\‘Z C ORA i e Caite

Title

Real-time algorithm configuration

Authors

Fitzgerald, Tadhg

Publication date

2021-04

Original Citation

Fitzgerald, T. 2021. Real-time algorithm configuration. PhD
Thesis, University College Cork.

Type of publication

Doctoral thesis

Rights

© 2021, Tadhg Fitzgerald. - https://creativecommons.org/
licenses/by-nc-nd/4.0/

Download date

2024-03-28 12:11:55

[tem downloaded
from

https://hdl.handle.net/10468/11303

University College Cork, Ireland
Colaiste na hQllscoile Corcaigh



https://hdl.handle.net/10468/11303

Real-time Algorithm Configuration

Tadhg Fitzgerald

NATIONAL UNIVERSITY OF IRELAND, CORK

COLLEGE OF SCIENCE, ENGINEERING, AND FOOD SCIENCE
SCcHOOL OF COMPUTER SCIENCE AND INFORMATION TECHNOLOGY

INSIGHT CENTRE FOR DATA ANALYTICS

Thesis submitted for the degree of
Doctor of Philosophy

April 2021

Supervisors: Prof. Barry O’Sullivan
Prof. Ken Brown
Head of Department/School:  Prof. Cormac J. Sreenan

Research supported by Insight Centre for Data Analytics and Science Foundation
Ireland under Grant No. 12/RC/2289 which is co-funded under the European Regional
Development Fund.



Contents

Contents
Listof Figures . . . . . . . . . . . . .. e v
Listof Tables . . . . . . . . . . . . e vi
Abstract . . . . . . vii
Declaration . . . . . . . . . .. viii
Acknowledgements . . . . . .. ... Lo X

1 Introduction 1
1.1 Motivation . . . . . . . . . . . e e e 1
1.2 Thesis Statement . . . . . . . . ... e 5
1.3 Thesis Contributions . . . . . . . .. .. ... ... ... ...... 5
1.4 Organisation of this Dissertation . . . . . ... ... ... ...... 6

2 Background 8
2.1 Combinatorial Problem Solving . . . . .. ... ... ........ 8
2.1.1  Constraint Satisfaction Problems . . . . . . ... .. ... .. 10

2.1.2  Solving Techniques . . . . . . .. ... ... ......... 15

2.1.3 Boolean Satisfiability . . . . .. ... ... ... ... ... 25

2.1.4 Imnteger Programming . . . . . . . .. ... ... ... .... 28

2.2 Algorithm Configuration and Selection . . . . . . . ... . ... ... 31
2.2.1 Algorithm Configuration . . . . . .. .. ... ... ..... 32

2.2.2  Algorithm Selection and Portfolios . . . ... ... ... .. 44

2.2.3 Combined Algorithm Selection and Configuration . . . . . . 49

2.2.4 Runtime Prediction, Parameter Importance, and Learning . . . 51

2.3 Chapter Summary . . . . . . . . ... 54
3 Real-time Configuration Framework 55
3.1 Motivation . . . . . . ... 55
3.1.1  Prevailing Configuration Methodology . . . . ... ... .. 55

3.1.2 Exploiting Parallelism for Real-time Configuration . . . . . . 56

3.2 ReACT: Framework and Components . . . . . .. ... ... .... 59
3.2.1 Framework Overview . . . . . . . . .. .. .. ... ..... 59

322 ParallelRacing . . .. ... ... ... ... ... ... 63

3.2.3 Configuration Pool and Leaderboard . . . . . . ... .. ... 67

3.24 Candidate Selection . . . . . ... ... ... ........ 71

3.2.5 PoolMaintenance . . . . . . . .. ... 72

3.3 Chapter Summary . . . . . . . . ... 73
4 Instantiations of the ReACT Framework 74
4.1 Introduction . . . . . . . . ... 74
4.2 ReACT: Real-time Algorithm Configuration through Tournaments . . 75
421 OVerview . . . . . . oo e e 75

4.2.2 Leaderboard and Selection . . . . . ... ... ... ..... 75

423 PoolMaintenance . . . . . . . .. ..o 77

4.2.4 Experimental Setup and Datasets . . . . . . ... ... .... 79

4.2.5 Experimental Evaluation . . . . . ... ... ... ...... 80



Contents

4.3 ReACTR: Real-time Algorithm Configuration through Tournament
Ranking . . . . . . . . . L
43.1 Overview . . . . . . ...
4.3.2 Leaderboard and Selection . . . . . ... ... ... .....
433 PoolMaintenance . . . . . . . .. ...
4.3.4 Experimental Setup and Datasets . . . . . . ... ... ....
4.3.5 Experimental Evaluation . . . . . ... ... ... ......

4.4 Chapter Summary . . . . . . . ...

Leaderboard, Candidate Selection and Instance Ordering

5.1 Leaderboard and Ranking . . . . . . . ... .. ... .........
5.1.1 Bradley-TerryModel . . . .. ... ... ...........
512 Elo . ...
5.1.3 Glickoand Glicko-2 . . ... ... ... ...........
5.1.4  TrueSkill . . . . .. ... ...

5.2 Candidate Selection . . . . . . . ... ... ...
5.2.1 SelectionMetrics . . . . . . ... o
5.2.2 Datasets and Instance Generation . . . . . ... .. .. ...
523 Features . . . . . . . ...

5.3 Experiments on Fixed-set Solver Datasets . . . . . ... .......
5.3.1 Lexicographical and Runtime-based Ordering . . . . . . . ..
5.3.2 Feature-Based Ordering . . . . ... .............

5.4 Experiments on Non-fixed Solver Configurations . . . .. ... ...

5.5 Chapter Summary . . . . . . . ... Lo

Configuration Pool Maintenance

6.1 Removal Strategies . . . . .. ... ...
6.1.1 Simple Numerical Methods . . . . .. ... .. ... ... ..
6.1.2 Ranking Systems . . . . . .. .. ... ... L.

6.2 Configuration Generation . . . . . . . . . . . ... ... ... ...
6.2.1 Exploration and Exploitation . . . . . . .. ... ... ....
6.2.2 Randomisation . . . . .. .. ... ... ...
6.2.3 Genetic Algorithms . . . . . . ... ... ... ...
6.2.4 Population . . ... ... ...
6.2.5 Tournaments and Fitness Function . . . . . . . ... ... ..
6.2.6 CroSsOver . . . . . . . .. v i it
6.2.77 Mutation . . . . ...

6.3 Model-Based Configuration Space Reduction . . . . ... ... ...
6.3.1 Motivation . . . . . ...
6.3.2 Regression . . . ... .. ... ...
6.3.3 Classification . . . . . . . .. ... Lo
6.3.4 Feature Selection . . . . . .. ... ... ... ... ...,
6.3.5 Experimental Setup . . . . . ... ... ... L.
6.3.6 Offline Experiments . . . .. ... ... ...........
6.3.7 Online Experiments . . . . . ... ... ...........
6.3.8 Running Time vs. Solution Time Trade-off . . . . ... . ..

6.4 Chapter Summary . . . . . . . . . ...

il



Contents

7 Conclusions and Future Work

7.1 Conclusions
7.2  Future Work

7.2.1
7.2.2
7.2.3
7.2.4

il

Configuring the Configurator . . . . . . . . ... ... ..
Alternative Framework Instantiations and Improvements . . .
Exploiting Stochastic Instance Arrivals . . . . . . .. ..
Balancing Configuration Overhead Against Speed-up . . .



List of Figures

List of Figures
2.1 Asimple constraint graph. . . . . ... ... Lo 11
2.2 Both distinct solutions to the four queens problem. . . . . . ... .. 12
2.3 The N-Queens problem modelled in MiniZinc. . . .. ... ... .. 13
2.4 Sudoku CP propogation example. . . . . .. ... ... ....... 13
2.5 The generalised Sudoku problem modelled in MiniZinc. . . . . . .. 14
2.6 Example of arcconsistency. . . . . . . ... ... 16
2.7 The search tree for the 4-queens problem. . . . ... ... ... ... 20
2.8 Local search on the 4 queens problem. . . . . . . ... ... ..... 22
2.9 A model of the algorithm selection problem. . . . . . . .. ... ... 45
3.1 CPUtrends from 1975t02017. . . . . . . .. ... ... ... ... 57
3.2 Anoverview of the ReACT framework. . . . ... ... ... .. ... 60
3.3 Solving time comparison of various racing approaches on synthetic data. 64

34

3.5

4.1
4.2
4.3
44
4.5
4.6
4.7

4.8
4.9

4.10
4.11
4.12
4.13

5.1
5.2
53
54
5.5

5.6
5.7

5.8
59

Solving time comparison of various racing approaches on synthetic data

(with persistent winner). . . . . . . . . . .. ..o 68
Sequential vs. Parallel runtime capping comparison. . . . . . . . . . . 70
Regions and Arbitrary datasets’ solving time distribution. . . . . . . . 81
Regions dataset: Cumulative avg. runtime for three instance orderings. 83
Regions dataset: Cumulative time saving for three instance orderings. 85

