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Executive summary 

 

Storing surplus or curtailed renewable electricity as a gaseous transport fuel is a 

suggested method of reducing greenhouse gas emissions, increasing the supply of 

indigenous energy, providing long-term energy storage, facilitating intermittent 

renewable electricity sources and providing an advanced source of renewable 

transport fuel. The technology involved is Power to Gas (P2G) which uses electricity 

to split water into hydrogen (H2) and oxygen (O2) through electrolysis (power to 

hydrogen). Subsequently power to methane involves combining the H2 with carbon 

dioxide (CO2) to produce methane (CH4) via the Sabatier reaction (4H2 + CO2 = CH4 + 

2H2O). Storage of renewable electricity as CH4 allows for long term storage by utilising 

the existing natural gas grid infrastructure. The aim of this thesis is to evaluate the 

viability of renewable gas produced from P2G utilised as an upgrading system for a 

biogas plant by assessing the technical, economic, and environmental aspects of such 

a system. Various methods were applied in this thesis: a linear additive model was 

used for sustainability assessment; an Excel model and Superpro designer software 

were applied for technology and costs analysis; and GaBi software was used to assess 

environmental impact. The result of the sustainability assessments of large scale 

energy storage technologies (P2G, pumped hydroelectric storage (PHES), and 

compressed air energy storage (CAES)) indicated the benefits of P2G as a dynamic 

decentralised mechanism which facilitated long term storage in the natural gas grid 

and facilitated change in energy vector from electricity to gas and subsequent 

availability for renewable heat and transport. The potential resource of CO2 from 
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biogas in Ireland was assessed at 430 Mm3 per annum if all potential feedstocks for 

anaerobic digestion are utilised; this required a resource of 7,654 GWhe to be 

consumed to produce H2 to react with the CO2 in the biogas. The production costs of 

renewable gas from several feedstocks were calculated. These varied (depending on 

system inputs such as cost of electricity and feedstocks) between €1 and €2.5/m3 of 

renewable methane. The recast Renewable Energy Directive (RED) requires transport 

biofuels to effect a 70% GHG saving on a whole life cycle analysis when compared to 

the fossil fuel displaced. Our work shows that for power to gas to be sustainable as 

an upgrading method the maximum GHG emission of electricity used to produce the 

hydrogen should be less than 25.7 CO2eq/MJ. 
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    Introduction 

 Background 

Greenhouse gas (GHG) emissions have been significantly increased from 2000 to 

2010 in spite of the implementation of various climate change mitigation policies 

(Intergovernmental Panel on Climate Change 2015).  In an attempt to tackle the 

increasing GHG emissions, the 21st meeting of the Conference of Parties in Paris 

(COP21) has agreed to keep global temperature increase well below 2oC as compared 

to pre-industrial levels (UNFCCC 2016). 

Ireland contributed the third highest emissions of GHGs (CO2eq) per capita in 2013 in 

the EU (Central Statistics Office 2016).  In 2014, the Irish Environmental Protection 

Agency (EPA) stated that Ireland would not meet its EU 2020 targets for reducing 

GHG emissions. Even under the best case scenario (which assumes full 

implementation of government policies and measures), the emissions in 2020 are 

expected to be 5 to 12% below the 2005 levels thus, not meeting the 20% reduction 

target (Irish Environmental Protection Agency). The main contributors to GHG 

emissions in Ireland are agriculture, transport, and energy industries (Environment 

Protection Agency 2017). In 2015, agriculture contributed 33% of total GHGs, whilst 

transport and energy industries each accounted for approximately 19% of emissions 

(Environment Protection Agency 2017). Increasing renewable energy use in transport 

and energy is essential to mitigate GHG emissions. Thus far, Ireland has primarily 

focused on renewable electricity and as a result, electricity is far more decarbonised 
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and has far higher levels of renewable energy than that of the heat and transport 

sectors. As an island with limited interconnection, Ireland is expected to curtail 

approximately 7-14% of renewable electricity produced by 2020, due to periods 

when supply exceeds demand (Mc Garrigle, Deane, and Leahy 2013).  

The EU 2020 target for renewable energy in Ireland is 16%; Irish national targets are 

40% renewable electricity, and 12% renewable heat with an EU target of 10% 

renewable transport (Persson et al. 2014). Energy consumption in Ireland currently 

breaks down to 20% electricity, 40% heat, and 40% transport (Murphy and 

Thamsiriroj 2011). Furthermore, in 2014 Ireland imported 85% of its energy, of which 

56% was oil, 31% natural gas, 10% coal, 2% was electricity, and 1% was biofuel (SEAI 

2016). The reliance on imported fuel in Ireland is unsustainable and a shift to 

indigenous energy sources is therefore required. Additionally, any renewable fuels 

need to ensure sustainability which may be defined by the European Commission 

requirement of achieving 70% greenhouse gas saving compared to fossil fuel 

displaced by 2021 (EC 2017).  

Power to gas (P2G) has been proposed as a means of reducing the renewables deficit, 

whereby surplus renewable electricity would be stored as a gas and hence contribute 

to Irelands EU 2020 targets for renewable transport fuel and heat. P2G involves 

electrolysis that ideally utilises surplus renewable electricity (that would be curtailed 

or constrained) to split water into hydrogen (H2) and oxygen (O2). Since storing and 

utilising H2 would require expensive new infrastructure, currently it is more beneficial 

to convert the H2 to methane (CH4) that can be stored in the existing natural gas grid 
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infrastructure. The conversion of H2 to CH4 requires a methanation step that 

combines the H2 from electrolysis with CO2 in a Sabatier reaction (4H2 + CO2 = CH4 + 

2H2O). The CO2 can be sourced from the biogas generated from anaerobic digestion 

as biogas contains approximately 45% CO2. This renewable gas is chemically 

equivalent to natural gas and can be used for heating homes or fuelling compressed 

natural gas vehicles. 

Biogas is produced through the anaerobic digestion of organic material; biogas 

contains 50-60% CH4 and 40-50% CO2. Normally, biogas can be upgraded to 

biomethane by removing the CO2 contained in the biogas and using as a natural gas 

substitute or to produce electricity by a combined heat and power system. If a biogas 

is upgraded by a methanation process, the final methane produced is practically 

doubled as the CO2 in the biogas is converted to an equal amount of methane. 

 Ambition of Thesis 

The aim of this thesis is to assess the techno-economic and environmental issues of 

power to gas systems when acting as an upgrading unit for a biogas plant. To achieve 

this, various methodologies were applied:  

• multi-criteria decision analysis in a sustainability assessment;  

• creating a model to assess the GHG savings;  

• assessing the availability of CO2 from biogas plants of different feedstocks in 

Ireland; 

• calculating the potential H2 that could be produced from curtailed wind;  
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• calculating the cost of the renewable methane from various feedstocks;  

• using Superpro Designer and GaBi to assess the techno-economic and life 

cycle analysis specifications of a biogas plant with various upgrading methods.  

The literature on in-depth systems analysis of P2G systems used as an upgrading 

element of a biogas plant (AD&P2G) is sparse in particular when considering techno-

economic analyses and lifecycle assessments. Such techno-economic analysis and 

lifecycle assessments can allow an assessment of this technology in terms of the 

distance to commercialisation. 

In essence, this research investigates whether the process is feasible by answering 

the following research questions: 

• How sustainable is P2G when compared to other large-scale storage 

technologies? (Chapter 3) 

• What is the combined production cost of renewable gas produced from 

AD&P2G fed by a range of feedstocks? (Chapters 4 & 5) 

• What is the potential capacity of CO2 from biogas sources and what are the 

GHG emission reductions if the P2G process is applied? (Chapters 4 & 6) 

• What parameters would affect the production costs and environmental 

impacts of renewable methane? (Chapters 4, 5 &6) 

 Brief overview of the chapters and structure of thesis work 

The thesis is structured into seven chapters. Chapter one (Introduction) provides the 

background to the technology and the aims and objectives of the thesis with an 
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overview of the thesis. Chapter two (Literature Review) presents the state of the art 

including a literature review on biogas upgrading methods, renewable methane 

utilisation pathways, and power to gas systems. Chapter 3 then assesses the 

sustainability of large energy storage technologies. Chapter 4 evaluates the cost to 

produce renewable methane from an AD&P2G plant fed by various available 

feedstocks in Ireland. Chapter 5 focuses on the difference between traditional 

upgrading and biological methanation upgrading of a central biogas plant with grass 

and dairy slurry as feedstocks. Chapter 6 considers the greenhouse gas emissions as 

well as other environmental impacts of a biogas plant with grass silage and dairy 

slurry feedstocks with upgrading by a traditional upgrading process or a biological 

methanation process. The RED recast considers carbon capture and replacement 

(termed eccr in the RED recast) as a carbon credit. However, the CO2, that is captured 

and utilised, will be emitted into the atmosphere when biomethane is combusted. 

Thus, Chapter 4 in this thesis examines the GHG emission saving when CO2 from the 

biogas plant is considered as a carbon credit as per the RED recast. Meanwhile, in 

Chapter 6, no carbon credit is applied, which many scientists believe is more apt.  

Chapter 7 provides the conclusions for the whole thesis and recommends research 

plans in the future. The structure and the link between each chapter is presented in 

Figure 1-1. 
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Figure 1-1. The structure of the thesis 
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• Effects of electricity and 
grass silage costs on the cost 
of renewable methane.

• GHGs, other environmental 
impacts;

• The contribution of dairy 
slurry as a co-feedstock to 
GHG mitigation;

• The importance of electricity 
in mitigating GHG emissions.

Chapter 7
Conclusions and 

recommendations
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Each chapter analysed one aspect of the AD&P2G system; the overall theme is the 

production of renewable gas from those processes. Chapters 3, 4, 5, and 6 are peer-

reviewed journal papers and appear in the thesis as per published manuscripts with 

some minor modifications to ensure the logical and structural flow of the whole 

thesis. Each of those chapters contains its own abstract, introduction, methodology, 

results, and discussion and can be read independently or as a sequence provided in 

the thesis. Chapters 2 to 6 are summarised below. 

Chapter 2: Literature review 

This chapter aims to provide basic information on P2G. How does power to hydrogen 

work? How does methanation work? What are the differences between biological 

methanation and catalytic methanation? The chapter reviews potential sources of 

CO2 and the scientific literature in the P2G area. Biogas utilisation pathways, type of 

upgrading methods, as well as the number of biogas plants in the world are detailed 

in this chapter. 

Chapter 3: Sustainability assessment of large scale storage technologies for surplus 

electricity using group multi-criteria decision analysis 

Chapter 3 assesses the sustainability of large scale energy storage technologies: 

power to gas (P2G) - methane, pumped hydroelectric storage (PHES) and compressed 

air energy storage (CAES) by using single criterion and group multi criteria analysis. 

The single criterion data was reviewed from literature and compared with each other. 

The normalisation processes were then applied for single criterion. The normalised 

data was used in a linear additive model to calculate preferable values (if a 
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technology has the highest preferable values, the technology is considered as the 

most sustainability). Other variables of the model were the weightings of the criteria, 

which were assessed by researchers by filling the assessment forms. The weight of a 

criterion reflects a relative important to the sustainable development objective. 

Chapter 4:  Use of surplus wind electricity in Ireland to produce compressed 

renewable gaseous transport fuel through biological power to gas systems. 

As chapter 3 concluded that P2G is preferable in many situations among three large 

scale energy storage systems, chapter 4 follows on by evaluating the potential of 

renewable methane from a biogas plant upgraded by a P2G system in Ireland. This 

chapter gave an overview of how much CO2 could be utilised, how much CO2 was 

produced and how much CO2 was saved compared to fossil fuel for seven types of 

feedstocks. Excel models were built to calculate the combined cost of renewable gas 

and biomethane produced from biological power to gas systems, the potential CO2 

capacity as well as CO2eq emissions of renewable methane from various feedstocks 

including: grass; slurry; organic fraction of municipal solid waste; and seaweed.  

Chapter 5: Techno-economic analysis of biogas upgrading via amine scrubber, 

carbon capture, and ex-situ methanation. 

Chapter 5 further develops the thesis and builds upon chapter 4 by focusing on a 

techno-economic analysis for the feedstock combination of grass and dairy slurry. 

Based on a conceptual level of a process design, this chapter develops detailed 

process flow diagrams for a biogas plant upgraded by an ex-situ methanation; by an 

amine scrubber; and by combinations of these upgrading technologies. Superpro 
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Designer, a simulation software, was used which facilitates rigorous assessment of 

materials and energy requirements, capital expenditure (CAPEX) and the operational 

cost (OPEX). The output included for the minimum selling price of renewable 

methane. 

Chapter 6: Can power to methane systems be sustainable and can they improve the 

carbon intensity of renewable methane when used to upgrade biogas produced 

from grass and slurry?  

Chapter 6 advances upon the work carried out in Chapter 5 by conducting a life cycle 

assessment of those processes. GaBi software (Leinfelden-Echterdingen, Germany, 

version 8.2) was used to calculate the global warming potential, acidification 

potential, freshwater eutrophication potential, particulate matter\respiratory 

inorganics, and the ozone depletion potential of renewable methane produced from 

the process. This chapter also analysed the important roles of slurry in co-digestion 

with grass; of fugitive methane emission on GHG emissions; of carbon sequestration 

in the soil and the decarbonisation level of electricity used to produce hydrogen in 

the power to gas upgrading system. 
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     Literature review 

 Biogas 

Biogas, a mixture of CH4, CO2, and some trace gases (H2S, siloxanes, nitrogen, 

hydrogen and water vapour), is produced by the decomposition of organic material 

by microorganisms under an anaerobic condition.  A biogas plant works by utilising 

municipal waste, sewage, agricultural waste, manure, plant material, waste water, 

or food waste to feed anaerobic digesters to produce biogas. The utilisation pathways 

of biogas are shown in Figure 2-1. A biogas plant with combined heat and power to 

produce electricity and heat is a common pathway in Germany (Poeschl, Ward, and 

Owende 2010). In order to be able to inject the gas into the gas grid, biogas needs to 

be upgraded to 97% biomethane (Persson, Jönsson, and Wellinger 2006). The 

traditional upgrading methods are  water scrubbing, organic solvent scrubbing, 

amine scrubbing, pressure swing adsorption (PSA), and gas separation membranes 

(Bauer, Persson, et al. 2013). There are 480 biogas plants with upgrading units in 

Europe and 70 biogas plants outside Europe, most of the plants inject the gas into the 

gas grid (IEA Bioenergy Task 37 2016). Water scrubbing, PSA and amine scrubbing are 

widely applied in Europe (Bauer, Persson, et al. 2013). Each technology has its 

advantages and disadvantages. For example, amine scrubbing has a small amount of 

methane emissions (<0.1%) but consumes high quantities of heat. All those 

traditional upgrading technologies eliminate CO2 from biogas. Catalytic or biological 

methanation is a new technology that utilises the CO2 fraction to produce more 

https://en.wikipedia.org/wiki/Municipal_waste
https://en.wikipedia.org/wiki/Sewage
https://en.wikipedia.org/wiki/Manure
https://en.wikipedia.org/wiki/Plant_material
https://en.wikipedia.org/wiki/Food_waste
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methane, thus this technology could be considered as an upgrading unit of a biogas 

plant. 

 

Figure 2-1. Pathways of biogas utilisations 

 Power to gas 

Electrical power is converted to gaseous fuel in the form of hydrogen or methane by 

a method termed power to gas (P2G). This technology links the power industry to the 

gas grid in two steps: the first step is converting electricity to hydrogen through 

electrolysis, and the second step is forming methane by combining carbon dioxide 

 



 

 

12 

 

with hydrogen in a Sabatier reaction (Schiebahn et al. 2015, Vandewalle, Bruninx, and 

D’haeseleer 2015).  

It is possible to utilize the produced hydrogen directly. This has value in the chemical 

process industry. It may be used in the hydrogen economy (as a means of transport 

fuel in a fuel cell vehicle or injected into a distribution pipe network). A hydrogen 

distribution pipe network is very expensive due to the low molecular weight of 

hydrogen. Hydrogen may be pumped into the existing natural gas grid but the portion 

allowable is relatively small (2 to 12%) (Götz et al. 2016). Hydrogen addition to natural 

gas changes the combustion properties of the gas, in particular it reduces the Wobbe 

Index (an indicator of the interchangeability of the gas) (Grond, Paula, and Johan 

2013).  To avail of present energy infrastructure, it is advantageous to convert the 

hydrogen to methane. Therefore, in this thesis, only methane is considered as a final 

product. 

 Electrolysis 

Water splitting in its simplest form uses an electrical current passing through two 

electrodes producing hydrogen and oxygen. The splitting of water is described as 

follow Eq. (2-1): 

2H2O(l) → 2H2(g) +O2(g)  ∆Hr=286 kJ/mole (at 25o C, 1 bar)            (2-1) 

This process requires high purity water thus, a step to remove mineral and ions is 

always required before water can be used for electrolysis, typically achieved by 

reverse osmosis (Genovese et al. 2009). The production of hydrogen and oxygen 

takes place in an electrochemical cell, which consists of two porous electrodes (anode 
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and cathode), an electrolyte, and a membrane (i.e. gas barrier) which hinders the 

recombination of the two product gases. As seen in Eq. (2-1), water electrolysis is an 

endothermic reaction. Energy input is required to sustain the reaction. Hydrogen is 

formed via reduction at the cathode. Oxygen is formed via oxidation at the anode. 

The two electrodes are electrically connected via an external circuit and an ionic-

conductive electrolyte. A typical electrolyser system is built up of numerous (tens to 

hundreds) single cells, electrically connected in series, forming a so-called cell stack. 

There are three techniques for water electrolysis: alkaline electrolyser, proton 

exchange membrane (PEM) electrolyser and solid oxide electrolysis cell (SOEC) 

electrolyser. The alkaline electrolyser is commercially available and commonly used 

because of its durability, maturity, and the fact that it has the lowest capital cost.  

However, alkaline electrolysis has the lowest efficiency (60-70%) (Benjaminsson, 

Benjaminsson, and Rudberg 2013); therefore it has the highest electrical energy cost. 

SOEC electrolyser has the highest electrical efficiency (90-95%) (Benjaminsson, 

Benjaminsson, and Rudberg 2013), however, the operation temperature of SOEC is 

high (700oC to 1000oC), which results in the total energy efficiency being in the range 

of 50%-90% (Grond, Paula, and Johan 2013). This technology has issues such as: 

corrosion, seals, thermal cycling, and chrome migration (Holladay et al. 2009). PEM 

electrolysis has a range of efficiencies similar to the alkaline electrolyser (60-70%) 

(Benjaminsson, Benjaminsson, and Rudberg 2013) but is more expensive. However, 

the efficiency of PEM technology is expected to improve in the future with 87-93% 
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possible by 2020 (Grond, Paula, and Johan 2013). It is considered as a viable high 

efficiency technology in the short term future.  

 Methanation 

Methanation is an exothermic reaction that converts carbon dioxide to methane Eq. 

(2.2). This process is named the Sabatier reaction, after its discovery by Paul Sabatier 

in the year 1902.                            

CO2 + 4H2 ↔ CH4 + 2H2O  ΔH= -165 kJ/mol                          (2-2) 

The reaction consists of two steps. The first step is endothermic Eq. (2-3) and the 

second step is exothermic Eq. (2-4): 

CO2 + H2 ↔ CO + H2O  ΔH = +41 kJ/mol                    (2-3) 

CO + 3H2 ↔ CH4 + H2O  ΔH = -206 kJ/mol                     (2-4) 

There are two methods to produce methane: catalytic and biological. The principles 

of the two methods are based on Sabatier equation, however, they are 

fundamentally different (Table 2-1). 
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Table 2-1. The differences between chemical and biological methanation - adapted 

from (Newton 2014, Götz, Koch, and Graf) 

Parameter Catalytic Biological 

Max scale sold ̴ 500MW ̴ 500kW 

Pressure 1-100 bar 1-10 bar 

Temperature 250oC - 550 oC 20 oC -70oC 

Heat produced in 

reaction 

Useful Not useful 

Operating range 50-100% (needs H2 

storage) 

0-100% in < 5mins (less 

H2 storage) 

During off periods Temperature should keep 

at 200 oC 

Need to prevent freezing 

Reactor types Fixed – bed; fluidized bed; 

three phase methanation 

and structured reactor 

CSTR; membrane; trickle-

bed; fixed bed 

Tolerance of impurities Low High 

 

 Catalytic methanation 

Catalytic methanation has been widely used in the coal gas methanation process and 

in large scale plants but not at small scale thus, this technology has been developed 

for a continuous electricity supply and not for variable intermittent renewable energy 

supply. 

This is a mature technology and nickel is often chosen as the catalyst because of its 

high activity and low price. However, the feed-in gas requires a high purity. The 

efficiency of this process is 70% to 85%. As the equilibrium of Eq. (2-2) is impacted by 

pressure and temperature, low temperature and high pressure assist the 
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transformation of CO2 to CH4. The ratio of H2/CO2 also influences the formation of 

CH4. An experimental process (Gao et al. 2012) found that  in order to achieve a high 

CH4 yield and avoid carbon deposition, the H2/CO2 ratio must be higher than 4.  Thus, 

in order to optimise the methanation of the CO2 process; the following conditions 

should be achieved: 

+ Low temperature (200-400 oC); 

+ High pressure; 

+ Proper H2 : CO2 ratio ≥ 4. 

 Biological methanation:  

Renewable methane is produced by microorganisms that metabolise H2 and CO2 

under anaerobic conditions. As mentioned in Table 2-1, this process differs from 

chemical methanation, as it occurs at lower temperatures, the mesophilic stage 

occurs at 20-40oC, and the thermophilic stage is at 45-60oC (Grond, Paula, and Johan 

2013). Biological methanation can operate with flexible conditions and at a small 

scale. The dilution rate (the rate to replace the content in the reactor) for biological 

methanation ranges from 0.067/day to 1.2/day in a CSTR and 7.76/day in an 

Anaerobic Filters (Lecker et al. 2017). The final methane content in the gas produced 

from biological methanation process ranges from 75 to 98% (Benjaminsson, 

Benjaminsson, and Rudberg 2013). 

‘In-situ’ and ‘ex-situ’ methanation are two methods for biological methanation. ‘Ex-

situ’ is achieved by injecting H2 into a separate reactor thus, the CO2 can be from any 
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source. ‘In-situ’ methanation is normally carried out in the anaerobic digester of a 

biogas plant.  The comparison of the two methods taking from Ahern et al. (Ahern et 

al. 2015) is presented in Table 2-2. Biogas mainly contains CH4 (40-75%) and CO2 (25-

60%). When H2 is introduced to the process, the methane content can be increased 

from 50% up to 75% in ‘in-situ’ method (Benjaminsson, Benjaminsson, and Rudberg 

2013) and up to 98% in ‘ex-situ’ process (Burkhardt, Koschack, and Busch 2015).  

Table 2-2. In-situ and ex-situ biogas upgrading - adapted from (Ahern et al. 2015)) 

Parameters In–situ biogas upgrading Ex-situ biogas upgrading 

Introduction of H2 Directly into an anaerobic 

digester 

Into separate bioreactor 

containing only 

hydrogenotrophic methanogens 

Advantages Simplest Avoiding many biological and 

mechanical challenges in 

anaerobic digestion 

Disadvantage Rising pH inside the 

reactor 

Additional CAPEX cost 

 

 Sources of CO2 

CO2 maybe sourced from ambient air, fossil fuel driven power plants combined with 

carbon capture, anaerobic digestion, and fermentation processes (Reiter and 

Lindorfer 2015a). The energy required for capturing CO2 is based on the 

concentration and purification of CO2 in the exhaust sources. Among potential CO2 

sources fermentation, bioethanol, and ammonia production processes produce CO2 

at up to 100% purity, biogas contains CO2 up to 40% by volume. Cement, steel, and 

iron production as well as coal combustion emit up to 20% CO2 by volume. The CO2 
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concentration in ambient air is especially low at 0.039% volume  (Reiter and Lindorfer 

2015a). The energy required to capture CO2 is one of the factors in determining the 

efficiency of the methanation process. The methods which are used for separation of 

CO2 from other gases are: absorption (chemical absorption and physical absorption); 

adsorption (absorber beds and regeneration method); and membranes (gas 

separation, gas absorption and ceramic based system) (Rubin et al. 2012). 

Reiter and Lindorfer (Reiter and Lindorfer 2015a) carried out research on CO2 sources 

for a power to gas application in Austria and concluded that the CO2 from biogas and 

bioethanol plants is preferable in terms of low capital cost, low CO2 penalties, and 

biogenic origin. O’Shea et al. (O'Shea et al. 2017) examined the sources of CO2 for 

P2G in Ireland based on: annual quantity of CO2 emitted; concentration of CO2 in the 

gas; CO2 source; distance to the electricity network; and distance to the gas network. 

The authors stated that the most suitable sources of CO2 were found to be distilleries, 

and wastewater treatment plants with anaerobic digesters. Trost et al. (Trost et al. 

2012) concluded that the CO2 from a biogas plant is a sustainable biogenic source for 

P2G. 

 Development of P2G in the World 

There are 46 lab, pilot, and demonstration P2G -methanation plants in the world, the 

development of those plants are mostly reported in Europe (Bailera et al. 2017). 

Germany has the biggest number of P2G-methanation projects, 17 out of the 46 

plants in Europe. Denmark is the next biggest with seven plants. Of the 46 P2G  plants, 

19 apply methanation as an upgrading step in a biogas plant (Bailera et al. 2017).  
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The largest P2G demonstration plant commenced operation in June 2013 in Wertle, 

Germany by Audi AG called the Audi e-gas plant. The Audi e-gas plant produces about 

1,000 metric tons of e-gas per year and this e-gas is then used as fuel for natural gas 

vehicles (NGVs), in this case Audi cars. The electricity used in this project is from 

offshore wind and the CO2 is sourced from a nearby food waste digester (Bailera et 

al. 2017).  

The first commercial P2G plant with biological methanation in the world is the 

BioPower2Gas plant located in Allendorf (Germany). This plant first injected 

renewable methane in the gas grid in March 2015. The P2G plant comprises of 2×150 

kWe PEM electrolysers and a 5 m3 biological methanation reactor (Bailera et al. 

2017). The Power-to-Gas via Biological Catalysis (P2G-BioCat) project aims to build 

the largest commercial-scale plant for converting biogas into methane through 

biological methanation. The plant consists of a 1MWe alkaline electrolyser and 

biological methanation. The electricity for the electrolyser is from wind and the CO2 

is sourced from the Avedøre Wastewater Treatment Plant (Bailera et al. 2017). 

  P2G in previous research 

P2G technologies have been widely analysed and studied in recent year. Schiebahn 

et al. (Schiebahn et al. 2015) conducted research in techno-economic analysis for 

catalytic P2G in Germany, with an electricity price of €0.06/kWhe; the cost of 

renewable methane was assessed at 22.7 ct/kWh. Therefore, in this case feed-in of 

renewable methane into the gas grid is uneconomic. Gotz et al. (Götz et al. 2016) 

provided a comprehensive review of the technical and economic aspects of 
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renewable P2G. The research stated that biogas could be an important source of CO2 

as biological methanation does not require a high purity of CO2.  

Several life cycle analyses (LCAs) of methane production by P2G have been 

conducted, however, most of the studies focused on the LCA of catalytic methanation 

(Reiter and Lindorfer 2015b, Parra et al. 2017, Collet et al. 2017, Zhang et al. 2017). 

Reiter and Lindorfer (Reiter and Lindorfer 2015b) conducted an LCA of H2 and CH4 

production. The processes included CO2 separation, H2 production, and catalytic 

methanation. By variation of electricity and CO2 sources, the authors concluded that 

the global warming potential (GWP) break-even point of electricity utilised for H2 

production in power to gas - methane when compared to natural gas extraction is 

113 g CO2eq per kWh (32 g CO2eq per MJ) without CO2 separation and 73 g CO2eq per 

kWh (20 g CO2eq per MJ) with CO2 separation. Collet et al. (Collet et al. 2017) analysed 

the techno-economic characteristics and did a life cycle assessment of methane 

produced from biogas with traditional upgrading and P2G. The authors focused on a 

sewage sludge biogas plant upgraded by a direct catalytic methanation; traditional 

upgrading methods and a catalytic methanation after upgrading by traditional 

technologies. The study concluded that the cost of methane produced by upgrading 

directly via catalytic methanation is the same as from upgrading via membranes if the 

electricity price is €38 MWh-1. The GHG emissions of upgrading by P2G (direct 

methanation and methanation after traditional upgrading) are lower than upgrading 

by traditional technologies alone. The electricity sources have strong effects on GHG 

emissions. Parra et al. (Parra et al. 2017) also undertook techno-economic analyses 
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and LCA of P2G systems. The considered processes included a PEM electrolyser, CO2 

captured from air or biogas plant, and a catalytic methanation. The authors stated 

that P2G with CO2 from biogas has a 2-9% lower environmental impact than the 

process that captured CO2 from the atmosphere. 

 Conclusions 

Biological methanation has proposed as an option for storage of electricity as gas at 

a smaller scale; catalytic methanation process is an option at larger scale. The CO2 

from the biogas plant is a potential source for producing P2G as this is a high 

concentration biogenic CO2 source with a low cost of capture. Although the current 

cost of renewable methane from P2G is quite high, P2G is an important and promising 

technology for meeting the future requirement for renewable energy storage and for 

carbon capture and reuse. However, the technology is new in the market and there 

is much research required in terms of techno-economic and environmental 

assessments before the technology can be commercialised. 
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     Sustainability assessment of large scale storage 
technologies for surplus electricity using group multi - criteria 
decision analysis1 

Abstract 

Power to gas (P2G) - methane, pumped hydroelectric storage (PHES) and compressed 

air energy storage (CAES) are three methods to store surplus electricity with high 

capacity and long discharge time. There is little previous research on P2G – methane 

in comparing with other storage technologies in general and in term of sustainability 

development. This chapter explored and compared the cost, efficiency, position 

flexibility, storage capacity/discharge time, energy carrier vector and environmental 

issues of those storage technologies in terms of single criterion and group multi 

criteria analysis. The single criterion data of each technology was reviewed from 

literature and compared with each other. The data from single criterion were 

normalised then used as inputs of the linear additive model. The weights of criteria 

were determined by sending out the weighting assessment form to 10 researchers. 

The comparison in terms of cost and efficiency showed that PHES is better than P2G 

and CAES. And P2G has many benefits such as: conversion of energy vector from 

electricity to gas which is available for renewable thermal and transport energy; 

longest storage time; and minimal impact on the environment. From sustainable 

development strategy perspective, the evaluation results of P2G, PHES and CAES are 

4.03, 2.46 and 2.16, respectively; as such P2G was assessed as preferable. 

                                                      
1 This chapter based on the published journal article: Vo, T.T., Xia, A., Rogan, F., Wall, D.M. and Murphy, 
J.D., 2017. Sustainability assessment of large-scale storage technologies for surplus electricity using 
group multi-criteria decision analysis. Clean Technologies and Environmental Policy, 19(3), pp.689-
703. 
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  Introduction 

  Energy storage 

The intermittent nature of renewable electricity production requires potential 

storage systems to contend with any surplus electricity generated. Existing methods 

to store energy include pumped hydroelectric storage (PHES), compressed air energy 

storage (CAES), battery systems, superconducting magnetic energy systems, super 

capacitor energy systems and power to gas (P2G). Energy storage can be categorised 

into four groups (i) electrical energy storage, (ii) mechanical energy storage, (iii) 

chemical energy storage and (iv) thermal energy storage (Chen et al. 2009, Ma, Yang, 

and Lu 2014) or short - term storage ( flywheels, super capacitor or batteries) and 

long term storage (pumping hydro, compressed air and hydrogen fuel cells) (Faias et 

al. 2008). The long-term energy storage technologies also store energy in a larger 

scale (Figure 3-1), therefore, this chapter focused on large scale energy storage 

technologies. Finding one storage method to meet all of the requirements for surplus 

renewable electricity storage (low cost, long lifetime, high efficiency and low 

environmental impact) is challenging. Based on the amount of energy that can be 

stored, PHES, CAES and P2G are categorised as large scale energy storage 

technologies (Persson et al. 2014).  

PHES is a mature and commercially proven large-scale energy storage technology. 

The first pumped hydroelectric storage plant was constructed in 1909 in Switzerland 

and is still operational. More than 300 plants have been installed worldwide with a 

total installed capacity of over 95GWe (Deane, Ó Gallachóir, and McKeogh 2010). 
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PHES operates based on the gravitational difference between two water storage 

reservoirs. During off-peak demand periods, the low cost power is used to pump 

water from the lower reservoirs to the higher reservoirs. At peak demand periods, 

water is released from the higher reservoir to the lower reservoir through a turbine 

to generate electricity. Dependent on water management, PHES is categorized into 

three subtypes: open – system PHES; semi-open PHES and closed-loop PHES (Zach, 

Auer, and Lettner 2011). 

 

Figure 3-1. Large scale and small scale energy storage technologies (adapted from 

(Wolf 2015) 

P2G is a method of transforming power into hydrogen or methane. This study only 

focuses on the P2G-methane technology. The P2G-methane process typically 

includes two phases: an electrolysis step where electricity is converted to hydrogen 
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and a methanation step where the hydrogen reacts with carbon dioxide to form 

methane (Schiebahn et al. 2015, Vandewalle, Bruninx, and D’haeseleer 2015). 

Three techniques are available for water electrolysis, namely: the alkaline 

electrolyser; the proton exchange membrane (PEM) electrolyser; and the solid oxide 

electrolysis cell (SOEC) electrolyser. Currently, the alkaline electrolyser is 

commercially available, the PEM is at a pilot stage and the SOEC is currently at a 

research stage. The PEM electrolyser is considered a future technology for hydrogen 

production from intermittent energy sources (wind turbines) (Grond, Paula, and 

Johan 2013, Lehner et al. 2014) because of the ability to ramp from a cold start. The 

SOEC technology requires high temperatures when operating but has efficiencies of 

over 90% (Lehner et al. 2014). The heat for the SOEC process can be obtained from 

the catalytic methanation process (Benjaminsson, Benjaminsson, and Rudberg 2013) 

as the process operates at high temperature, is exothermic, and produces excess 

heat. Thus, the SOEC would be suitable in conjunction with a chemical/catalytic 

methanation process. 

The methanation process can be chemical or biological. Chemical methanation is a 

mature technology with nickel often chosen as the catalyst due to its high activity and 

low price; the carrier metal is metal oxides (Götz et al. 2016). The biological process 

is an anaerobic process in which carbon dioxide and hydrogen are utilised by hydro-

genotrophic methanogenic archaea to produce methane. This process takes place at 

lower temperatures; mesophilic at 20 - 40 °C and thermophilic at 45 - 60 °C (Grond, 

Paula, and Johan 2013). To date, there are no commercially built P2G plants 
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worldwide. However, demonstration plants have been built or are under 

construction such as the Audi e-gas plant in Wertle, Germany, the KIC-Project 

DemoSNG, and the BioCatProject in Denmark (Götz et al. 2016) 

The principal of the CAES technology is that surplus energy is used to compress air 

which is stored in an underground cavern (for example salt, rock, and saline aquifers) 

or an above ground vessel or pipe. When energy is required, the compressed air is 

released, heated and expanded and passed through two turbines (high and low 

pressure) to generate electricity (Pickard, Hansing, and Shen 2009). The underground 

storage cavern for CAES depends on the geological availability. The above ground 

CAES is more flexible, and as such this type of plant can be sited anywhere. However, 

the storage scale of the vessel/pipe for CAES is small scale (100 kW) and only provides 

a short duration of energy supply (2-4 hours) (Arizona Research Institute for Solar 

Energy 2010). 

There are four types of CAES system: diabatic; adiabatic; isotherm; and small – 

medium scale CAES (Akinyele and Rayudu 2014). Diabatic CAES (first generation) is a 

conventional CAES system where the heat from compression is not used for 

expansion, thus it is disadvantaged due to high energy loss (Kim et al. 2012). Natural 

gas is mixed with air for combustion to improve the power output of the turbine; 

hence diabatic CAES systems are not considered a ‘pure’ electricity storage method, 

but a hybrid system. Adiabatic CAES systems store the heat from compression and 

reuse it for the expansion process (Kim et al. 2012, Bullough et al. 2004). Isotherm 

CAES is a technology where the temperature of compressed air is kept ambient for 
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the storage and generation cycle (Akinyele and Rayudu 2014, Kim et al. 2012). Neither 

adiabatic or isotherm CAES systems require natural gas to mix with air for combustion 

(Kim et al. 2012). Small-medium scale CAES usually in the ranges from 1-10MW, this 

technology does not need to have underground storage dorm because it has artificial 

pressure reserves (Akinyele and Rayudu 2014). To date, there are only two CAES 

plants in the world (Hasan et al. 2013, Lund and Salgi 2009); the first built in 1978 in 

Huntorf, Germany with 290 MW capacity and a second in McIntosh, Alabama, USA, 

deployed in 1991 with 110 MW capacity. Both are diabatic CAES systems. As of yet, 

no advanced CAES (adiabatic and isotherm) plants have been built. 

 Multi-criteria decision analysis 

Sustainable development is defined as a development that provides environmental 

protection, economic development and social equity (Drexhage and Murphy 2010). 

Assessing sustainability can be complex due to the number of associated criteria and 

indicators. Owing to its complexity, both quantitative and qualitative data can be 

used. Multi – criteria decision analysis (MCDA) is a tool that has been commonly used 

in the energy sector for sustainability assessment (Wimmler et al. 2015). 

Various methods exist in conducting a MCDA such as: the weighted sum method (or 

linear additive model); weighted product method; analytic hierarchy process; MCDA 

combined fuzzy; elimination et choice translating reality (ELECTRE) method; and 

preference ranking organization method for enrichment evaluation (PROMETHEE) 

(Wang et al. 2009, Dorini, Kapelan, and Azapagic 2011).  
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 Gaps and innovation of this study  

Previous studies have reviewed and compared energy storage technologies such as 

the energy storage for sustainable power networks (Akinyele and Rayudu 2014), 

progress in electrical energy storage system (Chen et al. 2009), storage schemes for 

wind energy systems (Hasan et al. 2013), applications and challenges of energy 

storage (Kousksou et al. 2014), current development in electrical energy storage 

technologies and the application potential in power system operation (Luo et al. 

2015), energy storage systems for renewable energy power sector integration and 

mitigation of intermittency (Yekini Suberu, Wazir Mustafa, and Bashir 2014) and 

energy storage system for wind power integration support (Zhao et al. 2015). For the 

studies that included P2G, typically hydrogen was considered as the end products. 

There is a scarce amount of literature related to the P2G - methane technology. One 

advantage of power to methane versus power to hydrogen is the availability of 

current infrastructure for methane distribution (natural gas grid) such a system is not 

available for hydrogen distribution.  

Furthermore, the studies only compared single parameters of each energy storage 

technology. Thus, it is difficult for policy-makers to recommend a specific energy 

storage system. MCDA is a method of assessing different options in multi-criteria by 

considering objectives identified by the decision makers. Only two studies have used 

MCDA directly for energy storage assessment. Raza et al. (Raza, Janajreh, and Ghenai 

2014) investigated the sustainability index as a selection criteria for three renewable 

energy storage technologies: lead acid; lithium polymer batteries; and fuel cells. Barin 
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et al. (Barin et al. 2011) applied an analytic hierarchy process and fuzzy multi-rules 

method for multiple criteria analysis of PHES, CAES, hydrogen storage, flywheels, 

super-capacitors and lithium-ion storage as well as NaS advanced batteries and 

Vanadium Redox Battery. The MCDA in this case did not include for P2G-methane. 

Furthermore, the criteria focused only on load management, technical maturity, 

environmental impacts (for example visual and biological impacts, greenhouse gas 

emissions), power quality and cost (Barin et al. 2011). 

The two previous studies on MCDA for energy storage applied single decision maker 

MCDA methods (Raza, Janajreh, and Ghenai 2014, Barin et al. 2011). MCDA methods 

can be executed by a single decision maker or group decision maker method 

(Triantaphyllou 2013). 

This study aims to fill the gaps which have been analysed above by: 

(i) Enhancing sustainability assessment of three storage technologies for 

surplus electricity: PHES; P2G-methane and CAES.  

(ii) Including investigated the criteria which have not been examined before 

such as: efficiency; cost; energy carrier vector; storage capacity and 

discharge time; position flexibility; and environmental impact.  

(iii) Conducting group MCDA method as the project relates to many fields and 

it needs to get the involvement of many decision makers.  
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 Methodology 

 Multi-criteria decision analysis for sustainability assessment 

The weighted sum method (WSM) or linear additive model, a common method of 

multi-attribute utility theory (MAUT), is used as a tool for MCDA. The WSM is 

commonly used in assessments of sustainable energy systems (Wang et al. 2009) and 

so will be used in this study for the sustainable assessment of electricity storage. The 

linear additive model is calculated as in equation Eq. (3-1): 

𝑆𝑖 = ∑ 𝑤𝑗
𝑛
𝑗=1 𝑝𝑖𝑗,                             𝑖 = 1,2, … ,𝑚                           (3-1) 

where; 

Si: preference value (The best alternative was regarded as the option with the highest 

preference value) 

n: number of criteria  

wj : weight for criterion cj 

pij: performance measure of alternative ai for criterion cj 

 Weight for criterion - Weighting method 

The wj values will be assessed by group decision makers; this is direct estimation of 

a criterion’s relative importance to the sustainable development objective by 

assigning a value to each criterion. Depending on its perceived importance to the 

objective, a weight will be assigned according to the following five-point scale (Table 

3-1): 
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Table 3-1. Weighting scale 

 

1 2 3 4 5 

Not at all 
important 

Slightly 
important 

Moderately 
important 

Very 
important 

Extremely 
important 

 

In reality, the decision makers group does not involve too many people, thus the 

assessment form (Appendix A) for the weighting of criteria was sent out to ten 

researchers with relevant skill sets in the energy field in University College Cork. The 

assessments were made individually. Each researcher has a different background; 

therefore, each person was anticipated to have different individual preferences. The 

constraint of group decision makers was combining individual decisions into a 

collective preference. It is important to note that the assessment stressed the 

significance of each criterion to the sustainability development objective and was not 

particular to any specific storage technology. 

Three ways were analysed in (Belton and Pictet 1997) to adapt individual results into 

a group preference, namely: sharing; aggregating; and comparing. The sharing 

method was deemed time-consuming due to the decision makers need to gather and 

discuss a preferred choice. The comparing method was conducted by using software. 

Thus, the aggregating method was applied in this chapter. Two aggregating methods 

were proposed (Huang et al. 2013, Salo 1995), whilst the method of Salo was for 

imprecise preference judgements, the Huang et al. (Huang et al. 2013) method could 

be applied to discrete data, applicable to this study.  
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However, the performance measures (pij) in this study were not based on the decision 

makers’ evaluation, only the varying criteria weights between participants. Thus, for 

the criteria weights of the individuals to be interpreted into representative criterion 

weights for a group, Eq. (3-1) may be used. The Huang et al. (2013) methodology was 

applied for analysing the preferential differences and preferential priorities of the 

weights of criteria. The methodology is divided into two steps: 

(i) Taking the standard deviation of criteria weights of each participant into 

consideration, 𝑤𝑘𝑗 are revised to 𝑤𝑘𝑗
(1)

 by Eq. (3-2): 

𝑤𝑘𝑗
(1)

=   
{
𝑤𝑘𝑗
1−𝜃𝑘                          𝑖𝑓 𝑤𝑘𝑗 ≥ 𝑤𝑘̅̅ ̅̅                        

𝑤𝑘𝑗
1/(1−𝜃𝑘)

                    𝑖𝑓 𝑤𝑘𝑗  <  𝑤𝑘̅̅ ̅̅                       

            (3-2) 

where; 

𝑤𝑘𝑗 : the weight value of decision maker k on criterion cj 

𝑤𝑘̅̅ ̅̅ :  The mean of the weight values of decision maker k on all criteria 

θk: the standard deviation of all criteria evaluated by decision maker k (the 

preference differences of criteria). 

