
Title Comparison of control and cooperation frameworks for blended
autonomy

Authors Provan, Gregory;Sohége, Yves

Publication date 2018-06

Original Citation Provan, G. and Sohége, Y. (2018) 'Comparison of Control and
Cooperation Frameworks for Blended Autonomy'. 2018 European
Control Conference (ECC), Limassol, Cyprus, 12 - 15 June. doi:
10.23919/ECC.2018.8550055

Type of publication Conference item

Link to publisher's
version

https://ieeexplore.ieee.org/abstract/document/8550055 -
10.23919/ECC.2018.8550055

Rights © 2018 EUCA. Published by IEEE. Personal use of this material
is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including
reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale
or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

Download date 2024-05-06 05:47:18

Item downloaded
from

https://hdl.handle.net/10468/7544

https://hdl.handle.net/10468/7544

Comparison of Control and Cooperation Frameworks for Blended
Autonomy

Gregory Provan1 and Yves Sohége2

Abstract— Autonomous vehicles, e.g., cars, aircraft or ships,
will need to accept some degree of human control for the com-
ing years. Consequently, a method of controlling autonomous
systems (ASs) that integrates control inputs from humans and
machines is critical. We describe a framework for blended
autonomy, in which humans and ASs interact with varying
degrees of control to safely achieve a task. We empirically
compare collaborative control tasks in which the human and AS
have identical or conflicting objectives, under three main control
frameworks:(1) leader-follower control (based on Stackelberg
games); (2) blended control; and (3) switching control. We
validate our results on a car steering control model, given
communication delays, noise and different collaboration levels.

I. INTRODUCTION

Fielded autonomous systems (ASs) need to interact with
humans in a variety of ways, and hence need a framework
to enable that. Here, we focus on ASs that can incorporate
a variable degree of human control, which we call blended
autonomy. For example, forthcoming autonomous cars will
allow drivers to set a variety of autonomy levels; for ex-
ample, lower levels include cruise control and/or collision
avoidance, and full autonomy incorporates all driving func-
tionality. Analogously, UAVs flying in commercial airspace
will need to follow Air Traffic Control (ATC) instructions,
entailing a mechanism to integrate human voice commands
into autonomously-generated flight planning.

Our objective is to develop a control-theoretic framework
for blended autonomy that will allow humans to interact
with a collection of ASs. This is an extension of prior
work on tele-operation [2], which assumes continuous human
control of a vehicle. This work also extends frameworks
for automotive autonomy, e.g., [10], in that we incorporate
the impacts of noise and imperfect world models into the
collaborative control paradigm.

We propose a framework that focuses on the following
key properties. First, we describe a system that can flexibly
operate in multiple autonomy levels as a multi-agent system
with human and AS agents that must interact to accomplish
a task. Second, the human/AS interaction may have varying
degrees of cooperation and information sharing among the
agents; incomplete information sharing may arise due to
lack of transmission of state information or communications
losses. We solve our blended autonomy problem using an
optimal control framework, and demonstrate the resulting

The paper has been supported by SFI grants 12/RC/2289 and 13/RC/2094.
1,2Computer Science Department, UCC, Cork, Ireland

1g.provan@cs.ucc.ie, 2yves.sohege@insight-centre.org

properties of Model-Predictive control (MPC) algorithms
when applied to this task.

Our contributions are as follows:
• We formulate a control-theoretic framework for ASs

incorporating varying degrees of human control inputs.
• We specify the AS framework in terms of a multi-

agent hybrid system, and compare three control algo-
rithms: (1) leader-follower (e.g., as done with Stackel-
berg game approaches [9]), (2) blended-control, based
on weighted-sum optimization [8], and (3) switching-
control, with control assigned to the agent whose output
is closest to the optimal output.

• We illustrate our approach using MPC for a car steering
system jointly controlled by human and AS inputs.

