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Abstract  23 

Purpose Lipid suspensions have been shown to be a suitable bio-enabling formulation 24 

approach for highly lipophilic or ‘grease ball’ drug molecules, but studies on ‘brick dust’ drugs 25 

are lacking. This study explored the utility of lipid suspensions for enhancing oral 26 

bioavailability of the rather hydrophobic drug nilotinib in vivo in rats. 27 

Methods Four lipid suspensions were developed containing long chain triglycerides, medium 28 

chain triglyceride, long chain monoglycerides and medium chain monoglycerides and in vivo 29 

bioavailability was compared to an aqueous suspension. Additionally, in vitro lipolysis and 30 

wettability tests were conducted.  31 

Results Nilotinib lipid suspensions did not show a bioavailability increase compared to an 32 

aqueous suspension. The bioavailability was lower for triglyceride suspensions, relative to both 33 

monoglyceride and an aqueous suspension. The long chain monoglyceride displayed a 34 

significantly higher bioavailability relative to triglycerides. In vitro lipolysis results suggested 35 

entrapment of nilotinib crystals within poorly dispersible triglycerides, leading to slower 36 

nilotinib release and absorption. This was further supported by higher wettability of nilotinib 37 

by lipids. 38 

Conclusion Monoglycerides improved oral bioavailability of nilotinib in rats, relative to 39 

triglycerides. For ‘brick dust’ drugs formulated as lipid suspensions, poorly dispersible 40 

formulations may delay the release of drug crystals from the formulation leading to reduced 41 

absorption. 42 

 43 

  44 
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Graphical abstract 45 

 46 

Graph. Abstract: An aqueous and four lipid suspensions have been evaluated in vitro and in 47 

vivo to gain insights into the potential benefits and limitations of lipid suspensions. 48 

 49 

 50 

Keywords Lipid suspension, Lipid based formulation, Brick dust, Nilotinib, Bio-enabling 51 

formulation  52 
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1 Introduction 53 

In recent years, there has been an emerging trend towards the discovery of drug candidates that 54 

display sub-optimal developability characteristics (1). A key shift is the increasing number of 55 

lead drug candidates displaying poor aqueous solubility, where it is estimated that up to 75% 56 

of drugs in development are classified as Class II/IV in the biopharmaceutical classification 57 

system (BCS) (2). There is a general increase in molecular weight (2, 3) as well as lipophilicity 58 

(4), with the intention to improve target receptor selectivity and maximise potency. These 59 

highly lipophilic drug candidates may consequently display solubility limitations and hence 60 

require bio-enabling formulation approaches such as nanosizing or lipid based formulations 61 

(LBF) to ensure sufficient oral absorption. In particular, LBFs have demonstrated commercial 62 

potential for delivery of drugs with high lipophilicity. For such so-called ‘grease ball’ drug 63 

candidates, LBFs are considered favourable to increase drug solubilization in the intestinal tract 64 

and, in general, good dose loading capacity can be achieved within lipid vehicles. It has been 65 

suggested that a drug with a logP of > 4 would be best to achieve adequate solubility in pure 66 

triglycerides (TG), while an intermediate logP, between 2 and 4, may result in a suitable 67 

solubility in mixtures of lipids including mono-, di- and triglycerides, hydrophilic surfactants 68 

and water-soluble co-solvents, dependent on the dose (5). 69 

 70 

While poor aqueous solubility driven by high lipophilicity provides good drug candidates for 71 

LBFs, the situation is more complex in the case of drugs displaying high hydrophobicity (6). 72 

Such high melting drug candidates are often formulated using amorphous solid dispersions to 73 

diminish the impact of the solid state on the dissolution (7). Thus, the forces within the crystal 74 

lattice can also be a key determinant for the suitability of a drug using LBF, as these must be 75 

overcome prior to drug solvation in the LBF. Therefore, for molecules that display ‘brick dust’ 76 
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characteristics, dose loading in LBFs is limited by the high crystal lattice energy. It has been 77 

reported that compounds with a melting point (Tm) above 150 °C display poor solubility in 78 

triglycerides (8), theoretically limiting the classical approach of lipid solutions to low 79 

hydrophobic and high lipophilic molecules. While such Tm and logP based guides are helpful, 80 

it should also be kept in mind that the majority of drugs emerging from drug discovery display 81 

melting points > 150 °C and clogP >2. For example, a recent study on the melting point 82 

distribution of globally available drugs suggests that > 61% of drugs have a Tm higher than 83 

150 °C and clogP > 2 (9). Nevertheless, numerous drugs with a Tm >150 °C have benefited 84 

from LBFs and more recent lipid-based formulation approaches have the potential to overcome 85 

dose-loading limitations, such as super-SNEDDS (6, 10, 11), ionic liquids (12, 13) and lipid 86 

suspensions (6, 14). 87 

 88 

Lipid suspensions, where crystalline drug is dispersed in a lipid vehicle within an oral capsule, 89 

offer a scalable approach for oral administration, with the potential to enhance oral absorption 90 

via excipient-mediated effects on solubilisation within the intestine. Additionally, the 91 

excipients in lipid suspensions may offer the benefit of increased intestinal permeability and/or 92 

promotion of intestinal lymphatic transport (15, 16). Lipid suspensions offer the potential 93 

benefit for sustained delivery via particle size mediated control of the dissolution rate of the 94 

suspended drug particles. In general, lipid suspensions may be particularly useful in a 95 

preclinical setting for poor soluble drug candidates, where high dosing in rodent models is 96 

necessary for early stage toxicological evaluation (17).  97 

 98 

Lipid suspensions have been investigated with different excipients and drugs for their benefit 99 

in vivo with the general experience that in most performed studies beneficial effects have been 100 

observed. Drugs such as griseofulvin (Tm 220 °C, logP 2.2), atovaquone (Tm 216 - 219 °C, logP 101 
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5.8) (18), phenytoin (Tm 295 °C, logP 2.5), diacerein (Tm 217 °C, logP 2.0), danazol (Tm 227 °C, 102 

logP 4.9), or fenofibrate (Tm 79 °C, logP 5.1) have been investigated (19-24). For example, a 103 

griseofulvin corn oil suspension resulted in a higher bioavailability compared to an aqueous 104 

suspension, when dosed orally to rats (25). In the case of danazol and fenofibrate, 105 

administration of lipid suspensions, by reducing the amount of lipid excipient in the 106 

formulation, resulted in similar bioavailability to the lipid solutions (21, 22).  107 

 108 

In terms of ‘brick dust’ molecules with a high hydrophobicity as well as lipophilicity similar 109 

to the used model drug in this study, there are limited reports in the literature exploring the 110 

utility of lipid suspensions. Danazol showed an 4-9-fold increase in bioavailability in rats using 111 

a Labrafil M2125CS suspension compared to an aqueous suspension. Furthermore, one of the 112 

tested Labrafil suspensions showed equivalent exposure to the Labrafil solution (21). Roland 113 

et al. employed a lipid suspension approach for atovaquone, a potent antiprotozoal drug (24). 114 

