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Average energy density and the size of the Universe
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(Received 7 May 1987)

This paper shows that there is a relationship between the maximum volume of any cosmological
solution of the Einstein equations and its average energy density. An inequality is derived which
shows that the average energy density multiplied by the volume to the —, power must be greater
than a fixed constant. Equivalently, the total energy content, divided by the volume to the

3

power, is bounded below.

Cosmologies are usually solutions of the Einstein field
equations which are spatially compact, emerge from a
big bang, expand to a maximum volume and then recon-
tract to a big crunch. Given that the spatial cross sec-
tions are all compact, they must have sufficient curva-
ture to close them up. Thus if the spatial volume is
large then the average curvature can be small, converse-
ly small volume implies large curvature.

The field equations tell us that the curvature measures

the strength of the gravitational field, and is generated
by the stress energy of the sources. Therefore if the
volume of the closed spatial manifold is small then the
average energy density (gravitational+sources) must be
large, but if we have a large manifold, the energy density
can be small. There is a tradeoff' between the volume
and the average energy density.

This tradeoff will be made explicit by the following in-
equality:

(average energy density)(volume of three-manifold) ~ & Co/2',
where Co is given constant. This can also be written as

(total energy content)(volume of Universe) ' )Co/2' . (2)

The trick is in how one defines the average energy density and the total energy of a closed universe.
The basis for these physics statements (1) and (2) is a purely geometrical inequality which holds for a large set of

compact Riemannian three-manifolds. This is of the form

(average scalar curvature)(volume of manifold) ~ & 8CO . (3)

If we have a three-dimensional spacelike slice through a four-manifold which is a solution of the Einstein equations,
there are two natural geometrical objects defined on the three-slice. One is a three-metric g; and the other is a three-
symmetric-tensor K, which is essentially the time-derivative of g," (Ref. 1 and 2). One of the Einstein equations, the
so-called Hamiltonian constraint, connects g,- and K'. This is of the form

'3'R K"K,, +(trK) =1—6~p, (4)

where ' '8 is the three scalar curvature of g, and p is the source energy density. It is natural to identify
K'JK,"—(trK ) as the kinetic energy of the gravitational field. From (4) we have that

(average scalar curvature)= Iaverage of [16mp+K'~K, "—(trK )~]I

and it is this quantity that can be used in inequalities (1)
and (2).

To derive inequality (3), let us first do it for a very
special case. Consider flat space and a positive function
P which goes to zero at infinity. I now wish to use P as
a conformal factor so as to transform the flat space into
a closed compact manifold M. To do this, let me define
a metric

compactified into a single point. (This is the three-
dimensional analogue of the projective mapping from a
sphere to the plane. ) The scalar curvature ' 'R of M can
now be calculated as

(3)R 8y
—5V2y

where V' is the flat-space Laplacian.
This gives

g y4g (6) 'R(h = —8/V P .

and, with respect to this metric, the whole of infinity is Now integrate over flat space to give

36 2226 1987 The American Physical Society



36 AVERAGE ENERGY DENSITY AND THE SIZE OF THE UNIVERSE 2227

V= fgdx. (9)

f "'R y'd'x = —8 g „/VS ds+ 8 f (Vp)'d'x . (8)

Since g;~ =P 5;, , we have

&detg =y'
and therefore P d x is the volume element in M, and the
volume of M, V, is defined as

get

R gd x=+8 V gd ~

Of course p &g'=&g is the volume element in M and

R g'd x=RV.

The Sobolev inequality is still valid, and gives
' 1/3f (VP) &g'd x &Co f P v'g'd3x

(16)

Therefore the left-hand side of (8) is nothing more than
the integral of the scalar curvature of M over M. If we
define R as the average of ' 'R over M, we obviously get

=C V' (18)

Ry d X=RE . (10)

If P goes to zero faster than r ' the surface integral
on the right of (8) will vanish, and so we will get

RV=8 (1 1)

Since P is a function which vanishes at infinity it must
satisfy the Sobolev inequality, which states

1/3f (VP) d x)C f P'd x (12)

R V2/3&8C, (13)

which is exactly inequality (3).
Of course, we have only shown inequality (13) to be

valid for conformally flat compact manifolds. However,
it is very easy to extend it. Let us now consider the
asymptotically flat base manifold not to be flat space, but
to have a nontrivial metric g . However, we demand
that the scalar curvature of g vanish everywhere. The
argument above goes through exactly as before. With an
arbitrary positive P (which vanishes at oo) we define the
metric

where C is a constant, 3(m /4) . This, when substitut-
ed into (11) gives

R V&8C, V'/3

or

The only difference is that the Sobolev constant Co may
depend weakly on g,'. Thus we recover (3).