Arbitrary dataset: Cumulative avg. runtime for three instance orderings. 86

Arbitrary dataset: Cumulative time saving for three instance orderings. 87
Regions dataset: Frequency of new winning configurations. . . . . . . 88
Removal strategy: The effect TrueSkill confidence and removal

threshold on solving time. . . . . . . . . .. .. .. ... ....... 95
Circuit Fuzzing: Lingeling cumulative avg. solving time. . . . . . . . 102
Arbitrary Combinatorial Auctions: CPLEX cumulative avg. solving

HME. . . . . . e e e e 103
Regions Combinatorial Auctions: CPLEX cumulative avg. solving time. 103
Crafted SAT+UNSAT: ReACTR cumulative avg. solving times. . . . 106
Random SAT+UNSAT: ReACTR cumulative avg. solving times. . . . 107
CSSC Datasets: Default solving time distributions. . . . . . . . . .. 109
Cumulative solving time using Glicko and TrueSkill for ranking. . . . 117
SAT12-ALL (Lexicographic): Candidate selection method comparison 124

PROTEUS-2014: Best candidate selection mechanisms solving time. . 125

SAT12-ALL: Best candidate selection mechanisms solving time. . . . 126
SAT12-All: Cumulative runtime graph for best and worst feature order-

ings with baselines. . . . . .. ... ... ... ... .. .. ... 128
SAT12-All: Box-plots of the ten best, ten worst and three baselines. . 129

PROTEUS-2014: Cumulative runtime graph for best and worst feature
orderings with baselines. . . . . . ... ... ... ... ... ... 131
PROTEUS-2014: Box-plots of the ten best, ten worst and three baselines. 132
Combinatorial Auctions Grouped vs. Ungrouped: Total solving time
scatter plot. . . . .. L 134

v



List of Figures

5.10
5.11

5.12

6.1
6.2

6.3
6.4
6.5
6.6

6.7
6.8

6.9

6.10
6.11

Combinatorial Auctions Grouped: Instances Solved vs. Solving Time.
Combinatorial Auctions Grouped vs. Ungrouped: Total solving time
for various runtime orderings. . . . . . . ... .. ... ...

Combinatorial Auctions Ungrouped: Instances Solved vs. Solving Time.

TrueSkill threshold experiments: Runtime distribution of instances used.

TrueSkill threshold experiments: Solving time vs. configurations pro-
cessed . ..o
Configuration Generation: Cumulative solving time for different ex-
ploitation ratios. . . . . . . . ... ...
Grid vs Random Search. . . . .. ... ... ... . 0oL
TrueSkill ranking compared with cumulative average solving time. . .
The effect of TrueSkill ranking adjustments: minimum solving time
and slack time. . . . . . .. ... Lo L
Roulette wheel vs. Top n parent selection. . . . . . ... ... ....
CPLEX - Combinatorial Auction Mix: Full vs. Reduced Configuration
Space. . . . ..
CPLEX - Combinatorial Auction Mix: Online Configuration Space
Reduction . . . . . . ... ... L
Lingeling - Circuit Fuzz: Online Configuration space reduction.

Lingeling - Circuit Fuzz: Configuration generation times. . . . . . . .

134

135
136

144
146
149
150
156

157
158

166

167
168



List of Tables

List of Tables

4.1
4.2
4.3
4.4

4.5
6.1

6.2

Combinatorial auction instance ordering: Cumulative time saving over

default. . . .. . ... &9
CSSC Solvers Overview . . . . . .. .. ... . ... .. ..... 98
CSSC Datasets Overview . . . . . . . .. ... ... 99
Summary of training, testing and total time needed for the various

configurations on the benchmark datasets. . . . . .. ... ... ... 104
CSSC 2014: Mean total solving time and number of time-outs. . . . . 104

TrueSkill threshold experiments: Summary statistics for total solving
time(s) and configurations processed . . . . . . . .. ... ... .. 147
An illustration of a drawback in the binary encoding scheme. . . . . . 152

vi



Abstract

Abstract

This dissertation presents a number of contributions to the field of algorithm configur-
ation. In particular, we present an extension to the algorithm configuration problem,
real-time algorithm configuration, where configuration occurs online on a stream of
instances, without the need for prior training, and problem solutions are returned in the
shortest time possible. We propose a framework for solving the real-time algorithm
configuration problem, ReACT. With ReACT we demonstrate that by using the parallel
computing architectures, commonplace in many systems today, and a robust aggregate
ranking system, configuration can occur without any impact on performance from the
perspective of the user. This is achieved by means of a racing procedure. We show two
concrete instantiations of the framework, and show them to be on a par with or even
exceed the state-of-the-art in offline algorithm configuration using empirical evaluations
on a range of combinatorial problems from the literature.

We discuss, assess, and provide justification for each of the components used in our
framework instantiations. Specifically, we show that the TrueSkill ranking system
commonly used to rank players’ skill in multiplayer games can be used to accurately es-
timate the quality of an algorithm’s configuration using only censored results from races
between algorithm configurations. We confirm that the order that problem instances
arrive in influences the configuration performance and that the optimal selection of
configurations to participate in races is dependent on the distribution of the incoming in-
stance stream. We outline how to maintain a pool of quality configurations by removing
underperforming configurations, and techniques to generate replacement configurations
with minimal computational overhead. Finally, we show that the configuration space
can be reduced using feature selection techniques from the machine learning literature,
and that doing so can provide a boost in configuration performance.

vii
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Chapter 1

Introduction

1.1 Motivation

Complexity surrounds us in the modern world. Many difficult modern challenges can
be modelled as discrete optimisation problems. For example the routes taken by taxis
and delivery trucks are often planned by routing software in order to minimise fuel
usage and delay to the customer [CAG™ 14]. Internet advertising, spectrum sales and
parcels of land are sold by means of combinatorial auctions to maximise seller profit
and utility to the buyer [HIK™ 18, BG17, LBPS00b]. The integrated circuits used in all
types of electronics use specialised software to verify that they are correct and will not
malfunction [PBGO5].

These problems and many more leverage the power of modern combinatorial solvers to
provide optimal or near optimal solutions. Problems such as these are often extremely
computationally challenging to solve as the solving difficulty usually increases expo-
nentially with the number of options available. Due to the exponential explosion in size
of the search space associated with these problems it is often impossible to completely
search through all search states in order to find provably optimal solutions. For this
reason the combinatorial solvers used to tackle these problems rely on various heuristics
and problem relaxations to find good solutions. Due to the level of sophistication in these
solvers the creators often expose a vast array of options as parameters [GO20, IBM14].
These parameters control everything from the search heuristic to the number of cuts to

make.

It is now increasingly recognised that there is no single solver or parameter setting
that works best on every type of instance [ XHHL12]. Instead, different problems are

best solved by different strategies, meaning solvers should open parameters to the
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end-user in order to achieve maximum performance [Hool2a]. By exposing an array
of solver settings we are given a level of fine grained control that allows solvers be
tailored to individual problems. This level of customisation can drastically improve the
performance of high performance algorithms. However, this flexibility also exposes
the end user to an overwhelming number of choices when configuring the solver. Even
a domain expert with years of experience would struggle to select the best, or even a
good, configuration given the myriad of different parameter settings and the potential
interactions between them. Manual tuning and testing of anything but a small fraction

of the entire configuration space is impossible due to its vastness.

For this reason there has been an emphasis on the field of automatic algorithm configur-
ation in recent years [HHLBS09, HHL11, AST09b, AMS™15, BYBS10]. Automatic
algorithm configuration, also known as parameter tuning, as the name implies aims to
configure a parameterised algorithm such that its performance (e.g. runtime, objective
value etc.) over a set of instances is improved. Algorithm configuration is usually per-
formed in a black box fashion where the configurator is only supplied with a description
of the algorithm parameters and their allowed values, a set or stream of instances to
solve and a performance metric for the algorithm. The algorithm configurator then
attempts to automatically find a set of legal values for the parameters (known as a

configuration) such that performance on the supplied instances is increased.

The majority of current algorithm configuration systems treat tuning as a static prob-
lem [HHLBS09, HHL11, AST09b, AMS™15]. We refer to these types of algorithm
configuration systems as offline configurators. An offline configurator is supplied with
a set of representative training instances, an algorithm to tune and performance metric
(e.g. runtime). The configurator is then allocated a fixed configuration budget of time
which is used to train on the instances with the aim of producing a superior configura-
tion. Within this configuration budget the offline configurator generates and evaluates
configurations on the set of training instances. As training usually occurs offline and
separate from the solving step it is possible to use techniques not available in situations
where finding solution as quickly as possible is the main goal. For example, it is possible
to revisit and solve the same instance multiple times in order to reduce variance and
evaluate different configurations [HHLBS09, HHL11, AST09b, AMS*15, BYBS10].
A fixed configuration budget also enables more expensive techniques such as expensive
instance feature computation and computationally intensive learning techniques to be

used.