The bioavailability of atovaquone is 3.3-fold higher after a high fat meal, however, the drug 115 

displays limited solubility in medium chain triglycerides (~4 mg/mL). In in vivo studies in 116 

humans, atovaquone bioavailability was similar for a lipid suspension (500 mg in 30 mL 117 

medium chain triglycerides) and an aqueous suspension (500 mg in 30 mL of 0.25% methyl 118 

cellulose solution). Moreover, the lipid suspension absorption was prolonged as evident by 119 

longer tmax and lower cmax compared to the aqueous suspension (24). Thus, the potential benefit 120 

of lipid suspensions for highly lipophilic and hydrophobic drugs is not clear and merits further 121 

investigation. 122 

 123 

Nilotinib (Figure 1) is a tyrosine kinase inhibitor which was approved for the treatment of 124 

chronic myelogenous leukemia in 2007. Nilotinib displays high lipophilicity (logP ~5) and 125 
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higher bioavailability after ingestion of a high fat meal (> 80%), which are both considered 126 

favourable characteristics from a LBF perspective. However, the Tm of nilotinib is 236 °C hence 127 

the expected solubility in lipids is solid-state limited. Therefore, nilotinib was chosen as a 128 

model ‘brick dust’ drug for the present study, where the aim was to investigate the potential 129 

benefit of a lipid suspension as formulation approach. The in vivo bioavailability of a series of 130 

lipid suspensions was compared to an aqueous suspension. In addition, the in vitro lipolysis 131 

model was employed to provide mechanistic insights on the formulation performance.  132 

 133 

Figure 1 Chemical structure of nilotinib 134 

  135 
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2 Materials and methods 136 

2.1 Chemicals and materials 137 

Nilotinib and sorafenib were purchased from Kemprotec Ltd. (UK). Olive oil (LC TG), highly 138 

refined and low acidity, capric acid, L-α-phosphatidylcholine Type XI-E (PC) (768 g/mol), 139 

taurodeoxycholic acid (NaTDC) and pancreatic lipase (8 x USP) were obtained from Sigma-140 

Aldrich (Ireland). Capmul MCM® (MC MG) and Captex 1000® (MC TG) were kindly donated 141 

by Abitec corporation (USA). Monocaprin was obtained from TCI Germany and oleic acid was 142 

received from VWR (Ireland). A sample of Peceol® (LC MG) was kindly donated by 143 

Gattefossé (France) and SIF powder version 1 was kindly donated by biorelevant.com (UK). 144 

All other chemicals and solvents were of analytical or HPLC grade and were purchased from 145 

Sigma-Aldrich (Ireland) and used as received. 146 

 147 

2.2 Particle size measurements 148 

Wet laser diffraction analysis was performed using a Mastersizer 3000 (Malvern Instruments 149 

Limited, United Kingdom), equipped with a Hydro MV medium automated dispersion unit 150 

with a 120 mL dispersant volume. Nilotinib sample solution was prepared by adding excess 151 

nilotinib to HPLC grade water. The suspension was ultrasonicated for 5 sec. before the 152 

measurement. A refractive index of 1.4 was used for water as a reference index for statistical 153 

calculation using the particle sizing program. A refractive index value of 1.65 (26), absorption 154 

index of 0.1 and density of 1.362 g/cm3 were used for particle size distribution analysis of 155 

nilotinib. The nilotinib sample was added drop-wise into the saturated wet dispersion unit 156 

containing approximately 100 mL of dispersant (water) until obscuration reached between 157 

1.2 % and 5.4 %, at a stirring speed of 1250 rpm. D10, D50, D90 are reported for all the 158 

samples, where n=3. The results of the laser diffraction analysis were confirmed by optical 159 
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microscopy using an Olympus BX51 equipped with an Olympus BC 100 camera. 160 

Measurements were done at 40 x magnification with Olympus Stream Start version 1.7. 161 

 162 

2.3 Solubility studies 163 

Equilibrium solubility was determined in olive oil, Captex 1000, Peceol and Capmul MCM 164 

using the shake flask method. In brief, an excess of nilotinib was added to the excipients, 165 

thoroughly mixed and shaken in a water bath shaker at 37 °C (n=3). Samples were taken after 166 

24 h, 48 h, 72 h and centrifuged at 21,380 x g (Mikro 200 R, Hettich GmbH, Germany) and 167 

37 °C for 15 min. The supernatant was transferred to a new tube and centrifuged again under 168 

identical conditions. In order to solubilise the oily excipient, the supernatant was diluted 169 

approximately 1:5 - 1:50 with a mixture of tetrahydrofuran (THF) and dimethylformamide 170 

(DMF) (50:50), followed by further dilution with DMF and dimethyl sulfoxide (DMSO). The 171 

obtained samples were analysed by reverse phase HPLC, as described below. Equilibrium was 172 

assumed once two time-points had a variation of less than 10 %. All samples were run in 173 

triplicates.  174 

 175 

2.3.1 Biorelevant solubility and dispersion 176 

Fasted state simulated intestinal fluid (FaSSIF) and fed state simulated intestinal fluid (FeSSIF) 177 

were prepared according to the instructions by biorelevant.com. FeSSIF was used directly, 178 

whereas FaSSIF was left at room temperature for 2 hours prior further usage.  179 

Nilotinib’s equilibrium solubility in a biorelevant dispersion of the lipid formulation was 180 

simulated by adding 2 g of olive oil (FaSSIF LC) or Captex 1000 (FaSSIF MC) to 80 mL of 181 

prepared FaSSIF. The mixture was stirred at 37 °C for 40 min prior to the addition of excess 182 

nilotinib.  183 
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 184 

The post digestion equilibrium solubility of the triglyceride formulations was simulated by 185 

adding the expected lipolysis components to FaSSIF media, similar to the artificial digestion 186 

media suggested by Gautschi and co-workers (27). The measured equilibrium solubility 187 

resembled the maximum solubility increase upon complete digestion of the TG excipients. 188 

Oleic acid and α-monooleat (FaSSIF LCdig) or capric acid and α-monocaprin (FaSSIF MCdig) in 189 

a molar ratio of 2:1 were added to FaSSIF in order to simulate the digestion of long chain or 190 

medium chain triglycerides, respectively. Where necessary, the excipients were molten first 191 

and mixed thoroughly before 2 g of this mixture was added to 80 mL of medium. The dispersion 192 

was stirred at 37 °C for 40 min and the pH was adjusted to 7.5 prior to the addition of excess 193 

nilotinib.  194 

 195 

After the addition of excess nilotinib all samples were placed in a water bath shaker at 37 °C. 196 

