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Since bifidobacteria are among the pioneering colonizers of the human infant gut,

their interaction with their host is believed to start soon following birth. Several

members of the Bifidobacterium genus are purported to exert various health-promoting

effects at local and systemic levels, e.g., limiting pathogen colonization/invasion,

influencing gut homeostasis, and influencing the immune system through changes

in innate and/or adaptive immune responses. This has promoted extensive research

efforts to shed light on the precise mechanisms by which bifidobacteria are able

to stimulate and interact with the host immune system. These studies uncovered a

variety of secreted or surface-associated molecules that act as essential mediators

for the establishment of a bifidobacteria-host immune system dialogue, and that

allow interactions with mucosa-associated immune cells. Additionally, the by-products

generated from bifidobacterial carbohydrate metabolism act as vectors that directly and

indirectly trigger the host immune response, the latter by stimulating growth of other

commensal microorganisms such as propionate- or butyrate-producing bacteria. This

review is aimed to provide a comprehensive overview on the wide variety of strategies

employed by bifidobacteria to engage with the host immune system.

Keywords: bifidobacteria, immune system, immunomodulation, host interaction, probiotics

INTRODUCTION

The gastrointestinal tract (GIT) of humans, and by extension of mammals, harbors an extremely
dense, and complex community of microorganisms. Until recently, this microbial ensemble,
collectively forming the so-called gut microbiota, was estimated to exceed the total number of
the host cells by about 10-fold (1, 2). However, this number has been recently revised to a 1:1
ratio (3, 4). Despite this downward revision, the gut microbiota remains the most complex of the
human-associated microbial communities and rendering the intestine one of the most intricate
bacterial habitats in the biosphere. Millions of years of co-evolution between the mammalian
host and its intestinal microbial ecosystem has led to the establishment of various trophic
interactions, including a mutualistic relationship in which the host ensures nourishment and
a suitable environment for the microbial community, while the microbiota, in turn, provides
the host with multiple physiological and metabolic functions (5, 6). Beyond the provision of
nutrition for enterocytes and degradation of non-digestible food compounds, the gut microbiota
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is also involved in a continuous dialogue with the immune
system promoting the maintenance of the intestinal barrier,
influencing bowel homeostasis and functionality, stimulating
optimal immune responses, and providing protection against
pathogen colonization (6, 7). Functional and physiological
alterations of the intestinal barrier are generally associated with
damage of the barrier itself, leading to a broad range of both
intestinal and systemic diseases, including inflammatory bowel
diseases (IBD), colorectal cancer, or celiac disease (8, 9). Among
the multitude of gut bacteria that have been shown to positively
influence the immune system, many studies have focused their
interest on bifidobacteria as commensal microorganisms that are
able to stimulate and modulate specific pathways, influencing
both innate and adaptive host immune responses (10, 11).
However, current knowledge on the molecular mechanisms that
are responsible for the cross talk between bifidobacteria and the
host immune system remain superficial and incomplete.

In this review, we will discuss current knowledge on
immune-modulatory activities exerted by bifidobacteria in the
intestinal environment. Particularly, we will detail how specific
bifidobacterial extracellular structures (are believed to) modulate
the host immune response. Furthermore, we will discuss certain
interactions between bifidobacteria and other intestinal microbes
affect the host immune system.

TAXONOMIC AND ECOLOGICAL
DIVERSITY OF THE BIFIDOBACTERIUM

GENUS

Bifidobacteria are Gram-positive, anaerobic, non-motile, non-
sporulating, saccharolytic, and Y-shaped microorganisms with
a high G + C DNA content. They were described for the
first time by Tissier in 1899, following their isolation from a
fecal sample of a breast-fed infant. Bifidobacteria are classified
as members of the Bifidobacterium genus, which forms a
deep-branching lineage within the Actinobacteria phylum
(12, 13). Currently, the Bifidobacterium genus encompasses 82
recognized taxa, representing 73 species and nine subspecies
(14–17). A comparative genomic analysis based on 72 sequenced
bifidobacterial type strains identified the presence of 261
Bifidobacterium-specific clusters of orthologous genes (COGs)
shared by these genomes, collectively called the bifidobacterial
core genome (18). The subsequent concatenation of the
core gene protein sequences allowed the construction of
a very robust phylogenetic tree highlighting the division
of the Bifidobacterium genus into 10 phylogenetic groups,
encompassing Bifidobacterium adolescentis, Bifidobacterium
boum, Bifidobacterium pullorum, Bifidobacterium asteroides,
Bifidobacterium longum, Bifidobacterium psychraerophilum,
Bifidobacterium bifidum, Bifidobacterium pseudolongum,
Bifidobacterium bombi, and Bifidobacterium tissieri group (18).