A number of offline algorithm configuration systems that employ many different

techniques in order to seek out quality configurations have been introduced. Para-
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mlILS [HHLBSO09], for example, employs an iterated local search to explore the para-
meter space, focussing on areas where it found improvements in the past. Alternatively,
SMAC [HHLI11] tries to build an internal random forest model that predicts the per-
formance of a configuration, trying the ones most probable to improve upon the current
behavior. Finally, GGA [AST09b] utilises a genetic approach, running a number of
configurations in parallel and allowing the best ones to pass on their parameter settings
to the subsequent generation. While there is no consensus on which of these approaches
is best, all of them have been repeatedly validated in practice, sometimes leading to

orders of magnitude improvements over what was found by human experts [HHL11].

While this methodology has been shown to work time and again sometimes resulting
in orders of magnitude improvement over the default configuration [HHLBSO09], it
is not without its flaws. Firstly a representative set of training instances must be
readily available before configuration can begin. Due to this requirement a suitable
number of instances must be collected during the initial algorithm run before offline
configuration can proceed. During this collection period no parameter tuning occurs and
the default algorithm configuration must be used when solving instances. Alternatively,
previously collected instances from a similar domain or problem type may be used as
training instances. In this case the quality of the configured algorithm depends strongly
on how closely the training instances match the instances encountered in the future.
Differences in problem structure can result in drastically different parameter settings
being preferred [Hool2b, KHNT19].

In cases where a set of representative problem instances are available at training time
there is no guarantee that these instances will remain representative as future instances
grow and change over time. This is a common situation; consider an advertising
company which runs combinatorial auctions to sell advertising space. As the company
grows the customer demand and available advertising spaces change. Similarly the
number of bids increases during times of high demand, for example in the run up to
Christmas. Due to the train-once nature of offline configurators it is not possible to
adapt to these changes without costly retraining. Even when retraining is possible it is
not immediately obvious when retraining should occur. Periodically retraining allows
the configurator to adapt to changes in the problem instances but comes with a time and

computational penalty.

Finding the balance between configuration budget and improvement in solving time is a
challenge. In the case of some problem instances that are not soluble in a reasonable
amount of time, substantial algorithm configuration is needed to solve those instances

efficiently. In other cases where the configuration budget is large and the improvement



1. INTRODUCTION 1.1 Motivation

is relatively modest, any solving time reduction through configuration can be eclipsed
by the time taken to find a quality configuration. To the best of our knowledge the topic

of balancing configuration budget with expected improvement has not been studied.

This thesis introduces a novel take on the classic algorithm configuration problem,
real-time algorithm configuration, with the goal of resolving the aforementioned issues.
The core objective of real-time algorithm configuration is to reduce time needed to
return a solution while still improving the algorithm configuration over time. Real-time
algorithm configuration works with a stream of instances, constantly improving the
algorithm’s configuration as the stream is being processed. Should the instances in the
stream evolve over time the real-time configurator is able to adapt as it is constantly
tuning. This is in stark contrast to offline configuration which adopts a train-once
methodology and requires retraining when instances change. A streaming approach
to configuration also alleviates the necessity of having a pre-existing training set to
hand. Our proposed solution uses a lightweight techniques and a solve-once approach
to ensure that an improving set of configurations are discovered while incurring the

minimum amount of additional runtime.

There are numerous discrete optimisation challenges where instances naturally arrive in
streams. Taxi and ride-sharing services must route drivers to pickups in a timely manner
while a stream of requests arrivers from users [GRWO08, LCH" 14]. Combinatorial
auctions are used to auction online advertising space, service procurement, and material
supply [DVVO03, HIK " 18]. Here combinatorial auctions are repeatedly solved as bids
change. Factories use scheduling techniques to schedule workers and machines, as
worker availability and demand shifts schedules must be recalculated [CD09]. All
of these practical applications would benefit heavily from the increases in efficiency
which algorithm configuration provides. Despite this there has been little to no research
into algorithm configurators which work on an incoming stream of instances in real-
time [KHNT19].

The realisation of our work on real-time algorithm configuration is the Real-time
Algorithm Configuration through Tournaments (ReACT) framework. The ReACT
framework consists of four main components: racing, ranking/selection, removal, and
generation. ReACT uses the multiple cores which are commonly available in modern
architectures to race competing configurations in parallel. As soon a solution for the
instance is found all other runs are terminated. This aggressive capping mechanism
ensures that only the minimum evaluation time necessary is used. The configuration
which solved the instance fastest is considered the winner and this information is then

used to update an internal ranking procedure. When new instances arrives the ranking
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produced by this ranking procedure is used to select which configurations to run. The
current incumbent is always selected which provides a cap on the worst-case solving-
time. The configuration pool is periodically refreshed by removing and replacing under
performing configurations. Replacements are generated using a variety of techniques

aimed at improving the overall quality of the pool.

1.2 Thesis Statement

The thesis defended in this dissertation is as follows:

Thesis. The performance of combinatorial solvers can be improved as a stream of
instances is being processed without prior information or training. This is possible due
to real-time algorithm configuration using parallel evaluation combined with a robust

ranking system.

1.3 Thesis Contributions

This thesis makes a number of contributions to the existing body of knowledge:

* We introduce a variation of the algorithm configuration problem, real-time al-
gorithm configuration, where the goal is to improve the configuration of a target
algorithm while processing a stream of problem instances without increasing the

time required to return a solution.

* We propose a framework outlining the key components required to solve the real-
time algorithm configuration problem. This framework is called the Real-time
Algorithm Configuration through Tournaments (ReACT) framework. It exploits
the increasingly common parallel architectures available in order to determine

improving configurations using a racing methodology and ranking approach.

* Two concrete instantiations of the ReACT framework are implemented. These
demonstrate the flexibility of the framework and are used to empirically eval-
uate its effectiveness on a number of combinatorial optimisation benchmarks
achieving performance on a par with or exceeding that of state-of-the-art offline

configurators.

* We demonstrate that the ordering of the stream of incoming problem instances
has an impact on the performance of the configurator. Further to this we show
that the optimal selection method for choosing which configurations to run from

pool of configurations is dependent related to this instance ordering.
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* We introduce a novel method for reducing the cost of using genetic algorithms
to optimise expensive functions by limiting the size of the competitions in each
generation and using rank aggregation across generations to determine individual

fitness.

* We show that feature selection techniques from the machine learning literature
can be applied to algorithm configuration in order to reduce the configuration

space and improve the search for good configurations.

1.4 Organisation of this Dissertation

The rest of the thesis is organised as follows:

In Chapter 2 we present a summary of the literature relevant to this dissertation. Spe-
cifically, we give an overview of combinatorial optimisation, in particular we outline the
techniques, methods, and heuristics used to solve problems in the subfields of Constraint
Satisfaction, Boolean Satisfiability, and Integer Programming. We also present a review

of the literature related to algorithm selection and algorithm configuration.

Chapter 3 provides motivation for the research conducted in this thesis and defines
the real-time algorithm configuration problem. We introduce the Real-time Algorithm
Configuration through Tournaments Framework, ReACT, and discuss its constituent

components.

Chapter 4 details two concrete instantiations of the ReACT framework. The design
choices pursued for each of these implementations are defended and empirical eval-
uations on a number of benchmarks comparing these against the state-of-the-art are
presented. The work presented Chapters 3 and 4 has appeared in the peer-reviewed

publications:

Tadhg Fitzgerald, Barry O’Sullivan, Yuri Malitsky, and Kevin Tierney.
Online search algorithm configuration. In Carla E. Brodley and Peter
Stone, editors, Proceedings of the Twenty-Eighth AAAI Conference on
Artificial Intelligence, July 27 -31, 2014, Québec City, Québec, Canada,
pages 3104-3105. AAAI Press, 2014.

Tadhg Fitzgerald, Yuri Malitsky, Barry O’Sullivan, and Kevin Tierney.
ReACT: Real-Time Algorithm Configuration through Tournaments. In
Stefan Edelkamp and Roman Bartak, editors, Proceedings of the Seventh
Annual Symposium on Combinatorial Search, SOCS 2014, Prague, Czech
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Republic, 15-17 August 2014. AAAI Press, 2014.

Tadhg Fitzgerald, Yuri Malitsky, and Barry O’Sullivan. ReACTR: Realtime
Algorithm Configuration through Tournament Rankings. In Qiang Yang
and Michael J. Wooldridge, editors, Proceedings of the Twenty-Fourth In-
ternational Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos
Aires, Argentina, July 25-31, 2015, pages 304-310. AAAI Press, 2015.

