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Supplementary material  

 

 

Figure S1. The two functional forms used to represent the variation of a female’s non-lipid 

(lean) mass over the course of a foraging trip. Form 1 assumes a linear increase of female lean 

mass but accounting for pup mass in the final third of the trip (New et al. 2014), while form 2 

assumes the accumulation of female lean mass in the first third of the trip with no influence of 

pup mass (Schick et al. 2013). The dotted line indicates the increase in female lean mass under 

form 1 when excluding pup mass. 
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Figure S2. Spatial variation in feeding activity and lipid mass over the course of the 

foraging trip. The colour gradation indicates the animal’s lipid mass, while the size of the dots 

indicates the corresponding intensity of feeding activity. The coordinates are the daily posterior 

estimates of individuals’ positions. a) All tracks; b) separate tracks of four animals, as an 

example.  
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Table S1. Priors and constraints for the parameters of the three model components. 

Subscript i indicates individual-specific parameters. Acronym N2 stands for bivariate normal 

distribution, while ARS stands for area restricted search. 

Model 

component 
Parameter Description Prior or constraint 

Movement 

α1, α2 

Transition probabilities 

from either movement mode 

to transiting 

Beta(1, 1) 

λ1 
Initial probability of being 

in transiting mode  
Beta(1, 1) 

λ2 
Initial probability of being 

in ARS mode 
1 – λ1 

γ1 

Autocorrelation in direction 

and speed for transiting 

mode 

Beta(2, 1.5) 

g 

Deviate to constrain 

autocorrelation to be lower 

during ARS 

Beta(1, 1) 

γ2 
Autocorrelation in direction 

and speed for ARS mode 
γ1∙g 

log(ψi) 

Individual scaling for 

movement observation 

model 

Uniform(-10, 10) 

h1 

Dummy variable for the 

prior of turning angle in 

transiting mode 

Beta(20, 20) 

θ1 
Turning angle in transiting 

mode 
(2h1 – 1)∙π 
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h2 

Dummy variable for the 

prior of turning angle in 

ARS mode 

Beta(10, 10) 

θ2 Turning angle in ARS mode 2h2∙π 

Σm 
Covariance matrix of 

movement process error 
Inverse Wishart( , 2) 

Feeding 

υp, υn 
Effects of being in ARS 

mode on feeding 
Normal(1, 1) 

βi,p 

Individual random effects 

for the dive metrics 

(positive buoyancy) 

N2(Bp, Σp) 

B1,p, B2,p 

Mean intercept and slope for 

the random effects (positive 

buoyancy) 

Normal(0, 1) 

Σp, Σn 
Covariance matrices of 

individual random effects  
Inverse Wishart( , 2) 

βi,n 

Individual random effects 

for the dive metrics 

(negative buoyancy) 

N2(Bn, Σn) 

B1,n, B2,n 

Mean intercept and slope for 

the random effects (negative 

buoyancy) 

Normal(0, 1)* 

σf
2 

Variance of feeding process 

error 
Inverse Gamma(e1, e2)** 

Condition 

ζi 
Individual random effects 

for condition 
N2(C, Σc) 

C1, C2 
Mean intercept and slope for 

the random effects 
Normal(0, 1)*** 

Σc 
Covariance matrix for 

individual random effects  
Inverse Wishart( , 2) 
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δ 
Parameters of condition 

observation model 
N2(R, Σr) 

R1, R2 

Means for the prior of the 

parameters of condition 

observation model 

0, -1 

Σr 

Covariance matrix for 

parameters of condition 

observation model 

Inverse Wishart( , 2) 

σr
2 

Variance of condition 

observation error 
Inverse Gamma(S1, S2)**** 

σl
2 

Variance of condition 

process error 
Inverse Gamma (c1, c2)**** 

 

*The Gaussian distribution for B2,n was truncated at 0 in order to facilitate convergence by 

constraining the number of dives per day to have a negative effect on feeding activity (as 

suggested by the mixed effects models). 

**e1 = 18 and e2 = 0.05. These values were chosen so that the distribution was centred on 0.003, 

i.e. the unexplained error in feeding activity was at most 0.05 when feeding activity was 0.5.  