After 3 h, 6 h and 24 h samples were taken and analysed. All taken samples were processed 197 

like the lipid solubility samples. The resulting supernatant was diluted with a mixture of THF, 198 

DMF and DMSO (1.25:23.75:75) before analysis. 199 

 200 

The samples were analysed using an Agilent 1200 series HPLC system comprising a binary 201 

pump, degasser, autosampler and variable wavelength detector. Data analysis was done with 202 

EZChrom Elite version 3.2. In order to separate the lipids from nilotinib a Zorbax Eclipse Plus-203 

C18 column (5 μm, 4.6 mm x 150 mm) with a Zorbax Eclipse Plus-C18 guard column (5 μm, 204 

4.6 mm x 12.5 mm) was used. The mobile phase consisted of 20 mM Phosphate buffer pH 2 205 

and methanol (53:47) and was used at a flow rate of 1 mL/min. The column temperature was 206 

set to 25 °C and the detection wavelength was 255 nm. The lower limit of quantification for 207 

this method was 25 ng/mL. 208 
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 209 

2.4 In Vitro Evaluation: Drug Solubilization during Formulation Dispersion and 210 

Digestion 211 

In vitro lipolysis was performed using a pH-stat apparatus (Metrohm AG, Herisau, 212 

Switzerland) comprising a Titrando 907 stirrer, 804 Ti-stand, a pH electrode (Metrohm) and 213 

two 800 Dosino dosing units coupled to a 20 mL autobuerette. The system was operated by the 214 

Tiamo 2.2 software. The in vitro protocol was amended from Williams et al. (28, 29) except 215 

that the overall volume of the buffer was increased to allow for a higher sample yield. The ratio 216 

of formulation (1.583g) to digestion buffer (57ml) remained constant. In brief, the buffer 217 

contained 2 mM TRIS maleate, 150 mM NaCl, 1.4 mM CaCl2 · 2H2O, adjusted to pH 7.5. For 218 

the digestion experiments the buffer was supplemented with 3 mM NaTDC and 0.75 mM PC 219 

(digestion buffer) and stirred for 12 hours before further usage. The pancreatin extract was 220 

prepared freshly by adding 5 mL of 5 °C buffer to 1 g of porcine pancreatic enzymes (8x USP), 221 

which was vortexed thoroughly. The mixture was centrifuged for 15 min at 5 °C, 2800 g 222 

(Hettich Rotina 380R) and 4 mL of supernatant were recovered and stored at 2 – 8 °C before 223 

further usage.  224 

 225 

For the in vitro lipolysis experiment 1.583 g of suspension (10 mg/mL) was dispersed into 57 226 

mL of digestion buffer for 10 min. Three 1 mL samples were taken at 2.5, 5 and 10 min from 227 

the middle of the vessel. pH of the media was adjusted and maintained at 7.5 throughout 228 

digestion using the pH stat method of the Titrando device with 0.2 M NaOH and 0.6 M NaOH 229 

for long and medium chain formulations, respectively. The amount of dispensed NaOH was 230 

recorded by the system. To the remaining 54 mL (1.5 g lipid formulation) dispersion, 6 mL of 231 
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pancreatic extract was added to initialize digestion. After 60 min the released non-ionized free 232 

fatty acids were determined by a pH increase of the buffer to pH 9.  233 

Samples of 4.9 mL were taken at 5, 10, 15, 30, 45 and 60 min during the digestion experiment 234 

from the middle of the vessel. In each sample and after 60 min the enzymes were inhibited by 235 

the addition of 1 M 4- Bromophenylboronic acid in methanol (5 μL per mL sample). All 236 

samples containing a lipid phase were centrifuged at 37 °C and 400,000 g for 30 min (Beckman 237 

Coulter Optima L-90K, Rotor: VTI 65.2). Samples, that did not contain a lipid phase (aqueous 238 

suspension) were centrifuged at 37 °C and 21,000 g for 30 min using a benchtop centrifuge 239 

(Hettich Micro 200R).  240 

 241 

2.5 Contact angle measurements 242 

Nilotinib’s wettability was determined using the contact angle measurement by the sessile drop 243 

technique. Nilotinib disks were prepared according to Muster et al. (30). In brief, 40 mg 244 

nilotinib were compacted for 1 min with a pressure of approximately 210 MPa (Star Specac 245 

manual hydraulic press). 6 μL of Peceol, Capmul MCM, olive oil, Captex 1000, 0.5 % (w/v) 246 

methylcellulose in water and pure water, respectively, were placed on the pressed disk using a 247 

fully automated optical tensiometer (Theta Attension by Biolin Scientific). After the drop was 248 

released the contact angle was captured using 76 frames per sec (FPS) for 20 sec followed by 249 

7.6 FPS for 100 sec. The contact angle was calculated directly, 0.5 sec, 60 sec and 120 sec after 250 

the drop release using the fit of the droplet’s shape to the Young-Laplace equation. The contact 251 

angle for one measurement was the mean of the individual calculated angles of each side of the 252 

droplet. All measurements were done on 3 disks and consisted of at least 5 measurements per 253 

time point.  254 

 255 
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2.6 Formulations for in vivo and in vitro studies 256 

The lipid formulations were prepared by combining 10 mg nilotinib with 1 mL lipid excipient 257 

followed by an overnight stir prior to dosing. The aqueous formulation was prepared by adding 258 

10 mg of nilotinib to 1 mL of the aqueous 0.5 % (w/v) methylcellulose solution and mixed 259 

thoroughly. In order to decrease the powder agglomerates the suspension was placed in an 260 

ultrasonic bath for 5 sec and vortexed again afterwards.  261 

 262 

2.7 In vivo study 263 

The protocol used for the in vivo pharmacokinetic study was approved by the institutional 264 

animal ethics committee in accordance with Belgian law regulating experiments on animals 265 

and in compliance with EC directive 2010/63/EU and the NIH guidelines on animal welfare. 266 

Male Sprague-Dawley rats weighing 280-320 g on the day of the experiments were purchased 267 

from Charles River Laboratories Deutschland (Sulzfeld, Germany) and maintained on standard 268 

food and water ad libitum in the laboratory for at least 5 days before entering the experiment. 269 

For the fasted study legs food was removed 16-20 h before dosing and water was available ad 270 

libitum at all times. In the case of the fed study leg, food was available throughout the study 271 

and was not removed. Parallel groups of animals were administered with each formulation at a 272 

volume of 2 mL/kg by oral gavage with a nilotinib dose of 20 mg/kg. By individual tail vein 273 

puncture, 200 µL blood samples were collected into plasma collection tubes containing 274 

dipotassium EDTA. Samples were taken at 0.5, 1, 2, 4, 6, 8, 10 and 24 h following oral dosing. 275 