Huang et al. stated that the larger the standard deviation (θk), the better the 

capability to decisively distinguish decision maker preferences amongst the criteria.  

(ii) Taking the skewness of criteria weights of each participant, normalised skewness 

values and priorities into consideration, the 𝑤𝑘𝑗
(1)

 are revised to 𝑤𝑘𝑗
(2)

 by using Eq. (3-

3): 
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wkj
(2)

={
wkj
(1)
+(1-wkj

(1)
)δi γk

NOR[1- exp(-  wk̅̅ ̅̅ .wkj)]           if wkj ≥ wk̅̅ ̅̅                 

wkj
(1)(1-δi) γk

NOR[1- exp(-  wk̅̅ ̅̅ .wkj) ]                          if wkj < wk̅̅ ̅̅                  
(3-3) 

where; 

𝛾𝑘
𝑁𝑂𝑅 is normalised data of γk (skewness values of j criteria of decision maker k) and 

can be calculated using Eq. (3-4): 

𝛾𝑘
𝑁𝑂𝑅= 

{
 

 
γk

∑ γkm
k=1

                if γk >0                   

  
γ'k

∑ γ'km
k=1

                  if γk < 0                      

              (3-4) 

where; 

γ’k = γk + γ* and γ* = |mink (yk)| and 𝛿𝑖 is the preferential priority of criterion j for the 

group, calculated using Eq. (3-5): 

δi = ∑ 𝜎𝑖/∑ ∑ 𝜎𝑖𝑚
𝑘=1

𝑛
𝑖=1

𝑚
𝑘=1                 (3-5) 

where; 

σkj = n/ρkj, and σkj and ρk denote the priority coefficient and preferential ranking of 

criterion j for decision maker k, respectively (that is, the alternative with the highest 

utility simply has a priority coefficient of n/1, the alternative with the second highest 

utility has a priority coefficient of n/2, and so on). 

Finally, if considering m decision makers have the same decisional power, the group 

alternative can be calculated using Eq. (3-6): 

𝑤𝑗
(𝑑)

 =  
∑ 𝑤𝑗

2𝑚
𝑘=1

𝑚⁄                 (3-6) 
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 Performance measure 

The pij values can be evaluated in three ways (Belton and Pictet 1997): (i) objective 

evaluation based on the real performance, which can be measured therefore the pij 

is independent of the decision maker; (ii) subjective evaluations by participants 

without reference to the statement of alternatives; and (iii) constructive assessments 

conducted through an explainable and justifiable framework in the case of no 

objective measurement of real alternative. The pij values in this study will be assessed 

based on objective evaluation. The performance matrix table, created based on the 

literature review of single criterion analysis, was assessed. 

In order to compare different units of performance measures, a normalisation 

process was undertaken to get the performance data of each alternative under 

different criteria in the range of 0-1. The data in this chapter includes quantitative 

and qualitative data. For quantitative data, the normalisation was computed by linear 

scale transformation (max method) (Chakraborty and Yeh 2007). If the data are the 

benefit values, higher values are better, thus the normalised value of criterion nij can 

be calculated using Eq. (3-7): 

𝑛𝑖𝑗 = 
𝑥𝑖𝑗

𝑥𝑗
𝑚𝑎𝑥                             (3-7) 

For the cost values and carbon dioxide (CO2) emissions data, lower values are better; 

with normalised values computed using Eq. (3-8): 

𝑛𝑖𝑗 =  1 − 
𝑥𝑖𝑗

𝑥𝑗
𝑚𝑎𝑥                          (3-8) 

 where; 
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 𝑥𝑗
𝑚𝑎𝑥  is the maximum performance value among alternatives for criterion cj, xij is the 

performance value of alternative i for criterion cj. 

For qualitative data, the normalisation process was approached the same as by 

Bernstein (Bernstein 2015) where a five point scale (Table 3-2) was applied:  

The normalisation of scoring data was analysed as in Eq. (3-7) and Eq. (3-8). 

Table 3-2. Quantifying the qualitative data 

Criteria level Criteria score 

Best 100 

Good 75 

Medium 50 

Poor 25 

Worst 0 

 

 Criteria selection 

Wang et al. (2009) reviewed criteria selection for sustainable development of energy 

supply systems and stated that the criteria are divided into four aspects: technical, 

economic, environment and social criteria. The criteria in this study were chosen 

using the recommendation of Wang et al., however, due to the characteristics of 

energy storage technologies differing from energy supply systems, some technical 

criteria such as position flexibility, storage capacity/discharge time and energy carrier 

vectors were assessed in this chapter. Moreover, this study assumed job creation and 

social benefits are similar in different storage technologies. Therefore, social criteria 

were not assessed as such. 
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 Costs 

Construction, operation and maintenance costs are the primary costs to be 

considered as these factors will decide if the storage plants are viable or not. 

Generally, the operation cost is spread over the life-span of the system and is 

proportional to the investment costs. For sustainable development, the cost of the 

storage plant should include environmental expenses, however, due to lack of data 

in literature, this chapter only considered the capital cost and the operation and 

maintenance (O&M) costs. 

 Technical characteristics 

The efficiency factor is one of the most chosen criteria for multi-criteria analysis 

(Raza, Janajreh, and Ghenai 2014, Barin et al. 2011) as well as individual criterion 

comparisons (Akinyele and Rayudu 2014, Ibrahim, Ilinca, and Perron 2008, Zhao et al. 

2015, Zafirakis 2010, Luo et al. 2015) for energy section. This criterion represents the 

quality of the system in terms of its ability to store energy. 

Position flexibility is the ability to site a storage facility. Transferring energy long 

distances for storage is not recommended thus suitable plant location is essential. 

The storage capacity/discharge time is another important indicator for a sustainable 

storage plant. If the plant has a long storage time and higher capacity, the seasonal 

variation of electricity can be considered. 

Changing the energy carrier vector is the ability to store electricity in different forms 

of energy in the final storage product. For example, P2G technologies have the ability 



 

 

37 

 

to convert surplus electricity to hydrogen and methane which can then be used as a 

heat source or as a gaseous transport fuel. Such diversification can be an advantage 

when considering that electricity is ca. 20% of final energy consumption in Ireland, 

with the remainder of energy demand divided relatively equally by thermal and 

transport (Murphy and Thamsiriroj 2011).  

 Environmental issues 

Environmental impacts can include for general impacts due to the type of storage 

system being constructed and the CO2 emissions footprint as a result of life cycle 

assessment (LCA). Each system must try to limit the environmental impacts for 

sustainable development. 

 Single criterion analysis and comparison 

 Costs 

 PHES 

The cost of energy produced from a PHES system depends on the following factors: 

• Capital cost: 

- hydraulic head for operation (the vertical distance between the upper and lower 

reservoir – typically of the order of 300 metres) 

- topography of both the reservoirs 

- plant utilization cost 

- size (smaller projects typically have higher costs (€-capital/kW) than larger 

projects) 
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• Cost of pumping energy 

• Water availability  

The capital cost of PHES systems can be split into two areas: 

• power capacity (€-capital/kW) = capital costs/turbine power electricity 

generation 

• energy storage (€-capital/kWh)= capital costs/amount of energy stored in one 

full charge 

The power and storage capacities are both dependent on the head and the volume 

of the reservoirs (Connolly 2007). In terms of economic and environmental issues, it 

is better to design the facilities with the greatest hydraulic head possible rather than 

largest upper reservoir possible.  

Table 3-3 presents the typical costs of PHES obtained from literature (Gonzalez et al. 

2004, Zach, Auer, and Lettner 2011, Electric Power Research Institute 2011, Chen et 

al. 2009, Deane, Ó Gallachóir, and McKeogh 2010). Past studies analysed the capital 

costs of PHES plants which were built, under construction or planned to be built in 

Europe, the US, Asia and Africa. Typically, PHES plants have a long assets life (50 -100 

years), high capital cost and low operation and maintenance costs. PHES is a mature 

technology, therefore no significant technology advance or cost decrease is expected 

in the future. The capital cost of PHES plants can be based on the topography of the 

reservoirs; therefore, a big variation in capital cost of PHES is evident. The most 

common ranges are 500 – 2000 €/kW (700 – 2800 $/kW) and 8-60 €/kWh (11-84 
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$/kWh), respectively. The operation and maintenance (O&M) costs of PHES plant is 

low, accounting for approximately 1-2 % of investment cost. 

Table 3-3. Capital cost of PHES 

Capital costs References 

€/kW $/kW €/kWh $/kWh  

480-1600 672 - 2240 4-80 5.6 - 112 (Chen et al. 2009) 

450-1500 630 - 2100 8-60 11 - 84 
(Zach, Auer, and Lettner 
2011) 

450-2500 607 - 3375   
(Deane, Ó Gallachóir, 
and McKeogh 2010) 

375-1875  

Majority 750 
- 1500 

525 – 2625 

Majority 1050- 
2100 

  
(Electric Power 
Research Institute 
2011) 

 P2G 

P2G plants are only in demonstration stage. Thus, it is difficult to assess the cost of 

real P2G plants in the future. The capital cost of a P2G plant is assessed based on 

following factors: 

• electrolyser investment cost 

• methanation investment cost 

• CO2 purification investment cost 

• piping 

• compression 

There is a variation in literature of the capital costs of P2G as well as production costs 

of methane. Electrolysis is the major contributor for capital cost of  P2G, around 800-

3000 €/kWe  (880- 3300 $/kWe) (Götz et al. 2016). The capital cost of a catalytic 
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methanation plant ranges from 130 to 400 €/kW (142 to 440 $/kW) Synthetic Natural 

Gas (SNG), which is equivalent to 78 to 240 €/kWe
 (86 – 264 $/kWhe) (at 75 % 

efficiency for electrolysis and 80 % for methanation).  In total, the CAPEX for P2G are 

from 900-3240 €/kWe (990- 3564$/kWe). The variation in investment costs is 

attributable to the technology used and scale of plant (Benjaminsson, Benjaminsson, 

and Rudberg 2013). In the future, cost are expected to be below €1,000/kWe (1400 

$/kWe) at a scale of 20-200 MWe, at 68% efficiency for whole process, the cost 

equates to €1470/kW (1984 $/kW) methane (€1,000/0.68 = €1470/kW methane) 

(Sterner 2009). 

The operation and maintenance costs of a catalytic P2G plant is estimated at 3% of 

investment cost and is largely due to the replacement cost of the nickel catalyst and 

sulphur absorber in the reactor (fixed cost). 

The production cost of methane is predominately based on electricity costs 

(particularly in hydrogen generation; electricity costs can be even higher than capital 

costs (Benjaminsson, Benjaminsson, and Rudberg 2013)), and the cost of CO2 

captured. The cost of methane from P2G in 2013 is in the range of 15-20 cent€/kWh 

(21 – 28 cent$/kWh) (Benjaminsson, Benjaminsson, and Rudberg 2013), and the 

production cost of methane from biological P2G is lower than that of chemical P2G. 

According to Ahern  et al. (2015), among three methods of CO2 capture, the cost of 

CO2 capture from ambient air is the most expensive, due to the low concentration of 

CO2 in ambient air. The cost of CO2 capture from an existing upgrading process 

converting biogas from anaerobic digestion to biomethane is less expensive. CO2 
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captures from thermal plants at scale provide the least expensive source of the three. 

Ahern et al. (2015) recommended the cheapest method of CO2 capture is biological 

P2G used as an upgrading system instead of conventional biogas upgrading. 

 CAES costs 

The capital cost of CAES plants are based on the following parameters: 

• availability of caverns 

• price of natural gas 

• compressor, cooler and generator investment 

The capital costs of CAES systems are dependent on the geological location. The 

capital costs of conventional CAES plants are in the range of 450-1000 €/kW (630 – 

1400 $/kWh) and that of adiabatic CAES plants are in the range of 600-1200 €/kW 

(840 – 1680 $/kW) (Zach, Auer, and Lettner 2011, Schwarzenegger 2008). The O&M 

costs is around 0.6 – 2 % of investment cost.  

Above ground air storage vessels/pipes are good options for locations where 

underground caverns are not available. However, these systems are potentially five 

times more expensive than underground salt-based air storage caverns, and 

approximately 50 times more expensive than porous rock-based air storage systems 

(Schwarzenegger 2008). 

 Cost comparison 

Currently, the cost of P2G is double the cost of PHES and CAES and the cost of PHES 

is slightly higher than that of CAES. However, there is no expectation for a reduction 
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in investment cost for developing PHES plants in the future, whereas the capital cost 

of P2G plant is expected to be €1470 /kW (1984 $/kW) methane (Sterner 2009).  

 Efficiency 

 PHES 

The PHES cycle efficiency is understood as the ratio of the energy used whilst 

generating to the energy consumed during the pumping process. The cycle efficiency 

(ŋh) depends on both the pumping efficiency (ŋp) and the generation efficiency (ŋg) 

(Ter-Gazarian 2011) and is calculated by Eq.(3-9): 

ŋh=ŋp×ŋg                           (3-9) 

PHES cycle efficiencies have been suggested to be in the range of 70-85% (Chen et al. 

2009, Ter-Gazarian 2011, Rehman, Al-Hadhrami, and Alam 2015). PHES can be 

brought online within 90 seconds, and can be functioning at full power within 120 s. 

It can also be switched from pumping to generation or vice versa in 180-240 s, 

respectively. Detailed the efficiency of a PHES plant are shown in Table 3-4 (Cheng H. 

1993). 

Adjustable speed technology was developed in Japan in the early 1990’s and was 

used in Europe in the late 1990’s. This technology can improve the turbine efficiency 

and the operation flexibility as the turbine can be operated at its peak efficiency point 

under all head conditions, resulting in increased energy generated of the order of 3 

% annually (Sætre 2013).  
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Table 3-4. Efficiency of a pumped hydroelectric storage plant - adapted from (Cheng 

H. 1993) 

Pumped Storage (cycling) Low % High % 

Generating component 

Water conductors 97.4 98.5 

Pump Turbine 91.5 92 

Generator motor 98.5 99 

Transformer 99.5 99.7 

Subtotal of generating component 87.35 89.44 

Pumping component 

Water conductors 97.6 98.5 

Pump turbine 91.6 92.5 

Generator motor 98.7 99 

Transformer 88.5 99.8 

Subtotal of pumping component 87.8 90.2 

Operational 98 99.5 

Total 75.15 80.12 

 

 P2G 

The overall P2G technology efficiency is based on the efficiency of three processes: 

electrolysis, methanation and CO2 extraction. The efficiency data was collected from 

literature (Grond, Paula, and Johan 2013, Sterner 2009, Benjaminsson, 

Benjaminsson, and Rudberg 2013, Burkhardt, Koschack, and Busch 2015). The 

summary of P2G efficiency is presented in Table 3-5. 
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Table 3-5. Efficiency of P2G technology 

Process Efficiency (%) 

Currently Future 

Electrolysis 

Alkaline 60-73 (Benjaminsson, Benjaminsson, 

and Rudberg 2013); 62-82  (Grond, 

Paula, and Johan 2013),  

67-82  (Grond, Paula, 

and Johan 2013) 

SOEC 90-95 (Benjaminsson, Benjaminsson, 

and Rudberg 2013), if energy required 

for heating included, efficiency: 50-90 

(Grond, Paula, and Johan 2013)  

 

PEM 67-82 (Grond, Paula, and Johan 2013) 87-93 (Grond, Paula, 

and Johan 2013) 

Overall 62-90  

Methanation   

Chemical  70-85 (Grond, Paula, and Johan 2013); 

75-85 (Sterner 2009) 

 

Biological 75 - 98 (Benjaminsson, Benjaminsson, 

and Rudberg 2013, Burkhardt, 

Koschack, and Busch 2015) 

 

Overall efficiency  

CO2 from 

ambient air 

41 (Grond, Paula, and Johan 2013)  

CO2 from 

concentrated 

source 

57 (Grond, Paula, and Johan 2013)   

Undescribed CO2 

source 

46-75 (Benjaminsson, Benjaminsson, 

and Rudberg 2013); 52 (Benjaminsson, 

Benjaminsson, and Rudberg 2013) 

65-68 (Sterner 2009)  

 

Electrolysis:  

The alkaline electrolyser has the lowest efficiency of all technologies, leading to the 

highest electrical energy cost. The SOEC electrolyser has the highest electrical 
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efficiency; yet the high operation temperatures (700 - 1000 °C) result in the total 

energy efficiency being 50 - 90 % (Grond, Paula, and Johan 2013) unless a free source 

of thermal energy may be obtained such as associated with a power plant which does 

not have a market for thermal energy. The efficiency of the PEM electrolyser is higher 

than that of alkaline electrolyser but lower than that of the SOEC. Efficiency of PEM 

technology is expected to improve in the future with an achievable efficiency of 87-

93 % by 2020 (Grond, Paula, and Johan 2013) and is considered as an alternative 

technology for alkaline electrolyser. Currently, the average efficiency of electrolysis 

is stated as 75 % (Ahern et al. 2015, Sterner 2009). 

Methanation: 

The efficiency of methanation depends on the process type (chemical or biological) 

and the arrangement of input gases. Variations on the system include for: pure CO2 

injected to the system; hydrogen introduced into an anaerobic reactor (in-situ 

methanation): or hydrogen and biogas fed into a bioreactor containing 

hydrogenotrophic methanogenic archaea (ex-situ methanation). Biological 

methanation with reaction of hydrogen and biogas will maintain higher efficiency as 

compared to reaction of hydrogen with pure CO2 as this requires extraction of CO2 

from ambient air or from the flue gas of a power plant, both of which are energy 

intensive. The methanation process works at high temperatures and has an efficiency 

of ca. 70 - 85 % (Benjaminsson, Benjaminsson, and Rudberg 2013). Biological 

methanation can operate with flexible conditions and at a smaller scale (Götz et al. 

2016)  with an efficiency range of ca. 75 - 98 % (Benjaminsson, Benjaminsson, and 
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Rudberg 2013, Burkhardt, Koschack, and Busch 2015). To date, biological P2G has 

been used at pilot scale with a capacity of 1 MW 

(http://www.electrochaea.com/technology.html). For chemical methanation, 

process temperatures are high (250 – 550 °C). Efficiency can be increased by utilising 

the high output heat to meet the parasitic demands of a biogas plant. The average 

value used for the methanation process efficiency is 80 %. 

Overall: 

If the electrolysis efficiency is 75% and the efficiency of methanation is 80%, the 

overall efficiency of P2G-methane can be predicted at 60%. A study has previously 

shown that the efficiency of P2G-methane is 57% if the CO2 is obtained from a 

concentrated source (Grond, Paula, and Johan 2013); this drops to 41% if the source 

of CO2 is obtained from the atmosphere. A total efficiency of P2G-methane of 52% 

(combining 65% electrolysis efficiency and 80% methanation efficiency) in a previous 

work (Benjaminsson, Benjaminsson, and Rudberg 2013). The future efficiency of P2G 

systems is expected to be 65-68% (Sterner 2009). However, if PEM electrolysis 

efficiency is increased to 87 - 93 % as earlier indicated, the expected efficiency for 

P2G with biological methanation could potentially be in the range of 65-91%. Using 

biomethanation systems to upgrade biogas saves energy that would be used in biogas 

upgrading, provides a free source of CO2, and as such is suggested by the authors as 

the most beneficial application of P2G-methane systems. 

The transition of gas back to power in a combined cycle plant has an efficiency of 

60%, lowering the efficiency of power-methane-power (PMP) systems to 34% for 
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concentrated CO2 and 26% for atmosphere CO2. The power to hydrogen to power 

process (PHP) has a higher efficiency than PMP process with the efficiency ranging 

from 33 to 37%. It is the viewpoint of the authors that power to gas systems should 

be used to create renewable thermal energy or transport fuel, thus negating this 

efficiency reduction in changing the vector back to electricity.  

 CAES 

The efficiency of a CAES plant was analysed in a previous study (Elmegaard and Brix 

2011) based on the gas turbine cycle efficiency and the efficiency of input to output. 

The diabatic CAES has low efficiency (40%) due to energy losses in the cooling process 

during compression to avoid overheating and reheating the air prior to burning it with 

the fuel. Adiabatic CAES has a higher efficiency (70 - 80 %) due to the added heat 

storage device. 

 Comparison of efficiency 

The large variation in efficiencies makes a direct comparison between PHES, P2G, and 

CAES technologies challenging. Currently the average efficiency of PHES is higher than 

that of chemical P2G and CAES but lower than that of biological P2G. The challenge 

for the application of biological P2G is to develop a fully operational controllable 

system. As this technology is in a research and development stage, no field practice 

has been gained. In the future, while the efficiency of PHES is not expected to 

increase, P2G-methane efficiency may increase to 68% for chemical methanation or 

even 91% if PEM electrolysis is combined with biological methanation. 
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 Position flexibility 

The distributed (or decentralised) energy storage system (ESS) is described as 

numerous on-site storage systems, connected to the edge of the network and not 

restricted by location, whereas centralised ESS tends to be larger units, in smaller 

numbers, and connected to the transmission network. By definition, PHES is 

considered as a centralised ESS, and P2G plant is a decentralised ESS. The CAES plant 

would be deemed a centralised ESS if it had an underground cavern to store the 

compressed air and a decentralised unit if the air storage is by vessel or pipe. The 

capacity of above ground CAES storage is very small, 3-15 MW or 2- 4 h of discharge 

(Evans, Strezov, and Evans 2012). In this study CAES is assessed at large scale 

associated with subterranean geological caverns. If the locations of PHES plants and 

CAES cavern plants are far from the energy generation sites, the efficiency will be 

reduced due to transmission losses. 

Both P2G and CAES systems can be deployed at smaller scale (100 kW) up to a large 

scale (tens of megawatts). This allows facilities to be sized optimally with regards to 

grid requirements and available resources. 

 Storage capacity  

The availability of existing gas infrastructure offers high energy storage capacity for 

P2G technology. Gas storage capacity is up to 10 TWh and discharge times of 10,000 

hours. The storage capacity of PHES and CAES are up to 100 GWh and 1 GWh, with 

discharge times of 1,000 and 100 hours, respectively (Persson et al. 2014).  
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 Energy carrier vectors 

The electricity generated and stored will be converted back to the electricity post-

storage for both PHES (Rehman, Al-Hadhrami, and Alam 2015) and CAES (Elmegaard 

and Brix 2011) processes. However, with P2G, the electricity can be stored as a gas 

for heating, renewable transport fuel or potentially converted back to electricity. 

Thus, P2G offers diversity in terms of energy carrier vector compared to PHES and 

CAES. Furthermore, in contrast to PHES and CAES, where the charging and 

discharging are in the same location, renewable gas generated from P2G-methane 

can be easily transported over the long distances through a country’s gas grid 

network with minimum losses of gas and no energy input. The end user simply has 

an account with the gas producer and withdraws the same amount of natural gas that 

is inserted by the renewable gas energy producer. The transmission grid is such that 

capacity is not a problem for gas grid injection and the scale of the gas grid is such 

that storage of the renewable gas is not a problem. This is not the case with 

electricity, which is why a storage mechanism is required. 

 Environmental issues 

 PHES 

The construction of new PHES plants requires tunnels, dams and storage lakes to be 

built. Different types of PHES plant will have different infrastructure requirements, 

for example, artificial reservoirs and lake impoundment are needed for closed – loop 

plants. Dams are typically used in open or semi-open systems, while artificial 

reservoirs are used in semi - open systems. Environmental issues arising in PHES 
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development plants are unavoidable. In the US, proposed PHES projects have 

previously been blocked by environmental groups (Yang and Jackson 2011). 

The environmental impacts of PHES projects are generally the same impacts of that 

arising from hydro power plants (Monica 2000), concerning biodiversity, fisheries, 

water resources and water quality. Hydrology and hydrogeology impacts are linked 

to the construction of reservoirs, dams, tunnels and caverns. Among the three modes 

of PHES, closed - loop PHES plants have fewer environmental impacts as they do not 

interfere with the natural flow of the river, or degrade existing aquatic habitats. Thus, 

such projects are more acceptable to resource agencies, environmental groups and 

the general public. In US, of the 36 proposed PHES projects, 29 were closed-loop/off 

stream design (Yang and Jackson 2011). 

Denholm et al. (2004) used LCA to analyse the greenhouse gas emission from PHES 

and concluded that the CO2 emissions equivalent from the PHES construction process 

and operation was 35.7 tons per MWh storage capacity and 0.5 g per MJ, 

respectively, with a project lifetime assumption of 60 years. For contrast the full life 

cycle analysis of petrol and diesel is typically assessed as 88g CO2/MJ. 

 P2G 

In contrast to PHES plants, P2G plants do not have extensive environmental impacts 

on ecology, land use or habitat in the construction period, due to the flexibility of site 

location. The water consumption of P2G is also low; for each MWeh input, 200 L water 

is utilised (Sterner 2009). When methane is burned in a combined heat and power 

system, steam is released in a closed water circle, with little impact to the 
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environment. In the P2G-methane process, bound CO2 will be emitted when methane 

is converted to final energy. However, in the idealised application of P2G in 

conjunction with biogas upgrading, the CO2 would have been emitted anyway and 

thus no significant emissions contribution would result. Little research has been 

conducted on the LCA of P2G system construction. In this study, a CO2eq emissions of 

3.78kgCO2eq/MWh for the construction process (Boer 2012) was used. If the CO2 was 

taken from the flue gas of a coal power plant via amine scrubbing, the global warming 

potential (GWP) would be 23kg CO2 eq/MJ higher than the GWP resulting from CO2 

taken from biogas upgrading (Reiter and Lindorfer 2015b). The electricity generation 

source for P2G processes is another important factor when GWP is considered. Reiter 

et al. (Reiter and Lindorfer 2015b) suggested that the electricity used to produce 

hydrogen gas has its own GWP below 190g CO2/kWh (hydrogen), and that electricity 

used to produce methane has its own GWP below 113g CO2/kWh (utilizing CO2 from 

waste products) and 73g CO2/kWh (utilizing CO2 from the other sources). Thus, 

suitable electricity sources for P2G include: photovoltaics; hydropower; biogas CHP; 

and onshore/offshore wind farms (Jentsch, Trost, and Sterner 2011). It was also 

stated that if the electricity input to run P2G is from wind energy, the GWP is 6g CO2 

eq/MJ (if CO2 is from waste product) and 29g CO2 eq/MJ (if CO2 is from fossil source). 

If the electricity input from electricity is equivalent to the mix of the EU-27 countries 

(the European network of transmission system operator for electricity), the GWP is 

276g CO2 eq/MJ (CO2 as waste product) and 299g CO2 eq/MJ (CO2 from fossil source). 

It may be summarised that P2G-methane has a variable GHG emission depending on 

the source of electricity, depending on the source of CO2 and of the alignment of the 
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system. Ideally the electricity is from renewable electricity that would be curtailed 

due to times of excessive production (Gonzalez et al. 2004) and the CO2 would be 

from biogas and the alignment would use methanation to upgrade biogas.   

 CAES 

Environmental impacts in the construction phase of CAES plants are primarily related 

to geological impacts in cavern formation. Furthermore, the sites of diabatic CAES 

plants are not flexible, thus construction activities affect the surrounding 

environment. For operational periods, due to its features, adiabatic CAES plants 

would not cause any environmental impacts. Conversely, diabatic CAES plants use 

fossil fuels for combustion resulting in pollutants such as CO2, NOx and SOx being 

emitted, although only one third of the fuel is required compared to that of a 

conventional combustion turbine (Beckwith 1983, Wänn et al. 2012). The CO2eq is 

taken as 80 g/MJ for the CAES operation and 19 tons/MWh for the construction 

process (Denholm and Kulcinski 2004). 

The water used in the operational stage of diabatic CAES is required for cooling 

compressed air before storage, for cooling lubricating and for compensation. The 

water requirement will vary depending upon the cooling method chosen (Beckwith 

1983). 

 Comparison of CO2eq emissions 

The development of PHES plants will have a more serious environmental impact than 

that the development of CAES and P2G plants. Construction of P2G plants will have 
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the least impact on the environment. The CO2eq emission from construction and 

operation period of PHES, P2G and CAES are summarised in Table 3-6. 

Table 3-6. CO2eq emissions from PHES, P2G and CAES 

 Construction period 

(g/MWh) 

Operation period 

(g/MJ) 

References 

PHES 35,700,000 0.5 (Denholm and 

Kulcinski 2004) 

P2G 3780 6 (Boer 2012) 

Diabatic CAES 19,000,000 80 (Denholm and 

Kulcinski 2004) 

 

The development of a PHES plant emits almost double the amount of CO2eq than that 

of a CAES plant. P2G development plant has significantly reduced greenhouse gas 

emissions in terms of CO2 eq/MWh installed capacity compared to both PHES and 

CAES in the construction phase. In operation, PHES has the smallest emissions 

footprint as a technology (Table 3-6). In contrast, natural gas is burned in diabatic 

CAES plants to heat the air up. If the CO2 source is from biogas, the production of 

methane in P2G is low at 6g CO2 eq/MJ (assuming the electricity input is from wind 

energy).  

 Multi-criteria decision analysis for sustainability assessment 

 Performance measures 

The results of comparing single criteria are summarised in the performance matrix 

table (Table 3-7). To avoid anticipated future comparisons, only the current data for 

P2G, PHES and adiabatic CAES were used for the multi criteria decision analysis. Thus, 
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future P2G and adiabatic CAES systems are not considered in the MCDA. Moreover, 

the costs and efficiency data are in the range, thus maximum data were used to 

compare in this study. Using the data in Table 3-7 and following the normalised 

method presented in 3.2.1.2, the normalised data was calculated and is presented in 

(Table 3-8). Values are reported between 0 and 1; the closer the value is to 1 the 

better the outcome. 

 Weighted data 

The weighted data from individual participants was compiled and normalised into a 

range 0-1. The data was then analysed using the Huang et al. method (weighting for 

criterion – weighting method section). The standard deviation between criteria was 

highest for researchers 2 and 3 and lowest for researchers 5 and 9. This meant that 

researchers 2 and 3 had a greater preference difference between criteria and could 

differentiate between them more decisively. In contrast, the preference difference 

among criteria for researcher 5 and 9 were small. Analysing the preferential priority 

data indicated that most the researchers’ opinions listed the parameters in the 

following order: cost; environmental impacts; efficiency; CO2eq emission; storage 

capacity; position flexibility; energy carrier (Table 3-9). Taking account of the 

standard deviation, preference priority of each criterion (Table 3-9) and skewness 

and applying the Huang et al. method, the criteria weights for energy storage are 

evaluated and presented in Table 3-10. The original data reported in Table 3-10 is the 

respective average for each criteria value in Table 3-9. 
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Table 3-7. Performance matrix table in contrasting P2G, PHEs and CAES 

Criteria P2G  PHES CAES 

Current Future Diabatic  Adiabatic  

Costs  Capital costs € 900-3240/kWe 

$1260-4536/kWe 

€1000/kWe 

($1400/kWe) 

€500-2000/kWe  

($700- 2800/kWe) 

€450-1000 /kWe 

($630-1400/kWe) 

€600-1200 
/kWe  

($840-
1680/kWe) 

Operation and management costs (%) 3 3 1-2 0.6-2 

Efficiency (%) 60 65-91 70-85 40 70-80 

Energy carrier vectors 3 vectors (Hydrogen, methane, 
electricity) 

1 vector (Electricity) 1 vector (Electricity) 

Storage capacity  Up to 10TWh Up to 100GWh Up to 1GWh 

Discharge time 10,000 hours 1,000 hours 100 hours 

Position flexibility Flexible Not flexible Not flexible N/A 

CO2eq emission from construction period 
(CO2eq/MWh) 

3.78 kg  N/A 35.7tonnes  19.4 tonnes  N/A 

CO2eq emission from production period 
(gCO2eq/MWh) 

6 0.5 80 

General environment impacts Minor environmental impacts Variety of serious 
environmental impacts a 

Normal environmental impacts 

aBiodiversity, fisheries, water resources, water quality, hydrology and hydrogeology impacts associated with the construction of reservoirs, dams, tunnels and caverns. 
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Table 3-8. Normalised data of performance matrix table in contrasting P2G, PHEs and CAES 

Criteria Current P2G PHES Diabatic CAES 

Costs  Capital costs 0.00-0.72 0.38-0.85 0.69 - 0.86 

Operation and management costs (%) 0.00 0.33-0.67 0.33 – 0.8 

Efficiency (%) 0.71 1 0.44 

Energy carrier vectors 1 0.33 0.33 

Storage capacity  1 0.01 0.00 

Discharge time 1 0.10 0.01 

Position flexibility 1 0.5 0.5 

CO2eq emission from construction period (CO2eq/MWh) 1 0.00 0.46 

CO2eq emission from production period (gCO2eq/MWh) 0.93 0.99 0.00 

General environment impacts 1 0.00 0.5 

Note: The normalised value may be obtained as in the following example: Efficiency is benefit value, therefore efficiency for P2G is 60%, for the best case 
scenario is 85%, thus the normalised value is 60/85 = 0.71. 

For cost and CO2eq emission value, the lower is the better. If the capital cost of P2G is €900/kWe, the maximum cost for P2G, PHES and CAES is €3240/kWe, 
therefore the normalised value is 1 – 900/3240 = 0.72. 
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Table 3-9. Normalised weighted for energy storage technologies 

 Researcher 

Criteria 
1 2 3 4 5 6 7 8 9 10 δi 

Cost (capital, operation and 
management costs) 1 1 0.6 1 0.6 1 1 0.6 1 1 0.22 

Efficiency 0.8 0.6 1 0.8 0.8 0.8 0.8 0.8 0.8 0.6 0.14 

Energy carrier vectors 
(electricity or gas) 0.4 0.4 0.6 0.6 0.6 0.4 0.6 0.6 0.6 0.8 0.09 

Storage capacity and 
discharge time 0.8 0.4 1 0.8 0.8 0.6 0.8 0.6 0.8 0.4 0.13 

Position flexibility 0.6 0.2 1 0.6 0.6 0.6 0.8 0.4 0.6 0.6 0.11 

CO2eq emission 1 0.8 0.2 1 0.8 0.2 0.6 0.8 0.8 0.6 0.14 

General environment 
impacts 0.8 1 1 0.6 1 0.2 0.4 1 1 0.4 0.18 

Standard deviation (θk) 0.20 0.29 0.29 0.17 0.14 0.28 0.18 0.18 0.15 0.20  

δi: Preference priority of each criterion 
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Applying the Huang et al. method, the criteria weights can be seen to be more diverse 

(0.11 - 0.71) than those reported from the original data (0.60 - 0.88). The cost 

criterion is considered the most important factor in choosing any energy storage 

method, followed by efficiency for both the Huang et al. method and the original 

data.  General environmental impacts and storage capacity/discharge time are 

ranked as joint third most important criteria in the Huang et al. method. The original 

data differs in that general environmental impact has a higher weight than that of 

storage capacity/discharge time. Energy carrier vectors (electricity or gas) were 

assessed as the least important criterion in choosing any energy storage. However, 

for some countries such as Ireland, where electricity demand is half of transport as 

well as thermal sector energy demand (Murphy and Thamsiriroj 2011), the ability to 

transform the electricity storage to biofuel or gas is an enabling factor in deciding the 

energy storage method. 

Table 3-10. Criteria weights in energy storage (P2G, PHES and CAES) 

Criteria 

Huang et al. 

method 

Original data 

from this study* 

Cost (capital, operation and management costs) 0.71 0.88 

Efficiency 0.69 0.78 

Energy carrier vectors (electricity or gas) 0.11 0.56 

Storage capacity and discharge time 0.59 0.7 

Position flexibility 0.27 0.6 

CO2eq emission 0.46 0.68 

General environment impacts 0.59 0.74 

* Average for each criteria value in Table 3-8. 
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Considering all researchers have equal importance in making a decision and taking 

the criteria weight results from the Huang et al. method (Table 3-10) and the 

normalised performance measures data in Table 3-8 and applying Eq. (3-1), the final 

preference values for P2G, PHES and CAES can be calculated at 4.03, 2.46 and 2.16, 

respectively.  

The analysis of assessment results of each researcher by taking normalised weighted 

data in Table 3-2 and normalised data of performance matrix (Table 3-8) then 

applying Eq. (3-1) also indicates that the P2G system is preferred and PHES and CAES 

are ranked as second and third, respectively (Error! Reference source not found.). 

Thus, from a sustainable development perspective, P2G is shown to be superior to 

both PHES and CAES technologies. 

  

Figure 3-2. Selection of each researcher on sustainable energy storage 
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 Sensitivity analysis 

Given costs are ranked as the most important criteria and costs are variable, the 

sensitivity analysis in this study focused on the variation of the costs. It is assumed 

that the P2G technology is a new technology, therefore the capital cost is still high in 

the future, and meanwhile the PHES and CAES capital costs are low. Thus, the 

sensitivity analysis compared the highest capital cost of P2G with the lowest capital 

costs of PHES and CAES, other criteria were not changed. The results showed that the 

final preference values of P2G, PHES and CAES are 3.5; 2.5 and 2.2, respectively, 

which means the P2G technology was assessed as the most sustainable technology 

even with the cost of this technology still high. 

 Limitation and future works 

As with any multi criteria decision analysis studies, the limitations exist in the 

assignment of weights to each criterion with respect to the objective. The weights 

are affected by a particulars person’s point of view. Furthermore, due to the shortage 

of future data for each storage technology, the current performance of each 

technology is used in this chapter. This may not reflect the future performance due 

to technology development in the interim period. Future work can update upon this 

approach to consider the problem in more detail using more sub-criteria. 

 Conclusions 

If the criteria of electricity storage technologies are compared separately and only 

the investment cost or the efficiency is considered, PHES will be chosen. However, in 
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terms of sustainable development, which is identified through the MCDA model by 

assessing performances of seven criteria and evaluating the importance of those 

criteria to sustainable development objectives, P2G is assessed as the most 

sustainable. Thus, the results indicate clearly which future energy storage that the 

decisions and policy makers should consider for a sustainable development. Most of 

the previous studies only applied the single MCDA method. This chapter was 

conducted by integrating the individual weights into the group representative that 

always happen in reality 

  



 

 

62 

 

     Use of surplus wind electricity in Ireland to 
produce compressed renewable gaseous transport fuel 
through biological power to gas systems1 

Abstract 

Power to gas (P2G) may be used to store curtailed electricity whilst converting the 

energy vector to gas. To be economically viable these systems require cheap 

electricity and a cheap concentrated source of CO2. Biogas produced from anaerobic 

digestion typically comprises of 60% methane and 40% CO2. The P2G system 

substitutes for the conventional upgrading system by using hydrogen (derived from 

surplus wind electricity) to react with CO2 and increases the methane output. The 

potential CO2 production from biogas in Ireland associated with typical wet 

substrates is assessed as more than 4 times greater than that required by the 

potential level of H2 from curtailed electricity. Wind energy curtailment in 2020 in 

Ireland is assessed conservatively at 2175GWeh/a. Thus, P2G is limited by levels of 

curtailment of electricity rather than biogas systems. It is shown that 1 GWeh of 

electricity used to produce H2 for upgrading biogas in a P2G system can affect a 

savings of 97 tonnes CO2. The cost of hydrogen is assessed at €0.96/m3 renewable 

methane when the price of electricity is €c5/kWeh. This leads to a cost of compressed 

renewable gas from grass of €1.8/m3. This drops to €1.1/m3 when electricity is 

purchased at €c0.2/kWeh.  

                                                      
1 Chapter based on the published article: Vo, T.T., Xia, A., Wall, D.M. and Murphy, J.D., 2017. Use of 
surplus wind electricity in Ireland to produce compressed renewable gaseous transport fuel through 
biological power to gas systems. Renewable Energy, 105, pp.495-504 
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 Introduction 

 The need for storage of intermittent renewable electricity 

Ireland’s target is to achieve 40% renewable energy supply of electricity by 2020 

(Sustainable Energy Authority of Ireland 2012), 12% renewable energy supply in heat 

and 10% renewable energy supply in transport (Persson et al. 2014). Within its 

renewable energy targets, Ireland has set a target of 500MWe of ocean energy 

capacity by 2020 (Department of Jobs 2013). In 2012 wind energy and biomass 

provided 74% and 8% of the renewable electricity of the country, respectively 

(Persson et al. 2014). 

McGarrigle et al. (Mc Garrigle, Deane, and Leahy 2013) stated that wind turbines are 

expected to produce 37% of the electrical energy needs of the island of Ireland in 

2020, whereas the existing hydroelectric plants and other forms of renewable 

electricity generation will generate only 3% of the total electricity. The characteristics 

of marine renewable electricity are intermittent and fluctuating. In order to provide 

system security, sometimes wind energy needs to be dispatched down. A total of 196 

GWeh of energy from wind farms was estimated to be dispatched down in 2013; this 

is an increase of 86 GWeh compared to that of 2012 (EirGrid and SONI 2014). 

Currently, Ireland’s solution for intermittent energy is grid interconnection with 

Great Britain. Connolly (Connolly 2007) highlighted that Denmark also has a similar 

approach for grid stability by selling wind power when excess power is available and 

buying power when it is needed. However, this approach is expensive as the 

electricity sales are cheaper than electricity purchase. If Ireland considers Great 
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Britain as an energy storage source, this policy will involve the purchase of expensive 

electricity. If interconnection is also utilized to integrate wind power onto the grid, 

then Ireland’s green power could be used to reduce the CO2 emissions of Great 

Britain rather than Ireland (Connolly 2007). Therefore, new electrical storage systems 

are required for future energy security in Ireland. 

 Biological power to gas systems 

Power to gas (P2G) is a method to convert electrical power to gaseous fuel in the 

form of hydrogen or methane. Large amounts of hydrogen addition to natural gas 

may change the combustion properties of natural gas, reduce the Wobbe Index of 

the gas, and not integrate sufficiently with the natural gas grid (Grond, Paula, and 

Johan 2013). Many countries have extensive infrastructure systems for methane 

distribution. Distribution and use of methane are far more readily available than 

hydrogen based on the current infrastructure. 

At present, P2G technologies have high capital cost and relative low efficiency. 

However, one of its advantages is the diversification of the final products; gas 

produced may be used for heating, as a gaseous fuel for transport or be converted 

back to electricity when demand for electricity is high. Murphy and Thamsiriroj 

(Murphy and Thamsiriroj 2011) stated that the final energy demand in the  transport 

and thermal sectors is each approximately 40% of total demand; the demand for 

electricity is of the order of 20% in Ireland. Therefore, the diversification of energy 

carrier vectors could meet the demand for green transport and thermal demand.  
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A study conducted by the International Energy Agency (IEA) Bioenergy Task 37 

(Persson et al. 2014) concluded that P2G would be an optimal route to produce 

renewable transport fuel from surplus electricity. In order to produce methane, 

electricity is first converted to hydrogen through electrolysis as shown in Eq. (4-1). 