***The Gaussian distribution for C2 was truncated at 0 in order to constrain feeding activity to 

have a positive effect on lipid mass. 

****Following Schick et al. (2013), S1 = 10∙T, where T was the overall sample size, and S2 = 4∙(S1 

– 1), implying that the variance of drift rate was centered on 1 (before scaling by the number of 

drift dives). Similarly, c1 = T/2 and c2 = c1 – 1, meaning that the variance of the lipid mass was 

centered on 4.  



6 
 

Table S2. Posterior estimates of parameters of interest (median and 95% highest posterior 

density interval). For each parameter, the table also reports the effective sample size and 

convergence diagnostics: upper confidence interval (CI) of the Brooks-Gelman-Rubin (BGR) 

diagnostic and percentage of Monte Carlo error (MCE) to sample standard deviation (SSD). 

 

Parameter 
Lower 

(2.5%) 
Median 

Upper 

(97.5%) 

Effective 
sample 

size 

BGR 
diagnostic 
(upper CI) 

% 
MCE/SSD 

α1 0.96 0.97 0.98 14540 1.00 0.8 

α2 0.04 0.05 0.07 12807 1.00 0.9 

γ1 0.86 0.87 0.88 16484 1.00 0.8 

γ2 0.00 0.04 0.12 9887 1.00 1.0 

θ1 0.00 0.01 0.02 18122 1.00 0.7 

θ2 2.28 3.23 4.24 17375 1.00 0.8 

υp  1.20 2.39 3.85 9453 1.00 1.0 

υn  0.50 1.73 3.24 12306 1.00 0.9 

B1,p  -1.18 -0.24 0.67 2703 1.01 1.9 

B2,p  -0.44 0.32 1.18 5773 1.01 1.3 

B1,n  -1.09 -0.04 0.97 4678 1.01 1.5 

B2,n  -3.34 -2.11 -1.23 6933 1.00 1.2 

C1  -1.01 -0.57 -0.26 2287 1.00 2.1 

C2  1.19 1.62 2.15 1411 1.00 2.7 

δ0 -0.56 -0.49 -0.43 462 1.01 4.6 

δ1 2.18 2.46 2.77 551 1.02 4.3 

σf
2  0.002 0.003 0.005 5234 1.00 1.4 

σr
2  3.97 4.00 4.03 17618 1.00 0.8 

σl
2 0.54 0.55 0.57 17516 1.00 0.8 
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Appendix S1. Mixed effects models to select dive metrics. 

The daily median dive metrics that best correlated with the drift rate in the following day were 

identified using a mixed effects modelling approach, where drift rate in the following day was 

the response variable, each dive metric was the explanatory variable and seal ID number was 

used as an individual random effect. Data exploration suggested that the relationship between 

each dive metric and drift rate varied depending on the sign of the latter. Therefore, separate 

models were fitted for positive and negative values of the drift rate. The candidate explanatory 

variables were: daily median ascent rate, daily median descent rate, daily median time spent at 

the bottom during a dive, total number of dives per day and daily median dive duration. The 

analysis was carried out using package lme4 in R (Bates et al. 2012) and models were fitted 

using maximum likelihood. Models were compared using Akaike’s Information Criterion (AIC) 

and results of model selection are reported below. Total number of dives minimised the AIC in 

the model for negative buoyancy, while median ascent rate was the best explanatory variable 

when buoyancy was positive.  

Dive metric AIC 

Negative buoyancy (drift rate < 0) 
Intercept-only -5722 

Ascent rate -6052 
Descent rate -6588 
Bottom time -6935 

Total number of dives -7084 
Dive duration -6397 

Positive buoyancy (drift rate ≥ 0) 
Intercept-only -5555 

Ascent rate -5623 
Descent rate -5560 
Bottom time -5567 

Total number of dives -5554 
Dive duration -5555 
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Appendix S2. Argos Location error. 

