approach is then repeated for each of the hashes for the query event.

Every event that has at least one hash match is seen as a candidate match. The

hash event block for the query is compared to each of the candidate hash event

blocks. This comparison enables a ranking of the matches. The comparison that

is computed is the Bit Error Rate (BER), which captures the differences between

the hash blocks, as illustrated in the Figure 5.16 (e). This illustration shows the

difference between the hash blocks for the first and second seizure examples. These

seizure hash blocks were generated from the data examples for the first and second

patients respectively, which are shown in Figure 5.16 (a) and (b). Figure 5.16 (c) and

(d) are the hash blocks for patients (a) and (b) respectively. These hash blocks share

some similarities, although looking at the bit errors in Figure 5.16 (e) it is clear that

there are many differences. Figure 5.16 (e) shows that there are only two exact hash
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matches. The red boxes highlight this in Figure 5.16. In the ideal case of an exact

match, there would be a BER of zero; the worst match should technically have a

BER of one. The BER for example, in Figure 5.16 is 0.452. If the user required a

certain degree of confidence in the matches, a BER threshold could be set.
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Figure 5.16: Example showing the difference between two seizure events (a) and (b)
which were converted into hash blocks (c) and (d) with the differences between the
events shown by (e).

Figure 5.17 shows a flow graph of the algorithm when a query is carried out.

This flow graph is similar to the spectrogram hashing flow chart from Section 5.4.3.

The differences are the hash generation process and the search approach. In Figure
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5.17, the BER block is used to return the NN. This query process is not brute force as

events are only queried if there is a single matching hash. Since the system uses the

BER, it has the potential to turn into a brute force search. This is dependent on the

uniqueness of the hashes generated. The results for this hashing method are discussed

in Section 5.7, where the NN accuracy, query time and memory requirements are

evaluated.
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Figure 5.17: Quantisation based query flow graph for the frequency band quantisa-
tion hash method

5.6 Locality sensitive hashing

The last hashing scheme that was investigated is LSH. LSH creates a compact repre-

sentation of the data, that can be stored in memory for quick access when performing

a similarity search [235]. This type of hashing has performed well in both the audio
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and text domains, as was described in Section 5.3. This algorithm follows the four

steps described in Section 5.2, which are;

1. Compression technique

2. Hashing method

3. Database development

4. Search algorithm

5.6.1 Data compression

Data compression is required before hash generation as was described in Section 5.2.

Due to the stochastic nature of neonatal EEG, the application of LSH directly on

neonatal EEG would result in poor NN recall performance. Three compression steps

were considered namely the sketch and shingle method [49], BOP representation

[78] and neonatal EEG features as described in Chapter 3.

Sketch and shingle

The sketch and shingle method from [49] was computed for the neonatal EEG. This

system will be referred to as the LSH SS approach. This two-stage process trans-

forms the data from a time series representation into a compressed binary represen-

tation. Sketching converts the signal into a binary representation, and shingling is

then used to divide this binary representation into small binary sequences.

Sketching of the time series signal x = (x1,x2, ...,xn), commences by sliding a

normally distributed random filter (τ) across the time series. The random filter has

a length W with a step size δ [236, 237]. Equation 5.10 demonstrates how a bit is

generated for xi,...,i+W ⊂ x using the dot product of τ and xi,...,i+W .

Bx =

{
+1 : τ · xi,...,i+W ≥ 0

−1 : τ · xi,...,i+W < 0
(5.10)

The sketching process is applied across the entire time series creating the bit

string Bx = (B(1)
x ,B(2)

x , ...B(
n−W

δ
)

x ). The step δ is crucial as it helps capture misalign-

ment between time series and it determines the level of compression. Figure 5.18

shows an example of the sketching process. The blocks on the left represent the time

series signal. In this example, it uses four samples to create a single bit of the bit
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string, and it has a step size δ of two. The dot product with the random filter (τ) is

shown on the right of Figure 5.18, and bit string Bx shows the style of the output

bits.

With the sketching process, it is inevitable that information will be lost, but the

amount of information lost is dependent on the window length W and the choice

of step δ . Choosing W and δ to be small will result in more data being retained,

although there will be little compression. On the other hand, large values will lead

to too much compression, where the compressed sketches become meaningless and

indistinguishable from other sketches.

Overlap
Bx =

=


B1

x = 1 x(1, ...,W ) · τ ≥ 0

B1
x = 0 x(1, ...,W ) · τ < 0

B4
xB3

xB2
xB1

x

x(1, ...,W )

x(3, ...,2+W )

x(1, ...,W )

τ

Ls

Figure 5.18: Example of the LSH sketching process

If time series events are similar, it is expected that the bit strings would be similar.

If bit differences occur between the two full binary sketches, its hashing could pre-

vent a match occurring. Shingling is used to prevent this from happening. Shingling

divides the binary strings into subsequences known as shingles or n-grams of length

Ls. Instead of comparing two long bit strings, shingling compares multiple shorter

sub-sequences, which are more likely to match if events are similar. Shingling has

previously been used in text categorisation, which helped account for some spelling

errors in documents [212]. The shift between shingles used in this work is one bit.

The length of the shingle Ls will determine the number of possible unique shin-

gles (2Ls). Once the list of all the shingles is generated, a weighted set is gener-

ated where each shingle and its frequency of occurrence is stored in a set such as

Sx = ((S1
x ,Sω1),(S2

x ,Sω2), ...,(Sz
x,Sω2Ls )), where Si

x = (B(i)
x ,B(i+1)

x , ...B(i+L−1)
x ) and

Sωi is the frequency of occurrence of shingle Si
x.

A low Ls results in little variety in the shingles; therefore there is a higher chance

of having a large number of results generated. Having a substantial results pool

could make it difficult and time-consuming to find correct matches. A large Ls will

reduce the likelihood of having a similar match because there will be a broad range



CHAPTER 5. EEG SELF IDENTIFICATION USING HASHING 139

1 0 0 1 1 1 0 1 0 0 1 0 0

1 0 0 1 1 1 0 1 0 0 1 0 0

0 1 1 1 0 1 0 0 1 0 0 0 1

1 0 0 1

0 1 1 1

1 1 0 1

0 1 0 0

0 0 1 0

0 1 1 1

1 1 0 1

0 1 0 0

0 0 1 0

1 0 0 0

Bx =

Qx =

S1
x

S5
x

S1
x

S5
x

Figure 5.19: Example of the LSH shingling process with query that was misaligned

of possible shingle values, which in turn makes the hashes more unique to an extent

where only an exact match gets a hit.

Figure 5.19 shows an example of the shingling process. The bit string Bx gener-

ated from the sketch step is divided into shingles of four bits; therefore the shingle

length Ls is four. There is a shingle shift of two bits used in this example. In the

implemented version a shingle bit shift of one used. From Bx, there were five shin-

gles created as seen from the set of shingles on the right-hand side of Figure 5.19.

The bottom half of Figure 5.19 shows an example of the query bitstring Qx. This bit

string is nearly identical to Bx except it is misaligned by two bits. Comparing the bit

strings directly will result in a similarity of 38%. Once the shingles are extracted the

similarity is increased to 80% as the majority of shingles are identical.

In the ideal scenario, similar events will have similar hashes. The key term here

is “similar” and not “exact” thus a balance needs to be found so similar matches can

be generated without being inundated with useless results. The parameters for this

system were optimised using PSO and are presented in Section 5.7.1.

BOP representation

The application of the BOP approach was discussed in Chapter 4. This compression

approach followed by hashing, will be referred to as the LSH BOP approach. This

process transforms the time series data of length n (n is the number of samples)

into an array of length αω (α is the alphabet size, and ω is the word length). The
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hashing is then carried out on this new representation, as will be discussed in Section

5.6.2. The parameters for this system were optimised using PSO and are presented

in Section 5.7.1.

Feature representation

Each feature vector will be used to make a single hash value. Therefore if there

are 55 features, this results in 55 hashes being generated. As discussed in Section

5.6, h(q) = h(x) has the potential to occur when the events q and x are different.

Therefore multiple hashes need to be taken. If there were multiple hashes taken for

each of the 55 features, the hash database would grow at a fast rate.

To account for the growing database, the number of features used was reduced.

A crude method of reducing the features was used. The LSH recall accuracy when

testing each feature individually was computed using 20 hashes. The features were

then organised by the performance they achieved. This process ranked the features

by the performance they contributed to the recall system. A brute force optimisation

strategy was then implemented that evaluated the performance of the system using

one feature while increasing the number of times the feature was repeated from 10

repetitions to 20 repetitions. Then the same approach was tested using the best two

performing features and then the best three features and so on until all the features

were investigated. A minimum of 10 repetitions was used in order to reduce chances

of false hash collisions as it is more like h(q) = h(x) if event q is similar to event x.

The results from this optimisation step are presented in Section 5.7.1.

This approach of finding the optimal features and amount of repetitions was only

possible due to the limited size of the database. If there were a larger database, an

alternative strategy of finding the best features and amount of repetitions would need

to be carried out such as PSO which is not a brute force approach.

5.6.2 Hashing

Following the application of the compression steps, the hashing was computed for

each of the methods. A hash family H is a collection of hash functions h. The hashing

is used to generate the time series event keys for the hash tables. The number of

hash functions h used relates to the number of hashes generated for each event. As

described in Section 5.3, the goal of LSH is to maximise similar events having

similar hashes such as h(q) = h(x) where x and q come from the same event class.
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The methods developed in this chapter use weighted min-hashing [238] to generate

the hashes. This hashing technique was chosen as it was designed to work with real

values. The hashing technique is based on the Jaccard similarity measure J(q,x),

which is the ratio of the intersection between two sets q and x, to the union of those

two sets as can be seen in Equation 5.11.

J(q,x) =
q∩ x
q∪ x

=
∑k min(qk,xk)

∑k min(qk,xk)
= Pr[h(q) = h(x)] (5.11)

The Jaccard similarity is not a distance measure although 1− J(q,x) is a distance

measure bounded between 0 and 1.

Algorithm 2 shows the pseudo code for a weighted min-hashing Algorithm [238].

The input to this algorithm is a vector M which is the output of the compression

step. The algorithm uses two gamma-distributed variables (Γ,b) which are seen in

lines 2 and 3 in Algorithm 2. These have shape and scale parameters of 2 and 1

respectively, and then a uniform variable β is seen on line 4. The uniform variable

β may prevent line 7 in Algorithm 2 from being floored to zero which has a higher

chance of occurring when an element in the vector is close to zero (< 0.5). The

output from Algorithm 2 is the hash that is then used to represent the input M.

Algorithm 2 Weighted Minhash
Input: Vector M
Output: Weighted Minhash (k∗, tk∗)

1: for all k such that Mk > 0 do // Sampling of random variables
2: Γk = Gamma(2,1)
3: bk = Gamma(2,1)
4: βk =Uni f orm(0,1)
5: end for
6: for all k such that Mk > 0 do // Minhash generation
7: tk =

⌊
lnMk

Γk
+βk

⌋
8: yk = eΓk(tk−βk)

9: ak =
ck

yk∗eΓk

10: end for
11: k∗ =arg mink ak

In the general case, Algorithm 2 is repeated nT times where nT is the number

of hash tables required. The random variables used are pseudo-random as the same

variables need to be used for each event. The number of tables nT was optimised

and is presented in Section 5.7.1.
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A graphical representation of each of the three processes compression and hash-

ing is seen in Figure 5.20. Figure 5.20 (a) and (b) compress the original event data

down into a single array (Shingle weight and word count). The hash functions are

then applied to these to create the hash values. Algorithm 2 was repeated nT times

to create nT individual hashes to represent the event. In Figure 5.20 (c) there are

nT × f eats hashes created. The first hash in Figure 5.20 (c) is created from the first

row of feature values from the feature matrix.

5.6.3 Database development

The hashes are used to identify events, and are stored in a hash table for quick recall.

Different events types have the potential to have the same hashes, although it is more

likely that similar events will have similar hashes. In sections 5.4.2 and 5.5.2, all the

hashes generated were added to a single database. This approach is not the same

for the LSH systems. If a single hash table was used to store all the nT hashes from

each event, there would be many cases where hashes from different event groups

would collide. This is because the random parameters from Algorithm 2 create

random hashes for each of the nT iterations. For this reason, it is important that only

the hashes generated using the same parameters are added to the same databases.

