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ON THREE DIMENSIONAL GERSTNER-LIKE EQUATORIAL
WATER WAVES

D. HENRY

Abstract. This paper reviews some recent mathematical research activity in the
field of nonlinear geophysical water waves. In particular, we survey a number of
exact Gerstner-like solutions which have been derived to model various geophysical
oceanic waves, and wave-current interactions, in the equatorial region. These
solutions are nonlinear, three-dimensional, and explicit in terms of Lagrangian
variables.

1. Introduction

Even in the setting of an inviscid and incompressible (perfect) fluid the water
wave problem is highly intractable once nonlinear effects are considered. The rich
structure exhibited by nonlinear waves is well-documented, and their importance
recognised with regard to both practical and theoretical considerations. A stark
illustration of the severe complications inherent in the fully-nonlinear governing
equations is given by the remarkable fact that there is only one known explicit
solution of the exact governing equations for two-dimensional travelling gravity water
waves, the celebrated Gerstner’s wave.

Gerstner’s wave is a two-dimensional nonlinear periodic travelling wave propagat-
ing at the surface of a fluid of infinite depth with vorticity (see [4, 6, 26]). Perhaps
due to its highly-prescribed and idiosyncratic flow properties, Gerstner’s wave pos-
sesses a storied background; indeed, in no small part due to Lamb’s objection that
Gerstner’s wave is rotational and hence cannot be generated by conservative forces,
it has been largely neglected in the literature. One of the apparent peculiarities
of the flow it describes is that all fluid particles follow closed trajectories in Ger-
stner’s wave, something which is precluded for irrotational exact nonlinear waves
(cf. [5, 6, 8, 18, 27, 49]) and which must therefore be due to the underlying vorticity.
Yet, we note that aside from being a mathematical rarity, from a practical point of
view Gerstner-type waves have been proposed [54, 64] as models for flows observed
in the field, cf. the discussion in [17]. Additionally, Gerstner’s wave has shown
a striking degree of flexibility in its prescription, being readily adapted to allow
for heterogeneity in the fluid by Dubreil-Jacotin [21], and more recently to model
edge-waves moving in the longshore direction, cf. [3, 53, 62,65].

Given the singular nature of the Gerstner wave it is remarkable that, in a series
of papers by Constantin [7, 9, 10], a number of generalised Gerstner-like solutions

Key words and phrases. geophysical water waves, wave-current interactions, Gerstner’s wave, exact
solution.
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were derived which model various nonlinear, three-dimensional geophysical water
waves in the equatorial region. These models encompass both waves propagating at
the surface, and internal waves propagating along an interface at the thermocline
signifying a jump in fluid density. Geophysical fluid dynamics (GFD) is the study
of fluid motion where the Earth’s rotation plays a significant role in the resulting
dynamics, and accordingly Coriolis forces are incorporated into the governing Euler
equation. The governing equations for GFD are applicable for describing a wide
range of oceanic and atmospheric processes [19, 25, 63], with an associated level of
extra mathematical complexity in the governing equations required to model such
a rich variety of phenomena [15], leading to an inherent mathematical intractability
in the model equations. In the equatorial region, whereby latitudinal variation is
necessarily restricted, the governing equations are typically simplified by invoking
tangent plane approximations, the classical form being the β−plane approximation.
Gerstner-like solutions of these approximate, yet nonlinear, model equations form
the subject of this review.

With the increase in structural complexity of the GFD governing equations, it is
startling that the exact and explicit three-dimensional solutions described in [7,9,10]
exist at all, much less that they generalise Gerstner’s wave (in the sense that, upon
ignoring Coriolis terms, solutions reduce to two-dimensional gravity waves). Subse-
quently it was shown that these solutions can be adapted to model a wide-variety
of phenomena — including, for example, the incorporation of depth-invariant un-
derlying currents (thereby modelling wave–current interactions), ‘non-traditional’
approximation models, and a description of longshore-propagating edge-waves —
and that their underlying flow properties are amenable to a detailed analysis due to
the explicit nature of their prescription in terms of Lagrangian variables. Although
these recently derived Gerstner-like solutions of the GFD equations have quite a
rigid mathematical prescription, as they are exact they have the potential to gen-
erate more ‘useful’ solutions, representing more physically complex flows, by way of
employing perturbative or asymptotic considerations. Exact solutions play an im-
portant role in the study of water waves in general since many apparently intangible
wave motions can often be viewed as perturbations of these solutions.

The aim of this review is to survey a number of recently-derived Gerstner-like
solutions which describe nonlinear waves, and wave–current interactions, in the
equatorial region. We outline how the flows they prescribe are amenable to an
intricate mathematical analysis — in the process enabling the establishment of hy-
drodynamic instability criteria, and mean-flow properties, for example. In order
to restrict the focus of this review, we are obliged to omit a number of interest-
ing recent mathematical developments in GFD. Firstly, exciting progress has been
achieved in applying classical applied mathematical approaches, rather than purely
oceanographical considerations [15], in the modelling of geophysical processes, cf.
recent work initiated by Constantin & Johnson [12–14,16] which is surveyed in this
issue in [41]. Secondly, with regard to Gerstner-like (that is, explicit and exact)
solutions, we refer to [37, 50, 51] for a discussion of geophysical edge-wave solu-
tions; we do not discuss the restriction of β−plane solutions to the f−plane, which
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follows upon setting β = 0, and essentially reduces solutions from being three-
dimensional to two–dimensional in nature [36] (although an interesting exception
are the fully three-dimensional solutions derived in [29,30,44,58] which exist solely
in the f−plane setting). Finally, we refer to [17] for a recent extension of Pollard’s
nonlinear geophysical wave solution [56] which exists at all latitudes, whereby the
authors accommodate a depth-invariant current and in the process generate a new
slow mode representing an inertial Gerstner wave, which is a fundamentally nonlin-
ear phenomenon in which very small free surface deflections are manifestations of
an energetic current.