II. RELATED WORK

Teleoperation is an area in which a human operates
a vehicle at a distance. Most approaches to teleoperation
assume full human control (e.g., [2]). However, some recent
work has included blended human/robot control, e.g., [6].

A large body of work has been published on automotive
blended human/vehicle control, e.g., [1], [10], [15]. The ma-
jority of this work assumes that human and AS controls are
cooperative, and that no unsafe controls are possible. Recent
work that incorporates safety includes [1]. In reference to
this work on the automotive domain, we examine the impact
of real-world conditions (delays/noise in applying control
inputs) on steering control tasks, using a framework that can
be extended to more than just 2 actors (driver and AS).

Control theory has been used for developing algorithms
for blended autonomy. Common approaches include MPC
[7] and optimal control [14]. Our approach adopts multi-
objective optimization, for which a large body of work exists
for general problems [8] and for control applications [5].

Game theory has been used for action generation in
blended autonomy. For example, [3] describes experiments
with different cooperation/non-cooperation strategies for hu-
man/AS. [9] proposes an algorithm based on a Stackelberg
equilibrium for cooperative steering control.

Work also exists in attempting to model the driver’s intent.
For example, [4] proposes the use of motion primitives for
cooperative blended-control driver assistance systems. [3]
proposes several human models for robot interactions. [11]
examines modes for adaptation in human-AS collaboration.

III. TECHNICAL DESCRIPTION

This section describes our technical formulation. We
present a framework that can accommodate arbitrary num-
bers of human and AS agents, but for simplicity we restrict

our discussion to a single instance of human and AS agent.
We denote human with H and AS with Υ. The actions
at time t are the joint human and AS actions, denoted
u(t) = (uH(t), uΥ(t)), and the total space of actions is U .
We assume that we have a set θ of parameters in our system
model Φ. We can define a high-level version of our task as
an optimal control problem:

Definition 1 (Blended-autonomy task): A system S
solves a blended-autonomy task with objective function
J using human and AS agents who collectively interact
to optimize J within world state Ξw, where human and
AS agents may take on differing levels of autonomy, by
selecting actions that maximize J :

u∗ = arg max
u∈U

J (u, θ). (1)

We will make this definition more precise in the following
sections.

A. Multi-Agent Framework

Definition 2 (Agent ω): We define an agent ω ∈ Ω using
the tuple 〈c,Φ,U , r,J 〉, where
• c is the agent type, c ∈ {H,Υ}.
• Φ is the agent model, denoting the agent’s hybrid

dynamics.
• U is the system action space, such that U = UH ∪ UΥ.
• r is the agent’s reward function.
• J is the agent’s objective function.

We assume that we can define three state types in our system,
ξw ∈ Ξw, ξΥ ∈ ΞΥ, and ξH ∈ ΞH , denoting states for the
world, AS and human, respectively.

We define a blended-autonomy system (BAS) as a multi-
agent hybrid system as follows:

Definition 3 (BAS S): A BAS is a multi-agent system
consisting of a collection of agents ωi ∈ Ω, i = 1, ..., n,
who attempt to achieve a collective task with system reward
function Rw and objective function Jw = ς(J1, ...,Jn),
where ς is an aggregation function for the agents. We
characterize the agent interaction protocol using χ.

B. Autonomous Modes

In this article we generalize the notion of mode from an
indicator for operational state to also include the autonomy
levels of agents. Our notion of mode corresponds to the
notion of autonomy level in many application domains. For
example, in the automotive domain the SAE has defined
six levels of autonomy for self-driving vehicles, with level
0 denoting full human control to level 5 denoting full AS
control. The levels 1 through 4 consider a blended approach
where the mode defines the driving mode (e.g., highway
cruising) with some autonomous capabilities (e.g., steering,
cruise control). We assume that an identical operational mode
can be achieved through human or AS control. We formalize
these notions in the following sections.