The effect of instance ordering on the ReACT configuration procedure is shown in
Chapter 5. We also compare the metrics used for selecting which candidates should
compete in ReACT’s tournaments and discuss the relationship between this and the

instance ordering. The findings in this chapter have appeared in:

Tadhg Fitzgerald and Barry O’Sullivan. Analysing the effect of candidate
selection and instance ordering in a realtime algorithm configuration sys-
tem. In Ahmed Seffah, Birgit Penzenstadler, Carina Alves, and Xin Peng,
editors, Proceedings of the Symposium on Applied Computing, SAC 2017,
Marrakech, Morocco, April 3-7, 2017, pages 1003—1008. ACM, 2017.

Tadhg Fitzgerald and Barry O’Sullivan. Candidate selection and instance
ordering for realtime algorithm configuration. Fundam. Informaticae,
166(2):141-166, 2019.

Chapter 6 reviews how best to maintain ReACT’s configuration pool by removing
underperforming configurations and how to generate quality replacement configurations.
We examine a number of metrics that can be used to track the quality of a configuration
and determine when it is sufficiently poor to be removed. Methods for generating new
configurations using genetic algorithms and model-based feature reduction are also

presented in this chapter.

Finally, in Chapter 7 we conclude and discuss some potential avenues for future work.



Chapter 2
Background

Summary. This chapter details the relevant background required to un-
derstand the upcoming chapters. Firstly, we outline what combinatorial
optimisation problems are, as well as the approaches and techniques em-
ployed to achieve solutions to these problems efficiently. The second section
of this chapter details portfolio techniques for solving these problems and
configuration methods used to fine-tune the solvers and solver portfolios.
Finally, we look at some associated work in related fields of study so as the
fully explore the topic of this dissertation. It is hoped that this section will
provide the reader with all the background and intuition needed to read

this dissertation as a stand-alone work.

2.1 Combinatorial Problem Solving

Combinatorial optimisation techniques have been used to model and find feasible solu-
tions for many practical applications such as software verification [DMBO08], vehicle
routing [TV14], data centre scheduling [DCMO16, CLN12], rostering [EJKS04],
cutting-stock problems [PFCO15] in addition to a host of other challenging prob-
lem domains. Combinatorial optimisation involves finding an optimal feasible solution
(either maximum or minimum) from a finite set of solutions. A feasible solution must

satisfy any given constraints.

Combinatorial problems are considered amongst the most difficult to solve due to an
exponential increase in problem difficulty as items are added. Take coin flipping as an
example. Flipping a single coin results in two possible outcomes, heads or tails, two

coins allows for 4 possible permutations, while three coins produces 8 possibilities. In

8
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general, the number of potential outcomes is 2" where n is the number of coins flipped
and 2 is the branching factor (a coin flip can land heads or tails only). Combinatorial
problems exhibit identical rapid exponential growth, often with a branching factor far
in excess of two! This rapid growth relative to the number of variables in the problem

is known as a combinatorial explosion.

Finding optimal solutions for these types of combinatorial problems requires exhaustive
search which quickly becomes intractable as the problem grows. In algorithm com-
plexity these problems are said to be in the NP (non-deterministic polynomial time)
class. NP class problems have no "quick", polynomial time, solution unless P = NP.
Though P ~ NPis an open question in computer science, it is widely believed that P #
NP [Gas02, Gas12]. This implies that in the worst-case all combinatorial problems will

take an exponential amount of time relative to their input size to solve.

Despite this discouraging forecast, combinatorial problems are extensively studied in a
number of domains including operations research, constraint programming, artificial
intelligence, mathematical optimisation, and others [BLP20, Wol98]. Powerful heurist-
ics developed through years of research allow complete search methods to prune vast
swathes of the search space rendering previously intractable problems solvable in an
acceptable amount of time. These complete search methods are guaranteed to find a

solution should one exist.

Although recent advances in the state of the art have improved the situation for com-
plete solvers, certain difficult problems remain intractable due to their size or struc-
ture [CKT91, GW96, GMP*01]. In these cases it is necessary to adopt incomplete
algorithms such as local search and genetic algorithms. These algorithms sacrifice
completeness guarantees in favour of speed. Generally these algorithms run with a
resource limit (time, steps, evaluations etc.) and terminate upon finding a solution or
resource exhaustion. Incomplete algorithms have repeatedly been shown to perform
well on certain problems (exceeding the performance of complete algorithms in many

cases).

Due to the nature of NP problems there is no universal solution when it comes to
selecting which algorithm or algorithm parameters to use. For this reason, algorithms
often expose options to the end user such as which heuristics to use. The complexity
of modern solving algorithms makes this a daunting task, even for experts in the field.
Automatic algorithm configuration provides an easy method to configure algorithms

well with minimal human interaction.

The rest of this section outlines various approaches to modelling combinatorial prob-
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lems. It is hoped this will give the reader an intuition for how modern solving algorithms
operate and what type of parameters are being configured in the upcoming sections of
this dissertation. There are a number of common approaches to modelling combinator-
1al optimisation problems, each with there own strengths and weaknesses. Constraint
programming (CP), outlined in Section 2.1.1, models problems as a series of variables
with fixed domains and a set of constraints operating over these variables. Section 2.1.2
investigates the inference and search techniques used to resolve these types of problem.
Boolean satisfiability (SAT) models seek a satisfying assignment for a Boolean formula.
A formula consists of a set of Boolean literals (TRUE, FALSE) connected by means of
logical operators. SAT problems can be thought of as a subset on constraint program-
ming and so similar resolution techniques are employed. These problems are explored
in more detail in Section 2.1.3. Finally, Section 2.1.4 provides an overview of integer
linear programs (ILP). Integer linear programs are mathematical optimisation problems
where some variables are restricted to integer values. These are solved using relaxations

of the initial problem and search methods.

2.1.1 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) consists of a set of variables each of which can
assume a value from a fixed domain, and a set of constraints which limit the values that
variables are allowed take. A CSP solution assigns a single value to each variable such

that no constraints are violated.

Definition 2.1.1. Formally, a CSP can be defined as three components V, D, and
C [Mac77, RN16]:

V is the set of variables, { X1, Xs, ..., X, }.

D is the set of domains for each variable, { D1, D, ..., D,, }. The values for each domain

in D describe the permitted values that the corresponding variable in V can take on.

Finally, C is the set of constraints that specify the allowed combinations of values. A
single constraint C; consists of a < scope, relationship > pair. The scope defines
which variables the constraint applies to, while the relationship specifies what values

they can take on.

Relationships can be in the form of extensionally specified sets of (dis)allowed tuples
or as intensionally specified relations, such as less than, greater than and not equal.
Constraints can apply to any number of variables in the CSP. Unary constraints operate
on a single variable e.g. X # 3. A binary constraint works on a pair of variable e.g.

X =Y. This generalises to any number of constraints, known as N-ary constraints.

10
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Constraints which operate over an arbitrary number of variables are known as global
constraints. For example "alldifferent" is a common constraint which enforces that the
set of variables it is applied to are assigned distinct values. While it is often possible to
achieve the same result using simpler constraints, global constraints often benefit by
using highly optimised filtering algorithms. A full list of global constraints is available
in the global constraint catalogue [BCR12].

Binary CSPs are often represented by a (primal) constraint graph. Vertices in the
constraint graph represent variables. Edges in the constraint graph indicate constraints
on the connected nodes. Constraint graphs allow for easier representation and reasoning
about CSP problems.

Example 2.1.1. Figure 2.1 shows the constraint graph for a simple CSP consisting of
three variables X, Y and Z each with the domains 1, 2, 3 and the constraints X < Y,
Y < Z,and Z # X.

<

Figure 2.1: A simple constraint graph.

Constraint programming aims to allow users to model problems with ease [Bar99].
As Eugene Freuder eloquently stated "Constraint programming represents one of the
closest approaches computer science has yet made to the Holy Grail of programming:

the user states the problem, the computer solves it." [Fre97]. To this end constraint

11
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programming languages and libraries provide a high-level method for abstracting
the constraint problem model from the solving procedures. This form of declarative
programming is similar to the way high-level programming languages abstract a program
from the underlying systems architecture and assembly language. The CSP is defined
using a constraint programming language or library such as MiniZinc [NSB*07a],
Choco [PFL17] or Numberjack [HOO10]. This model is then solved using either an
integrated or standalone backend solver, such as Mistral [Heb08], Lingeling [Bie10], or
IBM CPLEX [IBM14], using advanced constraint optimisation techniques (these are
discussed in depth in Section 2.1.2).