1.1. Governing equations for geophysical fluid dynamics. Under the assump-
tion that we are dealing with an inviscid and incompressible fluid, which is quite rea-
sonable for the finite amplitude ocean waves we are interested in, the fully-nonlinear
and exact GFD governing equations are given by the Euler equation

Du

Dt
+ 2Ω× u + Ω× (Ω× r) = −1

ρ
∇P + F , (1.1) 1b

together with the mass conservation equationGova

ρt + uρx + vρy + wρz = 0 (1.2a) mc

and the equation of incompressibility

ux + vy + wz = 0. (1.2b) in

Here the {x, y, z}-coordinate frame chosen so that the x-axis is pointing horizontally
due east (the zonal direction), the y-axis is due north (meridional direction), and
the z-axis is pointing vertically upwards and perpendicular to the earth’s surface;
then u = (u, v, w) is the fluid velocity, Ω is the angular velocity vector of the earth’s
rotation (with Ω = 73 × 10−6 rad/s the (constant) rotational speed), F is the
external body force (in our setting due to gravity), ρ is the water density, and P is
the pressure. In subsequent considerations we assume the density to be constant,
unless otherwise stated. The second term in (1.1) is the Coriolis force, and the third
term represents the centripetal force [13, 31] which is typically neglected (although
cf. section c(i) for an exception to this) in which case we set it equal to zero. We
take the earth to be a perfect sphere of radius R = 6378 km, and fixing the reference
frame’s origin at a point on the earth’s surface equation (1.1) are expressed

ut + uux + vuy + wuz + 2Ωw cos Φ− 2Ωv sin Φ = −1

ρ
Px (1.2c) Euler

vt + uvx + vvy + wvz + 2Ωu sin Φ = −1

ρ
Py (1.2d)

wt + uwx + vwy + wwz − 2Ωu cos Φ = −1

ρ
Pz − g, (1.2e)

where Φ represents the latitude and we assume F is solely gravitational.



4

2. Nonlinear equatorial wave–current interactions

Due to the complexity and intractability of the full governing equations (1.2)
one typically invokes oceanographical considerations in order to derive simpler ap-
proximate models. A classical example is the β−plane approximation, whereby the
earth’s curved surface is approximated (locally) by a tangent plane. This approach
is applicable when we restrict our focus to regions of relatively small latitudinal vari-
ation, and in particular it is commonly used in the context of modelling equatorial
flows. Geophysical processes which occur in the equatorial region are of particular
interest for a number of reasons. Physically, the equator has the remarkable prop-
erty of acting as a natural wave guide, whereby equatorially trapped zonal waves
decay exponentially away from the equator in the oceans. Using the approxima-
tions sin Φ ≈ Φ, and cos Φ ≈ 1 we linearise the Coriolis force in (1.2), leading to the
β-plane approximationGov

ut + uux + vuy + wuz + 2Ωw − βyv = −1

ρ
Px

vt + uvx + vvy + wvz + βyu = −1

ρ
Py

wt + uwx + vwy + wwz − 2Ωu = −1

ρ
Pz − g,

(2.1a) Beta

where β = 2Ω/R = 2.28 · 10−11 m−1s−1. The boundary conditions at the surface are
the kinematic and dynamic conditions

w = ηt + uηx + vηy on z = η(x, y, t), (2.1b) k

P = Patm on z = η(x, y, t), (2.1c) p

where Patm is the (constant) atmospheric pressure and η(x, y, t) is the free-surface.
The boundary condition (2.1b) states that all the particles in the surface will stay
in the surface for all time t, and the boundary condition (2.1c) decouples the water
flow from the motion of the air above. Finally, we assume the water to be infinitely
deep, with the flow converging rapidly with depth to a uniform zonal current, that
is,

(u, v, w)→ (−c0, 0, 0) as z → −∞. (2.1d) lim

The set of equations (2.1) comprises the governing equations for the traditional
β−plane approximation of geophysical free-surface ocean waves with a constant
underlying current.