CO2 is then combined with hydrogen to produce methane by the Sabatier reaction as 

shown in Eq. (4-2) (Buchholz et al. 2014). The efficiency of electrolysis process is 

based on the technologies. The efficiency of alkaline electrolyses and polymer 

electrolyte membrane electrolysers vary from 55- 84% (Troncoso and Newborough 

2011, Gahleitner 2013). Additionally, the efficiency of solid oxide electrolysers is the 

range of 90-95% (Ahern et al. 2015). Therefore, this chapter assumed 75% is 

efficiency of electrolyser as in Ahern et al. (Ahern et al. 2015). 

2H2O(l) →  2H2(g) + O2(g)  ∆Hr = 286 kJ/mole (at 25o C, 1 bar)  (Eq. 4-1)  

CO2 + 4H2 ↔ CH4 + 2H2O  ΔH = -165 kJ/mol   (Eq. 4-2) 

There are two methods to produce methane: chemical and biological methanation. 

The principles of the two methods are based on Eq. (4-2). Chemical methanation 

requires that the input CO2 is free from impurities (such as siloxanes); however, 

biological methanation requires less stringent quality and may use the CO2 in raw 

biogas derived from anaerobic digestion to produce methane (Götz et al. 2016). As 

such this acts as an upgrading process of biogas to biomethane.  

The biological methanation process is an anaerobic process in which carbon dioxide 

and hydrogen are used by a group of microorganisms (hydrogenotrophic 

methanogenic archaea) to produce methane. This process happens at much lower 



 

 

66 

 

temperatures than for chemical methanation: the mesophilic and thermophilic 

processes are usually conducted under 20-40oC and 45-60 oC, respectively (Grond, 

Paula, and Johan 2013).  "In-situ" and "ex-situ" biogas upgrading are two methods for 

biological methanation. When H2 is introduced into the main anaerobic reactor this 

is known as the "in-situ" method (Díaz et al. 2015, Bensmann et al. 2014); the 

methane content can be increased from ca. 50% to 75% (Benjaminsson, 

Benjaminsson, and Rudberg 2013). When the biogas and the H2 react in a separate 

reactor (filled with hydrogenotrophic methanogenic archae), a high methane content 

(up to 98%) can be achieved; this is known as an "ex-situ" process (Burkhardt, 

Koschack, and Busch 2015).  

 Biogas production and biogas upgrading methods 

Biogas consisting of CH4 (40-75%) and CO2 (25-60%) can be produced from a broad 

range of feedstocks including organic fraction of municipal solid waste (OFMSW) 

(Browne, Allen, and Murphy 2014, Browne and Murphy 2013, 2014), agriculture 

slurries (Singh, Smyth, and Murphy 2010), grass (Smyth, Smyth, and Murphy 2011, 

Murphy and Power 2009, Smyth, Murphy, and O’Brien 2009) or seaweed (Allen et al. 

2014). In order to be fed into the existing natural gas network or to be utilised as 

biofuel, biogas needs to be upgraded to remove contaminants and CO2 (Petersson 

2009). Absorption (water scrubbing, organic solvent scrubbing, chemical) and 

adsorption (pressure swing adsorption) are two traditional methods for upgrading 

biogas. However, those processes have high costs and the sustainability may be 

affected by the discharge of small amounts of methane in the upgrading step (Luo 

and Angelidaki 2012).  Biological methanation can potentially provide an alternative 



 

 

67 

 

method for the upgrading of biogas produced from a digester. The methane content 

after the “in-situ” methanation process is 75%, therefore gas upgrading (to remove 

CO2) and gas cleaning (to remove impurities such as water and H2S) is required. The 

methane content after the “ex-situ” process can reach 98%, consequently only gas 

cleaning is required. Thus, renewable gas (biomethane) from an “ex-situ” biological 

methanation process will be assessed in this chapter. A schematic of the process is 

shown in Figure 4-1.  

 

Figure 4-1. Design of biological P2G system as a biogas upgrading process  

 

 Potential gaseous fuel market in Ireland 

Compressed natural gas (CNG) is a gaseous transport fuel stored under high pressure 

(ca. 250 bar). Approximately 18 million natural gas vehicles (NGVs) are used 

worldwide, with 1.9 million NGVs located in Europe. Owing to a lack of service 

stations to serve NGVs or policy to promote their use, there is no NGV industry in 

Ireland. However, Gas Networks Ireland (GNI), the owner and operator of the gas 

network in Ireland, are actively promoting the use of CNG fuel for transport. A target 

of 5% has been set for the commercial transport market (16,000 vans), 10% for buses 
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(1,130 buses) and 10% for trucks (2,720 trucks) in Ireland to operate on CNG by 2020 

(Cottrell B. 2014, Twomey D. 2011). It is envisaged that this target will create a gas 

demand for NGVs of ca. 305 Mm3/year equating to 11.6 PJ of energy (DKM economic 

consultant 2011). 

 Rationale and objectives of the research 

The aim of this chapter is to expand upon research assessing the combination of 

curtailed renewable electricity and CO2 sourced from anaerobic digestion as a 

method of upgrading biogas using biological P2G systems and providing a source of 

renewable transport fuel. Previous studies have explored the reduction of 

greenhouse gas (GHG) emissions when biomethane (upgraded biogas) is used to 

replace fossil diesel fuel (Smyth et al. 2010, Korres et al. 2010, Ryan and Caulfield 

2010, Krupnick 2010, Thamsiriroj and Murphy 2011, Bacenetti et al. 2014). However, 

assessing the GHG reduction associated with biological P2G systems combined with 

biomethane production from a digester as a substitute for diesel transport fuel has 

not been assessed.  

The cost of renewable gas originating for P2G systems has been reviewed (Götz et al. 

2016) and examined (Benjaminsson, Benjaminsson, and Rudberg 2013). However, 

these studies considered the methanation process as a seperate entity, and did not 

consider the upgrading of biogas in anaerobic digestion using a biological P2G 

process. Ahern et al. (Ahern et al. 2015) undertook an initial examination on finacial 

sustainability of P2G such as the cost of hydrogen; the cost of carbon capture; 

revenue from sale of renewable gas as a transport fuel; and financial viability. 
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However, the costs of renewable gas from different digestion feedstocks have not 

been assessed. This chapter seeks to fill these gaps by: 

- Examining the quantity of CO2 associated with potential levels of biogas in 

Ireland; 

- Determining the limiting factor for power to gas: curtailed electricity or CO2 

from biogas;  

- Determining the potential gaseous transport fuel resource associated with 

biological power to gas systems in Ireland; 

- Calculating the GHG savings associated with renewable gas; 

- Calculating the combined cost of renewable gas and biomethane produced 

from biological power to gas systems for a range of feedstocks. 

 Methodology 

 Wind energy curtailment 

Wind energy needs to be curtailed due to: (i) system stability requirements 

(synchronous inertia, dynamic and transient stability); (ii) operating reserve 

requirements, including negative reserve; (iii) voltage control requirements; (iv) 

morning load rise requirements and (v) system non-synchronous penetration (SNSP) 

limit (SNSP limit is constraint on non- synchronous penetration, in which SNSP is 

calculated as SNSP = (wind generation + high voltage direct current imports)/ (system 

demand + high voltage direct current exports)) (Mc Garrigle, Deane, and Leahy 2013). 

The total wind energy curtailment used in this study is based on the work of 

McGarrigle et. al (Mc Garrigle, Deane, and Leahy 2013) where it was suggested that 
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7-14% of electricity from wind could be curtailed in Ireland by 2020. This was based 

on SNSP limits of 70% and 60%, respectively. The total H2 produced was modelled 

based on the energy curtailment as input to the electrolysis process (Mc Garrigle, 

Deane, and Leahy 2013). 

 Environmental benefits 

The environmental benefits considered in this chapter are the GHG emissions (CO2eq) 

saved when CO2 from biogas is combined with H2 to produce methane. The short 

term CO2 in the biogas, which would have been released in the upgrading process will 

be reused to produce methane and thus displace fossil diesel. 

 CO2eq saved from biogas upgrading process 

The CO2eq saved from the biogas upgrading process was calculated by Eq. (4-3): 

E = E1 – E2         (4-3) 

Where:  

E: GHG (CO2eq) saved 

E1: CO2 in biogas used to combine with H2 to produce CH4 

E2: CO2eq emitted from P2G process (from life cycle assessment of P2G process). 

The CO2eq from electricity production from wind was included as a part of P2G 

process.  

 CO2eq saved from replacement of fossil diesel fuel 

The projected 2020 transport fuel demands for heavy vehicles in Ireland are 

dominated by diesel fuel (Irish academy of Engineering 2013). Therefore, this chapter 
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focused on analysing the replacement of diesel by renewable gas (the biomethane 

produced from the combination of the biogas plant and biological P2G process). Five 

digestion feedstocks for biomethane production were considered – grass, pig slurry, 

slaugter house waste (SHW), seaweed  and OFMSW. Lifecycle assessment results 

from literature were collected in order to determine GHG emissions in replacing 

diesel with renewable gas. The "Well to Wheel" life cycle assessment includes 

emissions associated with fuel production, processing, transportation, distribution 

and consumption. The EU Renewable Energy Directive of 2009 (Official Journal of the 

European Union 2009) states that biofuel emissions are calculated as zero due to 

balancing the amount of carbon released with an equivalent amount sequestered, 

therefore such emissions were not considered. The total CO2eq saved when the total 

CH4 produced is used to replace diesel fuel was calculated by using Eq. (4-4): 

Ed = E9 – E4 – E5 – E6 –E7 – E8 + E            (4 - 4) 

Where: 

Ed: CO2eq saved when CH4 replaces fossil diesel fuel; 

E4: CO2eq emitted from processing of substrate, transport and distribution of biogas 

from domestic and organic fraction of municipal solid waste (OFMSW); 

E5: CO2eq emitted from collection and processing of substrate, transport and 

distribution of biogas from agricultural slurries; 

E6: CO2eq emitted from collection and processing of substrate, transport and 

distribution of biogas from slaughter waste; 
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E7: CO2eq emitted from cultivation and processing of substrate, transport and 

distribution of biogas from grass; 

E8: CO2eq emitted from cultivation and processing of substrate, transport and 

distribution of biogas from seaweed; 

E9: CO2eq emitted when diesel fuel used.  

The CO2 emission from well to wheel of diesel fuel was calculated through Eq. (4-5): 

E9 = MJ fuel used x gCO2eq/MJ      (4-5) 

E: The CO2eq saved from the biogas upgrading process (Eq. 4-3) 

 Economic benefits 

The economic benefits were analysed in three areas: 

- Total money saved through CO2eq reduction when renewable gaseous fuel 

replaces diesel fossil fuel; 

- Total money saved through reduction in wind energy curtailment; 

- Comparison of the costs of biomethane produced from conventional 

upgrading and in a biological methanation system (renewable gas). 

In order to compare the cost of biogas with conventional upgrading and upgrading 

via biological methanation, the methodology and data from the study of Browne et 

al. (Browne et al. 2011) was used in this chapter. The operational costs of the biogas 

plant do not change according to scale and are summarised in Table 4-1. 
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Table 4-1. Assumptions for calculating biomethane costs - adapted from (Browne et 

al. 2011) 

 Grass Pig Slurry SHW OFMSW 

CH4
 content in biogas 55% 65% 55% 60% 

CO2 content in biogas 45% 35% 45% 40% 

m3 biomethane yield/tonne 

feedstock 
59.4 14.4 41 66 

Technology used CSTR* CSTR CSTR Batch process 

Maintenance and overhead  €5/t €5/t €10/t €25/t 

Digestate disposal    €4/t 

Electrical demand of biogas 

plant 
10 kWeh/t 10 kWeh/t 10 kWeh/t 6 kWeh/t 

Cost of feedstock €17/t    

Storage pit €30/t    

Gate fee   €20/t €70/t 

Compression and 

distribution cost 
€0.149/m3 €0.149/m3 €0.135/m3 €0.149/m3 

Interest rate 6%/a 

Life time 15 years 

Cost of electricity €0.15/kWeh 

Gas grid connection €300,000 

CNG service station €500,000 

*. CSTR: Continously stirred tank reactor 

 Results and discussion 

  The sources of CO2 from biogas  

Ahern and co-workers (Ahern et al. 2015) assessed potential feedstocks (agricultural 

slurries, SHW, grass and OFMSW) for renewable gas in Ireland as 7.4 Mtonnes/a. 
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These feedstocks can produce 430 Mm3 CO2/a (58 m3 CO2/tonne feedstock) as a by-

product of anaerobic digestion as illustrated in Table 4-2. This represents a significant 

available resource of concentrated CO2 in Ireland. 

Table 4-2. Quantifying the CO2 resource from anaerobic digestion of selected 

substrates in Ireland - adapted from (Ahern et al. 2015) 

 

Agricultural 

Slurries 

Slaughter 

Waste OFMSW Grass Total 

Feedstock (Mt/a) 2.79 0.21 0.22 4.16 7.38 

CH4 from Anaerobic 

Digestion (AD) (Mm3/a) 49.76 18.08 14.98 447.59 530.41 

Practical resource from 

AD (PJ/a) 1.88 0.68 0.57 16.07 19.20 

% CO2 in biogas 45 45 35 45 - 

CO2 from AD (Mm3/a) 41 15 8 366 430 

 

The gas volume in this chapter is expressed under standard temperature (0oC) and 

pressure (1 atm). For the purposes of this study, the following section will analyse in 

detail the potential CO2 content in biogas from seaweed for the benefit of the reader.  

Burton et al. suggested  a total area of 700 ha for seaweed cultivation in Ireland by 

2020 (Burton et al. 2009). It is assumed forty tonnes of seaweed (on a wet weight 

basis) may be produced per hectare per annum. Laminaria species in Cork was found 

to comprise of 10.34% volatile solids (VS) (Murphy et al. 2015). The methane yield 

from Laminaria species was assessed at 238 L CH4/kg VS (Adams et al. 2011). Thus, 

the methane yield may be calculated as 24.6 m3 CH4/tonne feedstock with the ratio 

of CH4 to CO2 in the biogas at 55%:45%. Using these figures, the potential biogas and 

analysis of the P2G system from the seaweed feedstock is summarised in Table 4-3. 
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It should be noted that the seaweed productivity used is a conservative value based 

on the current available technology; a much higher value may be achieved if 

advanced cultivation technologies are applied (Xia, Cheng, and Murphy 2015). For 

examples, a high productivity may be achieved by using multilayer textile substrates 

for seaweed cultivation (http://www.atsea-project.eu/). 

Table 4-3. Potential biogas and P2G production from seaweed (Laminaria species) in 

Ireland 

Component Data Quantity Unit 

Potential area  700 ha 

Seaweed cultivated 

per year 

40tonnes wet 

weight/ha 
700*40 = 28,000 tonnes/a 

Total VS 10.34% VS 28,000*10.34% = 2,895 tonnes/a 

CH4 yield from 

biogas 
238 L CH4/kg VS 

2,895 tonnes*238m3/tVS  

= 689,058 
m3/a 

Energy content of 

CH4 

Energy value of 

CH4: 37.8 MJ/m3 
689,058*37.8 = 0.026 PJ/a 

CO2 from anaerobic 

digestion 

45% CO2 from 

biogas 

689,058*45%/55% 

= 563,774 
m3/a 

CH4 produced from 

P2G 
1 CO2  ≈ 1 CH4 563,774 m3/a 

CH4 produced from 

biogas and P2G 

from seaweed 

 1,252,832 m3/a 

H2 required* 

H2 required at 4 

times the volume 

of CO2 eq.(4-2) 

563,774*4 = 2,255,098 m3/a 

Electricity required 

to make H2 for P2G 

system 

H2 energy value 

of: 12MJ/m3 

efficiency: 75% 

2,255,098m3/a*12MJ/m3 

/0.75)*28/106 = 10 
GWh/a 

http://www.atsea-project.eu/
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Overall, the potential capacity of CO2 from biogas in Ireland in the year 2020 would 

be 430.6 Mm3/a predominantly originating from agricultural slurries, slaughter 

waste, OFMSW and grass (Table 4-2); with just 0.6 Mm3/a from seaweed (Table 4-3). 

If the total CO2 capacity is used for upgrading in a biological P2G process, ca. 7,654 

GWh/a of electricity could be used in P2G systems (shown in Table 4-4). However, 

McGarrigle et al. (Mc Garrigle, Deane, and Leahy 2013) concluded that the installed 

capacity of wind turbines in Ireland by 2020 will be between 5,911 MW and 6,890 

MW. If the curtailment rate is 14% and the capacity factor is 30%, the total wind 

energy that will be curtailed in 2020 is in the range of 2,175 – 2,535 GWh/a. In order 

to simplify this calculation, this chapter only analyses the benefits based on 2,175 

GWh/a of curtailed wind energy in 2020. If the curtailed electricity was used to 

produce H2 through an electrolysis process, the H2 amount would be sufficient to 

combine with 28.4% of CO2 from biogas of potential indigenous feedstock. Thus, P2G 

is limited by levels of curtailment of electricity rather than biogas systems. 

Table 4-4. Potential storage capacity by methanation of CO2 from biogas. 

Components Quantity Unit 

CO2 from AD  430.6 Mm3 /a 

H2 requirement  403.6*4 = 1722 Mm3 /a 

Energy value of H2  1722Mm3/12MJ/m3 = 20,664 TJ/a 

Electricity required to produce H2  20,664TJ*0.2778/0.75 = 7,654 GWh/a 

Note: - Energy value of H2: 12MJ/m3, 1GWh = 3.6 TJ; 1TJ = 0.2778GWh 

             - Efficiency from power to H2: 75% 

            - H2 volume is 4 times that of CO2 according to Eq. (4-2) 
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 Environment benefits 

 Greenhouse gas savings when CO2 from biogas is utilised 

The combination of CO2 from biogas with H2 creates additional value from CO2 by 

utilising that CO2 to produce biomethane in a biological methanation process. If wind 

energy curtailment in 2020 in Ireland (2,175 GWh/a) is used to produce hydrogen for 

a biological methanation process, then 211,450 tonnes CO2eq (outlined in Box 4-1) 

would be saved annually. This means that for 1GWh of surplus wind energy used to 

produce hydrogen for upgrading biogas, approximately 97 tonnes CO2 can be fixed 

from biogas in a P2G system.  

 CO2eq savings when fossil diesel fuel is replaced by CNG. 

The total CO2 from the feedstock needed to combine with H2 produced from surplus 

wind energy is 122 Mm3/a. The data from Table 4-2 shows that one feedstock source 

alone will not meet the demand of CO2 for biological P2G. Therefore, it is assumed 

that the CO2 will be sourced from biogas from SHW, OFMSW, agricultural slurries 

(Table 4-2) and seaweed (Table 4-3). The remainder (57.4 Mm3/a) will be sourced 

from biogas from grass feedstock. 

The efficiency of biomethane fuel at present is about 18-29% less than that of diesel 

fuel on a km/MJ basis (Korres et al. 2010, Adams and Home 2010). In this chapter, 

20% lower efficiency of gaseous fuel than that of diesel fuel is used to calculate the 

total replaced diesel. It is expected that future vehicle efficiencies will improve. 
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Box 4-1. CO2eq saved when CO2 in biogas is utilized to produce CH4 

Assumptions:  

- Efficiency from Power to H2: 75%; 

Calculations: 

E1- CO2eq saved to produce CH4 by biogas upgrading: 

Sabatier equation:               4H2   +  CO2   = CH4 + 2H2O 

Wind electricity curtailed in 2020: 
2,175 GWh/a 

7.83 PJ 

H2 produced from curtailed electricity: = (7.83 PJ/12 MJ/m3)*75% 

= 489 Mm3/a 

CO2 required (H2 : CO2 ≈ 4:1): = 489 Mm3/4= 122 Mm3/a 

= (122 Mm3*1.96 kg/m3)/1000 

=239,120 tonnes/a 

CH4 produced from combination of CO2 and H2 

process1 (1 CO2  ≈ 1 CH4) 

122 Mm3/a 

E2 – Total CO2eq emitted from P2G process 

when producing CH4: 

= 122 Mm3* 37.8 MJ/m3 * 6 g 

CO2/MJ =27,670 tonnes CO2eq/a 

Total CO2eq saved (E) through utilisation of CO2 

from anaerobic digestion in P2G and CH4 used 

as biofuel for transport2: 

= 239,120 tonnes/a - 27,670 

tonnes/a  

=  211,450 tonnes CO2/a 

Notes: 

- E was calculated as Eq. (4-3) 

- Density of CO2: 1.96 kg/m3; density of methane: 0.714 kg/m3 

- Energy value of H2: 12 MJ/m3; energy value of CH4: 37.8 MJ/m3; 

- CO2eq emitted from producing CH4 by catalyst P2G process: 6 gCO2/MJ (Reiter and Lindorfer 

2015b). The CO2eq emitted from producing CH4 by biological P2G is not available in literature. Thus, 

the GHG data of catalyst P2G is applied in this study. 

The numbers may not sum exactly due to rounding. 

 1 excluding CH4 from biogas process. 

2 The CO2 from the biogas plant will be released to the environment by conventional    upgrading, 

therefore when it is utilised in combination with H2, it is considered as CO2 saved. 
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The calculation of GHG emissions (gCO2eq/MJ) for conventional biogas production 

includes biomethane loss and biogas upgrading. However, the biological P2G process 

helps avoid biomethane slippage in upgrading systems as biogas upgrading is 

replaced by ex-situ biomethanation. Thus, the calculations of GHG emissions from 

biogas in this chapter do not include biomethane loss and GHG emissions from 

traditional biogas upgrading.  

The Biograce GHG calculation tool (http://www.biograce.net/home) is used for 

demonstrating compliance with the sustainability criteria under Directives 98/70/EC 

and 2009/28/EC of the European Parliament and of the Council. In this tool, CO2eq 

from biogas upgrading including methane leakages by pressurized water scrubbing is 

11.87 g/MJ. The CO2eq emitted from cultivation, processing, transport and 

distribution of biogas from OFMSW is 26.7 g/MJ and from wet manure is 26.1 g/MJ. 

Therefore, subtracting the upgrading emissions, calculation of GHG emissions from 

OFMSW and agricultural slurry derived biomethane were taken as 14.83 and 14.23 

gCO2eq/MJ, respectively, in this chapter. 

The GHG emissions data of biogas from SHW is quite limited; only one study by Singh 

and Murphy (Singh and Murphy 2009) was found in the literature. However, the 

authors did not include emissions from transport and distribution as these processes 

will take place whether biomethane is produced or not. A figure of 31.42 

kgCO2eq/tonne was reported, equating to 10 gCO2eq/MJ (using a biogas yield of 

119.6m3/tonne and energy content of biogas as 26MJ/m3), which would be emitted 

if slaughterhouse waste is utilized for biogas production. Korres et al. (Korres et al. 

2010) suggested that the GHG emission savings of grass biomethane as compared to 
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diesel fuel (88.8 gCO2eq/MJ) was 54.2% allowing for wind energy used in electricity 

production supplying parasitic demand, improved heating, improved vehicle 

efficiency and ignoring carbon sequestration in pasture land. This meant that the 

GHG emissions from grass biomethane was 40.7gCO2eq/MJ. Removal of CO2eq from 

biogas losses (10.82 gCO2eq/MJ) and from biogas upgrading (12.64 gCO2eq/MJ) (Korres 

et al. 2010), the total CO2eq from grass biomethane used in this chapter was 17.24 

gCO2eq/MJ.  

GHG emissions from seaweed biomethane was reported as 176 kgCO2eq/tonnes dry 

seaweed [44], which equates to 35 gCO2eq/MJ (at 133 m3 methane yield/tonne dry 

seaweed  and energy content of methane at 37.8 MJ/m3); biomethane losses or 

biogas upgrading were not considered (Alvarado-Morales et al. 2013). Therefore, 35 

gCO2eq/MJ was used to calculate CO2eq reduction from cultivation, processing, 

transport and distribution of biogas from seaweed. The GHG emission results of each 

feedstock type are shown in Table 4-5. 

Table 4-5. Greenhouse gas emission from biogas of different feedstocks when 

biological P2G is used to upgrade biogas. 

Feedstock Greenhouse gas emissions (gCO2eq/MJ) 

Slaughterhouse waste 10 

OFMSW 14.83 

Agricultural slurries 14.23 

Seaweed 35 

Grass 17.24 
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Box 4-2 presents the results of the net GHG emissions saved when biomethane from 

digestion of feedstocks displaces fossil diesel fuel. The total methane produced from 

biological P2G is ca. 271 Mm3/a. Gas Networks Ireland have a target to fuel 10% of 

buses, 10% of trucks and 5% of commercial vans in 2020 (305 Mm3/a). Methane 

produced from biological P2G is sufficient to satisfy 89% of this target. If biomethane 

is used as a gaseous fuel to replace diesel fossil fuel, then 865,767 tonnes CO2eq will 

be saved annually. This means the total CO2eq reduction of biomethane compared 

with diesel fuel is 117%, which satisfies the requirement of the EU Renewable Energy 

Directive. 

 Economic benefits 

  Carbon tax 

The sources of GHG emissions in Ireland are mainly from the non-emission trading 

sectors, in which agriculture accounts for 30.5%, energy industries emit 21.8%  and 

transport 18.9% (Environment Protection Agency 2012). The Irish Environmental 

Protection Agency (EPA) stated that Ireland would not meet its EU 2020 targets for 

20% GHG emission reduction (Irish Environmental Protection Agency). Ireland must 

rapidly decarbonise energy and transport to get further mitigation in GHG.  
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Box 4-2. CO2 saved when fossil diesel fuel is replaced by biomethane and renewable 

methane 

 CH4 from combination of CO2 and H2 (Box 4-1):  122 Mm3/a 

 CH4 from anaerobic digestion (assume 55%CH4 : 
45%CO2): 

= (122 Mm3/a * 
55%)/45% = 149 Mm3/a 

 

Total CH4 produced: 

271 Mm3/a 

= (271 Mm3/a * 37.8 
MJ/m3)/109 =10.24 PJ/a 

 Energy content of biogas from OFMSW 0.57 PJ/a 

E4 CO2eq emitted from cultivation, processing, 
transport and distribution of biogas from OFMSW: 

= 0.57 PJ/a * 14.83 
gCO2eq/MJ = 8,453 t/a 

 Energy content of biogas from agricultural slurries  1.88 PJ/a 

E5 CO2eq emitted from cultivation, processing, 
transport and distribution of biogas from 
agricultural slurries: 

= 1.88 PJ/a * 14.23 
gCO2eq/MJ =26,752 t/a 

 Energy content of biogas from slaughter waste 0.68 PJ/a 

E6 CO2eq emitted from production of biogas from 
slaughterhouse waste: 

= 0.68 PJ/a * 10 
gCO2eq/MJ = 6,800 t/a 

 Energy content of biogas from grass 2 PJ/a 

E7 CO2eq emitted from cultivation, processing, 
transport and distribution of biogas of from grass 

= 2 PJ/a * 17.24 
gCO2eq/MJ = 34,480 t/a 

 Energy content of biogas from seaweed 0.026 PJ/a 

E8 CO2eq emitted from cultivation, processing, 
transport and distribution of biogas of from biogas 
of seaweed: 

=0.026 PJ/a * 35 
gCO2eq/MJ = 910 t/a 

 Total diesel will be replaced:  = 10.3 PJ/a * 80% = 8.24 
PJ/a 

260 ML/a 

E9 CO2 emitted from diesel fuel (from well to wheel 
gCO2/MJ): 

= 8.24 PJ/a * 88.8 
gCO2eq/MJ  

=731,712 tonnes/a 

Ed  CO2 saved when biomethane and renewable 
methane replace diesel fuel: 

865,765 tonnes/a 

Notes: - Ed = E9 – E4 – E5 – E6 –E7 – E8 + E                                                                     Eq. (4- 4) 

- Ed = 731,712 – 8,453 - 26,572 – 6,800 – 34,480 – 910 + 211,450 (E from Box 4-1) 

- Energy value of Automotive Diesel Fuel: 36.8MJ/L; energy value of CH4: 37.8 MJ/m3; 

- The GHG emission of diesel fuel is 88.8 gCO2eq/MJ (Murphy et al. 2011). 
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According to Murphy et al. (Murphy et al.), energy demand of transport in 2020 will 

be 188 PJ/a. If CH4 from biological P2G in this study is used as a renewable transport 

fuel (10.3 PJ/a), it would meet 5.5% of energy demand in the transport sector.  A 

carbon tax of €20 per tonne of CO2 emitted for transport fuels was stated in the Irish 

Governmental Budget of 2012 (Environment Protection Agency 2012). If the 

renewable methane produced from wind energy curtailment and CO2 from anaerobic 

digestion replaces fossil diesel fuel around €17 million euros would be saved per year 

in carbon fines. 

 Money saved through utilization of wind curtailment 

As mentioned in section 4.3.2.2, of the order of 2175GWh/a of wind energy will be 

curtailed in Ireland by 2020. Wind energy developers would not be paid for this. 

However, if this is used for P2G a monetary value for wind energy of 5c€//kWh could 

be achieved (Ahern et al. 2015), generating around €109 million annually. 

  The costs of renewable gas  

The costs of renewable gas include the cost of hydrogen, the cost of methane from 

the biogas plant and the cost of biomethane from methanation. It is assumed that 

the gas is compressed to ca. 250 bar for use as a transport fuel and this cost is 

included for in the compression and distribution costs in Table 4-1. 

• Biomethane cost: The costs of renewable gas include for capital expenditure 

(CAPEX) and operational expenditure (OPEX). This process is a combination of the 

biogas plant and the biological methanation system, and as such the CAPEX and OPEX 

for the two processes must be assessed.  
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According to Götz et al. (Götz et al. 2016), the size of biological methanation should 

not be greater than 5MW. If the capacity is higher than 5 MW, catalytic methanation 

is suggested as being more economical. Therefore, a 5MW biological methanation 

plant is used to calculate the capacity of biogas plant in this study. If an assumption 

is made of a 5MW system with a capacity factor of 50%, this will produce 21,900 

MWh/a, which equals with 2,190,000m3 methane per year (at 1 mn
3CH4 ≈ 0.01MWh). 

For an ex-situ process, with biomethane at 98% methane content, this is equivalent 

to 2,234,694 m3 biomethane. It may be assumed that half of the biomethane is 

derived from the original biogas, therefore approximately 1,117,347 m3CH4/a is from 

biogas. Taking the methane yield of each feedstock in Table 4-2 and 24.6 m3CH4/t for 

seaweed (section 4.3.1), we can find that the quantity required for each feedstock 

type for a 5 MW biological methanation is different: 19,000 tonnes/a of grass; 77,000 

tonnes/a of slurry; 27,000 tonnes/a of SHW; 19,000 tonnes/a of OFMSW and 46,000 

tonnes/a of seaweed.  

Browne  et al. (Browne et al. 2011) assessed the costs of biogas facilities for food 

waste, SHW and combined grass and slurry at a scale of 50,000 tonnes/a. These costs 

will be used as a basis for the following analysis but will be adjusted for scale. 

• Biogas plant CAPEX: Biogas plant capital costs are effected by economies of scale; 

the relationship of maize silage feedstock and investment cost of biogas plant 

(Browne et al. 2011) is shown in Eq. (4- 6): 

   𝑦 = 558.89 ∗ 𝑥−0.159          (4- 6) 

In which, y is investment cost (€/t feedstock) and x is tonnes of feedstock per annum. 
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Based on this equation, different quantities of feedstocks will have different 

investment costs. Applying the feedstock quantities calculated previously for grass, 

slurry, SHW, OFMSW and seaweed (19000 t/a, 77000 t/a, 27000 t/a, 19000 t/a and 

46000 t/a, respectively), Table 4-6 determines the investment costs as would apply 

for these quantities of  maize silage feedstock. Table 4-6 also illustrates the 

percentage cost difference as compared to a 50000 t/a maize silage plant. 

Table 4-6. Percentage difference in investment cost of different scale of maize silage 

biogas plant  

Tonne of maize silage Investment cost 

(€/t/a feedstock) 

% cost difference comparing to 

50 000 tonnes 

19000 116 16 

27000 110 10 

46000 101 1 

77000 93 -7 

50000 100 0 

 

The capital cost of grass, OFMSW, SHW and slurry biogas plants have been reported 

in previous literature as 140 €/t/a, 280 €/t/a, 140€/t/a and 110 €/t/a (shown in Table 

4-7 ).  It is assumed that the calculated percentage cost difference (reported in Table 

4-6) can similarly be applied for grass, slurry, SWH and OFMSW biogas plants to adjust 

for a 5MW scale biological methanation system. This is outlined in Table 4-7. 

The capital cost of a seaweed biogas plant at 50,000 tonnes scale is not available in 

the literature, therefore it will be calculated in this chapter. To the authors 

knowledge, there is no commercial biogas plant with a feedstock of 100% seaweed. 

The Solrød biogas plant in Denmark uses seaweed as one part of feedstock, however 
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this only accounts for approximately 3% (Kommune 2014). Due to the characteristics 

of cast seaweed with high salt content, low C/N ratio, heavy metals and high sulphur 

content (Murrphy et al. 2015), seaweed biogas plants may need to have pre-

treatment processes and H2S removal prior to digestion. The capital cost of a 

seaweed biogas plant in this study is assummed to be 20% higher than a maize silage 

biogas plant. At 46,000 tonnes per year, maize silage has an investment cost of 

€101/t/a, thus the capital cost of seaweed plant is taken as  €134/t/a. Seasonal 

varition greatly affects seaweed biomethane potential. Herrmann et al. (Herrmann 

et al. 2015) suggested that seaweed should be harvested in summer and stored via 

ensiling process for maximising biogas production. In this study, the investment cost 

of storage pit for seaweed is assumed the same as for grass (€30/t/a) (Browne et al. 

2011). The capital costs of different feedstocks at 5MW biological methanation plant 

are presented in Table 4-7. For example the investment cost of a seaweed digester is 

€7.54M (Table B2 Appendix B).  
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Table 4-7. Capital costs of biogas plants with different feedstocks at 5MW biological 

methanation plant 

Feedstocks % cost difference 

comparing to 50,000 

tonnes biogas plant 

Capital cost of different 

biogas plants at 50,000 

tonnes scale (€/t/a) 

Capital cost at 

5MW scale 

(€/t/a) 

Grass 16 140 162 

OFMSW 16 280 325 

SHW 10 140 154 

Seaweed 1  164 

Slurry -7 110 102 

 

• Biomethanation capital cost: The challenge when microrganisims are used as 

a biocatalyst is the poor solubility characteristic of H2. Continuously stirred tank 

reactors, trickle-bed reactors and memberane reactors have been applied to improve 

this issue. Among the three technologies the trickle-bed reactor was shown to have 

a high methane conversion of 98%. The investment cost for a 5MW ex-situ 

biomethanation plant is suggested as €3,000,000 (Graf, Krajete, and Schmack 2014). 

• Biomethane OPEX: The waste heat from a biological methanation facility for 

a 5 MW plant according to Götz et al.(Götz et al. 2016) was 420 kW, thus the thermal 

demand of a biogas facility in this case could be satisified by the waste heat from 

biological methanation (Figure 4-1). The operational data is not greatly effected by 

scaling, therefore data from Browne et al. (Table 4-2) is used (Browne et al. 2011). 

Seaweed was not included in the study by Browne et al. (Browne et al. 2011), thus 

this study will illustrate the biomethanation cost with seaweed feedstock. 
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Due to the charactesitics of certain seaweeds, especially beach cast mixes, the 

anaerobic digestion process may suffer due to high levels of ammonia, volatile fatty 

acids and/or hydrogen sulphide (Montingelli, Tedesco, and Olabi 2015). It is 

suggested that the maintenance cost of a seaweed biogas facility will be higher than 

that of a grass biogas facility; a value of €15/t is assumed. The technology used to 

convert seaweed to biogas is modelled as a CSTR with an electrical demand of biogas 

plant is 10 kWeh/t (Murphy, McKeogh, and Kiely 2004). The digestate produced from 

digestion of cast seaweeds (as opposed to cultivated seaweeds) may have high heavy 

metal content, in particular cadmium (Nkemka and Murto 2010) as well as salt (Allen 

et al. 2014), and so may not be readily applicable as fertiliser. The biodegradability 

index of seaweed is suggested at ca. 54% (Allen et al. 2014), thus the seaweed 

digestate in this study is taken as 43,516 tonnes. The cost of seaweed in Ireland is 

taken at €40/t wet weight or €267/t dry weight (Burton et al. 2009) if it is harvested 

mechanically (total solids content 15%). However, other studies suggest seaweed 

costs in the future associated with large scale cultivation at ca. €50/t dry weight (Dave 

et al. 2013). This is the assummed cost in this study for seaweed. The lifetime of 

biogas plant as well as the interest rate are the same for all feedstocks (Table 4-3). 

The operation cost of the biomethanation facility is assumed at 3% of the investment 

cost. Biomethane production costs for each type of feedstock are based on the 

assumptions in Table B1 in the Appendix B. The costs of biomethane are shown in 

Table 4-8.  
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Table 4-8. Cost of renewable gas production (excluding hydrogen production costs) 

 Grass  Slurry SHW OFMSW Seaweed 

Biomethane yield from 

biogas plants (m3/a) 
1,128,600 1,108,800 1,107,000 1,254,000 1,131,600 

Biomethane yield from 

combination of CO2 

from biogas and H2 

from wind energy 

(m3/a) 

923,400 597,046 905,727 836,000 925,855 

Total biomethane yield 

(from biogas and from 

methanation) (m3/a) 

2,052,000 1,705,846 2,012,727 2,090,000 2,057,455 

Annual cost of 

renewable gas 

production (€) 

1,478,167 2,152,228 918,478 660,987 2,790,565 

Cost of renewable gas 

production (€) 
0.7 1.3 0.5 0.3 1.4 

 

- Hydrogen production costs: The cost of H2 production is mostly based on the cost 

of electricity which is even higher than the capital costs. According to Benjaminsson 

et al. (Benjaminsson, Benjaminsson, and Rudberg 2013) the production cost of 

hydrogen by electrolysis (including maintenance costs, electricity grid cost, electricity 

cost and capital cost) from three manufacturers (Proton-Onsite, NEL and ErreDue) 

are in the range €0.09 – 0.1/kWh. Of these costs, €0.047 - 0.055/kWh and €0.02 – 

0.028/kWh are from electricity and capital costs, respectively. Gonzalez et al. 

(González, McKeogh, and Gallachóir 2004) examined the cost of hydrogen from 

surplus wind energy in Ireland and concluded that hydrogen cost (excluding capital 

cost) would be 3.53 * Ce€/GJ, where Ce is the surplus electricity value in c€/kWh. The 
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study of Ahern et al. (Ahern et al. 2015) recommended the biding price of electricity 

for P2G is 0.05 €/kWh therefore Ce in this study is assumed as 5 c€/kWh. Thus, the 

production cost of H2/m3 of methane in 2020 in Ireland is assessed as €0.96/m3 

renewable methane as shown in Box 4-3. 

Box 4-3. Hydrogen production cost 

Cost of hydrogen (excluding capital cost) per GJ = 3.53 * Ce€ (González, 

McKeogh, and Gallachóir 2004)                                        = 3.53 * 5 = 17.65 €/GJ 

Cost of hydrogen (excluding capital cost) per kWh = 17.65€/GJ /278kWh = 0.06€ 

In which Ce is surplus electricity value in c€/kWh = 5 c€/kWh (1GJ = 278 kWh) 

The annualised capital cost of hydrogen plant of NEL manufacture: 0.02 €/kWh 

(Benjaminsson, Benjaminsson, and Rudberg 2013) 

Hydrogen production cost (including capital cost): = 0.02 + 0.06 = 0.08 €/kWh 

Sabatier equation:              4H2   +  CO2   = CH4 + 2H2O 

To produce one cubic meter of methane, requires four cubic meters of H2 

1 m3 H2 contains 3 kWh 

Cost of H2/m3 biomethane= 0.08 x 4m3H2/m3CH4 x 3 kWh/m3H2 = 0.96 €/m3 

 

The production costs of biomethane from biological P2G with H2 production, 

compression and distribution included are in Table 4-9. Compression and distribution 

are included for the purposes of assessing compressed renewable gas (CRG) as a 

transport fuel. The costs are variable according to different types of feedstocks. Due 

to the gate fee supports for SHW and OFMSW, the cost of biomethane from these 

two feedstocks are lowest. Meanwhile, the lower methane yield of slurry and the 

high capital and operational cost of seaweed biogas plants make the biomethane 
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costs of these two feedstocks quite high. Comparing with conventional upgrading, 

the costs are much higher (Table 4-9). The cost of H2 production accounts for a high 

portion in producing renewable gas, in which the cost of electricity used for H2 

production, plays an important role. It must be borne in mind in comparing the two 

systems that the quantity of renewable gas generated is significantly increased when 

the P2G system is incorporated and that this electricity would otherwise be curtailed. 

  Sensitive analysis for renewable gas costs 

There are a lot of assumptions in the calculation of compressed renewable gas costs. 

This study will not focus on the sensitivity of the biogas production but instead focus 

on the biological methanation. The H2 
 production cost is the most expensive element 

of the total renewable gas cost, therefore, the variability of electricity price used to 

produce H2 
 will be analysed. 

On March 1st 2013, the Single Electricity Market committee decided that “The 

cessation of compensation for curtailment on January 1 2018” (SEM committee 

2013). This means that in 2020, the price of electricity associated with wind energy 

curtailment in Ireland could be free in theory. However, there may be a market for 

this surplus electricity and the manufacturer is likely to pay for curtailed wind energy 

used for electrolysis. The results show that if the surplus electricity price is 

0.2c€/kWh, the biomethane costs from grass feedstock of conventional upgrading 

and biological methanation are the same (Table 4-10). To this must be added the 

benefit of carbon savings which was assessed as potentially € 17 million per year 

(section 4.3.3.1) 
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Table 4-9. Production of compressed renewable gas from biological methanation 

systems (excluding VAT) 

Total production cost in 

€/m3 biomethane 

Grass Slurry SHW OFMSW Seaweed 

Renewable gas 

production 
0.7 1.3 0.5 0.3 1.4 

H2 production 0.96 0.96 0.96 0.96 0.96 

Compression and 

distribution 
0.149 0.149 0.149 0.135 0.149 

Cost of CRG production 1.8 2.4 1.6 1.4 2.5 

Cost of CRG production 

from conventional 

upgrading 

1.02-

1.211 
 0.542 0.32  

1(Smyth, Smyth, and Murphy 2010):  2(Browne et al. 2011) 

Table 4-10. Impacts of surplus electricity prices on CRG production costs. 