Example 2.1.2. A classic example of a problem well suited to solving by means of
constraint programming is the N-queens problem [SS87]. This puzzle involves placing n
chess Queens on an n x n chess board in such a way that conflict is avoided. Queens are
in conflict if two Queens are placed on the same horizontal, vertical or diagonal squares.
There are a number of ways of modeling this problem as a CSP with varying degrees of
efficiency [Nad90]. One possible representation is to model the problem by applying
"alldifferent" constraints to all rows, columns, and diagonals which limit the number
of queens to at most one. Figure 2.2 shows both distinct solutions for the 4-queens
problem. Figure 2.3 shows how to model the problem in MiniZinc [PJS20, NSB*07b].

fod b

Figure 2.2: Both distinct solutions to the four queens problem.
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Example 2.1.3. The logic puzzle Sudoku is another example of a problem which can
be modeled and solved efficiently using constraint programming [Sim05]. Sudoku is a
popular logic puzzle consisting of a partially completed 9 x 9 grid of integers. Each row,
column and 3 x 3 region can only use the digits 1 to 9 once. The goal is to complete
the remaining assignments. In this case each cell is a variable. The cells where a

value 7 has been assigned have the domain {7} while the domain for all unassigned

12



2. BACKGROUND 2.1 Combinatorial Problem Solving

int: n;
% queen in column i is in row gl[i]
array [l..n] of var 1..n: qg;

include "alldifferent.mzn";

o)

% distinct rows
constraint alldifferent (q);

¢

% distinct diagonals

constraint alldifferent ([ gl[i] + i | 1 in 1..n]1);
% upwards+downwards
constraint alldifferent ([ gl[i] - i | i in 1..n]1);

¢

% search

solve :: int_search(q, first_fail, indomain_min)
satisfy;
output [ if fix(g[j]) == 1 then "Q" else "." endif ++
if J == n then "\n" else "" endif | 1,73 in 1..n]

Figure 2.3: The N-Queens problem modelled in MiniZinc. Credit [PJS20, NSB*07b].

cells is {1, ..., 9} as shown in Figure 2.4a. The problem can be modelled by applying
"alldifferent" constraints to each row, column and square 3 x 3 region. Finally search
over the reduced domains produces the final solution seen in Figure 2.4c. Figure 2.5
shows how this model can be written in MiniZinc [PJS20, NSB+07b]. The exact details

of how these procedures are applied are discussed in the rest of this chapter.

s T B R T [8[1]2]7]5]3]6]4]s
Y I i v e G Y (G e e 0 W EX ) A A KA E
Al e [ [z e[ 2 [ [ [e]7[s[als 1]2]8]3
s Tl ] s [ Tl [1]5]2]2]3 (78[5 ]e
Sl e s 7| [ e s ] [3Te[ o8] 4 s [7] 2]
il [l s | [l Gl w37 [2]8[7[1]e[o]5[3]a
S EEres| [T A el8] [5[2[1]9 (7 4|3 68
e s ] [ s L (a3 ]85 2 6017
o [l e ] [Fle (AL 7TE a7 17 [7s]e[31]8]4]5 ]2

(a) Sudoku domains given ini- (b) "AllDifferent" constraints (c) A solution to the Sudoku
tial clues. propagated over domains. puzzle.

Figure 2.4: Example of constraint propogation on the Sudoku puzzle. Credit [Hurl6].

While the N-queens and Sudoku puzzles are simple examples that illustrate the power of
CSP solvers there are many practical problems can also be modelled and solved using
constraint programming. These include evacuation planning [ESVH15], call-centre
scheduling [PRL*14], flight planning [KCL17], steel production [GS17], and wine

13
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include "alldifferent.mzn";

int: S;

int: N =S % S;

% digits for output

int: digs = ceil(log(10.0,int2float (N)));

set of int: PuzzleRange = 1..N;

set of int: SubSquareRange = 1..S;

% initial board 0 = empty

array[l..N,1..N] of 0..N: start;
array[l..N,1..N] of var PuzzleRange: puzzle;

% fill initial board

constraint forall (i, j in PuzzleRange) (
if start([i,j] > 0 then puzzlel[i, j] = start[i, J]
else true endif );

% All different in rows
constraint forall (i in PuzzleRange) (

alldifferent ( [ puzzle[i,J] | J in PuzzleRange ]) );
% All different in columns.
constraint forall (j in PuzzleRange) (

alldifferent( [ puzzle[i,J] | i in PuzzleRange 1) );
% All different in sub-squares:
constraint forall (a, o in SubSquareRange) (

alldifferent ( [ puzzle[(a-1l) xS + al, (o-1)*S + ol] |

al, ol in SubSquareRange ] ) );

solve satisfy;

output [ show_int (digs,puzzle[i, j]) ++ " " ++
if J mod S == 0 then " " else "" endif ++
if j == N then
if i !'= N then
if 1 mod S == 0 then "\n\n" else "\n" endif
else "" endif else "" endif
| 1,3 in PuzzleRange ] ++ ["\n"];

Figure 2.5: The generalised Sudoku problem modelled in MiniZinc. Credit [PJS20,
NSB*07b].

14
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blending [VCT13] to name but a few.

2.1.2 Solving Techniques

Constraint problems are commonly solved using a combination of inference and search.
Inference reduces the search space by ensuring that each value in a domain is supported
by a value in other domains (consistency). Some problems can sometimes be solved
by inference alone, but in most cases some form of search must be employed to find a
feasible assignment. Search is often performed using a backtracking style search where
each node in the search tree represents a variable assignment. However, due to the
combinatorial nature of constraint problems, the worst case for backtracking search is
an exhaustive search of the entire search tree. For this reason local search strategies are

adopted for more complex problems.

2.1.2.1 Inference

Prior to search, inference and propagation are used to reduce the search space by ruling
inconsistent values and simplifying the problem [Bes06]. Consistent values are those
which can be shown to logically not conflict with the imposed constraints. There are
different forms of consistency such as node-consistency, arc-consistency, and path-

consistency which can deliver more or less filtering at the cost of extra computation.

Node-consistency enforces any unary constraints on the domain. This is trivially per-
formed as a preprocessing step. For example a variable V' with the domain {1, 2,3} and
the constraint V' > 1 can simply reduce the domain to {2, 3}. When node-consistency

has been enforced the CSP is said to be domain consistent.

A stronger form of consistency is arc-consistency which applies to binary constraints.
Given a pair of variables x and y with domains D, and D, respectively, and a constraint,
czy € C, operating on both variables. The variable z is arc-consistent with y if for all
values in D, there is a support in D, such that a constraint c,, is satisfied. A constraint
is arc-consistent if all variables involved in the constraint, ¢, € C' are arc-consistent

with each other. A CSP is arc-consistent if all domains in the problem are arc-consistent.

The most well known algorithm for enforcing arc consistency is the AC-3 algorithm as
it is both simple and efficient [Mac77]. Algorithm 1 gives the pseudocode for the AC-3
algorithm. The REVISE function handles removing values which have no supports.
REVISE is called by the AC-3 function which handles maintaining the list of arcs

requiring consistency checks.

Example 2.1.4. To give a concrete example, Figure 2.6 shows constraint network for a
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Algorithm 1 AC-3 Algorithm. Reproduced from Artificial Intelligence: A Modern
Approach [RN16]

function AC-3(csp) returns false if an inconsistency is found and ¢rue otherwise
inputs: csp, a binary CSP with components (X, D, C')
local variables: queue, a queue of arcs, initially all the arcs in the csp
while gueue is not empty do
(X, X;) <~ REMOVE-FIRST(queue)
if REVISE(csp, X;, X;) then
if size of D; = 0 then return false
end if
for all X, in X;.NEIGHBOURS - {X;} do
add (X}, X)) to queue
end for
end if
end while
return true
end function
function REVISE(csp, X;, X;) returns true iff we revise the domain of X;
revised < false
for all x in D, do
if no value y in D; allows (z, y) to satisfy the constraint between X; and X

then
delete x from D;
revised < true
end if
end for

return revised
end function

CSP with two variables, X and Y, each with the domain {1, 2, 3} (Figure 2.6a). The
problem has a single constraint X < Y (represented by an edge). As X must be strictly
less than Y it is possible to remove the value 3 from the domain of X because there
is no value in Y which is greater than 3 (Figure 2.6b). X is now arc-consistent with
Y. Similarly, 1 can be removed from the domain of Y as there is no value in X which

supports it (Figure 2.6c). Enforcing both of these makes the CSP arc-consistent.

(a) Initial domains. (b) Consistency on X. (c) Consistency on Y.

Figure 2.6: A constraint graph showing how arc consistency is achieved in Ex-
ample 2.1.4
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Arc-consistency can be extended so that it operates of n-ary constraints. This is called
generalised arc consistency (GAC) [MMS88, Bes06]. A variable x is generalised arc
consistent with the constraint c if all values in the domain of = have support values
in the domains of the other variables which ¢ operates on. For example, given the
variables = € {1,2,3},y € {2,3,4}, and z € {3,4,5} and the constraint z = y = z.
We can reduce all domains to {3} using GAC as no other value is supported in all three

domains.