The scale parameters (τlat,q and τlon,q) and degrees of freedom (νlat,q and νlon,q) of the t-distributions 

of the observation errors on each coordinate (latitude and longitude), given location class q, were 

estimated from published data on class-specific Argos location accuracy (Costa et al. 2010). 

Maximum likelihood estimates and standard errors were obtained using the library MASS 

(Venables and Ripley 2002) in R, and are summarised below. All estimates are in km. These 

parameters were then treated as known in the movement component of the model, following 

Jonsen et al. (2005). 

 

Quality class 
Longitude Latitude 

τlon (SE) νlon (SE) τlat (SE) νlat (SE) 

Z 49.826 (16.161) 1.286 (0.544) 13.994 (5.493) 0.941 (0.373) 

B 3.679 (0.374) 0.786 (0.070) 2.472 (0.225) 0.975 (0.092) 

A 1.827 (0.255) 0.797 (0.097) 1.617 (0.190) 1.021 (0.129) 

0 1.730 (0.232) 1.272 (0.211) 1.207 (0.145) 1.641 (0.303) 

1 0.767 (0.061) 3.388 (0.764) 0.437 (0.039) 1.976 (0.316) 

2 0.528 (0.073) 2.424 (0.713) 0.356 (0.048) 1.821 (0.412) 

3 0.269 (0.077) 1.734 (0.792) 0.130 (0.037) 1.460 (0.574) 
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Appendix S3. Joint likelihood 

The joint conditional likelihood (L) of the observations (daily median drift rate, r; mean lipid 

mass at arrival, mTi; and the matrix, Y, of Argos coordinate pairs, y) and all latent variables (the 

matrix, X, of true daily locations, x; movement mode, b; feeding activity, f; and lipid mass, l) 

can be expressed as the product of their independent likelihoods (McClintock et al. 2013): 

 

where ι denotes the set of all model parameters, q is the vector of Argos quality class for each 

observed location, m1 is the vector of empirical mean lipid mass at departure (t = 1), φ is the 

vector of empirical standard deviation of lipid mass at departure (t = 1) and arrival (t = Ti), a is 

the vector of daily lean mass, D is the vector of the number of drift dives per day, n is the vector 

of total number of dives per day, s is the vector of daily median ascent rate, I is the total number 

of individuals, Ti is the duration of each individual’s trip and Zi,t is the number of Argos locations 

recorded for each individual on each day of the trip. 
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Appendix S4. Model code 

model 
{ 
 
pi <- 3.141592653589 
 
#Hyperparameters for Wishart priors of covariance matrices 
pr.cov[1,1] <- 1 
pr.cov[1,2] <- 0 
pr.cov[2,1] <- 0 
pr.cov[2,2] <- 1 
 
#Priors and constraints for parameters of the movement component 
alpha[1] ~ dbeta(1,1)           #transition probability (transit to transit) 
alpha[2] ~ dbeta(1,1)           #transition probability (ARS to transit) 
lambda[1] ~ dbeta(1,1)          #initial probability of being in transit mode 
lambda[2] <- 1 - lambda[1]      #initial probability of being in ARS mode 
gamma[1] ~ dbeta(2,1.5)         #autocorrelation parameter - transit mode 
g ~ dbeta(1,1)        #deviate to ensure gamma[2] < gamma[1] 
gamma[2] <- gamma[1] * g        #autocorrelation parameter - ARS mode 
h[1] ~ dbeta(20,20)             #dummy variable 
h[2] ~ dbeta(10,10)             #dummy variable 
theta[1] <- (2 * h[1] - 1) * pi #turning angle - transit mode 
theta[2] <- 2 * h[2] * pi       #turning angle - ARS mode 
iSigma_m[1:2,1:2] ~ dwish(pr.cov[,],2) 
Sigma_m[1:2,1:2] <- inverse(iSigma_m[1:2,1:2]) #covariance matrix 
 