Plasma was harvested immediately by centrifugation for 10 min at 1,000 × g and stored at -276 

80 °C until analysis. After the experiment the animals were euthanized. 277 

 278 
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2.8 Bioanalysis 279 

The plasma concentrations of nilotinib were determined by reversed phase ultra-performance 280 

liquid chromatography (UPLC). The Agilent 1260 series UPLC system comprised a binary 281 

pump, degasser, temperature controlled autosampler, column oven and diode array detector. 282 

The system was controlled, and the data analysed with EZChrom Elite version 3.3.2. The used 283 

method was modified from Pirro et al. (31). In brief, a Zorbax Eclipse Plus-C18 column (5 μm, 284 

4.6 mm x 150 mm) with a Zorbax Eclipse Plus-C18 guard column (5 μm, 4.6 mm x 12.5 mm) 285 

was used. The mobile phase consisted of water, methanol, acetonitrile and triethylamine 286 

(34:30:35:1 v/v) and was used at a flow rate of 0.9 mL/min. The sample and column 287 

temperature were set at 5 °C and 25 °C, respectively, and the detection wavelength was 267 288 

nm. Nilotinib was extracted from the plasma samples by liquid-liquid extraction. To 50 μL of 289 

the plasma sample 66 μL of a methanol acetonitrile mixture (30:35 v/v), containing 1.25 μg/mL 290 

sorafenib as internal standard, was added. The mixture was mixed thoroughly and centrifuged 291 

at 22 °C, 11,500 x g for 9 min. 50 μL of the supernatant was injected to the UPLC system for 292 

analysis. The limit of quantification in plasma by this method was 10 ng/mL and linearity was 293 

confirmed between 10 ng/mL and 4 μg/mL. The extraction efficiency was found to be > 92.5 % 294 

across the concentration range and the intra- and inter-day variability was 4.2 % and 5.4 % at 295 

maximum, respectively.  296 

 297 

2.9 Data Analysis 298 

After using the Bartlett’s test to check for equal variance a one-way ANOVA was performed 299 

for the lipolysis data using a Tukey post-hoc test to compare the different formulation 300 

performances. The solubility limited absorption dose (SLAD) was calculated for the 301 

biorelevant media and dispersions according to the following equation (1): 302 



Page 15 

 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑆𝑆𝑆𝑆 × 𝑉𝑉 × 𝑀𝑀𝑃𝑃 303 

where SSi is the solubility in the different media, V the fluid volume available in the intestine 304 

(500 mL) and Mp is the permeability dependent multiplier, which for low permeable drugs like 305 

nilotinib was kept at unity.  306 

 307 

The pharmacokinetic parameters were calculated using Microsoft Excel. The plasma 308 

concentration profiles were analysed by non-compartmental analysis and calculation of each 309 

area under the curve (AUC) was based on the linear trapezoidal rule. Mean residence time 310 

(MRT) was calculated according to the following equation: 311 

𝑀𝑀𝑀𝑀𝑀𝑀 =
𝑆𝑆𝐴𝐴𝑀𝑀𝐴𝐴0−𝑆𝑆𝑖𝑖𝑖𝑖
𝑆𝑆𝐴𝐴𝐴𝐴0−𝑆𝑆𝑖𝑖𝑖𝑖

 312 

where AUMC0-inf is the area under the first moment curve from timepoint 0 to infinity and 313 

AUC0-inf is the area under the curve from timepoint 0 to infinity. 314 

 315 

The statistical analysis for all in vivo parameters was performed using a one-way analysis of 316 

variance (one-way ANOVA) after using the Bartlett’s test to check for equal variance. The 317 

Gaussian distribution of the data was tested with the Kolmogorov-Smirnov test and the 318 

pairwise comparison of the groups was done using Tukey’s multiple comparison test. All 319 

statistical analyses were carried out using GraphPad Prism 5. 320 

  321 
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Table I Physicochemical properties and in vivo behaviour of nilotinib. 322 

Literature data 

LogP (32) 4.95 

Molecular weight [g/mol] (33) 565.98 

pKa values (33) 2.1, 5.4 

BCS class (34) 

DCS class 

II/IV 

IIb/IV 

Food effect (33) 29 % AUC increase with a light meal 
82 % AUC increase with a high fat meal 

Experimental data 

Melting point [°C] (by DSC) 236.42 ± 0.22 

FaSSIF solubility [μg/mL] 
FeSSIF solubility [μg/mL] 
 

In vitro FeSSIF/FaSSIF ratio 

0.32 ± 0.03 
3.16 ± 0.09 
 

9.98 

Olive oil solubility [μg/mL] 
Peceol solubility [μg/mL] 
Captex 1000 solubility [μg/mL] 
Capmul MCM solubility [μg/mL] 

6.82 ± 0.45 
928.76± 35.24 
50.19 ± 8.15 
3361.21 ± 318.01 

Employed particle size [μm] 1.31 ± 0.40 (D10) 
7.41 ± 4.06 (D50) 
197.88 ± 22.81 (D90) 

 323 
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3 Results 324 

3.1 Solubility in lipid excipients 325 

 326 

Figure 2 A: Nilotinib equilibrium solubility in LC-TG (olive oil), MC-TG (Captex 1000), LC-MG (Peceol), 327 

MC-MG (Capmul MCM) (n=3) and the % of a 300 mg Dose solubilised in 1 mL of lipid excipient at 37 °C. B: 328 

Nilotinib solubility in FaSSIF, FeSSIF and biorelevant lipid dispersions (n ≥ 3) and the amount of drug that can 329 

be dissolved in 500 mL of a biorelevant lipid dispersion utilizing the solubility limited absorption dose (SLAD). 330 

 331 

Nilotinib is a high Tm and high logP compound, hence displaying properties of a ‘brick dust’ 332 

molecule (Table I, Figure 1). Initial solubility screening in pure lipid excipient indicated that 333 

nilotinib was practically insoluble (35) in LC and MC TGs (Figure 2 A). The solubility was 334 

higher in monoglycerides (MG) compared to TG lipids. Within the TGs and MGs, a higher 335 

solubility was observed for the MC compared to the LC excipients. Overall, the percent of the 336 

therapeutic dose (300 mg) that would be dissolved in 1 mL lipid ranged between 0.01-1.5 % 337 

(Figure 2 A). This confirms that despite a high logP for nilotinib, the use of a classical lipid 338 

solution approach was not feasible, and hence lipid suspensions were developed to evaluate if 339 

lipids could still have a bio-enhancing influence on nilotinib.  340 

 341 
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Subsequently, nilotinib solubility was determined under biorelevant conditions. Solubility in 342 