Bifidobacteria have been isolated frommany ecological niches
such as fermented milk (18), sewage (19), human blood (20),
the oral cavity (21), and the gastrointestinal tract of mammals,
birds, and insects (14, 16, 17, 22). Despite this apparent broad
ecological distribution, the capability of bifidobacteria to adapt to

different ecological niches is species-dependent. In this context,
it has been demonstrated that certain bifidobacteria, such as
B. longum, B. adolescentis, B. pseudolongum, and B. bifidum,
display a cosmopolitan lifestyle, while other bifidobacterial taxa
seem to be adapted to a gut ecosystem of a specific animal,
for example Bifidobacterium angulatum in cows, Bifidobacterium
cuniculi in rabbits and Bifidobacterium gallinarum in chickens
(23, 24). The differential ecological success to adapt to various
ecological niches very much relies on the genetic heritage
of each bifidobacterial species. In this context, comparison
of the genome sequences from the type strains of 47
Bifidobacterium (sub)species allowed the reconstruction of the
bifidobacterial pan- and core-genome (25). The subsequent
functional annotation of the core-genome by means of the
EggNog database, indicated that a large part of the bifidobacterial
core genes encode carbohydrate metabolism functions, thus
suggesting that carbohydrate degradation plays an important
role in bifidobacterial colonization of their ecological niches.
Conversely, the pan-genome analysis revealed the identification
of Truly Unique Genes (TUGs) corresponding to genes present
in just one of the examined bifidobacterial genomes. Although
the majority of TUGs cannot be attributed to a specific
function, a portion of the TUGs were assigned to carbohydrate
metabolism and transport functions, thus supporting the
notion that the bifidobacterial gene repertoire for carbohydrate
degradation plays an essential role in the differential ecological
adaptation abilities amongmembers of the Bifidobacterium genus
(25). Similarly, in silico prediction of the bifidobacterial pan-
secretome, i.e., the ensemble of genes encoding secreted proteins
responsible for metabolism of nutrients, revealed the existence of
species-specific bifidobacterial secretomes, which were predicted
for the metabolism of particular glycans (26). These findings
emphasize the correlation between the genetic repertoire of a
Bifidobacterium species and their cosmopolitan or specialized
lifestyle (26).

DEVELOPMENT OF THE HUMAN GUT
MICROBIOTA AND ASSOCIATED
BIFIDOBACTERIAL COMMUNITY

Despite the broad ecological distribution of bifidobacteria,
certain human-associated bifidobacteria have gained particular
importance as they are purported to exert health-promoting
activities, especially in the context of the infant gut microbiota
(27). For a long time, it was thought that the establishment of
the human intestinal microbiota occurred immediately following
birth. However, recent studies have disputed the dogma of a
sterile in utero environment, providing evidence of a microbial
presence in the placenta, amniotic fluid and umbilical cord
in healthy full-term pregnancies, though these findings are
very controversial (28–31). It is well-accepted that the very
first microbial colonizers of the infant gut are represented
by facultative anaerobes, including several members of the
Enterobacteriaceae family that deplete the oxygen in the intestine
(32). Following the removal of oxygen, the infant gut is
extensively colonized by strictly anaerobic microorganisms,
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among which bifidobacteria are considered to be major players
(33–35). However, the total load and diversity of bifidobacteria in
the infant gut are strongly dependent on environmental factors
such as mode of delivery (natural or C-section delivery), type
of feeding (breast or formula milk), duration of gestation (full-
term or premature birth), and antibiotic administration (29, 36–
39). In this context, it has been demonstrated that naturally
delivered and breast-fed infants generally possess a higher
relative abundance and diversity in terms of bifidobacterial
populations when compared to the gut microbiota of those
infants born by Cesarean section and fed with formula milk
(29, 40). Weaning and the concomitant transition to a solid and
more varied diet cause an increase in the overall composition of
the infant gut microbiota, reaching its peak in adult life. The exact
age that marks the passage from an infant-like to an adult-like
gut microbiota is not universally fixed, but it is generally thought
to happen around 3 years (41, 42). Although at this age the
gut microbiota seems to have reached the stability typical of an
adult intestinal community, some microbial taxa are still far from
reaching a steady state. Indeed, some differences in the microbial
intestinal community are found between pre-adolescence and
adulthood (43). In adult life, levels of bifidobacteria are reduced
(compared to that during infancy), but remain stable over
time until old age (43). The latter is characterized by a
general decline in species diversity coupled with a decrease in
bifidobacterial abundance (44). Similar to the changes in the
overall microbial biodiversity and complexity that are observed
at various ages, also the bifidobacterial community composition
is subject to modifications. In this context, analyses of the
bifidobacterial population by either culture or metagenomic
approaches revealed stage-of-life-specific bifidobacterial strains.
Indeed, Bifidobacterium breve, B. bifidum, and B. longum subsp.
infantis are typically found in the gut of breastfed infants,
while adult life is generally associated with higher abundance of
B. adolescentis and B. catenulatum species (45, 46). Conversely,
B. longum subsp. longum seems to have a ubiquitous distribution
across the human lifespan (47).

IMMUNOMODULATORY EFFECTS
ELICITED BY BIFIDOBACTERIAL
EXTRACELLULAR MOLECULES INVOLVED
IN HOST-MICROBE INTERACTION

Microorganisms have evolved specific strategies to interact
with the host. Despite the health-promoting effects exerted
by bifidobacteria, the molecular mechanisms exploited by
these microorganisms to colonize the gut, adhere to the host
intestinal epithelium and elicit an immune response are still
largely unknown. In this context, certain extracellular structures,
excreted enzymes and/or bioactive metabolites seem to play a
pivotal role in host-microbe interaction, thereby modulating
the immune system. In the following sections, key examples
of these extracellular structures will be discussed in detail
(Figure 1A; Table 1).