2.1. Exact solution: surface waves. In this section we describe the exact solution
of the β-plane governing equations (2.1) presented in [28]. This solution generalises
the solution of [7] in the sense that it incorporates a depth-invariant underlying
current; modifying Gerstner’s gravity wave to accommodate an underlying mean
current was initially performed by Mollo-Christensen [52] in the study of billows
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between two fluid bodies. The solution is given bylvara

x = q − c0t−
1

k
ek[r−f(s)] sin [k(q − ct)], (2.2a) sol1

y = s, (2.2b) sol2

z = r +
1

k
ek[r−f(s)] cos [k(q − ct)], (2.2c) sol3

expressing the Eulerian coordinates of the fluid particles (x, y, z) as functions of the
Lagrangian labelling variables (q, r, s) ∈ (R, (−∞, r0), I), and time t, Here r0 < 0
and k is the wavenumber defined by k = 2π/L, and where L is the (fixed) wavelength.
For c0 > 0 the underlying current is adverse, while for c0 < 0 the current is following,
and we see below that whether I is the real line R or a finite interval is determined by
the sign of the current. The system (2.2) prescribes a three-dimensional eastward-
propagating steady geophysical wave in the presence of a constant underlying current
of magnitude |c0|. The wave-like term is periodic in the zonal direction and it
has a constant phasespeed c > 0. Furthermore, the wave is Equatorially trapped,
exhibiting a strong exponential decay away from the Equator, where the function
f(s) determines the decay of the particle oscillations in the latitudinal direction
away from the equator and it is given (with γ := 2Ωc0 +g (>0) a “modified gravity”
term) by

f(s) =
cβ

2γ
s2.

Equatorially trapped waves symmetric about the Equator and propagating eastward
are known to exist, and they are regarded as an important factor in a possible
explanation of the El Niño phenomenon (cf. [12,19,22,40], and further relevant field
data in [42, 55]). We note that while the underlying current in the exact solution
(2.2) assumes an apparently simple form in the Lagrangian setting, yet it leads to
significant complexifications, both mathematically and physically, in the resulting
fluid motion [24, 35], as we outline in a discussion on the mean flow properties in
Section 5 below. This is perhaps not surprising since the nonlinear passage from
Lagrangian to Eulerian coordinates is a delicate issue in general, cf. [2]. The flow
prescribed by (2.2) is rotational, as is expected for a geophysical water wave, with
the (weakly three-dimensional) vorticity given by

ω = (wy − vz, uz − wx, vx − uy) =

(
−skc

2β

g

eξ sin θ

1− e2ξ
,− 2kce2ξ

1− e2ξ
, s
kc2β

g

eξ cos θ − e2ξ

1− e2ξ

)
.

One of the main steps in proving that (2.2) solves (2.1a) is to construct a suitable
pressure distribution function, and it transpires that the appropriate choice is given
by

P = ργ

(
e2ξ

2k
− r +

c0

c
f(s)

)
+ P0 − ρg

(
e2kr0

2k
− r0

)
. (2.3) Pa



6

As a by-product of the derivation of (2.3) we obtain the dispersion relation for the
wave,

c =

√
Ω2 + kγ − Ω

k
=

√
Ω2 + k(2Ωc0 + g)− Ω

k
> 0,

where the complex impact that the Coriolis, and current, terms have on the wavespeed
is made explicit (setting Ω = c0 = 0 recovers the dispersion relation c =

√
g/k for

Gerstner’s wave). At fixed-latitudes y = s the free-surface z = η(x, s, t) is implicitly
prescribed by setting r = r(s) in (2.2c) for the unique value r(s) < r0 which solves

e2k[r(s)− cβ
2γ
s2]

2k
− r(s) +

c0β

2γ
s2 − e2kr0

2k
+ r0 = 0. (2.4) sol

For a given current c0, in order for a unique solution of (2.4) to exist it is necessary
that

c0 < ce2kr0 , (2.5) nec

and for c0 ≤ 0 equation (2.4) has a solution for all s ∈ R, whereas for c0 > 0
equation (2.4) can be solved only for restricted values of s depending on the current
magnitude. By the design of solution (2.2), the prescription method for the free-
surface z = η(x, y, t) ensures (2.1b) holds: all particles originating on the wave
surface will remain at the surface for all time. Furthermore, at each fixed-latitude
y = s in a coordinate system moving with the mean flow (which we take to be fixed
if c0 = 0), the free-surface is an inverted trochoid and particle trajectories are given
by closed circles. In the limiting case r0 → 0 the free-surface approaches a cycloid,
with singular cusps at the crests [6], at the equator (s = 0). It is worth noting that,
as opposed to the typical Eulerian approach [2], the Lagrangian labelling variables in
(2.2) do not represent the initial position of the particle they define, but rather the
centre of the circle described by the particle motion. The steepness of the resulting
wave profile, defined to be half the amplitude multiplied by the wavenumber, is

τ(s) = ek(r−f(s)), (2.6) steep

which is maximised by τ0 = ekr0 at the equator.
Het

2.1.1. Stratification. In the absence of an underlying current (c0 = 0) variable den-
sity in the fluid can be incorporated through introducing an additional equation of
motion,

ρt + uρx + vρy + wρz = 0,

which must be satisfied to ensure conservation of mass. Prescribing the density
function by

ρ(r, s) = F

(
e2ξ

2k
− r +

c0

c
f(s)

)
, (2.7)

where F : (0,∞) → (0,∞) is continuously differentiable and non-decreasing, the
analogue of the pressure function (2.3) is given, where F ′ = F and F(0) = 0, by

P = γF
(
e2ξ

2k
− r +

c0

c
f(s)