Therefore there needs to be in total nT hash tables, one for each iteration through

Algorithm 2.

When an event is being added, each of the nT hashes generated are added to the

corresponding nT hash tables with the hash being the key and the event ID being the

associated value. Each event has the appropriate compression and hashing carried

out before being added to the database. This process is executed once per event and

does not need to be executed in the query stage. This compression reduces a time

series event down to nT hash values.

5.6.4 Search algorithm

In the query or search stage of the algorithm, an unseen event is compressed in the

same manner as the events in the database. Following this compression, the hashes

are generated in the same manner as the events in the database. These hashes are not

added to the existing hash tables but used to search the hash tables instead.

Each of the nT hashes will search the associated nT databases and return can-

didate matches that have the same keys as the query hashes. After each of the nT
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Figure 5.20: Example of the LSH data transformations. (a) is the sketching and
shingling approach. (b) is the BOP approach. (c) is the features set approach

databases are searched, the full candidate event list is generated. The full list of can-

didate events is then sorted by the number of hits each candidate event has received.

The candidate with the highest number of hashes in common is seen as the most

likely candidate since h(q) = h(x) if similar.

Figure 5.21 shows the flow graph for the system. The idea of using an individual
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Figure 5.21: LSH based method query flow graph

database for each of the nT hashes is presented here. There is no connection be-

tween the databases. When performing a query, the candidate matches from all the

databases are stored in the same place with no further separation, as seen in Figure

5.21. These are then sorted to return the NN which has the highest number of hashes

in common with the query.

5.7 Results

In this section of the chapter, the performance evaluation of the six systems is carried

out. These systems include spectrogram hashing, quantisation of extracted energy

features, quantisation of the feature set principal components (PCA quantisation),

LSH SS, LSH BOP and LSH feature set. The same tests that were carried out in

Chapter 4 are carried out in this chapter with the database of neonatal events that

were discussed in Chapter 2. An additional test called the “hits returned” was also

added. As the hashing tests move away from the computational requirements of

brute force systems, it was of interest to see how many database events were recalled

with each query. The tests that were carried out on each system were;

1. Group majority result

2. Performance accuracy

3. Query running time

4. Memory requirements

5. Hits returned
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By evaluating these areas, the performance, efficiency and scalability can be eval-

uated for each of the six systems. Before the performance results for each of the

systems are discussed, the optimised system parameters are presented.

5.7.1 Optimisation

The purpose of this section is to detail the optimised parameters for each of the

systems discussed in this chapter. The PSO parameter optimisation strategy was

discussed in Section 5.4.4 and was used to optimise the parameters of several dif-

ferent systems. The goal of PSO is to find the optimal parameters of a cost function.

The cost function used for finding the optimal parameter set was the accuracy of the

system at the NN recall problem. The goal was that the particles would converge to

an optimum parameter set that achieved the highest NN accuracy regardless of speed

or memory requirements. The memory requirements or speed were not considered

as the recall accuracy was the focus in an attempt to achieve comparable accuracy

results with the methods discussed in Chapter 4.

If both the memory and NN accuracy require optimisation, the value returned

by the cost function would be modified to take into account the memory aspects

of the system. This would be done by examining the amount of hashes generated

for each event, more hashes equals more memory. Weights can be added to place

extra emphasis on the aspects that are most important. As the NN accuracy is more

important than the memory, the weights applied would reflect this. The optimisation

was carried out using the entire database that was described in Chapter 2.

Spectrogram

The parameters that were optimised for the spectrogram hashing system are shown

in Table 5.1. These parameters were optimised to achieve a maximum NN accuracy.

The epoch size, FFT size and FFT overlap were all optimised to produce the spectro-

gram that gave the highest accuracy for the EEG events. The peak removal threshold

parameter was discussed in Section 5.4.1. This threshold was optimised to decide

roughly how many energy peaks should be removed before the peak location section.

The time and frequency dilation parameters were optimised to decide the size of the

rectangular dilation structuring element that was used in Section 5.4.1 to find the

dominant energy peaks from the spectrogram.

The final parameter that was optimised was the number of points that were able
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Table 5.1: Optimised spectrogram parameters

Epoch Size (s) 3.525
FFT size 256

FFT overlap (%) 77.4
Peak removal threshold (%) 71.4

Time dilation 2
Frequency dilation 7

Table 5.2: Optimised frequency parameters

Frequency
Epoch Size (s) 1.345

FFT size 32
FFT overlap (%) 79.515

# Frequency bands 8

to be generated from each anchor point. A test was carried out that evaluated the

system performance while varying the amount of hashes that each anchor point can

generate. This test found that allowing three hashes for each anchor point returns the

best NN accuracy.

Feature quantisation

The PSO algorithm described in Section 5.4.4 was used to find the optimal or near

optimal parameters for the algorithm to work with neonatal EEG; these are pre-

sented in Table 5.2. These are the parameters that return the highest NN accuracy in

recalling an event from the same class as the query.

For the feature set quantisation process, PCA was applied to the features and the

NN recall performance was evaluated using one principal component, then two and

this increased until all 55 principal components were evaluated. Using 54 principal

components resulted in the highest NN recall performance. The number of sections

S, which corresponds to hash bits, that yielded the optimum results was found to be

9. This value was found be evaluating the performance for all possible values of S

(1−Fn).

LSH

The parameters that were optimised using PSO for the LSH sketch and shingle

compression step (W , δ , Ls) are presented in Table 5.3. Using these parameters
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Table 5.3: Optimised LSH sketch and shingle parameters

Sketch window length W 55
Sketch step size δ 11
Shingle length Ls 8

Table 5.4: Optimised LSH BOP parameters

Alphabet size α 3
Word length ω 6

SAX window length 40

resulted in 169 shingles generated for each event with 256 possible shingle values.

The parameters that were optimised using PSO for the LSH BOP compression

step (α , ω , SAX window length) are presented in Table 5.4. With these parameters,

there are αω or 729 possible words and there are 1879 words generated for each

event.

The feature set LSH approach approach had only one parameters to optimise.

This parameter corresponded to the number of features used. As described in Section

5.6.1 a brute force technique looking at the different combinations was carried out

using the entire database. The result of feature set LSH optimisation found that the

use of 21 features gave the best NN recall accuracy.

The final parameter found for the LSH systems was the number of hash tables.

The number of tables was varied for each system and it was found through testing

that there was a minimal performance increase when using more than 150 hash tables

for the LSH SS and LSH BOP systems. This approach was altered for the feature

set LSH approach, as each feature generates a single hash. Therefore the number of

hash tables had to increase in increments of 21 giving 21 × nT hash tables where it

was found that nT = 17 gave the best results.

5.7.2 Accuracy

The accuracy is the systems ability to correctly recall an event with the same event

class as the query event. Two evaluations carried out in this section;

1. Group majority

2. Performance accuracy

When a query is carried out, a single event is returned as its NN. If this NN has
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the same event class as the query, this is seen as a correct match, and a binary one

is returned along with the event class ID. If the returned NN is of a different event

class, a binary zero is returned along with the NN event class ID. Five different event

types are being tested with background data added to test the performance. These

signals were initially discussed in Chapter 2 and are;

1. Background data

2. Short seizures

3. Tracé Alternant

4. Long seizure

5. Pulsatile artifact

6. Respiration artifact

The first aspect investigated was the group majority, and this the event type that

was returned the most while evaluating each of the five event groups. Over half of

the database came from the background data event type; therefore it is of interest to

evaluate if this had much of an impact or bias on the different classes. The group

majority results are presented in Table 5.5.

The first column in Table 5.5 corresponds to the events being tested. The back-

ground event 1 is not in the table as if these events were evaluated, they would skew

the results due to the large number of events. The bottom row of Table 5.5 corre-

sponds to the percentage of all groups that had the correct group majority. The values

in the rows 2−6 represent the event types that were recalled the majority of the time

when the event type corresponding to the row was queried. For example, the LSH

SS approach recalled the background event type (1) the most when querying both

short and long seizure events (2 and 4).

The overall averages reported in Table 5.5 are high except for the LSH ap-

proaches not based on the use of features. These approaches misidentified two

groups when carrying out this test. What is common amongst the groups that have

been misclassified is that the background class (event type 1) was the class that was

identified as being correct. A reason for this could be the significant quantity of

background data used to evaluate the system. The short seizure class (event type 2)

was misidentified in the majority of the tests. A potential reason for this is that the
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Table 5.5: Group majority results

Event Spectrogram
Feature
energy

Feature
set

LSH
SS

LSH
BOP

LSH
feature set

2 1 2 1 1 1 2
3 3 3 3 3 1 3
4 4 4 4 1 4 4
5 5 5 5 5 5 5
6 6 6 6 6 6 6

Average
(%) 80 100 80 60 60 100

short seizure files consist of approximately 25 seconds of annotated seizure activity

and 35 seconds of what was deemed to be normal data. This normal data does share

a resemblance to the background data that is in the database. These group major-

ity results determine which event type is most dominant when testing each of the

different event classes.

A more detailed look at the results is presented in Table 5.6. This table looks

at the performance accuracy of each system for each of the different events. The

performance accuracy is the systems percentage accuracy at recalling an event of

the same class type when carrying out a query. Similar to Table 5.5, the first column

is the event type numbers and the bottom row is the average performance for all the

event groups. Columns 2−7 contain the performance accuracy for each of the hash

types that were evaluated.

The LSH approaches that compressed the data without input from neurophysiol-

ogists have the lowest performance out of all of the systems. This poor performance

indicates that the compression into a feature-based approach is the better approach.

The performance of the PCA quantisation is weak when compared to the energy

quantisation system. Results for speed and memory will show that the higher perfor-

mance for the energy quantisation system will come with a cost.

An interesting result here is that the performance of the spectrogram and energy

quantisation approaches are within 0.54% of one another. This similar performance

is interesting as these systems were initially used in the audio domain for NN song

recall [179, 197]. The analysis of the memory and query time will show differences

between the systems.

Both quantisation approaches perform undesirably when evaluating the respira-

tion artifact class (event type 6). The performance is lower than 62% although the

other systems have a perfect recall for this event. Another surprising result is that the
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Table 5.6: Performance accuracy

Event Spectrogram
Feature
energy

Feature
set

LSH
SS

LSH
BOP

LSH
feature set

2 33.33 58.33 41.67 8.33 41.67 66.67
3 67.5 95 67.5 62.5 35 97.5
4 91.30 91.30 78.26 21.74 52.17 82.61
5 92.73 89.09 85.45 98.18 98.18 90.91
6 100.00 53.85 61.54 100 100 100.00

Average
(%) 76.97 77.51 66.88 58.15 65.40 87.54

LSH approaches which are not based on features, work well for the more clear and

repetitive artifact patterns of the respiration and pulsatile artifacts. These systems

appear to capture this information better than other less structured events.

The system that attained the highest performance accuracy is the LSH system

that uses the feature set. The average performance is 87.54%, which is approximately

10% greater than the next closest performing system. The following analysis will

show how each system deals with both the query time and memory requirements as

the database increases in size.

5.7.3 Query run time

Speed is vital in NN searches and research is frequently carried out to improve the

NN search speed [239]. The same query running time experiments that were carried

out in Chapter 4 are carried out here.

Figure 5.22 shows the time taken to carry out 25 queries while the database size is

increased from 2 events initially, in increments of 1 event up to the full database size

of 430 events. The energy quantisation approach does not scale well as the database

is increased in size. A contributing factor to this is the fact that this system relies

on computing the BER between the query event and every candidate match. When

carrying out a query, if this query has at least one matching hash to every other event

in the database, then this approach becomes a brute force problem. An interesting

aspect is that the PCA quantisation approach does not face the same problem. It is

clear that there is an initial offset for the feature set quantisation approach which is

caused by the feature extraction process. Following this, the system increases slowly

in time. In Figure 5.22, both the PCA quantisation and feature set LSH approaches

take longer to compute than the energy quantisation. This longer time is due to the
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Figure 5.22: Database timing graphs for increasing database size

feature extraction step. However, if the database had more events, it is clear that

the energy quantisation approach would surpass all of the other methods in terms

of query time requirements. The LSH SSH and LSH BOP hashing approaches are

the quickest in Figure 5.22. Figure 5.23 focuses on the LSH SSH and LSH BOP

approaches. The initial offset for these approaches is small as the data compression

step is quick to compute. Both of these approaches have a similar shape, although the

LSH BOP approach is faster to compute, and this is because it is quicker to perform

the BOP transformation than the sketch and shingle transformation.

