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Abstract  
 
The symbiosis between the gut microbiota and the host has been identified as an integral 
part of normal human physiology and physiological development. Research in germ-free or 
gnotobiotic animals has demonstrated the importance of this symbiosis in immune, vascular, 
hepatic, respiratory and metabolic systems. Disruption of the microbiota can also contribute 
to disease, and the microbiota has been implicated in numerous intestinal and extra-
intestinal pathologies including colorectal cancer. Interactions between host and microbiota 
can occur either directly or indirectly, via microbial-derived metabolites. In this chapter, we 
focus on two major products of microbial metabolism, short-chain fatty acids and bile acids, 
and their role in colorectal cancer. Short-chain fatty acids are the products of microbial 
fermentation of complex carbohydrates and confer protection against cancer risk, while bile 
acids are compounds which are endogenous to the host, but undergo microbial modification 
in the large intestine leading to alterations in their bioactivity. Lastly, we discuss the ability 
of microbial modulation to mediate cancer risk, and the potential to harness this ability as a 
prophylactic or therapeutic treatment in colorectal cancer. 
 
 
1 The Gut Microbiota 
 
The human microbiota is a community of bacteria, archaea, protists, fungi, and viruses that 
live in and on the human body (1). The term gut “microbiome” is sometimes used 
synonymously with the gut “microbiota” but can also refer to the full collection of genes 
present in the microbiota of a community. The cells of our microbiota are estimated to 
outnumber our nucleated human cells by a ratio of about 13:1, about 70% of which occupy 
our gastrointestinal (GI) tract (2). A symbiotic relationship exists between the microbiota and 
host, and this relationship plays a vital role in host immune modulation, metabolism, 
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inhibition of pathogens and structural development (3, 4). Members of the microbiota may 
be classified by the nature of their symbiotic relationship with the host, ranging from harmful 
pathogens to beneficial probiotics. These probiotic bacteria are characterised as “live 
microorganisms that, when administered in adequate amounts, confer a health benefit on 
the host”, while prebiotics are “selectively fermented ingredients that result in specific 
changes in the composition and/or activity of the gastrointestinal microbiota, thus conferring 
benefit(s) upon host health” (5-7). Some relationships are more complex however, with 
species displaying both harmful and beneficial behaviour. Helicobacter pylori, for example, 
is recognised as a major risk factor for stomach cancer, but the elimination of this species 
has been associated with increased rates of inflammatory diseases including inflammatory 
bowel disease (IBD), asthma and eczema, suggesting a role for H. pylori in immune 
modulation (8, 9). 
 
The gut microbiota comprises over 5000 bacterial species and 3 million genes in a typical 
individual, with possibly over 35,000 species in the collective human microbiome (10, 11). It 
is dominated by the phyla Firmicutes and Bacteroidetes, featuring smaller proportions of 
Proteobacteria, Verrucomicrobia, Actinobacteria, Fusobacteria, and Cyanobacteria (3, 12). 
This consistency of phyla, combined with significant inter-individual variation within the 
phyla, suggests a selective pressure to maintain the higher taxonomic structure with a 
functional redundancy at lower levels (12, 13). The upper GI tract contains relatively few 
microbial inhabitants. The stomach and duodenum contain approximately 102 organisms per 
gram of contents. This rises to 104-107 in the jejunum, finally reaching ~109 colony forming 
units (CFUs)/mL in the terminal ileum and ~1012 CFU/mL of primarily anaerobic bacteria in 
the colon (3, 14). The composition also changes along the length of the GI tract, with Bacillus 
and Actinobacteria enriched in the small intestine, while Bacteroidetes and Lachnospiraceae 
are enriched in the large intestine (11). 
 
The intestinal tract is generally considered sterile at birth, with colonisation beginning 
immediately through contact with the mother and environmental bacteria. Recent research, 
however, has suggested colonisation of the placenta by Streptococcus agalactiae in 
approximately 5% of pregnancies. However, the possibility remains that this is a result of 
sample contamination (15, 16). The newborn microbiota is reflective of the mode of delivery, 
with babies delivered by Caesarean section having a microbiota characterised by fewer 
Bifidobacterium species compared to vaginal births (17). The shift towards an adult microbial 
composition begins during weaning before the microbiota stabilises at approximately 1-2.5 
years of age (18). The microbiota then remains largely stable until old age, in the absence of 
disruptions such as long-term dietary changes or migration (19, 20). Further changes to the 
microbiota are observed later in life, such as a reduction in diversity and in the number of 
symbiotic species, and an increase in enteric bacteria, which may be associated with the age-
related physiological decline observed in these populations (21-23). 
 