)
+ P0 − γF

(
e2kr0

2k
− r0

)
.
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2.2. Exact solution: internal waves. Following initial work in [9] describing a
Gerstner-like internal wave as part of a two-layer hydrostatic model, Constantin
successfully derived a physically-complex multi-layered, nonhydrostatic model for
internal waves in [10], a schematic for which is given below.

near-surface layer L(t)

Layer M(t)

uniform flow layer

transitional layer

motionless layer

z = η+(x, y, t)

z = η0(x, y, t)

z = −d+ β
4Ω
y2

z = −D + β
4Ω
y2

Thermocline

The internal wave propagates at the thermocline, denoted η0, and it is assumed that
the wave motion is predominant in the layer labelled M(t); the L(t) layer denotes
the upper near-surface region of the ocean which is primarily influenced by the
effects of the wind, and where the wave motion is a small perturbation of the ocean
dynamics. The generation mechanism for the internal wave is a stratification jump
across the thermocline, with the fluid having a constant density ρ0 in the region
above the thermocline η0, and a constant density ρ+ > ρ0 beneath the thermocline
— indicative values for the density difference in the equatorial region are (ρ+ −
ρ0)/ρ0 ≈ 4× 10−3. The fluid domain lying beneath the thermocline is divided into
three separate regions, which transitions the fluid motion from that induced by the
propagation of the thermocline to a motionless abyssal deep-water region. In order
to successfully implement this multi-layered model, the continuity of the pressure is
maintained across each interface.

In the deep motionless fluid layer, define η2(x, y, t) = −D + β
4Ω
y2 for some fixed

equatorial depth D > 0 . In the region below η2(x, y, t), the fluid is in the hydrostatic
state u = v = w = 0 with the pressure given by P (x, y, z, t) = P0 − ρ+gz for
z ≤ −D + ( β

4Ω
y2), where P0 and D are constants. In the transitional layer, define

η1(x, y, t) = −d+ β
4Ω
y2 for some fixed equatorial depth d < D. In the region between

z = η2(x, y, t) and z = η1(x, y, t) we take v = w = 0 and the horizontal component
of particle velocity u is given by

u(x, y, z, t) =
c

D − d

(
z − β

4Ω
y2 +D

)
.
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with the appropriate pressure function prescribed by

P (x, y, z, t) = P0 − ρ+gz +
ρ+Ωc

D − d

(
z − β

4Ω
y2 +D

)2

.

Note that the pressure P and the velocity u are continuous across the interface
z = η2(x, y, t). With z = η0(x, y, t) representing the wave propagating at the ther-
mocline, in the region η1(x, y, t) < z < η0(x, y, t) the uniform flow is given by u = c
and v = w = 0, with the resulting pressure defined as

P (x, y, z, t) = P0 − ρ+gz + ρ+Ωc
(
D + d

)
+ 2ρ+Ωc

(
z − β

4Ω
y2

)
.

Finally, in the layer M(t) above the thermocline the wave-like solution is given by
x = q − 1

k
e−k[r+f(s)] sin[k(q − ct)]

y = s

z = r − d0 −
1

k
e−k[r+f(s)] cos[k(q − ct)],

(2.8) Explicit solution

with the notation as in the surface wave solution (2.2). For every fixed value of
s ∈ [−s0, s0], we require r ∈ [r0(s), r+(s)], where the choice r = r0(s) > 0 defines the
thermocline z = η0(x, y, t) at the latitude y = s, while r = r+(s) > r0(s) prescribes
the interface z = η+(x, y, t) separating L(t) and M(t) at the same latitude. An
indicative value for (r+−r0) is 60 m, cf. [10,22]. The parameter d0 > 0 is determined
by specifying that [d0 − r0(0)] is the mean depth of the thermocline at the equator,
where r0(0) > 0 is the unique choice of r which prescribes the thermocline at the
equator. The wave motion in M(t) induced by the propagation of the thermocline,
as described by the solution (2.8), is equatorially-trapped for f(s) given by

f(s) =
β

2(kc− 2Ω)
s2.

In the course of deriving this complex multi-layered solution, a dispersion relation is
obtained for the speed c of the wave propagating along the thermocline which takes
the form

c =
ρ+ − ρ0

ρ0

√
Ω2 + ρ0kg

ρ+−ρ0 − Ω

k
> 0 (2.9) Velocity

resulting in an eastward-propagating wave. It is clear from the form of (2.9) that
the density differential between fluid layers is the major driving force behind wave-
propagation at the thermocline, and without it c = 0 and no such wave would
exist. Note that in Gerstner’s wave the amplitude of wave oscillations decreases
as we descend in the fluid, which is the reverse of the present setting whereby the
amplitude decreases exponentially as we ascend above the thermocline. Akin to the
surface waves described in [7,28], the introduction of a depth-invariant current was
successfully achieved for the internal wave model described above in [43].
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2.3. Some ‘non-traditional’ equatorial β−plane approximations. In this sec-
tion two ‘non-traditional’ approximation models are presented for which Gerstner-
like solutions also exist. The first modification of the traditional β−plane model
incorporates the effects of the commonly neglected centripetal forces, whereas the
second aims to retain artefacts of the geometry of the earth’s curvature by way
of incorporating a gravitational-correction term into the standard β−tangent plane
model. While both models are interesting in themselves from a non-traditional
approximation perspective, it is quite surprising, given their additional structural
properties, that both modifications of the β−plane admit Gerstner-like solutions
of the form (2.2). An interesting consequence of both structural modifications is
that, compared to part (a) above, the additional terms they contribute to the stan-
dard β−plane approximation play a central role in facilitating the admission of a
wide-range of both following and adverse depth-invariant underlying currents in the
solution (2.2).