FaSSIF was low at 0.0001 % of a 300 mg dose, whereas it increased approximately 10-fold in 343 

simulated fed state media (Figure 2 B, Table I). Indeed, nilotinib’s bioavailability is reported 344 

to be higher in the fed state (82 % increase in AUC after a high fat meal). Moreover, solubility 345 

was screened in lipidic dispersions to subsequently assess the nilotinib solubility on aqueous 346 

dispersion of lipid formulations in biorelevant media. Overall the solubility increases in the 347 

pure TG lipid dispersions (FaSSIFLC TG and FaSSIFMC TG) were relatively low, whereas lipid 348 

excipients that simulate post-digestive intestinal conditions (FaSSIFLCdig and FaSSIFMC dig) 349 

suggested significantly higher solubilisation capacity for nilotinib. The post digestive media 350 

showed an increase in the solubility limited absorption dose (SLAD) from 0.16 in FaSSIF to 351 

2.81 and 3.57 for FaSSIF LCdig and FaSSIF MCdig, respectively. Despite this increase in SLAD, 352 

the overall SLAD obtained was substantially lower than the therapeutic dose.  353 

 354 

3.2 In vivo bioavailability of nilotinib 355 

 356 

Figure 3 Plasma concentration profiles as a function of time (Mean ± SEM for n=5) for a crude aqueous 357 

suspension in the fasted state (♦), crude aqueous suspension in the fed state (○), LC MG [Peceol] (●), LC TG 358 

[olive oil] (□), MC MG [Capmul MCM] (▲) and MC TG [Captex 1000] (▽) suspension in male sprague-dawley 359 

rats. 360 

 361 
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 362 

Figure 4 Results of the in vivo study of nilotinib dosed in an aqueous suspension in the fasted and fed state, a MC 363 

TG (Captex 1000), MC MG (Capmul MCM), LC TG (olive oil) and LC MG (Peceol) suspension to male sprague-364 

dawley rats (n=5) The given statistical significance was compared to the aqueous suspension in the fasted state. 365 

A: AUC 0 h - infinity (mean ± SEM) and B: Mean residence time (MRT) (Whiskers: min. to max. value) 366 

 367 

Nilotinib suspensions were prepared in olive oil (LC TG), Captex 1000 (MC TG), Peceol (LC 368 

MG) and Capmul MCM (MC MG) and bioavailability was assessed in vivo in rats. The dose 369 

and lipid amount were fixed at 20 mg/kg and 2 mL/kg, respectively. The amount of nilotinib 370 

present in these lipid suspensions exceeded the equilibrium solubility in the lipid vehicles 1471-371 

fold for the LC TG formulation, 199-fold for the MC TG formulation, 11-fold for the LC MG 372 

formulation and 3-fold for the MC MG formulation. An aqueous nilotinib suspension was 373 

dosed as a comparator, and additionally nilotinib’s food effect was investigated by the 374 

administration of an aqueous suspension in the fed state. The mean plasma concentration versus 375 

time profiles are presented in Figure 3 and the AUC from 0 hours to infinity and mean residence 376 

time (MRT) for nilotinib after oral administration of the lipid and aqueous suspensions are 377 

shown in Figure 4. Table II presents a summary of the pharmacokinetic parameters obtained. 378 

 379 



Page 20 

 

Among the lipid formulations, the performance ranking of the LBF suspensions showed that 380 

the highest exposure was achieved for Peceol (LC MG) followed by Capmul MCM (MC MG), 381 

Captex 1000 (MC TG) and olive oil (LC TG), i.e. Peceol ≥ Capmul MCM ≥ Captex 1000 = 382 

olive oil. The LC MG suspensions showed a significantly higher AUC than the TG suspensions 383 

(p ≤ 0.05) and the MC MG suspension showed a significant higher AUC than the LC TG 384 

suspension, whereas there was no statistically significant difference between the other lipid 385 

suspensions (Table II). Additionally, a trend towards increased tmax was observed in cases 386 

where lipid excipients were used indicating that solubilizing benefits of the lipids were time-387 

delayed. 388 

 389 

The aqueous nilotinib suspension in the fasted state led to an AUC of 14369 ± 3747 ng.h/mL. 390 

In the cases of the lipid suspensions, the highest overall AUC was observed for the LC MG 391 

(AUC of 13103 ± 2557 ng.h/mL) and MC MG (AUC of 11210 ± 5476 ng.h/mL), which were 392 

not statistically dissimilar from the aqueous suspension. Critically however, no bioavailability 393 

enhancement was evident for any of the lipid suspension. On the contrary the MC TG showed 394 

a significant 2.8-fold decrease and the LC TG a significant 4.0-fold decrease (p < 0.01). Thus, 395 

relative to the aqueous suspension in the fasted state both TG formulations showed a significant 396 

reduced bioavailability. 397 

 398 

Dosing nilotinib to rats with free access to food resulted in a similar AUC compared to the 399 

dosing in the fasted rats. Thus, the profound food effect observed in humans was not evident 400 

in the employed rat model. It is notable that the MRT was prolonged in the fed state study, with 401 

the MRT being comparable to the MC suspension study group (Figure 4 B). A MRT 402 

performance ranking of aqueous suspension (fasted) = Peceol (LC MG) ≤ olive oil (LC TG) ≤ 403 

Captex 1000 (MC TG) = Capmul MCM (MC MG) = Aqueous suspension (fed) was observed.  404 
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Table II Pharmacokinetic parameters of nilotinib after oral administration of 20mg/kg to male sprague-dawley rats (n = 5). tmax and MRT given 405 

as median (range), all other parameters as mean ± SD. 406 

Pharmacokinetic parameters 

 Aq. suspension 
Fasted 

Aq. suspension 
Fed 

MC TG 
(Captex 1000) 

LC TG 
(olive oil) 

MC MG 
(Capmul MCM) 

LC MG 
(Peceol) 

cmax [ng/mL] 2648 ± 676 1423 ± 321 774 ± 345 605 ± 550 1321 ± 1038 2801 ± 756 

tmax [h] (range) 2 (2-4) 2 (2-4) 6 (4-10) 4 (2-6) 4 (1-6) 4 (4-6)  

AUC 0-10 h 
[ng*h/mL] 13984 ± 3576 9350 ± 2431 4264 ± 1949 3151 ± 2516 8323 ± 4873 12393 ± 2666 

AUC 0-inf. h 
[ng*h/mL] 14369 ± 3747 13335 ± 3487 5168 ± 2197 3548 ±2711 11210 ± 5476 13103 ± 2557 

MRT [h] (range) 4.17 (3.32-4.81) 7.79 (7.49-9.60) 7.37 (5.91-8.04) 6.18 (4.67-7.70) 8.35 (6.94-8.64) 5.57 (5.05-7.12) 