 
1.1 Host-microbe symbiosis and physiological development 
The ancient association and co-evolution between host and microbe have lead to the deep 
integration of the microbiota into normal physiological processes and development. This is 
illustrated by germ-free (GF) animals, which, in the absence of normal gut microbiota, display 
several developmental abnormalities including an immature immune system (24). Potential 
mechanisms by which the neonatal microbiota mediate the development of the immune 
system differ between bacterial species, and likely involve the interacting influences of many 
different taxa. GF mice have a suppressed T Helper Type 1 (Th1) cell response that can be 
restored by monocolonisation with Listeria monocytogenes, which stimulates interleukin 
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(IL)-12 production in macrophages. Likewise, the reduction in Th17 cells observed in these 
animals can be normalised by colonisation by segmented filamentous bacteria (SFB) leading 
to the release of serum amyloid A from intestinal epithelial cells (25). Colonisation with SFB 
also upregulated the production of immunoglobulin A, which is crucial for a tolerance of 
commensal microbiota by the mucosal immune system (26, 27). 
 
The host immune response also modulates the composition of the gut microbiota, and the 
ability of the mucosal immune system to differentiate between commensal and pathogenic 
bacteria is a topic of ongoing research (28). Members of the gut microbiota interact with the 
host directly by signaling through pathogen recognition receptors, such as Toll-like Receptors 
(61). The gut microbiota also produces a wide array of bioactive bacteria-derived 
metabolites, both from compounds endogenous to the host, e.g. bile acids, or exogenous 
compounds such as those found in the diet or environment, which allow them to interact 
indirectly with the host. These metabolites can also play an important role in host health and 
disease, including colorectal cancer (CRC) (discussed in Section 3).  
 
 
2 Host-Microbiota Interactions in Colorectal Cancer 
 
There is precedence for the involvement of bacteria in GI cancer, as H. pylori is the strongest 
known risk factor for gastric cancer (8). Given the close apposition between the gut 
microbiome and colonic epithelium, in particular, research efforts have focussed on the role 
of the microbiota in colon cancer (Table 1) (29). The proposed mechanisms by which the 
microbiota may impact CRC include its effects on the immune system and proto-oncogenic 
pathways such as proliferation and apoptosis, while microbial metabolites can also have pro- 
and anti-tumorigenic associations (30). The strongest links between the microbiota and 
potentially cancer-promoting inflammation involve pathogenic species such as 
Fusobacterium nucleatum or enterotoxigenic Bacteroides fragilis, both of which have been 
positively correlated with CRC (31, 32). The role of the microbiota in proliferation is evident 
in GF mice which display smaller intestinal crypts with a lower mitotic index (33), while the 
microbiota can mediate apoptosis via a number of mechanisms including the production of 
butyrate (Section 3.1). Moreover, tumour formation is reduced in GF animals (68), with 
faecal microbial transfer from CRC patients to GF mice increasing tumorigenesis in these 
animals (69-71). This capacity to regulate both intestinal proliferation and apoptosis 
highlights the importance of this delicate symbiotic relationship, which could contribute to 
cell cycle disruption if dysregulated.  
 
[Table 1] 
 