Mode Specification: We assume that a system S can
operate in a discrete set of system modes Γ = {γ1, · · · , γk}.
A mode is characterized by both the operational state and
the health state of S ; here we focus only on the operational

state. More specifically, we define an agent’s operational
mode in terms of its autonomy level and state. For example,
an air vehicle’s operational mode can be in cruise, and it’s
autonomy mode either autopilot or human control.

We formalize modes as follows. A system S can be
in one of several operational modes at any time, denoted
ΓO = {γ1

O, · · · , γkO}. Given an operational mode, the system
can be in one of several autonomy modes, i.e., where S is
controlled by both the AS or human to varying degrees.

Definition 4 (Mode γk): A system S can be in one of
several modes, γ ∈ Γ, which is given by the pair of
operational and autonomy modes: Γ ⊂ ΓO × ΓA.

We use the notion of autonomy map to capture the
different human/AS mode specifications that lead to task
completion.

Definition 5 (Autonomy Map): We can compute the sys-
tem’s autonomy level using autonomy map % : ΓO×ΓA → Γ.
We can use this map to identify, for example, the AS
autonomy level necessary to achieve a task given as input
the human autonomy level and required mode.

We assume that Γ can take on a discrete set of values
we can partition these values into safe and unsafe modes:
ϕ : Γ → {0, 1}, where 0 denotes unsafe and 1 denotes
safe. For example, for a car with human and AS inputs, the
overall autonomy level must be equivalent to full control due
to inputs from human and AS for the vehicle to be safe.

C. Dynamical System Model

We assume that the system may operate using three
different models: a world model Ψw, and models maintained
by the AS and human, ΨΥ and ΨH , respectively.

Agent i possesses a unique dynamical model, which for a
single mode γ ∈ Γ we denote by a discrete-time equation

ξi(k + 1) = Aiξi(k) +Biui(k)

zi(k) = Ciξi(k). (2)

The system evolves according to a state transition function
T : Ξw×UΥ×UH → Ξw. The agents can also switch system
modes in a discrete manner.

Since this system is hybrid, mode switches can occur due
to discrete switch commands or to continuous state evolution.

IV. MULTI-AGENT COORDINATION

A. Assumptions

This section describes our assumptions. We assume that
we have a collection of n agents, each characterized by tuple
〈c,Φ,U , r,J 〉. We denote the (possibly unique) ith reward
and objective function as ri, Ji, and Φi, respectively, for
i = 1, ..., n. Φi is given by equations 2, for a given mode.
This framework enables us to analyze the impact of agents
who may have different objectives, or agents who may have
different sensors, and hence obtain different sensor outputs
z(k) given world state ξw(k).

Objectives: We assume that agent i has objective function
Ji, and that there exists a system-level objective function
Jw that we want to optimize subject to Ψw, uH , uΥ,
collaboration χ, plus safety and other constraints.

B. Collaboration Types

[3] defines, in a qualitative manner, four key types of
collaboration for interaction χ between human and AS:
collaboration that is (1) perfect; (2) collaborative but ap-
proximately optimal; (3) subject to incomplete or corrupted
communication; (4) non-collaborative.

The key question is whether every agent knows the
autonomy mode and reward model for the other agents.
These data can be communicated among agents, but if we
have disturbances in collaboration (e.g., incomplete com-
munication) then complete information will not be globally
held. In this article we empirically compare the impact
of agents having different models, objective functions, and
incomplete/corrupted communications.

V. CONTROL APPROACHES

In the general case, we assume that the human and AS
generate controls through solving two different optimization
problems. This may arise in several situations. For example,
a human air traffic controller (ATC) may specify a landing
plan for a UAV that optimizes over all planes within the
ATC’s sector, where an individual UAV has computed a
plan that optimizes its individual fuel consumption. In a
different case of a car, the human driver may may be tired
and issue dangerous commands while the AS may compute
safe commands for the car.

In the following we explore situations in which the human
model ΦH is either incomplete or receives incomplete sensor
inputs, so that the human actions uH are sub-optimal. This
contrasts with work that either assumes a perfect human
model ΦH (e.g., [1]) or learns/estimates ΦH (e.g., [11]).