Pili
Pili (or fimbriae) are described as long proteinaceous appendages
produced by bacteria, protruding from the extracellular cell
surface, and that may be involved in microbe-host interactions
by promoting adhesion to the intestinal epithelium or facilitating
aggregation with other bacterial cells (65–67). In bifidobacteria,
two different types of pili have been described, i.e., the sortase-
dependent pili and the type IVb pili, which are also known as
tight adherence pili (Tad pili) (68, 69).

To support the notion that these fibers play a role in host-
microbe interaction, it was demonstrated that bifidobacterial
sortase-dependent pili biosynthesis is only activated under
particular conditions, such as during in vivo colonization, in vitro
contact between bifidobacterial cells and human cell lines, and/or
exposure to certain extracellular matrix proteins (48, 68–70).
Genes encoding the biosynthetic enzymes for a particular sortase-
dependent pilus are generally clustered together in a genetic
locus, encompassing a gene encoding a major pilin protein,
as well as one or two genes involved in the synthesis of (one
or two) ancillary pilins and a third gene implicated in the
expression of a pilus-specific sortase (66, 71). The sortase is a
transpeptidase able to cross-link the pilus building blocks and
covalently connect the resulting polymer to the cell wall surface
(71). Comparison of the sequenced genomes from different
bifidobacterial species revealed the presence of various sortase-
dependent pilus-encoding loci in terms of number and genetic
sequence variability (68). Indeed, the number of these pilus-
encoding loci was observed to vary from a total absence typical
of some Bifidobacterium actinocoloniforme, B. longum subsp.
longum, and B. longum subsp. infantis strains to up to seven pilus-
encoding loci found in the genome of B. dentium Bd1 (66, 68).
Moreover, the GC content deviation and different codon usage
observed in bifidobacterial sortase-dependent loci together with
their frequent localization near transposons indicate that these
genetic elements have been acquired through horizontal gene
transfer events (68, 72).

Mediating adhesion and interaction with the host is not
the only role exerted by bifidobacterial sortase-dependent pili.
Indeed, they are also implicated in microbe-microbe interactions
and in stimulating/modulating the host immune system. In
this context, a case study focused on B. bifidum PRL2010
demonstrated that sortase-dependent pili have a pioneering
role in favoring the aggregation between bacterial cells of a
heterogeneous population, enhancing the colonization of host
intestinal mucosa (70). In the same way, a related study
highlighted that sortase-dependent pili produced by B. bifidum
PRL2010 can activate various signals in macrophages inducing
local high levels of TNF-α cytokines, but a reduced expression
of other proinflammatory cytokines, such as IL-12, associated
with systemic response (48), thus favoring initial cross-talk
between this bifidobacterial strain and host immune cells without
causing a detrimental inflammatory cascade response. In this
context, as bifidobacteria are among the first colonizers of
the human gut (29) and considering that the immune system
of newborns is largely immature, the proinflammatory stimuli
provoked by pili of B. bifidum PRL2010 (and possibly other
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FIGURE 1 | (A) Shows bifidobacterial extracellular structures-mediated interaction with the host immune system. Pili are depicted as black appendages (Pili+) while

exopolysaccharides structures (EPS+) are displayed as light blue layers around the cells. Blue bifidobacterial shapes correspond to bifidobacterial strains. (B) Exhibits

the cross-feeding effects between species of the Bifidobacterium genus and butyrate-producing bacteria. Acetate and lactate produced by bifidobacterial species by

degrading mucin, HMO or diet-derived glycans become carbon sources for butyrate-producing microorganisms, stimulating a butyrogenic effect. At the bottom of the

image, host immune system cells are represented.

infant-associated bifidobacteria) may be an essential starting
point to prime the immune system (48). To further emphasize
the immune-modulatory features exerted by B. bifidum PRL2010
pili, an in vivo study based on the administration of bacteria-
like particles (BLP-FimPPRL2010) that expose the B. bifidum
PRL2010 sortase-dependent pili major subunit 3 days before
the treatment of mice model with 2,4,6-trinitrobenzensulfonic
acid (TNBS) to induce colitis, clearly showed a reduction
of biological/clinical markers associated with colitis symptoms
when compared to the control. In addition, administration of
BLP-FimPPRL2010 causes TNF-α overexpression coupled with a
significantly reduction of IL-10 response in TNBS-induced colitic
mice. Thus, alerting the immune system and enhancing the
host reaction to inflammation, which is a typical condition of
colitis (49).

Another pilus type produced by bifidobacterial species are
the so-called Tight ADherence (Tad) pili. These structures were
first described in the pathogenic Gram-negative Actinobacillus
actinomycetemcomitans, where these pili were shown to mediate
adhesion to the host cell surface, supporting colonization
and pathogenesis through the formation of biofilms (73, 74).