Substantial evidence exists in animal models for the role of gut bacteria in promoting CRC. 
These studies primarily utilise mouse models either genetically predisposed to CRC such as 
the APCMIN mouse, or use genotoxic compounds such as azoxymethane (AOM) or its 
precursor dimethyhydrazine (DMH), to chemically induce CRC. AOM can also be combined 
with dextran sodium sulphate (DSS) to model colitis-associated CRC. Using this AOM/DSS 
model of CRC, manipulation of the microbiota with antibiotics was shown to result in reduced 
tumorigenesis, but antibiotic treatment had conflicting effects in APCMIN mice (63, 64). 
Antibiotic treatment was protective, however, in APCMIN mice when compound mutations in 
DNA repair or interleukin receptor genes were present (64-66). Furthermore, Onoue et al. 
observed decreased numbers of aberrant crypt foci (ACF) in DMH-treated GF rats compared 
to conventional rats (67). Conversely, the administration of bacteria associated with cancer 
risk, for example, Streptococcus bovis or F. nucleatum, to susceptible animals was shown to 
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increase proliferation, inflammation, and tumorigenesis (68, 69). Tumour multiplicity was 
also increased in gnotobiotic (GB) rats colonised by enterococci compared to GB rats without 
enterococci, with the tumour numbers in the former group significantly decreased by the 
inclusion of probiotic strain Bifidobacterium breve (67). A similar result was achieved by Horie 
et al. concerning adenomas, with the lowest incidence of adenoma development observed 
in rats mono-associated with probiotic Lactobacillus acidophilus (70). 
 
In contrast, human studies present only associative evidence for the role of the microbiota 
in CRC. The microbiota is altered in the colon of CRC patients and in the tumour tissue 
compared to healthy controls, with adenomatous polyps representing an intermediate step 
between the two states (71). The colonic mucosa is the symbiotic interface between host 
and microbiota, and studies have shown colonisation of this interface by adherent and 
invasive Escherichia coli in carcinoma patients (58, 72). Moreover, CRC patients had 
increased carcinogenic microbial metabolites in their faeces compared to healthy individuals 
despite both groups having similar diets, with the difference ascribed to their different levels 
of enzymatically-active anaerobic bacteria (73). Similarly, Lactobacillus species have been 
shown to reduce faecal and urinary mutagenicity induced by fried meat consumption and to 
reduce faecal β-glucuronidase, β-glucosidase, nitroreductase and glycocholic acid hydrolase 
activity (74-76). The gut microbiota can also modulate the production of mucus in the 
intestinal lumen, which in itself can play an important role in CRC by regulating the 
interaction of the gut bacteria and luminal contents with the colonic epithelium (77).  
 
The composition of the microbiota has also been investigated as a potential predictive 
biomarker for human CRC. Two meta-analyses of human faecal shotgun sequencing studies 
identified microbial taxonomic signatures with sensitivity to, and specificity for, CRC, which 
was comparable to common non-invasive clinical screening tests (78, 79). Models based on 
the functional gene content of the faecal microbiome were also generated, and enrichment 
of the bile acid-inducible operon, which is involved in microbial bile acid metabolism, was 
demonstrated at both the genomic and transcriptomic levels (78, 79). Additionally, bacterial 
species associated with the oral cavity are frequently enriched in gut microbiota in CRC 
patients, and a model combining data from oral and faecal microbiota was highly predictive 
of CRC (62). 
  
 
3 Microbial metabolites as mediators of host-microbe symbiosis in colorectal cancer  
 
Another key interaction between the host and the microbiota is through the production of 
microbial-derived metabolites (80). Here, we focus on two major products of microbial 
metabolism, short-chain fatty acids and bile acids, and their role in CRC. 
 
 
3.1 Short-chain fatty acids 
Commensal bacteria contribute to host-microbial homeostasis and resistance to CRC via the 
production of short-chain fatty acids (SCFAs). SCFAs are fatty acids with less than six carbon 
atoms and are primarily the product of fermentation of dietary fiber by anaerobic bacteria 
in the proximal colon (81). The three most common SCFAs are acetate, propionate, and 
butyrate, with butyrate shown to play a predominant role in CRC (82). The majority of 
butyrate is produced by bacteria in Clostridium clusters XIVa and IV, particularly 
Roseburia/Eubacterium rectale-related bacteria in cluster XIVa and Faecalibacterium 
prausnitzii relatives in cluster IV (83). In a screen of butyryl-CoA:acetate CoA-transferase 
sequences from human faecal samples, 88% of sequences belonged to E. rectale, Roseburia 
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faecis, Eubacterium hallii and an unnamed species with the remainder coming from 
uncultured strains (83). 
 