Cost of CRG production 

(€/m3 biomethane) 
Grass Slurry SHW OFMSW Seaweed 

5 c €/kWh  

(Base case) 
1.8 2.4 1.6 1.4 2.5 

At 0.2 c €/kWh  1.1 1.6 0.9 0.7 1.8 

At 4 c €/kWh  1.7 2.3 1.5 1.3 2.4 

At 6 c €/kWh  2.0 2.6 1.8 1.6 2.7 

 

 Conclusions 

The potential CO2 production from biogas in Ireland associated with typical wet 

substrates (grass, slurry, slaughter house waste, the organic fraction of municipal 

solid waste and seaweed) is 431 Mm3/a. If this CO2 were used in a biological power 
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to gas system, this would require 1722 Mm3/a of H2. This would in turn require 7653 

GWeh/a of electricity. Wind energy curtailment in 2020 in Ireland is assessed 

conservatively at 2175 GWeh/a. H2 produced from curtailed electricity would be 

sufficient to combine with 28.4% of CO2 from potential biogas sources. Thus, P2G is 

limited by electricity rather than biogas systems. It is shown that 1 GWeh of electricity 

used to produce H2 for upgrading biogas in a P2G system can affect a savings of 97 

tonnes CO2. In total, compressed renewable gaseous transport fuel offers GHG 

savings of 117% compared to diesel fuel, which satisfies the requirement of the EU 

Renewable Energy Directive. 
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     Techno-economic analysis of biogas upgrading 
via amine scrubber, carbon capture and ex-situ methanation1  

Abstract 

Biogas upgraded to biomethane can provide a renewable gaseous transport fuel and 

is one of the proposed solutions in meeting the renewable energy supply in transport 

targets set under the EU Renewable Energy Directive. The upgrading process for 

biogas involves the removal of CO2. Amine scrubbing is one traditional method of 

upgrading that is applied due to its low methane slippage and its capability to provide 

a high purity renewable methane product. However, new technologies such as power 

to gas (P2G) can also upgrade biogas through biological methanation by combining 

the CO2 in biogas with H2 to produce renewable methane. The H2 for P2G can be 

produced through electrolysis of renewable electricity. Through simulation software 

– SuperPro Designer, the economics of different pathways for upgrading biogas from 

a grass silage and slurry fed digester are analysed and compared in this chapter. Three 

scenarios are investigated: biogas upgrading through amine scrubbing (scenario 1); 

biogas upgrading through amine scrubbing with CO2 directed to ex-situ biological 

methanation (scenario 2) and biogas upgrading through ex-situ biological 

methanation only (scenario 3). The results show that at a net present value of zero, 

the minimum selling price (MSP) per m3 of renewable methane for scenario 1, 2 and 

3 is €0.76; €1.50 and €1.43, respectively (with an electricity price to produce H2 of 

                                                      
1 Vo, T.T., Wall, D.M., Ring, D., Rajendran, K. and Murphy, J.D., 2018. Techno-economic analysis of 
biogas upgrading via amine scrubber, carbon capture and ex-situ methanation. Applied Energy, 212, 
pp.1191-1202. 
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€0.10/kWh and a grass silage production cost of €27/t). The electricity price has a 

significant effect on the cost of renewable methane in both scenarios 2 and 3.  The 

MSP reduces to €1.09 and €1.00 per m3 of renewable methane, respectively for 

scenarios 2 and 3, if the electricity price is reduced to €0.05/kWh.  Since the 

renewable methane MSP from scenario 2 is higher than scenario 3, it is suggested 

that direct biogas injection to the methanation reactor is financially more attractive 

than capturing CO2 from biogas and feeding it to the methanation step. The MSP of 

renewable methane from both scenarios 2 and 3 are significantly higher than that of 

scenario 1. However, when considering climate change mitigation, balancing of the 

electricity network and storage of surplus electricity, utilising P2G can offset some of 

these costs. If considering methanation as the upgrading unit of a biogas plant, its 

fixed capital cost is approximately the same as that of the amine scrubber. The cost 

of H2 is a significant factor in determining the cost of renewable methane. 
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 Introduction 

A simplified breakdown of energy consumption in Ireland is ca. 20% electricity, 40% 

heat and 40% transport (Murphy and Thamsiriroj 2011). The EU 2020 targets for 

renewable energy is 16% with a national breakdown in each of those sectors set at 

40%, 12% and 10%, respectively (Persson et al. 2014). The production of renewable 

electricity has primarily been the focus in Ireland and as a result, its production has 

accelerated beyond renewable heat and transport. Anaerobic digestion of available 

biomass to generate renewable methane is one pathway that has been identified for 

potentially contributing to both the transport and heat sectors. For instance, grass is 

the most important agricultural crop in Ireland; over 90% of agricultural land is 

covered by grass (Smyth, Murphy, and O’Brien 2009). Excess grass, surplus to livestock 

requirements, may provide a potential feedstock for renewable methane production 

in Ireland (McEniry et al. 2013). Grass is deemed a promising feedstock due to its high 

yield, low production energy input and potentially high methane yields (Nizami, 

Korres, and Murphy 2009). Previous studies have indicated that in order to have 

sufficient nutrients for long term digestion, grass silage should be co-digested with 

slurry (Wall, O’Kiely, and Murphy 2013). Dairy slurry is also an abundant resource in 

Ireland with an annual production of ca. 7 Mt (Wall, O’Kiely, and Murphy 2013). 

Ireland, an island state with limited electrical interconnectivity, is also expected to spill 

between 7-14% of its renewable electricity production by 2020, as supply will periodically 

exceed demand (Ahern et al. 2015). Thus, a method of storing surplus electricity is 

crucial. One potential method of storage is to change the energy vector from electricity 

to gas. This can be done through electrolysis, utilising the surplus electricity to split water 
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into hydrogen (H2) and oxygen (O2) (Eq. 5-1). Currently, three electrolysis technologies 

are used for producing H2. The alkaline electrolyser is at commercial stage, the polymer 

electrolyte membrane is at pilot stage and the solid oxide electrolysis cell (SOEC) is in a 

research and development stage (Vo et al.). A further methanation step, combining the 

H2 with carbon dioxide (CO2), is required to produce methane (CH4) in a Sabatier reaction. 

These combined processes are known as Power to Gas (P2G). The equation for 

production of CH4 from CO2 and H2 is expressed in Eq. (5-2). 

2H2O(l) →  2H2(g) + O2(g)  ∆Hr = 286 kJ/mole (at 25o C, 1 bar)          (5-1)  

CO2 + 4H2 ↔ CH4 + 2H2O  ΔH = -165 kJ/mole          (5- 2) 

The methanation step can be carried out through chemical or biological means (Vo, 

Xia, Wall, et al. 2017). Chemical methods use a catalyst for methanation. This is a 

mature technology and nickel has often been chosen as the catalyst due to its high 

activity and low price. The efficiency of catalytic methanation is between 70% to 85%  

(Benjaminsson, Benjaminsson, and Rudberg 2013). In contrast, biological 

methanation uses hydrogenotrophic methanogenic archaea to consume H2 and CO2 

as energy sources and produce CH4 (Vo, Xia, Wall, et al. 2017). The CO2 source can be 

extracted from industry through carbon capture; or from biogas plants as biogas 

typically contains ca. 45% CO2. The latter is of particular interest as methanation of 

CO2 and H2 may potentially provide a form of biogas upgrading for biogas plants, 

offsetting costly traditional upgrading methods such as amine scrubbers. The 

operation of biological methanation can be in-situ or ex-situ. The in-situ method 

feeds H2 directly into an anaerobic digester, while the ex-situ method uses an 
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external reactor for the methanation step, reacting the biogas (including for CO2) and 

H2. In terms of output, in-situ biological methanation can achieve a final CH4 content 

of up to 75%, whereas ex-situ can reach up to 98%, a quality similar to that of natural 

gas (Vo, Xia, Wall, et al. 2017). The CH4 produced from P2G systems is equivalent to 

biomethane and can again be used as fuel in the heat and transport sectors.  P2G 

technologies have generated much interest of late and have previously been 

reported as a more sustainable energy storage method as compared to other large 

scale storage technologies such as pumped hydroelectric storage and compressed air 

energy storage (Vo, Xia, Rogan, et al. 2017). However, P2G systems will not always 

have a supply of surplus electricity at a cheap price to produce H2, thus, sometimes it 

may be necessary to combine traditional biogas upgrading with methanation. In this 

case, when electricity prices are cheap (when supply exceeds demand), the electricity 

can be used to produce H2 for methanation and when electricity demand is high the 

biogas can be upgraded by traditional upgrading. 

Biogas from a biogas plant can be upgraded by water scrubbing, organic solvent 

scrubbing, amine scrubbing, pressure swing adsorption or by a membrane (Bauer, 

Persson, et al. 2013). To the authors’ knowledge, there is little research on techno-

economic analyses of upgrading of biogas by methanation processes. Previous 

studies have compared the costs of CH4 production from traditional biogas upgrading 

with CO2 capture for methanation (Johanesson , Collet et al. 2017, Parra et al. 2017), 

however these studies only considered catalytic methanation. Vo et al. (Vo, Xia, Wall, 

et al. 2017) calculated the costs of renewable methane from different types of 

feedstocks with upgrading of biogas provided by biological methanation. However, 
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the study did not consider the capture and utilisation of CO2 from the biogas plant. 

Amine scrubber technology was chosen as the upgrading methodology in this study 

because of its low methane loss (<0.1%) (Bauer, Persson, et al. 2013), in addition to 

this, the CO2 from the amine scrubber could be captured and reused.  

This is the first research to undertake a techno-economic analysis of biogas upgrading 

comparing amine scrubbing with or without carbon capture and ex-situ biological 

methanation. No previous works have compared carbon capture from amine 

scrubbing integrated with biological methanation.   Superpro Designer (Intelligen Inc., 

Scotch Plain, NJ, V10) was used to develop the process models. SuperPro Designer is 

a software tool for engineers and scientists used in process development, process 

engineering and manufacturing. It has been applied previously in bioprocess studies 

such as bioethanol production (Kwiatkowski et al. 2006, Kumar and Murthy 2011), 

biodiesel production (Marchetti, Miguel, and Errazu 2008) and the optimisation of 

biogas plant configurations (Balussou et al. 2014). 

The aim of this study is to investigate the economic viability (in terms of € per m3 

renewable methane produced) of three pathways for upgrading biogas to renewable 

methane generated from a typical biogas plant digesting grass silage and slurry. The 

three scenarios are as follows:  

Scenario 1: Biogas production + amine scrubbing: The plant produces biogas (CH4 and 

CO2) from grass silage and dairy slurry, which was then upgraded by amine scrubbing 

to remove CO2. This scenario did not consider CO2 capture; CO2 is emitted upon 

methane upgrading. 
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Scenario 2: Biogas production + amine scrubbing + ex-situ biological methanation: 

The plant produces biogas (CH4 and CO2) from grass silage and dairy slurry, which was 

then upgraded by amine scrubbing to remove CO2. The CO2 removed was captured 

and sent to ex-situ biological methanation in which H2 and CO2 was reacted to form 

CH4. This scenario takes advantage of the fluctuation of wind energy (when wind 

electricity is not available, only the biogas plant and amine upgrading unit are applied 

and when wind electricity is accessible, three units work together); and for 

methanation process that requires higher purification of CO2. 

Scenario 3: Biogas production + ex-situ biological methanation: Unlike other 

scenarios, the biogas from grass silage and dairy slurry was directly transferred to the 

ex-situ biological methanation system, where CO2 in the biogas was reacted with H2 

to form CH4. 

The objectives of this study are as follows: 

- Simulate and develop the three biogas upgrading scenario processes: amine 

scrubber; amine scrubber and ex-situ biological methanation; and ex-situ biological 

methanation; 

- Calculate costs of renewable methane from grass silage and dairy slurry biogas 

plants with the three different upgrading technology scenarios;  

- Analyse and compare the energy consumption of the biogas plant, amine scrubber 

and methanation elements; 

- Estimate the effects of electricity cost and grass silage cost on the cost of renewable 

methane. 
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 Methodology 

  Process development and description 

The simulation was separated into two parts: i) biogas production, which includes 

feedstock processing, digester operation and digestate handling and ii) gas upgrading 

or utilization using amine scrubber and/or methanation reactor. The electrolysis step 

(producing H2) was excluded from the analysis, however the cost of electricity, which 

affects the cost of H2, was analysed to assess the effect of scale in the costs associated 

with converting H2 to CH4. The renewable methane produced is assumed to be 

compressed and injected to the distribution gas grid at 7 bar.  As indicated, all three 

scenarios included for the same biogas plant but had a different upgrading method 

(Figure 5-1). The screenshot of different scenarios is available from the Appendix C. 

The assumptions of the process are reported in Table 5-1. 

The biogas section was simulated as in Figure 5-2. For the purposes of the study, the 

grass silage feedstock was stored in a silo pit (P-8/SL- 101), with sufficient storage 

capacity for a year’s supply. Dairy slurry was considered to be stored in sealed, water 

– tight and reinforced concrete container (P-3/V- 101) for two days. The silage is 

shredded (P-2/SR -101) and mixed with dairy slurry before being loaded to the 

digester, while the pump (P-9/PM-101) functions as both a pump and a mixer. The 

characteristics of the grass silage and dairy slurry (Table 5-2) are adopted from Wall 

et al. and Lukehurst et al. (Wall, O’Kiely, and Murphy 2013, Lukehurst, Frost, and Al 

Seadi 2010). The ratio of grass silage and dairy slurry fed to the biogas section was 

calculated on a volatile solids (VS) basis; 80%VS from grass silage and 20%VS from 
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dairy slurry. Grass silage benefits from co-digestion with dairy slurry in maintaining 

an optimal C:N ratio and as a source of micro-nutrients (Wall, O’Kiely, and Murphy 

2013).  Both grass silage and dairy slurry contain nutrients, nitrogen, phosphorous 

and potassium (Lukehurst, Frost, and Al Seadi 2010) which are important factors in 

order to utilise the digestate as a fertiliser. 

Table 5-1. Assumptions made for the three scenarios 

Items Assumptions 

Process Continuous (7,920h per year) 

Grass silage (wwt/h) 3.2 

Dairy slurry (wwt/h) 3.5 

HRT at CSTR1 (days) 40 

HRT at CSTR2 (days) 30 

Project life time 20 years 

Construction period 1 year 

Calculation year 2016 

Start-up period 6 months 

NPV for three scenarios  0 (At MSP, NPV is 0) 

Interest rate 8% 

Income tax 12.5% 

Start-up capital No requirement from the Government1 

Mono-ethanol-amine €1,500/t 

Grass silage feedstock €27/wwt2 

Electricity cost for running process €0.15/kWeh3 

Electricity cost for producing H2 €0.10/kWeh 

1(Joint committee on communications and energy and natural resources 2011); 2(McEniry et al. 2011); 

3(Browne et al. 2011). 
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 Biogas section 

The grass silage/slurry mixed feedstock, now with a dry solids (DS) content of 18%, is 

pumped to two CSTRs (in series). The two CSTRs were assumed to be operating at a 

mesophilic temperature range of 38°C. The HRT was set at 40 days in the first CSTR 

(P-6/AD-101) and 30 days in the second CSTR (P-7/AD-102). It is assumed that 80% 

destruction of VS takes place in the first CSTR, with 20% of remaining VS removed in 

the second CSTR. In total, 84% of VS is destroyed in the process. The concentrations 

of CH4 and CO2 generated are based on the Buswell equation shown in Eq.(5-3) 

(Buswell and Hatfield 1936): 
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)CO2         (5-3) 

Grass silage does not contain sulphur, while dairy slurry has 0.4 kg total sulphur per t 

fresh weight (Table 5-2). Under anaerobic conditions, sulphate is converted into 

hydrogen sulphide (H2S) by sulphate – reducing bacteria. Sulphur in feedstocks 

containing protein when digested may also form H2S (Wellinger, Murphy, and Baxter 

2013). H2S causes corrosion to equipment and pipes when injected to the grid; it can 

also be toxic and inhibit anaerobic processes (Krayzelova et al. 2015). For injection to 

the gas grid or to use as gaseous fuel, the concentration of H2S must be below 

5mg/m3 (Graf and Klaas 2009, Subramanian et al. 2013); an important step of biogas 

upgrading is eliminating H2S. There are many methods to remove H2S from biogas 

such as biological desulphurisation, iron chloride, impregnated activated carbon, iron 

hydroxide or oxide, and sodium hydroxide scrubbing (Sun et al. 2015). 
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Figure 5-1. Process flow diagram of three biogas-upgrading methods.  

Scenario 1 corresponds to upgrading the biogas via amine scrubbing, while Scenario 2 corresponds to 

biogas upgrading via amine scrubbing and methanation reactor and Scenario 3 refers to biogas 

upgrading via methanation reactor.  
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H2S can also be removed by combining the removal of CO2 by pressurised water 

scrubbing and amine scrubbing (Vienna university of technology 2012). Thus, for 

scenario 1, H2S was removed with CO2 by the amine scrubber (see section 5.2.1.2) as 

the CO2 in this scenario is not otherwise utilised. Scenarios 2 and 3 need a separate 

component in order to eliminate H2S in the methanation step. Among those methods, 

biological desulphurisation was chosen due to its simplicity, efficiency and low cost. 

In such a method, small amounts of air or O2 (0.3 – 3%) (S-106) are added into the 

headspace of the CSTRs; under micro-aerobic environments, sulphide-oxidizing 

bacteria oxidize sulphide to elemental sulphur (Krayzelova et al. 2015). If air is added 

to the headspace, nitrogen will also be added to the biogas as a consequence, thus 

pure O2, a by-product from the electrolysis process was assumed to be utilised for 

biological desulphurisation. Research has shown little potential for explosion; two of 

ten studies found a slightly lower specific methanogenic activity in micro-aerobic 

reactors compared to anaerobic reactors (Krayzelova et al. 2015). The removal 

efficiency of H2S for biological desulfurization process and amine scrubbing is 88% 

(Krayzelova et al. 2015) and 98% (Huertas, Giraldo, and Izquierdo 2011) respectively, 

thus another step should be added to reduce H2S to 5ppm. A desulphurization 

process via activated carbon (Siloxa company) was chosen to reduce H2S levels below 

1ppm with a technology cost of €0.01/m3 biogas (Kvist 2011).  
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Table 5-2. Characteristics of substrates (%) and nutrient concentrations kg/t fresh 

weight - adapted from (Wall, O’Kiely, and Murphy 2013) and (Lukehurst, Frost, and 

Al Seadi 2010) 

Substrate Chemical 

formula 

DS 

(%) 

VS  

(%) 

Fixed solids 

or ash (%) 

Water 

(%) 

Total 

N 

P K S 

Grass 

silage 

C30H50O23 30 28 2 70 4 0.5 - - 

Dairy 

Slurry 

C22H34O19 8.8 6.7 2.1 91.2 3 0.5 2.9 0.4 

 

The CH4 product was assumed to contain some water vapour; two methods are 

appropriate to remove water from the gas: (i) gas dehumidification and (ii) ground 

tube dewatering (Kim and Lee 2015). To reduce the energy consumption, ground 

tube dewatering was applied in this work.  

 

Figure 5-2: Biogas section simulation 

 Upgrading by amine scrubber and biological methanation 

An amine scrubbing process is composed of the following elements: an absorber 

column; a heat exchanger; a stripper; a condenser and a re-boiler. The role of the re-
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boiler is to heat up the incoming amine liquid solvent and vaporise the CO2 to obtain 

a lean stream of solvent. In this case (Figure 5-3), a blower (P-20/M-102) at the 

bottom introduces biogas into the absorber (P-4/C-101) and amine solution (S-112) 

is fed at the top of the absorber. The biogas flows up the column and the solution 

flows counter-currently down the column (Huertas, Giraldo, and Izquierdo 2011). 

Plates or packing can provide additional surface area increasing the contact time 

between the gas and the solution. At the bottom of the absorption column, the 

solution is saturated by CO2 and H2S, the saturated solution is called rich amine (S-

113) (the stoichiometric loading ratio is of 0.5 mole CO2 per mole amine) (Li et al. 

2016, Abu-Zahra et al. 2007). CH4 (S-120) is discharged at the top of absorber and 

compressed to inject into the gas grid. The stripper (P-10/C-102) acts as a 

regeneration column whereby the rich amine solution (S-114) is heated by steam (S-

118) from the re-boiler (P-15/HX-103). At a temperature of ca. 120°C, CO2 is liberated 

into a concentrated stream and exits at the top of the stripper (S-115) (Yeh, Pennline, 

and Resnik 2001). However, not all of the CO2 becomes free of the amine solution 

(called lean amine). The lowest energy requirement of 176 kJ/mole CO2 (4 GJ/t CO2) 

can be achieved at lean solvent loading between 0.25 and 0.30 mole CO2/ mole 

mono-ethanol-amine (MEA) (Pellegrini, Moioli, and Gamba 2011, Li et al. 2016, Abu-

Zahra et al. 2007). The CO2 in the stripper is vaporised with water, thus this gaseous 

phase needs to be condensed (P-19/CSP-104) to separate water that is recycled back 

(S-117) to the stripper. The high temperature lean amine solution (the solution from 

the stripper) goes through a heat exchanger (P -17/HX-104) with the lower 

temperature rich amine solution. Lean amine is cooled down (P-18/HX-105) once 
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more before going back to the absorption column, while rich amine is fed into the 

stripper (Huertas, Giraldo, and Izquierdo 2011). The requirements of upgraded 

renewable methane (CH4) for gas grid injection and as a potential vehicle fuel is 

typically >96% volume CH4 (less than 4% volume CO2) (Persson, Jönsson, and 

Wellinger 2006). Amine scrubbers can provide low methane slippage (0.1%) and a 

high purity renewable methane end product (Bauer, Persson, et al. 2013). CO2 is 

emitted to atmosphere if CO2 is not utilised in a further step; if CO2 is used for 

methanation, it is injected into methanation reactor. 

In the biological methanation upgrading section, the CO2 source can come from the 

CO2 stream produced as a result of biogas upgrading with amine (scenario 2), or by 

utilising the biogas itself directly (CH4 and CO2) produced from the biogas section 

(scenario 3). H2 and CO2 are assumed to be consumed biologically by 

hydrogenotrophic methanogenic archaea to produce CH4 and water (Figure 5-3). The 

biological methanation reactor operates at 60°C, ambient pressure (Götz et al. 2016) 

and the ideal ratio of CO2 and H2 is 1:4 (Bensmann et al. 2014). The parasitic energy 

demand for stirring was suggested between 0.1 -1 kWh per m3 methane produced 

(Graf, Krajete, and Schmack 2014), this study assumes this parasitic energy is 1 kWh 

per m3 renewable methane produced.  
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Figure 5-3. Upgrading section simulation 

a. Solvent selection 

There are many amine chemicals that dissolve into water as a solvent for biogas 

scrubbing such as mono-ethanol-amine (MEA), di-ethyl ethanol amine (DMEA), 

diethanolamine (DEA) or a mixture of methyldiethanolamine (MDEA) and piperazine 

(PZ)(Bauer, Persson, et al. 2013). MEA (HOC2H4NH2) was chosen for this study as 

previous literature has indicated it has a rapid reaction rate, low cost, ease of 

reclaiming, reasonable thermal stability, low molecular weight,  high absorbing 

capacity on a mass basis, and relatively low solubility of hydrocarbons (CH4) in the 

solution (Ma'mun et al. 2005). MEA concentrations normally range from 12 to 30%wt 

(Kohl and Nielsen 1997). Park et al. (Park et al. 2017) found that at the same gas – 

liquid ratio and re-boiler temperature,  CO2 removal efficiency is higher at 30%wt 
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MEA solution than 20%. The disadvantage of using high amine concentrations is 

corrosion; however with the help of some corrosion inhibitors, 30%wt MEA solvent 

can be used (Rao and Rubin 2002). Thus, 30%wt MEA solution is assumed in this 

simulation. The overall reaction of MEA with CO2 is presented in Eq. (5-4) and H2S in 

Eq. (5-5) and (5-6). 

2(OH – (CH2)2 – NH2) + CO2              (OH) – (CH2)2 – NHCOO- + OH – (CH2)2 – NH3
+   (5-4) 

 

2(OH – (CH2)2 – NH2) + H2S                   (HOCH2CH2NH3)2S                              (5-5) 

 

(HOCH2CH2NH3)2S   + H2S                    2HOCH2CH2NH3HS                                   (5-6) 

 

The reaction between MEA and CO2 is an exothermic reaction; for each mole of CO2 

absorbed in MEA solution, 72kJ of thermal energy is released (Yeh, Pennline, and 

Resnik 2001). The maximum CO2 loading of amine solutions is 0.4 mole CO2/mole 

amine. 

 b. Absorber and stripper designs 

The absorber and stripper are packed with packing material to increase the contact 

time between solution and CO2 and H2S. The choice of packing material for the 

absorber and stripper is important as risk of flooding increases if surface area is 

excessive. Plastic palls or Raschig rings are usually used as packing material in 

absorbers but stainless steel must be applied in the stripper due to the high 

temperature. In addition to this, Sinnott (Sinnott 1999) recommended that the 

Low 

High 

Low 

High 

Low 

High 
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diameter of packing size is linked to the column diameter. Plastic and metal pall rings 

are applied for the absorber and stripper in this study, respectively (Table 5-3) 

(Sinnott 1999) . The absorber operates at a temperature of 40°C and pressure of 1bar, 

whilst the stripper operates at temperature 120°C to 150°C (Yeh, Pennline, and Resnik 

2001) and pressure 1.5bar to 3bar (Bauer, Persson, et al. 2013). The stripper operates 

at 120°C and 1.5 bar in this study. 

Table 5-3. Design data for packing (Sinnott 1999) 

Name Size(mm) Surface area 

(m2/m3) 

Packing factor (m-1) 

Plastic pall ring  38 128 130 

Metal pall ring 16 341 230 

 

The pressure drop of packing absorbers and strippers ranges from 15 to 50 mm of 

water per meter of packing height; if the liquid has foaming characteristics, the 

pressure drop will be halved (Sinnott 1999). The MEA solution is likely to foam in the 

absorber and stripper (Thitakamol, Veawab, and Aroonwilas 2009) and the loss of 

MEA is very small (Bauer, Hulteberg, et al. 2013); a pressure drop of 15mm water per 

meter of packing height (147 Pa/m) is therefore chosen in this study. The variables 

used in the absorber and the stripper are summarised in Table 5-4. 
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Table 5-4. Variables input for absorber and striper in Superpro Designer 

Variables Unit 
Value 

Absorber Stripper 

Diffusivity of CO2 in gas 

phase 
m2/s 0.016 0.016 

Diffusivity of CO2 in 

liquid phase at 40oC 
m2/s 

0.0087 (Emyra 

Ezzaty et al. 2016) 

0.0087 (Emyra 

Ezzaty et al. 2016) 

MEA 30%wt  solution 

surface tension 
N/m 

0.054 (Vázquez et 

al. 1997) 
 

MEA 30%wt solution 

phase viscosity 
cP 

1.67 (Amundsen 

2008) 

2.7 (Amundsen 

2008) 

Gaseous phase viscosity cP 
0.012 (Abdel-Hadi 

2009) 
0.68  

Pressure drop per unit 

length 

Pa per metre of 

packing height 
147 147 

 

 Economic analysis  

 Capital expenditure  

In this study the capital costs include for direct fixed capital (the cost paid for building 

a plant: equipment, installation, building, engineering, construction, etc.) and 

working capital (the cost needed to start the plant up and operate it to the point 

when income is earned). The working capital is calculated to cover 30 days of 

expenses for labour, raw materials, utilities (i.e., heating/cooling agents and power) 

and miscellaneous costs. The purchase prices of equipment to be installed are 

important factors in calculating the fixed capital.  

The Lang factor is the ratio of the direct fixed capital cost to equipment purchase 

price (Sinnott 1999), thus Lang factor will be used in this study to calculate the fixed 
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capital of biogas plant as in the studies by Tao et al. (Tao et al. 2014) and Amigun et 

al. (Amigun and Von Blottnitz 2009). According to Tao et al.(Tao et al. 2014) the Lang 

factor of cellulosic fuels was 1.8 whilst Amigun et al. concluded that the Lang factor 

for a centralised biogas plant in Africa was 1.78 (Amigun and Von Blottnitz 2009). 

Thus, a value of 1.79 was chosen as the Lang factor for the biogas section in this study. 

For biogas upgrading via an amine scrubber, the Lang factor is 5 as indicated in 

literature (Gawel 2012). The methanation reactors were given a Lang factor of 1.25 

for ex-situ methanation and 1.27 if CO2 is captured from biogas plant and injected 

into methanation reactor, as per Graf et al. (Graf, Krajete, and Schmack 2014) 

The costs of equipment are based on: (i) built-in costs of the Superpro Designer model 

(dairy slurry storage tank, feedstock shredder, pump, stripper, absorber, heat 

exchanger, condenser and compressor); and (ii) data from literature (anaerobic 

digesters, gas compressors, activated carbon bed, reboiler, methanation reactor and 

pump – Table 5-5). The costs of SCADA and switch boards, tractor, pipes and biogas 

flare for the biogas section are calculated at 20% of the purchase equipment costs of 

the biogas section and all unlisted equipment (pipe, connection and amine storage 

tank) for the amine scrubber section is assumed at 5% of the amine equipment costs. 

The equipment costs of biological methanation section are taken from literature  

(Graf, Krajete, and Schmack 2014) and include for the compressor and any unlisted 

equipment. If the cost of equipment is based on a different year than the year that 

the plant is built, inflation or deflation is taken into account using Eq. (5-7) (Brown 

and Brown 2013):  
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Cp,c = Cp,p ( 
Ic

Ip
 )                                           (5-7) 

Where: 

Cp,c is the inflation-adjusted cost of equipment in current year 

Cp,p is the known cost of equipment in a previous year 

Ic is the cost index for current year 

Ip is the cost index for the previous year in which equipment cost is known 

This research calculates the cost of product for the year 2016. The year when 

equipment purchased costs are used to calculate in this process is 2010 (Table 5-5). 

The chemical engineering cost indexes (CECI) of the year 2010 and 2016 are 550.8 

and 535, respectively. 

Furthermore, if the scale of the facility is not the same as the current scale, the cost 

is adjusted using Eq. (5-8) (Brown and Brown 2013). 

New cost = original cost ( 
new size

original size
)n                                    (5- 8) 

Where: 

n is the economy of scale sizing exponent (less than unity) and is dependent on the 

type of equipment or plant.  

The base costs, original sizes and ‘n’ of process component data are presented in 

Table 5-5. For the components which ‘n’ is not known, the traditional index of 0.6 will 

be used (Sinnott 1999). 
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Table 5-5. Base equipment costs and its scaling factors from literature  

Component Base cost 

(€) 

Scale 

factor (n) 

Base 

size 

Sizing 

parameter 

Base 

year 

Biogas plant section 

Dairy slurry storage tank From Superpro Designer 

Feedstock shredder 

All pumps 

Silage storage pit €503,000*  

CSTR 11 566,000 0.6 4,210 Volume (m3) 2010 

CSTR 21 180,000 0.6 1,885 Volume (m3) 2010 

Amine upgrading section 

Boiler (100kPa)2 2,648 0.5 1 Mass flow 

rate steam 

(kg/h) 

2010 

Condenser; absorber; 

stripper; heat exchanger; 

cooler 

 

From Superpro designer 

Methanation section 

Ex-situ methanation 

plant3 

2,464,000  5MW  

Captured CO2 from 

biogas plant and inject 

into methanation plant3 

2,314,700 5MW  

* €900,000 for capital cost of silage storage pit  (Browne et al. 2011) (if the Lang factor is 
1.79, the equipment cost is €900,000/1.79 = €503,000) 

1: (Fischer 2010); 2: (Brown and Brown 2013); 3: (Graf, Krajete, and Schmack 2014) 

 

 Operating costs 

Fixed and variable operating costs are the two main categories of operating costs. 

The fixed operating cost includes the costs of maintenance, labour and taxation. 
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These are estimated by using factors that are normally based on direct fixed capital 

cost (Table 5-6). The personnel, laboratory and insurance costs are analysed and 

based on literature (Brown and Brown 2013).   

Table 5-6. Operation cost assumptions 

Fixed operating 

costs 

Cost estimation 

Biogas plant  Methanation 

upgrading 

Amine scrubber 

upgrading 

Maintenance 3% equipment 

purchase cost 

(Gutierrez, Xia, 

and Murphy 

2016) 

3% equipment 

purchase cost (Graf, 

Krajete, and 

Schmack 2014) 

4% direct fix capital 

(Abu-Zahra et al. 2007) 

Personnel* 2 operators 2 operators 2 operators 

1 manager  

Laboratory  15% of operating labour 

Insurance 0.7% direct fix capital  

* Annual salary for manager: €70, 000; annual salary for operator: €40, 000 

The variable operating costs consist of raw materials and utilities costs, which are 

calculated, based on the simulation processes in the SuperPro Designer model. The 

steam, cooling and chilling water costs taken from the SuperPro Designer model are 

€12/t, €0.05/t and €0.4/t, respectively. It is assumed that the electricity for the 

electrolyser to produce H2 is produced from nearby wind farms with electricity price 

of €0.10/kWh, the corresponding price of H2 is €0.147/kWh (Vo, Xia, Wall, et al. 

2017). This is equivalent to €5.78/kg H2 ((14.7c€/kWh * 3.54kWh/m3)/0.09kg/m3) – 

excluding costs of compression and storage tank. The price of grass silage feedstock 

is taken at €27/t and the dairy slurry is assumed free of charge, as the farmer will 
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receive the return digestate. Since the CO2 is taken from the biogas plant, the price 

of CO2 is assumed zero. The initial amount of amine that is used for biogas upgrading 

is a one-off expense and not an operating cost, as this is a cost paid at the beginning 

of the plant operation (not annually). Therefore, the amine costs are calculated in 

start-up and validation expenses, the amine lost in the process is replenished every 

cycle. 

 Revenues 

There are two products, renewable methane and digestate, which can be sold from 

the processes. Digestate is a fully fermented nutrient-rich material that can be 

utilised as an organic fertiliser, which is assumed free for farmers as they provide 

slurry. In order to be able to compare different pathways, the value of renewable 

methane from all scenarios is defined as the minimum selling prices for an 8% internal 

rate of return (the lowest product price that is capable of yielding a net present value 

of zero). 

 Results and discussion 

  Mass analysis 

If every hour 3.5 wwt dairy slurry and 3.2 wwt grass silage are fed into the CSTR, this 

equates to 27,720 wwt of dairy slurry and 25,344 wwt of grass silage per year. The 

energy and material balance of each process are shown in Appendix D.  As stated in 

section 5.2.1.1, dairy slurry and grass silage contain fixed solids (ash) (not consumed 

by the microorganisms in producing CH4), nutrients and VS (which are used mostly as 

energy for microorganisms to produce CH4).  Total annual renewable methane 
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production from scenario 1, 2 and 3 are: 3.44 Mm3; 6.63 Mm3 and 6.64 Mm3, 

respectively. It is noted that the renewable methane is not only pure methane, it 

contains trace H2S and small amounts of CO2 that could not totally be eliminated. The 

mass flows in and out of the three scenarios are summarised in Figure 5-4. If 3.28Mm3 

pure methane is generated per year and the total VS added per year is 8,953t , then 

one tonne of VS can be calculated to produce 366m3 pure methane; this is consistent 

with yields suggested in previously literature (Wall et al. 2014).   

The digestate composition was made up of fixed solids, nitrogen, phosphorus, 

potassium, water and some VS from slurry and grass, which was not consumed by 

the microorganisms. In total, 44,539 t digestate are discharged per year. Among the 

three scenarios, only CO2 out from scenario 1 is emitted directly to the atmosphere 

because it is not re-used in a further step (as in scenario 2 and 3). The higher CO2 

content in renewable methane suggests that that energy content in renewable 

methane from scenario 2 (95.5%vol. of CH4) is lower than that of scenario 3 (97% vol. 

of CH4). The quantities of methane produced are almost double in scenario 2 and 3 

as compared to that of scenario 1 (as biomethane converts each volume of CO2 to an 

equivalent volume of CH4). Due to the small amount of CO2 in renewable methane, 

which results from biogas upgrading, the total quantity of CO2 from the amine 

scrubber is less than the total CO2 volume in the biogas which is fed directly to the 

ex-situ biological methanation reactor. H2 is assumed to be fed into the methanation 

reactor at the recommended ratio of 4 H2: 1 CO2.  
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Figure 5-4. Mass balance of three scenarios 
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The amount of H2 fed into the methanation reactor in scenario 2 is again less than 

that of scenario 3. In order to ensure less than 2%vol. of H2 in the final gas as required 

for gaseous fuel (Ball, Basile, and Veziroğlu 2015), 99% of H2 which is fed into 

methanation reactor needs to be converted to CH4. A quantity of 3,472 kg mono-

ethanol-amine, which is fed at the start of the process, is recycled. However, annually 

205 kg mono-ethanol-amine is lost due to evaporation, thus this amount needs to be 

replenished to the process to compensate for this loss.  

 Energy analysis 

The different types of energy, which are used in the three scenarios, are: electricity; 

steam; cooling and chilling water. Scenario 2 contains three sections (biogas, 

upgrading by amine and methanation) of the process; the energy consumption 

(electricity and steam (heat)) in this scenario are analysed (Figure 5-5) to understand 

the energy consumption in each section.  Upgrading biogas by an amine scrubber 

only requires a very small amount of electricity (0.023kWh/m3 renewable methane) 

but has the highest energy requirement for heating. This is because a large amount 

of heat is required to regenerate CO2 from rich amine solution. The biogas section 

has a lower consumption of standard power than that of methanation due to 

electricity requirement for mixing H2 into solution. The total energy consumed in the 

biogas section is lower than from the amine scrubber section.  
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Figure 5-5. Energy consumptions per m3 of renewable methane of different sections 

in Scenario 2 

 

By dividing each energy subdivision for a whole year by the total renewable methane 

produced, the energy consumed per m3 of renewable methane can be calculated as 

shown in Figure 5-6. The electricity requirement is higher for scenarios 2 and 3 than 

for scenario 1. However, the amount of steam used in scenario 3 is lowest as there is 

no amine scrubber. Although the amine scrubber for both scenarios 1 and 2 

consumes steam, it should be noted that the renewable methane production from 

scenario 2 is almost double that of scenario 1. Thus, for each m3 of renewable 

methane, the steam used for scenario 2 is practically half that of scenario 1. Total 

energy consumption is highest in scenario 1 and lowest in scenario 3. If one m3 of 

renewable methane contains 10kWh, the energy consumption for scenario 1, 2 and 

3 account for 25.7%; 18.7% and 9% respectively of final produced energy.  

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Biogas Upgrading by amine Methanation

kWh/m3
Energy required for

heating

Electricity



 

 

122 

 

 

Figure 5-6. Energy consumptions per m3 renewable methane of different scenarios 

 

  Economic analysis 

 Direct fixed capital cost 

The biogas section accounts for the highest direct fixed capital investment cost 

(€3.91M), followed by the cost of upgrading by methanation (€2.9 -3.1M) and 

subsequently the cost of upgrading by amine (€1.57 M). The major equipment costs 

and their sizes for scenario 2 and 3 can be found in the Appendix D. Table 5-7 gives 

an example of equipment purchase costs for scenario 1. The name of sections can be 

seen in Figure 5-2 and Figure 5-3. In this study, hydrogen was purchased separately; 

the analysis did not include the cost of the electrolysis plant. 
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Table 5-7. Component purchase costs of scenario 1 

Name Description Cost (€) 

1. Biogas section 

SL-101 
Grass silage storage pit 

503,000 
For storing 30,000 t grass silage/year 

V-101 
Slurry Receiver Tank 

70,000 
Vessel Volume = 170 m3 (2days storage) 

SR-101 
Shredder 

56,000 
Rated through put = 3,200kg/h 

PM-101 
Centrifugal Pump 

7,000 
Pump Power = 0.51 kW (pump and mixer) 

AD-101 
Anaerobic Digester 

805,000 
Vessel Volume = 7965 m3 

AD-102 
Anaerobic Digester 

308,000 
Vessel Volume = 4616 m3 

Total 1 1,749,000 

2. Amine scrubber section 

M-102 Blower 3,000 

C-101 
Absorber 

35,000 Flow rate of biogas 813m3/h; column diameter 1m; column 
height 15m. 

C-102 
Stripper 

35,000 Flow rate 403 m3/h; column diameter 1m; column height 
15m. 

PM-102 
Centrifugal Pump 

12,000 
Pump Power = 0.69 kW 

HX-104 
Heat Exchanger 

10,000 
Heat Exchange Area = 15.63 m2 

HX-105 
Heat Exchanger 

8,000 
Heat Exchange Area = 9.69 m2 

PM-103 
Centrifugal Pump 

12,000 
Pump Power = 0.64 kW 

HX-103 Reboiler 84,000 

C-104 Condenser 22,000 

G-101 
Centrifugal Compressor 

47,000 
Compressor Power = 30.13 kW 

Total 2 268,000 

Unlisted Equipment 451,000 

Total 1+2 + unlisted equipment 2,468,000 
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 Economic comparison of overall process. 

For an NPV equivalent of zero, an electricity price to produce H2 of €0.10/kWh and a 

grass silage production cost of €27/t, the minimum selling price of one m3 renewable 

methane (CH4) excluding tax for scenario 1, 2 and 3 are €0.76; €1.50 and €1.43, 

respectively. A detailed economic breakdown of the three scenarios is presented in 

Table 5-8. Total capital investment cost is highest in scenario 2, because this scenario 

includes the biogas plant, biogas upgrading and biomethanation. The capital 

investment of scenario 3 is slightly higher than that of scenario 1 despite a more 

unique upgrading method. As mentioned in section 5.2.1.1, the removal of H2S below 

1-ppm costs €0.01/m3 biogas, which means it costs €0.01/m3
 renewable methane in 

scenario 2 and 3 as the final volume of renewable methane in those scenarios is 

similar to the volume of biogas. The costs are €0.02/m3 renewable methane in 

scenario 1 as the volume of renewable methane after eliminating CO2 is only half of 

biogas volume. 

Table 5-8. Overall economics of three scenarios 

 Scenario 1 Scenario 2 Scenario 3 

Total capital investment (M€) 5.486 8.81 7.8 

Operating cost (M€/yr) 1.97 8.98 8.6 

Renewable methane revenue (M€/yr) 2.5 9.9 9.28 

Produced renewable methane 

(Mm3/year) 
3.44 6.636 6.642 

Minimum selling price (€/m3) 0.76 1.50 1.43 

Net unit production cost (€/m3) 0.57 1.35 1.3 
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The costs of raw materials account for the largest percentage of the operating costs 

in scenario 2 and 3 and is slightly lower than utilities cost in scenario 1 (Figure 5-7). It 

may be noted that the facility-dependent costs consist of maintenance and 

miscellaneous costs. The cost of grass silage accounts for 35% in scenario 1 and 

approximately 8% in scenarios 2 and 3. The cost of CH4 may be reduced if feedstocks 

are available free of charge such as for food waste (which may even accrue a gate 

fee) or slaughterhouse waste (Vo, Xia, Wall, et al. 2017). H2 cost in scenario 2 is 70% 

and 76% in scenario 3. 