To approximate how each system scales to an increased database size, a power

curve equation was fitted to each curve in Figure 5.22. The R-squared values,

bounded between zero and one, were then used as a goodness of fit measure [240].

The R-squared value measures the variance of the model to the original data over the

total variance in the original signal. From a visual inspection and by computing the

R-squared values, it was decided that the equations used to fit the curves in Figure

5.22 were adequate models of each systems’ performance. Figure 5.24 shows an

example of a model that was fitted to the LSH feature set approach. This model fits

the data well as it captures the general structure and it has an R-squared value of

0.9925, which indicated it captures the majority of the variance in the system.

Table 5.7 contains the estimated query time when there are 10000 events in the

database and the time difference between when there are 2 and 10000 events in
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Table 5.7: Query time for a database of 10000 events and time difference between a
database of 2 and 10000 events

Method
Time (s)

DB = 10000 Time difference (s)

Spectrogram 24.33 23.61
Feature energy 1413.49 1413

Feature set 69.69 0.21
LSH SS 0.14 0.03

LSH BOP 0.11 0.03
LSH feature set 69.09 0.07

the database. The energy feature quantisation approach takes the longest to com-

pute queries on a database of 10000 events. A reason for this is that as there are

more queries, there are more BER computations to make to find the NN. The PCA

quantisation approach also needs to compute the BER to find the NN, although this

approach had only a slight increase in time when there were 10000 events in the

database. The LSH approaches all have a very little time increase as the database

increases in size. This little increase is seen in Table 5.7 to be 0.03, 0.03 and 0.07

for the LSH SS, LSH BOP and LSH feature set respectively. The contributing factor

to the LSH feature set increasing twice as fast is that this approach generates over

double the amount of hashes than the other LSH approaches as will be discussed in

the next section.

5.7.4 Memory

The memory requirements are essential, especially for large databases. Systems

that require a vast amount of storage/ memory are not suited to larger database

deployments. By evaluating the requirements on the current database, it is possible

to estimate how each system scales to bigger databases. This test is the memory

required by each system to store the database files. The metric used was bytes. The

memory value was computed by saving the MATLAB event database as a .mat

format. The size of the file was then read into the computer and stored. This method

was repeated for a database of one event, then two events, up until the full database

size 430 events. Figure 5.25 shows the plots for each system. The x-axis is the

number of events that were in the database and the y-axis corresponds to the bytes

of memory needed for storage.

Looking at Figure 5.25, the spectrogram method has the most significant memory
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Table 5.8: Average number of hashes generated per event

Method Spectrogram
Feature
energy

Feature
set

LSH
SS

LSH
BOP

LSH
feature set

Hashes per
event 1443 374 54 150 150 357

requirements. Then two groups have similar performances, the first is the quantisa-

tion of the energy feature and the LSH feature set approaches. These appear to rise

at a similar rate, although it appears that the energy feature quantisation approach

rises faster. The second group includes the PCA quantisation, LSH BOP and LSH

SSH approaches. The LSH BOP and LSH SSH approaches are highly overlapping.

This overlap is because both approaches have 150 hash tables each. The PCA quan-

tisation approach has the lowest memory requirements overall. This low memory

requirement is because it only generates 54 hashes per event. Table 5.8 shows the

average number of hashes that are generated per each event. These values align with

Figure 5.25. In general, systems that generate more hashes require more memory.

To estimate how each approach will scale when there is an increased amount of

data, a power curve equation was fitted to each line in Figure 5.25. The estimated

database memory size when there are 10000 events is shown in Table 5.9. Non-linear

power curve models were used because as the database hash table increases in size

it does not have a linear increase. Hashes that already existed in the database are

not re-added, the file identifier is appended to the other file identifiers that have the

same hash. A visual representation of this was seen in Figure 5.2. When a hash is

appended, it requires less memory than creating a new hash (key) and index (value)

pair. This appending of hashes is a reason for the lines in Figure 5.25 not being

linear. Figure 5.26 shows an example of the model that was fitted to the LSH feature

set approach. This model captures a lot of the variance contained in the original data

and this model has an R-squared value of 0.9997.

The spectrogram approach rises the quickest and requires 26 MB of memory

to store a database of 10000 events as can be seen from Table 5.9. This approach

produces the most hashes per event as seen in Table 5.8. It produces a significantly

higher portion of hashes than all of the other hash approaches. The PCA quantisation

approach has the lowest memory requirements as the database grows to 10000 events

at just 2 MB. It is also worth noting that the collective hash blocks for each event

need to be stored for the quantisation systems. They need to be stored because the
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Figure 5.25: Database memory graphs for increasing database size

BER needs to be computed for the candidate matches. As the LSH BOP and LSH SS

approaches produce 150 per event and so it was expected they have a similar memory

requirement, which is supported by Table 5.9 where both require approximately 3

MB of memory for a database of 10000 events. The LSH feature set approach, on

the other hand, created just over twice the amount of hashes than the other LSH

approaches as is seen from Table 5.8. This increase in hashes was reflected in the

memory needed for a database of 10000 events with it being approximately 6 MB,

which is double the other approaches. There is a clear relationship between the

number of hashes generated and the memory required.

It is worth noting here that optimisations were carried out for accuracy and did

not take into account speed and memory requirements. The spectrogram approach

has the highest quantity of hashes. It is also the only approach where the number of

hashes generated cannot be strictly controlled.

5.7.5 Database hits

As Chapter 4 is based on brute force applications, all the events are examined when

there is a query. This chapter moved away from brute force searches where all the

data from all the events need to be compared. It was decided to examine on average

how many of the database events get at least one hash match per query. When
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Table 5.9: Predicted database size for when there are 10000 events

Method
Size (MB)

DB = 10000
Spectrogram 26

Feature energy 14
Feature set 2

LSH SS 3
LSH BOP 3

LSH feature set 6
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carrying out a query, if a similar match in the database exists, this creates a candidate

match. The number of these candidate matches is referred to as the database hits.

The number of database hits is significant as if these systems are to be seen as better

approaches than brute force systems, they should have a lower number of hits than

the database size. This statement is more accurate for the quantisation approaches

as they require the BER calculation to be computed for every candidate match.

The number of database hits depends on several factors, of which the most sig-

nificant factor is the uniqueness of the original hash. If the hash is not too unique,

the system will return many hashes. If the hashes are too unique, there is a chance

that there will not be many matches. In machine learning terms, the uniqueness can

be seen as training. Hashes that are too unique lead to overtrained systems and the

opposite for poorly trained systems.

In the ideal case, a query generates a small number of matches with the correct

event type being within the matches. From work carried out in this thesis, this does

not seem to be the case. Table 5.10 shows the average number of database hits when

a query is being carried out.

The majority of the approaches recall the entire database except for the PCA

quantisation approach, which recalls approximately 58 events from the database. As

the quantisation approaches require the BER to be computed, the quantisation of the

energy feature is seen as the worst. This approach has become a brute force search

problem, which explains the poor speed performance seen in Figure 5.22.

The other hashing approaches do not require a measure to be computed after

getting a list of candidate matches, which is a positive sign. They only need to have

the number of occurrences of hashes for the candidate events stored. This problem

of large database hits has an impact on the quantisation of the energy feature as the

database grows in size, as was predicted in Table 5.7. The PCA quantisation is not a

big problem as it only needs to perform the BER calculation on approximately 13%

of the database for each query.

Table 5.10: Average number of database event hits when carrying out a query

Method Spectrogram
Feature
energy

Feature
set

LSH
SS

LSH
BOP

LSH
feature set

Hits 429 429 58 429 428 429
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5.8 Summary

This chapter detailed three different types of hashing approaches; a spectrogram

hashing approach, quantisation approaches using EEG energy and the principal

components of an extracted feature set and the final approach was an LSH approach

which used three different data compression methods.

The main findings of this chapter are that the feature set LSH approach has the

highest accuracy while having performance in the average range for both the memory

and speed tests. The amount of memory required is proportional to the number of

hashes generated, which is as expected. Having the ability to control the number of

hashes can help design a system to meet specific memory requirements.

The majority of the hashing approaches recalled at least one hash from every

event stored in the database. This is not a problem for the majority of hashing

approaches as they do not require further processing on these events. The PCA

quantisation and energy band quantisation requires a distance measure called the

BER to be computed for every possible match, leading to poor performance for the

energy band approach in terms of speed. The performance for the PCA quantisation

is not as bad in terms of speed due to the fact it only has approximately 13% of

the database to search on average and has nearly seven times fewer hashes than the

energy band quantisation approach. The speed is also quicker due to the hash block

size being only 14% of the size of the energy band quantisation approach, meaning

fewer distance computations for each query.

In summary, this work was the first of its kind where hashing algorithms were

developed for neonatal EEG. This work has shown that hashing approaches can be

used for the task for NN neonatal EEG recall. Larger quantities of data and an expert

are required to carry out further tests without the need for using a proxy multi-class

classification problem for evaluation.

The best overall hashing approach from this chapter is the LSH feature set ap-

proach. It has the highest accuracy, slowly increasing query time and acceptable

memory requirements.



Chapter 6

Multi-class classification of neonatal
EEG

6.1 Introduction

As discussed in Chapter 2, the amount of data available is limited and as a proxy, the

systems in this thesis are evaluated in a way that resembles a multi-class classifier.

For this reason, this chapter examines the performance of machine learning classi-

fiers for the purpose of classifying the neonatal EEG events discussed in Chapter

2.

The work in this chapter involves developing models from each of the different

pattern types and assigning a class label to a query, depending on the class it most

likely belongs in. This chapter is laid out as follows. Section 6.2 provides background

information on classifiers. Section 6.3 introduces the K-nearest neighbour (KNN)

classifier. Section 6.4 introduces the Gaussian mixture model (GMM) classifier.

Section 6.5 discusses the validation and parameter optimisation, along with the

performance of both classifiers for the task of classifying the different neonatal EEG

events.

6.2 Classifier background

Machine learning has been successfully used in many areas such as speech recogni-

tion [241], handwriting recognition [242], financial modelling [243], physiological

signal classification [244] and music information retrieval [245]. There are many

examples where machine learning techniques have been applied to physiological

159
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signals. In particular machine learning has been applied to EEG signals in applica-

tions such as brain computer interfaces (BCI) [246, 247], biometric authentication

[248] and healthcare applications [28, 46]. Likewise ECG signals can be classified

for healthcare applications, for example machine learning classifiers have been used

to classify ECG arrhythmia [249] and for ECG beat classification [250]. Machine

learning has been used for the classification of movement from electromyography

(EMG) and electrooculogram (EOG) signals [251, 252].

The purpose of machine learning for classification is to classify unseen data into

one group out of two (binary) or more (multi-class) possible groups or classes. An

example of a binary classification problem is seizure detection using EEG, where the

EEG can be classified as either containing seizure activity or not [27]. An example

of multi-class classification, is the grading of neonatal EEG into one of four possible

Hypoxic-Ischemic Encephalopathy grades [46]. The classifier is developed from a

training dataset that contains EEG events from all the classes. An expert (in this case

a neurophysiologist) labels all of these event. When developing a training dataset,

every data sample is assigned a label to the class it belongs. This process of assigning

class labels to the data is known as annotating.

Classifiers developed from patients data, can be patient specific or patient in-

dependent. A patient specific classifier is a model developed on data that contains

data from the patient being classified. These classifiers can be used for specialised

treatment, where the models need to be fine tuned to an individual patient. Patient

independent classifiers train models on data that are completely separate from the

patient being classified. These classifiers are ideal for scenarios where patients are

under observation for a potential condition such as an encephalopathy. Patient inde-

pendent classifiers are ideally suited to the work carried out in this chapter.