Frel [%] a 100 92.80 ± 24.27 35.96 ± 15.29 24.69 ± 18.87 78.01 ± 38.12 91.19 ± 17.80 

a Relative to the aqueous suspension in the fasted state407 
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3.3 Drug Solubilization during in vitro dispersion and digestion. 408 

 409 

Figure 5 Results of the in vitro lipolysis (mean ± SEM; n=3) for the aqueous suspension (♦), LC MG [Peceol] 410 

(●), LC TG [olive oil] (□), MC MG [Capmul MCM] (▲), MC TG [Captex 1000] (▽). A: Percent of nilotinib in 411 

the aqueous phase, B: Percent of nilotinib in the calculated lipid phase, C: Distribution of nilotinib across the 412 

aqueous (white), calculated lipid (light grey) and solid phase (dark grey) after 60 min of digestion, D: Free fatty 413 

acids released over time for the studied lipid-based formulations corrected for a blank during 60 min of digestion. 414 

 415 

In order to provide an improved mechanistic understanding of the in vivo pharmacokinetics, 416 

further in vitro studies were undertaken. Thus, the lipid suspensions were assessed using the 417 

dynamic in vitro lipolysis model. Lipid suspensions were dispersed initially in biorelevant 418 

buffer representing the fasted state for 10 min prior to initiation of the digestion by the addition 419 
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of lipase. The release of nilotinib into the aqueous phase during the dispersion and digestion is 420 

shown in Figure 5 A.  421 

 422 

Overall for the four lipid suspensions, the extent of drug solubilised in the aqueous phase was 423 

higher compared to the aqueous suspension throughout dispersion and digestion. However, the 424 

percent of the dose solubilised in the aqueous phase was low at between 0.1 and 1.1 % of the 425 

dose. The rank order of the five tested formulations was Capmul MCM (MC MG) = Captex 426 

1000 (MC TG) > Peceol (LC MG) > olive oil (LC TG) = aqueous suspension. Upon dispersion 427 

of the lipid suspensions the highest concentration in the aqueous phase was observed for the 428 

MC TG suspension with 2.5 ± 1.8 % of the dose solubilised, whereas at the end of digestion 429 

the highest nilotinib concentration of 1.0 ± 0.1 % was observed for the MC MG formulation. 430 

It was notable that upon the start of digestion the initial solubilisation capacity for nilotinib was 431 

reduced for the MC TG, LC TG and LC MG suspensions. However, for these three lipid 432 

suspensions an increase of the nilotinib concentration was observed after the initial drop, 433 

indicating that the post digestive products aid the solubilisation of nilotinib. In the case of the 434 

MC MG suspension the nilotinib concentration in the aqueous phase steadily increased during 435 

dispersion and digestion. These observations translated to a SLAD from 0.16 for the aqueous 436 

suspension to 0.28– 1.09 for the lipid suspensions after 60 min of digestion. 437 

 438 

Figure 5 C presents the distribution of drug between the aqueous phase, pellet phase and ‘oil’ 439 

phase after 60 min of digestion of the sample. As expected most of nilotinib was recovered in 440 

the solid phase for all five suspension formulations, which mainly reflects suspended drug 441 

particles. In the case of the poorly dispersible TG suspensions, an oily lipid phase was 442 

particularly evident during the initial stages of digestion. This oily phase most likely reflected 443 

undispersed and undigested or partially digested lipids in the formulation. The quantity of drug 444 
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in this phase was theoretically calculated using a mass balance approach i.e. by subtracting the 445 

quantity of drug determined analytical in the pellet and aqueous phase samples from the total 446 

amount of drug present. Interestingly, at the initial phase of digestion, a greater amount of drug 447 

was calculated to be within this oil phase for the TG formulations relative to the MG 448 

formulations (Figure 5 B). Up to 85 % and 83 % of nilotinib’s dose was theoretically calculated 449 

to reside within this oil phase on top of the media in the lipolysis vessel for the olive oil (LC 450 

TG) and Captex 1000 (MC TG) formulations, respectively. These amounts exceeded the 451 

equilibrium solubility of the drug within these oils significantly indicating that nilotinib was 452 

likely to be present as suspended drug crystals within this phase. By comparison, for the MG 453 

formulations much lower amounts of drug were present in this initial phase of digestion, with 454 

52 % and 10 % in Peceol (LC MG) and Capmul MCM (MC MG), respectively. Therefore, it 455 

would appear that the formulations that performed poorest in vivo displayed the greatest 456 

amount of drug within this oil phase in the initial phase of digestion. As digestion proceeded, 457 

the amount of drug within this oil phase decreased, most likely reflecting the digestion of these 458 

lipid formulations, which was mirrored by the increase in free fatty acids (FFA) released 459 

(Figure 5 D). In particular, Captex 1000 (MC TG) distinct increase in FFA generated between 460 

15-30 min of digestion corresponded to the decrease in nilotinib concentrations in the oil phase 461 

from 70.2 ± 12.7 % at 15 min to 1.4 ± 1.0 % at 30 min. A similar, albeit less dramatic, decrease 462 

in the amount of drug estimated in the oil phase was observed for the olive oil formulation 463 

between 15 to 30 min. However, the overall extent of digestion for the olive oil (LC TG) 464 

suspension was lower relative to the other formulations. Following completion of a back 465 

titration to pH 9 to adjust for the non-ionised FFA the rank order of digestibility was olive oil 466 

(1.30 mM FFA released) < Peceol (2.22 mM FFA released) ≤ Captex 1000 (2.93 mM FFA 467 

released) < Capmul MCM (6.27 mM FFA released). 468 

 469 
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3.4 Wettability of nilotinib crystals with lipid and aqueous media 470 

 471 

Figure 6 Wettability of nilotinib by water (◊), 0.5% methyl cellulose solution (♦), Peceol (●), olive oil (□), Capmul 472 

MCM (▲), Captex 1000 (▽). Measurements for each time point are done on 3 disks (n ≤ 5). 473 