The gene cluster responsible for the biogenesis of Tad pili
encodes an ATPase, two transmembrane proteins and a septum
site-determining protein that together constitute the pilus
production, secretion, and positioning apparatus in addition to
a peptidase able to post-translationally cleave the hydrophobic
leader peptide of prepilins and pseudopilins, the precursors
of Tad pili structural proteins (74). The Tad pilus-encoding
gene cluster is highly conserved in bifidobacterial genomes (75),
although this pilus type has only been characterized in detail
in B. breve UCC2003 (50, 68, 69). Transcriptomic and gene
mutagenesis experiments revealed that B. breve UCC2003 tad
locus are expressed only in vivo conditions emphasizing its
fundamental role in colonization and persistent adhesion to
the host intestinal cells (69, 74). Moreover, in a recent study,
the capability of the B. breve UCC2003 Tad pili to promote in
vivo colonic epithelial proliferation was observed 5 days post-
administration of the strain to murine model (50). Further
analyses, exploiting advanced functional genomic approaches
demonstrated, both under in vivo and in vitro conditions, that the
epithelial proliferation response is specifically provoked by the
TadE protein. Therefore, bifidobacterial Tad pili may contribute
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TABLE 1 | Bifidobacterial extracellular molecules and/or metabolites exerting an immunological effect.

Strains Molecules Target Effect References

B. bifidum

PRL2010

Sortase-dependent pili Macrophages Induction of high level of TNF-α and reduced

expression of IL-12

(48)

Bacteria-like particles

exposing PRL2010

sortase-dependent pili major

subunit

TNBS-induced colitic mice Reduction of colitis symptoms (49)

B. breve

UCC2003

Tad pili Epithelial cells Stimulation of the intestinal mucosa/mucosal

homeostasis

(50)

EPS Mice splenocytes Reduction of proinflammatory cytokines (IFN-α,

TNF-α, and IL-12)

(51)

Escherichia coli 0111:B4

lipopolysaccharides-injected mice

Reduction of apoptotic epithelial cell shedding and

inflammatory response

(52)

B. animalis subsp.

lactis A1dOxR

EPS PBMCs Lower release of inflammatory cytokines (53)

B. adolescentis

IF1-03

EPS RAW264.7 macrophages or mice

splenocytes

Production of anti-inflammatory cytokines (IL-10,

IL-6, and TGF-β) and increased proportion of the

Treg cells

(54)

DSS-induced colitis mice Induction of high levels of anti-inflammatory

cytokines, reduction of the ulceration area and

thickening of the intestinal wall

(54)

B. longum subsp.

longum YS108R

Ropy-EPS DSS-induced colitis mice Reduction of colonic injury, myeloperoxidase activity

and inflammatory cell infiltrations and preservation of

the crypt structures from damage. Reduction of IL-6

and IL-17 and accumulation of the

anti-inflammatory cytokine IL-10

(55)

B. longum subsp.

longum 35624

EPS T cell transfer colitis model mice Prevention of colitis related symptoms (56)

Ovalbumin respiratory allergy model

mice

Enhanced recruitment of IL-17+ lymphocytes to the

lung

(57)

Suppression of Th2 type immune response in lungs (57)

B. longum subsp.

longum NCC2705

Serpin Peptic-tryptic digestion of

gliadin-sensitized mice

Protection against gliadin-induced

immunopathology

(58)

Acetate (produced by

diet-derived glycans

degradation)

E. rectale ATCC 33656 Butyrogenic and bifidogenic effects (59)

B. bifidum

MIMBb75

TagA Human DCs Activation/proliferation of DCs and induction of IL-2 (60)

BopA Caco-2 cells Probably involved in stimulating IL-8 production (61)

B. adolescentis

L2-32

Acetate (produced by

diet-derived glycans

degradation)

F. prausnitzii S3L/3 Butyrogenic effect (62)

F. prausnitzii A2-165 Butyrogenic effect (62)

B. bifidum strains Acetate (produced by mucin

degradation)

E. hallii DSM 3353 Butyrate and propionate production (63)

B. longum subsp.

infantis

Acetate (produced by HMO

degradation)

E. hallii DSM 3353 Butyrate, propionate, and formate production (64)

to the maturation of epithelial cells of newborns, stimulating
growth of their thin intestinal mucosa and contributing to host
mucosal homeostasis (50).

Extracellular Polysaccharides
The envelope of a wide range of bacteria is surrounded by one
or more glycan layers known as capsular polysaccharides (CPS)
or exopolysaccharides (EPS). Based on their monosaccharide
composition and biosynthesis mechanismmediated by glycosidic

linkages, bacterial CPS/EPS (NB. since it is hard to distinguish
these, we will refer to these polysaccharides as EPS for
ease) can either be classified as homopolysaccharides, when
composed by the repetition of a single type of monosaccharide,
or as heteropolysaccharides when formed by two or more
types of monosaccharide subunits (76). In silico analyses
performed on bifidobacterial sequenced genomes showed the
lack of a “consensus” functional-structural organization in the
eps-encoding clusters, highlighting consistent inter/intra-species

Frontiers in Immunology | www.frontiersin.org 5 October 2019 | Volume 10 | Article 2348