Butyrate is the primary energy source for normal colonic epithelial cells and has been 
associated with positive health effects, including in CRC (84, 85). Concentrations of SCFAs are 
highest in the caecum and proximal colon, where the incidence of tumours is low (86). The 
lowest intracolonic levels of SCFAs are found in the distal colon and rectum, the site of the 
majority of human CRC. Butyrate was also reduced in a rat model of CRC, where it correlated 
negatively with tumour mass (87). Moreover, protein feeding increased tumour number in 
AOM-treated rats which was ameliorated by resistant starch, which is a substrate for 
microbial butyrate production (88). Mechanisms by which butyrate protect against CRC are 
presented in Table 2. 
 
Whilst predominantly protective against the development of CRC, butyrate can have pro-
tumorigenic effects following CRC onset. One such mechanism involves its ability to act as a 
histone deacetylase (HDAC) inhibitor in vivo where it epigenetically promotes cell 
proliferation (89). The contrasting effects of butyrate in normal epithelial cells versus CRC 
cells can be explained by the metabolic fate of intracellular butyrate. The ability to use 
butyrate as an energy source is lost in malignant colonocytes (67). Instead, these cells 
perform glycolysis in what is termed the Warburg effect. This causes the accumulation of 
intracellular butyrate which generates concentrations sufficient to allow butyrate to act as 
an HDAC inhibitor. This effect in CRC cells is amplified by glucose-induced metabolism of 
butyrate by ATP citrate lyase to acetyl-CoA, which acts as a histone acetyltransferase in cells 
exhibiting the Warburg effect (90, 91). 
 
[Table 2] 
  
 
3.2 Bile acids 
Bile acids are endogenous steroid molecules that are conjugated to a glycine or taurine 
amino acid residue to form bile salts and stored in the gallbladder for post-prandial release 
into the duodenum to aid lipid digestion. They are derived from cholesterol and are the 
major route of cholesterol elimination from the body. The major human bile acids are cholic 
acid (CA) and chenodeoxycholic acid (CDCA), while in mice the majority of CDCA is converted 
into muricholic acid (MCA) (110). Although most bile salts are reabsorbed in the distal ileum, 
around 5% escape to the large intestine where they can be modified by intestinal bacteria 
(111). These bile acids undergo deconjugation of the amino acid residue by bile salt hydrolase 
to form free bile acids, followed by 7α-dehydroxylation to form cytotoxic secondary bile 
acids, as well as a number of other minor modifications (112). 7α-dehydroxylation of the 
major human bile acids CA and CDCA forms deoxycholic acid (DCA) and lithocholic acid (LCA) 
respectively. These modifications can alter the biochemistry and bioactivity of bile acids, as 
well as their receptor specificities, which affect their role in CRC. The synthesis and microbial 
metabolism of bile acids are presented in Figure 1. 
 
Secondary bile acids are hydrophobic, cytotoxic molecules and evidence suggests they play 
a role in CRC. For example, numerous epidemiological studies have highlighted higher faecal 
bile acid content in populations with increased CRC rates (113-115). Moreover, DCA is higher 
in patients with colorectal adenomas and was first proposed as a carcinogen in 1940 based 
on its induction of tumours in mice (116, 117). Bile acids were initially classified as tumour 
promoters rather than tumour initiators, as studies primarily demonstrated their action 
when co-administered with chemical carcinogens such as AOM (118, 119). However, the role 

https://www.sciencedirect.com/science/article/pii/0165111090900235
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of bile acids as aetiologic agents of cancer in their own right is now emerging (120). For 
example, a diet high in fat and low in fiber is a known risk factor for colon cancer (121). This 
diet was also associated with increased secondary bile acids, as well as increased 
glucuronidase deconjugation (121). Also of note, GF rats are generally resistant to chemical 
carcinogen-induced CRC (122). However, rats treated with the chemical carcinogen 
methylnitronitrosoguanidine (MNNG) and DCA displayed colonic adenocarcinomas, 
suggesting microbial production of DCA could play a role in tumorigenesis and may explain, 
in part, the resistance to CRC observed in GF animals (123). 
 
