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1. Determination of Fermi velocities and the Dirac point

In general, the LL energies  in a Dirac surface state obey:𝐸𝑛

  for  (1)𝐸𝑛 = 𝐸𝐷 +𝜆 2𝑒ℏ𝐵|𝑛|𝑣2
𝐹 + ∆2 𝑛 ≠ 0

, where  is the Dirac point,  is the external magnetic field,  is Fermi velocity, which 𝐸𝐷 𝐵 𝑣𝐹

could differ between the two Dirac cones, and  is the Dirac-mass Gao. Here,  for ∆ 𝜆 = 1

, and  for . The 0th LL is at , where the sign depends on the 𝑛 > 0  𝜆 = ―1 𝑛 < 0 𝐸0 = 𝐸𝐷 ± ∆

relative direction of the sample magnetization and the external magnetic field. For 

(Bi0.1Sb0.9)2Te3 where , the following expressions could be obtained:∆ = 0

 (2)𝐸𝐷 = 𝐸0

 (3)𝐸1 = 𝐸𝐷 + 2𝑒ℏ𝐵𝑣𝐹 ― 𝑇

 (4)𝐸 ―1 = 𝐸𝐷 ― 2𝑒ℏ𝐵𝑣𝐹 ― 𝐵

For Cr0.08(Bi0.1Sb0.9)1.92Te3 where , the following expressions could be obtained using ∆ ≠ 0

LLs with  = -2, -1, 0, and 1: 𝑛

 (5)𝐸𝐷 =
𝐸2

0 + 𝐸2
―2 ― 2𝐸2

―1

2(𝐸0 + 𝐸 ―2 ― 2𝐸 ―1)

 (6)∆ = 𝐸0 ― 𝐸𝐷
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(7)𝑣𝐹 ― 𝑇 = (𝐸1 ― 𝐸𝐷)2 ― ∆2

2𝑒ℏ𝐵

 (8)𝑣𝐹 ― 𝐵 = (𝐸𝐷 ― 𝐸 ―1)2 ― ∆2

2𝑒ℏ𝐵

Therefore, the quantities above could be obtained using LLs experimentally determined. 

Similarly, the above quantities could be obtained by using LLs with  = -1, 0, 1, and 2:𝑛

 (9)𝐸𝐷 =
𝐸2

0 + 𝐸2
2 ― 2𝐸2

1

2(𝐸0 + 𝐸2 ― 2𝐸1)

 (10)∆ = 𝐸0 ― 𝐸𝐷

(11)𝑣𝐹 ― 𝑇 = (𝐸1 ― 𝐸𝐷)2 ― ∆2

2𝑒ℏ𝐵

 (12)𝑣𝐹 ― 𝐵 = (𝐸𝐷 ― 𝐸 ―1)2 ― ∆2

2𝑒ℏ𝐵

Both approaches yield similar results and the results are also consistent with zero-field 

measurements on  (see Fig. S7), validating extraction of physical quantities using LL 𝐸𝐷

spectroscopy.

2. Discussion on the narrower distribution of higher Landau levels (LLs) compared 

to that of the 0th LL

For (Bi0.1Sb0.9)2Te3,

 for (13)
𝛿𝐸𝑛

𝛿𝐸0
= 1 + 2𝑒ℏ𝐵𝑛𝛿𝑣𝐹 ― 𝑇

𝛿𝐸𝐷
 𝑛 > 0

 for           (14)
𝛿𝐸𝑛

𝛿𝐸0
= 1 ― 2𝑒ℏ𝐵|𝑛|𝛿𝑣𝐹 ― 𝐵

𝛿𝐸𝐷
 𝑛 < 0

, where  denotes variations. Since  and  anticorrelates and correlates 𝛿 𝑣𝐹 ― 𝑇(𝒓) 𝑣𝐹 ― 𝐵(𝒓)

with  as shown in Fig. 3 and Fig. S3, we know that  and . The 𝐸𝐷(𝒓)
𝛿𝑣𝐹 ― 𝑇

𝛿𝐸𝐷
< 0

𝛿𝑣𝐹 ― 𝐵

𝛿𝐸𝐷
> 0

spatial variation of  is still small enough such that  for  shift in the same direction 𝑣𝐹 𝐸𝑛 𝑛 ≠ 0

as  (or ) as a result of the Dirac cones being shifted up and down due to  fluctuations 𝐸0 𝐸𝐷 𝐸𝐷