Before classifying unseen data from a testing dataset, models are generated

from the previously annotated training data. If possible, when developing patient

independent machine learning models, data from the same patient should not be

used in both the training and testing datasets. Mixing patient data between both

training and testing datasets can lead to models that are over optimistic and have

poor generalisation. When the training and testing datasets are comprised of data

from completely different patients, the models generated are patient independent.

A subset of the data, that is divided into training and validation is used to identify

the optimum model parameters. This is done by moving through the parameter space

and developing models for each parameter set. The validation set is used to find the
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model that has the best generalisation performance on the validation set. Without

a sufficient validation dataset, the models may overfit the training data. Overfitting

occurs when the models represent the training data too closely and as new data is

presented, the model fails to correctly classify it. Once a classifier model is developed

and fully trained after finding the optimum hyper-parameters, a fully unseen testing

dataset, that was not in the training or validation stages is then used to perform a

performance assessment.

There are multiple ways to achieve this performance assessment, for example

the data can be divided into t subsets with the patient data not mixed between the

subsets. Following this, t − 1 subsets are used to train the model and the left out

subset is used to evaluate the model. This process is repeated until all of the t subsets

are used to evaluate the model and the mean performance of the t tests is taken as it

would give an indication of the overall performance. Another approach that provides

a good indication of model performance is leave-one-out (LOO) testing [253]. The

approach assesses the model by training the model on all but one of the training

patients and testing on the patient that was left out. This approach is then repeated

until all the patients have been left out, the mean performance is then taken. This

approach ensures that the model can generalise the data.

Each of the machine learning techniques in the papers cited can be roughly

divided into two types - discriminative or generative models [254]. Broadly speaking,

a discriminative model uses the data directly to classify unseen data, whereas, the

generative models are constructed from the distributions of the training data.

6.2.1 Classifiers

There are a multitude of classifiers that can be used to solve many different problem

types. As there are so many potential classifiers that could be described and detailed,

this background section will focus on providing a high level description of five clas-

sifiers. Two of the classifiers are simplistic classifiers, two of the classifiers are more

complex and the last classifier is the current state of the art. The two simplistic clas-

sifiers are the KNN [255] and linear discriminant analysis (LDA) [256] classifiers.

The two more advanced classifiers are the GMM [257] and support vector machine

(SVM) [258] classifiers. The current state of the art classifier is the convolutional

neural network (CNN) which has already shown excellent performance in image

classification [259].
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The high level overview of these approaches will focus on four main areas:

1. Complexity - The term complexity is used to describe how complex the ma-

chine learning algorithm is.

2. Capacity - The capacity of a system is essentially the level of information that

a system can model.

3. Number of parameters - The number of parameters that a classifier has.

4. Training required - The training required is in reference to the amount of

training that is needed to make the classifier models.

By examining these areas an overview of the algorithms will be provided without

detailing every aspect of each of the five classifiers.

Complexity

The KNN is the most simplistic classifier of the five. It simply looks for the K closest

data points in the training dataset [260]. There are no advanced steps involved and

there are only two parameters that can be chosen, which are the K value and the

distance metric used. It is a discriminative classifier that relies on all the training

data being present when performing a classification.

The LDA classifier is a generative classifier and slightly more advanced than

the KNN algorithm. LDA reduces the dimensionality of the data while focusing on

maximising the separability of the classes [256]. When used as a classifier LDA is

relatively simple. The same dimensionality reduction step that was applied to the

training data is applied to the query data, the distance to each class centre in the

reduced space is used to classify the query [261].

Moving to a more advanced generative classifier, the GMM uses a weighted

set of Gaussian components to model all the training data from each of the classes

individually, creating one GMM model per class [257]. When classifying a query,

the model that has the highest likelihood of the the data belonging to that model is

chosen as the best class. There are more aspects to the GMM algorithm as compared

to the KNN and LDA algorithms. The data undergoes an initial dimensionality

reduction followed by an approach called expectation-maximisation (EM) to find

the optimum number of Gaussian components for the training data. Unseen data
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is classified based on the likelihood of it belonging to each of the different class

models.

The SVM is a discriminative binary classifier that uses hyperplanes found from

the training data to classify unseen data [258]. There are a lot of potential hyper-

planes that can exist to separate the two classes, however, the goal is to find the

hyperplane that provides the maximum possible separation between the two classes.

More often than not the classes being classified are not fully separable and to help

account for this a soft margin is used [262]. The soft margin allows some leeway

in the classification boundary. Kernel functions can be used when the data is not

linearly separable. A kernel function enables the mapping of the data to a higher

dimensional space making it easier to separate the classes [263]. In general SVM

classifiers are not simple and require appropriate training to ensure the optimum

decision surface is found to generalise the training data. The decision surface can be

made more or less complex depending on the choice of model parameters.

The current state of the art and most complex classifier is the CNN [259]. In

the last few years there has been a renewed interest in the area of neural networks

and the CNN in particular. The previous classifiers required hand crafted features to

be computed from the raw data. This means that the classifier relies on the features

containing discriminatory information between the different classes. This is not the

same for the CNN, as it both extracts the features and performs the classification of

the raw signal [25], making it a very complex system. The level of complexity of the

CNN can be controlled by the choice of architecture that is used. Complex classifi-

cation problems may achieve better performance when using deeper architectures.

Capacity

The KNN has the lowest capacity, as it contains no underlying information from

the data. The classification accuracy decreases as the dimensionality of the data

increases [260]. This indicates that the KNN has a low capacity and is more suited

to less complex and lower dimensional data.

The LDA classifier initially reduces the dimensionality of data while maximising

the class separability and minimising the per class spread [256]. The LDA classifier

has a higher capacity than the KNN classifier as the class separability is maximised

for the LDA classifier.

The more complex GMM generative classifier is able to perform better than

the LDA classifier for more complex data. This is because the GMM uses more
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information about the distribution of the data to generate models to represent the

data. GMMs are suitable for the modelling of dominant patterns that may exist as

they can model the distribution of the data. If the patterns are not dominant and vary

a GMM may struggle to provide an accurate reflection of the data in the generative

model.

The SVM differs from the KNN discriminative classifier as it only retains the

support vectors as opposed to all the training data following the training. The use

of non-linear kernels and soft margins in SVMs increases the capacity of learning

complex decision boundaries.

The CNNs have the highest capacity, the complexity of the features that a CNN

extracts can be varied by using more layers [264]. Generally speaking, the features

extracted from shallow networks (low number of layers) relate to small amounts of

the initial input data. The features extracted from deeper networks are more complex

and encompass more of the input signal as they are generated using a combination

of the shorter duration features from the earlier layers. This is what enables the CNN

to learn complex features from the raw data.

Number of parameters

The KNN algorithm has two tunable or hyper parameters that can be chosen and

these are the choice of K and the distance metric used to compare the query and

database samples. The LDA classifier on the other hand has one tunable parameter,

which is the dimensionality of the data. The LDA does use further system parameters

that are generated from the training data. These are the class means and dimension-

ality reduction information [256]. The size of these parameters is dependent on the

amount of classes and the dimensionality of the data.

Moving onto the more complex GMM classifier, the main tunable parameters

for this classifier are the number of Gaussian components used to represent the data

and the number of principal component analysis (PCA) principal components (PCs)

to retain. When training GMMs, system parameters are developed and like LDA,

information in relation to the dimensionality reduction technique is kept along with

the distributions of the Gaussian components. The number of total parameters is

dependent on the tunable parameters and the dimensionality of the data.

The SVM has several tunable parameters such as the kernel function, the strict-

ness of the soft margin and dimensionality of the data. The amount of system pa-

rameters or support vectors generated is dependent on the classification task. For
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data that is linearly separable, a hard margin could be used with only a few support

vectors to define a strict class boundary. On the other hand, a classification problem

that is not linearly separable could need a large amount of support vectors to define

the decision boundary [72].

The amount of parameters in a CNN is dependent on the type of architecture

that is used. Typically as the number of layers in the model increase, the amount of

parameters increases [264]. Without delving too deep into CNNs, the parameters

may include the choice of cost function, momentum, learning rate, weights for the

convolutions and the size of the convolution window, the type of pooling and the

size of the pooling windows and the type of activation function. There are a vast

number of parameters needed for a CNN. The depth of the model can depend on the

classification task and the amount of data available.

Training required

No training is required for the KNN as no model is generated. As the LDA algorithm

is a generative model the training is used to get information about the distributions

of the data and for finding the optimal dimensionality reduction.

As the GMM is more complex than the LDA algorithm it requires more training

data to get an accurate reflection of the signals being modelled. The training using

the EM algorithm helps fine tune the Gaussian components that model the data. The

GMM also has more parameters than the LDA algorithm which also indicates it

would require more training. The tunable parameters can be found using a validation

procedure [27].

The amount of training for an SVM model is dependent on the model parameters

and the underlying data. Data that is linearly separable may be trained with a limited

amount of data as only a few support vectors would be needed. As the classification

problem and models become more complex, more support vectors may be required

to define the hyperplane that separates the two classes, such as in [72] where 19%

of the training data became support vectors in the seizure detection system. Classi-

fication problems that are not linearly separable require more training than linear

separable problems. This is because complex decision boundaries need to be found

and validated so they can generalise the data. Like the GMM, the tunable parameters

can be found using validation.

The CNN performs both the feature extraction and classification steps and so

requires a significant amount of training data. Large amounts of training and vali-
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dation data are needed to create models that can generalise the training data. The

minimum amount of training, training data and validation data is dependent on the

depth of the models. If there is not a sufficient amount of training data used to train

deep models there is a high chance that the developed model will be overfitted to the

training data.

6.2.2 Classifiers summary

Table 6.1: High level classifier summary

Complexity Capacity
Number of
parameters

Training
required

KNN Low Low Low None
LDA Low Medium Low Low
GMM High High Medium Medium/ high

SVM High High
High/

Very high Medium/ high

CNN Very high Very high Very high Very high

This section provided a high level overview of five different classifiers that ranged

from simple classifiers to the complex state of the art classifiers. These classifiers

were examined looking at four different aspects, each of which should be considered

when choosing a classifier. Table 6.1 provides a summary of the classifier findings.

The KNN and LDA classifiers are quite similar and not complex classifiers as

seen from Table 6.1. Therefore the KNN was the initial classifier investigated for

the multi-class classification problem. The KNN has also previously been used with

EEG for multi-class classification in the area of BCI [265].

Looking at Table 6.1, the GMM and SVM classifiers are quite similar. As the

GMM classifier uses a lower number of parameters it was decided to investigate it

further; it has been used in previous EEG studies [27,266]. A benefit of using GMMs

is if there is not enough data to generate a model for each event group, a background

model from all the data can be generated. This model can then be adapted to model

the event class that has a limited amount of data [267]. The GMM approach is easily

scalable if a new event type is added by making an individual model or adopting a

background model.

Table 6.1 shows that the CNN is a very complex classifier and it would not be

suitable in this work, with the limited amount of available data.
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6.3 K-nearest neighbour

As discussed in Section 6.2.1 the basic KNN classifier is an easy to implement

classifier as it has a single parameter to tune which is K, the number of nearest

neighbours from which the decision is made. The KNN classifier is a discriminative

model that was initially used as a non-parametric method for pattern classification

[255]. A discriminative model is a model that attempts to classify based directly

on the model inputs (training data) [254]. The KNN method resembles that of the

brute force nearest neighbour (NN) methods described in Chapter 4 where a distance

metric was used to find the NN event. The KNN method has training samples, and

these are all the individual feature epochs from the events that are used to help form

the classification decision. These training epochs become the database. Then when

a query is carried out, it is tested against each of the individual training epochs in

the training database by computing the distance between the points.

The classes of this particular problem consist of six different neonatal EEG pat-

terns, as were discussed in Chapter 2. The raw events were preprocessed and features

were extracted. This process was discussed in Chapter 3. This feature set contains

F = 55 features across the time, frequency and information theory domains. Each

feature was computed for an eight-second epoch with a 50% epoch overlap. As the

features have different amplitudes and units, they were normalised using Equation

6.1 so higher amplitude features would not bias the results. This normalisation was

also carried out for the same purpose in Chapter 4 with the features being normalised

to have a mean of zero and a standard deviation of one.