 

Figure 5-7. Operation costs in percentage of three scenarios 

 Comparison of data with literature 

When comparing the CAPEX per m3 methane per year to previous studies analysing 

different feedstocks, the CAPEX of the plants in the three scenarios fit within the 

range of previous research (Figure 5-8). 
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Figure 5-8. CAPEX/ m3 methane/ year in this study and previous research 

Note: Teghammar et al. (Teghammar et al. 2014), Shafiei et al. (Shafiei et al. 2013), Urban et al. (Urban, 
Girod, and Lohmann 2008), Kabir et al. (Kabir et al. 2015), Budzianowski and  Budzianowska 
(Budzianowski and Budzianowska 2015) 

 

The CAPEX of amine scrubbing was compared to other biogas upgrading methods 

(Figure 5-9). The CAPEX of the amine scrubber from this study (€1,936/Nm3/h) was 

close to values reported in the literature. Although water scrubber upgrading is the 

most popular method, it is not ideally suited to carbon capture and reuse as it does 

not produce a free stream of CO2. In addition to this, the losses of methane are 

relatively high for water scrubbing in comparison to amine scrubbing (Petersson 

2009).   
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Figure 5-9. Comparison of CAPEX of different upgrading methods (Paturska, Repele, 

and Bazbauers 2015, Hoyer 2016) 

S1: Scenario 1 Amine scrubbing 

S2: Amine scrubbing and biological methanation 

S3: Biological methanation  
 

The energy demand of amine upgrading in this study was compared with the data in 

the literature. Similar power consumption was reported in this study as with 

literature (Bauer, Persson, et al. 2013), while the heat demand to release CO2 from 

amine solution in this research was approximately three times higher than that 

reported in literature (Figure 5-10). The rationale behind the higher heat requirement 

was based on the CO2 content in the biogas. To release 1 ton of CO2, 4GJ of heat was 

required (Li et al. 2016, Abu-Zahra et al. 2007, Pellegrini, Moioli, and Gamba 2011); 

the total CO2 produced in scenario 1 was 5,953 tons.  The total heat required to 

release all the CO2 was 23,812 GJ. When the heat required was recalculated based on 

the methane-produced, this generated a figure of 1.9 kWh/Nm3 methane. This study 

reported a heat requirement of 1.85 kWh/m3 methane from calculations in SuperPro.  
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Figure 5-10. Comparison of energy demand of amine  upgrading with literature data 

(Bauer, Persson, et al. 2013) 

 

  Sensitivity analysis 

As indicated, raw material costs contribute to a high percentage of the operating 

costs for the three scenarios. However, the production price of grass silage and the 

cost of H2 are variable. The cost of H2 production varies in that the cost of electricity 

fluctuates with temporal supply and demand issues. For example, at times of excess 

production electrolysis is seen to have a stability function in the electricity grid and 

the cost of the electricity may be minimal, reducing the price of H2. A number of 

factors influence the cost of grass silage, including: the number of harvests; fertiliser 

application; fuel usage; supply and demand. Thus, a sensitivity analysis will take into 

account the variation in grass silage cost per tonne at prices of €13.5, €27, €40.5 and 

electricity cost per kWh at €0.05; €0.10 and €0.15.  

If grass silage costs increase by 50%, it is calculated that the cost of renewable 

methane will increase by €0.10 per m3 in scenario 1. The renewable methane cost 

only increases by €0.05 per m3 for scenarios 2 and 3. This due to the fact that 

1.85

0.55

0.0

0.5

1.0

1.5

2.0

This study Literature

E
N

E
R

G
Y

 D
E

M
A

N
D

 (
K

W
H

/M
3)

Power Heat



 

 

129 

 

approximately half of the renewable methane is produced by combining H2 and CO2, 

thus, the grass silage cost does not have as much of an impact (Table 5-10). 

Table 5-9. Effect of grass silage price on renewable methane production 

Grass silage price per t 
Renewable methane price at electricity cost €0.10/kWh 

Scenario 1 Scenario 2 Scenario 3 

€13.5 €0.66 €1.45 €1.38 

€27 €0.76 €1.50 €1.43 

€40.5 €0.86 €1.55 €1.48 

Hydrogen cost will not affect the renewable methane cost in scenario 1 as this 

process does not include for biomethanation. If the electricity price changes by €0.05 

per kWh (by 50%), the renewable methane cost will change by approximately €0.41 

for scenario 2 and €0.43 for scenario 3 (Table 5-10). Therefore, the electricity price 

used to calculate H2 costs has a very significant effect on the price of renewable 

methane. 

Table 5-10. Effect of electricity price (to produce hydrogen) on renewable methane 

production 

Electricity price 

change per kWh  

Renewable methane price at grass silage €27 per t 

Scenario 1 Scenario 2 Scenario 3 

€0.05 €0.76 €1.09 €1.00 

€0.10 €0.76 €1.50 €1.43 

€0.15 €0.76 €1.91 €1.85 

Besides grass silage cost and electricity price, the authors were aware that the 

quantity of renewable methane could be increased if higher quantities of grass silage 

feedstock were fed to the digester. Currently the ratio modelled was 80% VS from 

grass silage and 20% VS from dairy slurry.  Therefore, the effect of increasing the 
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percentage VS from grass silage was also analysed. A maximum grass silage scenario 

was investigated with 45,000wwt of grass silage and a minimum dairy slurry 

concentration of 5,238 t wwt (for nutrient addition) assumed to be fed to the digester 

annually. The cost per m3 renewable methane calculated for scenarios 1, 2 and 3 at 

€27/t grass silage and €0.10/kWh electricity (to produce H2) was €0.74; €1.45 and 

€1.40, respectively. This equates to a €0.02; 0.05 and 0.03 drop in price for scenario 

1, 2 and 3, respectively.   

 Conclusions 

The process simulation performed using SuperPro Designer has shown that among 

three scenarios, the production cost of renewable methane from a grass and slurry 

fed biogas plant using traditional upgrading (amine scrubber in this study) was the 

cheapest (€0.76/m3 renewable methane). If surplus renewable electricity needs to 

be stored as methane, the direct methanation of biogas is more economically 

advantageous than capturing the CO2 from upgrading and subsequently providing 

methanation of the captured CO2. From an environmental/sustainability/ 

decarbonisation perspective, the renewable methane generated from biological 

methanation (Scenario 3) is more sustainable than amine scrubbing (Scenario 1) as 

no CO2 is released to the atmosphere. The key drivers for feasible processes include 

technical advancements such as a single-unit upgrading systems with carbon capture, 

increases in the efficiency of biomethanation, reduced costs for feedstock, reduced 

costs for electricity in the production of hydrogen. Power to gas systems are relatively 

new technologies that still need maturity to allow reduction in investment costs. 
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     Can power to methane systems be sustainable 
and can they improve the carbon intensity of renewable 
methane when used to upgrade biogas produced from grass 
and slurry?1 

Abstract 

The recast renewable energy directive (RED recast) considers power to gas (P2G) an 

advanced transport biofuel if a 70% greenhouse gas savings as opposed to the fossil 

fuel displaced is achieved. Power to methane systems can store electricity as gas and 

the system can be optimised in sourcing CO2 from biogas to upgrade biogas to 

biomethane. The crucial question in this work is whether P2G systems can be 

sustainable and if they can improve the sustainability of biomethane systems using 

traditional upgrading systems. This work evaluates a comparative lifecycle 

assessment of grass and slurry (50:50 wet weight equivalent to 80:20 volatile solid 

weight) biomethane using P2G and/or amine scrubbing as an upgrading choice. The 

sustainability of P2G upgrading systems is heavily dependent on the carbon intensity 

of the source of electricity. Using a 41% decarbonised electricity mix the sustainability 

was reduced using P2G and would not be deemed sustainable under criterion set by 

the RED recast. Maintaining a maximum of 2% fugitive CH4 emissions, using 74% 

slurry (wet weight) in a grass slurry feedstock, allowing for 0.6 t carbon sequestration 

per hectare per annum in grasslands and using an electricity mix with 85% renewable 

electricity the whole system including P2G upgrading could satisfy the GHG savings 

of 70%. However, the tradition system employing amine scrubbing had higher levels 

of sustainability.  

                                                      
1 Vo, T.T., Rajendran, K. and Murphy, J.D., 2018. Can power to gas systems be sustainable and can they 
improve the sustainability of biomethane systems when used to upgrade biogas? Applied Energy, 228, 
pp.1046-1056. 
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 Introduction 

The transition from fossil fuels to renewable decarbonised energy needs evidence of 

sustainability and of a significant reduction in environmental impacts. The recast 

Renewable Energy Directive (RED recast) states that advanced biofuels should make 

up at least 3.6% of transportation fuels by 2030. These advanced biofuel systems 

must meet a threshold of 70% greenhouse gas (GHG) savings as compared to the 

fossil fuel displaced (EC 2017). It is unlikely that biomethane produced from mono-

digestion of crops such as maize will meet this criterion: however, maize is not 

considered as a source of advanced biofuel. Perennial ryegrasses are included in the 

list of advanced biofuels, but mono-digestion of grass is unlikely to meet the strict 

sustainability criteria of 70% GHG savings set for transport biofuels. However, it is 

likely that when grass is co-digested with slurry at certain ratios sustainability may be 

achieved. This is due to the methane emission credit obtained by avoiding the open 

storage of raw manure. When slurry is stored in an open tank fugitive methane 

emissons occur; methane has a global warming potential (GWP) of 21 times that of 

CO2 in a 100 year time frame. In anaerobic digestion systems the slurry is not open to 

the atmosphere and these emissions are thus avoided. When biogas is combusted it 

releases CO2 (21 times less GWP than CH4) whilst displacing the emissions from a 

fossil fuel. The credit for digesting manure is given as 14.6% of the methane content 

of the slurry stored using methodology developed by the European Commission Joint 

Research Centre (JRC) (Giuntoli et al. 2014, Agostini et al. 2015). Mono-digestion of 

slurry is carbon negative, however, slurries have low volumetric energy content, 
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produce a low specific methane yield and as such are uneconomic (Wall, O’Kiely, and 

Murphy 2013).  

A recent paper by the authors described a techno-economic analysis (TEA) of co-

digesting grass silage with manure and injection of the produced renewable methane 

to the gas grid (Vo et al. 2018). Three upgrading scenarios were assessed: 1. amine 

scrubbing, 2. amine scrubbing + ex-situ biological methanation, and 3. ex-situ 

biological methanation. The amine scrubbing upgraded the biogas to biomethane 

(renewable methane) in scenario 1 by removing the CO2. Scenarios 2 & 3 offer CO2 

capture. In Scenario 2 the CO2 from the amine scrubber is sent to an ex-situ biological 

methanation unit to produce renewable methane. In Scenario 3 an amine scrubber 

is not used, and the biogas is sent to an ex-situ biological methanation unit to upgrade 

biogas. First, the electrolyser splits water into hydrogen and oxygen Eq. (7-1); the 

hydrogen then reacts with carbon dioxide to produce renewable methane Eq.(7- 2) 

(Vo, Xia, Rogan, et al. 2017).  

2H2O(l) → 2H2(g) + O2(g)  ∆Hr = 286 kJ/mole (at 25o C, 1 bar)          (7-1)  

CO2 + 4H2 ↔ CH4 + 2H2O  ΔH = -165 kJ/mole             (7-2) 

The results of the TEA analysis (Vo et al. 2018) concluded that Scenario 1 amine 

scrubbing was the cheapest method to upgrade biogas followed by Scenario 3 (ex-

situ methanation). Using both amine scrubbing and ex-situ methanation as described 

in Scenario 2 was the most expensive method investigated. The sustainability analysis 

of such systems has not previously been assessed in the scientific literature to the 

authors’ knowledge. This innovation in this chapter is the assessment of whether P2G 
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scenarios can improve the sustainability of a biomethane system and whether a P2G 

system can meet the sustainability criteria for advanced biofuels when used as an 

upgrading system of a biogas system digesting slurry and grass; furthermore the work 

examines at what ratio of grass silage to slurry, greenhouse gas emission savings of 

biomethane exceeds 70% GHG saving as compared to the fossil fuel displaced.  

A cradle-to-gate LCA was carried out including for grass cultivation, ratios of grass 

and slurry in the digester, methane slippage at biogas plants, and hydrogen 

production from electrolysis. The three primary scenarios evaluated are as follows:  

Scenario 1 (S1): Grass cultivated and transported to the biogas facility within a 10-km 

radius, while slurry transported within 3 km. Biogas produced from the plant was 

upgraded by an amine scrubber. The CO2 from the biogas was emitted to the 

atmosphere after upgrading. 

Scenario 2 (S2): Similar to S1 with an addition of the CO2 sent to ex-situ biological 

methanation where it is reacted with hydrogen from an electrolyser to produce more 

renewable methane.  

Scenario 3 (S3): Similar to S1 with the change that amine scrubber is not used and the 

entire upgrading process was undertaken by ex-situ biological methanation where 

hydrogen from an electrolyser combines with CO2 to produce more renewable 

methane.  

The objectives of the chapter are to assess: the parameters (including ratios of grass 

to slurry in feedstock, methane slippage, and sequestration of carbon in grasslands) 

that will allow slurry grass biomethane systems be considered sustainable; the 
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parameters with the greatest impact on the sustainability of P2G systems, in 

particular the share of renewables in the electricity grid mix; and the optimum 

combination of parameters that allow sustainability of biomethane and P2G systems. 

 Methodology 

The LCAs were conducted by applying GaBi software (Thinkstep AG). This is a world’s 

leading life cycle assessment software that used to assess the impacts of a process or 

a product on the environment. GaBi databases contain 12, 000 life cycle inventory 

profiles.  Based on the life cycle of a product, the user defines the inputs and outputs 

of material and energy of each process. From those profiles, GaBi provides the CO2eq 

and other emissions from producing of this product. 

 System boundaries and functional unit 

A cradle-to-gate LCA boundary was used to measure the environmental impacts in 

this study. The system boundaries included: the cultivation of grass including 

fertilizers and machinery associated with cultivation; transportation of grass silage, 

dairy slurry and digestate (organic fertilizer) to and from the biogas facility; biogas 

production by anaerobic digestion (AD); upgrading by amine scrubbing; electrolyser 

for hydrogen production; and ex-situ biological methanation (Figure 6-1). The grass 

silage used in this study is assessed at 25,344 t/a cultivated in a land area of 634 ha 

(40 t wet weight/ha/a). The least distance needed to cultivate this volume of grass 

silage corresponds to a radius of 3.17 km. In the base case, 10 km was considered for 

transporting grass to the biogas plant and digestate back to the fields.  
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Previous work by the authors (Vo et al. 2018) assessed injection of the renewable 

methane to the gas grid at 8 bar. This chapter examines transportation fuel with 

compression to 250 bar. The functional unit used in this study was one MJ of 

compressed renewable gas. The data from this work was compared with fossil fuel 

comparators (FFC) from the RED recast. Based on the guidelines of the Directive 

2009/28/EC, the emissions from the manufacturing of equipment and machinery 

within the biogas facility were not considered (Official Journal of the European Union 

2009). 

 Life cycle inventory 

The data for diesel supply, deionised water, and fertilizers were gathered from the 

proprietary software package GaBi (Thinkstep AG).  

 Biogas plant, amine scrubber and ex-situ biological methanation 

The data for the feedstocks, biogas plant, amine upgrading and ex-situ biological 

methanation were based on Vo et al. (Vo et al. 2018). For the base case scenarios, 

grass silage and slurry were used at a ratio of volatile solids (VS) of 80:20. The 

processing capacity of the biogas plant was assessed with a total feedstock supply of 

53,064 t/a consisting of 27,720 t/a dairy slurry and 25,344 t/a grass silage. It was 

assessed that approximately a 50:50 wet weight ratio is equivalent to an 80:20 VS 

ratio (VS of grass silage and dairy slurry are 28% and 6.7% of wet weight (Vo et al. 

2018)). The digestate (organic fertilizer) production is equivalent to 44,539 t/a. About 

84% of the VS loaded to the system were converted to biogas in the digesters, which 

had a retention time of 40 days. 
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Figure 6-1. System boundaries of three scenarios 
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The biogas plant produced 3.3 million m3 renewable methane/a and 3.2 million m3 

CO2/a; broadly equivalent to 122.5m3 biogas/t at 51% methane content or 62.2 m3 

CH4/t. The base case scenarios assumed a 2% fugitive methane emission of the total 

methane produced from the biogas system. The sources of fugitive emissions 

includes: leakages from the digesters; short-term substrate storage; upgrading of 

biogas; digestate storage and the pressure release valve (Liebetrau et al. 2017). To 

compress the purified methane to 250 bar and use it as a transportation fuel, 

0.35kWeh electricity is needed per m3 of renewable methane produced.  

The input data including for electricity, heat, amine scrubbing and biological 

methanation were adapted from Vo et al. (Vo et al. 2018). To upgrade the biogas via 

amine scrubber, 0.55 kWh heat per m3 raw biogas (Bauer, Persson, et al. 2013) was 

used. The consumption of heat in the process was based on natural gas (Ireland 

steam) taken from GaBi (Thinkstep AG). The input data for utilities used in three 

scenarios are summarised in Table 6-1. It should be noted that the energy produced 

from Scenario 1 is just from the biogas produced in the AD plant, whilst the energy 

produced from Scenario 2 and 3 are from the AD plant and the methanation 

upgrading where CO2 in the biogas is converted to CH4. As such the energy produced 

from Scenario 2 and 3 is roughly double that of Scenario 1. 
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Table 6-1. Parasitic energy demand for the three scenarios 

 Scenario 1 Scenario 2 Scenario 3 

Energy 

produced - 

MJ (LHV): 

116,500,442 225,561,198 229,561,534 

 Heat 

(kWh) 

Electricity 

(kWeh) 

Heat 

(kWh) 

Electricity 

(kWeh) 

Heat 

(kWh) 

Electricity 

(kWeh) 

Biogas 

production 

957,169 1,149,008 957,169 1,149,008  957,169 1,149,008 

Amine 

upgrading 

3,556,268 141,930 3,556,268 141,930 - - 

Ex-situ 

biological 

methanation  

- - 0 2,985,840 

 

0 3,088,800 

Compression  1,132,643 

 

 2,192,956 

 

 2,231,848 

 

 Grass silage cultivation 

Using water for agriculture, especially for biofuel production creates pressure on 

water usage due to irrigation and land use change (Agostini et al. 2015). The United 

Nations reported that 70% of potable water is used for irrigation purposes in 

agriculture (The United Nations 2014). However, those problems have not been an 

issue in Ireland as 90% of agricultural land are grass and Ireland has the lowest water 

stress index in the world (McKiernan; 2013) due to the plentiful availability of rainfall 

throughout the year. 

Smyth et al.(Smyth, Murphy, and O’Brien 2009) carried out a comprehensive study 

on energy requirements of grass silage production in Ireland. From a single hectare 

of land, about 12 t dry solids (DS) of baled grass silage can be produced in a year at a 
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dry solids content of 30% (Wall, O’Kiely, and Murphy 2013). This corresponds to 40 

t/ha/a wet weight from 634 ha. The crop production process encompassed 

cultivation and harvesting. The agricultural inputs for the grass cultivation include 

fertilisers, lime, and herbicides. Diesel is used in agricultural machinery for different 

activities including ploughing, sowing, harrowing, rolling and application of fertilisers. 

The emission data associated with agricultural machinery usage were included in the 

LCA.  

The digestate from the biogas plant was assumed to be applied to the pasture land 

as organic fertiliser replacing synthetic fossil fuel-based fertiliser. Smyth et al. (Smyth, 

Murphy, and O’Brien 2009) calculated the amount of nitrogen needed for grass 

cultivation as 259.37 kg N/ha/a. The maximum permittable nitrogen load on farmland 

from an organic fertiliser is 170kg N/ha/year (Lukehurst, Frost, and Al Seadi 2010). 

Thus, synthetic fertilizer of 89.37 kg N/ha/a is still required. On a wet weight basis, 

grass silage and dairy slurry contain 4 and 3 kg N/t respectively  (Vo et al. 2018). 

During anaerobic digestion, 6% of nitrogen is used for growth of microbes (Giuntoli 

et al. 2015). This corresponds to 3.89 kg N per ton of digestate (Appendix F). 

Therefore, 43.65 t digestate was applied in one ha of grass; for 27,674 t/a digestate 

the area corresponds to 634 ha. The extra 16,865 t/a digestate was assumed to be 

spread on adjoining agricultural land. For the impact assessment, the GHG emissions 

from digestate storage, transportation, and field application were included in the 

assessment.  

The benefits of digestate as a biofertiliser include avoiding the production of 

synthetic fertiliser and associated emissions. The commonly used synthetic fertilisers 
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in Ireland are Calcium Ammonium Nitrate (CAN), Potassium Chloride and Triple 

Superphosphate (Teagasc). The GHG emissions to produce 1kg of CAN, Potassium 

Chloride and Triple Superphosphate are 979g, 210g and 232g CO2 eq., respectively 

(Thinkstep AG). Using digestate avoids the GHG emissions from producing synthetic 

fertilisers. According to ISO 14044, whenever possible the system expansion should 

be applied for the process which produces more than one product. Thus, the system 

expansion was applied in this research. Table 6-2 shows the total amount of nutrients 

needed, nutrients from digestate and the amount of nutrients that were substituted 

by the synthetic fertilisers in the grass field. 

Spreading of lime on the field leads to CO2 emissions; an emission factor of 0.12 was 

used (De Klein et al. 2006). GaBi lacks the data for herbicide application, harrowing, 

rolling and energy needed to produce grass seed. Hence,  the data from Smyth et al. 

(Smyth, Murphy, and O’Brien 2009) was used.  

Nitrous oxide (N2O) is a GHG that has a GWP 298 times higher than that of CO2 (EPA). 

In Ireland, applying fertilizer and emissions from animal wastes corresponds to 90% 

of N2O emissions (Teagasc).  N2O is formed in the soil by nitrification and 

denitrification processes. 

Phosphate (PO4-P) is deemed to be discharged to the surface water at 1% of total P 

content in inorganic and organic fertilisers (van der Werf, Kanyarushoki, and Corson 

2009).  Indirect and direct N2O emissions from synthetic and organic fertiliser were 

also calculated following the IPCC’s guideline (Tier 1 method) (De Klein et al. 2006). 
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The direct emission factor (EF) of N2O-N by applying synthetic fertilisers as well as 

organic fertiliser is one percent of total N.  

Table 6-2. Inputs for grass silage production, nutrients from digestate and synthetic 

fertiliser 

 Total nutrients 

required (kg/ha/a) 

(Smyth, Murphy, and 

O’Brien 2009) 

Nutrients from 

digestate (kg/ha/a) 

Nutrients 

substituted by 

synthetic 

fertiliser 

(kg/ha/a) 

Nitrogen 259.37 170 89.37 

Phosphorous 38.75 26 12.75 

Potassium 308.75 66 242.75 

Herbicide 0.72   

Seed 3.125   

Lime 1500   

 

The indirect N2O emissions were calculated from the atmospheric deposition (ATD) 

of N volatilised from the managed soil, N2O (ATD)-N, Eq. (6-3) and from N 

leaching/runoff from managed soils in regions where leaching/runoff occurs Eq. (6-

4) (De Klein et al. 2006): 

N2O (ATD) (kg N2O/a) = (FSN*0.1 + FON*0.2) * 0.01*44/28             (6-3) 

Where: 

FSN = annual amount of synthetic fertiliser N applied to the soil in kg N/a 

FON = annual amount of organic N added to the soil in kg N/a 

N2O (kg N2O/a) = (FSN + FON) * 0.3 * 0.0075*44/28             (6- 4) 
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FSN = annual amount of synthetic fertiliser N applied to the soil in regions where 

leaching/runoff occurs, kg N/a. 

FON = annual amount of animal manure, compost, sewage sludge and other organic 

N added to the soil in regions where leaching/runoff occurs, kg N/a. 

Using manure as a feedstock in AD reduces the GHG emission, as methane is 

processed and captured in a controlled environment. Using the dairy slurry provides 

a methane credit of 14.6% of the biomethane potential (Liebetrau et al. 2017). The 

biomethane potential of the dairy slurry is 239 L CH4/kg VS (Wall, O’Kiely, and Murphy 

2013). 

 Electrolyser 

Proton exchange membrane (PEM) was selected as an electrolyser in this study as it 

was deemed most suitable to handle the fluctuations of the wind electricity (Vo, Xia, 

Rogan, et al. 2017). To consume the CO2 produced from S2 (5,953 t/a) and S3 (6,201 

t/a) (Vo et al. 2018), 1,082 t/a (S2) and 1,127 t/a (S3) H2 is needed. The electrolyser 

plant (termed the distributed electrolyser plant (U.S . Department of Energy)) can be 

built beside a biogas plant thus negating the need for storage. 

The total energy consumed to produce 1 m3 H2 varies between 3.75 and 7.5 kWh 

(Götz et al. 2016, Marshall et al. 2007, Barbir 2005). In the future, the average energy 

consumption to produce 1m3 H2 could reduce to 4.3 kWh (James et al. 2013). 

Therefore, this study used a conservative approach of 4.4kWh electricity to produce 

1m3 H2. This equates to 49 kWh electricity to produce 1kg H2 (ca. 75% conversion 



 

 

144 

 

efficiency) (Appendix F). Hydrogen is produced closer to the biogas facility and hence 

the compression of 1 bar was used. 

Deionised water is necessary for smooth operation of the electrolyser (Carmo et al. 

2013). The deionised water used in this study was assumed to be produced via 

reverse osmosis. GaBi  professional database (Thinkstep AG) provided the life cycle 

inventory (LCI) data for the production of deionised water. According to Eq. (6-1), 

9.09 kg water is needed to produce 1 kg H2. However, in reality, the water 

consumption is 25% higher (Barbir 2005); therefore, 11.36 kg water was used to 

produce 1kg H2. 

 Electricity mix 

This work assessed the LCA for the plants that will be built after 2020. Therefore, in 

the base case, an electricity mix from 2020 from EirGrid (Irish electricity utility) was 

used for all the electrical needs (SONI 2017). This projected electricity mix could be 

divided into steady evolution and low carbon living. The difference between these 

two electricity mixes are a 1.4% higher renewable share in low carbon living. This 

study used a conservative approach of steady evolution. This includes 41% 

renewables spread as follows: 36.3% wind electricity, 2.2% biomass/landfill gas, 2% 

hydropower, and 0.7% PV. The remaining electrical demand (59%) is met by fossil 

fuels, including natural gas (37.8%), hard coal (7.9%), peat (2.85%), distilled oil and 

heavy fuel oil (9.19%) and waste (0.74%). The GHG emissions from this 2020 

electricity mix are 117g CO2 eq. /MJ. 
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 Life cycle impact assessment  

The GaBi software (Leinfelden-Echterdingen, Germany, version 8.2) (Thinkstep AG) 

was used to perform the LCA of the three scenarios. The assessments were based on 

midpoint life cycle impact assessment method as recommended by the European 

Union Joint Research Centre (JRC) on LCA in the European context; these conform to 

ISO 14040 and 14044 requirements (EU-JRC 2010, International Organization for 

Standardization 1997). 

The environmental impacts assessed in this study include global warming potential 

(GWP), acidification potential, freshwater eutrophication potential, particulate 

matter emission (PM2.5) and ozone depletion potential.  

 Global warming potential (GWP)  

Greenhouse gases (GHG) such as CO2, CH4 and N2O trap heat in the atmosphere at 

different capacities due to radiative forcing. GWP refers to the equivalent amount of 

GHG released to the atmosphere from a process, expressed in terms of kg CO2eq. The 

IPCC developed this metric to compare global warming impacts of different GHGs. 

The different GHGs were converted to CO2eq. as CO2 corresponds to the most 

abundant GHG with uniformity in reporting. The GWP reporting period used in this 

study is 100 years (GWP 100).  

 Acidification potential 

Acidifying substances such as sulphur oxides, nitrous oxides and ammonia increase 

the hydrogen ion concentration in the atmosphere which leads to acid rain. 
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Acidification potential measures the amount of acids emitted as mole H+ eq. This is a 

relative unit for different acids measured.  

 Freshwater eutrophication potential  

The excess nutrient release from a process leads to augmentation of the aquatic 

ecosystem. This results in environmental issues such as eutrophication. 

Eutrophication potential measures amount of excess nutrient released as kg Peq. 

 Particulate matter \ Respiratory Inorganics  

This category measures the fine particulate matter (PM2.5 eq.), a critical 

environmental impact category that affects human health. An intake fraction concept 

was used to calculate this impact category (Agostini et al. 2015). 

 Ozone depletion potential (ODP):  

ODP expresses the potential degradation of gases on the ozone layer compared with 

trichlorofluoromethane (CFC-11), which is set at an ODP of 1. 

 Sensitivity analysis 

The effects of four crucial factors were assessed. Three of these related to the biogas 

system: CO2 sequestration in the soil; ratio of slurry and grass silage in the feedstock; 

the fugitive emissions in the biogas facility. The fourth relates to the power to gas 

system and is seen as the critical parameter in such systems; the carbonisation level 

of the electricity. 
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 CO2 sequestration in soil 

The base case did not include for carbon sequestration by photosynthesis in the LCA; 

the rational for this is expanded upon in section 6.3.1. Within the grass silage 

production, carbon is captured by the grass and the soil; grasslands are identified as 

a CO2 sink source (Scurlock and Hall 1998).  Kiely et al. (Kiely et al. 2017) showed that 

the Irish grassland soil has a large potential for carbon sequestration. Tillage practise 

releases CO2 back to the atmosphere from the soil (Rastogi, Singh, and Pathak 2002, 

Davidson and Ackerman 1993, Pinheiro et al. 2015). However, grasses are perennial 

and tillage is not necessary. Grasslands may be reseeded every 4 to 8 years in theory 

(and less often in practice); direct sowing is recommended for grasslands (Smyth, 

Murphy, and O’Brien 2009). Earlier studies (Korres et al. 2010, Jones and Donnelly 

2004)  reviewed carbon sequestration rates of temperate grasslands across the EU. 

The results from their study showed that CO2 sequestration varied between 0.6 and 

8.7 t C ha-1 a-1. In the sensitivity analysis the CO2 sequestration from the soil was 

considered conservatively at 0.6 t C/ha/a. This equates to 2.2 t CO2 /ha/a. 

 Feedstock 

In the base case, grass and slurry were used on an 80:20 VS basis. Using slurry as a 

feedstock reduces the GHG emissions due to the mitigation of methane emitted from 

open storage systems (Agostini et al. 2015). For the sensitivity analysis, 60:40 VS ratio 

of grass silage and slurry was evaluated for S1, S2 and S3. The mass and energy 

balance data was obtained based on the modified process using  SuperPro designer 

(Intelligen Inc., Scotch Plain, NJ, V10)(Vo et al. 2018). The amount of grass silage for 
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the variations was maintained at 25,344 wet weight t/a (7,603 tDS/a at 30% DS and 

7096 t VS/a at 28% VS). The amount of slurry varied depending on the VS ratio used. 

If grass silage accounted for 60% of the VS in the feedstock and dairy slurry 40% of 

the VS in the mix, then the wet weight of dairy slurry (6.7% VS) per year would be 

70,607 t. This yields a ratio of 26:74 grass silage to slurry ratio on a wet weight basis. 

The utilities consumption and energy production data were presented in Appendix F. 

 Fugitive methane emissions 

The fugitive emissions in a biogas plant can vary between 1% and 7% of the produced 

biomethane (Liebetrau et al. 2017). The base cases assumed 2% methane fugitive 

emissions, while the sensitivity analysis evaluated 6% methane fugitive emissions.  

 Carbonisation level of the electricity 

The primary or theoretical purpose of converting power to gas is to store the excess 

renewable electricity and convert to a renewable decarbonised gaseous energy 

vector. To ensure sustainability, the share of renewables in the electricity grid should 

be significant. Generating hydrogen from brown electricity produces brown 

hydrogen and as such is not deemed renewable. The majority of renewable electricity 

such as wind and solar are intermittent sources. This is also the reason why higher 

penetration of intermittent renewable electricity in the grid is not easy. Earlier 

studies investigated the possibilities of higher penetration of renewables in the grid. 

The results concluded that flexibility of the grid and external storage were the two 

factors that can help achieve higher penetration of renewables in the grid  (Hohmeyer 

and Bohm 2015) (Denholm and Hand 2011). International Energy Agency (IEA) 
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forecasts that the global renewable electricity share by 2050 will be between 57% 

and 71%; this needs a strong policy support (Guandalini et al. 2017). Denmark for 

example plans for 100% renewable electricity by 2050 (The Danish Government 

2013).   

The base case used a 2020 electricity mix from the EirGrid. Even though the level of 

renewable was 41% which is relatively admirable and a significant improvement over 

the last 20 years, the mix is still 59% fossil or brown. However, in future scenarios 

there is an absolute necessity to decarbonise electricity through increasing the share 

of renewable sources. The EirGrid projection for 2040 was evaluated. This 2040 

projection could be divided into four categories including steady evolution, low 

carbon living, slow change, and consumer action. Low carbon living was assessed in 

the sensitivity analysis. The share of electricity from different sources are as follows: 

fossil natural gas sources (24.5%), with the remaining 75.5% renewable and 

consisting of: wind (50.4%), PV (18%), biomass and landfill gas (including biogas CHP) 

(4.1%), hydro (1.2%), ocean energy (1.3%) and energy from waste (0.5%). The 

electricity from biomass and landfill gas were split equally for landfill gas and biogas 

CHP. The emissions for different electricity sources were retrieved from GaBi 

(Thinkstep AG), excluding ocean energy. As GaBi lacks the data for wave and tidal 

energy, the data from Uihlein (Uihlein 2016) was used. The GWP, ozone depletion 

and freshwater eutrophication per kWh of wave energy are: 43.7 gCO2eq., 1.8g CFC-

11 eq. and 0.16 mg P eq. respectively. The carbon intensity for the electricity 2040 

mix is 38.5 gCO2eq/MJ electricity produced; this is 33% of the carbon intensity of the 

2020 modelled mix. A theoretical 100% renewable electricity mix (with 75% from 
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wind electricity and 25% from other renewable sources) was also assessed in this 

sensitivity analysis. 

 Results and discussion 

 Carbon balance 

A carbon balance analyses was undertaken to understand the flow of carbon from 

grass cultivation to the production of methane and associated emissions when 

released back to the atmosphere. Wall et al. (Wall, O’Kiely, and Murphy 2013) 

previously calculated the chemical formula of grass silage and dairy slurry based on 

VS content as C30H50O23 and C22H34O19 respectively. Based on volatile solids content, 

carbon accounts for 46.27% and 43.85% of grass silage and slurry respectively. The 

dairy slurry has a lower volatile solids content (6.7%) than grass silage (28%) (Wall, 

O’Kiely, and Murphy 2013). The photosynthesis process results in sequestration of 

130 kg carbon for every ton wet weight of grass silage produced, it equates to 475 

kgCO2/t wet weight. In 1 ha of grassland, ca. 40 wwt (wet weight tonne) grass silage 

is produced, which holds 5,182 kg C (19 t CO2) in the above ground grass which is cut 

for silage. Further carbon is sequestered in the soil below the grass  (Saggar, Hedley, 

and Mackay 1997, Smyth, Murphy, and O’Brien 2009). Likewise, a wet weight ton of 

dairy slurry has 29 kg carbon (107 kg CO2). Figure 6-2 shows the carbon balance for 

different scenarios used in this study on a 1t wet weight slurry and 1t wet weight 

grass basis. Scenario 1, which does not capture carbon dioxide in the upgrading 

process releases 43% carbon in the form of methane, 39.5% as CO2, and the digestate 

holds 18.5% of the carbon. Using power-to-gas systems, S2 and S3 capture CO2 and 
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release 79.5% of the carbon in methane with the remaining carbon held in digestate. 

The amount of carbon released from CO2 in S1 and S2 decreased from 39.5% to less 

than 0.07% respectively. S2 and S3 have a higher percentage of carbon that can be 

used for energy compared with S1, due to CO2 capture. In this work in the base case 

study, the CO2 sequestered by photosynthesis and the CO2 emission due to methane 

combustion were not considered in the LCA calculations as the absorption and 

emission would be in theory neutralized by each other. Therefore, the emissions from 

combustion of renewable methane are set to zero. 

  

 

Figure 6-2. Carbon balance in three scenarios based on 1 tonne of slurry and 1 tonne 

of grass on a wet weight basis. 
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 Life cycle impact assessment 

 Process contributions 

Figure 6-3 & Figure 6-4 show the process contributions as a percentage of different 

impact categories. There are different processes in the whole chain including silage 

production, transportation, biogas production, upgrading by amine, electrolysis and 

biological methanation. Of the different processes, electrolysis is a dominant 

contributor for all categories except eutrophication impact. The electrolysis process 

alone contributes to 80% of GHG emissions; 86% of acidification; 70% of ozone 

depletion and 85% of particulate matter (S2 and S3). This high-impact is due to the 

significant consumption of electricity (0.235 kWeh/MJ biomethane or 0.357 kWeh/MJ 

hydrogen) as it converts electricity to hydrogen. In essence the carbon intensity of 

the hydrogen is increased beyond that of the electricity by the reciprocal of the 

efficiency in converting electricity to hydrogen expressed as a decimal. The Irish 2020 

grid mix contains 41% renewables and 59% fossils. This high amount of fossil 

electricity leads to higher environmental impacts.  

Grass silage cultivation contributes the most to freshwater eutrophication and GWP 

in S1 (45%). Eutrophication is due to the nutrient value of the fertiliser and its 

potential leakage of phosphorous, while the GHG emissions are from fertiliser 

production, fieldwork activities and emissions from applying fertilisers.  

For all scenarios, the share of GWP contributions were split between the biogas 

production, compression, upgrading by amine and biological methanation (Figure 

6-3). It should be noted that the amount of methane produced in S2 and S3 is 
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significantly increased by power-to-gas upgrading, which reduced the emissions per 

functional unit. Using the slurry as a co-digestion substrate mitigates GWP at the rate 

of 29% in S1, 4% in S2 and S3. When the digestate was applied at other fields, the 

credit for avoiding synthetic fertiliser production for S1 is 6%, and 0.8% for S2 and S3. 

For the digestate applied at the grass fields, the credit was automatically calculated 

in GaBi for grass cultivation process. For S1, the fugitive methane emissions 

correspond to 29% of the GWP, which is significant. This highlights the importance in 

reducing fugitive emissions to reduce the GWP. The use of diesel in the 

transportation contributes 41% in S1, 4% in S2 and S3 to PM2.5 and 31% in S1, 2.5% 

in S2 and S3 to acidification.  

 

Figure 6-3. Percentage contributions of S1, S2 and S3 to global warming potential.  
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Figure 6-4. Percentage contributions of different processes to impact categories
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 Global warming potential 

The GWP in S1 was the lowest at 34 g CO2eq per MJ. Scenario 3 reduced the GWP by 

3.2% as compared to Scenario 2, which used both amine scrubbing and biological 

methanation in upgrading. However, the GWP of S2 (124 g CO2eq per MJ) and S3 (120 

g CO2eq per MJ) were approximately 3.5 times higher than S1. The use of 2020 Irish 

grid mix (with 41% green electricity) for the hydrogen production in the electrolysis 

led to this high GWP. It may be said that P2G does not improve the sustainability of 

biomethane systems when used to upgrade biogas if the source of electricity is 59% 

brown. 

 Other environmental impact categories 

The accumulated exceedance method was used to calculate the acidification 

potential, which is expressed as mole H+
eq (Agostini et al. 2015). The major 

contribution to acidification potential is sulphur dioxide (43% - 68%) and nitrogen 

oxides (31%-46%) (Figure 6-5). The emission of nitrogen oxides was 10% higher than 

sulphur dioxide in S1, but N2O was 25% lower than sulphur dioxide in S2 and S3. 

Nitrogen oxides in S1 are due to transportation; a major share of sulphur dioxide in 

S1 is emitted from biogas production and compression. Overall, biogas production, 

compression, and transport of grass in S1 have contributions of the same order to 

acidification potential. The acidification of S2 and S3 are six times higher than that of 

S1. The use of grid electricity in the electrolyser resulted in higher emissions of 

sulphur dioxide, which affected the acidification potential for S2 and S3.  
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Figure 6-5. The contribution of different substances to acidification potential 

 

In all scenarios, the grass silage production is the main contributor to freshwater 

eutrophication potential. Among the five impact categories, only freshwater 

eutrophication potential in S1 is higher than that of S2 and S3 (Table 6-3).  This impact 

is due to the phosphate emission from phosphate fertiliser to the fresh water in grass 

cultivation. The reason for higher potential in S1 is the almost doubling of renewable 

methane output in S2 and S3. 

The larger consumption of deionised water and electricity used in the electrolyser 

had a high impact on the ozone depletion potential (Table 6-3). Moreover, the 

production of calcium ammonium nitrate fertiliser also contributes to this category. 

PM2.5eq effects the local atmosphere due to the contribution of potassium chloride 

fertiliser. The transportation of grass from the field to the biogas plant also 

contributes to this impact category. 

0.E+00

1.E-04

2.E-04

3.E-04

4.E-04

S1 S2 S3

M
o

le
 o

f 
H

+e
q

/M
J

Acidification potential

Ammonia Nitrogen dioxide Nitrogen monoxide

Nitrogen oxides Sulphur dioxide Sulphur trioxide



 

 

157 

 

Scenario 1 has two times higher potential in freshwater eutrophication than S2 and 

S3. Acidification potential and particulate matter (PM2.5eq) are higher in S2 and S3 

than S1 (Table 6-3). The renewable methane production is almost doubled in S2 and 

S3, which reduced the environmental impacts because of grass production. In 

contrast, the use of the electrolyser in S2 and S3 resulted in higher other categories 

compared with S1.  

Table 6-3. Impacts of different scenario to impact categories per MJ 

Impact categories Unit S1 S2 S3 

GWP gCO2eq 34 124 120 

Acidification Mole of H+ eq. 5.31E-05 3.41E-04 3.38E-04 

Eutrophication freshwater kg P eq. 8.09E-07 4.46E-07 4.39E-07 

Ozone depletion kg CFC-11 eq. 1.42E-14 2.81E-14 2.80E-14 

Particulate matter kg PM2.5 eq. 2.91E-06 1.63E-05 1.62E-05 

 

 Sensitivity analyses 

 Carbon sequestration in soil.   

Each ha of grassland produces 40 wwt grass silage. To produce 1MJ of renewable 

methane the area under grass cultivation needed for S1, S2, S3 was 0.0544 m2; 0.0281 

m2 and 0.0276 m2. Using an alternative metric, the gross energy production per 

hectare is 183, 356 and 362 GJ/ha/a for S1, S2 and S3 respectively. The sensitivity 

analysis considered sequestering 2.2 t CO2 ha-1 a- into the soil. Sequestering the CO2 

reduced the GWP of S1, S2 and S3 to 22, 118 and 114 g CO2eq./MJ respectively. When 
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compared with the base case, carbon sequestration in the soil lowers the GWP of S1 

by 35%, S2 and S3 by 5%.  

 Co-digestion of grass silage and slurry at different ratios 

In the base case, the ratio of grass silage and slurry was 80:20 on a VS basis. The ratio 

of the slurry was increased to 40% on a VS basis in the sensitivity analysis to check its 

effect on GWP. The result shows that the GWP of 60% VS grass silage and 40% VS 

slurry ratios was 19 gCO2eq/MJ (S1). The base case reported a GWP of 34 gCO2eq/MJ; 

thus, increasing the slurry from 20% to 40% VS in the mix decreased the GWP by 

43.4% (S1-IS). Increasing the slurry also increases the amount of nitrogen in the 

digestate. Replacing the fossil fertilizer with biofertilizer increases the GHG emission 

savings.  The methane credit increased from 29% to 102% due to the higher portion 

of slurry used and the methane slippage from open slurry holding tanks displaced. 

However, the GWP savings did not increase proportionally to slurry added. Slurry 

suffers from high water content (91.2%) leading to higher electricity and heat 

parasitic demand lowering the potential reduction in GWP. The GHG credit for 

replacing fossil fertilisers increased from 6% to 24%. This shows that slurry 

contributes significantly in reducing GHG emissions in a biogas plant.  

However, this increased slurry did not have a significant effect on the GWP reduction 

in S2 and S3; the GWP in S2 and S3 were 118 and 117 gCO2eq/MJ, respectively. When 

comparing with the base cases, the GHG reduction varied from 2.5% to 5%. Electricity 

used to produce H2 accounted for 80% of the GHG emissions in S2 and S3 and as such 

the emissions credit from slurry has a lesser effect on the overall system including 
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P2G. Therefore, increasing slurry content of the feedstock is not an effective method 

to reduce GHG emission in S2 and S3. 