 474 

In order to probe whether differing wetting characteristics of nilotinib crystals between the 475 

various formulations could be used to explain lower bioavailability of the TG formulations, the 476 

wettability of nilotinib by the five formulation vehicles and pure water was determined utilizing 477 

the sessile drop technique. The results are presented in Figure 6. The equilibrium contact angle 478 

was reached after 60 seconds of the measurement. Water was used as a reference which 479 

confirmed the hydrophobic nature of nilotinib with contact angles of up to 80°. Additionally, 480 

the four lipid excipients and the 0.5% methyl cellulose vehicles from the in vivo study were 481 

tested. It was observed that all lipid vehicles used in this study wetted nilotinib better than the 482 

aqueous 0.5% methyl cellulose with contact angles between 10.1° and 12.5°. It was further 483 

observed that the lipids penetrated the nilotinib disk much faster covering the nilotinib crystals 484 

in a lipid film. 485 

 486 

  487 
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4 Discussion 488 

Lipid excipients have shown great potential to enhance oral bioavailability by increasing 489 

solubilisation in intestinal fluids and improving intestinal permeability/uptake (15). Lipid 490 

suspensions have been investigated for a number of drugs as an approach to enhance in vivo 491 

bioavailability with the overall experience that in the majority of reported studies a benefit was 492 

observed (19-23). However, the utility of any LBF as a bio-enabling strategy is highly 493 

dependent on the molecular properties of the candidate drug, and in particular both 494 

hydrophobic and lipophilic properties of the drug. In the case of highly hydrophobic ‘brick 495 

dust’ molecules, there are knowledge gaps in the literature on the usefulness of lipid 496 

suspensions and there is a need for more studies involving high Tm and high logP drugs to 497 

assess potential in vivo merits. 498 

 499 

Nilotinib is a hydrophobic compound (Tm of 236 °C), but it is also highly lipophilic (logP 4.95) 500 

and displays an 82 % higher bioavailability on administration with a fat rich meal (33). In this 501 

study, the solubility of nilotinib in lipids was found to be very low. While solubility increased 502 

in more polar oils such as MC and MG, the overall solubility in lipids was insufficient to 503 

solubilise the dose. Solubility screening in biorelevant media confirmed a higher solubility in 504 

the fed state intestinal fluids with a FeSSIF/FaSSIF ratio of approximately 10. However, overall 505 

with a SLAD of 0.16 in FaSSIF, oral absorption of nilotinib is clearly solubility limited. 506 

Subsequent biorelevant solubility screening that mimicked the post digestive state appeared to 507 

lead to further enhancements in in vivo solubilisation, which may in part explain the increased 508 

bioavailability observed clinically in humans in the fed state. It might therefore have been 509 

anticipated that the in vivo study would show increased bioavailability in the fed state as well 510 

as an increased exposure following dosing as lipid suspensions. However, in the employed rat 511 
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model, a food effect was not observed most likely reflecting limitations of this model, which 512 

are described in further detail below. Additionally, despite the above in vitro results the lipid 513 

suspensions did not show an increased exposure compared to the aqueous suspension.  514 

 515 

The in vivo study results showed that both MG and TG suspension did not result in a 516 

bioavailability enhancement. Both MG suspensions were comparable to the aqueous 517 

suspension and a trend towards a better performance of the MG suspensions compared to the 518 

TG suspensions was observed. While only the LC MG suspension was statistically significant 519 

different from both TG suspensions (p < 0.01), the MC MG suspension was significantly 520 

different from the LC TG suspension (p < 0.05). In the case of the TG suspensions, 521 

bioavailability was significant lower relative to the LC MG and aqueous suspension (p < 0.01), 522 

respectively. While the previous biorelevant dispersion experiments suggested a higher 523 

solubilisation for the MC formulations relative to the LC formulation, this performance was 524 

not evident in the in vivo study in case of the MGs. The better performance of the Peceol (LC 525 

MG) versus Capmul MCM (MC MG) suspension may reflect other effects of LC versus MC 526 

lipids on intestinal uptake and/or absorption. While the impact of MC and LC remains unclear, 527 

it appears that the long chain digestion products more readily maintain solvation capacity (36). 528 

Additionally, it was interesting to note that the MRT of LC MG was significantly lower 529 

compared to the MRT of MC MG (i.e. 5.57 h versus 8.35 h) indicative of a faster absorption 530 

process for the LC MG suspension (p < 0.01). In general, MRT is an indicator of the average 531 

time a drug molecule spends in the body. As none of the excipients used in this study are known 532 

to significantly alter distribution, metabolism or excretion, an increased MRT between study 533 

groups is indicative of a delayed absorption phase, most likely reflecting prolonged drug 534 

residence time in the GIT.  535 

 536 
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Further in vitro experiments were conducted to provide mechanistic insights into the results 537 

obtained in vivo. The formulations were therefore tested in an in vitro digestion and dispersion 538 

experiment to explore the changes in solvents solvation capacity over time as possible causes 539 

for a lower dissolution rate and bioavailability of the lipid formulations (Figure 5). The 540 

dissolution/release into the aqueous phase was limited in all tested formulations (Figure 5 A). 541 

Both MC formulations and the LC MG formulations performed better than the aqueous 542 

suspension. The drug amount in the aqueous phase after 60 min of digestion was influenced by 543 

the excipients chain length with MC excipients resulting in higher concentrations than LC 544 

excipients. However, the performance ranking observed based on drug concentrations in the 545 

aqueous phase after 60 minutes digestion, did not match the in vivo performance ranking. In 546 

fact, in vivo the aqueous suspension showed similar or higher bioavailability compared to the 547 

lipid suspensions. This suggests that the amount of drug in the aqueous phase may not be a 548 

strong predictor of lipid suspension performance, but rather other factors that govern drug 549 

dissolution and release from lipid suspensions may be relevant such as limited solubility in 550 

lipids, drug-excipient interactions and crystalline particle characteristics. While the aqueous 551 

phase data seemed to overestimate the in vivo performance of lipid suspensions, it is also 552 

possible that the test setup underestimated the aqueous suspension. The saturation levels in 553 

such closed in vitro test settings are quickly reached for low soluble drugs limiting the 554 

dissolution and release into the aqueous phase. Clearly, the presence of digestible lipid 555 

excipients increased nilotinib’s solubilisation post digestion as shown by the solubility studies 556 

in the artificial post-digestive media. However, it is not clear whether the enhanced 557 

solubilisation will lead to increased absorption or whether release and/or dissolution of drug 558 

crystals is the rate limiting step to absorption. An additional absorption step would allow further 559 

insights and the evaluation of the release and dissolution rate for such low soluble compounds 560 

like nilotinib (27, 37). Therefore, it may also reflect the limitations of the standard in vitro 561 
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lipolysis test (37, 38). Furthermore, nilotinib is a weak base that showed increasing solubility 562 

with decreasing pH of the media. The better solubility in a gastric media may generate higher 563 

initial concentrations in the intestine leading to a better absorption. A two-step gastro intestinal 564 

lipolysis may be beneficial for weakly basic compounds, like nilotinib, to get a better match 565 

with the in vivo data (39). 566 

 567 

While most of nilotinib was recovered in the solid phase (Figure 5 C), it appeared that for the 568 

TG-based suspensions nilotinib concentrations in the lipid phase remained high in the initial 569 

stages of digestion. At the start of digestion approx. 70 % of the nilotinib dose resided within 570 

the lipid TG phase in the vessel decreasing to approx. 20 % at the end of digestion (Figure 5 571 