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Alessandri et al. Bifidobacteria and the Host Immune System

variability in terms of both length and number of genes (77, 78).
The scientific community has in recent years increased its interest
in EPS producers as these extracellular polymers have been
reported to exert a crucial role in human health by promoting
adhesion to the intestinal mucosa, as well as by modulating
the intestinal microbiota composition, and conferring selective
advantage to bacteria through protection to adverse conditions
such as presence of bile salts or pH insults (51, 79). In addition,
some of these microbial biopolymers are receiving renewed
interest due to their involvement in promoting human health
(51, 78, 79). In this regard, an in vitro experiment aimed at
evaluating the level of pro- and anti-inflammatory cytokines
stimulation when EPS purified from 10 bifidobacterial strains
were co-cultivated with human peripheral blood mononuclear
cells (PBMC) revealed that the differentiation of T cells toward
T-helper(Th)1 (IL-12/IL-10), Th2 (IL-10/TNF-α), and Th17
(IL-1β/IL-12) effector cells is highly influenced by the physical-
chemical features of the particular EPS used in the experiment.
This finding suggests that a positive correlation exists between
the composition, structure and size of a given EPS polymer and
the corresponding elicited immune response (80). In support of
this discovery, relevant results were obtained by a further in vitro
study where PBMCs were co-incubated with the EPS purified
from three isogenic B. animalis subsp. lactis strains, i.e., A1,
A1dOx, and A1dOxR strains. The three EPS polymers differ in
their molecular mass with the highest molecular weight held by
the A1dOxR EPS. Analysis of cytokine profiles revealed that the
A1dOxR extracellular polymer induces the lower release of both
pro- and anti-inflammatory cytokine by PBMCs when compared
to other bifidobacterial strains (53, 81). Similar results were
obtained when the immunoregulatory effects elicited by two B.
adolescentis strains (IF1-03 and IF1-11) were evaluated. In detail,
the two B. adolescentis strains differ in the exopolysaccharide-
mediated enterocyte adhesion/aggregation phenotypes, with
B. adolescentis IF1-03 possessing the high-molecular-weight
EPS. Specifically, in vitro co-culturing experiments of the
two B. adolescentis strains with RAW264.7 macrophages or
mice splenocytes showed that while strain IF1-03 stimulated
production of anti-inflammatory cytokines such as IL-10, IL-
6, and TGF-β, it also increased the proportion of T-regulatory
(Treg) cells. Notably, B. adolescentis IF1-11 induced higher levels
of pro-inflammatory cytokines influencing the CD4+ T cells
differentiation into Th17 cells. This observation was further
confirmed by in vivo administration of the two above mentioned
strains individually to Dextran Sodium Sulfate (DSS)-induced
colitis mice. In this case, B. adolescentis IF1-03 not only induced
high levels of anti-inflammatory cytokines, but it was also shown
to contribute to the reduction of the area of ulceration and
thickening of the intestinal wall (54). In the same manner, a
recent study demonstrated differential alleviative effects in DSS-
induced colitis mice when they were individually treated with
three different B. longum subsp. longum strains, i.e., HAN4-
25, which is unable to produce EPS, C11A10B producing non-
ropy EPS and the producing ropy-EPS strain YS108R, obtained
as a spontaneous single nucleic acid mutant from C11A10B.
Particularly, B. longum subsp. longum YS108R reduced the
colitis-induced colonic injury, decreasing the myeloperoxidase

activity, preserving the crypt structures from damage and
moderating the inflammatory cell infiltrations. Moreover, the
administration of YS108R correlated with a reduced IL-6 and IL-
17A concentration in parallel with an increased accumulation of
the anti-inflammatory cytokine IL-10 in the serum coupled with
lower IL-6 colonic expression level (55). All together these finding
corroborates the notion that EPS-mediated immune response
is largely influenced by the physicochemical nature of these
polymers (53, 54, 81).

Moreover, similar results were observed when splenocytes
isolated from naïve mice were co-cultivated with the EPS-
producing B. breve UCC2003 strain (EPS+) or the two EPS-
deficient B. breve UCC2003 strains (EPS−) obtained by means
of an insertion or deletion in the eps locus of this bifidobacterial
strain. In this regard, splenocytes stimulated with EPS+ strain
evoked lower expression of proinflammatory cytokines IFN-α,
TNF-α, and IL-12 compared to the EPS−. This finding was
further confirmed through analysis of intracellular cytokine
expression in splenocytes isolated from naïve mice orally fed with
EPS+ and EPS− strains, evidencing significantly altered cytokine
profiles between the two experimental conditions. Specifically,
a lower proinflammatory cytokine induction was observed in
both adaptive and innate immune response cell populations in
case of EPS+ administration. Altogether these findings suggest
that the B. breve UCC2003 EPS layer plays a crucial role in
the persistence of the strain in the host intestine, reducing the
risk of immune clearance against this microbial strain (51). In
addition, B. breve UCC2003 EPS was shown to exert beneficial
effects by reducing apoptotic epithelial cell shedding, which is
a condition that occurs in case of IBD patients, where it causes
high levels of apoptotic extrusion of small intestinal epithelial
cells (IECs) from villi (52). It was previously described that the
genome of B. breve UCC2003 possesses two adjacent, oppositely
orientated gene sets, i.e., esp1 and eps2. The expression of these
two transcriptional units, involved in the production of two
distinct EPS (EPS1 and EPS2), depends on the orientation of
a single promoter. Therefore, only one of the two types of
extracellular polymer can be produced at a given time (82). Based
on these observations, B. breve UCC2003 EPS-positive, B. breve
UCC2003 EPSdel (a deletion mutant unable to express neither
EPS1 nor EPS2) and B. breve UCC2003Inv (able to express
only EPS2) were administered to mice model, which were then
treated with an intraperitoneal injection of lipopolysaccharides
(LPS) from Escherichia coli 0111:B4 inducing cell shedding
(52). Interestingly, when colonized with B. breve UCC2003del
or B. breve UCC2003Inv, no significant protection against cell
shedding was observed when compared to the control PBS
(Phosphate Buffered Saline)-gavage mice, thus underscoring the
strain variant specificity in exerting protective effects. Moreover,
evaluation of transcriptional changes in murine small intestine
samples from control (PBS) and colonized groups (B. breve
UCC2003 EPS-positive and B. breve UCC2003del) revealed
down-regulation of genes related to the apoptotic cascade inmice
treated with B. breve UCC2003 EPS-positive bacteria. In this
context, the EPS of B. breve UCC2003 appears to downregulate
inflammatory and apoptotic responses, thus reducing cell
shedding events (52). Another bifidobacterial strain exerting