#Priors and constraints for parameters of the feeding component 
upsilon[1] ~ dnorm(1,1)         #effect of being in ARS mode (when positively buoyant) on feeding 

activity 
upsilon[2] ~ dnorm(1,1)         #effect of being in ARS mode (when negatively buoyant) on feeding 

activity 
Bp[1] ~ dnorm(0,1)              #mean intercept (when positively buoyant) 
Bp[2] ~ dnorm(0,1)              #mean effect of ascent rate on feeding activity 
iSigma_p[1:2,1:2] ~ dwish(pr.cov[,],2) 
Sigma_p[1:2,1:2] <- inverse(iSigma_p[1:2,1:2]) #covariance matrix 
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Bn[1] ~ dnorm(0,1)              #mean intercept (when negatively buoyant) 
Bn[2] ~ dnorm(0,1)T(-100,0)     #mean effect of number of dives on feeding activity 
iSigma_n[1:2,1:2] ~ dwish(pr.cov[,],2) 
Sigma_n[1:2,1:2] <- inverse(iSigma_n[1:2,1:2]) #covariance matrix 
tau_f ~ dgamma(18,0.05)         #process precision 
sigma2_f <- 1/tau_f             #process variance 
 
#Priors and constraints for parameters of the condition component 
C[1] ~ dnorm(0,1)               #mean intercept 
C[2] ~ dnorm(0,1)T(0,100)       #mean effect of feeding activity on lipid gain 
iSigma_C[1:2,1:2] ~ dwish(pr.cov[,],2) 
Sigma_C[1:2,1:2] <- inverse(iSigma_C[1:2,1:2]) #covariance matrix 
c1 <- Xidx[I+1]/2               #hyperparameter for process uncertainty 
c2 <- c1-1                      #hyperparameter for process uncertainty 
tau_l ~ dgamma(c1,c2)           #process precision 
sigma2_l <- 1/tau_l             #process variance 
 
#Priors for condition observation model 
R[1] <- 0                       #hyperparameter for bivariate prior 
R[2] <- -1                      #hyperparameter for bivariate prior 
iSigma_r[1:2,1:2] ~ dwish(pr.cov[,],2) 
Sigma_r[1:2,1:2] <- inverse(iSigma_r[1:2,1:2]) #covariance matrix 
delta[1:2] ~ dmnorm(R[1:2],iSigma_r[1:2,1:2])  #intercept and effect of buoyancy on drift rate 

(correlated) 
S1 <- 10*Xidx[I+1]              #hyperparameter for measurement uncertainty 
S2 <- 4*(S1-1)                  #hyperparameter for measurement uncertainty 
tau_r ~ dgamma(S1,S2)           #measurement precision 
sigma2_r <- 1/tau_r             #measurement variance 
 
#Priors for NAs in number of drift dives 
for (d in 1:lna.dd){            #cycle through NAs in the data (previously identified) 
  D[nas.dd[d]] ~ dnorm(pr.dd[d],1)T(range.dd[1],range.dd[2]) 
  } 
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for(i in 1:I){                  #cycle through I individuals 
 
  #Individual-specific scaling parameter for t-distributed error 
  log.psi[i] ~ dunif(-10,10) 
  psi[i] <- exp(log.psi[i]) 
 
  #Individual-specific parameters for feeding component 
  beta_p[i,1:2] ~ dmnorm(Bp[1:2], iSigma_p[1:2,1:2]) 
  beta_n[i,1:2] ~ dmnorm(Bn[1:2], iSigma_n[1:2,1:2]) 
 
  #Individual-specific parameters for condition component 
  zeta[i,1:2] ~ dmnorm(C[1:2],iSigma_C[1:2,1:2]) 
 
  #Precision of initial and final mass measurements (from empirical standard deviation phi1 at t=1 

and phiT t=Ti) 
  tau_m1[i] <- 1/phi1[i]/phi1[i] 
  tau_mT[i] <- 1/phiT[i]/phiT[i] 
 
  #Initial lipid mass (from initial mass measurement) 
  l[Xidx[i]] ~ dnorm(m[i,1],tau_m1[i]) 
 