B). This was equivalent to approx. 1244-fold and 165-fold excess of equilibrium drug solubility 572 

in the olive oil and Captex 1000 phase, respectively. Such high amounts of drug within the TGs 573 

indicated that nilotinib crystals remained unreleased within the oil phase on top of the vessel 574 

and were not sampled (the samples were taken from the middle of the vessel) and consequently 575 

not recovered in the solid pellet phase that was collected after ultra-centrifugation. In fact, for 576 

the TG suspensions, a distinct undispersed “oil” phase was evident at the top of the vessel on 577 

dispersion and during the initial phases of digestion. As samples were collected from the middle 578 

of the vessel, drug crystals that were retained within the oil phase were not sampled. 579 

Consequently, the major reason for the higher amount of drug in the oil phase was the poor 580 

dispersibility of the TG based suspensions. This behaviour of nilotinib indicated a pronounced 581 

hydrophobic interaction between the TG excipients and nilotinib crystals, potentially delaying 582 

the release of nilotinib crystals into aqueous media which may lead to slower overall 583 

dissolution. Such a kinetic effect was likely of relevance for the in vivo performance of the 584 

formulations. In the case of the MG excipients that displayed greater dispersibility in the 585 

biorelevant media relative to TGs, only a minor (LC MG) or no (MC MG) lipid layer was 586 
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evident in the vessel. The overall amount of drug estimated to reside within the lipid layer for 587 

these MG formulations was lower than the TG formulations and was not influenced to any 588 

great extent by digestion. Collectively, these observations may explain the lower bioavailability 589 

observed for the TG formulations relative to the MG formulations, where nilotinib crystals 590 

were not released from the undispersed oil phase leading to a delayed release of nilotinib 591 

crystals within the intestine which may have reduced absorption overall.  592 

 593 

The propensity for nilotinib to be released and to dissolve in any solvent is fundamentally 594 

determined by the balance between the crystal lattice energy and the interactions with the 595 

solvent. Additionally, the rate of dissolution depends on a number of factors including particle 596 

size, viscosity of the solvent, hydrodynamics, the overall available volume of solvent, the 597 

solvents solvation capacity and wettability of the crystalline particles (40). When comparing 598 

the lipid and aqueous suspensions used in vivo in this study, all of these factors were expected 599 

to remain constant except for wettability, as the addition of lipids alters the effective wettability 600 

of nilotinib crystals. For all lipid excipients a low contact angle of 10.1 ° - 12.5 ° was observed, 601 

whereas for 0.5% methyl cellulose, a higher contact angle of 46.4 ° was obtained. This 602 

indicated a stronger interaction between nilotinib crystals and the lipid vehicles compared to 603 

the aqueous vehicle. Thus, greater wettability of the nilotinib crystals within the lipid 604 

suspensions may have been a contributor to the in vivo performance. The observations of 605 

greater wettability in lipids further supported the slower release of crystals from the 606 

undispersed oil layer observed in the in vitro lipolysis test. Therefore, we suggest that the 607 

pronounced hydrophobic interactions between the lipids and nilotinib crystal will favour the 608 

formation of a lipid film around the nilotinib crystals, which remains intact even after 609 

dispersion in aqueous media and during the initial phases of digestion. This surface bound lipid 610 

film may delay wetting of nilotinib crystals by aqueous media and therefore result in delayed 611 
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dissolution of the drug. In addition, the partition of drug through the lipid layer into the aqueous 612 

media will be limited by the inherent low solubility of this drug within lipids. Over time the 613 

lipid film will gradually be removed, either via dispersion of the lipid excipient into the aqueous 614 

media or digestion of the lipids, leading to complete wetting of the drug crystals by the aqueous 615 

media and dissolution of the crystals in aqueous media can proceed. A delayed release from 616 

the formulation would also explain the significant exposure decrease for the TG formulations. 617 

The delayed release from lipid suspensions was further supported by observations from the in 618 

vivo mean residence time (MRT). The MRT was significantly longer for the LC TG, MC TG 619 

and MC MG formulations, relative to the aqueous suspensions (p < 0.05). It therefore seems 620 

as if nilotinib dissolution and absorption from the TG suspensions, and to a lesser extent MC 621 

MG suspension, was slower and may have led to a reduction on bioavailability for the TG 622 

formulations. Overall, a performance increase might be achieved by preventing the lipid film 623 

formation utilizing for example a chase dosing regimen, in which the lipid and drug are 624 

administered consecutively (14) or in a capsule-in-capsule approach. Additionally, the use of 625 

nilotinib with more polar and amphiphilic excipients such as surfactants may result in a better 626 

performance. 627 

 628 

While the study demonstrated that rats did not show a food effect for nilotinib in this specific 629 

model, this may be related to the model itself or species-specific physiological differences, and 630 

in particular differences regarding bile secretion and/or gastro-intestinal volumes (41). One 631 

limitation of the fed state study leg employed in this study is that the rats had free access to 632 

food throughout the experimental procedure. As a result, this may have led to variability in the 633 

amount of food present in the stomach and intestine of rats. While it has been demonstrated 634 

that Sprague-Dawley rats can be used to predict food effects in humans for several drugs, it is 635 

recommended to use a specific protocol involving a homogenized FDA breakfast (42). 636 
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However, due to logistical constraints an FDA style fed state protocol was not employed in this 637 

study. Nevertheless, it was noteworthy that the MRT in the fed state was significantly longer 638 

than the MRT in the fasted state, which might reflect a delayed absorption process in the fed 639 

state. Interestingly, relative to the aqueous suspension in the fasted state, the MC MG, MC TG 640 

and LC TG suspensions displayed a longer MRT, and comparable to that obtained for the 641 

aqueous suspension in the fed state. This may indicate that these lipid excipients mimicked fed 642 

state conditions in terms of a slower absorption, due to the digestion process (43).  643 

 644 

5 Conclusion 645 

This study focused on providing new in vivo and in vitro insights for the ‘brick dust’ drug 646 

nilotinib in LBFs. In vivo neither TG nor MG lipid suspension resulted in an increase in 647 

bioavailability of nilotinib relative to an aqueous suspension. Nevertheless, it was 648 

demonstrated that dispersibility of the lipids was a major contributing factor to the performance 649 

of nilotinib lipid suspensions. A higher in vivo exposure was observed for nilotinib lipid 650 

suspensions based on MG compared to TG lipids. The poorly dispersible TG suspensions 651 

resulted in a significantly reduced bioavailability compared to the aqueous suspension. 652 

Subsequent, in vitro studies suggested that the lower bioavailability observed for both TG 653 

suspensions most likely reflected a slower release of nilotinib from these formulations which 654 

were also reflected by a slower in vivo absorption. The key determinants for the success of a 655 

lipid suspension using a ‘brick dust’ molecule appeared to be the dispersibility and release from 656 

the lipid excipient.  657 

 658 
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