Frontiers in Immunology | www.frontiersin.org 6 October 2019 | Volume 10 | Article 2348

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Alessandri et al. Bifidobacteria and the Host Immune System

beneficial effects is represented by B. longum subsp. longum
35624. The analysis of its genome revealed the presence of a
gene cluster (eps624) encoding the EPS biosynthetic machinery.
Despite the fact that the genome comparative analysis showed
that B. longum subsp. longum 35624 EPS-specifying cluster is in
the same location in other B. longum subsp. longum genomes, a
different genetic composition of the eps624 was observed when
compared to other analyzed B. longum subsp. longum strains
(83). Based on these findings, further studies were carried out
to explore the role played by the EPS in influencing the host
immune response. A first study used B. longum subsp. longum
35624 strain and its derivatives: the exopolysaccharide-negative
mutant (EPSneg) with an insertion mutation in the eps cluster
and the EPScomp where the EPS production was restored by
genetic complementation of the EPSneg strain. Co-culture of
human PBMCs or monocyte-derived dendritic cells (MDDCs)
with one of these strains revealed that increased proinflammatory
cytokine secretion is specifically related to the lack of EPS, with
a marked increase of IL-17. In the same way, administration
of these strains individually to mice of a T cell transfer colitis
model underlined the ability of the two EPS-producing strains
to prevent disease related symptoms, while EPSneg does not show
any protection against the development of colitis, with increased
recruitment of IL-17+ lymphocytes to the gut (56). Moreover,
the intranasal administration of EPS-producing B. longum 35624
and the EPSneg strains to ovalbumin respiratory allergy model
mice, resulted in enhanced recruitment of IL-17+ lymphocytes
to the murine lung. In this context, a further study showed the
capability of B. longum 35624 EPS to suppress the Th2 type
immune response within the lungs of ovalbumin sensitized mice
when they were intranasally treated with purified B. longum
35624 EPS (57). All together these observations emphasize that
the EPS of B. longum 35624 plays an important role in reducing
the proinflammatory response.

Serpins
Serpins (Serine protease inhibitors) represent a superfamily of
proteins acting as eukaryotic-type serine protease inhibitors.
These prokaryotic enzymes, synthetized by particular members
of the intestinal community, are involved in the regulation of
a wide range of protease-mediated processes (84, 85). Analyses
of the bifidobacterial genome sequences revealed that the
presence of serpin-like gene is not ubiquitous but restricted to
B. breve, B. longum subsp. longum, B. longum subsp. infantis,
B. longum subsp. suis, B. cuniculi, Bifidobacterium scardovii, and
B. dentium species (86). Moreover, an in vitro study underlined
that the activation of bifidobacterial serpin-encoding genes is
driven by specific serine proteases. Transcriptional profiling
experiments carried out on RNA extracted from B. breve 210B
cells treated with different proteases highlighted that the highest
up-regulation of the serpin-encoding locus is reached after
exposure to papain (86). Conversely, a different bifidobacterial
strain, B. longum NCC2705, synthetizes a serpin able to act as an
efficient inhibitor of human neutrophil elastase (HNE) and, to a
lesser extent, pancreatic elastase (87). Considering that the release
of serine proteases may occur following intestinal inflammation
caused by bacterial infection or intestinal tissue damage typical of
inflammatory bowel diseases or ulcerative colitis, the production

of serpins may elicit anti-inflammatory activity counteracting
the negative effects of (high levels of) human serine proteases.
Moreover, the self-produced serpins may assist bifidobacteria to
protect themselves against host-derived proteases and survive
in a competitive environment (86, 88). To further emphasize
the anti-inflammatory role of these prokaryotic enzymes, a
recent in vivo study demonstrated the efficacy of a specific B.
longum NCC2705 serpin in the prevention of gluten-related
immunopathology. Administration of the wild-type B. longum
NCC2705 (srp+) to sensitized NOD/DQ8 mice with peptic-
tryptic digestion of gliadin, which is one of the main gluten
protein fractions, favored protection against the development
of gliadin-induced immunopathology when compared with the
administration of the knockout B. longum NCC2705 (srp−)
that is unable to synthetize serpins. Because the aberrant effects
of gluten-related immunopathology are strongly relieved in
mice treated with the wild-type strain, it can be speculated
that serpins are involved in immune regulation, maintenance
of barrier function and inhibition of elastases released during
inflammation (58).