Fig. 1. Architecture for blended autonomy system: (a) shows the leader-
follower approach, and (b) shows the blended approach

We now summarize three control approaches: Leader-
Follower, Blended and Switching. Figure 1 shows the control

approaches (applied at each step t) that we compare.

A. Leader-Follower Control

We use a Leader-Follower (LF) model to study blended
autonomy in which we establish a control regime with the
human as the leader and the AS as a follower. Figure
1(a) shows the Leader-Follower (LF) approach, where the
human agent applies a control uH(t) to the vehicle, then
the AS agent observes y(t) and applies uΥ(t + δt) to the
vehicle (for some small δt), and then the process repeats. A
Stackelberg equilibrium is an equilibrium solution composed
of the optimal strategies of the leader and the followers [9].
Given observability of control settings for both agents, we
can compute a strategy profile that optimizes the agents’
objective functions, given the strategies of the other agent.
Given the computed strategies, we implement them using
a control switching framework, in which our controller
switches from uH to uΥ at each step.

This approach does not attempt to incorporate stochastic
adaptation to or learning of the other agent’s objective
function or dynamical model. It contrasts with the Bounded-
Memory Adaptation Model of [12], which uses a parameter
α to capture an agent’s inclination to adapt. For example, if
human and AS disagree, the human may switch from their
control uH to the AS’s control uΥ at the next time step with
probability α.

We assume that both human and AS agents minimize
their respective objective function. Then, a solution of the
differential game requires solving a multi-objective optimiza-
tion problem. We adopt a receding horizon optimization
approach, i.e., the optimal controls are calculated by solving
the open-loop optimal control problems for the horizon
[t, t+ k].

B. Blended Control

Blended control enables the AS and human to simultane-
ously compute controls (uΥ and uH) and then “integrates”
them in the supervisory control module in an optimal manner.
Figure 1(b) depicts the architecture for blended autonomy.

We adopt the widely-used weighted-sum method for
optimization [8], since solving a multi-objective function
J w = ς(J1, ...,Jn) is computationally intractable. We
need to represent vectors for the collection of n agents,
so we denote Φ = [Φ1, · · · ,Φn]T , and J (u, α) =
[J1(u1, α1), · · · ,Jn(un, αn)]T . We map the multiple objec-
tive functions into a single weighted function, i.e., assigning
a non-negative weight λi to each of the i objective functions,
given by J = λTJ (u,Φ), where λT = [λ1, · · · , λn]T is the
weight vector. The objective is to optimize J by selecting
weights such that

∑
i λi = 1 and 1 ≥ λi ≥ 0, i = 1, · · · , n.

The optimal solution is given by u∗ = arg minu λ
TJ (u,Φ).

In general, we need to normalize the objective functions
since not all objectives have the same range of values; after
normalization we use standard optimization algorithms to
compute optimal solutions.

Fig. 2. Bicycle Model of a car

x, y Position of the center of gravity (CoG) of the vehicle
in the ground framework in (x, y)-plane

ψ, δ Yaw and steering angle of the car body
vx, vy Longitudinal and lateral speed of the vehicle

in its inertial frame
M Total mass of the vehicle
lf , lr Distance from front and rear axle to CoG
β(δ) Slip angle at the CoG
Cf , Cr Front and rear cornering stiffness
Iz Polar moment of intertia
is Steering Ratio

Fig. 3. Notation used in the article

C. Switching Control

Switching control is a framework for integrating control
inputs from multiple agents by switching among the agents’
inputs using a switching protocol. In this article we use the
world model ξw as the basis for switching. We assume that
an oracle Θ has perfect knowledge of ξw, and the protocol
switches control to the agent whose output is closest to that
of the oracle Θ.

VI. BICYCLE MODEL

We conducted experiments on car steering control using
the bicycle model [13], whose lateral vehicle dynamics have
two degrees of freedom, lateral position and yaw angle. This
section describes the vehicle model (as depicted in Figure
2), using notation defined in Figure 3.