While arc-consistency applies to single variables to make them consistent there is
another form of consistency called path-consistency which considers pairs of variables
(or constraints). A pair of variables, x and y, are path-consistent with a third variable,
z, if for every value assignment (z,, z;) satisfying the constraints c,, there is also a
value in z such that the constraints ¢, and c,. hold. Much like arc-consistency, there
is a version of path-consistency that generalises to encompass an arbitrary number of

variables rather than two.

Figure 2.4b shows the remaining values for variables in Example 2.1.3 after the "alldif-
ferent" constraint has been propagated over the rows, columns and region. It is not
possible to reduce the domains any further given the initial clues, so search is necessary
in order to derive the final solution in Figure 2.4c. The various search methods and

optimisations are discussed in Section 2.1.2.2.

Consistency checks are often interwoven with the search procedure during branching
and backtracking in order to maintain a consistent state and reduce the search space as
much as possible. As these checks occur repeatedly throughout search they are often
limited to less computationally expensive forms of consistency such as arc consistency
(in fact this procedure is known as maintaining arc-consistency). More computationally
expensive procedures (such as path-consistency) are normally reserved to be used as a

preprocessing procedure.

2.1.2.2 Backtracking Search

Inference and consistency checking can reduce the problem size greatly, sometimes even
finding a solution (where each domain contains a single value) or proving infeasibility
(where one or more domains are empty). However, often inference alone is not sufficient
to find a solution a search routine is employed. Typically this is backtracking search
where each node represents a value assignment to a variable [vB06]. Values are assigned
until a inconsistency is detected at which time the search backtracks to assign another
value. If search assigns all variables a value and no inconsistency is discovered we have

a feasible solution.
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Algorithm 2 Backtracking Search. Reproduced from Artificial Intelligence: A Modern
Approach [RN16]

function BACKTRACKING-SEARCH(csp) returns a solution, or failure
return BACKTRACK({ }, csp)
end function
function BACKTRACK( (assignment, csp) returns a solution, or failure
if assignment is complete then return assignment
end if
var <— SELECT-UNASSIGNED-VARIABLE(csp)
for value in ORDER-DOMAIN-VALUES (var, assignment, csp) do
if value is consistent with assignment then
{var = value} to assignment
in ferences < INFERENCE(csp, var, value)
if inferences # failure then
add in ferences to assignment
result < BACKTRACK(assignment, csp)
if result # failure then return result
end if
end if
end if
remove {var = value} and in ferences from assignment
end for
return failure
end function

The pseudocode for the basic backtracking search algorithm is shown in Algorithm 2.
The function BACKTRACKING-SEARCH is simply a wrapper around the recursive
function BACKTRACK which does the bulk of the work. BACKTRACK accepts a
partial assignment of variables and the CSP problem as inputs. The function then tests
value assignments until a feasible solution is discovered or an inconsistency is dis-
covered (either by INFERENCE or a recursive BACKTRACK call). The INFERENCE
call in this case can apply any of the forms of consistency discussed in Section 2.1.2.1,
such as arc-consistency. In the case of inconsistency the variable assignment is undone

and a different value trialled instead.

Basic backtracking search is guaranteed to find a solution if one exists but the time taken
to discover the solution can vary dramatically. In the worst case an exhaustive search
of all assignments is possible. To mitigate the chance of this a number of heuristics
relating to how the search-tree is traversed have been developed. The variables in
the search tree can be processed in any order (SELECT-UNASSIGNED-VARIABLE
in Algorithm 2). This can have a large effect on the size of the search space and as

such a number of variable ordering heuristics have been developed [Bré79, BHLS04,
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GB65, DM9%4, BR96, HE80]. The most well-known of these is the "fail-first" principle
which says that it is better to encounter variables with the smallest domain first [HESO].
The intuition here is that it is better to process variables which are likely to fail early
rather than wasting time searching only to fail at the end. Another variable ordering
which is sometimes used in conjunction with the "fail-first" heuristic is the degree
heuristic [Bré79]. Here the most constrained variable is favoured as it prunes more of

the search space than selecting variables which are less constrained.

The ORDER-DOMAIN-VALUES function allows BACKTRACK to enumerate the
domain values in different ways. When selecting which variable to assign next we strive
to fail fast, the opposite is true when choosing which value to assign. We endeavour
to allow the maximum flexibility for future assignments by selecting the value which
excludes the fewest future options. In constraint satisfaction problems search can cease
and return success as soon as any satisfying assignment is found, so maximising the
chances of finding a legal assignment is desirable. Again, a number of heuristics for
value ordering have been proposed such as "min-conflicts", which looks at the sum of
the remaining domains sizes, and "promise", which takes the product of the domain
sizes [FD95, Gee92].

Example 2.1.5. Revisiting the previous 4-queens example (Example 2.1.2), Figure 2.7
shows the search tree generated using backtracking search to find a solution'. Initially
we start with an empty 4 x 4 board. As there are four queens and four rows and columns,
any solution must have a queen in each row and column so as not to be in conflict with
one another. We denote the columns using the letters A-D and rows by the numbers
1-4. Search begins by placing a queen arbitrarily in A4 (the first available column from
the left and row from the top). The red X’s show the three new cardinality constraints
that are propagated along the horizontal, vertical, and diagonal rows by this placement.
Search proceeds by placing a queen in the next available square, B2. Again new
constraint propagation is marked with red X’s while previous constraints are marked in
grey. This propagation leave only one square available with two queens left to place,
so we must backtrack. Inference caused by the B2 placement is removed and the next
available square, B1, is trialled. This allows a queen in only one position, C3, in column
C. Placing a queen here eliminates the final possible square so backtracking occurs
again. With no backtracking options available in column B or C, search backtracks to
the initial assignment and changes this to A3. From this point on constraint propagation

completely guides the search to a feasible solution.

'This example is inspired by the Google OR-Tools documentation [Dev18].
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N W s

Figure 2.7: The search tree for the 4-queens problem.
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2.1.2.3 Local Search

Backtracking search is complete which means it will discover a solution should one exist.
This is certainly a desirable property but in the case of very large problems, consisting
of many variables, exhaustive search proves impractical. For this reason, solutions
to large problems are often sought using incomplete local search algorithms. Local
search aims to find a solution which satisfies all constraints by iteratively improving
on an initial assignment of variables [HT06]. This methodology is often able to find
good or feasible solutions more quickly than complete algorithms but achieves this by

sacrificing guarantees of optimality and completeness.

Hill-Climbing The simplest form of local search, hill-climbing, moves to neighbour-
ing assignments by altering variable values in a greedy fashion. Which neighbour to

move to is decided based on a cost function e.g. the number of conflicts.

Algorithm 3 Greedy Hill Climbing Local Search. Reproduced from Artificial Intelli-
gence: A Modern Approach [RN16]

function MIN-CONFLICTS(csp, max_steps)
current < an initial complete assignment for csp
for i = 1 to max_steps do
if current is a solution for csp then return current
end if
var <— a randomly chosen conflicted variable from csp. VARIABLES
value < the value v for var that minimises CONFLICTS(var, v, current,

csp)
set var = Ualue iI’l current
end for
return failure
end function

Algorithm 3 outlines the pseudocode for a hill-climbing algorithms that aims to minimise
the number of conflicts in a CSP [MJPL92]. The algorithm greedily selects a variable
associated with a violated constraint at random then alters its value such that the number
of conflicts in the CSP is minimised. This process is repeated until a feasible solution
is discovered or a predefined resource limit, max_steps, is exhausted. Hill-climbing
local search is a simple algorithm that illustrates the idea nicely but is rarely used in

practice as it is very prone to becoming trapped in local optima.

Example 2.1.6. Taking the 4 queens problem used previously as a concrete example,
Figure 2.8 shows the updates made by hill-climbing local search to discover a solution.
In contrast to backtracking search hill-climbing starts with a complete initial assignment

that violates some of the constraints. Figure 2.8(a) shows that a queen has been placed
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(d) 1 conflict (e) The solution

Figure 2.8: Local search on the 4 queens problem.

in each corner of the chequerboard leading to 6 conflicts in total (conflicts are shown
with red arrows). From this initial assignment future placements are calculated by
greedily selecting the queen placement that minimises the number of conflicts from
a "neighbourhood" of possible assignments. This "neighbourhood" can be as small
as the neighbouring cells for each queen or as large as all possible legal placements.
In Algorithm 3 the function CONFLICTS decides the neighbourhood and computing
the number of conflicts for each neighbour. By following the a trail of improving
assignments, Figures 2.8(b-d), we eventually arrive at a solution in Figure 2.8(¢e). In this
particular example we arrived at a solution, however in many cases simple hill-climbing
becomes stuck in local optima. The reason for this is that hill-climbing search will not
accept non-improving moves which are often necessary to escape local optima. One
slight adaptation of greedy hill-climbing allows for moves to neighbours which have an
equal (but not worse) objective value to the current assignment. This variant is known

as plateau search and can lead to marked improvements in search performance [HK93]

Tabu Search One classical improvement on hill-climbing is tabu search [Glo89,
Glo90b]. Two of the major drawbacks of basic hill-climbing local search are its
tendency to become trapped in local optima, and to cycle when plateaus with states of

equal objective value are encountered. Tabu search addresses both of these issues by
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allowing disimproving moves within a neighbourhood and by maintaining a tabu list. A
tabu list is a list of previously visited states that the search is prohibited from revisiting.
The tabu list serves to drive the search towards new parts of the state space and avoids
cycling. The search visits the best neighbouring solution that is not on the tabu list even
if this neighbouring state has a worse objective value, in this way local optima can be
escaped. In order to remain memory efficient the length of the tabu list is often set to
a fixed length or dynamically adjusted. In addition to the short term memory used to
prevent cycling, tabu search also adopts intermediate and long term memory structures

which aim to drive intensification and diversification respectively [Glo89, Glo90a].