2.3.1. Centripetal forces. In an oceanographic context centripetal forces are typi-
cally neglected as they are relatively much smaller (∼ O(Ω2)) than Coriolis terms
(∼ O(Ω)), where Ω = 7.3 × 10−5 rad/s is the (constant) rotational speed of earth.
In [31] it was shown that retaining these terms in (1.1) and taking an appropriate
tangent-plane approximation leads to the following modified β−equation:

ut + uux + vuy + wuz + 2Ωw − βyv = −1

ρ
Px

vt + uvx + vvy + wvz + βyu+Ω2y = −1

ρ
Py (2.10) BetaCent

wt + uwx + vwy + wwz − 2Ωu−Ω2R = −1

ρ
Pz − g,

As distinct to (2.1a), when the fluid motion prescribed the modified β−plane gov-
erning equations (2.10) is still, and the pressure is constant at the free-surface, the
free–surface is a geoid. Since then

P (x, y, z, t) = Patm −
1

2
ρΩ2 y2 + ρ(Ω2R− g) z

throughout the fluid (u = v = w = 0), the free–surface geoid is given by

z =
Patm

ρ(g − Ω2R)
− Ω2

2(g − Ω2R)
y2 ≈ Patm

ρg
− Ω2

2g
y2

since Ω2R ≈ 3× 10−2 m/s2 � g ≈ 9.8 m/s2. The above distortion from a constant
value of z corresponds to a free surface following the curvature of Earth away from
the equator, as the curved surface of the Earth drops below the tangent plane at
the Equator – this is consistent with, and indeed a consequence of, the β-plane
approximation. Remarkably, it can be shown that the solution (2.2) satisfies the
modified equations (2.10), with some variations: f(s) is now defined by

f(s) =
cβ

2g
s2,
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where g = g+ 2Ωc0−Ω2R > 0, with the inequality motivated by physical consider-
ations (since g/2Ω ≈ 6.7× 104m/s, ΩR/2 ≈ 2.33× 102m/s).

PropCent Proposition 2.1 ( [31]). The fluid motion prescribed by (2.2) represents an exact
solution of the governing equations (2.10) if the underlying current c0 satisfies

c0 <
ΩR

2
≈ 2.33× 102m/s. (2.11) c0b

Henceforth, such values of c0 will be referred to as “physically plausible”. The free-
surface z = η(x, y, t) is implicitly prescribed at the equator (y = s = 0) by setting
r = r0 in (2.2), and for any other fixed latitude s ∈ [−s0, s0], whenever (2.11) holds,
there exists a unique value r(s) < r0 which implicitly prescribes the free-surface
z = η(x, s, t) by way of setting r = r(s) in (2.2).

Regarding the dispersion relation for the wave described by (2.2) for (2.10), if

c0 = c then c =
√

(g − Ω2R)/k: for sufficiently large wavenumbers k (corresponding
to sufficiently small wavelengths L) the magnitude of the underlying current c0

given by this relation may, in principle, be physically attainable, and furthermore
it does not contravene the bound given by (2.11). This dispersion relation is a
perturbation of the standard Gerstner wave (and deep-water gravity water wave)

dispersion relation c =
√
g/k by additional Coriolis terms which are attributable to

the centripetal force. Indeed, the potential balance between the wave phasespeed
and the adverse current prescribed by c = c0 is a curious phenomenon which is
unique to the modified β−plane formulation (2.10) since it is expressly prohibited
by the absence of centripetal terms for the standard model (2.1a). In the more
general scenario with c0 6= c, we have

c =

√
Ω2 + k(g + 2Ωc0 − Ω2R)− Ω

k
,

which features contributions from the Coriolis force, the centripetal force and the
underlying current. Ignoring the effects of the Earth’s rotation (letting Ω → 0) we
recover the standard expression for the deep-water gravity water wave (and Gerstner

wave) dispersion relation, namely c =
√
g/k. Surface waves with wavelengths of

300 m, propagating at speeds of about 22 m/s, are common in the Pacific – see the
discussion in [7]; the corresponding value of the speed predicted by the dispersion

relation c =
√
g/k is therefore quite accurate.

2.3.2. Gravity-correction term. The second modified β−plane approximation we
consider was derived in [32]. This non-traditional approximation was motivated
by the fact that, from a mathematical modelling perspective, an appreciable level of
mathematical detail and structure must be lost as a result of the ‘flattening out’ of
the earth’s surface which follows from the standard β−plan approximation. An ap-
proach which retains some artefacts of the geometry of the earth’s curvature by way
of incorporating a gravitational-correction term into the standard β−tangent plane
model is as follows. We now neglect centripetal terms in (1.1), and in considering the
form that the gravitational body force F takes following the linearisation procedure,
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we accommodate a correction term which incorporates the deviation of the tangent
plane from the earth’s curved surface. We consider the point P in the figure below,

and note that its distance from the earth’s centre O is R + H =
√

(R + z)2 + y2

where the plane is aligned with the x−coordinate.