The lateral velocity of the vehicle vx is constant and hence
the control input corresponds to the front wheel steering
angle δ of the vehicle, under the assumption that only the
front wheels can be steered.

Definition 6 (Kinematic Bicycle Model): We define the
kinematic bicycle model as [13]:

ẋ = vcos(ψ + β(δ))

ẏ = vsin(ψ + β(δ))

ψ̇ =
v

lr
sin(β(δ))

β(δ) = tan−1

[
tan(δ)

lr
lf + lr

]
Since this vehicle model has more degrees of freedom than

control inputs its classified as under-actuated.
Definition 7 (Vehicle Model): The dynamics of the longi-

tudinal, lateral and yaw motions of the whole vehicle are
given in the form of state space equation 2, where ξ(k) =

Fig. 4. Double Lane change reference trajectory

[v(k) ω(k) y(k) ψ(k)]T , output z(k) = [y(k) ψ(k)]T ,
and A, B and C are given as follows:

A =


−(Cf+Cr)

Mvx

−(lfCf−lrCr)
Mvx

− vx 0 0
−(lfCf−lrCr)

Izvx

−(l2fCf+l2rCr)

Izvx
0 0

1 0 0 vx
0 1 0 0


B =

[
Cf

isM
lfCf

isIz
0 0

]T
, C =

[
0 0 1 0
0 0 0 1

]
We are interested in controlling the and velocity v of the

vehicle, which is given by equation 3:

ẋ = vxcosψ − vysinψ
ẏ = vxsinψ + vycosψ (3)

Definition 8 (Control Problem): Given a list of waypoints
W = (wi)i∈I = (xi, yi, vi)i∈I , where (xi, yi) are the
successive reference positions of the vehicle in the ground
frame and vi the successive speed references at position
(xi, yi), the control problem consists in finding a sequence of
feasible control inputs δ that optimizes an objective function
J , subject to constraints imposed by W .
Figure 4 shows a double lane change manoeuvre that we use
as the reference trajectory for the experiments. We define J
based on errors in lateral displacement and yaw tracking.

VII. EXPERIMENTAL ANALYSIS

For our experiments we use the bicycle steering model
described previously. We implemented the Leader-Follower,
Oracle-Based Switching and Blended control framework for
this vehicle on top of a Matlab Autonomous Steering demo.
To simulate the interaction of control for the described frame-
work in previous sections between an AS and a Human we
define two Model Predictive Controllers (MPC) for uH and
uΥ, respectively. with weight assignment for the measured
variables ψ and Y being set to [1,1] for uH and [1,0.1]
for uΥ. Intuitively the Human controller focuses more on
reference tracking between ψref and ψ instead of mostly
on the y position tracking, which should give smoother
tracking overall. We minimize the total tracking error ε =∑
i∈W |yref (k)−y(k)| over displacement waypointsW . We

empirically study the impact of the following across the
control approaches:

Fig. 5. Leader-Follower framework in nominal operating conditions

• Bad uH signals, such as a collision course or no input;
• Signal delays;
• Sporadic noise on the dominant control signals.

A. Implemented Control Models

We now describe the implemented control models.
1) Leader-Follower: The Leader-follower (LF) frame-

work alternates the control signals applied to the car model
at intervals of δ = 1s. Figure 5 shows the LF framework
executing the double lane change manoeuvre in nominal
operating conditions. The figure is broken into 3 sub-charts
each showing different metrics during the simulation. The top
consists of the (x, y) position of the reference path (blue),
actual path taken (green) and obstacles to avoid (red circles).
In the middle chart the yaw angle of the car can be seen,
again reference position (blue) and actual position (green).
The last chart consists of the MPC output signal uH (orange)
and uΥ (green), the applied control signal u (purple) and η
(red) which signifies the current control proportions between
Human controller and AS used to calculate u. The X-axis
represents time and the Y-axis the magnitude of the signal.