  #Initial behavioral mode 
  b[Xidx[i]] ~ dcat(lambda[])   #1=transit, 2=ARS 
 
  #Initial location 
  first.loc[i,1] <- y[Yidx[i],1] 
  first.loc[i,2] <- y[Yidx[i],2] 
  for(c in 1:2){ 
    itau2psi[i,c] <- itau2[Xidx[i],c] * psi[i] 
    x[Xidx[i],c] ~ dt(first.loc[i,c], itau2psi[i,c], nu[Xidx[i],c]) 
    } 
 
  #Second location 
  x[(Xidx[i]+1),1:2] ~ dmnorm(x[Xidx[i],],iSigma_m[,])     #assume simple random walk to estimate 

2nd regular position 
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  for(t in (Xidx[i]+1):(Xidx[i+1]-2)){             #cycle through time steps for each individual 
 
    #Movement component 
    prob[t,1] <- alpha[b[t-1]]                     #transition probability from previous mode to 

transit mode 
    prob[t,2] <- 1 - alpha[b[t-1]]                 #transition probability from previous mode to 

ARS mode 
    b[t] ~ dcat(prob[t,])                          #behavioural mode (1=transit, 2=ARS) 
    Tdx[t,1] <- cos(theta[b[t]]) * (x[t,1] - x[t-1,1]) + sin(theta[b[t]]) * (x[t,2] - x[t-1,2]) 
    Tdx[t,2] <- -sin(theta[b[t]]) * (x[t,1] - x[t-1,1]) + cos(theta[b[t]]) * (x[t,2] - x[t-1,2]) 
    x.mn[t,1] <- x[t,1] +  Tdx[t,1] * gamma[b[t]] 
    x.mn[t,2] <- x[t,2] +  Tdx[t,2] * gamma[b[t]] 
    x[t+1,1:2] ~ dmnorm(x.mn[t,],iSigma_m[,])      #next location (with process error) 
 
    #Feeding component 
    logit.f[t] <- indicator[t]*(beta_p[i,1] + upsilon[1]*(b[t]-1) + beta_p[i,2]*s[t]) + (1-

indicator[t])*(beta_n[i,1]+ upsilon[2]*(b[t]-1) + beta_n[i,2]*n[t]) + epsilon[t] 
    epsilon[t] ~ dnorm(0,tau_f)                    #process error 
    f[t] <- exp(logit.f[t])/(1 + exp(logit.f[t]))  #feeding activity 
 
    #Condition component 
    l.mu[t] <- l[t-1] + zeta[i,1] + zeta[i,2]*f[t] 
    l[t] ~ dnorm(l.mu[t],tau_l)                    #lipid mass (with process error) 
 
    #Condition observation model 
    r.mu[t] <- delta[1] + delta[2]*l[t]/a[t]       #mean drift rate (as a function of buoyancy) 
    sigma2_rD[t] <- sigma2_r/(D[t]+1)              #adjust variance by number of drift dives 
    tau_rD[t] <- 1/sigma2_rD[t] 
    r[t] ~ dnorm(r.mu[t],tau_rD[t])                #drift rate (observed) 
    } 
 
  #Final time step: 
  #Final behavioral mode 
  fprob[i,1] <- alpha[b[Xidx[i+1]-2]]   #transition probability from previous mode to transit mode 
  fprob[i,2] <- 1 - fprob[i,1]          #transition probability from previous mode to ARS mode 
  b[Xidx[i+1]-1] ~ dcat(fprob[i,]) 
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  #Final feeding activity 
  logit.f[Xidx[i+1]-1] <- indicator[Xidx[i+1]-1]*(beta_p[i,1] + upsilon[1]*(b[Xidx[i+1]-1]-1) + 

beta_p[i,2]*s[Xidx[i+1]-1]) + (1-indicator[Xidx[i+1]-1])*(beta_n[i,1] + 
upsilon[2]*(b[Xidx[i+1]-1]-1) + beta_n[i,2]*n[Xidx[i+1]-1]) + epsilon[Xidx[i+1]-1] 