Other Extracellular Molecules Involved in
the Bifidobacterial-Host Immune System
Interaction
In addition to pili, EPS and serpins, other bifidobacterial-
associated extracellular proteins have been implicated in
impacting on the host immune system. For instance, TagA
is a protein expressed on the outer surface of B. bifidum
MIMBb75 formed by two active domains: a lytic murein
transglycosylase (LT) and a cysteine- and histidine-dependent
amidohydrolase/peptidase (CHAP). This protein acts as a
peptidoglycan lytic enzyme that when co-cultured with human
DCs was shown to cause activation/proliferation of the DCs
itself and the induction of IL-2 (60). B. bifidum MIMBb75 also
produces the surface-associated protein named BopA, which
has been reported to not only enhance adhesion of B. bifidum
MIMBb75 to Caco-2 cell lines, but also to stimulate production of
IL-8 by Caco-2 cells (61). However, subsequently the role of BopA
in mediating adherence of B. bifidum to epithelial cells has been
re-evaluated. In this setting, the gene encoding BopA was cloned
and expressed in E. coli without the BopA-associated lipobox and
hydrophobic signal peptide, resulting in a reduced capability of
BopA to adhere to Caco-2 and HT-29 cells. Previous results may
therefore have been compromised by an unspecific effect caused
by higher hydrophobicity of the BopA (lipo)proteins (89).

BIFIDOBACTERIAL METABOLISM
INFLUENCES INTESTINAL IMMUNE
HOMEOSTASIS AND INFLAMMATORY
RESPONSE THROUGH A
MICROBE-MICROBE CROSS-FEEDING
ACTIVITIES

The ability to degrade complex carbohydrates that cannot
be metabolized by the host is one of the key genetic features
of bifidobacteria (90, 91). The nondigestible carbohydrates
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degraded by these commensal microorganisms include
diet-derived sugars (e.g., glucans, xylans, pectins, fructans,
cellulose, resistant starch) as well as host-derived glycans,
encompassing Human Milk Oligosacchardes (HMO) and
mucins, which are glycoproteins covering the gut epithelium
and secreted by the goblet cells of the GIT, in the form of
O-linked and/or N-linked glycans (90). The genetic arsenal
required for the utilization of the aforementioned compounds
is generally organized in gene clusters including glycosyl
hydrolases (GH)-encoding genes coupled with gene sequences
responsible for the assembly of sugar-specific ATP-binding
cassette (ABC) transporters, permeases, proton symporters,
and phosphoenolpyruvate-phosphotransferase systems (72, 90).
Specifically, the degradation of complex carbohydrates requires
dedicated extracellular and/or intracellular GHs to generate
mono- and/or oligo-saccharides, which are then internalized
by the transport systems. After reaching the cytoplasm, those
carbohydrates that still need to be processed may be subject
to further modification such as deacetylation, deamination,
epimerization, and phosphorylation to produce phosphorylated
monosaccharides before entering the final central metabolic
route, known as the “bifid shunt,” where simple and complex
sugars eventually converge for energy production (92). At the
end of this specific pathway, 2.5 ATP molecules per Mol of
glucose are theoretically obtained together with 1Mol of lactate
and 1.5Mol of acetate. Particular interest has focused on the
production of Short Chain Fatty Acids (SCFAs) by the intestinal
microbiota as they contribute to the host health through
increasing calcium and magnesium absorption, regulating
bowel functions, providing nutritional support to colonocytes,
decreasing the luminal pH and thus preventing overgrowth of
pH-sensitive pathogenic bacteria and finally influencing the
host immune system (93, 94). Structurally defined as saturated
aliphatic organic acids, major SCFAs at the site of intestine
are represented by acetate, propionate and butyrate. Among
the SCFAs produced in the human colon, butyrate displays
a key role in the gut health stimulating the development of
the intestinal cells. Indeed, being the preferred energy source
for intestinal epithelial cells, butyrate consumption improves
host IEC integrity promoting tight junctions, cell proliferation,
and mucin production by Goblet cells (93, 95). Moreover,
butyrate is involved in guiding the immune system toward an
anti-inflammatory response (93, 96, 97). For instance, butyrate
exhibits anti-inflammatory properties inducing the production
of TGF-β, IL-18, and IL-10 cytokines by both antigen presenting
cells and IECs coupled with the stimulation of the differentiation
of naïve T cells to Treg cells (98, 99) (Figure 1B).

Although bifidobacteria are unable of directly synthetizing
butyrate, as acetate-producing microorganisms, they may
indirectly influence the activity and composition of the
butyrogenic members of the gut microbiota and the immune
response through a mutual beneficial cross-feeding interaction.
Indeed, bifidobacteria can operate as primary players degrading
complex carbohydrates to produce acetate which is then
consumed by secondary degraders that generate butyrate, thus
stimulating a butyrogenic effect. Most of butyrate producers
in the human colon belong to the Firmicutes phylum,