 Methane fugitive emissions 

Increasing the fugutive methane emissions from 2% to 6% in the sensitivity analysis 

increased the GWP for all the scenarios. The GWP for S1, S2 and S3 at 6% fugitive 

emissions were 57, 138 and 137 gCO2eq/MJ. When compared with the base case, 

increasing the fugitive emissions increased the GWP by 40% in S1, 10% in S2 and S3 

respectively. Minimizing the methane emissions plays an important role in reducing 

the GHG emissions of the biogas plant. IEA Bioenergy (Liebetrau et al. 2017) 

recommeded measures to reduce methane slippage including gas tight digestate 

tanks,  or complete degradation, frequent leakage control surveys, avoidance of open 

handling and storage of digestate under anaerobic conditions, and gas management. 

 Electricity 

The base case scenarios used the Ireland electricity mix projected for 2020, which 

contains 41% renewable electricity. In the sensitivity analysis, the proposed 2040 grid 

mix containing 75.5% renewable electricity was evaluated. The GHG results of S1, S2, 

and S3 when consuming 75.5% renewable electricity were 28, 49 and 45.5 

gCO2eq/MJ. Replacing the 41% renewable electricity mix with the 75.5% renewable 

electricity reduced the GWP 1.2-fold in S1 and 2.5 times in S2 and S3. Thus, as 

expected greening of the electricity, will green the hydrogen used in the power to gas 

process significantly improving the renewable methane in S2 and S3.  Increasing the 

level of renewables in the electricity grid did not increase the GHG savings for S1 at 
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the same rate as it did in S2 and S3. This is due to the reason that for S1, the electricity 

is used as a utility satisfying parasitic demand, while for the other scenarios it is the 

precursor for hydrogen production, which is the source of almost half the renewable 

methane. 

 Greenhouse gas savings 

The recast Renewable Energy Directive (RED recast) proposed to use 94 gCO2eq/MJ 

as a fossil fuel comparator (FFC) for transportation(EC 2017). The data from the base 

case and all sensitivities were compared to the RED recast (Table 6-4).  

Among the various sensitivities assessed, only S1 meets the sustainability criteria 

under the following conditions: 1. Carbon sequestration of 0.6t C/ha/a in the soil; 2. 

Increasing the slurry from 20% to 40% on a VS basis; 3. Electricity grid mix from 2040 

with 75.5% renewables; 4. Under the combination of these conditions (Optimum). 

The optimum conditions in S2 and S3 could save only 60% and 63% GHG emissions. 

These conditions did not satisfy the RED recast of 70% GHG savings 

The questions posed in this chapter are “Can power to methane systems be 

sustainable and can they improve the carbon intensity of renewable methane when 

used to upgrade biogas produced from grass and slurry?”  An answer at this stage is 

no and no even with electricity at 75.5% renewable. It is necessary to find out under 

what conditions power to gas systems can be deemed sustainable when used to 

upgrade biogas. 
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Table 6-4. Greenhouse gas savings of sensitivity analysis in comparison with fossil fuel 

comparator from the EU.  

Scenario Name 

GWP 

(CO2eq) 

GHG Savings 

with RED 

recast (%)  

S1 

Base case S1 34 64 

CO2 sequestration in the soil S1-S 22 77 

60 GS: 40 Slurry (VS basis) S1-IS 19 80 

6% fugitive emissions S1-6% 57 39 

2040 -75.5%renewable electricity S1- Green75.5% 28 70 

 Optimum  S1-Optimum 3.9 96 

S2 

Base case S2 124 -32 

CO2 sequestration in the soil S2-S 118 -26 

60 GS: 40 Slurry (VS basis) S2-IS 118 -26 

6% fugitive emissions S2-6% 138 -47 

2040 -75.5%renewable electricity S2- Green75.5% 49 48 

 Optimum S2-Optimum 38 60 

S3 

Base case S3 120 -28 

CO2 sequestration in the soil S3-S 114 -21 

60 GS: 40 Slurry (VS basis) S3-IS 117 -25 

6% fugitive emissions S3-6% 137 -46 

2040 -75.5%renewable electricity S3-Green75.5% 45.5 52 

 Optimum S3-Optimum 35 63 

Note: The negative value indicates those scenarios had higher GWP than the FFC. The green colour 

represents those scenarios that meet the GHG emission savings in comparison with RED, while the red 

colour represents the scenarios that did not meet the recast RED criteria. Optimum case includes 2% 

fugitive methane emissions, 60:40 slurry grass, CO2 sequestration and 75.5% green electricity 
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 Figure 6-6. Cumulative (left to right) percentage GHG savings (e.g C sequestration for 

S1 included electricity 100% green and 60:40 grass slurry) 

 

To examine this the share of renewables in the electricity grid was increased from 

75.5% to 85% to 100%, which obviously had a positive effect on the GHG savings 

(Figure 6-6). S2 and S3 both surpassed the 70% GHG savings criteria. With greening 

electricity S2 and S3 can both surpass the 70% GHG savings criteria. When the 

electricity for the processes are 100% renewable, the GHG saving for S3 increased 

from -24% (40% VS slurry, 40% renewable electricity) to 90%. This shows that the 
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share of renewables in the grid is crucial for P2G as an upgrading choice for renewable 

methane production to meet the RED recast sustainability criteria.  

 Data comparison with literature 

Figure 6-7 shows the data comparison from this study to the earlier studies reported 

in the literature. To meet the RED recast of 70% GHG savings, the GWP of renewable 

methane should be less than or equal to 28 gCO2eq/MJ.  

The GWP of the grass silage and slurry production (S1) is higher than the seaweed, 

ley crop and cereal crop; but is comparable with maize. If only grass is used as a 

feedstock, it produces more GHG than when co-digested with slurry; the GWP drops 

from 49.7 (only grass) to 34 (S1 50:50 grass silage slurry on a wet weight basis) and 

to 19 gCO2eq/MJ (S1-IS allowing for carbon sequestration in grass lands). This shows 

the importance of slurry in decreasing the GWP of renewable methane. The fugitive 

emissions from the biogas plants have a considerable impact on the GWP. When 

comparing the literature that used open digestate storage (Biowaste-O, Maize-O) (EC 

2017)  and 6% fugitive emissions (this study) with the GWP of closed digestate storage 

(Biowaste-C, Maize-C) (EC 2017) and 2% methane slippage (this study), the latter had 

lower GHG emissions. This means that reducing the methane slippage is another key 

factor in reducing the GHG emissions.  

The GWP of catalytic P2G (when not used as an upgrading unit) in the literature was 

113 gCO2/MJ (Parra et al. 2017). When the biological methanation is considered as 

an upgrading unit, the GWP was 133 gCO2/MJ (this study). When more renewable 

electricity was used in S2 and S3, the GWP of those two-scenarios decreased 
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significantly to 45 and 49 gCO2eq/MJ as in S2-Green75.5% and S3-Green75.5% and to 

30.5 and 27 gCO2eq/MJ as in S2-Green85% and S3-Green85%. This further drops to 

1.8; 8.87; 5.08 gCO2eq/MJ For S1; S2 and S3, respectively if electricity is 100% green 

and carbon sequestration into soil was considered. Similar results were reported in 

the literature for P2G unit, which consumed wind electricity resulting in a GWP 

between 6 and 29 gCO2/MJ (Parra et al. 2017).  

 

Figure 6-7. Comparison of output to previous studies on sustainability of biomethane 

systems 

Note: O- open digestate storage; C- Close digestate storage;  

Seaweed (Czyrnek-Delêtre et al. 2017); cereal crop (Buratti, Barbanera, and Fantozzi 2013); biowaste 

– O & C, maize whole plant – O&C (EC 2017); ley crops, straw (Uusitalo 2014); grass (Korres et al. 2010); 

catalytic P2G-a&b(Parra et al. 2017), of which P2G –b consumed wind electricity; all S scenarios – this 

study. The red dots are for the processes involved P2G, the black dots are for biogas plants with 

traditional upgrading units. 
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 Conclusions 

The question posed in this paper is “Can power to methane systems be sustainable 

and can they improve the carbon intensity of renewable methane when used to 

upgrade biogas produced from grass and slurry?” The biogas system considered a 

grass silage slurry system. According to the recast renewable energy directive, 

biofuels need to have a 70% GHG savings as compared to the fossil fuel displaced on 

a whole life cycle analysis to be considered as an advanced transport biofuel. This 

chapter undertook a life cycle assessment of biomethane with and without carbon 

utilisation in a P2G system.  

The optimised biogas system in terms of sustainability included for larger 

percentages of slurry than grass silage to avail of the carbon credit in displacing open 

storage of slurry, minimisation of methane slippage, and allowing for carbon 

sequestration in the soil. This system readily met the 70% GHG savings criteria. 

The P2G system was heavily influenced by the source of electricity. The carbon 

intensity of the hydrogen is increased beyond that of the electricity by the reciprocal 

of the efficiency in converting electricity to hydrogen expressed as a decimal. As the 

electrolysis efficiency was assumed at 75%, the hydrogen had a 33% higher carbon 

intensity than that of the electricity. To meet the RED recast sustainability criteria, 

the carbon intensity of the electricity needed to be less than 15%. Thus, the answer 

to the question posed is that power to gas systems can be sustainable but are unlikely 

to improve the sustainability of biomethane systems when they are used to upgrade 

biogas, if the electricity supply has an element of fossil fuel. 
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     Conclusions and recommendations 

 Overview 

The thesis had an ambition to assess the sustainable, feasible development of the 

combination of the P2G process with a biogas facility by considering three 

overarching parameters: technical, economic and environmental. In order to 

evaluate these parameters, the thesis needs to answer these research questions: 

- How sustainable is P2G when compared to other large-scale storage 

technologies? (Chapter 3) 

- What is the combined production cost of renewable gas produced from 

AD&P2G from a range of feedstocks? (Chapters 4 & 5) 

- What is the potential capacity of CO2 from biogas sources and what are the 

GHG emissions reductions if the P2G process is applied? (Chapters 4 & 6) 

- What parameters would affect the production costs and environmental 

impacts of renewable methane? (Chapters 4, 5 & 6) 

 Conclusions 

The following sections summarise the conclusions of this thesis corresponding to 

these research questions. 
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 Sustainable of P2G and other large-scale storage technologies (Chapter 3) 

The development of any renewable energy requires balance between economic 

development, environmental protection, and social equity. Due to the involvement 

of many criteria and indicators, the sustainability assessment is complex. The 

sustainability of P2G, CAES and PHES were evaluated by exploring and comparing 

seven criteria. The results of a single criterion highlighted that the investment cost 

and the efficiency of PHES are better than that of CAES and P2G. Nevertheless, when 

taken into account of the ability to change the energy vector; the storage capacity 

and the duration of storage; the flexibility of the geographical situation and CO2eq 

emission, P2G was assessed as the most sustainable. 

 Combined production cost of renewable gas (Chapters 4 & 5) 

Chapter 4 and chapter 5 both calculated the production costs of renewable methane, 

but each had a different approach. Chapter 4 used secondary data as inputs for an 

Excel spreadsheet to calculate the production costs of renewable methane from a 

range of feedstocks such as: grass, slurry, SHW, OFMSW, and seaweed. Chapter 5 

focused on the production cost of grass silage and slurry at an 80:20 VS mix via a 

simulation software – Superpro Designer. Moreover, the configuration of the process 

in chapter 4 was generic in nature; the chapter did not focus on any specific 

configuration. However, chapter 5 focused on specific processes in detail: biogas + 

upgrading by amine; biogas+ upgrading by amine and methanation; and biogas + 

upgrading by methanation. In conclusion, the production costs of renewable gas from 

AD&P2G processes are higher than that of renewable gas from the biogas plant with 
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standard upgrading processes (an amine scrubber in this instance). The cost of 

renewable methane varied from €1 to €2.5 per m3 renewable methane depending 

on what type of feedstocks. It was assumed that the electricity to produce hydrogen 

was obtained on the wholesale market with a bid price of €0.05/kWh. Among those 

feedstocks, renewable methane from grass and slurry (at an 80:20 VS mix) had the 

lowest production costs, in the range €1 to €1.09/m3 renewable methane.  

Renewable methane from OFMSW had a production cost of €1.4/m3 renewable 

methane; this benefited from a gate fee and avoidance of costs in feedstock 

production. The renewable methane produced from seaweed feedstocks accounted 

for the highest production cost: €2.5/ m3 renewable methane. The seaweed 

cultivation and costs were based on conservative values utilising current available 

technologies. The production cost could be lower if advanced cultivation and biogas 

production technologies are available in the future. The production cost of renewable 

methane from slurry feedstock in mono-digestion was also high, €2.4/ m3 renewable 

methane. However, if slurry is utilised as feedstock for biogas, it is beneficial in GHG 

emission reduction due to the avoidance of CH4 emission storing raw slurry in open 

slurry tanks. The minimum selling price of renewable methane from grass and slurry 

in a biogas plant upgraded by amine was also assessed in chapter 5 as €0.76 per m3 

renewable methane. 
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 Potential capacity of CO2 from biogas sources and GHG emissions reductions 

in P2G process (Chapters 4 & 6) 

Chapter 4 contains information on potential capacity of CO2 from biogas sources. 

Previous literature did not include a resource of seaweed and as such Chapter 4 is the 

first to undertake an assessment of the potential capacity of CO2 from biogas plant 

fed by seaweed. Other feedstocks such as grass, slurry, SHW, and OFMSW were 

adapted from previous studies. The potential capacity of CO2 from biogas in Ireland 

would be 430.6 Mm3 per year if all potential feedstocks were used for an AD plant. 

This would allow storage of 7,654 GWhe of electricity per year.  This chapter also 

evaluated that 97 tonnes CO2 were utilised for 1 GWh of electricity used to produce 

hydrogen for upgrading biogas in a P2G system.  

Similar to the calculation of the production costs, this thesis also applied two 

methods to evaluate GHG emissions. In chapter 4, the data from previous studies 

were used to calculate the GHG emission via an Excel model of all feedstocks: grass, 

slurry, SHW, OFMSW and seaweed. However, the limitation of this method is each 

reference had a different way to calculate GHG emissions with different boundaries, 

thus, the reference data were inhomogeneous. 

In the light of this, chapter 6 applied a professional life cycle analysis software – GaBi- 

to evaluate the GHG emissions of renewable methane from a co-digestion feedstock: 

grass silage and slurry. The GWP of renewable methane from biogas with an amine 

upgrading unit was much lower than that from biological methanation upgrading. In 

a conservative base case the carbon intensity was 34 gCO2eq (amine upgrading) 
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compared to 120 g CO2eq (biological methanation upgrading) per MJ with 41% of the 

electricity sourced from renewables. 

 Effects of parameters on the production costs and environmental impacts of 

renewable methane (Chapters 4, 5 & 6) 

 Renewable methane production costs: 

The cost of electricity to produce hydrogen had a significant effect on the production 

cost of renewable methane. This was highlighted in chapter 5. Changing the price of 

electricity by €0.05/kWeh to produce H2 resulted in a change of renewable methane 

production cost of €0.41/mn3 CH4. Meanwhile, the feedstock cost did not have as big 

an influence on the cost of renewable methane in the AD&P2G combined system; 

however, the feedstock cost had a bigger effect on the cost of biomethane from a 

biogas with traditional upgrading only. Varying the price of grass silage by €13.5 per 

tonne, the renewable methane from AD&P2G fluctuated by €0.05/mn
3 CH4 and from 

AD plant varied by €0.1/mn
3 CH4. This is due to the fact that approximately half of the 

produced methane in the AD&P2G system is from electricity.  

 Environmental impacts of renewable methane: 

The GHG emission of renewable methane from AD&P2G was strongly affected by the 

GHG emission of electricity. The GWP of renewable methane dropped 2.5 fold when 

the renewable sources in producing electricity increasing from 41% to 75.5%. The 

GHG emission of biomethane from a biogas plant with amine upgrading was 

influenced by the ratio of slurry in co-digestion with grass, fugitive methane emission, 

carbon sequestration into grassland soil and the decarbonisation level of the 
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electricity mix. The percentage of GHG savings of renewable methane compared to 

fossil fuel increasing from 64% to 80% when slurry in the mix with grass increased 

from 50 to 74% (wet weight). 

 Recommendations and future works 

The two parameters which have the most significant impacts on renewable methane 

from AD&P2G in term of cost and sustainability are the decarbonisation level of the 

electricity grid and the price of electricity. If an amine scrubber is used then the most 

important variables are feedstock ratio of grass and slurry, methane fugitive emission 

at the biogas facility, feedstock price and the carbonisation level of the electricity.  

Based on the research in this thesis, the author proposed: 

1. In order to produce renewable methane from AD&P2G at a comparable 

production cost with the cost of producing biomethane from a biogas plant 

with present upgrading technologies (such as amine scrubbing), the electricity 

to produce H2 should be at least less than €0.05/kWeh. 

2. The decarbonisation level of electricity used to produce H2 has a significant 

impact on the GWP of the produced renewable methane. In order to meet 

the sustainability criteria of the RED a minimum level of 70% GHG savings, the 

electricity used in the AD&P2G should be at least 85% decarbonised. 

3. Increasing proportions of slurry in the mix of grass silage and slurry reduces 

the GHG emission but also lowers the biomethane produced. A higher grass 

silage percentage in the mix results in higher levels of biomethane produced 

but also higher GHG emissions. This research recommends a ratio of 60:40 
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grass and slurry (on a VS basis). At these levels the renewable methane can 

satisfy the requirement of the RED, 70% GHG savings compared to the fossil 

fuel comparator and still produce a significant quantity of renewable gas per 

t of feedstock. 

4. The fugitive methane emission at the biogas facility plays an important role in 

reducing GHG emissions of the overall system. Thus, for any biogas plant, it is 

essential to limit the emission of fugitive methane by using closed slurry and 

digestate storage and applying frequent leakage control surveys and gas 

management. 

5. Carbon sequestration in grassland is a factor that helps renewable methane 

meet the sustainability requirement. A conservative value of 0.6t carbon 

sequestration in the soil was used however, that calculation and process 

needs to be accepted by the IPCC.  

The future works in assessing P2G as an upgrading unit of a biogas facility needs to 

be absolutely sure of the decarbonisation of the electricity used. The carbonisation 

level of the electricity may be divided by the efficiency of hydrogen production 

expressed as a decimal to assess the carbon foot print of the hydrogen. For example, 

if electricity is sourced at 70% green and converted to hydrogen at 75% efficiency 

than the hydrogen will be 60% green. Prior to decarbonisation of the national 

electricity grid an arrangement to purchase green electricity (such as a direct 

connection to an adjacent wind or PV farm) to produce H2 may be seen as a way to 

ensure the sustainability of P2G. Nevertheless, the intermittency of renewable 
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electricity will reduce the working capacity of the electrolyser plant leading to under 

utilisation of working capital and higher production costs of H2. A full techno-

economic assessment when electricity from wind is used to produce H2 could be 

conducted. 

Each feedstock has its own GWP emissions. It is plausible that such an AD&P2G 

system fed by another feedstock might require higher or lower percentage of 

electricity from renewable sources. Therefore, the LCAs of various feedstocks for 

AD&P2G plant need to be carried out to find out which type of feedstock will make 

the system sustainable. 

  



 

 

174 

 

References 

"Steam viscosity." http://www.engineeringtoolbox.com/steam-viscosity-d_770.html. 

Abdel-Hadi, MA. 2009. "Determination of methane content by measurements of flame 
temperature and voltage from biogas burner."  Journal of Agricultural Engineering 
26:498-513. 

Abu-Zahra, Mohammad RM, Léon HJ Schneiders, John PM Niederer, Paul HM Feron, and 
Geert F Versteeg. 2007. "CO2 capture from power plants: Part I. A parametric study 
of the technical performance based on monoethanolamine."  International Journal 
of Greenhouse gas control 1 (1):37-46. 

Adams, JMM, TA Toop, Iain S Donnison, and Joseph Anthony Gallagher. 2011. "Seasonal 
variation in Laminaria digitata and its impact on biochemical conversion routes to 
biofuels."  Bioresource technology 102 (21):9976-9984. 

Adams, R, and D Home. 2010. "Compressed Natural Gas (CNG) Transit Bus Experience 
Survey." Golden: National Renewable Energy Laboratory. 
http://ngvamerica.org/pdfs/CNG%20Transit%20Bus%20Survey.pdf. 

Agostini, Alessandro, Ferdinando Battini, Jacopo Giuntoli, Vincenzo Tabaglio, Monica Padella, 
David Baxter, Luisa Marelli, and Stefano Amaducci. 2015. "Environmentally 
sustainable biogas? The key role of manure co-digestion with energy crops."  
Energies 8 (6):5234-5265. 

Ahern, Eoin P, Paul Deane, Tobias Persson, Brian Ó Gallachóir, and Jerry D Murphy. 2015. "A 
perspective on the potential role of renewable gas in a smart energy island system."  
Renewable Energy 78:648-656. 

Akinyele, D. O., and R. K. Rayudu. 2014. "Review of energy storage technologies for 
sustainable power networks."  Sustainable Energy Technologies and Assessments 8 
(0):74-91. doi: http://dx.doi.org/10.1016/j.seta.2014.07.004. 

Allen, Eoin, David M. Wall, Christiane Herrmann, and Jerry D. Murphy. 2014. "Investigation 
of the optimal percentage of green seaweed that may be co-digested with dairy 
slurry to produce gaseous biofuel."  Bioresource Technology 170:436-444. doi: 
http://dx.doi.org/10.1016/j.biortech.2014.08.005. 

Alvarado-Morales, Merlin, Alessio Boldrin, Dimitar B. Karakashev, Susan L. Holdt, Irini 
Angelidaki, and Thomas Astrup. 2013. "Life cycle assessment of biofuel production 
from brown seaweed in Nordic conditions."  Bioresource Technology 129 (0):92-99. 
doi: http://dx.doi.org/10.1016/j.biortech.2012.11.029. 

Amigun, B, and H Von Blottnitz. 2009. "Capital cost prediction for biogas installations in 
Africa: Lang factor approach."  Environmental progress & sustainable energy 28 
(1):134-142. 

Amundsen, Trine Gusfre. 2008. "CO2 absorption in alkaline solution." 

Arizona Research Institute for Solar Energy. 2010. Study of Compressed Air Energy Storage 
with Grid and Photovoltaic Energy Generation. 

Bacenetti, Jacopo, Alessandra Fusi, Marco Negri, Riccardo Guidetti, and Marco Fiala. 2014. 
"Environmental assessment of two different crop systems in terms of biomethane 

http://www.engineeringtoolbox.com/steam-viscosity-d_770.html
http://ngvamerica.org/pdfs/CNG%20Transit%20Bus%20Survey.pdf
http://dx.doi.org/10.1016/j.seta.2014.07.004
http://dx.doi.org/10.1016/j.biortech.2014.08.005
http://dx.doi.org/10.1016/j.biortech.2012.11.029


 

 

175 

 

potential production."  Science of The Total Environment 466–467 (0):1066-1077. 
doi: http://dx.doi.org/10.1016/j.scitotenv.2013.07.109. 

Bailera, Manuel, Pilar Lisbona, Luis M Romeo, and Sergio Espatolero. 2017. "Power to Gas 
projects review: Lab, pilot and demo plants for storing renewable energy and CO2."  
Renewable and Sustainable Energy Reviews 69:292-312. 

Ball, M, A Basile, and TN Veziroğlu. 2015. Compendium of hydrogen energy: volume 4, 
Hydrogen use, safety and the hydrogen economy. Oxford: Woodhead Publishing. 

Balussou, David, Tobias Heffels, Russell McKenna, Dominik Möst, and Wolf Fichtner. 2014. 
"An evaluation of optimal biogas plant configurations in Germany."  Waste and 
Biomass Valorization 5 (5):743-758. 

Barbir, Frano. 2005. "PEM electrolysis for production of hydrogen from renewable energy 
sources."  Solar Energy 78 (5):661-669. doi: 
https://doi.org/10.1016/j.solener.2004.09.003. 

Barin, Alexandre, Luciane N Canha, Alzenira R Abaide, Karine F Magnago, Breno Wottrich, 
and Ricardo Q Machado. 2011. "Multiple criteria analysis for energy storage 
selection."  Energy and Power Engineering 3 (04):557. 

Bauer, Fredric, Christian Hulteberg, Tobias Persson, and Daniel Tamm. 2013. "Biogas 
upgrading-Review of commercial technologies."  SGC Rapport. 

Bauer, Fredric, Tobias Persson, Christian Hulteberg, and Daniel Tamm. 2013. "Biogas 
upgrading–technology overview, comparison and perspectives for the future."  
Biofuels, Bioproducts and Biorefining 7 (5):499-511. 

Beckwith. 1983. "Review of Environmental Studies and Issues on Compressed Air Energy 
Storage." http://www.osti.gov/scitech/servlets/purl/6390927. 

Belton, Valerie, and Jacques Pictet. 1997. "A framework for group decision using a MCDA 
model: sharing, aggregating or comparing individual information?"  Journal of 
decision systems 6 (3):283-303. 

Benjaminsson, Gunnar, Johan Benjaminsson, and Robert Boogh Rudberg. 2013. "Power-to-
Gas–A technical review." Tech. rep., Svenskt Gastekniskt CenterAB (SGC). 
http://www.sgc.se/ckfinder/userfiles/files/SGC284_eng.pdf. 

Bensmann, A., R. Hanke-Rauschenbach, R. Heyer, F. Kohrs, D. Benndorf, U. Reichl, and K. 
Sundmacher. 2014. "Biological methanation of hydrogen within biogas plants: A 
model-based feasibility study."  Applied Energy 134:413-425. doi: 
http://dx.doi.org/10.1016/j.apenergy.2014.08.047. 

Bernstein, Brock B. 2015. "Evaluating alternatives for decommissioning California's offshore 
oil and gas platforms."  Integrated environmental assessment and management. 

Boer, de HS. 2012. "The application of different types of large scale energy storage systems 
in the Dutch electricity system at different wind power penetration levels. An 
environmental, economical and energetic analysis on power-to-gas, compressed air 
energy storage and pumped hydro storage." Master thesis at University of Groningen 
& DNV KEMA. 

Brown, Robert C, and Tristan R Brown. 2013. Biorenewable resources: engineering new 
products from agriculture: John Wiley & Sons. 

http://dx.doi.org/10.1016/j.scitotenv.2013.07.109
https://doi.org/10.1016/j.solener.2004.09.003
http://www.osti.gov/scitech/servlets/purl/6390927
http://www.sgc.se/ckfinder/userfiles/files/SGC284_eng.pdf
http://dx.doi.org/10.1016/j.apenergy.2014.08.047


 

 

176 

 

Browne, James D., Eoin Allen, and Jerry D. Murphy. 2014. "Assessing the variability in 
biomethane production from the organic fraction of municipal solid waste in batch 
and continuous operation."  Applied Energy 128 (0):307-314. doi: 
http://dx.doi.org/10.1016/j.apenergy.2014.04.097. 

Browne, James D., and Jerry D. Murphy. 2013. "Assessment of the resource associated with 
biomethane from food waste."  Applied Energy 104 (0):170-177. doi: 
http://dx.doi.org/10.1016/j.apenergy.2012.11.017. 

Browne, James D., and Jerry D. Murphy. 2014. "The impact of increasing organic loading in 
two phase digestion of food waste."  Renewable Energy 71 (0):69-76. doi: 
http://dx.doi.org/10.1016/j.renene.2014.05.026. 

Browne, James, Abdul-Sattar Nizami, T. Thamsiriroj, and Jerry D. Murphy. 2011. "Assessing 
the cost of biofuel production with increasing penetration of the transport fuel 
market: A case study of gaseous biomethane in Ireland."  Renewable and Sustainable 
Energy Reviews 15 (9):4537-4547. doi: http://dx.doi.org/10.1016/j.rser.2011.07.098. 

Buchholz, OS, AGJ van der Ham, R Veneman, DWF Brilman, and SRA Kersten. 2014. "Power-
to-Gas: Storing Surplus Electrical Energy. A Design Study."  Energy procedia 63:7993-
8009. 

Budzianowski, Wojciech M, and Dominika A Budzianowska. 2015. "Economic analysis of 
biomethane and bioelectricity generation from biogas using different support 
schemes and plant configurations."  Energy 88:658-666. 

Bullough, Chris, Christoph Gatzen, Christoph Jakiel, Martin Koller, Andreas Nowi, and Stefan 
Zunft. 2004. "Advanced adiabatic compressed air energy storage for the integration 
of wind energy." Proceedings of the European Wind Energy Conference, EWEC. 

Buratti, C, M Barbanera, and F Fantozzi. 2013. "Assessment of GHG emissions of biomethane 
from energy cereal crops in Umbria, Italy."  Applied energy 108:128-136. 

Burkhardt, Marko, Tobias Koschack, and Günter Busch. 2015. "Biocatalytic methanation of 
hydrogen and carbon dioxide in an anaerobic three-phase system."  Bioresource 
technology 178:330-333. 

Burton, Tom, Henry Lyons, Yannick Lerat, Michele Stanley, and Michael Bo Rasmussen. 2009. 
"A review of the potential of marine algae as a source of biofuel in Ireland." Dublin: 
Sustainable Energy Ireland-SEI. 
http://www.seai.ie/Publications/Renewables_Publications_/Bioenergy/Algaereport
.pdf. 

Buswell, A.M., and W.D. Hatfield. 1936. "Anaerobic fermentations.". 
http://www.isws.illinois.edu/pubdoc/B/ISWSB-32.pdf. 

Carmo, Marcelo, David L. Fritz, Jürgen Mergel, and Detlef Stolten. 2013. "A comprehensive 
review on PEM water electrolysis."  International Journal of Hydrogen Energy 38 
(12):4901-4934. doi: https://doi.org/10.1016/j.ijhydene.2013.01.151. 

Central Statistics Office. 2016. "Environmental Indicators Ireland 2016 - Greenhouse Gases 
and Climate Change." http://www.cso.ie/en/releasesandpublications/ep/p-
eii/eii2016/ggcc/. 

Chakraborty, Subrata, and Chung-Hsing Yeh. 2007. "A simulation based comparative study of 
normalization procedures in multiattribute decision making." Proceedings of the 6th 

http://dx.doi.org/10.1016/j.apenergy.2014.04.097
http://dx.doi.org/10.1016/j.apenergy.2012.11.017
http://dx.doi.org/10.1016/j.renene.2014.05.026
http://dx.doi.org/10.1016/j.rser.2011.07.098
http://www.seai.ie/Publications/Renewables_Publications_/Bioenergy/Algaereport.pdf
http://www.seai.ie/Publications/Renewables_Publications_/Bioenergy/Algaereport.pdf
http://www.isws.illinois.edu/pubdoc/B/ISWSB-32.pdf
https://doi.org/10.1016/j.ijhydene.2013.01.151
http://www.cso.ie/en/releasesandpublications/ep/p-eii/eii2016/ggcc/
http://www.cso.ie/en/releasesandpublications/ep/p-eii/eii2016/ggcc/


 

 

177 

 

Conference on 6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering 
and Data Bases. 

Chen, Haisheng, Thang Ngoc Cong, Wei Yang, Chunqing Tan, Yongliang Li, and Yulong Ding. 
2009. "Progress in electrical energy storage system: A critical review."  Progress in 
Natural Science 19 (3):291-312. 

Cheng H. 1993. Pumped Storage: New York N.Y.: McGraw Hill. 

Collet, Pierre, Eglantine Flottes, Alain Favre, Ludovic Raynal, Hélène Pierre, Sandra Capela, 
and Carlos Peregrina. 2017. "Techno-economic and Life Cycle Assessment of 
methane production via biogas upgrading and power to gas technology."  Applied 
Energy 192:282-295. 

Connolly, David. 2007. "An investigation into the energy storage technologies available, for 
the integration of alternative generation techniques." 
http://www.iwea.com/technologicaldevelopments. 

Cottrell B. 2014. "Is CNG the future for Ireland’s freight and fleet vehicles?". 
http://www.engineersjournal.ie/cng-future-irelands-freight-fleet-vehicles/. 

Czyrnek-Delêtre, Magdalena M, Stefania Rocca, Alessandro Agostini, Jacopo Giuntoli, and 
Jerry D Murphy. 2017. "Life cycle assessment of seaweed biomethane, generated 
from seaweed sourced from integrated multi-trophic aquaculture in temperate 
oceanic climates."  Applied Energy 196:34-50. 

Dave, Ashok, Ye Huang, Sina Rezvani, David McIlveen-Wright, Marcio Novaes, and Neil 
Hewitt. 2013. "Techno-economic assessment of biofuel development by anaerobic 
digestion of European marine cold-water seaweeds."  Bioresource Technology 
135:120-127. doi: http://dx.doi.org/10.1016/j.biortech.2013.01.005. 

Davidson, Eric A., and Ilse L. Ackerman. 1993. "Changes in Soil Carbon Inventories Following 
Cultivation of Previously Untilled Soils."  Biogeochemistry 20 (3):161-193. 

De Klein, Cecile, Rafael SA Novoa, Stephen Ogle, Keith A Smith, Philippe Rochette, Thomas C 
Wirth, Brian G McConkey, Arvin Mosier, Kristin Rypdal, and Margaret Walsh. 2006. 
"N2O emissions from managed soils, and CO2 emissions from lime and urea 
application."  IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by 
the National Greenhouse Gas Inventories Programme 4:1-54. 

Deane, J Paul, BP Ó Gallachóir, and EJ McKeogh. 2010. "Techno-economic review of existing 
and new pumped hydro energy storage plant."  Renewable and Sustainable Energy 
Reviews 14 (4):1293-1302. 

Denholm, Paul, and Maureen Hand. 2011. "Grid flexibility and storage required to achieve 
very high penetration of variable renewable electricity."  Energy Policy 39 (3):1817-
1830. doi: https://doi.org/10.1016/j.enpol.2011.01.019. 

Denholm, Paul, and Gerald L Kulcinski. 2004. "Life cycle energy requirements and greenhouse 
gas emissions from large scale energy storage systems."  Energy Conversion and 
Management 45 (13):2153-2172. 

Department of Jobs, Enterprise and Innovation. 2013. Priority Area J: Marine renewable 
energy action plan. 

Díaz, I., C. Pérez, N. Alfaro, and F. Fdz-Polanco. 2015. "A feasibility study on the bioconversion 
of CO2 and H2 to biomethane by gas sparging through polymeric membranes."  

http://www.iwea.com/technologicaldevelopments
http://www.engineersjournal.ie/cng-future-irelands-freight-fleet-vehicles/
http://dx.doi.org/10.1016/j.biortech.2013.01.005
https://doi.org/10.1016/j.enpol.2011.01.019


 

 

178 

 

Bioresource Technology 185:246-253. doi: 
http://dx.doi.org/10.1016/j.biortech.2015.02.114. 

DKM economic consultant. 2011. "CNG as a Transport Fuel - Economic Benefits." 
http://www.ngvireland.com/download/ngv2011/annetteHughesJohnLawlor.pdf. 

Dorini, Gianluca, Zoran Kapelan, and Adisa Azapagic. 2011. "Managing uncertainty in 
multiple-criteria decision making related to sustainability assessment."  Clean 
Technologies and Environmental Policy 13 (1):133-139. 

Drexhage, J, and D Murphy. 2010. "Sustainable development: from Brundtland to Rio 2012. 
Background paper prepared for consideration by the High Level Panel on Global 
Sustainability at its first meeting 19 September 2010." 

EC. 2017. Directive of the European parliament and of the council on the promotion of the 
use of energy from renewable sources (recast). edited by European Commission. 

EirGrid and SONI. 2014. "Annual Wind Constraint and Curtailment Report 2013." 
http://www.eirgrid.com/media/Annual_Wind_Constraint_and_Curtailment_Report
_2013.pdf. 

Electric Power Research Institute. 2011. "Quantifying the Value of Hydropower in the Electric 
Grid: Plant Cost Elements." 
http://www.epri.com/abstracts/pages/productabstract.aspx?ProductID=00000000
0001023140. 

Elmegaard, Brian, and Wiebke Brix. 2011. "Efficiency of compressed air energy storage." 24th 
International Conference on Efficiency, Cost, Optimization, Simulation and 
Environmental Impact of Energy Systems. 

Emyra Ezzaty, Masiren, Harun Noorlisa, Ibrahim WHW, and Adam Fatmawati. 2016. "Effect 
of Temperature on Diffusivity of Monoethanolamine (MEA) on Absorption Process 
for CO2 Capture."  International Journal of Engineering Technology And Sciences 
(IJETS) 5 (1):43-51. 

Environment Protection Agency. 2012. "Ireland’s Environment: An Assessment." 
https://www.epa.ie/pubs/reports/indicators/00061_EPA_SoE_2012.pdf. 

Environment Protection Agency. 2017. "Ireland's final greenhouse gas emissions in 2015." 
http://www.epa.ie/pubs/reports/air/airemissions/ghgemissions/GHG%201990-
2015%20April%202017.pdf. 

EPA, US. "Understanding Global Warming Potentials." 
https://www.epa.gov/ghgemissions/understanding-global-warming-potentials. 

EU-JRC. 2010. "Handbook–General Guide for Life Cycle Assessment–Detailed Guidance."  
Publication Office of the European Union, Luxembourg. 

Evans, Annette, Vladimir Strezov, and Tim J. Evans. 2012. "Assessment of utility energy 
storage options for increased renewable energy penetration."  Renewable and 
Sustainable Energy Reviews 16 (6):4141-4147. doi: 
http://dx.doi.org/10.1016/j.rser.2012.03.048. 

Faias, Sérgio, Patrícia Santos, Jorge Sousa, and Rui Castro. 2008. "An overview on short and 
long-term response energy storage devices for power systems applications."  system 
5:6. 

http://dx.doi.org/10.1016/j.biortech.2015.02.114
http://www.ngvireland.com/download/ngv2011/annetteHughesJohnLawlor.pdf
http://www.eirgrid.com/media/Annual_Wind_Constraint_and_Curtailment_Report_2013.pdf
http://www.eirgrid.com/media/Annual_Wind_Constraint_and_Curtailment_Report_2013.pdf
http://www.epri.com/abstracts/pages/productabstract.aspx?ProductID=000000000001023140
http://www.epri.com/abstracts/pages/productabstract.aspx?ProductID=000000000001023140
https://www.epa.ie/pubs/reports/indicators/00061_EPA_SoE_2012.pdf
http://www.epa.ie/pubs/reports/air/airemissions/ghgemissions/GHG%201990-2015%20April%202017.pdf
http://www.epa.ie/pubs/reports/air/airemissions/ghgemissions/GHG%201990-2015%20April%202017.pdf
https://www.epa.gov/ghgemissions/understanding-global-warming-potentials
http://dx.doi.org/10.1016/j.rser.2012.03.048


 

 

179 

 

Fischer, Krieg &. 2010. "Cost Assessment of Biogas Plant Components Tupandi." 
https://energypedia.info/wiki/Cost_Assessment_of_Biogas_Plant_Components. 

Gahleitner, Gerda. 2013. "Hydrogen from renewable electricity: An international review of 
power-to-gas pilot plants for stationary applications."  International Journal of 
Hydrogen Energy 38 (5):2039-2061. 

Gao, Jiajian, Yingli Wang, Yuan Ping, Dacheng Hu, Guangwen Xu, Fangna Gu, and Fabing Su. 
2012. "A thermodynamic analysis of methanation reactions of carbon oxides for the 
production of synthetic natural gas."  RSC Advances 2 (6):2358-2368. 

Gawel, Richard A. 2012. "Design simulations for a biogas purification process using aqueous 
amine solutions."  Chemical Papers 66 (11):1010-1018. 

Genovese, Joe, Knut Harg, Mark Paster, and John Turner. 2009. "Current (2009) state-of-the-
art hydrogen production cost estimate using water electrolysis: independent 
review."  National Renewable Energy Laboratory. 

Giuntoli, J, A Agostini, R Edwards, and L Marelli. 2014. "Solid and gaseous bioenergy 
pathways: input values and GHG emissions."  Report EUR 26696. 

Giuntoli, J, A Agostini, R Edwards, and L Marelli. 2015. "Solid and gaseous bioenergy 
pathways: input values and GHG emissions."  Report EUR 26696. 

González, A., E. McKeogh, and B. Ó Gallachóir. 2004. "The role of hydrogen in high wind 
energy penetration electricity systems: The Irish case."  Renewable Energy 29 
(4):471-489. doi: http://dx.doi.org/10.1016/j.renene.2003.07.006. 

Gonzalez, Adolfo, BÓ Gallachóir, Eamon McKeogh, and Kevin Lynch. 2004. "Study of 
electricity storage technologies and their potential to address wind energy 
intermittency in Ireland." 
https://www.seai.ie/uploadedfiles/FundedProgrammes/REHC03001FinalReport.pdf
. 

Götz, Manuel, Amy McDaniel Koch, and Frank Graf. "State of the Art and Perspectives of CO2 
Methanation Process Concepts for Power-to-Gas Applications." 

Götz, Manuel, Jonathan Lefebvre, Friedemann Mörs, Amy McDaniel Koch, Frank Graf, 
Siegfried Bajohr, Rainer Reimert, and Thomas Kolb. 2016. "Renewable Power-to-Gas: 
A technological and economic review."  Renewable Energy 85:1371-1390. doi: 
http://dx.doi.org/10.1016/j.renene.2015.07.066. 

Graf, Frank, and Uwe Klaas. 2009. "State of biogas injection to the gas grid in Germany." 24th 
World Gas Conf. 

Graf, Frank, Alexander Krajete, and Ulrich Schmack. 2014. "Techno-ökonomische Studie zur 
biologischen Methanisierung bei Power-to-Gas-Konzepten."  DVGW Deutscher 
Verein des Gas-und Wasserfaches eV, Bonn Google Scholar. 

Grond, Lukas, Schulze Paula, and Holstei Johan. 2013. "System analyses Power to Gas: A 
technology review, 2013.". 
http://issuu.com/ggnl/docs/systems_analyses_power_to_gas_-_tec. 

Guandalini, G., M. Robinius, T. Grube, S. Campanari, and D. Stolten. 2017. "Long-term power-
to-gas potential from wind and solar power: A country analysis for Italy."  
International Journal of Hydrogen Energy 42 (19):13389-13406. doi: 
https://doi.org/10.1016/j.ijhydene.2017.03.081. 

https://energypedia.info/wiki/Cost_Assessment_of_Biogas_Plant_Components
http://dx.doi.org/10.1016/j.renene.2003.07.006
https://www.seai.ie/uploadedfiles/FundedProgrammes/REHC03001FinalReport.pdf
https://www.seai.ie/uploadedfiles/FundedProgrammes/REHC03001FinalReport.pdf
http://dx.doi.org/10.1016/j.renene.2015.07.066
http://issuu.com/ggnl/docs/systems_analyses_power_to_gas_-_tec
https://doi.org/10.1016/j.ijhydene.2017.03.081


 

 

180 

 

Gutierrez, Enrique Chan, Ao Xia, and Jerry D Murphy. 2016. "Can slurry biogas systems be 
cost effective without subsidy in Mexico?"  Renewable Energy 95:22-30. 

Hasan, Nor Shahida, Mohammad Yusri Hassan, Md Shah Majid, and Hasimah Abdul Rahman. 
2013. "Review of storage schemes for wind energy systems."  Renewable and 
Sustainable Energy Reviews 21 (0):237-247. doi: 
http://dx.doi.org/10.1016/j.rser.2012.12.028. 

Herrmann, Christiane, Jamie FitzGerald, Richard O’Shea, Ao Xia, Pádraig O’Kiely, and Jerry D 
Murphy. 2015. "Ensiling of seaweed for a seaweed biofuel industry."  Bioresource 
Technology 196:301-313. 