X( f , i) =
X( f , i)−µ f

σ f
(6.1)

Where µ f is the template mean, and σ f is the template standard deviation for feature

f computed from the training data. This normalisation was repeated for all the F

features for both the training and test data. Using template means and standard

deviations preserves important amplitude information that exists between different

events. The template values are then stored for later use on query events.

Following the normalisation, the distances between different epochs are easily

computed for the KNN algorithm. Many different distance metrics can be computed

such as the Mahalanobis distance, Manhattan distance and the Jaccard distance to

name a few [268]. Although for this work, the Euclidean distance was computed

as it attained the best results from the experiments conducted in Chapter 4. The



CHAPTER 6. MULTI-CLASS CLASSIFICATION OF NEONATAL EEG 168

Euclidean distance for the KNN approach is computed using Equation 6.2.

||X(i)− X̃( j)||2 =

√√√√ F

∑
f=1

(
X( f , i)− X̃( f , j)

)2
(6.2)

This equation computes the distance between the ith epoch in query X and the jth

epoch in the database X̃ by summing the distance of each of the F features. When

there is a query, the distance is computed between all the training database epochs

and the query epoch. Each epoch in the database X̃ has an associated class label C.

The classes belonging to the K events with the lowest distances are recorded, where

K is the number of nearest neighbours.

To determine the desired output class, the weighted majority vote of the top K

classes is taken.

WMVi =
CNi/K

DBCNi/N
(6.3)

Where CNi corresponds to the number of events in class i that were in the top K

results, and DBCNi is the number of events of class i that are in the database. After

Equation 6.3 is computed for each of the classes, the class that has the maximum

value in WMV is taken as the weighted majority. In Chapter 4 a query event is

compared directly with all the events in the database individually and the event

with the lowest distance to the query event is seen as the closest match. The KNN

approach does not compare events with events, it looks for the closest matching

feature epochs from the training database that have no particular ordering. The

decision on the closest match is then made using weighted majority voting.

Figure 6.1 shows an example of the KNN problem that contains three classes

and ten events in each class. In this particular example, the query belongs to the

triangular class. When looking at K = 3, the circle class holds the majority with

two out of the three events being from the circle class. As K is increased to K = 10,

the triangle class has the majority with half of the matches. When the value of K is

increased to K = 26, both the triangle and star classes hold the majority. To prevent

situations like this, K is usually set to an odd number. This image demonstrates the

importance of choosing the correct value of K. In this example, a small value of K

would lead to the query being misclassified as it happened to be near the circular

class outliers. Noise has an impact on the value of K. A large value of K includes

too much of the data. As this approach has only one parameter (K), the value was
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Figure 6.1: KNN example plot showing the importance of choosing the correct K
value. There are three different event classes and three different sizes of K.

found by examining the performance while increasing K. The highest performance

was achieved when using a K of 31.

6.4 Gaussian mixture model

The GMM is a generative model that uses a finite number of weighted Gaussian

components to model the data that is represented in the feature space X [269]. A

generative model is a model that represents the training data based on the distribu-

tion of the data. The model learns the joint probability distribution when given the

observed variables and the target variables [270]. This means that the generative clas-

sifiers learn class models from the training feature vectors. These models represent
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how these feature vectors are distributed. When there is a test event to be classified,

the log likelihood of their feature vectors belonging to each class is computed. The

class that has the highest likelihood is chosen to be the most likely class [271].

A note must be made on the data representation. The time-series data is trans-

formed into the feature space and are then normalised in the same manner as was

discussed in Section 6.3. The features are transformed into PCs by the application

of the PCA algorithm [106]. This both reduces the dimensionality of the data (by

keeping the PCs that contain the most information) and diagonalises the covariance

matrix by transforming it into an orthogonally separated uncorrelated space. A diag-

onal covariance matrix requires fewer computations to be carried out when fitting the

GMM [272]. The PCA eigenvectors are computed from the training data and then

applied to the testing data following normalisation to ensure the same transforma-

tion is applied. For the rest of this chapter when a feature vector X is discussed, it is

assumed that the data has undergone normalisation and that PCA has been applied.

A GMM is generated for each event class c by using data associated with the

class label. For this work, six GMMs are generated, one for each of the event classes.

The number of Gaussian components needed to model each class is not related to

the number of event classes that exist. The GMM probability density function from

feature vector X for class c (with parameter set λ c) is represented in Equation 6.4 as

the weighted sum of Gaussian components.

p(X |λ c) =
M

∑
i=1

ω
c
i g(X ,Σc

i ,µ
c
i ) (6.4)

Where λ c
i = {ωc

i ,µ
c
i ,Σ

c
i } and this is the ith component when there are in total M com-

ponents. The variables ω , µ and Σ stand for the weights, mean and covariance matrix

respectively. The Gaussian weights sum to one. The Gaussian function g(X ,Σc
i ,µ

c
i )

is represented by Equation 6.5.

g(X ,Σc
i ,µ

c
i ) =

1

(2π)
F
2
∣∣Σc

i

∣∣ 1
2

e−
1
2(X−µc

i )
′
Σc

i
−1(X−µc

i ) (6.5)

The values for ω , µ and Σ are optimised using k-means clustering to first find initial

parameter values which are then further refined using EM [273] which will be dis-

cussed shortly. These values were computed using all the training feature vectors of

the form Xc
T , which are a batch containing all feature sequences belonging to class

c and are of length Fc. This approach aims to maximise the log-likelihood that the
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generated model fits Xc
T as given by Equation 6.6.

L(Xc
T |λ c) = log

Fc

∏
j=1

p(Xc
T ( j)|λ c) =

Fc

∑
j=1

log
M

∑
i=1

ω
c
i g(Xc

T ( j),Σc
i ,µ

c
i ) (6.6)

It is hard to know how many Gaussian components to use to represent the data.

A large number of components could result in the models overfitting the training

data and too few components could result in the models not being able to represent

the data. Model selection was used to choose the number of PCs to keep after the

application of PCA and the number of Gaussian components needed to represent the

data. The model selection process and parameter set used are discussed in Section

6.5.1. Once the optimum values are found, a GMM was generated for each of the

six event classes. When a query is performed the log-likelihood that the query data

belongs to each of the classes is computed using Equation 6.6. The model that gives

the best log-likelihood is then chosen as the most likely event class.

Then GMMs for each of the six event classes are generated using the training

data belonging to the respective classes. Figure 6.2 shows an example of this GMM

process on generated sample data. In the first stage, there is a scatter plot that hap-

pened to contain four unique clusters. In order to show that the GMM approach can

adapt, three Gaussian components are used to represent the four distinct data clusters.

These individual components are illustrated below the scatter plot. The third or right

component is modelling two clusters as this was found as the best solution when

computing the EM algorithm. The final distribution is then the weighted sum of

these components that is seen below the three individual components. This model

represents a single event class. The process is then repeated for all the remaining

event classes.

The following sections detail the process of making the models in more detail.

That is the initial parameter estimation using k-means clustering, followed by the

EM algorithm. These two areas are important as they detail the process involved in

finding the optimal GMM model parameters that best represent the data.

6.4.1 K-means clustering

The initial Gaussian centres are found using a process known as k-means cluster-

ing [274]. The purpose of k-means is to assign the data points to specific clusters.
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ω1g(X |µ1,Σ1) ω3g(X |µ3,Σ3)ω2g(X |µ2,Σ2)

p(X |λ ) = ∑
M
i=1 ωig(X |µi,Σi)

Figure 6.2: Example showing how a GMM model is created. The initial data is
seen from the scatter plot, there are four clusters and the model will attempt to fit
three Gaussian components. The second stage showing the construction of the three
individual Gaussian components. The final stage shows the weighted sum of the
Gaussian components from stage two.
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This assignment process is seen as an initial estimate to the optimum cluster loca-

tions. Following this, the EM process is used to refine the clusters to maximise the

probability of belonging to the specific cluster.

The k-means clustering algorithm initially places the k centroids randomly in

the data. Then the algorithm loops through all the data points and finds the closest

cluster for each data point by computing the distance (such as Euclidean distance)

between the data point and each cluster. At this stage in the algorithm, each data

point is assigned to a cluster.

The next stage in the algorithm is to loop through each of the k clusters and

recompute the cluster centre. This cluster is updated by averaging the points that

belong to each particular cluster.

This two-step process is repeated until either a set number of iterations is met,

or if after a full run through of the first step, no point has changed class membership.

Figure 6.3 shows an example of the k-means algorithm on random data with four

obvious clusters. The k-means algorithm was then set to have three clusters to

determine how the four groups should be assigned to three clusters. This example

took nine iterations until there were no changes in class memberships. The initial

cluster positions were chosen at random, as is seen in the first iteration in Figure 6.3

(a). The third iteration shows that the yellow cluster appears to be taking ownership

of the two rightmost clusters and the orange cluster is being more focused on the

top left group of data points. By the fifth iteration, the k (three) clusters appear more

defined. Between the fifth and ninth cluster, only a small number of data samples

have changed class membership.

The k-means algorithm used in this work is as described with the exception that

the initial cluster centres were not chosen randomly. Choosing the initial centres

at random has the potential to produce poor clustering or have a higher number

of iterations until they settle at the optimal clusters. The k-means ++ algorithm

[275] was used as an approach to achieve faster and more optimal clustering. This

algorithm has a more intelligent approach to choosing the initial cluster locations.

The goal of k-means ++ is to place cluster centres far away from other cluster

centres. Initially the first centre chosen at random, the centres following this are

iteratively placed to maximise the distance between the centres.

The application of k-means clustering finds cluster centres for each of the Gaus-

sian components. These provide a good starting location for the EM process. Ini-

tialising the cluster position using k-means reduces the number of iterations the EM
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Figure 6.3: kmeans example plot showing the clustering at multiple iterations with
the cluster centres highlighted. The data naturally has four clusters but for this ex-
ample the aim was to locate three cluster centres. (a) Iteration 1, (b) Iteration 3, (c)
Iteration 5, (d) Iteration 9.
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algorithm needs to tune the GMM parameters to locate the optimal model fit.

6.4.2 Expectation-maximization

Following the k-means clustering, the EM algorithm is used to tune the GMM pa-

rameters λ that best fit the training data Xc
T . The EM algorithm is an iterative process

in which the parameters are tuned to monotonically increase the fit of the Gaussian

components to the training data Xc
T until a convergence threshold, or an iteration

limit is reached [269]. This is a two-step process consisting of an expectation step,

followed by a maximisation step.

The first step in this process is the expectation step. This step requires the pos-

teriori probability of the data belonging to the components to be computed and is

calculated using Equation 6.7.

Pr(i|Xc
T (t),λ ) =

ωig(Xc
T (t)|µi,Σi)

∑
M
k=1 ωkg(Xc

T (t)|µk,Σk)
(6.7)

Where this is the posteriori probability for that the feature vector Xc
T (t) belonging to

the ith Gaussian component. The next step is the maximisation step, which is used

to estimate the updated weights µi, means ωi and covariance σ2
i for component i. It

estimates these values using the posteriori probability that was found using Equation

6.7. The equations used to calculate these new parameters are given by Equations

6.8, 6.9 and 6.10 for the weights, means and covariances respectively.

ωi←
1
Fc

Fc

∑
t=1

Pr(i|Xc
T (t),λ ) (6.8)

µi←
∑

Fc
t=1 Pr(i|Xc

T (t),λ )X
c
T (t)

∑
Fc
t=1 Pr(i|Xc

T (t),λ )
(6.9)

σ
2
i ←

∑
Fc
t=1 Pr(i|Xc

T (t),λ )X
c
T (t)

2

∑
Fc
t=1 Pr(i|Xc

T (t),λ )
−µ

2
i (6.10)

After each iteration, the Gaussian components either match the previous like-

lihood of the data fitting the Gaussian components or they increase the likelihood

of the data fitting the Gaussian components. Figure 6.4 is a simple example of this

EM process with sample data. The example in Figure 6.4 did not use the k-means

algorithm to find the initial Gaussian parameters. This was to make the EM process

that was carried out clearer as using k-means would have found good candidate
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cluster means, and the movement from the EM process would not be as obvious

in Figure 6.4. The Gaussian components were set to have the same variance, and

the means were positioned close to each other as seen from Figure 6.4 (a). All the

points to the right of the second Gaussian component will have a higher likelihood

of belonging to the second Gaussian. In the first iteration of the EM algorithm, this

is noticed, and the means and variances are adjusted. Figure 6.4 (b) shows that there

is a larger spread now for the second Gaussian as it tries to model all the points

from its original location and the rightmost points. Visually examining the data, it

is clear there should be two distinct clusters. At each iteration of the EM algorithm,

the means or Gaussian centres will be adjusted to the new best fit location, and this

is seen in Figure 6.4 (c) where the Gaussian components have converged to their

optimal locations which provide the best representation of the data. Now two distinct

Gaussian components capture the data and the cluster centres are highly separated.