specifically to the clostridial clusters IV and XIVa encompassing
Faecalibacterium prausnitzii, Eubacterium rectale, Eubacterium
hallii, Roseburia spp. (Roseburia hominis, Roseburia intestinalis,
and Roseburia inulinivorans) and Anaerostipes spp. (Anaerostipes
caccae, Anaerostipes hadrus, and Anaerostipes butyraticus) (92,
100). In this context, several studies have reported on the
butyrogenic effects resulting from the degradation of diet-
associated carbohydrates by bifidobacteria (Table 1). Particularly,
the co-culture of B. longum subsp. longum NCC2705 and E.
rectale ATCC 33656 in a growth medium with arabinoxylan
oligosaccharides (AXOS) as unique carbon source affected the
growth yield of both strains when co-cultivated compared to
the respective mono-cultures, leading to a mutual beneficial
effect. Notably, B. longum NCC2705 as an arabinose substituent
degrader of AXOS, possesses the AXOS-degrading enzymes
whose action allow the release of xylose backbone (XOS) and
acetate. On the other side, E. rectale ATCC 33656 consumes
the whole (A)XOS substrate releasing xylose and arabinose. In
this way, E. rectale ATCC 33656 takes advantage of acetate
for butyrate production, resulting in a butyrogenic effect, while
B. longum NCC 2705 consumes (A)XOS monosaccharides,
leading to an increase in acetate production and ensuring
its cell concentration thus stimulating a bifidogenic effect
(59). Similar findings were obtained by the co-cultivation of
F. prausnitzii S3L/3 and B. adolescentis L2-32 in the presence
of fructooligosaccharides (FOS 95), or the co-cultivation of
F. prausnitzii A2-165 and B. adolescentis L2-32 on starch,
resulting in both cases in an enhanced production of butyrate
when compared to the mono-cultures (62).

As mentioned above, bifidobacteria can produce acetate not
only through the consumption of diet-derived carbohydrates,
but also by degrading host-derived glycans. In this regard, it has
been demonstrated that a cross-feeding interaction is established
when B. bifidum strains are singularly co-cultured with E. hallii
DSM 3353 in presence of mucin as the only carbon source (63).
Gut colonization by E. hallii generally occurs in the first months
after birth reaching adult abundance levels between 5 and 10
years of age (64). This microorganism is able to consume acetate
and lactate to produce butyrate and propionate, thus promoting
a beneficial effect on gut health during childhood. However,
E. hallii does not possess genes involved in the degradation of
complex host- or diet-derived glycans, relying on other microbial
players for the supply of simpler carbohydrates (101). Conversely,
B. bifidum is one of the prominent bifidobacterial species able to
utilize mucin as carbon source thanks to the presence in their
genome of genes encoding for α-fucosidases, α-sialidases, endo-
α-N-acetylgalactosaminidases, and N-acetyl-β-hexosaminidases
(102). The ability of B. bifidum to degrade mucin into
mucin-associated mono- and oligo-saccharides coupled with the
production of acetate and lactate stimulate E. hallii colonization
and consumption of simple glycans released by B. bifidum as
energy source and the acetate and lactate for butyrate production
(63). Moreover, three-strain fermentations involving B. bifidum
and E. hallii with B. breve or B. longum subsp. infantis on mucin
as the sole carbon source showed the formation of propionate in
both three-strain co-cultures by E. hallii, emphasizing the health-
promoting effect of cross-feeding interactions as propionate
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acts as a precursor for gluconeogenesis in the liver and
affects intestinal homeostasis with anti-inflammatory and anti-
carcinogenic actions (63, 103). A similar trophic interaction was
observed when the same strain, E. hallii DSM 3353, was co-
cultured with B. longum subsp. infantis strains in presence of

fucosyllactose (FL; either 2
′

- or 3-FL), which is a component of
the HMO. E. hallii does not grow on HMOs as the unique carbon
source. In contrast, B. longum subsp. infantis utilizes the lactose
moiety of FL to produce lactate and acetate and metabolize L-
fucose to 1,2-propanediol (1,2-PD). These by-products are then
used by E. hallii for its growth and the formation of butyrate
coupled with propionate and formate (64).

Overall, these observations strengthen the notion that
bifidobacterial abilities to degrade non-digestible diet-
and/or host-derived glycans coupled with subsequent
production of acetate (or 1,2-PD) have an indirect role in
the modulation of the host immune system, stimulating the
growth and production of butyric acid by butyrate-producing
intestinal microorganisms.

CONCLUSIONS

In recent decades, a growing number of studies have
demonstrated that changes in the intestinal microbial
composition and gut homeostasis is directly linked to intestinal
disorders resulting, in the most severe cases, in IBD and
colorectal cancer. The modulation of the gut microbiota
through prebiotics and/or probiotics is one of the ways to
counteract these dysbiosis, improving human health. In this
context, bifidobacteria are generally considered as potent
probiotics for their health-promoting features. Indeed, they
trigger immunomodulatory responses aimed at maintaining
the host intestinal homeostasis through different mechanisms
such as production of extracellular structures that can interact
with other intestinal microorganisms and/or the host cells

coupled with the release of by-products of their metabolism
that may be utilized by other commensal bacteria, such as the
butyrate-producing microorganisms, to establish a cross-feeding
interaction. However, despite their key role in stimulating
human health and development in technology, the precise
mechanism by which bifidobacteria solicit an immune response
is far from being fully understood. Indeed, most studies intended
to correlate bifidobacteria and their immune modulatory effects
have been carried out by exploiting cell lines and/or animal
models, thus preventing a comprehensive understanding of the
impact that bifidobacteria may exert on the human immune
system. Indeed, because of the complexity of the gut microbiota,
in case of in vivo studies it is possible that the presence of other
bacterial strains may influence or even reverse the bifidobacterial
immunomodulatory effects. Therefore, the challenge for future
studies is to deepen the knowledge about this field, overcoming
the abovementioned limits.
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