Hohmeyer, Olav H., and Sönke Bohm. 2015. "Trends toward 100% renewable electricity 
supply in Germany and Europe: a paradigm shift in energy policies."  Wiley 
Interdisciplinary Reviews: Energy and Environment 4 (1):74-97. doi: 
10.1002/wene.128. 

Holladay, Jamie D, Jianli Hu, David L King, and Yong Wang. 2009. "An overview of hydrogen 
production technologies."  Catalysis today 139 (4):244-260. 

Hoyer, Kerstin. 2016. "Biogas upgrading – a technical review." 
http://www.sgc.se/ckfinder/userfiles/files/BAPF2016Hoyer+Energiforsk.pdf. 

Huang, Yeu-Shiang, Wei-Chen Chang, Wei-Hao Li, and Zu-Liang Lin. 2013. "Aggregation of 
utility-based individual preferences for group decision-making."  European Journal of 
Operational Research 229 (2):462-469. 

Huertas, JI, N Giraldo, and S Izquierdo. 2011. Removal of H2S and CO2 from Biogas by Amine 
Absorption: INTECH Open Access Publisher. 

Ibrahim, Hussein, Adrian Ilinca, and Jean Perron. 2008. "Energy storage systems—
characteristics and comparisons."  Renewable and sustainable energy reviews 12 
(5):1221-1250. 

IEA Bioenergy Task 37. 2016. "Upgrading plant list." http://task37.ieabioenergy.com/plant-
list.html. 

Intergovernmental Panel on Climate Change. 2015. Climate change 2014: mitigation of 
climate change. Vol. 3: Cambridge University Press. 

International Organization for Standardization. 1997. Environmental Management: Life Cycle 
Assessment: Principles and Framework. Vol. 14040: ISO. 

Irish academy of Engineering, policy advisor. 2013. "The future of oil and gas, 2013." 
http://www.iae.ie/publications/publication/policy-advisory-the-future-of-oil-and-
gas-in-irela/document/. 

Irish Environmental Protection Agency. "EPA projections show that Ireland faces 
considerable challenges to becoming a low-carbon economy." 
http://www.epa.ie/newsandevents/news/previous/2014/name,54166,en.html#.V
Wxkz0ZSI8J. 

James, Brian, Whitney Colella, Jennie Moton, G Saur, and T Ramsden. 2013. PEM Electrolysis 
H2A Production Case Study Documentation. National Renewable Energy Laboratory 
(NREL), Golden, CO (United States). 

http://dx.doi.org/10.1016/j.rser.2012.12.028
http://www.sgc.se/ckfinder/userfiles/files/BAPF2016Hoyer+Energiforsk.pdf
http://task37.ieabioenergy.com/plant-list.html
http://task37.ieabioenergy.com/plant-list.html
http://www.iae.ie/publications/publication/policy-advisory-the-future-of-oil-and-gas-in-irela/document/
http://www.iae.ie/publications/publication/policy-advisory-the-future-of-oil-and-gas-in-irela/document/
http://www.epa.ie/newsandevents/news/previous/2014/name,54166,en.html#.VWxkz0ZSI8J
http://www.epa.ie/newsandevents/news/previous/2014/name,54166,en.html#.VWxkz0ZSI8J


 

 

181 

 

Jentsch, Mareike, T Trost, and M Sterner. 2011. "Evaluation of power-to-gas as long-term 
storage concept regarding electricity and CO2 sources." 6th International Renewable 
Energy Storage Conference-IRES 2011. 

Johanesson, Tobias. "Implementation of electrofuel production at a biogas plant." 
http://publications.lib.chalmers.se/records/fulltext/238878/238878.pdf. 

Jones, MB, and Alison Donnelly. 2004. "Carbon sequestration in temperate grassland 
ecosystems and the influence of management, climate and elevated CO2."  New 
Phytologist 164 (3):423-439. 

Kabir, Maryam M, Karthik Rajendran, Mohammad J Taherzadeh, and Ilona Sárvári Horváth. 
2015. "Experimental and economical evaluation of bioconversion of forest residues 
to biogas using organosolv pretreatment."  Bioresource technology 178:201-208. 

Kiely, Gerard, Paul Leahy, Ciaran Lewis, Xianli Xu, and Matteo Sottocornola. 2017. "SoilC-
Feasibility of Grassland Soil Carbon Survey." 

Kim, Se-Kwon, and Choul-Gyun Lee. 2015. Marine Bioenergy: Trends and Developments: CRC 
Press. 

Kim, Young-Min, Jang-Hee Lee, Seok-Joon Kim, and Daniel Favrat. 2012. "Potential and 
evolution of compressed air energy storage: energy and exergy analyses."  Entropy 
14 (8):1501-1521. 

Kohl, Arthur L, and Richard Nielsen. 1997. Gas purification: Gulf Professional Publishing. 

Kommune, Solrød. 2014. "Solrød Biogas - conception, project development and realization." 
http://www.solrodbiogas.dk/en/documents.aspx. 

Korres, Nicholas E, Anoop Singh, Abdul‐Sattar Nizami, and Jerry D Murphy. 2010. "Is grass 
biomethane a sustainable transport biofuel?"  Biofuels, Bioproducts and Biorefining 
4 (3):310-325. 

Kousksou, T., P. Bruel, A. Jamil, T. El Rhafiki, and Y. Zeraouli. 2014. "Energy storage: 
Applications and challenges."  Solar Energy Materials and Solar Cells 120, Part A 
(0):59-80. doi: http://dx.doi.org/10.1016/j.solmat.2013.08.015. 

Krayzelova, Lucie, Jan Bartacek, Israel Díaz, David Jeison, Eveline IP Volcke, and Pavel Jenicek. 
2015. "Microaeration for hydrogen sulfide removal during anaerobic treatment: a 
review."  Reviews in Environmental Science and Bio/Technology 14 (4):703-725. 

Krupnick, Alan J. 2010. "Energy, Greenhouse Gas, and Economic Implications of Natural Gas 
Trucks."  Backgrounder. Washington, DC: Resources for the Future. 

Kumar, Deepak, and Ganti S Murthy. 2011. "Impact of pretreatment and downstream 
processing technologies on economics and energy in cellulosic ethanol production."  
Biotechnology for biofuels 4 (1):1. 

Kvist, T. 2011. "Establishment of a biogas grid and interaction between a biogas grid and a 
natural gas grid."  Danish Gas Technology Centre. 

Kwiatkowski, Jason R., Andrew J. McAloon, Frank Taylor, and David B. Johnston. 2006. 
"Modeling the process and costs of fuel ethanol production by the corn dry-grind 
process."  Industrial Crops and Products 23 (3):288-296. doi: 
http://dx.doi.org/10.1016/j.indcrop.2005.08.004. 

http://publications.lib.chalmers.se/records/fulltext/238878/238878.pdf
http://www.solrodbiogas.dk/en/documents.aspx
http://dx.doi.org/10.1016/j.solmat.2013.08.015
http://dx.doi.org/10.1016/j.indcrop.2005.08.004


 

 

182 

 

Lecker, Bernhard, Lukas Illi, Andreas Lemmer, and Hans Oechsner. 2017. "Biological hydrogen 
methanation–A review."  Bioresource technology 245:1220-1228. 

Lehner, Markus, Robert Tichler, Horst Steinmüller, and Markus Koppe. 2014. Power-to-Gas: 
Technology and Business Models: Springer. 

Li, Kangkang, Ashleigh Cousins, Hai Yu, Paul Feron, Moses Tade, Weiliang Luo, and Jian Chen. 
2016. "Systematic study of aqueous monoethanolamine‐based CO2 capture process: 
model development and process improvement."  Energy Science & Engineering 4 
(1):23-39. 

Liebetrau, Jan, Torsten Reinelt, Alessandro Agostini, Bernd Linke, and Jerry D.' Murphy. 2017. 
"Methane emissions from biogas plants: Methods for measurement, results and 
effect on greenhouse gas balance of electricity produced." 
http://www.ieabioenergy.com/wp-content/uploads/2018/01/Methane-
Emission_web_end_small.pdf. 

Lukehurst, Clare T, Peter Frost, and Teodorita Al Seadi. 2010. "Utilisation of digestate from 
biogas plants as biofertiliser."  IEA bioenergy:1-36. 

Lund, Henrik, and Georges Salgi. 2009. "The role of compressed air energy storage (CAES) in 
future sustainable energy systems."  Energy Conversion and Management 50 
(5):1172-1179. doi: http://dx.doi.org/10.1016/j.enconman.2009.01.032. 

Luo, Gang, and Irini Angelidaki. 2012. "Integrated biogas upgrading and hydrogen utilization 
in an anaerobic reactor containing enriched hydrogenotrophic methanogenic 
culture."  Biotechnology and bioengineering 109 (11):2729-2736. 

Luo, Xing, Jihong Wang, Mark Dooner, and Jonathan Clarke. 2015. "Overview of current 
development in electrical energy storage technologies and the application potential 
in power system operation."  Applied Energy 137 (0):511-536. doi: 
http://dx.doi.org/10.1016/j.apenergy.2014.09.081. 

Ma'mun, Sholeh, Roger Nilsen, Hallvard F Svendsen, and Olav Juliussen. 2005. "Solubility of 
carbon dioxide in 30 mass% monoethanolamine and 50 mass% 
methyldiethanolamine solutions."  Journal of Chemical & Engineering Data 50 
(2):630-634. 

Ma, Tao, Hongxing Yang, and Lin Lu. 2014. "Feasibility study and economic analysis of 
pumped hydro storage and battery storage for a renewable energy powered island."  
Energy Conversion and Management 79:387-397. doi: 
http://dx.doi.org/10.1016/j.enconman.2013.12.047. 

Marchetti, J. M., V. U. Miguel, and A. F. Errazu. 2008. "Techno-economic study of different 
alternatives for biodiesel production."  Fuel Processing Technology 89 (8):740-748. 
doi: http://dx.doi.org/10.1016/j.fuproc.2008.01.007. 

Marshall, A, Børre Børresen, Georg Hagen, Mikhail Tsypkin, and Reidar Tunold. 2007. 
"Hydrogen production by advanced proton exchange membrane (PEM) water 
electrolysers—Reduced energy consumption by improved electrocatalysis."  Energy 
32 (4):431-436. 

Mc Garrigle, EV, JP Deane, and Paul G Leahy. 2013. "How much wind energy will be curtailed 
on the 2020 Irish power system?"  Renewable Energy 55:544-553. 

http://www.ieabioenergy.com/wp-content/uploads/2018/01/Methane-Emission_web_end_small.pdf
http://www.ieabioenergy.com/wp-content/uploads/2018/01/Methane-Emission_web_end_small.pdf
http://dx.doi.org/10.1016/j.enconman.2009.01.032
http://dx.doi.org/10.1016/j.apenergy.2014.09.081
http://dx.doi.org/10.1016/j.enconman.2013.12.047
http://dx.doi.org/10.1016/j.fuproc.2008.01.007


 

 

183 

 

McEniry, Joseph, Paul Crosson, Eoghan Finneran, Mark McGee, TWJ Keady, and Padraig 
O'Kiely. 2013. "How much grassland biomass is available in Ireland in excess of 
livestock requirements?"  Irish Journal of Agricultural and Food Research:67-80. 

McEniry, Joseph, Padraig O'Kiely, Paul Crosson, Elaine Groom, and Jerry D Murphy. 2011. 
"The effect of feedstock cost on biofuel cost as exemplified by biomethane 
production from grass silage."  Biofuels, bioproducts and biorefining 5 (6):670-682. 

McKiernan;, Paul. 2013. "Agriculture, Food and GHGs." 
https://www.epa.ie/pubs/reports/air/airemissions/Ire_GHG_Emissions_1990_2012
_P_McKiernan.pdf. 

Monica, Kane. 2000. Facilitating energy storage to allow high penetration of intermittent 
renewable energy. 

Montingelli, M. E., S. Tedesco, and A. G. Olabi. 2015. "Biogas production from algal biomass: 
A review."  Renewable and Sustainable Energy Reviews 43:961-972. doi: 
http://dx.doi.org/10.1016/j.rser.2014.11.052. 

Murphy, JD, E McKeogh, and G Kiely. 2004. "Technical/economic/environmental analysis of 
biogas utilisation."  Applied Energy 77 (4):407-427. 

Murphy, Jerry D, James Browne, Cork Cork, Eoin Allen, and Cathal Gallagher. "Assessment of 
the resource of biomethane." 

Murphy, Jerry D, Bernhard Drosg, Eoin Allen, Jacqueline Jerney, and Ao Xia. 2015. "A 
perspective on algal biogas." http://www.iea-biogas.net/files/daten-
redaktion/download/Technical%20Brochures/AD_of_Algae_ebook_end.pdf. 

Murphy, Jerry D, Nicholas E Korres, Anoop Singh, Beatrice Smyth, Abdul-Sattar Nizami, and 
Thanasit Thamsiriroj. 2011. "The Potential for Grass Biomethane as a Biofuel." 

Murphy, Jerry D., and Niamh M. Power. 2009. "An argument for using biomethane generated 
from grass as a biofuel in Ireland."  Biomass and Bioenergy 33 (3):504-512. doi: 
http://dx.doi.org/10.1016/j.biombioe.2008.08.018. 

Murphy, Jerry D., and Thanasit Thamsiriroj. 2011. "What will fuel transport systems of the 
future?"  Materials Today 14 (11):518-524. doi: http://dx.doi.org/10.1016/S1369-
7021(11)70277-2. 

Murrphy, JD, Bernhard Drosg, Eoin Allen, Jacqueline Jerney, Ao Xia, and Christiane 
Herrmann. 2015. "A perspective on algal biogas." http://www.iea-
biogas.net/files/daten-
redaktion/download/Technical%20Brochures/AD_of_Algae_ebook_end.pdf. 

Newton, John. 2014. Power to Gas and Methanation – Pathways to a ‘Hydrogen economic’. 

Nizami, Abdul-Sattar, Nicholas E Korres, and Jerry D Murphy. 2009. "Review of the integrated 
process for the production of grass biomethane."  Environmental science & 
technology 43 (22):8496-8508. 

Nkemka, Valentine Nkongndem, and Marika Murto. 2010. "Evaluation of biogas production 
from seaweed in batch tests and in UASB reactors combined with the removal of 
heavy metals."  Journal of Environmental Management 91 (7):1573-1579. doi: 
http://dx.doi.org/10.1016/j.jenvman.2010.03.004. 

https://www.epa.ie/pubs/reports/air/airemissions/Ire_GHG_Emissions_1990_2012_P_McKiernan.pdf
https://www.epa.ie/pubs/reports/air/airemissions/Ire_GHG_Emissions_1990_2012_P_McKiernan.pdf
http://dx.doi.org/10.1016/j.rser.2014.11.052
http://www.iea-biogas.net/files/daten-redaktion/download/Technical%20Brochures/AD_of_Algae_ebook_end.pdf
http://www.iea-biogas.net/files/daten-redaktion/download/Technical%20Brochures/AD_of_Algae_ebook_end.pdf
http://dx.doi.org/10.1016/j.biombioe.2008.08.018
http://dx.doi.org/10.1016/S1369-7021(11)70277-2
http://dx.doi.org/10.1016/S1369-7021(11)70277-2
http://www.iea-biogas.net/files/daten-redaktion/download/Technical%20Brochures/AD_of_Algae_ebook_end.pdf
http://www.iea-biogas.net/files/daten-redaktion/download/Technical%20Brochures/AD_of_Algae_ebook_end.pdf
http://www.iea-biogas.net/files/daten-redaktion/download/Technical%20Brochures/AD_of_Algae_ebook_end.pdf
http://dx.doi.org/10.1016/j.jenvman.2010.03.004


 

 

184 

 

O'Shea, Richard, David M Wall, Shane McDonagh, and Jerry D Murphy. 2017. "The potential 
of power to gas to provide green gas utilising existing CO2 sources from industries, 
distilleries and wastewater treatment facilities."  Renewable Energy 114:1090-1100. 

Official Journal of the European Union. 2009. Directive 2009/28/EC of the European 
Parliament and of the Council of 23 April 2009 on the promotion of the use of energy 
from renewable sources and amending and subsequently repealing Directives 
2001/77/EC and 2003/39. EC. 

Park, Young Cheol, Jong-Seop Lee, Jong-Ho Moon, Byoung-Moo Min, Dong-Min Shim, and 
Hyun-Je Sung. 2017. "Performance comparison of aqueous MEA and AMP solutions 
for biogas upgrading."  Korean Journal of Chemical Engineering:1-7. doi: 
10.1007/s11814-016-0346-5. 

Parra, David, Xiaojin Zhang, Christian Bauer, and Martin K Patel. 2017. "An integrated techno-
economic and life cycle environmental assessment of power-to-gas systems."  
Applied Energy 193:440-454. 

Paturska, Anna, Mara Repele, and Gatis Bazbauers. 2015. "Economic Assessment of 
Biomethane Supply System based on Natural Gas Infrastructure."  Energy Procedia 
72 (Supplement C):71-78. doi: https://doi.org/10.1016/j.egypro.2015.06.011. 

Pellegrini, Laura A, Stefania Moioli, and Simone Gamba. 2011. "Energy saving in a CO 2 
capture plant by MEA scrubbing."  Chemical Engineering Research and Design 89 
(9):1676-1683. 

Persson, Margareta, Owe Jönsson, and Arthur Wellinger. 2006. "Biogas upgrading to vehicle 
fuel standards and grid injection." IEA Bioenergy task. 

Persson, T, J Murphy, J Liebetrau, and M & Toyama Trommler, J. 2014. "A perspective on the 
potential role of biogas in smart energy grids." http://www.iea-
biogas.net/files/daten-
redaktion/download/Technical%20Brochures/Smart_Grids_Final_web.pdf. 

Petersson, A., Wellinge, A. 2009. "Biogas upgrading technologies – developments and 
innovations." http://www.iea-biogas.net/files/daten-redaktion/download/publi-
task37/upgrading_rz_low_final.pdf. 

Pickard, William F, Nicholas J Hansing, and Amy Q Shen. 2009. "Can large-scale advanced-
adiabatic compressed air energy storage be justified economically in an age of 
sustainable energy?"  Journal of Renewable and Sustainable Energy 1 (3):033102. 

Pinheiro, Érika Flávia Machado, David Vilas Boas de Campos, Fabiano de Carvalho Balieiro, 
Lúcia Helena Cunha dos Anjos, and Marcos Gervasio Pereira. 2015. "Tillage systems 
effects on soil carbon stock and physical fractions of soil organic matter."  
Agricultural Systems 132:35-39. doi: https://doi.org/10.1016/j.agsy.2014.08.008. 

Poeschl, Martina, Shane Ward, and Philip Owende. 2010. "Prospects for expanded utilization 
of biogas in Germany."  Renewable and Sustainable Energy Reviews 14 (7):1782-
1797. doi: https://doi.org/10.1016/j.rser.2010.04.010. 

Rao, Anand B, and Edward S Rubin. 2002. "A technical, economic, and environmental 
assessment of amine-based CO2 capture technology for power plant greenhouse gas 
control."  Environmental Science & Technology 36 (20):4467-4475. 

https://doi.org/10.1016/j.egypro.2015.06.011
http://www.iea-biogas.net/files/daten-redaktion/download/Technical%20Brochures/Smart_Grids_Final_web.pdf
http://www.iea-biogas.net/files/daten-redaktion/download/Technical%20Brochures/Smart_Grids_Final_web.pdf
http://www.iea-biogas.net/files/daten-redaktion/download/Technical%20Brochures/Smart_Grids_Final_web.pdf
http://www.iea-biogas.net/files/daten-redaktion/download/publi-task37/upgrading_rz_low_final.pdf
http://www.iea-biogas.net/files/daten-redaktion/download/publi-task37/upgrading_rz_low_final.pdf
https://doi.org/10.1016/j.agsy.2014.08.008
https://doi.org/10.1016/j.rser.2010.04.010


 

 

185 

 

Rastogi, Monika, Shalini Singh, and H. Pathak. 2002. "Emission of carbon dioxide from soil."  
Current Science 82 (5):510-517. 

Raza, Syed Shabbar, Isam Janajreh, and Chaouki Ghenai. 2014. "Sustainability index approach 
as a selection criteria for energy storage system of an intermittent renewable energy 
source."  Applied Energy 136 (0):909-920. doi: 
http://dx.doi.org/10.1016/j.apenergy.2014.04.080. 

Rehman, Shafiqur, Luai M. Al-Hadhrami, and Md Mahbub Alam. 2015. "Pumped hydro energy 
storage system: A technological review."  Renewable and Sustainable Energy Reviews 
44 (0):586-598. doi: http://dx.doi.org/10.1016/j.rser.2014.12.040. 

Reiter, Gerda, and Johannes Lindorfer. 2015a. "Evaluating CO2 sources for power-to-gas 
applications – A case study for Austria."  Journal of CO2 Utilization 10:40-49. doi: 
https://doi.org/10.1016/j.jcou.2015.03.003. 

Reiter, Gerda, and Johannes Lindorfer. 2015b. "Global warming potential of hydrogen and 
methane production from renewable electricity via power-to-gas technology."  The 
International Journal of Life Cycle Assessment 20 (4):477-489. doi: 10.1007/s11367-
015-0848-0. 

Rubin, Edward S, Hari Mantripragada, Aaron Marks, Peter Versteeg, and John Kitchin. 2012. 
"The outlook for improved carbon capture technology."  Progress in Energy and 
Combustion Science 38 (5):630-671. 

Ryan, Fearghal, and Brian Caulfield. 2010. "Examining the benefits of using bio-CNG in urban 
bus operations."  Transportation Research Part D: Transport and Environment 15 
(6):362-365. 

Sætre, Andrea Linn. 2013. "Variable Speed Pumped Storage Hydropower for Balancing 
Variable Power Production in Continental Europe." 

Saggar, S, C Hedley, and AD Mackay. 1997. "Partitioning and translocation of 
photosynthetically fixed 14C in grazed hill pastures."  Biology and Fertility of Soils 25 
(2):152-158. 

Salo, Ahti A. 1995. "Interactive decision aiding for group decision support."  European Journal 
of Operational Research 84 (1):134-149. 

Schiebahn, Sebastian, Thomas Grube, Martin Robinius, Vanessa Tietze, Bhunesh Kumar, and 
Detlef Stolten. 2015. "Power to gas: Technological overview, systems analysis and 
economic assessment for a case study in Germany."  International Journal of 
Hydrogen Energy 40 (12):4285-4294. 

Schwarzenegger, Arnold. 2008. "Compressed air energy storage scoping study for california." 
http://www.energy.ca.gov/2008publications/CEC-500-2008-069/CEC-500-2008-
069.PDF. 

Scurlock, JMO, and DO Hall. 1998. "The global carbon sink: a grassland perspective."  Global 
Change Biology 4 (2):229-233. 

SEAI. 2016. "Energy Security in Ireland: A Statistical Overview." accessed 15.02.2018. 

SEM committee. 2013. Treatment of Curtailment in Tie-break situations. 

http://dx.doi.org/10.1016/j.apenergy.2014.04.080
http://dx.doi.org/10.1016/j.rser.2014.12.040
https://doi.org/10.1016/j.jcou.2015.03.003
http://www.energy.ca.gov/2008publications/CEC-500-2008-069/CEC-500-2008-069.PDF
http://www.energy.ca.gov/2008publications/CEC-500-2008-069/CEC-500-2008-069.PDF


 

 

186 

 

Shafiei, Marzieh, Maryam M Kabir, Hamid Zilouei, Ilona Sárvári Horváth, and Keikhosro 
Karimi. 2013. "Techno-economical study of biogas production improved by steam 
explosion pretreatment."  Bioresource technology 148:53-60. 

Singh, Anoop, and Jerry D. Murphy. 2009. "Biomethane from animal waste and grass for clean 
vehicular biofuel in Ireland. Proceedings Sardinia 2009, Twelfth International Waste 
Management and Landfill Symposium S. Margherita di Pula, Cagliari, Italy.". 

Singh, Anoop, Beatrice M. Smyth, and Jerry D. Murphy. 2010. "A biofuel strategy for Ireland 
with an emphasis on production of biomethane and minimization of land-take."  
Renewable and Sustainable Energy Reviews 14 (1):277-288. doi: 
http://dx.doi.org/10.1016/j.rser.2009.07.004. 

Sinnott, RK. 1999. Coulson & Richardson's Chemical Enginering: Volume 6/Chemical 
Engineering Design: Elsevier Butterworth Heinemann. 

Smyth, Beatrice M, Henry Smyth, and Jerry D Murphy. 2010. "Can grass biomethane be an 
economically viable biofuel for the farmer and the consumer?"  Biofuels, Bioproducts 
and Biorefining 4 (5):519-537. 

Smyth, Beatrice M., Jerry D. Murphy, and Catherine M. O’Brien. 2009. "What is the energy 
balance of grass biomethane in Ireland and other temperate northern European 
climates?"  Renewable and Sustainable Energy Reviews 13 (9):2349-2360. doi: 
http://dx.doi.org/10.1016/j.rser.2009.04.003. 

Smyth, Beatrice M., Henry Smyth, and Jerry D. Murphy. 2011. "Determining the regional 
potential for a grass biomethane industry."  Applied Energy 88 (6):2037-2049. doi: 
http://dx.doi.org/10.1016/j.apenergy.2010.12.069. 

Smyth, BM, BP Ó Gallachóir, NE Korres, and JD Murphy. 2010. "Can we meet targets for 
biofuels and renewable energy in transport given the constraints imposed by policy 
in agriculture and energy?"  Journal of Cleaner Production 18 (16):1671-1685. 

SONI, EirGrid and. 2017. "Tomorrow’s Energy Scenarios 2017: Planning our Energy Future." 
http://www.eirgridgroup.com/site-files/library/EirGrid/EirGrid-Tomorrows-Energy-
Scenarios-Report-2017.pdf. 

Sterner, Michael. 2009. Bioenergy and renewable power methane in integrated 100% 
renewable energy systems: Limiting global warming by transforming energy systems. 
Vol. 14: kassel university press GmbH. 

Subramanian, K. A., Vinaya C. Mathad, V. K. Vijay, and P. M. V. Subbarao. 2013. "Comparative 
evaluation of emission and fuel economy of an automotive spark ignition vehicle 
fuelled with methane enriched biogas and CNG using chassis dynamometer."  
Applied Energy 105:17-29. doi: http://dx.doi.org/10.1016/j.apenergy.2012.12.011. 

Sun, Qie, Hailong Li, Jinying Yan, Longcheng Liu, Zhixin Yu, and Xinhai Yu. 2015. "Selection of 
appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and 
utilisation."  Renewable and Sustainable Energy Reviews 51:521-532. doi: 
https://doi.org/10.1016/j.rser.2015.06.029. 

Sustainable Energy Authority of Ireland. 2012. "Renewable energy in Ireland 2011." 
http://www.seai.ie/Publications/Statistics_Publications/Renewable_Energy_in_Irel
and/Renewable_Energy_in_Ireland_2011.pdf. 

http://dx.doi.org/10.1016/j.rser.2009.07.004
http://dx.doi.org/10.1016/j.rser.2009.04.003
http://dx.doi.org/10.1016/j.apenergy.2010.12.069
http://www.eirgridgroup.com/site-files/library/EirGrid/EirGrid-Tomorrows-Energy-Scenarios-Report-2017.pdf
http://www.eirgridgroup.com/site-files/library/EirGrid/EirGrid-Tomorrows-Energy-Scenarios-Report-2017.pdf
http://dx.doi.org/10.1016/j.apenergy.2012.12.011
https://doi.org/10.1016/j.rser.2015.06.029
http://www.seai.ie/Publications/Statistics_Publications/Renewable_Energy_in_Ireland/Renewable_Energy_in_Ireland_2011.pdf
http://www.seai.ie/Publications/Statistics_Publications/Renewable_Energy_in_Ireland/Renewable_Energy_in_Ireland_2011.pdf


 

 

187 

 

Tao, Ling, Eric CD Tan, Robert McCormick, Min Zhang, Andy Aden, Xin He, and Bradley T 
Zigler. 2014. "Techno‐economic analysis and life‐cycle assessment of cellulosic 
isobutanol and comparison with cellulosic ethanol and n‐butanol."  Biofuels, 
Bioproducts and Biorefining 8 (1):30-48. 

Teagasc. "Fertiliser Types." https://www.teagasc.ie/crops/soil--soil-fertility/fertilizer-types/. 

Teagasc. "Nitrous Oxide." https://www.teagasc.ie/environment/climate-change/nitrous-
oxide/. 

Teghammar, Anna, Gergely Forgács, Ilona Sárvári Horváth, and Mohammad J Taherzadeh. 
2014. "Techno-economic study of NMMO pretreatment and biogas production from 
forest residues."  Applied Energy 116:125-133. 

Ter-Gazarian, Andrei G. 2011. Energy Storage for Power System. 

Thamsiriroj, Thanasit, and Jerry D. Murphy. 2011. "A critical review of the applicability of 
biodiesel and grass biomethane as biofuels to satisfy both biofuel targets and 
sustainability criteria."  Applied Energy 88 (4):1008-1019. doi: 
http://dx.doi.org/10.1016/j.apenergy.2010.10.026. 

The Danish Government. 2013. "The Danish Climate Policy Plan: towards a low carbon 
society." 
https://ens.dk/sites/ens.dk/files/Analyser/danishclimatepolicyplan_uk.pdf. 

The United Nations. 2014. "Water for feed security." 
http://www.un.org/waterforlifedecade/food_security.shtml. 

GaBi ts, software and database contents for Life Cycle Engineering, Professional Version, 
Stuttgart. 

Thitakamol, Bhurisa, Amornvadee Veawab, and Adisorn Aroonwilas. 2009. "Foaming in 
amine-based CO2 capture process: Experiment, modeling and simulation."  Energy 
Procedia 1 (1):1381-1386. doi: http://dx.doi.org/10.1016/j.egypro.2009.01.181. 

Triantaphyllou, Evangelos. 2013. Multi-criteria decision making methods: a comparative 
study. Vol. 44: Springer Science & Business Media. 

Troncoso, E, and M Newborough. 2011. "Electrolysers for mitigating wind curtailment and 
producing ‘green’merchant hydrogen."  international journal of hydrogen energy 36 
(1):120-134. 

Trost, Tobias, Sönke Horn, Mareike Jentsch, and Michael Sterner. 2012. "Erneuerbares 
Methan: Analyse der CO2-Potenziale für Power-to-Gas Anlagen in Deutschland."  
Zeitschrift für Energiewirtschaft 36 (3):173-190. doi: 10.1007/s12398-012-0080-6. 

Twomey D. 2011. "Compressed Natural Gas (CNG) in Ireland." 
http://www.ngvireland.com/download/ngv2011/denisTwomey.pdf. 

U.S . Department of Energy. "Central Versus Distributed Hydrogen Production." 
https://energy.gov/eere/fuelcells/central-versus-distributed-hydrogen-production. 

Uihlein, Andreas. 2016. "Life cycle assessment of ocean energy technologies."  The 
International Journal of Life Cycle Assessment 21 (10):1425-1437. doi: 
10.1007/s11367-016-1120-y. 

https://www.teagasc.ie/crops/soil--soil-fertility/fertilizer-types/
https://www.teagasc.ie/environment/climate-change/nitrous-oxide/
https://www.teagasc.ie/environment/climate-change/nitrous-oxide/
http://dx.doi.org/10.1016/j.apenergy.2010.10.026
https://ens.dk/sites/ens.dk/files/Analyser/danishclimatepolicyplan_uk.pdf
http://www.un.org/waterforlifedecade/food_security.shtml
http://dx.doi.org/10.1016/j.egypro.2009.01.181
http://www.ngvireland.com/download/ngv2011/denisTwomey.pdf
https://energy.gov/eere/fuelcells/central-versus-distributed-hydrogen-production


 

 

188 

 

UNFCCC. 2016. "Report of the Conference of the Parties on its twenty-first session, held in 
Paris from 30 November to 13 December 2015. Part two: Action taken by the 
Conference of the Parties at its twenty-first session." accessed 12.01.2018. 

Urban, W, K Girod, and H Lohmann. 2008. "Technologien und Kosten der Biogasaufbereitung 
und Einspeisung in das Erdgasnetz. Ergebnisse der Markterhebung 2007–2008 
(Technologies and costs of processing and feeding biogas into the natural gas 
network. Results of market survey 2007–2008)."  Fraunhofer-Institut für Umwelt-, 
Sicherheits-und Energietechnik, BMBF-Abschlussbericht 4:79. 

Uusitalo, Ville. 2014. "Potential for Greenhouse Gas Emission Reductions by Using 
Biomethane as a Road Transportation Fuel."  Acta Universitatis Lappeenrantaensis. 

van der Werf, Hayo M. G., Claver Kanyarushoki, and Michael S. Corson. 2009. "An operational 
method for the evaluation of resource use and environmental impacts of dairy farms 
by life cycle assessment."  Journal of Environmental Management 90 (11):3643-3652. 
doi: https://doi.org/10.1016/j.jenvman.2009.07.003. 

Vandewalle, J., K. Bruninx, and W. D’haeseleer. 2015. "Effects of large-scale power to gas 
conversion on the power, gas and carbon sectors and their interactions."  Energy 
Conversion and Management 94:28-39. doi: 
http://dx.doi.org/10.1016/j.enconman.2015.01.038. 

Vázquez, Gonzalo, Estrella Alvarez, José M Navaza, Raquel Rendo, and Eva Romero. 1997. 
"Surface tension of binary mixtures of water+ monoethanolamine and water+ 2-
amino-2-methyl-1-propanol and tertiary mixtures of these amines with water from 
25 C to 50 C."  Journal of Chemical & Engineering Data 42 (1):57-59. 

Vienna university of technology. 2012. "Biogas to biomethane, technology review." 
https://www.aile.asso.fr/wp-content/uploads/2012/06/wp3-1-
1_technologyreview_english.pdf. 

Vo, Truc T. Q., David M. Wall, Denis Ring, Karthik Rajendran, and Jerry D. Murphy. 2018. 
"Techno-economic analysis of biogas upgrading via amine scrubber, carbon capture 
and ex-situ methanation."  Applied Energy 212:1191-1202. doi: 
https://doi.org/10.1016/j.apenergy.2017.12.099. 

Vo, Truc T. Q., Ao Xia, Fionn Rogan, David M. Wall, and Jerry D. Murphy. 2017. "Sustainability 
assessment of large-scale storage technologies for surplus electricity using group 
multi-criteria decision analysis."  Clean Technologies and Environmental Policy 19 
(3):689-703. doi: 10.1007/s10098-016-1250-8. 

Vo, Truc T. Q., Ao Xia, David M. Wall, and Jerry D. Murphy. 2017. "Use of surplus wind 
electricity in Ireland to produce compressed renewable gaseous transport fuel 
through biological power to gas systems."  Renewable Energy 105:495-504. doi: 
http://doi.org/10.1016/j.renene.2016.12.084. 

Vo, Truc TQ, Ao Xia, Fionn Rogan, David M Wall, and Jerry D Murphy. "Sustainability 
assessment of large-scale storage technologies for surplus electricity using group 
multi-criteria decision analysis."  Clean Technologies and Environmental Policy:1-15. 

Wall, David M, Padraig O’Kiely, and Jerry D Murphy. 2013. "The potential for biomethane 
from grass and slurry to satisfy renewable energy targets."  Bioresource technology 
149:425-431. 

https://doi.org/10.1016/j.jenvman.2009.07.003
http://dx.doi.org/10.1016/j.enconman.2015.01.038
https://www.aile.asso.fr/wp-content/uploads/2012/06/wp3-1-1_technologyreview_english.pdf
https://www.aile.asso.fr/wp-content/uploads/2012/06/wp3-1-1_technologyreview_english.pdf
https://doi.org/10.1016/j.apenergy.2017.12.099
http://doi.org/10.1016/j.renene.2016.12.084


 

 

189 

 

Wall, David M., Eoin Allen, Barbara Straccialini, Padraig O’Kiely, and Jerry D. Murphy. 2014. 
"Optimisation of digester performance with increasing organic loading rate for 
mono- and co-digestion of grass silage and dairy slurry."  Bioresource Technology 
173:422-428. doi: http://dx.doi.org/10.1016/j.biortech.2014.09.126. 

Wang, Jiang-Jiang, You-Yin Jing, Chun-Fa Zhang, and Jun-Hong Zhao. 2009. "Review on multi-
criteria decision analysis aid in sustainable energy decision-making."  Renewable and 
Sustainable Energy Reviews 13 (9):2263-2278. doi: 
http://dx.doi.org/10.1016/j.rser.2009.06.021. 

Wänn, Annicka, Paul Leahy, Monica  Reidy, Sean  Doyle, Helen  Dalton, and Peter  Barry. 2012. 
"Environmental performance of existing energy storage installations." 
http://www.store-project.eu/en_GB/project-results. 

Wellinger, Arthur, Jerry D Murphy, and David Baxter. 2013. The biogas handbook: science, 
production and applications: Elsevier. 

Wimmler, C, G Hejazi, E de Oliveira Fernandes, C Moreira, and S Connors. 2015. "Multi-
Criteria Decision Support Methods for Renewable Energy Systems on Islands."  
Journal of Clean Energy Technologies 3 (3). 

Wolf, Erik. 2015. "Chapter 9 - Large-Scale Hydrogen Energy Storage A2 - Moseley, Patrick T." 
In Electrochemical Energy Storage for Renewable Sources and Grid Balancing, edited 
by Jürgen Garche, 129-142. Amsterdam: Elsevier. 

Xia, Ao, Jun Cheng, and Jerry D Murphy. 2015. "Innovation in biological production and 
upgrading of methane and hydrogen for use as gaseous transport biofuel."  
Biotechnology advances. 

Yang, Chi-Jen, and Robert B Jackson. 2011. "Opportunities and barriers to pumped-hydro 
energy storage in the United States."  Renewable and Sustainable Energy Reviews 15 
(1):839-844. 

Yeh, James T, Henry W Pennline, and Kevin P Resnik. 2001. "Study of CO2 absorption and 
desorption in a packed column."  Energy & fuels 15 (2):274-278. 

Yekini Suberu, Mohammed, Mohd Wazir Mustafa, and Nouruddeen Bashir. 2014. "Energy 
storage systems for renewable energy power sector integration and mitigation of 
intermittency."  Renewable and Sustainable Energy Reviews 35 (0):499-514. doi: 
http://dx.doi.org/10.1016/j.rser.2014.04.009. 

Zach, K, H Auer, and G Lettner. 2011. "Report summarizing the current status, role and costs 
of energy storage technologies." 
http://www.google.ie/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCMQ
FjAA&url=http%3A%2F%2Fwww.store-
project.eu%2Fdocuments%2Fresults%2Fen_GB%2Freport-summarizing-the-
current-status-role-and-costs-of-energy-storage-technologies&ei=O-
cOVPGlA6XA7Ab1_oD4Dg&usg=AFQjCNFimpnwKCWOJoJi2Ctpfld542AbbQ. 

Zafirakis, D. P. 2010. "2 - Overview of energy storage technologies for renewable energy 
systems." In Stand-Alone and Hybrid Wind Energy Systems, edited by J. K. Kaldellis, 
29-80. Woodhead Publishing. 

Zhang, Xiaojin, Christian Bauer, Christopher L. Mutel, and Kathrin Volkart. 2017. "Life Cycle 
Assessment of Power-to-Gas: Approaches, system variations and their 

http://dx.doi.org/10.1016/j.biortech.2014.09.126
http://dx.doi.org/10.1016/j.rser.2009.06.021
http://www.store-project.eu/en_GB/project-results
http://dx.doi.org/10.1016/j.rser.2014.04.009
http://www.google.ie/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCMQFjAA&url=http%3A%2F%2Fwww.store-project.eu%2Fdocuments%2Fresults%2Fen_GB%2Freport-summarizing-the-current-status-role-and-costs-of-energy-storage-technologies&ei=O-cOVPGlA6XA7Ab1_oD4Dg&usg=AFQjCNFimpnwKCWOJoJi2Ctpfld542AbbQ
http://www.google.ie/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCMQFjAA&url=http%3A%2F%2Fwww.store-project.eu%2Fdocuments%2Fresults%2Fen_GB%2Freport-summarizing-the-current-status-role-and-costs-of-energy-storage-technologies&ei=O-cOVPGlA6XA7Ab1_oD4Dg&usg=AFQjCNFimpnwKCWOJoJi2Ctpfld542AbbQ
http://www.google.ie/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCMQFjAA&url=http%3A%2F%2Fwww.store-project.eu%2Fdocuments%2Fresults%2Fen_GB%2Freport-summarizing-the-current-status-role-and-costs-of-energy-storage-technologies&ei=O-cOVPGlA6XA7Ab1_oD4Dg&usg=AFQjCNFimpnwKCWOJoJi2Ctpfld542AbbQ
http://www.google.ie/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCMQFjAA&url=http%3A%2F%2Fwww.store-project.eu%2Fdocuments%2Fresults%2Fen_GB%2Freport-summarizing-the-current-status-role-and-costs-of-energy-storage-technologies&ei=O-cOVPGlA6XA7Ab1_oD4Dg&usg=AFQjCNFimpnwKCWOJoJi2Ctpfld542AbbQ
http://www.google.ie/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCMQFjAA&url=http%3A%2F%2Fwww.store-project.eu%2Fdocuments%2Fresults%2Fen_GB%2Freport-summarizing-the-current-status-role-and-costs-of-energy-storage-technologies&ei=O-cOVPGlA6XA7Ab1_oD4Dg&usg=AFQjCNFimpnwKCWOJoJi2Ctpfld542AbbQ


 

 

190 

 

environmental implications."  Applied Energy 190:326-338. doi: 
https://doi.org/10.1016/j.apenergy.2016.12.098. 

Zhao, Haoran, Qiuwei Wu, Shuju Hu, Honghua Xu, and Claus Nygaard Rasmussen. 2015. 
"Review of energy storage system for wind power integration support."  Applied 
Energy 137 (0):545-553. doi: http://dx.doi.org/10.1016/j.apenergy.2014.04.103. 

 

  

https://doi.org/10.1016/j.apenergy.2016.12.098
http://dx.doi.org/10.1016/j.apenergy.2014.04.103


 

 

191 

 

Appendix A– Chapter 3: The assessment form  

 

Weighting 

 

1. Please weight these criteria based on their importance in deciding sustainability 
development of energy storage (base on the following scale). 

 

1 2 3 4 5 

Not at all 
important 

Slightly 
important 

Moderately 
important 

Very important Extremely 
important 

 

No. Criteria Weighting 

1 Cost (capital, operation and management costs)  

2 Efficiency  

3 Energy carrier vectors (electricity or gas)  

4 Storage capacity and discharge time  

5 Position flexibility  

6 CO2eq emission  

7 General environment impacts  

Note:  

Energy carrier vectors: The ability to store electricity into many types of energy 

carrier vectors such as: electricity, gas, transport fuel. 

CO2eq emission: Greenhouse gas emission calculated for the whole cycle of energy 

products. 