R

O

y

(x,y,z)
z

H

P

As R is significantly larger than both y or z, we approximate the gravitational
potential V at P by

V(x, y, z) = Hg =

(√
(R + z)2 + y2 −R

)
g ≈

(
z +

y2

2R

)
g.

The associated gravitational field is F = −∇V = (0,−y/R,−1)g, and equations
(1.1) reduce to

ut + uux + vuy + wuz + 2Ωw − βyv = −1

ρ
Px

vt + uvx + vvy + wvz + βyu = −1

ρ
Py−

g

R
y

wt + uwx + vwy + wwz − 2Ωu = −1

ρ
Pz − g,

(2.12) BetaGrav

where the gy/R term is the gravitational correction term which arises when we
accommodate the direction that gravity acts in for the tangent β−plane model.
Since

|c0| <
g

2Ω
≈ 6.7× 104m/s (2.13) physplau

for all physically plausible values of c0, it can be shown that (2.2) represents a
solution (with g = g + 2Ωc0 (> 0)) to (2.12) with

f(s) =
cβ

2g
s2.

Theorem 2.1 ( [32]). For all physical plausible (such that (2.13) holds) values of the
mean zonal current c0, the fluid motion prescribed by (2.2) is an exact solution of the
governing equations (2.12). This solution represents three-dimensional, nonlinear
geophysical wave-current interactions; the wave terms are equatorially-trapped steady
periodic waves, propagating zonally eastward with constant wave phasespeed c, with
insignificant motion at great depths.
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At in the previous section, when the fluid motion prescribed by (2.12) is at rest
the free-surface is a non-flat geoid, with constant pressure, given in this instance by
z = Patm/ρg − y2/2R.

3. Global validity of exact solutions

While it can be shown by direct computations that the exact solutions described
in previous section satisfy the relevant governing equations (2.1a), (2.10) or (2.12),
for appropriately defined pressure distribution functions, it is also necessary to pro-
vide a rigorous mathematical justification that the prescribed flow is dynamically
possible. Proving that the mapping (2.2) is a global diffeomorphism between the
Lagrangian labelling variables to the fluid domain ensures that it is possible to have
a three-dimensional, nonlinear motion of the entire fluid body described by (2.2),
characterising wave-current interactions, whereby fluid particles never collide, and
furthermore they encompass the entire infinite fluid region beneath the free-surface
interface.

We describe briefly the approach which was used in [32] to establish the global va-
lidity of (2.2) in solving (2.12); other geophysical scenarios were addressed in [57,61].
Firstly, from examining its Jacobian matrix, and applying the Inverse Function The-
orem, it can be proven that the mapping (2.2) represents a local diffeomorphism from
the Lagrangian variables to the fluid domain. Additional analytical considerations
establish that it is in fact globally injective. To complete the proof, as was first
implemented in [26] for Gerstner’s wave, we employ the following degree-theoretical
result, the Invariance of Domain Theorem [45,60], which we state as:

IOD Theorem 3.1. If U ⊂ Rn is open and F : U → Rn is a continuous one-to-
one mapping, then F : U → F (U) is a homeomorphism. Furthermore, we have
F
(
∂U
)

= ∂F (U).

Putting all these components together leads to the following result:

Theorem 3.2 ( [32]). The mapping (2.2) is a global diffeomorphism between the
Lagrangian labelling variables and the infinite fluid domain bounded above by the
free-surface interface z = η(x, y, t). For r0 < 0 the free surface has a smooth profile,
and in the limiting case r0 = 0 the surface is smooth except when s = 0, in which
case it is piecewise smooth with upward cusps.

4. Hydrodynamical stability analysis

Hydrodynamical stability examines how an infinitesimal perturbation of the back-
ground flow evolves, as time progresses, for a given fluid motion [20]. The issue of
hydrodynamic stability is important for numerous reasons. Physically, unstable
flows cannot be observed in practice since they are rapidly destroyed by any minor
perturbations or disturbances. From a mathematical viewpoint, establishing the hy-
drodynamical stability or instability of a flow is extemely difficult in general, given
the intractibility of the underlying governing equations of motion.
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The short-wavelength instability method, which was independently developed by
the authors of [1, 23, 47], examines the evolution of a localised and rapidly-varying
infinitesimal perturbation represented at time t by the wave packet

u(X, t) = εb(X, ξ0,b0, t)e
iΦ(X,ξ0,b0,t)/δ. (4.1) wave

Here X = (x, y, z), Φ is a scalar function, and at t = 0 we have Φ(X, ξ0,b0, 0) =
X · ξ0, and b(X, ξ0,b0, 0) = b0(X, ξ0). The normalised wave vector ξ0 is subject
to the transversality condition ξ0 · b0 = 0, and b0 is the normalised amplitude of
the short-wavelength perturbation of the flow which has the velocity field U(X) ≡
(u v w)T (x, y, z). Then the evolution in time of X, of the perturbation amplitude
b, and of the wave vector ξ = ∇Φ, is governed at the leading order in the small
parameters ε and δ by the system of ODEs

Ẋ = U(X, t),

ξ̇ = −(∇U)T ξ,

ḃ = −Lb− b · (∇U) + ([Lb + 2b · (∇U)] · ξ) ξ
|ξ|2 ,

(4.2) pertsyst

with initial conditions X(0) = X0, ξ(0) = ξ0, b(0) = b0. Here (∇U)T is the
transpose of the velocity gradient tensor and, for the system defined by (2.2), L =
L(X) is given by

L =

 0 −βy 2Ω
βy 0 0
−2Ω 0 0

 .