2) Blending: Blending combines the uH and uΥ signals
using weight parameter η such that: u(k) = uH(k)(1−λ)+
uΥ(k)(λ), with 0 ≤ λ ≤ 1. We predict the tracking error ε
between y and yref for the current time point k. Since by
nature the current tracking error ε will gradually increase, we
set λ = ε so that if control starts to diverge, uΥ will gradually
become more influential and should re-stabilize control.
Since uH plays a more dominant part in the control signal
u we call this Human Dominant Blending. Alternatively
we also experimented with AS Dominant Blending which
is defined by u(k) = uH(k)(λ) + uΥ(k)(1− λ).

3) Oracle-based Switching: We implemented Oracle-
based switching (OBS) such that the oracle Θ has knowledge
of the reference path Θref , obstacles Θobs as well as the car’s
current trajectory Θσ , which is defined by fitting a polyno-
mial function of degree 4 to the last 5 (x, y) coordinates.
Evaluating Θσ(t+τ) allows us to predict the path the vehicle
will take during the next τ seconds.

We define our control u(k) such that the human control
is applied (u = uH) if (a) the predicted displacement error

Fig. 6. Total tracking error for double lane change for Experiments 1,2
and 4. Blue: Leader Follower, Orange: Oracle-based Switching , Yellow:
Human Dominant Blending, Purple: AS Dominant Blending

is within 0.2m or (b) no collisions are predicted; otherwise
u = uΥ. Formally, u(k) is generated such that

u(k) =

{
uH , if (div ≥ β) ∨ (col ≤ β)
uΥ otherwise

where we define div = |Θσ(t+ α)− Yref (t+ α)| as the
expected future divergence to Yref , and col = |Θobsi(y) −
Θσ(t+α)(y)| ∀Θobsi ∈ Θobs as the distance to an obstacle.
β = 0.2 and α = [0.1, 0.2, 0.3].

B. Experiments

1) Experiment 1: No Human input: We set uH = 0
to model a Human that has fallen asleep or is otherwise
unable to issue control commands. Figure 6 (left) shows the
difference in total tracking error between the frameworks for
the described double lane change manoeuvre. Surprisingly
the OBS and Human Dominant Blending perform very
poorly. We assume this is due to the system being allowed to
get into a bad state, from which it tries to recover; in contrast,
the Leader-Follower and AS-Dominant Blending approaches
always assign a degree of control to the AS, such that even
if uH = 0 the AS-Dominant Blending and Leader-Follower
are only affected slightly. However, all frameworks were able
to re-stabilize control and execute the manoeuvre without
crashing into any obstacles.

2) Experiment 2: Human on Collision Course: We next
investigated the effect of bad uH . The Human MPC con-
troller was modified to have a slower sampling rate, which
gives it worse tracking and causes a collision during the
manoeuvre. This experiment is designed to test how the
frameworks respond to bad human input. Again, Figure
6 (middle) shows ε for the four frameworks. Again all
frameworks were able to avoid collision and complete the
manoeuvre. The LF framework experienced a thrashing yaw
angle signal, but the y position tracking is good. Human
Dominant Blending and OBS trashed less but overall tracking
was worse. AS Dominant Blending performed very smoothly
for both signals and achieved best control. This is because
the Human agent has little or no control of the system, so
being on a collision course does not affect the overall system.
Given results from Experiments 1 and 2, we can conclude
that AS Dominant blending performs the best if we cannot
guarantee a good uH input.

Fig. 7. Total tracking error with oracle and human delays.

Fig. 8. Total tracking error with AS and applied signal delays.

3) Experiment 3:Delays on various signals: We studied
the effect of delays in the following signals:

1) Oracle computation of Θ for δ = [0.5, 1, 2].
2) AS control signal uΥ for δ = [1, 2].
3) Human control signal uH for δ = [1, 2].
4) Overall applied system u for δ = [0.5].
Here, δ represents the delay on the specified signal. Due

to limited space we show only the overall tracking error ε
for the specified delays. Figure 7 correspond to oracle and
human delays, Figure 8 to the AS and Applied signal delays.
Delays can represent a variety of factors such as computation
time for AS and Oracle and delayed human response and are
common in real systems. Hence evaluating the resilience to
delays for the frameworks is of utmost importance.