The work carried out in this chapter uses the k-means clustering followed by the

above described EM process. By applying this technique, models were fit to each

of the six different event groups that were described in Chapter 2. When a query

is carried out, the log likelihood of the data fitting each of the individual models is

evaluated. The model that has the best log likelihood is then chosen as the query

event class.

6.5 Performance

This section of the chapter will describe and detail the model selection process and

the results obtained from each system. The model selection section will detail the

process that was used to find the optimum parameters for each system. Following

this, the event class recall accuracy, query time and memory requirements are eval-

uated in the same manner as the previous chapters. Then a patient independent

evaluation is carried out. Each of the classifiers developed in this chapter used the

neonatal EEG event database that was described in Chapter 2.

6.5.1 Model selection

The performance evaluation of both the discriminative and generative models was

carried out using two versions of LOO cross-validation. The first approach develops

the models leaving an event out and then tests the system on the event that was left
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Figure 6.4: EM plot on example data for demonstration. (a) is the initial Gaussian
centres positioned close together. (b) is after one iteration of the EM algorithm. (c)
is after the algorithm has converged and there now exists a large separation between
the Gaussian centres.
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out. This approach would be considered as a patient-specific system as the training

data still contains events corresponding to the patient being tested. This approach

was then repeated for all the events in the database. The event being tested was

never included in the database. This evaluation is the same type of evaluation that

was carried out on the systems in Chapters 4 and 5. In a real-world application, this

validation approach is not practical as it would lead to models that overfit the data

and may not be robust to new data. This approach was carried out to have a fair

system when comparing the results from the previous two chapters.

The second LOO cross-validation approach leaves all the data from a particular

patient out when developing the models, the models are then tested on the patient

data that was left out [276]. This approach is considered as a patient independent

validation. This process is repeated until each of the patients in the database has

been left out from training and used for testing. This is often used when evaluating

the performance of classifiers that uses physiological signals from multiple patients

as it helps ensure that patient independent results are obtained [60, 80, 171]. The

results for the LOO event approach are detailed in Section 6.5.2 and the results for

the LOO patient cross-validation are presented in Section 6.5.5.

When used as a multi-class classifier, both the KNN and GMM classifiers pro-

duce one output. This output is the event class which has the highest probability.

As the classifiers are multi-class classifiers, the results obtained from the systems

are converted into a class probability matrix. The event classes from the top K

matches from the KNN results are converted into a probability by first computing

the weighted top K matches relative to the number of class events in the database

using Equation 6.3. The class probability for the KNN is then computed using Equa-

tion 6.11,

P(Cc|Xq) =
WMVc

∑
nc
j=1WMVj

(6.11)

where P(Cc|Xq) is the probability that the event belongs to class c when there are in

total nc classes. It is then repeated for each of the remaining classes to get a proba-

bility of the query event belonging to each of the classes. The log-likelihood values

for a query event fitting each of the GMMs are converted into class probabilities

using Bayes’ theorem with the assumption of balanced prior probabilities as given
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Figure 6.5: Confusion matrix.
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Figure 6.6: Classifier scoring example where the black line represents the ground
truth and the red line represents classifier output. The example shows the four possi-
ble outcomes which are TP, TN, FP and FN.

by Equation 6.12.

P(Cc|Xq) =
L(Xq|λ c)

∑
nc
k=1 L(Xq|λ k)

(6.12)

This equation is the posterior probability of the query feature vector Xq belonging to

class Cc out of all the nc possible classes. This is repeated for all remaining classes

to get the probability of Xq belonging to each class.

If the class that has the highest probability comes from the correct event class, it

is called a True Positive (TP) match. A True Negative (TN) occurs when the classifier

output and the label both agree that the event does not belong to the positive class.

A False Positive (FP) occurs when the classifier output says the event is positive

whereas the label is negative. A False Negative (FN) occurs when the classifier

output says the event is false although the label says it is correct. A visual example

of this confusion matrix is shown in Figure 6.5. A more graphical representation is

shown in Figure 6.6.

As the previous chapters did not contain classifiers, a new metric is introduced

that is used to assess how well the classifier models represent the data. The metric

used was the area under the curve (AUC) of the receiver operating characteristic

curve (ROC). The ROC is used to gauge the performance of a binary classifier
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by plotting the sensitivity versus the specificity of the binary classifier [277]. The

sensitivity is the proportion of correct class labels that are classified correctly. This

measure is represented by Equation 6.13.

Sensitivity =
∑T P

∑T P+∑FN
(6.13)

The specificity is a measure of negative class labels that are classified correctly. This

measure is represented by Equation 6.14.

Speci f icity =
∑T N

∑T N +∑FP
(6.14)

The ROC graph is generated by varying a decision threshold over the range of

sensitivity and specificity values. The AUC is a measure that summarises the ROC

into a single value. It is used to determine how well the GMM model suited the

data. An AUC value of 1 indicates that the model is well suited to the data as there

is a perfect separation between the classes. An AUC of 0.5 indicates that there is

no separation between the classes, effectively making the outcome like a random

choice [277]

In this work, the ROC and AUC values were computed for the multiple classes

by using the “one versus rest” approach to mimic a binary classifier for each of

the classes [278]. With this approach, there are six AUC values generated, one

AUC value for each class. When creating a ROC for each of the event classes, the

event being evaluated is assigned a specific class label such as 1 and all the other

five events are assigned the label 0. The ROC threshold is then varied using the

probability values from the class probability matrix. Figure 6.7 shows an example

plot of ROC curves that each produce different AUC values. In this example, the

blue line indicates a perfect AUC of 1, meaning the model is perfectly suited to the

data. The red line indicates an AUC value of 0.5, which indicates that the model is

poor at deciding the desired output as it is no better than random choice. Both of

the green lines indicate an AUC of 0.777. This occurs because when there is a value

below 0.5, the inversion of the decision is taken. The goal of using the AUC values

is to determine how well the parameters model the data.

From using the leave-one-event-out model selection process described in this

section the optimal GMM parameter set was found using 4 Gaussian components,

with 94% of the variance retained resulted in the best models. Maintaining 94%

variance resulted in a dimensionality reduction from 55 features down to 11 prin-
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Figure 6.7: ROC and AUC example plot.

cipal components. The values for the GMM were found by running the different

variation of the parameters through the model selection process. The parameter set

that returned the best AUC values overall were chosen to represent the systems. The

procedure of using the AUC was not applied to the KNN as it is not a complex

system as it only has a single parameter K.

Table 6.2: AUC results for the GMM classifier

Event type Event GMM
Short seizures 2 0.9594

Tracé Alternant 3 0.9974
Long seizure 4 0.9196

Pulsatile artifact 5 0.9818
Respiration artifact 6 ≈ 1

The AUC values corresponding to the parameters are presented in Table 6.2.

These AUC values can be read in the following way. For example, to evaluate how

well the GMM model fits the data for the pulsatile artifact class (class 5), it is seen

that the AUC value is 0.9818. This value was generated using the one versus rest

technique that was described, where class 5 was assigned the label 1 and all the other

classes were assigned the label 0. The AUC values are quite high for each event class,

which indicates that the model is suited to the data. The lowest AUC value occurs for

the long seizure event, which is 0.9196. The lower AUC value can be explained by

the fact that seizures have a lot of variability and can change morphology overtime,
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this explains the lower AUC value.

6.5.2 Accuracy

This section will discuss the accuracy of both the KNN and GMM systems. As was

presented in Chapters 4 and 5, there were two evaluations carried out. The first is

the group majority and the second the performance accuracy. The systems were

evaluated on a per event basis as described in their respective sections. The first

aspect investigated was the group majority. This test is the event type returned the

most while evaluating five event groups. Over half of the database was background

data; therefore it is of interest to evaluate if this had much of an impact or bias on

the different classes. The group majority results are presented in Table 6.3.

Table 6.3: Classifier group majority results

Event KNN GMM
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6

Average 100 100

The background data (event 1) is not in the table as discussed previously. The

bottom row of Table 6.3 corresponds to the percentage of groups that had the correct

group majority. The values in the rows 2− 6 represent the event types that were

recalled most frequently when the event type corresponding to the row was queried.

The main message taken from Table 6.3 is that both classifiers have the correct event

class the majority of the time. This is a positive sign as half of the database consists

of background data.

The performance accuracy is the systems ability to correctly recall an event with

the same event class as the query event. It is a more detailed look into how well

each system and each event class recalls the correct event group. The performance

accuracy results for the classifiers are presented in Table 6.4. The bottom row is the

average results from each of the event groups. The average performance accuracy

for the GMM system is 90.36%.

Overall the results in Table 6.4 show that the GMM approach performs better

than the KNN approach. There was only one occasion when the KNN classifier
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Table 6.4: Classifier accuracy results

Event KNN GMM
2 66.67 83.33
3 100 100
4 60.87 73.91
5 96.36 94.55
6 100 100

Average (%) 84.78 90.36

outperformed the GMM classifier, and this was for the pulsatile artifact (event 5).

Both approaches recalled all the TA events (event 3) and respiration events (event 6)

correctly. The event that was hardest to recall correctly was the seizure events (event

4), which was an interesting result as the feature set was initially designed for the

task of seizure detection. The limited number of seizure events in the database could

have been a contributing factor to the accuracy of the seizure events.

These results seem promising, but they were obtained using the LOO event

approach. This means they were not patient independent and the database contained

other events from the same patient during training. This was carried out to enable a

fair evaluation with the results presented in Chapters 4 and 5. A patient independent

approach was also examined and these results are presented in Section 6.5.5.

6.5.3 Query run time

The query running time is the time taken to carry out a query on a database. To get

an accurate representation of the query time, each system has the time to compute

25 queries taken as opposed to one query. This time to compute 25 queries was

repeated 25 times to get an average. The database was increased in size, one event at

a time, from an initial three events to a total of 430 events. This process is the same

process that was used to evaluate the query time for Chapters 4 and 5. Performing

these tests enables an approximate evaluation into how each system will scale as the

database is increased in size.

Figure 6.8 shows the query time plots for the KNN and GMM approaches. Two

things are clear from this figure. The first is that the KNN query time increases

linearly, which was as expected as the KNN approach searches every event in a

database and returns the K closest events. This approach is similar to the brute force

methods described in Chapter 4, which also increased linearly. The second point is

that the GMM query time is approximately constant. The database size should not
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Figure 6.8: Database timing graphs for increasing database size

have an affect on the query time as the models are generated from the training data

before carrying out a query.

The next step investigated was the approximate query time when using a database

of 10000 events. The KNN and GMM approaches were estimated to take 122.68 and

69.63 seconds respectively and these were approximated by applying linear models

to each system. As expected, the GMM approach has a negligible increase, whereas

the KNN has a large increase taking 122.68 seconds when there is a database of

10000 events as compared to 69.54 seconds when there were only three events in

the database. The 69.54 seconds is due to the extraction of features from the query

events.

6.5.4 Memory

When working with large databases on any system, the memory requirements should

be investigated to estimate what memory is needed. The memory requirements of

the current database were computed by saving the event database as a MATLAB

.mat format file for the KNN approach. The parameters for the GMM approach were

saved as MATLAB .mat files. The size of the file was then read into the computer

and stored. This method of getting the database size was repeated for a database of

one event up until the full database size 430 events and was carried out for each of
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Figure 6.9: Database memory graphs for increasing database size

the systems. The results are plotted in Figure 6.9.