Bile acids can increase cancer risk by several mechanisms. DCA and CDCA were shown to up-
regulate pro-inflammatory cyclooxygenase-2 and its downstream inflammatory product 
prostaglandin E2 in a protein kinase C-dependent manner, whilst activating c-Jun and AP-1 
(124, 125). Bile acids also generate reactive oxygen and nitrogen species via a detergent 
effect on cell membranes and activation of inducible nitric oxide synthase (126). Additionally, 
bile acids may induce apoptosis in the short term but select for apoptosis-resistant cells in 
the longer term (127). This ability appears to be related to bile acids’ hydrophobicity, with 
the most powerful effect displayed by the most hydrophobic bile acids (128). Indeed, normal 
cells adjacent to tumour tissue in colon cancer patients were shown to display resistance to 
bile salt- and bile acid-induced apoptosis, and this is mediated by an up-regulation of the 
anti-apoptotic protein B-cell lymphoma-extra large (127, 129).  

Bile acids can also induce chromosomal abnormalities such as aneuploidy and micronucleus 
formation (130, 131). In yeast, DCA, LCA, CDCA and CA each induced mitotic chromosome 
aneuploidy, while tauro- or glyco-conjugated DCA did not (132). Oxidative stress is a well-
established source of chromosomal instability and this is a plausible mechanism of bile-acid 
induced DNA damage and increased CRC risk (133, 134). LCA was also shown to inhibit the 
repair activity of DNA polymerase β which could exacerbate the consequences of bile acid-
induced DNA damage (135). Finally, a proteomic study of CRC cell lines induced with DCA 
identified alterations in ten proteins involved in DNA repair and cell cycle checkpoints (136). 

Bile acids have also been associated with cancer through Farnesoid X Receptor (FXR) 
signalling (137). Bile acid homeostasis is regulated by FXR, which is a nuclear receptor 
expressed by liver hepatocytes and small intestine enterocytes (138). FXR expression is 
down-regulated in human colorectal tumours and colon cancer cell lines (139), while Fxr-/- 
mice are predisposed to multiple cancers, including that of CRC (140, 141). Moreover, 
administration of tauro-conjugated βMCA, which is an FXR antagonist bile acid, increased 
stem cell proliferation by activating Wnt signalling, impaired intestinal integrity, accelerated 
tumour growth, induced dysplastic morphology and chromosome instability, and increased 
the serum levels of pro-inflammatory cytokines in APCMIN mice (142). FXR agonists, in turn, 
promoted apoptosis, down-regulated intestinal stem cell genes and inhibited Wnt signalling 
(143). FXR agonists also delayed tumour progression, reduced tumour multiplicity, 
proliferation and serum cytokines, and improved intestinal morphology, differentiation, 
barrier function and bile acid homeostasis (142). Microbial modification of bile acids plays a 
role in their interaction with FXR, as FXR displays greater affinity for conjugated bile acids, 
with reducing affinity for CDCA>DCA=LCA>CA (144). As a result, bacterial modification of bile 
acids can influence their specificity for FXR and hence their influence on cancer risk. FXR has 
also been demonstrated to modulate the microbiota as FXR antagonism increased the 
proportion of Bacteroidetes compared to Firmicutes (145, 146). FXR can also suppress 
expression of pro-inflammatory cytokines (147), to the extent that a synthetic FXR ligand 
protected mice from DSS-induced colitis (148).  
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4 Pre- and pro-biotics as modulators of host-microbe symbiosis: implications for colorectal 
cancer  
 
Clinical trials have provided evidence for the beneficial role of pre- and pro-biotics in CRC 
(Table 3). One such trial using a combination of pre- and pro-biotics comprising inulin, 
Lactobacillus and Bifidobacterium administered to individuals at high risk of CRC 
development showed that the combination treatment resulted in a decrease in colonic 
epithelial proliferation, decreased abundance of Clostridium perfringens and reduced ability 
of faecal water to induce necrosis in colon cells in vitro (149). Epithelial barrier function, 
which is deficient in CRC, was also improved (151).  
 
[Figure 1] 
 
This beneficial effect of pre- and pro-biotics has been replicated in several studies (152-155). 
Moreover, a prebiotic mixture decreased chemotherapy-associated side effects including 
diarrhoea and enterocolitis in CRC patients (156). Furthermore, the administration of 
probiotics can have potential cancer preventative effects. For example, a mixture of 
Lactobacillus and Propionibacterium administered to healthy subjects reduced faecal levels 
of the bacterial enzyme β-glucuronidase, which is implicated in the activation of carcinogens 
in the colon (157). 
 