4) Experiment 4: Noise Rejection: Our final experiment
concerns the effects of sporadic noise on the dominant
controller. For this we injected a single offset of 0.5 at
t = 3s for a duration of 1 second into the dominant control
signal. We evaluate each approach in detail and show the
paths taken. Figure 9 shows the tracking results for the LF
framework.

The deviation due to noise injected is clearly visible in
the Y position tracking (top). The time taken to re-stabilize
on the path is about 2 seconds. This is due to the fact the
LF framework periodically switches the actual signals, seen
in the bottom plot, which can be analysed to find that the
human had just started its control period when the noise
was injected. This means the full effect of the noise were
experienced for 1 seconds before the AS could intervene and
we see a large deviation. We also notice slight trashing for the
remainder of the simulation Y position but more significantly
in the steering angle.

Figure 10 shows the Oracle-based Switching simulation
results. The deviation is a lot smaller since this framework

Fig. 9. Leader Follower Total tracking error for double lane change with
noise injected to uH at t=3s.

Fig. 10. Oracle-based Switching Total tracking error for double lane change
with noise injected to uH at t=3s.

identifies the bad trajectory and switches controllers. This
is again obvious from the bottom chart in this Figure. We
see the red line representing the currently controlling agent
switch to the AS slightly before the uH noise was injected.
We assume this was before the path deviated before the noise
and hence the AS agent took control and the effects of the
noise were limited. However, we still see slight thrashing in
the steering angle for the remainder of the simulation.

Figure 11 describes the Human Dominant Blending un-
der noisy conditions. The deviation is significant but the
framework is able to stabilize and execute the manoeuvre.
We notice the framework started using the AS before the
injection of noise which is why the effects were not as severe
as for LF. Note here that there is no thrashing on the yaw
angle and both tracking objectives are smooth.

This is the final framework we test again this scenario.
One difference to the other Noise injection experiments

Fig. 11. Human Dominant Blending Total tracking error for double lane
change with noise injected to uH at t=3s.

Fig. 12. AS Dominant Blending Total tracking error for double lane change
with noise injected to uAS at t=3s.

is that we applied the noise to the AS Signal instead of
Human signal, since having it on the Human will have no
effect. Even with that change this framework performs the
best overall. It is very smooth in the lead up to the noise
and then recovers quickly. The deviation is still significant,
however. The bottom chart shows that the blend of signals,
in contrast to all other frameworks, is exceptionally smooth
and it resumes close tracking within 3 seconds.

Finally, Figure 6 (right) shows the comparison of total
tracking errors for this experiment. Even though the LF
framework experienced a large deviation and trashing, it still
tracks accurately, since it assigns 100% of the control to a
single controller, allowing that controller to get very good
tracking for that time. It is difficult for Blending to achieve
this level of tracking once the agents signals start to diverge,
since the u will always be somewhere between uH and uAS ,
but it’s rare that one agent has full control to generate an un-
modified (optimal) control signal. This is an advantage the
Switching frameworks have over the Blending. In contrast,
this same phenomenon causes trashing on the output as both
controllers compete for control of the system.

C. Discussion

We summarize our results as follows:
• Bad uH signals: Control performance improves given

less reliance of the framework on uH . This is obvious
from Experiments 1 and 2, which show AS blending
performing the best.

• Signal delays: Signal delays can affect performance dra-
matically. AS Dominant Blending is the most resilient
to delays on all signals expect when u gets delayed. But
performance from all frameworks is catastrophic in this
scenario.