The instability criterion, for Lagrangian flows for which X(0) = X0, is determined
by the exponent

Λ(X0) = lim sup
t→∞

1

t
ln

(
sup

|ξ0|=|b0|=1,ξ0·b0=0

{|b(X, ξ0,b0, t)|}

)
.

If Λ(X0) > 0 for a given perturbation then particles become separated at an expo-
nential rate and the flow is unstable; this provides us with a criterion to establish
the instability of a flow.

For certain solutions which have an explicit Lagrangian formulation, it transpires
that the short wavelength instability analysis is remarkably elegant, and the criteria
for instability assumes a tangible and explicit formulation in terms of the wave
steepness (2.6). In the context of the solution (2.2) describing nonlinear wave-
current interactions, the short-wavelength instability method was employed to prove
the following result:

prop Proposition 4.1 ( [24]). The equatorial waves propagating eastward over a con-
stant underlying current, as prescribed by (2.2), are unstable to short wavelength
perturbations if the steepness of the wave

ekr0 >
3Ω +

√
Ω2 + k(2Ωc0 + g)

Ω + 3
√

Ω2 + k(2Ωc0 + g)
'

1

3
. (4.3) instcond2
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We note from (4.3) that an adverse current with c0 > 0 favours instability in the
sense that the steepness threshold is decreased for the wave to be unstable, compared
to the case without current. Conversely, this threshold is increased by a following
current with c0 < 0. On letting Ω → 0 the right-hand side of (4.3) reduces to 1/3,
which is the threshold value of the instability criteria for Gerstner’s gravity water
wave established in [46]. In the setting of no underlying current, c0 = 0, the above
result reduces to the instability criterion originally established for geophysical surface
waves in [11]. We note that further instability results were established in [33,38,39]
for Gerstner-like geophysical surface waves in various settings, such as edge-waves,
Pollard’s solution, and the f−plane. A result establishing instability for internal
waves was derived in [34].

5. Mean flow properties

The question of determining the fluid drift induced by the propagation of surface
water waves is a fascinating, and highly complex, issue which has been considered
dating back to the times of Stokes. Longuet-Higgins [48] characterised key features of
the mean fluid drift velocity, or so-called Stokes’ drift velocity, in terms of the mean
Eulerian flow velocity and the mean Lagrangian flow velocity, whereby: Lagrange =
Euler + Stokes. Determining the mean fluid flow velocities remains a highly complex
and intricate issue from both a theoretical, and experimental [54, 64], viewpoint.
However, as the form of (2.2) is explicit in terms of Lagrangian variables it transpires
that the solution (2.2) is quite amenable to an analysis of its mean flow velocities
and related mass transport [10, 11]. The presence of a constant underlying current
term is a significant complicating factor for the analysis of (2.2), undertaken in [35],
and this is what we describe briefly.

The mean Lagrangian flow velocity (also known as the mass-transport velocity
[48]) at a point in the fluid domain is the mean velocity over a wave period of a
marked fluid particle which originates at that point. For (2.2) the average horizontal
velocity u is

〈u〉L =
1

T

∫ T

0

u(q − ct, s, r)dt =
ceξ

T

∫ T

0

cos [k(q − ct)] dt− 1

T

∫ T

0

c0 dt = −c0. (5.1)

It is immediately apparent that the mean Lagrangian flow velocity is either west-
wards or eastwards, depending on the sign of c0. When c0 = 0 the mean Lagrangian
velocity is zero, which concurs with the result of [11], and in this light the form of
the mean Lagrangian flow velocity above is not particularly surprising considering
the explicit manner in which c0 appears in the expression for the Lagrangian velocity
(2.2). The expression for the mean Lagrangian velocity is independent of both the
latitude s, and the location from where the fluid parcel originates.

In the Eulerian setting matters are greatly complicated by the presence of the
underlying current. The mean Eulerian flow velocity at a fixed-point in the fluid
domain, at any fixed-depth beneath the wave trough, is the Eulerian fluid velocity
at that fixed-point averaged over a wave period. In the case of the velocity field
(2.2) the mean Eulerian flow velocity may be computed by taking the mean of the
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horizontal velocity. Letting z = z−(s∗) denote the vertical position of the wave
trough level, we fix a depth z = z0 < z−(s∗). The depth z = z0 is be characterised
in terms of Lagrangian variables, using (2.2c), by the equation

z0 = R +
1

k
eξ(R) cos θ, (5.2) depth

where we denote by r = R(q − ct; s∗, z0) the functional relationship induced by
relation (5.2) between the otherwise independent variables r and q, as follows from
the implicit function theorem. In [35] it is shown that the mean Eulerian velocity is
given by the relation