(Fig. S4). Therefore,  for both  and . From equation (13) and (14), 0 <
𝛿𝐸𝑛

𝛿𝐸0
< 1 𝑛 > 0 𝑛 < 0

we see that the   decreases as  increases for both  and , thus explaining the 
𝛿𝐸𝑛

𝛿𝐸0
𝑛 𝑛 > 0 𝑛 < 0

smaller distribution widths of the LLs at larger  shown in Fig. S4. In addition, the spatial 𝑛

extent of the LL eigenstates scale with  . It is therefore expected a spatial averaging 𝑛
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effect is stronger in higher LLs, contributing to lower measured energy fluctuations. For 

this reason, lower LLs with n=-2, -1, 0, 1, 2 are used for mapping physical quantities for 

highest spatial resolution.
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Figure S1. Raw LL spectrum of (Bi0.1Sb0.9)2Te3 (blue) and its uniform background used 

for subtraction (red). 
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Figure S2. Bulk band shift as a function of position in (Bi0.1Sb0.9)2Te3. (a) Schematic of 

how the rigid bulk band shift is determined. The black curve represents the spatially 

averaged differential conductance curve , and the red curve represents a 𝑔(𝑉) = 𝑑𝐼/𝑑𝑉

local differential conductance  with a shift in voltage by . The two 𝑔(𝒓,𝑉) = 𝑑𝐼(𝒓,𝑉)/𝑑𝑉 𝑥

curves have an overlapping energy range from  to . The overlapping area 𝑉1(𝒓,𝑥) 𝑉2(𝒓,𝑥)

of the two curves  is defined as (i.e., the blue area):𝑆(𝒓,𝑥)

 (15)𝑆(𝒓,𝑥) = ∫𝑉2(𝒓,𝑥)
𝑉1(𝒓,𝑥)|𝑔(𝑉) ― 𝑔(𝒓,𝑉 ― 𝑥)|𝑑𝑉

Then the rigid band shift  (r) at each position  is determined as the value of  that 𝒓 𝑥

minimizes the normalized overlapping area  .  (b) Determined rigid band shift 
𝑆(𝒓,𝑥)

𝑉2(𝒓,𝑥) ― 𝑉1(𝒓,𝑥)

in the same area as shown in Fig. 1c.
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Figure S3. (a,b) Spatial maps of , and , respectively in (Bi0.1Sb0.9)2Te3. Both 𝑉𝐹 ― 𝑇 𝑉𝐹 ― 𝐵

Fermi velocities show spatial fluctuations, and  and  show clear 𝑣𝐹 ― 𝑇(𝒓) 𝑣𝐹 ― 𝐵(𝒓)

anticorrelation with each other. The yellow dashed circles are to guide the eye.
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Figure S4. Evolution of LLs in (Bi0.1Sb0.9)2Te3. (a) Histogram of the LLs of (Bi0.1Sb0.9)2Te3 

obtained in a 8.5 T magnetic field. (b) A topographic image of (Bi0.1Sb0.9)2Te3, where the 

yellow dashed line denotes where a series of LL spectra were taken shown in (c). Along 

the line, fluctuations of the LL energies are clearly visible. However, the LLs shifts in the 

same direction which is most clearly seen for 𝑛 = ―1, 0, 1, 2.
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Figure S5. Raw LL spectrum of Cr0.08(Bi0.1Sb0.9)1.92Te3 (blue) and its uniform 

background used for subtraction (red). 
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Figure S6. Skewed normal distribution of simulated . Using the mean and standard δ(𝒓)

deviation values of experimental  and , a set of simulated  and  is 𝐸𝐷(𝒓) ∆(𝒓) 𝐸𝐷(𝒓) ∆(𝒓)

drawn from their respective normal distributions. This set of simulated  is then δ(𝒓)

computed using the same procedure explained in the main text. The histogram is fitted with 

a skewed normal distribution, resulting in , , , 𝜇 = 13.74 𝑚𝑒𝑉 𝜎 = 3.70 𝑚𝑒𝑉 𝛼 = ―2.07

which closely match experimental results shown in Fig. 4.
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Figure S7. Comparison of ED(r) extracted using different LLs and zero magnetic field data. 

Spatial dependence of the Dirac point ED(r) extracted by using (a) equation (5) with LLs 

of n=-2, -1, 0, (b) equation (9) with LLs of n= 0, 1, 2 in an 8.5 T external magnetic field, 

and (d) the energy of the minimum differential conductance curve (c) in a zero external 

magnetic field, respectively. Similar features indicated by the dashed curves can be seen in 

all three images, supporting the validity of using LLs for ED(r) extraction.