It is clear that the KNN approach has a growing memory requirement, because

the KNN uses the direct training database to classify new events. As the training

database grows in size, so too does the memory requirements as the training data

needs to be stored. This growth in memory is similar to the brute force systems

that were evaluated in Chapter 4. Other discriminative methods such as SVMs may

require less memory as they only store a small subset of the database (support

vectors) which are close to the hyperplane boundaries [279].

The projected memory when there is a database of 10000 events for the KNN is

47 MB and for the GMM it is 32 KB. The projected memory requirement is based on

the assumption that the lines in Figure 6.9 are linear. Clearly, from these values, the

KNN approach would require significantly more storage than the GMM approach.

The KNN approach requires approximately 47 MB, whereas the GMM approach

requires only 32 KB. The KNN process needs to store all the training data, whereas

the GMM approach only stores the hyperparameters and parameters that describe

the distributions of the data.
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6.5.5 Patient independent analysis

The amount of available data limits the generalisation performance of the work in

this chapter. The respiration and pulsatile artifact events came from 3 and 2 patients

respectively. There are 12 short seizure events from 7 patients, with one patient

responsible for 4 of the events.

As the amount of data and patients was limited, a patient independent evaluation

was not the primary method of model evaluation. The results in Section 6.5.2 were

obtained using LOO and leaving a single event out as opposed to leaving one patient

out.

Table 6.5: AUC results for KNN and GMM classifiers

Event GMM
2 0.7366
3 0.9695
4 0.8865
5 0.5109
6 0.9997

As a patient independent system in practice is desired, the parameters for the

KNN and GMM systems were tuned and evaluated here using the leave-one-patient-

out validation approach which was discussed previously. The K value for the KNN

was selected as 128 feature vectors, which is much larger than using the leave-one-

event-out approach. This value was found by evaluating the performance as K was

increased. The GMM parameters were 2 Gaussian components while keeping a

variance of 94%. These parameters were found using the one versus rest and leave-

one-patient-out approach. The GMM approaches maintained the same amount of

variance while the number of Gaussian components was reduced by two. The AUC

values are presented in Table 6.5.

When comparing these AUC values with the AUC values in Table 6.2, it is ap-

parent that the leave-one-patient-out AUC values are lower. A contributing factor to

the lower AUC values is because no query patient data was in the training set. These

lower AUC values also show that the models trained for the LOO event approaches

have overfit the training data. The most significant differences occur for the pulsatile

events. The low AUC value was expected as all this data comes from only two

patients. This means that the database is halved and the models are developed for

a single patient which are overtrained judging by the poor AUC values. The AUC
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values for the respiration artifact are the highest even though there are only three

patients. The rhythmic nature of the respiration artifact is picked up well by the

classifiers. Neonates that are on ventilators would have a more consistent rhythm as

it is mechanically controlled.

Once the best classifier parameters were found, the group majority and perfor-

mance accuracy for each system were evaluated. These results were found using the

leave-one-patient-out approach and the results are presented in Tables 6.6 and 6.7.

Table 6.6: Classifier group majority results - leave one patient out

Event KNN GMM
2 1 2
3 3 3
4 4 4
5 3 1
6 6 6

Average 60 80

Unlike the results in Table 6.3, the results in Table 6.6 show that both classifiers

were not able to get the correct class majority for all the classes that were tested.

The KNN approach got two event classes wrong and the GMM approaches got

one class wrong. Both approaches failed to identify the pulsatile artifact. This was

expected after observing the AUC results from Table 6.5. The KNN approach also

had the incorrect group majority for the short seizure event (event 2). It had picked

up the background data as the group majority. A potential reason for this is that

over half of each short seizure event was not annotated as seizure. This data could

then have been identified as background data when using the KNN classifier as also

occurred in the previous two chapters.

Table 6.7: Classifier accuracy results - leave one patient out

Event KNN GMM
2 33.33 58.33
3 100 100
4 43.48 56.52
5 29.09 14.55
6 73.08 92.31

Average 55.80 64.34

The recall accuracy for each particular event group along with the overall ac-

curacy was then investigated for the leave-one-patient-out process with the results



CHAPTER 6. MULTI-CLASS CLASSIFICATION OF NEONATAL EEG 188

presented in Table 6.7. The overall averages are between 55.8% for the KNN and

64.3% for the GMM. The event that had the poorest accuracy across both classifiers

was the pulsatile artifact.

It is worth noting that this is not a binary classification problem. Assuming a

balanced dataset of six events, with random choice each event has approximately

17% chance of being chosen. Anything better than 17% is considered as better than

random. The only test that returned a performance lower than 17% was the pulsatile

artifact tests for the GMM classifier. This test had an accuracy of 14.55%. The fact

that the pulsatile artifact event group has only two patients reduces the ability of

the classifier to generalise over the data, which makes the classifiers overfit to the

training data. While overfitting has occurred to this particular classifier the accuracy

and AUC values for the other models appear to show they have not overfitted the data

as much. There is a strong chance there is still overfitting present in the classifiers,

although they do achieve a higher performance accuracy than the pulsatile event.

The main limitation of this work is the amount of available data. If there were

more patient event files, leave-one-patient-out training and validation could have

been performed to create the generalised model performance. The results presented

in Section 6.5.2 are needed for comparison with the results presented in Chapters 4

and 5.

6.6 Summary

In this chapter, the KNN discriminative classifier and the GMM generative classifier

were investigated for use as a neonatal EEG multi-class classifier. Each method was

discussed with examples given to demonstrate how they operate.

Both of these approaches were evaluated in four different areas, which consisted

of the model fit, prediction accuracy, query time and memory requirements. Evalu-

ating these areas enabled a complete picture of the system performance along with

the ability to compare the work in this chapter with previous chapters.

The primary finding of this work is that the GMM approach outperforms the

KNN approach. Although as seen in Section 6.5.2, there are certain events that the

KNN approach classifies better.

One of the main reasons for choosing the KNN and GMM classifiers was because

of their ability to add new event classes with a limited amount of data. The KNN

can add the data to the training database, whereas the GMM can create a universal
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background model (UBM) from the entire database and adapt this UBM to the new

data. The amount the UBM is adapted depends on the amount of new event class

data available. Further information on the UBM process can be found in [269].

In summary, this work has shown that the GMM classifier performs the best for

the task of neonatal multi-class classification. It has the overall highest performance

accuracy, lowest query time and required a fixed memory size irrespective of the

database size.



Chapter 7

Conclusions and future work

7.1 Introduction

The aim of this thesis was the development of algorithms that assist neurophysiolo-

gists in the identification of EEG signal patterns that they have previously encoun-

tered. Without the aid of a supporting tools, this task can be very time consuming

and involve physically searching through old patient records and books. The primary

purpose of a supporting tool is to reduce the search time when locating a particular

EEG signal pattern by alleviating the need to physically search through old EEG

recording or looking through books such as [4–6].

Chapter 1 introduced and discussed the problem and need for this work. Fol-

lowing this, some prior works carried out on neonatal EEG were discussed. All of

these approaches had the primary focus of classifying EEG for different states such

as, seizure non-seizure [61], sleep states [40] and HIE grades [46]. None of the

prior work focused on finding similar EEG events to a query event. There is a need

for this, as some rare conditions may not have enough examples to develop patient

independent classifiers.

Chapter 2 discussed the neonatal EEG. The characteristics of normal EEG, most

prevalent abnormal EEG and EEG data that was affected by artifacts were discussed

with examples given. Finally, the database of neonatal EEG events that were used in

this thesis was presented and discussed.

Chapter 3 showed the processing that was applied to the raw signals. Following

the processing, the features that were extracted were presented and discussed. These

features were initially designed with input from domain experts to describe the

neonatal EEG and neonatal seizures in particular [33]. The chapters following these

190
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Figure 7.1: General flowgraph for NN algorithms showing the main stages

were the approaches used to tackle the problem of finding the most similar EEG

event from a database of EEG events and will be discussed in more detail in the next

section.

7.2 Conclusion

Several steps were needed to tackle the problem described in section 7.1; these steps

are illustrated in Figure 7.1. The data is initially preprocessed, as was described in

Chapter 3. These preprocessing steps are common to all algorithms. Following this,

a compression step is carried out, which varies for each of the approaches, and it

transforms the original signal into an alternative representation, such as a feature

representation or compressed time-series representation. This compression step was

needed as it reduced the amount EEG samples that needed to be stored. As seen in

Chapter 4, tests carried out on compressed EEG data had higher recall performance

than when carried out directly on the time-series EEG data. The black box in Figure

7.1 represents the algorithm used to find the nearest neighbour (NN). There were a

a large number of possible algorithms that could have been explored; however this

thesis developed algorithms based on the following three methods:

1. Brute force distance metric search algorithms

2. Hash-based algorithms

3. Scalable multi-class classifiers

These approaches are from three different areas but are generalised by the black box

in Figure 7.1. Each of the algorithms in this thesis were analysed looking at three

main metrics:

1. Recall accuracy

2. Query time

3. Memory requirements
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The recall accuracy was chosen as it is important to evaluate how many correct NN

are found for all the event classes being examined. The query time was evaluated

as it is important that the NN result is returned as quickly as possible, especially

as more events are added to the database. If the latency between the query and

returned result is too large then this reduces the practicality of an algorithm. The

memory requirements were evaluated, if the algorithms require too much memory,

they would not be used as they would be too costly to implement. As the algorithms

are intended for use with large databases the query time and memory requirement

measures provided insight into how the algorithms would scale as the database

increases in size.

The recall accuracy is the most important metric as it is important that the correct

event is returned. If an arbitrary event were returned, there would be little confidence

in the algorithm to assist in making a correct diagnosis. However, the recall accuracy

is irrelevant if there is a substantial increase in either the query time or memory

requirements as the database grows in size. The reason for this is that the algorithms

developed were intended to be used with large databases.

7.2.1 Brute force distance metric

The brute force distance metric based algorithms were discussed in Chapter 4. These

algorithms can be considered as an automated version of a neurophysiologist phys-

ically searching through old recordings to find the closest matching pattern. It re-

sembles this as these algorithms search the query event against every other event in

the database. Figure 7.2 presents a taxonomy tree of brute force algorithms. Two

main brute force algorithms were developed for the fixed point Euclidean distance

measure and the elastic dynamic time warping (DTW) measure.

Figure 7.2 shows the two main methods developed which stemmed from the fixed

point and elastic approaches. A fixed point approach is where all the corresponding

points in the events are directly compared, while an elastic approach has flexibility

in the points that are being compared, which helps when signals are misaligned.

From Figure 7.2 it is clear that all of the developed methods have linearly increasing

query time (QT) and memory requirements (MR) as the database increases in size.

It is worth noting that although all the developed algorithms have linearly increasing

query time and memory requirements, they increase at different rates for the different

systems. For example both the Euclidean and DTW time-series tests increase linearly
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Figure 7.2: Taxonomy tree of the brute force approaches showing the main results
for the developed algorithms

in time, but the DTW approach increases at a much faster rate. The accuracy (A)

was then reported for each of the developed algorithms.

Applying the Euclidean distance directly to time-series EEG events gave poor

accuracy results. These poor results were expected as the EEG is stochastic. Fol-

lowing this, a novel NN recall algorithm was developed that summed the distances

between feature vectors that were extracted from windows of the EEG data. As

the features were designed with expert domain knowledge; it was thought that this

new compact representation would provide a better data representation for event

searching. This was reflected in the results. Principal component analysis (PCA)

was applied to the features as a dimensionality reduction technique to reduce the

amount of data stored and to allow the use of larger databases. The application of

PCA provided a minor performance increase but resulted in a large reduction in the

amount of memory required. The Euclidean PCA algorithm had the highest accuracy.

A further data transformation approach that was applied with the Euclidean distance

measure was a technique called bag of patterns (BOP) [78]. This technique used

the symbolic aggregate approximation compression technique and then represented

the compressed time-series in a BOP representation. The Euclidean distance was

used to compute the distance between events. The novel Euclidean BOP algorithm

for NN neonatal EEG recall has an accuracy slightly lower than the Euclidean PCA

algorithm, although it was both faster and required less memory.