[Table 3] 
 
In animal studies, Bifidobacterium longum has been shown to ameliorate AOM/DMH-
induced colon carcinogenesis, an effect that is enhanced by co-administration with the 
prebiotics inulin and lactulose (175, 176). A similar effect was seen with Lactobacillus species, 
although this effect was absent when probiotic administration was delayed until 9 weeks 
into DMH-administration, suggesting Lactobacillus was only protective in the early stages of 
tumorigenesis (177, 178).  
 
The ability of probiotics to affect early-stage cancer development could be due to their 
function as anti-mutagenic agents. For instance, Lactobacillus casei gavage attenuated DNA 
damage induced by MNNG in rat colonic and gastric mucosa, while in another study, a 
selection of lactic acid bacteria (LAB) inhibited the genotoxic effects of MNNG and DMH in 
the rat colon (161, 162). Heat treatment eliminated the protective effect of the bacteria in 
both studies, suggesting that viable bacteria are required for this effect, although the 
peptidoglycan fraction and whole freeze-dried L. acidophilus were also anti-genotoxic. 
Arimochi et al. also demonstrated a reduction in ACF in AOM-treated rats after the 
administration of L. acidophilus and C. perfringens (179). In particular, L. acidophilus 
improved DNA repair by DNA methyltransferase. Other potential mechanisms include the 
ability of LAB to bind dietary mutagens which limits their ability to interact with the colonic 
epithelium (167, 180). For example, toxic compounds are detoxified by glucuronidation in 
the liver, but bacterial β-glucuronidase activity may hydrolyse these molecules and liberate 
carcinogens. The activity of this enzyme was shown to be reduced in AOM- and DMH-treated 
rats following gavage with the probiotic B. longum. This effect was enhanced by co-
administration with the prebiotic inulin, possibly as a result of acidification of the intestinal 
environment and displacement of bacteria expressing β-glucuronidase (181-183). 
 
Probiotic and commensal bacteria, including species that are indigenous to the normal 
human microbiota, can also provide health benefits by competing with more harmful 
organisms and preventing them from becoming established in the GI tract (184). LAB have 
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been shown to inhibit the growth of coliforms in the GI tract and return E. coli-infected rats 
to a normal microbiota composition while reducing β-glucuronidase activity (185). Probiotics 
can also produce antimicrobial compounds that inhibit enteric pathogens (186, 187).  
 
Chronic inflammation has been shown to promote CRC and this can be ameliorated by 
probiotic bacteria (188). This can be mediated by the production of anti-inflammatory 
metabolites such as butyrate (Section 3.1). Some probiotic bacteria have also been shown to 
suppress the production of inflammatory factors by host immune cells, with Lactobacillus 
reuteri being shown to suppress the production of tumour necrosis factor-alpha (TNFα) and 
monocyte chemoattractant protein 1 production by lipopolysaccharide-activated monocytes 
and macrophages (189). A similar anti-inflammatory effect was also observed in rat pups 
(190). As well as inhibiting pro-tumorigenic inflammation, probiotics may also induce the 
targeted production of immune-activating cytokines to suppress tumorigenesis. For 
instance, the L. casei strain Shirota, when administered into the intrapleural cavity of 
tumour-bearing mice, induced the production of interferon gamma, IL-1β, and TNFα, which 
in turn inhibited tumour growth and increased survival (191). 
 
 
5 Conclusions 
In summary, the gut microbiota is an integral part of normal human physiology. This 
microbial reservoir of genes and metabolic functions is larger and more dynamic than the 
human genome, and from this grows a complex symbiosis between microbiota and host.  
Disruption of this relationship can have widespread negative effects on human health. This 
chapter has presented evidence of both protective and harmful influences of gut bacteria 
and their metabolites in CRC, with a particular focus on SCFAs and bile acids. Manipulation 
of this symbiosis with pre- and pro-biotics has the potential to have considerable health 
benefits, as we begin to better understand the cross-talk between the gut microbiota and 
the host in the maintenance of a healthy symbiotic relationship. 
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