• Sporadic noise:. Noise causes control thrashing, and
consequently affects steering performance. AS Dom-
inant Blending once again performed the best, even
though marginally, and is far smoother than the switch-
ing frameworks in regards to yaw control.

VIII. CONCLUSIONS

This article has studied the impact on collaborative control
of collaboration types (χ), agent/world models (Φ), and
environmental disturbance (noise and control delays).

• collaboration types were studied using three control
techniques: leader-follower, blended and oracle-based
switching.

• agent models included complete models, models with
delayed response, and empty models (no human re-
sponse).

• environmental disturbance included noise on control
signals and communication delays.

We empirically studied collaborative control using the do-
main of car steering control, with a double lane-change task.
Our objective function measured the lateral displacement
errors and yaw errors relative to a reference trajectory. Our
results indicate that, given an accurate AS controller, steering
control is optimized when the AS has primary control: this
minimizes the effect of human errors and delays in control
actions being implemented.

REFERENCES

[1] F. Altché, X. Qian, and A. de La Fortelle. An algorithm for supervised
driving of cooperative semi-autonomous vehicles. IEEE Transactions
on Intelligent Transportation Systems, 2017.

[2] L. Chan, F. Naghdy, and D. Stirling. Application of adaptive con-
trollers in teleoperation systems: A survey. IEEE Transactions on
Human-Machine Systems, 44(3):337–352, 2014.

[3] A. D. Dragan. Robot planning with mathematical models of human
state and action. arXiv preprint arXiv:1705.04226, 2017.

[4] M. Flad, L. Fröhlich, and S. Hohmann. Cooperative shared control
driver assistance systems based on motion primitives and differential
games. IEEE Transactions on Human-Machine Systems, 2017.

[5] A. Gambier. Mpc and pid control based on multi-objective optimiza-
tion. In American Control Conference, 2008, pages 4727–4732. IEEE,
2008.

[6] S. Gray, R. Chevalier, B. Caimano, and J. Scatena. Graduated
automation for humanoid manipulation. In Automation Science and
Engineering (CASE), 2016 IEEE International Conference on, pages
1366–1373. IEEE, 2016.

[7] H. Kim, J. Cho, D. Kim, and K. Huh. Intervention minimized
semi-autonomous control using decoupled model predictive control.
In Intelligent Vehicles Symposium (IV), 2017 IEEE, pages 618–623.
IEEE, 2017.

[8] R. T. Marler and J. S. Arora. Survey of multi-objective optimization
methods for engineering. Structural and multidisciplinary optimiza-
tion, 26(6):369–395, 2004.

[9] X. Na and D. J. Cole. Application of open-loop stackelberg equilib-
rium to modeling a driver’s interaction with vehicle active steering
control in obstacle avoidance. IEEE Transactions on Human-Machine
Systems, 2017.

[10] A.-T. Nguyen, C. Sentouh, and J.-C. Popieul. Driver-automation
cooperative approach for shared steering control under multiple system
constraints: Design and experiments. IEEE Transactions on Industrial
Electronics, 64(5):3819–3830, 2017.

[11] S. Nikolaidis, J. Forlizzi, D. Hsu, J. Shah, and S. Srinivasa. Math-
ematical models of adaptation in human-robot collaboration. arXiv
preprint arXiv:1707.02586, 2017.

[12] S. Nikolaidis, D. Hsu, and S. Srinivasa. Human-robot mutual adapta-
tion in collaborative tasks: Models and experiments. The International
Journal of Robotics Research, page 0278364917690593.

[13] R. Rajamani. Vehicle dynamics and control. Springer Science &
Business Media, 2011.

[14] D. Richards and A. Stedmon. To delegate or not to delegate: A review
of control frameworks for autonomous cars. Applied ergonomics,
53:383–388, 2016.

[15] L. Song, H. Guo, F. Wang, J. Liu, and H. Chen. Model predictive
control oriented shared steering control for intelligent vehicles. In
Control And Decision Conference (CCDC), 2017 29th Chinese, pages
7568–7573. IEEE, 2017.