The elastic approach known as DTW was used to develop novel NN neonatal

recall algorithms. Three algorithms were developed for the time, feature and PCA
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data. DTW was not carried out on the BOP transformed data as the BOP transforma-

tion does not maintain the structure or order of the signal. When testing these novel

algorithms, it was found that DTW worked better than expected in the time-series

domain. However, the Euclidean distance algorithms outperformed the DTW algo-

rithms in the feature and PCA domains as the query time and memory requirements

increases slower and had a higher accuracies as seen in Figure 7.2.

The main findings from these algorithms are that the Euclidean BOP algorithm

has the lowest increase in query time and memory requirements as the database in-

creases in size. The Euclidean PCA has the highest recall accuracy and the increase

in query time and memory requirements as the database grows in not enough to

warrant calling the Euclidean BOP algorithm the best algorithm developed in Chap-

ter 4. The Euclidean PCA algorithm is considered as the baseline algorithm as it

has the highest accuracy, linear query time and linear memory requirements as seen

in Figure 7.2. This algorithm also resembles that of a neurophysiologist physically

searching though old records.

7.2.2 Hash based algorithms

The hash-based algorithms were discussed in Chapter 5. This chapter moved past the

idea of brute force searching and into a more realistic search space via hashing. Fig-

ure 7.3 shows the three main methods developed which were based on spectrogram

hashing, feature quantisation and locality sensitive hashing (LSH). From Figure 7.3

it is clear that all of the developed methods had query times and memory require-

ments that resembles that of power curves as the database increases in size. It is

worth noting that although all the developed algorithms have query times and mem-

ory requirements that resemble that of power curves, they increase at different rates

for the different systems. The accuracy is then reported for each of the developed

algorithms.

The first hashing algorithm developed for neonatal EEG recall was the spec-

trogram hashing algorithm, based on the original algorithm for the popular song

recognition method known as Shazam [179]. With the success of Shazam in the

audio domain for song recognition, it was decided to adapt this algorithm, to be used

for the first time with neonatal EEG. A method of compression was developed to

reduce the amount of neonatal EEG energy peaks in the spectrogram. The hashing

was then carried out on the compressed spectrogram and the results found that this
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Figure 7.3: Taxonomy tree of hashing approaches showing the different areas where
algorithms were developed

algorithm had an accuracy below that of the Euclidean distance PCA algorithm. This

algorithm had a slower rate of query time increase as the database was increased in

size as compared to the Euclidean PCA algorithm. The memory requirements for

this algorithm increase at a faster rate than all of the other hashing algorithms and

the Euclidean PCA algorithm.

A second hashing algorithm, again from the audio domain, based on quantisation

was investigated [197]. The original audio domain algorithm generated hashes using

the energies from different frequency bands across multiple epochs. This approach

was adapted for use in the neonatal EEG domain. The novel method of using prin-

cipal components generated from a neonatal EEG feature set for quantisation was

also developed as is seen from the quantisation branch in Figure 7.3. The energy

band quantisation algorithm had a higher accuracy than the PCA quantisation algo-

rithm. This performance came at a cost, as the energy band quantisation algorithm

approaches that of a brute force algorithm because it needs a bit error rate calculation

for every potential match to find the NN. This was reflected in the query time as it

increases at a fast rate as the database increases in size. This quantisation algorithm

becomes unrealistic and impractical as the Euclidean PCA algorithm is faster and

has a greater accuracy. As the quantisation algorithms save binary numbers, the

memory requirements are less than that of the Euclidean PCA algorithm. The PCA

quantisation algorithm may have a lower accuracy than the Euclidean PCA algo-

rithm, although it also has a much slower rate of query time increase as the database

grows and it requires a small amount of memory for the database.

The final hashing algorithms developed and evaluated in Chapter 5 used LSH.
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Figure 7.4: Taxonomy tree of classifiers showing the different areas

LSH is an approximate NN search technique and it generates pseudo-random hashes

to recall neonatal EEG events. To the best of the author’s knowledge, this is the

first piece of work that investigates the development of LSH algorithms for neonatal

EEG recall. LSH is based on the idea that similar events will have similar hashes

[201]. The hashes were generated from a compressed representation of the data.

Three compression techniques were examined. The first approach converted the data

into a binary representation using sketching and this was followed by computing the

weighted set of shingles. The second approach used the BOP compression technique

previously used in the brute force NN algorithm. The third compression technique

was based on the feature representation of the data. The first two compression tech-

niques resulted in poor accuracy as seen in Figure 7.3, although they scale best in

terms of query time. The feature-based LSH algorithm takes slightly longer than

the other compression techniques, although it has the best accuracy out of all the

hashing algorithms, which is also better than the Euclidean PCA algorithm. The

query time and memory curves have shown that that the feature-based LSH algo-

rithm increases at a much slower rate than the Euclidean PCA algorithm. The feature

set LSH algorithm is the best performing hashing algorithm for NN neonatal EEG

recall. It outperformed the spectrogram and quantisation hashing algorithms in terms

of accuracy and query speed.
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7.2.3 Scalable multi-class classifiers

Figure 7.4 shows a tree containing the two classifier methods developed in Chapter

6, which were the KNN discriminative classifier [255] and the GMM generative clas-

sifier [269]. These methods were developed for the task of neonatal EEG multi-class

classification. The KNN approach has linearly increasing query time and memory

requirements whereas the GMM approach has a constant query time and a constant

memory requirement as seen in Figure 7.4.

The first classifier developed was the KNN classifier. There were two reasons for

choosing the KNN classifier. The first was due to the limited database size, which

could result in more advanced classifiers having a higher chance of overfitting the

training data. As the choice of K is the only parameter that needs to be identified,

this approach has a lower chance of overfitting the data. The second reason for

choosing the KNN classifier was because if new event classes arise, they can be

easily added without the need to fully retrain the classifier. The KNN classifier

had an accuracy below that of the LSH hashing algorithm as seen in Figure 7.4.

As the KNN algorithm searches all the epochs in the database to find the K nearest

neighbours, the query time and memory requirements increase linearly with database

size, which is similar to the approaches shown in Figure 7.2. The query time and

memory requirements for the KNN algorithm increase at a faster rate than both

the Euclidean PCA algorithm and the LSH feature set algorithm as the database

increases in size.

The second classifier developed was the GMM classifier. This classifier was

chosen as it was previously used successfully with neonatal EEG [27] and there

exists the ability to create new event class models with a limited amount of data by

adapting a UBM that is trained from all the training data [267]. Leave one out (event/

patient) validation was carried out to find the optimum parameters for the algorithms.

This algorithm had the best accuracy out of all the algorithms developed in the thesis.

More data is needed to validate and assess the generalisability of each algorithm.

The algorithm has negligible query time and memory requirement differences as the

database increases in size as seen from the constant value reported in Figure 7.4.

Chapter 6 has shown that he GMM algorithm has the lowest memory requirement

of all the algorithms developed in this thesis. There is one caveat to using the multi-

class classifiers as opposed to any of the other algorithms - the multi-class classifiers

can only return an event class whereas the algorithms from Chapters 4 and 5 can
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return specific events, as was the primary goal of this thesis. It was understood that

the multi-class classifiers would never have the ability to recall specific neonatal EEG

events. The multi-class classifiers were implemented as a sanity check to examine

if the developed algorithms had a performance comparable to a purpose built multi-

class classifier. This sanity check was needed as each of the other algorithms from

Chapter 4 and 5 used the multi-class classification problem as a proxy to the NN

neonatal EEG event recall problem.

7.2.4 Summary

To summarise, the work in this thesis has found that the feature set LSH based hash-

ing algorithm is the best algorithm for NN neonatal EEG recall. This algorithm has

the highest recall accuracy of all the algorithms that return NN events. There was

a high level of compression achieved when compressing the time-series representa-

tion into a collection of hashes. The LSH hashing algorithms were the quickest and

scaled the best in terms of query time. There was an extra query time cost associated

with the LSH feature set algorithm as the features needed to be extracted.

In a real world setting, the work developed in this thesis could be used by medical

professionals such as neurophysiologists to identify EEG patterns based on previ-

ously recorded EEG patterns. The systems can arrange the results in order from

the most to least likely match. This would speed up the search time for the medical

professionals when trying to identify if and where they have seen a specific pattern

previously.

7.3 Future work

The work presented in this thesis, to the author’s knowledge was the first work that

developed methods for NN neonatal EEG event recall. This thesis served as a basis

to evaluate several different potential pathways. All possible avenues could not be

covered and this section will discuss some areas where future work could yield

performance increases.

The feature set used in this thesis was initially designed with input from do-

main experts with the main purpose to identify neonatal seizure activity [33]. An

investigation into the use of new features could be carried out that would look for

more features which describe the characteristics of neonatal EEG. Different sized
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feature windows and overlaps could also be investigated. For example, using shorter

windows may increase the performance in detecting the pulsatile artifacts as these

events are short in duration.

The work carried out in this thesis used PCA as a dimensionality reduction

technique. Feature selection techniques could be applied to the original feature

as opposed to using PCA. Using feature selection techniques would enable the

evaluation of new features and current features and help in the removal of redundant

features.

In terms of the NN neonatal EEG recall problem, more research could be carried

out in the hashing area. This area has appeared to be the most promising so far

with the good results coming from the LSH work. Future research could focus on

the development of an amplification strategy to boost the confidence in the results

returned, which in turn should reduce the number of candidate events returned [201].

Amplification is a process that uses operators such as AND and OR on the generated

hashes to tune the confidence in the matches returned. The features based LSH

algorithm yielded the best results out of the hashing schemes tests. The features

used for the hashing process could be added to and refined. This thesis investigated

three compression methods before the application of LSH, and further compression

techniques could be evaluated.

The GMMs were used as they have the potential to model small amounts of

data by adapting a background model to the new data [267]. This technique could

be investigated for use with new event classes when there are a limited number of

events.

The overall GMM performance could be optimised by validating individual pa-

rameter sets for each event group as opposed to finding the global best parameter set

for all of the classes. Each of the individual event classes may be better represented

using a different number of Gaussian components and maintained PCA variance.

As the amount of data available in this thesis was limited, future work would

include the further development of the database by increasing the number of patients

and types of annotated events in the database. This is particularly applicable for

the case of the pulsatile and respiration artifacts. This would enable the creation of

training and testing dataset, which would allow for a leave one patient out evaluation

to be carried out to show the true generalisability of the algorithms. It would also

enable the use of more advanced multi-class classifiers to set a baseline accuracy

performance.
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All the data in this thesis was annotated using the bipolar montage and therefore

restricted the analysis to that montage. A new dataset containing referential montage

annotations should be acquired, investigated and compared to the bipolar montage

dataset.

The algorithms developed in this thesis were all developed, tested and evaluated

using a database that consisted of events that were one minute in duration. To further

test the robustness of each algorithm, events that have different durations should be

investigated. This would also provide insight into how the algorithms would need to

be adapted to handle signals of differing lengths.
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techniques to stock market analysis,” in 8th International Conference on Prac-

tical Applications of Agents and Multiagent Systems, pp. 519–527, Springer,

2010.

[118] M. A. Hearst, “Untangling Text Data Mining,” in Proceedings of the 37th

annual meeting of the Association for Computational Linguistics on Com-

putational Linguistics, pp. 3–10, Association for Computational Linguistics,

1999.

[119] E. W. Ngai, Y. Hu, Y. Wong, Y. Chen, and X. Sun, “The application of data

mining techniques in financial fraud detection: A classification framework

and an academic review of literature,” Decision Support Systems, vol. 50,

no. 3, pp. 559–569, 2011.

[120] T. Li, M. Ogihara, and G. Tzanetakis, Music Data Mining. CRC Press, 1 ed.,

2011.



BIBLIOGRAPHY 214

[121] T. C. Fu, “A review on time series data mining,” Engineering Applications of

Artificial Intelligence, vol. 24, no. 1, pp. 164–181, 2011.

[122] P. Esling and C. Agon, “Time Series Data Mining,” ACM Computing Surveys,

vol. 45, no. 1, p. 12, 2012.

[123] C. Damle and A. Yalcin, “Flood prediction using Time Series Data Mining,”

Journal of Hydrology, vol. 333, no. 2-4, pp. 305–316, 2007.

[124] A. Grigorievskiy, Y. Miche, A.-M. Ventelá, E. Séverin, and A. Lendasse,
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