Position flexibility: The ability to site the storage plant 
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Appendix B– Chapter 4: Biomethane production costs for each type of feedstock  

Table B1: Summary of assumptions used for biogas plant and biomethanation reactor 

   Unit Grass 
Pig 

Slurry 
SHW OFMSW Seaweed 

CH4:CO2
 ratio in 

biogas 
  

55%: 

45% 

65%: 

35% 

55%: 

45% 
60%:40% 55%:45% 

m3 biomethane 

yield/ton feedstock   
59.4 14.4 41 66 24.6 

Capital cost €/t/a 162 102 154 325 164 

Ton feedstock/year   19000 77000 27000 19000 46000 

Storage pit €/t/a 30       30 

Technology used   CSTR  CSTR CSTR 
Batch 

process 
CSTR 

Maintenance and 

overhead 
€/t 5 5 10 25 15 

Digestate disposal €/t       4   

Electrical demand 

of biogas plant 
kWeh/t 10 10 10 6 10 

Electricity price €/kWeh 0.15 0.15 0.15 0.15 0.15 

Cost of feedstock  €/t 17       50 

Gate fee €/t     20 70   

Cost of capital % 6%   

Life time (years) 15   

Electricity demand 

for biomethanation 
kWh/m3 1 1 

Gas grid 

connection 
 € €300,000   

CNG service station  € €500,000   
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Table B2. Capital investment (€) of renewable gas 

 
Grass Pig Slurry SHW OFMSW Seaweed 

Biogas plant 3078000 7854000 4158000 6175000 7544000 

storage  570000 

   

1380000 

Methanation 

reactor 

3000000 3000000 3000000 3000000 3000000 

Gas grid 

connection 

30000 300000 300000 300000 300000 

CNG service station 500000 500000 500000 500000 500000 

Total capital cost 7178000 11654000 7958000 9975000 12724000 

Table B3. Annual cost (€) of biogas production 

 

 Grass Pig Slurry SHW OFMSW Seaweed 

Maintenance and 
overhead 

95000 385000 270000 475000 690000 

Electric demand of 
biogas plant 

28500 115500 40500 17100 69000 

Operation and 
maintenance cost of 
methanation 

90000 90000 90000 90000 90000 

Plant operation 

Substrate cost 323000 0 0 0 280000 

Digestate disposal 0 0 0 76000 

 

Cost of capital 739067 1199928 819378 1027054 1310098 

Depreciation fund 202600 361800 238600 305833 351467 

Total annual cost 1478167 2152228 1458478 1990987 2790565 

Income from gate fee 0 0 540000 1330000 0 

Annual cost of 
renewable gas 
production 

1478167 2152228 918478 660987 2790565 
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Appendix C– Chapter 5: Process simulations  

 
Figure C1. Biogas plant with an amine upgrading – scenario 1 
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Figure C2. Biogas plant with an amine and methanation upgrading – scenario 2 
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Figure C3. Biogas plant with biological methanation reactor – scenario 3
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Appendix D- Chapter 5: Material and energy balance 

 

Materials & Streams Report  
for Scenario 1 

Stream Name 
Diary 
Slurry 

S-102 Grass silage S-101 

Source INPUT P-3 INPUT P-8 

Destination P-3 P-11 P-8 P-2 

Stream Properties 

Activity (U/ml) 0.00 0.00 0.00 0.00 

Temperature (°C) 10.00 10.00 10.00 10.00 

Pressure (bar) 1.01 1.01 1.01 1.01 

Density (kg/m3) 1,018.03 1,008.90 1,019.66 1,010.01 

Total Enthalpy (kW-h) 37.20 37.20 26.31 26.31 

Specific Enthalpy (kcal/kg) 9.14 9.14 7.07 7.07 

Heat Capacity (kcal/kg-°C) 0.91 0.91 0.71 0.71 

Component Flowrates (kg/h) 

Ash 61.60 61.60 62.40 62.40 

Phosphorus 1.75 1.75 0.00 0.00 

Potassium 10.15 10.15 0.16 0.16 

Sulfur 1.40 1.40 0.00 0.00 

Total N 10.50 10.50 12.80 12.80 

VS grass 0.00 0.00 896.00 896.00 

VS slurry 234.50 234.50 0.00 0.00 

Water 3,180.10 3,180.10 2,228.64 2,228.64 

TOTAL (kg/h) 3,500.00 3,500.00 3,200.00 3,200.00 

TOTAL (m3/h) 3.44 3.47 3.14 3.17 

  

Stream Name S-103 S-104 S-105 S-109, 

Source P-2 P-11 P-9 P-6 

Destination P-11 P-9 P-6 P-5 

Stream Properties 

Activity (U/ml) 0.00 0.00 0.00 0.00 

Temperature (°C) 10.00 10.00 10.01 38.00 

Pressure (bar) 1.01 1.01 2.01 2.01 

Density (kg/m3) 1,010.01 1,009.43 1,009.42 2.32 

Total Enthalpy (kW-h) 26.31 63.51 63.59 60.29 

Specific Enthalpy (kcal/kg) 7.07 8.16 8.17 50.38 

Heat Capacity (kcal/kg-°C) 0.71 0.82 0.82 0.30 

Component Flowrates (kg/h) 

Ash 62.40 124.00 124.00 0.00 

Carb. Dioxide 0.00 0.00 0.00 745.67 

H2S 0.00 0.00 0.00 1.40 
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Methane 0.00 0.00 0.00 281.60 

Phosphorus 0.00 1.75 1.75 0.00 

Potassium 0.16 10.31 10.31 0.00 

Sulfur 0.00 1.40 1.40 0.00 

Total N 12.80 23.30 23.30 0.00 

VS grass 896.00 896.00 896.00 0.00 

VS slurry 0.00 234.50 234.50 0.00 

Water 2,228.64 5,408.74 5,408.74 1.06 

TOTAL (kg/h) 3,200.00 6,700.00 6,700.00 1,029.72 

TOTAL (m3/h) 3.17 6.64 6.64 443.27 

  

Stream Name S-108 S-110. Digestate S-111 

Source P-6 P-7 P-7 P-5 

Destination P-7 P-5 OUTPUT P 

Stream Properties 

Activity (U/ml) 0.00 0.00 0.00 0.00 

Temperature (°C) 38.00 38.00 38.00 38.01 

Pressure (bar) 2.01 2.01 2.01 2.01 

Density (kg/m3) 1,000.81 2.34 1,000.91 2.32 

Total Enthalpy (kW-h) 234.89 3.03 234.55 63.33 

Specific Enthalpy (kcal/kg) 35.64 50.31 35.91 50.38 

Heat Capacity (kcal/kg-°C) 0.94 0.30 0.95 0.30 

Component Flowrates (kg/h) 

Ash 124.00 0.00 124.00 0.00 

Carb. Dioxide 0.00 37.28 0.00 782.95 

H2S 0.00 0.00 0.00 1.40 

Methane 0.00 14.08 0.00 295.68 

Phosphorus 1.75 0.00 1.75 0.00 

Potassium 10.31 0.00 10.31 0.00 

Total N 23.30 0.00 23.30 0.00 

VS grass 179.20 0.00 143.36 0.00 

VS slurry 46.90 0.00 37.52 0.00 

Water 5,285.64 0.53 5,279.01 1.59 

TOTAL (kg/h) 5,671.10 51.89 5,619.25 1,081.61 

TOTAL (m3/h) 5.67 22.16 5.61 465.45 

  

Stream Name S-107 Water S-109 S-112 

Source P P P-20 . 

Destination P-20 OUTPUT P-4 P-4 

Stream Properties 

Activity (U/ml) 0.00 0.00 0.00 0.00 

Temperature (°C) 38.01 38.01 40.00 40.00 
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Pressure (bar) 2.01 2.01 3.01 1.01 

Density (kg/m3) 2.32 989.96 3.45 31.72 

Total Enthalpy (kW-h) 63.26 0.07 64.00 572.17 

Specific Enthalpy (kcal/kg) 50.40 37.94 50.99 34.29 

Heat Capacity (kcal/kg-°C) 0.30 1.00 0.30 0.79 

Component Flowrates (kg/h) 

Carb. Dioxide 782.95 0.00 782.95 751.63 

H2S 1.40 0.00 1.40 0.00 

Methane 295.68 0.00 295.68 0.00 

Monoethanolamin 0.00 0.00 0.00 3,474.70 

Water 0.00 1.59 0.00 10,131.00 

TOTAL (kg/h) 1,080.03 1.59 1,080.03 14,357.34 

TOTAL (m3/h) 465.45 0.00 312.97 452.61 

  

Stream Name S-120 S-113 Rich amine Lean amine. 

Source P-4 P-4 P-13 P-21 

Destination P-23 P-13 P-17 P-17 

Stream Properties 

Activity (U/ml) 0.00 0.00 0.00 0.00 

Temperature (°C) 40.00 40.00 40.02 133.50 

Pressure (bar) 3.01 1.01 3.01 5.01 

Density (kg/m3) 1.97 16.94 48.89 110.93 

Total Enthalpy (kW-h) 9.49 626.69 627.01 1,799.92 

Specific Enthalpy (kcal/kg) 24.98 35.68 35.70 107.87 

Heat Capacity (kcal/kg-°C) 0.51 0.76 0.76 0.79 

Component Flowrates (kg/h) 

Carb. Dioxide 31.32 1,503.26 1,503.26 751.63 

H2S 0.03 1.37 1.37 0.00 

Methane 295.38 0.30 0.30 0.00 

Monoethanolamin 0.00 3,474.70 3,474.70 3,474.68 

Water 0.00 10,131.00 10,131.00 10,131.00 

TOTAL (kg/h) 326.73 15,110.63 15,110.63 14,357.31 

TOTAL (m3/h) 165.45 891.94 309.08 129.43 

  

Stream Name S-114. S-119 S-118 S-115 

Source P-17 P-17 P-15 P-10 

Destination P-10 P-18 P-10 P-19 

Stream Properties 

Activity (U/ml) 0.00 0.00 0.00 0.00 

Temperature (°C) 83.02 89.93 120.00 101.00 

Pressure (bar) 3.01 5.01 1.01 1.01 

Density (kg/m3) 43.19 122.87 0.56 0.59 
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Total Enthalpy (kW-h) 1,199.36 1,227.57 64,365.33 63,627.16 

Specific Enthalpy (kcal/kg) 68.29 73.57 692.27 677.94 

Heat Capacity (kcal/kg-°C) 0.76 0.79 0.46 0.45 

Component Flowrates (kg/h) 

Carb. Dioxide 1,503.26 751.63 0.00 751.63 

H2S 1.37 0.00 0.00 1.37 

Methane 0.30 0.00 0.00 0.30 

Monoethanolamin 3,474.70 3,474.68 0.00 0.00 

Water 
10,131.0

0 
10,131.00 80,000.00 80,000.00 

TOTAL (kg/h) 
15,110.6

3 
14,357.31 80,000.00 80,753.30 

TOTAL (m3/h) 349.85 116.85 143,261.11 136,863.78 

  

Stream Name 
Lean 

amine 
S-116 Recycled water , 

Source P-10 P-19 P-19 P-12 

Destination P-12 P-22 P-15 P-21 

Stream Properties 

Activity (U/ml) 0.00 0.00 0.00 0.00 

Temperature (°C) 133.50 101.00 101.00 143.98 

Pressure (bar) 3.01 1.01 1.01 5.01 

Density (kg/m3) 42.70 1.43 0.59 108.40 

Total Enthalpy (kW-h) 1,937.53 66.39 63,560.77 1,937.87 

Specific Enthalpy (kcal/kg) 116.11 75.83 683.61 116.13 

Heat Capacity (kcal/kg-°C) 0.78 0.22 0.45 0.79 

Component Flowrates (kg/h) 

Carb. Dioxide 751.63 751.63 0.00 751.63 

H2S 0.00 1.37 0.00 0.00 

Methane 0.00 0.30 0.00 0.00 

Monoethanolamin 3,474.70 0.00 0.00 3,474.70 

Water 
10,131.0

0 
0.00 80,000.00 10,131.00 

TOTAL (kg/h) 
14,357.3

3 
753.30 80,000.00 14,357.33 

TOTAL (m3/h) 336.22 526.14 136,337.64 132.45 

  

Stream Name MEA lost S-119. MEA make up off gases 

Source P-21 P-18 INPUT P-22 

Destination OUTPUT . . OUTPUT 

Stream Properties 

Activity (U/ml) 0.00 0.00 0.00 0.00 

Temperature (°C) 133.50 40.00 50.00 25.00 

Pressure (bar) 5.01 5.01 1.01 1.01 



 

 

201 

 

Density (kg/m3) 953.74 140.14 985.59 1.80 

Total Enthalpy (kW-h) 0.00 572.17 0.00 51.83 

Specific Enthalpy (kcal/kg) 39.31 34.29 14.72 59.20 

Heat Capacity (kcal/kg-°C) 0.29 0.79 0.29 0.20 

Component Flowrates (kg/h) 

Carb. Dioxide 0.00 751.63 0.00 751.63 

H2S 0.00 0.00 0.00 1.37 

Methane 0.00 0.00 0.00 0.30 

Monoethanolamin 0.02 3,474.68 0.03 0.00 

Water 0.00 10,131.00 0.00 0.00 

TOTAL (kg/h) 0.02 14,357.31 0.03 753.30 

TOTAL (m3/h) 0.00 102.45 0.00 418.29 

  

Stream Name . H2S 
Renewable 

methane 
  

Source P-23 P-23 P-16 
  

Destination P-16 OUTPUT OUTPUT 
  

Stream Properties 

Activity (U/ml) 0.00 0.00 0.00   
Temperature (°C) 40.00 40.00 40.00   
Pressure (bar) 3.01 3.01 10.01   
Density (kg/m3) 1.97 989.24 6.57   
Total Enthalpy (kW-h) 9.49 0.00 9.49   
Specific Enthalpy (kcal/kg) 24.98 21.11 24.98   
Heat Capacity (kcal/kg-°C) 0.51 0.53 0.51   
Component Flowrates (kg/h) 

Carb. Dioxide 31.32 0.00 31.32   
H2S 0.00 0.03 0.00   
Methane 295.38 0.00 295.38   
TOTAL (kg/h) 326.70 0.03 326.70   
TOTAL (m3/h) 165.45 0.00 49.74   
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Materials & Streams Report  
for Scenario 2 

               

Stream Name 
Diary 

Slurry 
S-102 Grass silage S-101 

Source INPUT P-3 INPUT P-8 

Destination P-3 P-11 P-8 P-2 

Stream Properties 

Activity (U/ml) 0.00 0.00 0.00 0.00 

Temperature (°C) 10.00 10.00 10.00 10.00 

Pressure (bar) 1.01 1.01 1.01 1.01 

Density (kg/m3) 1,008.90 1,008.90 1,010.01 1,010.01 

Total Enthalpy (kW-h) 37.20 37.20 26.31 26.31 

Specific Enthalpy (kcal/kg) 9.14 9.14 7.07 7.07 

Heat Capacity (kcal/kg-°C) 0.91 0.91 0.71 0.71 

Component Flowrates (kg/h) 

Ash 61.60 61.60 62.40 62.40 

Phosphorus 1.75 1.75 0.00 0.00 

Potassium 10.15 10.15 0.16 0.16 

Sulfur 1.40 1.40 0.00 0.00 

Total N 10.50 10.50 12.80 12.80 

VS grass 0.00 0.00 896.00 896.00 

VS slurry 234.50 234.50 0.00 0.00 

Water 3,180.10 3,180.10 2,228.64 2,228.64 

TOTAL (kg/h) 3,500.00 3,500.00 3,200.00 3,200.00 

TOTAL (m3/h) 3.47 3.47 3.17 3.17 

  

Stream Name S-103 O2 
O2 for removing 

H2S 
S-104 

Source P-2 INPUT P-1 P-11 

Destination P-11 P-1 P-11 P-9 

Stream Properties 

Activity (U/ml) 0.00 0.00 0.00 0.00 

Temperature (°C) 10.00 25.00 26.35 10.02 

Pressure (bar) 1.01 1.01 1.03 1.01 

Density (kg/m3) 1,010.01 1.31 1.33 229.22 

Total Enthalpy (kW-h) 26.31 0.20 0.21 63.72 

Specific Enthalpy (kcal/kg) 7.07 5.47 5.76 8.14 

Heat Capacity (kcal/kg-°C) 0.71 0.22 0.22 0.81 

Component Flowrates (kg/h) 

Ash 62.40 0.00 0.00 124.00 

Oxygen 0.00 31.30 31.30 31.30 
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Phosphorus 0.00 0.00 0.00 1.75 

Potassium 0.16 0.00 0.00 10.31 

Sulfur 0.00 0.00 0.00 1.40 

Total N 12.80 0.00 0.00 23.30 

VS grass 896.00 0.00 0.00 896.00 

VS slurry 0.00 0.00 0.00 234.50 

Water 2,228.64 0.00 0.00 5,408.74 

TOTAL (kg/h) 3,200.00 31.30 31.30 6,731.30 

TOTAL (m3/h) 3.17 23.93 23.57 29.37 

  

Stream Name S-105 S-109. S-108 S-106 

Source P-9 P-6 P-6 P-7 

Destination P-6 P-5 P-7 P-5 

Stream Properties 

Activity (U/ml) 0.00 0.00 0.00 0.00 

Temperature (°C) 10.03 38.00 38.00 38.00 

Pressure (bar) 2.01 2.01 2.01 2.01 

Density (kg/m3) 372.37 2.32 316.78 2.34 

Total Enthalpy (kW-h) 63.80 60.26 235.24 3.03 

Specific Enthalpy (kcal/kg) 8.15 50.42 35.49 50.31 

Heat Capacity (kcal/kg-°C) 0.81 0.30 0.93 0.30 

Component Flowrates (kg/h) 

Ash 124.00 0.00 124.00 0.00 

Carb. Dioxide 0.00 745.67 0.00 37.28 

H2S 0.00 0.17 0.00 0.00 

Methane 0.00 281.60 0.00 14.08 

Oxygen 31.30 0.00 30.72 0.00 

Phosphorus 1.75 0.00 1.75 0.00 

Potassium 10.31 0.00 10.31 0.00 

Sulfur 1.40 0.00 1.16 0.00 

Total N 23.30 0.00 23.30 0.00 

VS grass 896.00 0.00 179.20 0.00 

VS slurry 234.50 0.00 46.90 0.00 

Water 5,408.74 1.06 5,286.29 0.53 

TOTAL (kg/h) 6,731.30 1,028.49 5,703.63 51.89 

TOTAL (m3/h) 18.08 443.27 18.00 22.16 

  

Stream Name Digestate S-111 S-114 Water and H2S 

Source P-7 P-5 P P 

Destination OUTPUT P P-20 OUTPUT 

Stream Properties 

Activity (U/ml) 0.00 0.00 0.00 0.00 
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Temperature (°C) 38.00 38.01 38.01 38.01 

Pressure (bar) 2.01 2.01 2.01 2.01 

Density (kg/m3) 314.82 2.32 2.32 989.96 

Total Enthalpy (kW-h) 234.90 63.30 63.23 0.07 

Specific Enthalpy (kcal/kg) 35.76 50.41 50.44 36.24 

Heat Capacity (kcal/kg-°C) 0.94 0.30 0.30 0.95 

Component Flowrates (kg/h) 

Ash 124.00 0.00 0.00 0.00 

Carb. Dioxide 0.00 782.95 782.95 0.00 

H2S 0.00 0.17 0.00 0.17 

Methane 0.00 295.68 295.68 0.00 

Oxygen 30.72 0.00 0.00 0.00 

Phosphorus 1.75 0.00 0.00 0.00 

Potassium 10.31 0.00 0.00 0.00 

Sulfur 1.16 0.00 0.00 0.00 

Total N 23.30 0.00 0.00 0.00 

VS grass 143.36 0.00 0.00 0.00 

VS slurry 37.52 0.00 0.00 0.00 

Water 5,279.66 1.59 0.00 1.59 

TOTAL (kg/h) 5,651.78 1,080.38 1,078.63 1.75 

TOTAL (m3/h) 17.95 465.45 465.45 0.00 

  

Stream Name Biogas S-112 S-121 S-113 

Source P-20 P-14 P-4 P-4 

Destination P-4 P-4 P-16 P-13 

Stream Properties 

Activity (U/ml) 0.00 0.00 0.00 0.00 

Temperature (°C) 40.00 40.00 40.00 40.00 

Pressure (bar) 3.01 1.01 3.01 1.01 

Density (kg/m3) 3.45 31.72 1.97 16.94 

Total Enthalpy (kW-h) 63.97 572.19 9.49 626.67 

Specific Enthalpy (kcal/kg) 51.03 34.29 24.98 35.69 

Heat Capacity (kcal/kg-°C) 0.30 0.79 0.51 0.76 

Component Flowrates (kg/h) 

Carb. Dioxide 782.95 751.63 31.32 1,503.26 

H2S 0.00 0.00 0.00 0.00 

Methane 295.68 0.00 295.38 0.30 

Monoethanolamin 0.00 3,472.49 0.00 3,472.49 

Water 0.00 
10,132.0

0 
0.00 10,132.00 

TOTAL (kg/h) 1,078.63 
14,356.1

2 
326.70 15,108.05 

TOTAL (m3/h) 312.97 452.61 165.45 891.93 
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Stream Name Rich amine 
Lean 

amine. 
S-114. S-119 

Source P-13 P-21 P-17 P-17 

Destination P-17 P-17 P-10 P-18 

Stream Properties 

Activity (U/ml) 0.00 0.00 0.00 0.00 

Temperature (°C) 40.02 133.50 83.02 89.93 

Pressure (bar) 3.01 5.01 3.01 5.01 

Density (kg/m3) 48.88 110.92 43.18 122.86 

Total Enthalpy (kW-h) 627.00 1,799.97 1,199.33 1,227.64 

Specific Enthalpy (kcal/kg) 35.71 107.88 68.30 73.58 

Heat Capacity (kcal/kg-°C) 0.76 0.79 0.76 0.79 

Component Flowrates (kg/h) 

Carb. Dioxide 1,503.26 751.63 1,503.26 751.63 

Methane 0.30 0.00 0.30 0.00 

Monoethanolamin 3,472.49 3,472.48 3,472.49 3,472.47 

Water 10,132.00 
10,132.0

0 
10,132.00 10,132.00 

TOTAL (kg/h) 15,108.05 
14,356.1

1 
15,108.05 14,356.10 

TOTAL (m3/h) 309.08 129.43 349.85 116.85 

  

Stream Name S-118. S-115 Lean amine S-116 

Source P-15 P-10 P-10 P-19 

Destination P-10 P-19 P-12 P-22 

Stream Properties 

Activity (U/ml) 0.00 0.00 0.00 0.00 

Temperature (°C) 120.00 101.00 133.50 101.00 

Pressure (bar) 1.01 1.01 3.01 1.01 

Density (kg/m3) 0.56 0.59 42.65 1.43 

Total Enthalpy (kW-h) 64,365.33 
63,626.5

9 
1,938.07 65.81 

Specific Enthalpy (kcal/kg) 692.27 677.95 116.16 75.31 

Heat Capacity (kcal/kg-°C) 0.46 0.45 0.78 0.22 

Component Flowrates (kg/h) 

Carb. Dioxide 0.00 751.63 751.63 751.63 

Methane 0.00 0.30 0.00 0.30 

Monoethanolamin 0.00 0.00 3,472.49 0.00 

Water 80,000.00 
80,000.0

0 
10,132.00 0.00 

TOTAL (kg/h) 80,000.00 
80,751.9

3 
14,356.12 751.93 

TOTAL (m3/h) 143,261.11 
136,862.

55 
336.62 524.91 
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Stream Name S-117 S-120 MEA lost S-119. 

Source P-19 P-12 P-21 P-18 

Destination P-15 P-21 OUTPUT P-14 

Stream Properties 

Activity (U/ml) 0.00 0.00 0.00 0.00 

Temperature (°C) 101.00 144.02 133.50 40.00 

Pressure (bar) 1.01 5.01 5.01 5.01 

Density (kg/m3) 0.59 108.38 955.16 140.13 

Total Enthalpy (kW-h) 63,560.77 1,938.41 0.00 572.19 

Specific Enthalpy (kcal/kg) 683.61 116.18 39.30 34.29 

Heat Capacity (kcal/kg-°C) 0.45 0.79 0.29 0.79 

Component Flowrates (kg/h) 

Carb. Dioxide 0.00 751.63 0.00 751.63 

Methane 0.00 0.00 0.00 0.00 

Monoethanolamin 0.00 3,472.49 0.02 3,472.47 

Water 80,000.00 
10,132.0

0 
0.00 10,132.00 

TOTAL (kg/h) 80,000.00 
14,356.1

2 
0.02 14,356.10 

TOTAL (m3/h) 136,337.64 132.46 0.00 102.45 

  

Stream Name 
MEA make 

up 
S-45 Buffer solution H2 

Source INPUT P-22 INPUT INPUT 

Destination P-14 P-25 P-25 P-25 

Stream Properties 

Activity (U/ml) 0.00 0.00 0.00 0.00 

Temperature (°C) 50.00 25.00 25.00 25.00 

Pressure (bar) 1.01 1.01 1.01 1.01 

Density (kg/m3) 985.59 1.80 994.70 0.08 

Total Enthalpy (kW-h) 0.00 51.81 116.01 13.58 

Specific Enthalpy (kcal/kg) 14.72 59.29 24.96 85.48 

Heat Capacity (kcal/kg-°C) 0.29 0.20 1.00 3.42 

Component Flowrates (kg/h) 

Carb. Dioxide 0.00 751.63 0.00 0.00 

Hydrogen 0.00 0.00 0.00 136.66 

Methane 0.00 0.30 0.00 0.00 

Monoethanolamin 0.03 0.00 0.00 0.00 

Water 0.00 0.00 4,000.00 0.00 

TOTAL (kg/h) 0.03 751.93 4,000.00 136.66 

TOTAL (m3/h) 0.00 418.28 4.02 1,658.49 
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Stream Name S-126 
Buffer 

solution 
out 

S-122 Biomethane 

Source P-25 P-25 P-16 P-24 

Destination P-16 OUTPUT P-24 OUTPUT 

Stream Properties 

Activity (U/ml) 0.00 0.00 0.00 0.00 

Temperature (°C) 60.00 60.00 49.67 40.00 

Pressure (bar) 1.01 1.01 1.01 8.01 

Density (kg/m3) 0.58 981.95 0.62 5.09 

Total Enthalpy (kW-h) 11.38 320.51 20.87 17.25 

Specific Enthalpy (kcal/kg) 34.48 59.89 29.40 24.30 

Heat Capacity (kcal/kg-°C) 0.56 1.00 0.53 0.52 

Component Flowrates (kg/h) 

Carb. Dioxide 13.23 0.00 44.55 44.55 

H2S 0.00 0.00 0.00 0.00 

Hydrogen 1.37 0.00 1.37 1.37 

Methane 269.46 0.00 564.85 564.85 

Water 0.00 4,604.51 0.00 0.00 

TOTAL (kg/h) 284.06 4,604.51 610.77 610.77 

TOTAL (m3/h) 485.92 4.69 977.42 119.89 

 

Materials & Streams Report  

for Scenario 3 

Stream Name 
Diary 

Slurry 
S-102 Grass silage S-101 

Source INPUT P-3 INPUT P-8 

Destination P-3 P-11 P-8 P-2 

Stream Properties 

Activity (U/ml) 0.00 0.00 0.00 0.00 

Temperature (K) 283.15 283.15 283.15 283.15 

Pressure (Pa) 101,325.00 101,325.00 101,325.00 101,325.00 

Density (kg/m3) 1,008.90 1,008.90 1,010.01 1,010.01 

Total Enthalpy (kW-h) 37.20 37.20 26.31 26.31 

Specific Enthalpy (J/kg) 38,260.73 38,260.73 29,598.99 29,598.99 

Heat Capacity (J/kg-K) 3,826.07 3,826.07 2,959.90 2,959.90 

Component Flowrates (kg/h) 

Ash 61.60 61.60 62.40 62.40 

Phosphorus 1.75 1.75 0.00 0.00 
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Potassium 10.15 10.15 0.16 0.16 

Sulphur 1.40 1.40 0.00 0.00 

Total N 10.50 10.50 12.80 12.80 

VS grass 0.00 0.00 896.00 896.00 

VS slurry 234.50 234.50 0.00 0.00 

Water 3,180.10 3,180.10 2,228.64 2,228.64 

TOTAL (kg/h) 3,500.00 3,500.00 3,200.00 3,200.00 

TOTAL (m3/h) 3.47 3.47 3.17 3.17 

  

Stream Name S-103 S-104 S-114 O2 

Source P-2 P-11 P-9 INPUT 

Destination P-11 P-9 P-10 P-1 

Stream Properties 

Activity (U/ml) 0.00 0.00 0.00 0.00 

Temperature (K) 283.15 283.15 283.16 298.15 

Pressure (Pa) 101,325.00 101,325.00 201,325.00 101,325.00 

Density (kg/m3) 1,010.01 1,009.43 1,009.42 1.31 

Total Enthalpy (kW-h) 26.31 63.51 63.59 0.02 

Specific Enthalpy (J/kg) 29,598.99 34,123.78 34,166.24 22,880.41 

Heat Capacity (J/kg-K) 2,959.90 3,412.38 3,412.38 918.12 

Component Flowrates (kg/h) 

Ash 62.40 124.00 124.00 0.00 

Oxygen 0.00 0.00 0.00 3.13 

Phosphorus 0.00 1.75 1.75 0.00 

Potassium 0.16 10.31 10.31 0.00 

Sulphur 0.00 1.40 1.40 0.00 

Total N 12.80 23.30 23.30 0.00 

VS grass 896.00 896.00 896.00 0.00 

VS slurry 0.00 234.50 234.50 0.00 

Water 2,228.64 5,408.74 5,408.74 0.00 

TOTAL (kg/h) 3,200.00 6,700.00 6,700.00 3.13 

TOTAL (m3/h) 3.17 6.64 6.64 2.39 

  

Stream Name S-110 S-105 S-109 S-108 

Source P-1 P-10 P-6 P-6 

Destination P-10 P-6 P-5 P-7 
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Stream Properties 

Activity (U/ml) 0.00 0.00 0.00 0.00 

Temperature (K) 299.50 283.16 311.15 311.15 

Pressure (Pa) 103,325.00 103,325.00 103,325.00 103,325.00 

Density (kg/m3) 1.33 756.03 1.19 740.50 

Total Enthalpy (kW-h) 0.02 63.61 60.26 234.97 

Specific Enthalpy (J/kg) 24,118.15 34,161.54 210,937.09 149,045.07 

Heat Capacity (J/kg-K) 918.44 3,411.21 1,245.75 3,922.24 

Component Flowrates (kg/h) 

Ash 0.00 124.00 0.00 124.00 

Carb. Dioxide 0.00 0.00 745.67 0.00 

H2S 0.00 0.00 0.17 0.00 

Methane 0.00 0.00 281.60 0.00 

Oxygen 3.13 3.13 0.00 2.55 

Phosphorus 0.00 1.75 0.00 1.75 

Potassium 0.00 10.31 0.00 10.31 

Sulfur 0.00 1.40 0.00 1.16 

Total N 0.00 23.30 0.00 23.30 

VS grass 0.00 896.00 0.00 179.20 

VS slurry 0.00 234.50 0.00 46.90 

Water 0.00 5,408.74 1.06 5,286.29 

TOTAL (kg/h) 3.13 6,703.13 1,028.49 5,675.46 

TOTAL (m3/h) 2.36 8.87 863.70 7.66 

  

Stream Name S-106 Digestate S-111 Biogas 

Source P-7 P-7 P-5 P 

Destination P-5 OUTPUT P P-25 

Stream Properties 

Activity (U/ml) 0.00 0.00 0.00 0.00 

Temperature (K) 311.15 311.15 311.16 311.16 

Pressure (Pa) 103,325.00 103,325.00 103,325.00 103,325.00 

Density (kg/m3) 1.20 738.79 1.19 1.19 

Total Enthalpy (kW-h) 3.03 234.63 63.30 63.23 

Specific Enthalpy (J/kg) 210,479.41 150,200.82 210,915.10 211,024.05 

Heat Capacity (J/kg-K) 1,272.43 3,952.66 1,247.05 1,242.59 

Component Flowrates (kg/h) 
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Ash 0.00 124.00 0.00 0.00 

Carb. Dioxide 37.28 0.00 782.95 782.95 

H2S 0.00 0.00 0.17 0.00 

Methane 14.08 0.00 295.68 295.68 

Oxygen 0.00 2.55 0.00 0.00 

Phosphorus 0.00 1.75 0.00 0.00 

Potassium 0.00 10.31 0.00 0.00 

Sulphur 0.00 1.16 0.00 0.00 

Total N 0.00 23.30 0.00 0.00 

VS grass 0.00 143.36 0.00 0.00 

VS slurry 0.00 37.52 0.00 0.00 

Water 0.53 5,279.66 1.59 0.00 

TOTAL (kg/h) 51.89 5,623.61 1,080.38 1,078.63 

TOTAL (m3/h) 43.19 7.61 906.92 906.91 

  

Stream Name 
Water and 

H2S 
Buffer 

solution 
Hydrogen S-121 

Source P INPUT INPUT P-25 

Destination OUTPUT P-25 P-25 P-4 

Stream Properties 

Activity (U/ml) 0.00 0.00 0.00 0.00 

Temperature (K) 311.16 298.15 298.15 333.15 

Pressure (Pa) 103,325.00 101,325.00 101,325.00 101,325.00 

Density (kg/m3) 989.96 994.70 0.08 0.59 

Total Enthalpy (kW-h) 0.07 116.01 14.14 22.85 

Specific Enthalpy (J/kg) 151,579.83 104,412.99 357,639.99 139,142.79 

Heat Capacity (J/kg-K) 3,987.89 4,176.52 14,325.42 2,334.11 

Component Flowrates (kg/h) 

Carb. Dioxide 0.00 0.00 0.00 13.78 

H2S 0.17 0.00 0.00 0.00 

Hydrogen 0.00 0.00 142.36 1.42 

Methane 0.00 0.00 0.00 576.07 

Water 1.59 4,000.00 0.00 0.00 

TOTAL (kg/h) 1.75 4,000.00 142.36 591.27 

TOTAL (m3/h) 0.00 4.02 1,727.61 1,009.48 
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Appendix E– Chapter 5. Economic analysis of three scenarios (2016 prices)  

Economic analysis of scenario 1 – E1 

Table E1-1: Component purchase costs of scenario 1 

Name Description Cost (€) 

1. Biogas section 

SL-101 
Grass silage storage pit 

503,000 
For storing 30,000 tonnes grass silage/year 

V-101 
Slurry Receiver Tank 

70,000 
Vessel Volume = 170 m3 

SR-101 
Shredder 

56,000 
Rated through put = 3,200kg/h 

PM-101 
Centrifugal Pump 

7,000 
Pump Power = 0.51 kW (pump and mixer) 

AD-101 
Anaerobic Digester 

805,000 
Vessel Volume = 7965 m3 

AD-102 
Anaerobic Digester 

308,000 
Vessel Volume = 4616 m3 

Total 1 1,749,000 

2. Amine scrubber section 

M-102 Blower 3,000 

C-101 

Absorber 

35,000 Flow rate of biogas 746m3/h; column 
diameter 1m; column height 15m. 

C-102 

Stripper 

35,000 Flow rate 403 m3/h; column diameter 1m; 
column height 15m 

PM-102 
Centrifugal Pump 

12,000 
Pump Power = 0.69 kW 
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HX-104 
Heat Exchanger 

10,000 
Heat Exchange Area = 7.52 m2 

HX-105 
Heat Exchanger 

8,000 
Heat Exchange Area = 5.04 m2 

PM-103 
Centrifugal Pump 

12,000 
Pump Power = 0.64 kW 

HX-103 Reboiler 84,000 

C-104 Condenser 22,000 

G-101 
Centrifugal Compressor 

47,000 
Compressor Power = 30.13 kW 

Total 2 268,000 

Unlisted Equipment 451,000 

Total 1+2 + unlisted equipment 2,468,000 

Table E1-2. Investment cost 

1. Direct fixed capital cost  Unit (€) 

Biogas plant 3,913,000 

Upgrading by amine 1,409,,000 

2. Working capital 157,000 

3. Cost of monoethanolamine 8,000 

Total investment 5,486,000 

Table E1-3. Utilities costs 

Utility Unit Cost (€) Annual amount Annual cost (€) % 

Standard Power 0.15 
1,507,581(kW-

h) 
226,137 30.35 

Steam 12 12,519(T) 150,232 20.16 

Cooling Water 0.05 104,140(T) 5,207 0.7 

Chilled Water 0.4 909,053(T) 363,621 48.8 

   745,198 100.00 
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Table E1-4. Annual operating cost 

Cost Item € % 

Raw Materials 685,000 34.76 

Labor-Dependent 295,000 15 

Facility-Dependent 200,000 10.16 

Laboratory/QC/QA 44,000 2.25 

Utilities 745,000 37.82 

TOTAL 2,087,000 100.00 

 

Economic analysis of scenario 2 – E2 

Table E2-1. Component purchase costs of scenario 2 

Name Description Cost (€) 

1. Biogas section 

SL-101 
Grass silage storage pit 

503,000 
For storing 30,000 tonnes grass silage/year 

V-101 
Slurry Receiver Tank 

70,000 
Vessel Volume = 170 m3 

SR-101 
Shredder 

56,000 
Rated through put = 3,200kg/h 

PM-101 
Centrifugal Pump 

7,000 
Pump Power = 0.51 kW (pump and mixer) 

AD-101 
Anaerobic Digester 

805,000 
Vessel Volume = 7965 m3 

AD-102 
Anaerobic Digester 

308,000 
Vessel Volume = 4616 m3 

M-101 Blower 3,000 
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Total 1 1,752,000 

2. Amine scrubber section 

M-102 Blower 3,000 

C-101 

Absorber 

35,000 Flow rate of biogas 746m3/h; column diameter 1m; column 
height 115m. 

C-102 

Stripper 

35,000 Flow rate 403 m3/h; column diameter 1m; column height 
15m 

PM-102 
Centrifugal Pump 

12,000 
Pump Power = 0.69 kW 

HX-104 
Heat Exchanger 

10,000 
Heat Exchange Area = 7.52 m2 

HX-105 
Heat Exchanger 

8,000 
Heat Exchange Area = 5.04 m2 

PM-103 
Centrifugal Pump 

12,000 
Pump Power = 0.64 kW 

HX-103 Boiler 84,000 

C-104 Condenser 22,000 

Total 2 221,000 

3. Methanation section  

R-101 

Reactor + compressor 

2,315,000 This is cited from a reference in which the equipment costs 
are presented for a whole section. Thus compressor and 
unlisted equipment do not separate in this section. 

Total 3 2,315,000 

Unlisted equipment 449,000 

Total 1+2 +3 unlisted equipment 4,736,000 
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Table E2-2. Investment cost 

1. Direct fixed capital cost  Unit (€) 

Biogas section 3,919,000 

Upgrading by amine section 1,161,,000 

Methanation section 2,940,000 

2. Working capital 787,000 

3. Cost of monoethanolamine 8,000 

Total investment 8,814,000 

Table E2-3. Utilities cost 

Utility Unit cost (€) Annual amount Annual cost (€) % 

Standard power 0.15 5,097,198 (kW-h) 764,580 56.47 

Steam 12 12,521 (T) 150,251 11.1 

Cooling water 0.05 1,516,122 (T) 75,806 5.6 

Chilled water 0.4 908,379(T) 363,352 26.84 

TOTAL 

  

1,353,989 100.00 

Table E2-4. Annual operating cost 

Cost Item € % 

Raw Materials 6,941,000 77.25 

Labor-Dependent 359,000 3.99 

Facility-Dependent 278,000 3.09 

Laboratory/QC/QA 54,000 0.6 

Utilities 1,354,000 15.07 

TOTAL 8,985,000 100.00 
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Economic analysis of scenario 3- E3 

Table E3-1. Component purchase costs of scenario 3 

Name Description Cost (€) 

1. Biogas section 

SL-101 
Grass silage storage pit 

503,000 
For storing 30,000 tonnes grass silage/year 

V-101 
Slurry Receiver Tank 

70,000 
Vessel Volume = 170 m3 

SR-101 
Shredder 

56,000 
Rated through put = 3,200kg/h 

PM-101 
Centrifugal Pump 

7,000 
Pump Power = 0.51 kW (pump and mixer) 

AD-101 
Anaerobic Digester 

805,000 
Vessel Volume = 7965 m3 

AD-102 
Anaerobic Digester 

308,000 
Vessel Volume = 4616 m3 

Total 1 1,749,000 

2. Methanation section  

R-101 

Reactor + compressor 

2,464,000 
This is cited from a reference in which the equipment 
costs are presented for a whole section. Thus 
compressor and unlisted equipment do not separate in 
this section. 

Total 2 2,464,000 

Unlisted equipment 438,000 

Total 1+2 + unlisted equipment 4,653,000 
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Table E3-2. Investment cost 

1. Direct fixed capital cost  Unit (€) 

Biogas section 3,919,000 

Methanation section 3,129,000 

2. Working capital 759,000 

Total investment 7,807,000 

 

Table E3-3. Utilities cost 

Utility Unit Cost (€) Annual amount Annual cost (€) % 

Std Power 0.15 5,081,928 (kW-

h) 

762,289 88.6 

Steam 12 1,635 (T) 19,615 2.28 

Cooling Water 0.05 1,568,799 (T) 78,440 9.12 

TOTAL   860,345 100.00 

 

Table E3-4. Annual operating cost 

Cost Item € % 

Raw Materials 7,201,000 83.58 

Labor-Dependent 291,000 3.37 

Facility-Dependent 220,000 2.56 

Laboratory/QC/QA 44,000 0.51 

Utilities 869,000 9.99 

TOTAL 8,616,000 100.00 
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Appendix F- Chapter 6: Calculation data and Superpro designer simulation results  

Kg N in digestate (section 6.2.2.2) 

50:50 grass: slurry 

4 kg N/t grass and 3 kg N/t slurry equates to 3.5 kg N/t feedstock 

94% N remaining = 3.29 kg N/t 

84% reduction in volume of digstate 

Thus 3.29/0.84 = 3.89 kg N/t digestate 

H2 conversion efficiency (section 6.2.2.3) 

1 kg H2 equivalent to 11.2 m3 H2 equivalent to 134 MJ or 37 kWh. 

49kWh to produce 37 kWh equates to 75% conversion efficiency. 

 

Simulation results from Superpro Designer for S1, S2 and S3 with 60 : 40 VS grass 

and slurry (section 6.2.4.2). 

Table F1. Inputs and outputs for three scenarios 

 S1 S2 S3 

Grass silage (tonnes) 25,344 25,344 25,344 

Slurry (tonnes) 70,607 70,607 70,607 

Hydrogen (tonnes) - 1436 1496 

Renewable methane 

(m3) 

4,174,132 

 

8,196,291 

 

8,341,716 

 

Digestate (tonnes) 84,660 84,660 84,660 
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Table F2. Parasitic energy demands 

 Scenario 1 Scenario 2 Scenario 3 

Energy 

produced - 

MJ (LHV): 

150,268,753 

 

295,066,477 

 

300,301,780 

 

 Heat 

(kWh) 

Electricit

y (kWh) 

Heat 

(kWh) 

Electricity 

(kWh) 

Heat 

(kWh) 

Electricity 

(kWh) 

Biogas 

production 

1,842,305 1,558,781 1,842,305 1,558,781 1,842,305 1,558,781 

Amine 

upgrading 

8,767,488 185,872 8,767,488 185,872 - - 

Ex-situ 

biological 

methanation  

- - 0 3,966,336 0 4,126,320 

Compression  1,460,946 

 

 2,868,702  2,919,601 

 

 

 

 

 

 

 

 