  epsilon[Xidx[i+1]-1] ~ dnorm(0,tau_f) 
  f[Xidx[i+1]-1] <- exp(logit.f[Xidx[i+1]-1])/(1 + exp(logit.f[Xidx[i+1]-1]))  #feeding activity 
  #Final condition 
  l.mu[Xidx[i+1]-1] <- l[Xidx[i+1]-2] + zeta[i,1] + zeta[i,2]*f[Xidx[i+1]-1] 
  l[Xidx[i+1]-1] ~ dnorm(l.mu[Xidx[i+1]-1],tau_l)                              #lipid mass 
  m[i,2] ~ dnorm(l[Xidx[i+1]-1],tau_mT[i])                                     #final mass 

measurement used 
as sample of final 
lipid mass 

  #Observation model for final condition 
  r.mu[Xidx[i+1]-1] <- (delta[1] + delta[2]*l[Xidx[i+1]-1]/a[Xidx[i+1]-1])     #true drift rate 
  sigma2_rD[Xidx[i+1]-1] <- sigma2_r/(D[Xidx[i+1]-1]+1)                        #adjust variance by 

number of drift 
dives 

  tau_rD[Xidx[i+1]-1] <- 1/sigma2_rD[Xidx[i+1]-1] 
  r[Xidx[i+1]-1] ~ dnorm(r.mu[Xidx[i+1]-1],tau_rD[Xidx[i+1]-1])                #observed drift 

rate 
 
  #Movement observation model 
  for(t in (Xidx[i]+1):(Xidx[i+1]-1)){  #cycle through regular time steps 
    for(z in idx[t]:(idx[t+1]-1)){      #cycle through observed locations within interval t 
      for(c in 1:2){                    #for each coordinate (lon and lat) 
        zhat[z,c] <- (1-j[z]) * x[t-1,c] + j[z] * x[t,c] #true location (given position within 

interval) 
        itau2psi2[z,c] <- itau2[z,c] * psi[i] 
      y[z,c] ~ dt(zhat[z,c],itau2psi2[z,c],nu[z,c])    #observed location 
        } 
      } 
    } 
   } 
} 
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Table S3. Individual activity budgets as estimated by the movement component of the 
model. 

 

Individual ID Transit (%) Area restricted search (%) Uncertain (%) 
2004020 88 8 4 
2004021 81 5 14 
2004024 65 19 16 
2004029 60 30 10 
2004030 54 30 16 
2004032 63 18 19 
2004035 62 20 18 
2005021 61 15 24 
2005024 50 45 5 
2005027 41 46 13 
2005028 21 70 9 
2005029 37 47 16 
2005031 73 16 11 
2005034 56 30 14 
2005036 86 11 3 
2005039 59 27 14 
2005040 66 30 4 
2006041 54 36 10 
2006044 74 17 9 
2006048 66 17 17 
2006055 73 19 8 
2006057 67 20 13 
2006059 58 33 9 
2007033 57 32 11 
2007034 49 41 10 
2007040 53 31 16 

 



16 
 

 

Figure S3. Posterior estimates of the lipid mass (black) overlaid with the time series of lipid 

masses obtained using the process model only (i.e. calculated from the initial lipid mass and 

the estimated feeding activity at each time step) (blue). The shaded area represents the 

uncertainty in the estimates and predictions. 
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Figure S4. Comparison of the estimated feeding activity (on the left) and variation in lipid mass (on the right) given the two 

functional forms for the variation of lean mass (in black functional form 1, used in the final model, in green functional form 2) 

for four individuals. The solid lines represent the median estimates, and the shaded bands the uncertainty around these estimates. 
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Figure S5. Simulated effects of an increased number of disturbed days on the lipid mass of individual 2005027, given the 

second functional form for the variation of the lean mass. a) Posterior estimates of the lipid mass overlaid with the time series of 

lipid masses obtained using the estimated feeding activity on each day. In b)-f) disturbed days are distributed randomly, at the start of 

the trip, at the end of the trip, on days of low feeding activity and on days of high feeding activity, respectively. The shaded areas 

represent the uncertainty around the lipid mass predicted for each scenario. The horizontal dashed line represents a lipid mass of 0 kg. 



19 
 

Appendix S5. Testing the sensitivity of model results to selected dive metrics. 