〈u〉E(s∗, z0) = − c
L

∫ L

0

e2ξ(R(q))dq − c0

L

∫ L

0

1− e2ξ(R(q))

1 + eξ(R(q)) cos (k [q − ct])
dq, (5.3) mean_Eulerian_velocity

with ξ(r, s) = k (r − f(s)) and θ(q, t) = k(q−ct). A non-zero depth invariant current
c0 adds a significant complicating factor to expression (5.3), and in particular the
sign (and hence direction) of the mean Eulerian velocity is not easily discernible from
the above expression in general. Nevertheless, depending on the size and direction of
the current c0, we may obtain estimates which determine the direction of the mean
Eulerian velocity following from the inequalities∫ L

0

1− e2ξ

1 + eξ
dq ≤

∫ L

0

1− e2ξ

1 + eξ cos θ
dq ≤

∫ L

0

1− e2ξ

1− eξ
dq. (5.4) boun_c_0_neg

For c0 > 0, an adverse current, we must have 0 < c0 < ce2kr0 < c from (2.5). Since
ξ ≤ kR < kr0 < 0, for all latitudes s and depths z0 < z−(s), the mean Eulerian flow
velocity is in the range

〈u〉E(s, z0) ∈
(
−c1− e3kr0

1− ekr0
, 0

)
. (5.5)

That the mean Eulerian flow is westward for an adverse current is not surprising,
since in the absence of the current the mean Eulerian flow is westward in any case
(cf. [11]).

The case when c0 is nonpositive, c0 ≤ 0, represents a following current. In this
case the influence that the current has on the mean Eulerian flow in (5.3) is even
more complex and difficult to discern, and it is not possible to determine its effect
directly from expression (5.3). However it can be deduced that the mean Eulerian
velocity (5.3) is westwards, that is 〈u〉E(s∗, z0) < 0, if

c0 > −c min
q∈[0,L]

e2k(R(q;z0)−f(s∗))
(
1− ek(R(q;z0)−f(s∗))

)
1− e2k(R(q;z0)−f(s∗))

. (5.6) eq:cond1

In the absence of an underlying current, that is when c0 = 0, condition (5.6) always
holds and so the resulting mean Eulerian velocity is always in the westerly direction,
an observation which accords with [11]. The mean Eulerian flow (5.3) is eastwards,
〈u〉E(s∗, z0) > 0, if

c0 < −c max
q∈[0,L]

e2k(R(q;z0)−f(s∗))
(
1 + ek(R(q;z0)−f(s∗))

)
1− e2k(R(q;z0)−f(s∗))

. (5.7) eq:cond2
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The Stokes drift (or mean Stokes) velocity US(z0), defined (cf. [11,48,54]) by the
relation

〈u〉L(z0) = 〈u〉E(z0) + US(z0),

takes the form

US = 〈u〉L − 〈u〉E =
c

L

∫ L

0

e2ξ(R(q))dq +
c0

L

∫ L

0

1− e2ξ(R(q))

1 + eξ(R(q)) cos (k [q − ct])
dq − c0.

For an adverse current, c0 ≥ 0, it follows from (2.5) that

US =
1

L

∫ L

0

(
ce2ξ(R(q)) − c0

)
dq +

c0

L

∫ L

0

1− e2ξ(R(q))

1 + eξ(R(q)) cos (k [q − ct])
dq > 0.

Therefore for c0 ≥ 0 the Stokes drift is eastwards throughout the fluid domain. In
the case of a following current, c0 < 0, the expression for Stokes drift is altogether
more complicated and intractable. Nevertheless we remark that, for c0 < 0, if the
magnitude of the current is such that (5.7) holds then the Stokes drift must be
westwards.

We note that an analysis of flow properties for geophysical internal waves in the
absence of a current (as described in Section 2(b)) was performed in [10], and in the
presence of a depth-invariant current a similar approach to that outlined above was
undertaken in [59].

6. Conclusion

In this paper we have surveyed equatorial models for geophysical fluid dynamics,
in the form of both traditional and non-traditional β−plane approximations, which
have recently yielded exact and explicit Gerstner-like solutions representing nonlin-
ear three-dimensional water waves. These waves propagate both at the free-surface,
and along the internal theormocline, and we have shown how a depth-invariant
mean current may be incorporated into the wave-field kinematics. Due to their
rarity, the existence of exact finite-amplitude solutions to the water wave problem
is remarkable. Aside from possessing an inherent mathematical elegance, this re-
view outlines how Gerstner-like solutions have proven to be surprisingly adaptable
in modelling a variety of geophysical scenarios. Furthermore, we have surveyed how
these solutions are naturally suited to an intricate mathematical analysis of the
physical flow-properties induced by the nonlinear waves, and wave-current interac-
tions, that they prescribe. With regard to future explorations, we remark that, in
general, exact solutions play an important role in the study of water waves since
many apparently intangible wave motions can be obtained as perturbations of these
solutions. As such, the solutions surveyed may represent a first step in generating so-
lutions prescribing more physically complex flows by way of employing perturbative
or asymptotic considerations.
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