Random Walk Stochasticity can also be used to avoid the pitfalls of greedy search.
One method is to adopt a random walk approach where greedy search is interspersed
with random non-greedy assignments with a certain probability. This leads to a semi-
random walk over the possible assignments in the search space. By occasionally
making random assignments rather than following a purely greedy strategy local op-
tima can be escaped. This idea was initially outlined in the WalkSAT algorithm for
Boolean satisfiability problems but can easily be adapted to constraint satisfaction
problems [SK93, SKC94, DCO03, Sch99].

Constraint Weighting Another method of escaping local minima is to alter the ob-
jective function as search progresses. Constraint weighting or breakout methods achieve
this by weighting constraints which are frequently violated more heavily [Mor93].
Such methods are easily integrated as part of other search procedures such as random
walks [SK93]. This changes the reward surface and in doing so encourages the search
to correctly assign values to satisfy the more difficult constraints. Formally the objective
function for breakout search is given as F'(a) = Y, w; * C;(a) [DCO3]. The current
weight of the constraint C; is given by w;, while C;(a) is an indicator variable set to
1 if the constraint is violated and O otherwise. When a local minima is encountered
all weights associated with the currently violated constraints are incremented. This
changes the objective function and allows search to proceed past the previous local

minimum.

Simulated Annealing There are also more sophisticated stochastic algorithms, such
as simulated annealing that uses a cooling schedule to dynamically control the ratio
of random and greedy movements [KGV83]. Simulated annealing is inspired by the
annealing process in metallurgy where properties of the metal are dictated by how
it is heated and cooled. Similarly simulated annealing has a cooling schedule which

reduces the likelihood of accepting worsening moves over time. Algorithm 4 outlines
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the pseudocode for the SIMULATED-ANNEALING algorithm. The algorithm starts
with an initial random assignment, current. At each time step a neighbour is chosen
by altering variables’ values randomly, neighbour. If the objective value of netghbour
(in this case the number of constraints violated, CONFLICTS) improves over current,
neighbour becomes the new incumbent. If nezghbour’s objective value is worse then
it is accepted with a certain probability which is dependant on the cooling schedule.
A solution is returned if an assignment with no conflicts is found otherwise a partial
assignment is returned once the "temperature", 7', reaches 0. In this way simulated
annealing accepts more worsening moves initially allowing it to explore a larger portion
of the search space. Later in the search, as the temperature converges towards 0, mostly

improving assignments are accepted similar to hill-climbing.

Algorithm 4 Simulated Annealing Local Search. Adapted from Artificial Intelligence:
A Modern Approach [RN16]

function SIMULATED-ANNEALING(csp, schedule) returns a solution state
inputs: csp, a constraint satisfaction problem
schedule, a mapping from time to "temperature"
current <— csp.INITIAL-ASSIGNMENT
for i =1to oo do
T <« schedule(t)
if 7' =0 or current. CONFLICTS then return current
end if
next <— a randomly selected neighbour of current
AFE < next.CONFLICTS - current. CONFLICTS
if AE > 0 then current < next
else current <— next only with probability e
end if
end for
end function

AE/T

2.1.2.4 Constraint Optimisation

Up to this point we have looked at constraint satisfaction problems where the focus is
on finding any feasible solution. Another, closely related, class of problems called Con-
straint Optimisation Problems (COPs) add a cost function to minimise or an objective
function to maximise [DC03, FW92]. Searching for an optimal solution in the space of
possible solutions is a far more difficult than the constraint satisfaction problem as it is

not possible to finish once any solution is found.

Combinatorial auctions are one example of a COP. Combinatorial auctions differ from
conventional auctions in that bidders bid on different bundles of items as opposed to

a single item. The optimisation problem arises in trying to find a set of bids which
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maximises profit for the auctioneer while respecting the constraint that no item can be
sold twice. Such auctions arise frequently in areas such as wireless spectrum auctions,

airport time slots, and network routing, among others [DVVO03].

Similarly, Weighted Constraint Satisfaction Problems (WCSPs) allow certain soft
constraints to be violated in order to find an approximate solution to the given problem.
Each constraint is weighted according to its importance in a solution. The goal then is

simply to maximise the sum of the weights of the satisfied constraints.

2.1.3 Boolean Satisfiability

Description and Examples An important subset of CSPs is the Boolean satisfiability
problem (SAT). The Boolean satisfiability problem entails finding an assignment to a
set of Boolean literals (True, False) that satisfy a propositional logic formula if such an
assignment exists or determining unsatisfiability otherwise. The SAT problem is well
known as it was the first to problem shown to be NP-complete [Coo71]. The problem
is quite significant as all other NP-complete problems can be transformed to SAT and
is at the heart of the P = NP question. SAT also has many practical applications, in
particular it is used heavily in circuit design. As a testament to the importance of SAT
in computer science, SAT competitions to find the best solvers have been running for
over twenty years [BHJ17, BH" 16, BDHJ 14, BBH' 13, SLBHO5, LBS04, JLBRS12,
LBSO03].

SAT problems consist of Boolean variables and the Boolean operators and (N\), or
(V), and not (—). A literal is a Boolean variable or its negation. Problems that have a
satisfying assignment are called satisfiable, while those which do not are unsatisfiable.
Normally, SAT problems are written in conjunctive normal form (CNF) where the
expression is a conjunction of clauses, and each clause is a disjunction of literals (an and
of ors). CNF formulas represent the SAT problem nicely in that a formula is satisfiable
if every clause is satisfied, and a clause is satisfied if any literal is assigned a true value.
All propositional formulas can be converted to CNF easily. The below expression is an

example of a SAT formula which can be satisfied by assigning x; = True, x5 = True:

(1 V xa) A (22 V x3) A (17 V 23).

DPLL Similar to CSP problems, backtracking search is at the core of

most complete SAT solvers. Many powerful SAT solvers are based on the
Davis—Putnam-Logemann—Loveland (DPLL) algorithm [DP60, DLL62]. DPLL re-

cursively tests assignments of Boolean values to literals in the CNF formula. Unit
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propagation and pure literal elimination form the basis of the recursive DPLL algorithm

which is outlined in Algorithm 5.

Algorithm 5 DPLL Algorithm. Reproduced from Artificial Intelligence: A Modern
Approach [RN16]

function DPLL-SATISFIABLE?(s) returns true or false

clauses <— the set of clauses in the CNF representation of s

symbols <— a list of the proposition symbols in s

return DPLL(clauses, symbols, {})
end function
function DPLL(clauses, symbols, model) returns true or false

if every clause in clauses is true in model then return true

end if

if some clause in clauses is false in model then return false

end if

P, value < FIND-PURE-SYMBOL(symbols, clauses, model)

if P is non-null then return DPLL(clauses, symbols — P, model U {P =
value})

end if

P, value < FIND-UNIT-CLAUSE(clauses, model)

if P is non-null then return DPLL(clauses, symbols — P, model U {P =
value})

end if

P <+ FIRST(symbols); rest <— REST(symbols)

return DPLL(clauses, rest, model U {P = true}) or DPLL(clauses, rest,
model U{P = false})
end function

A unit clause is a clause where all bar one of the literals have been assigned a value of
false. As CNF is a conjunction of disjunctions, each clause must have at least one true
assignment for an formula to be satisfied. This trivially allows the literal to be assigned
and removed from consideration. In Algorithm 5 FIND-PURE-SYMBOL identifies
pure literals which are then assigned. As an example of pure literal elimination, take
the clause (mA vV B Vv () and the assignment A = True, B = False,C =?. C'is a
unit clause as the assignments to both the literals = A and B evaluate tofalse. Given
the current values the only satisfying assignment for C' is true. Often fixing a single
literal as the result of a unit clause results in a cascade of assignments known as unit

propagation.

For example, imagine the clause from the previous example formed part of the larger
expression (—AV BV C) A (=C'V =D)A(DV E). We know C' = T'rue but this also
forces D = False which in turn implies £ = T'rue. These types of chain reactions

prune vast swaths of the search tree and allow the DPLL to search the space more
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efficiently.