The feeding component of the model was structured with the aim of accommodating information 

from both horizontal movement and diving behavior, in order to characterize the feeding activity 

of an individual on a given day (Vacquié-Garcia et al. 2015). Ideally, proximate measures of 

feeding will be available in the future as data from accelerometers and jaw sensors are 

increasingly collected (e.g., Naito et al. 2013; Guinet et al. 2014). In the absence of such fine-

scale indications of feeding attempts, we informed this model component using average features 

of an individual’s diving pattern on a given day. We chose a data-driven approach (Appendix 

S1), where we selected the dive metric that best correlated with drift rate, under the assumption 

that successful feeding would lead to higher accumulation of lipid mass and thus higher 

buoyancy. This procedure supported the inclusion of dive metrics that previous studies have also 

identified as good proxies of feeding success in pinnipeds (e.g., Robinson et al. 2010; Viviant et 

al. 2014; Vacquié-Garcia et al. 2015). Selected dive metrics can also be interpreted from a 

functional perspective: a rapid ascent (and descent) rate maximizes the time in a foraging patch, 

and the number of dives might indicate that an area offers profitable food resources. In 

alternative to this data-driven approach, we could have decided to select, a priori, a dive metric 

that was mechanistically expected to represent successful feeding, such as the time spent at the 

bottom during a dive. Previous work has identified this metric as a good indicator of pinniped 

feeding activity (e.g., Austin et al. 2006; Gallon et al. 2013; Vacquié-Garcia et al. 2015), 

although some studies have also suggested that it is the behavior while at the bottom (particularly 

the engagement in rapid vertical excursions or wiggles) that is truly representative of prey pursuit 

(Kuhn et al. 2009; Gallon et al. 2013; Viviant et al. 2016). More generally, it is important to 
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explore the sensitivity of our results to the choice of the dive metrics that informed the feeding 

component. 

To this purpose, we ran an alternative version of the model where we substituted median daily 

ascent rate (when positively buoyant) and total number of dives per day (when negatively 

buoyant) with the daily median time spent at the bottom during a dive (in both buoyancy 

conditions). We then compared the posterior estimates of feeding activity and lipid mass with the 

results from the final model, as well as the predicted effects of disturbance on sample individual 

2005027.  

The results of this comparison highlighted some fine-scale differences in the relative amount of 

feeding activity on any given day, although the overall pattern across the trip remained 

comparable (Fig. S6). The use of bottom time also resulted in a higher minimum value of feeding 

activity across the trip. While the accumulation of lipid mass over the trip remained unchanged 

(Fig. S6), this higher minimum had an influence on the predicted effects of disturbance: because 

a disturbed day was simulated by setting feeding activity to the minimum estimated for that 

individual, using bottom time in the feeding component resulted in the lipid mass at the end of 

the trip being, on average, 8% (SD = 5), 9% (SD = 6), 7% (SD = 6), 7% (SD = 5) and 10% (SD 

= 7) larger than in the final model for the scenarios with disturbed days distributed randomly, at 

the start of the trip, at the end of the trip, when feeding activity was lower and when feeding 

activity was higher, respectively (Fig. S7).  
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Figure S6. Comparison of the estimated feeding activity (on the left) and variation in lipid mass (on the right) given two 

alternative approaches to the selection of dive metrics for the feeding component, for four sample individuals. In black, the 

data-driven approach used in the final model, which led to include median ascent rate and total number of dives; in green, the 

alternative approach, where bottom time was used instead. The solid lines represent the median estimates, and the shaded bands the 

uncertainty around these estimates. 
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Figure S7. Simulated effects of an increased number of disturbed days on the lipid mass of individual 2005027, given the use of 

bottom time in the feeding component of the model. a) Posterior estimates of the lipid mass overlaid with the time series of lipid 

masses obtained using the estimated feeding activity on each day. In b)-f) disturbed days are distributed randomly, at the start of the 

trip, at the end of the trip, on days of low feeding activity and on days of high feeding activity, respectively. The shaded areas 

represent the uncertainty around the lipid mass predicted for each scenario. The horizontal dashed line represents a lipid mass of 0 kg.
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