This is not yet the end of the story. Not all compact
manifolds can be obtained by conformally compactifying
asymptotically flat spaces with vanishing scalar curva-
ture. There is a long-standing conjecture in geometry
called the Yamabe theorem. This divides compact
Riemannian manifold s without boundary into three
classes: those with essentially positive scalar curvature,
those with essentially zero, and those with essentially
negative scalar curvature. In a recent completion of the
proof of the Yamabe theorem, Schoen showed that all
manifolds in the positive Yamabe class could be confor-
mally decompactified into asymptotically flat manifolds
with vanishing scalar curvature. Therefore, we can only
claim that inequality (13) is valid for manifolds in the
positive Yamabe class. Happily, these turn out to be the
physically interesting ones.

To see this, let us return to the Einstein equations, in
particular to the Hamiltonian constraint (4)

' 'R = 16~p+ K' K, —(trK )

We cannot deduce from this that the scalar curvature is
positive everywhere, because of the (trK) term. Howev-
er, since X;. is essentially the rate of change of g; we
have

(19)

4
glJ =4 glj (14) and the cross section of largest volume is identified by

trK—:0. On this slice we have
which gives us a compact manifold without boundary M.
Its scalar curvature R is still given by

R= —8$ VP, (15)

where V is now the Laplacian with respect to g . We

(20)

and if p) 0 (as it should be) we have ' 'R & 0 and so that
the largest volume slice must belong to the positive
Yamabe class and satisfy inequality (3). In turn we get

[average value of (p+K "K; /16m. )](largest volume) ') Co/2m . (21)

I do not claim that all slices of all cosmologies belong to the positive Yamabe class. However, it is clear that any
slice in a neighborhood of the largest slice belongs to this Yamabe class. Hence for all such slices we have

(average value of Ip+(1/16')[K "K; —(trK) ]I )(volume of slice) ~ & Co/2n. .

For a subset of cosmologies, this slice of largest volume defines a global instant of turnaround, an instant of unsta-
ble equilibrium. Such an instant is called a moment of time symmetry and is signaled by the total vanishing of K; .
At a moment of time symmetry we get
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and the inequality reads

(average value of p)(largest volume) )Co/2~

or equivalently

and 8). This one says that one cannot have large posi-
tive scalar curvature everywhere in a large volume, be-
cause the volume would curl up too quickly. Criven any
set Q on which the scalar curvature is bounded below by
a positive constant R o we can show

22( 8n
o

(total mass in Universe)(largest volume) ' )Co/2rr .

(22)

The easiest test of the inequality (3) is in the closed
Friedmann cosmology. There we get a sequence of
closed three-manifolds with constant curvature. The
metric of each hypersurface is given by

ds =a [dg'+ sin X(d8 + sin Odg )] .

The volume V =2~ a, and the scalar curvature is
' 'R =6/a . It is straightforward to show that these
values of V and ' 'R just satisfy (3). This implies that
the inequality is sharp, that we cannot reduce the con-
stant and still have it always true.

Another inequality has been recently arrived at which
is similar in form but in the opposite sense to (3) (Refs. 7

R Vzzn 4(n I ) C„,
n —2 (23)

where C„ is the appropriate Sobolev constant satisfying

V ~ C„2n/n

where L is a linear measure of the size of 0, and
L —(volume of 0) if Q is more or less spherical.
This is not really very surprising, because dimensional
analysis gives us that the scalar curvature has dimen-
sions (length) and so we have to multiply it by
(length) or area or (volume) ~ to convert it to a dimen-
sionless quantity.

It is interesting to note that inequality (3) holds in any
number of dimensions. More precisely, we can show, in
n dimensions,
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