In cases where a literal is the same in all clauses (i.e. always negated or always without
negation), it is possible to assign that literal a truth value which satisfies all clauses it is
a part of. For example, in the formula (—A V B) A (B V C'), B can be assigned a value
of true in order to satisfy the assignment. Once the literal has been assigned a fixed
value all clauses which it is a part of become satisfied, it is then possible to simplify the

expression by removing these clauses.

Conflict-Driven Clause Learning DPLL techniques outlined previously form the
backbone of many powerful SAT solvers. However, modern solvers which are built to
tackle problems containing thousands of variables and millions of clauses must adopt
additional enhancements such as variable and value ordering (similiar to that seen in
CSPs), and most notably conflict-driven clause learning [SS96, BJS97, BHVMWO09].

Conflict-driven clause learning (CDCL) extends the DPLL algorithm by learning clauses
and introducing non-chronological backjumping. Similar to DPLL, CDCL arbitrarily
selects values for variables which cannot be inferred and applies unit propagation. In
addition to this CDCL builds an implication graph which tracks which assignments
caused certain selections. When a conflict occurs analysing this implication graph
allows the SAT solver to determine the assignments which lead to the conflict and create
a new clause expressly forbidding those. This clause learning is a way of inferring
additional useful clauses not explicitly stated in the original formula. As the resulting
expression is tighter than the original it is possible to reduce the search space and
amount of backtracking required dramatically. In addition to tightening to problem
CDCL uses non-chronological backtracking where instead of backtracking to a parent
the search backjumps to the first assignment in the new learnt clause. While CDCL was
first introduced in the GRASP SAT solver [SS96] it is widely used in many successful
SAT solvers today including Chaff [MMZ*01], MiniSat [ES03], Clasp [GKNS07],
Glucose [AS09], and Lingeling [Biel0], to name but a few.

Local Search Complete backtracking search procedures in SAT, despite aggressive
pruning of the search tree using unit propagation and learned clauses, suffer from
the same limitations encountered previously with CSPs, namely that guaranteeing
completeness requires exhaustive enumeration of the search tree in the worst case. The

solution again relies upon incomplete search algorithms similar to those used for CSPs.

One approach which have been particularly successful in the past are methods based on
"random walks" such as GSAT and WalkSAT [SLM 192, SKC94]. Algorithm 6 outlines
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the WalkSAT algorithm. First the algorithm selects a random clause from the unsatisfied
clauses. Then with a certain probability flips the value of a randomly selected literal
in clause, otherwise it chooses the literal which will maximise the number of satisfied
clauses. By approaching the problem in this manner WalkSAT avoid becoming trapped

in local optima.

Algorithm 6 WalkSAT Algorithm. Reproduced from Artificial Intelligence: A Modern
Approach [RN16]

function WALKS AT (clauses, p, max_flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic
p, the probability of choosing to do a "random walk" move, typically around 0.5
max_flips, number of flips allowed before giving up
model < a random assignment or true/ false to the symbols in clauses
for : = 1 to max_flips do
if model satisfies clauses then return model
end if
clause < a randomly selected clause from clauses that is false in model
with probability p flip the value in model of a randomly selected symbol
from clause
else flip whichever symbol in clause maximises the number of satisfied
clauses
end for
return failure
end function

2.1.4 Integer Programming

Integer (linear) Programming (ILP) problems are a class of mathematical optimisation
problems similar to Linear Porgramming (LP) problems with the added restriction that
all of the variables must adopt discrete (integer) values [Wol98]. Like LP problems the
goal is to minimise (or maximise) some objective value subject to the linear constraints
imposed on the problem. Often the integer restriction is required for practical reasons
e.g. in a airline scheduling problem you cannot schedule half a person to work on a
plane. A variation of the problem, known as Mixed Integer Programming (MIP) relaxes
this requirement by allowing some real valued variables. Formally, a MIP problem is
described as [Wol98]:
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min cx + hy (2.1)
Ar+ Gy <b (2.2)
reR,yeZy

The cost function to minimise is specified in 2.2. Here, x and y are positive real-
valued and integer-valued vectors of length p and n respectively which represent the
decision variables to optimise. ¢ and h are p-dimensional and n-dimensional row
vectors respectively known as the objective coefficients. Equation 2.1.4 specifies
the (in)equalities to be satisfied in the MIP. b is a vector of length m known as the

requirements. A and G are m X p and m X n matrices.

Mixed integer programming is used in a wide variety of practical applications such
as production planning [PW06], cancer treatment [LFC03], crew scheduling [Wed95],
combinatorial auctions [ATYO00, NisOO] and many others. Example 2.1.7 gives an
example of a combinatorial auction winner determination problem formulated as an

integer program.

Example 2.1.7. A simple integer programming model of a combinatorial auction is as
follows [NisOO]:

n
max Z TP
i=1

S.t. Z r; <1, foreach j = 1..m.
i|jES;

z; € {0,1} foreach i = 1..n.

Here we have a set of bids indexed by ¢ with n bids in total, { B;|1..n}. A single bid,
B; consists of a mapping of item bundles, S;, to prices p;, B; = (5;, p;). There are m
individual items, {g;...g,, } in the set G. The decision variable z; indicates whether B;
is a winning bid.

To make the example concrete, lets consider a case with three bids, By, Bs, Bs, and four
items, {g1, ..., 94}

The bids are as follows Bi = ({g2,04}.3),B2 = ({91,92.93,64},5), Bs =
({91, 93}, 3). This problem can then be formulated as:

29



2. BACKGROUND 2.1 Combinatorial Problem Solving

max 13 + x25 + 233
s.t.xp + a9 <1
To + 23 < 1

x1, 9, w3 € {0,1}

The objective coefficients represent the value of each bid while the inequalities prevent
bids with overlapping items from being accepted. In this case the optimal assignment is

1 = ].,[L‘Q :07.T3: 1.

While the solution to the toy example above is trivial to solve manually, real world
examples can often feature thousands of items and bids [DVVO03]. Large challenging
problems such as these require advanced solvers such as IBM ILOG CPLEX [IBM14].
Such solvers adopt a number of advanced heuristics and optimisations. Similar to
solvers for other combinatorial optimisation problems search forms the basis for many

powerful MIP solvers.

In particular a technique known as branch and bound is commonly used [MJSS16].
Branch and bound solves the easier linear relaxation of the problem (without in-
teger constraints) using standard linear programming techniques such as the simplex
method [Dan65]. Should this method provide an integer solution the algorithm can
return a result and terminate. Otherwise, the problem is then split (branching) by
altering a fractional decision variable such that it is no longer in violation of the integer
constraints (rounding up and down). For example if = 7.5 is a decision variable in
the linear relaxation, two branches are created: one where x < 7 is a constraint and
another with the constraint x > 8. This produces two sub-problems which are again
solved by linear programming methods. In this way the problem is solved by recursively

enumerating solutions.

Such enumeration would prove far too costly without also limiting to the number of
states to evaluate through bounding. The linear relaxation provides an upper bound on
the best objective value as a the relaxation of the problem will always be as good or
better than the constrained problem. A lower bound can also be calculated by rounding
all non-integer variables. As branches are explored the bounds can be tightened which
reduces the search effort significantly and provides an indication of how close to optimal
the current solution is, the so called optimality gap. Branches which are not explored
are said to be fathomed or pruned [MJSS16]. Fathoming occurs for three reasons; an

optimal solution has been found (fathomed by optimality), the solution is infeasible
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(fathomed by infeasibility), or the objective value of the current LP solution is worse

than the objective value of the current incumbent (fathomed by bounds).

Akin to what we’ve seen with other combinatorial optimisation solvers, the order that
the decision variables are processed in influences how effectively the bounds can be
tightened and as a result the amount of pruning that can be applied. There are numerous
ordering heuristics such as lexicographic ordering, selecting the variable with the largest
fractional value, strong branching, and pseudo costs [MJSS16]. Strong branching
and pseudo costs in particular are very effective and used in many powerful solvers.
Strong branching partially solves the LP to evaluate branching strength [AKMO5].
The pseudo-costs heuristic maintains counters for each variable which are updated as
search progresses to indicate which variables have historically been good to branch
on [BGG'71].

Cutting planes are another common technique used to resolve mixed integer program-
ming problems. These are used in conjunction with branch and bound search (sometimes
called branch and cut). There are a number of different cutting planes methods such as
Gomory cuts [Gom60, Gom63] and lift-and-project cuts [BCC93]. While the methods
are different in general all work in a similar manner by generating additional inequalities

on the fly in order to prohibit infeasible solutions from future LP solutions.

2.2 Algorithm Configuration and Selection

Today there is an ever growing variety of algorithms being developed for solving
hard combinatorial problems. Very often individual algorithms will perform well on a
particular type of instances but experience less success more generally. Because of this
it is often advantageous to create a portfolio of complementary solvers and select which
to use on a per-instance basis. Similarly, for advanced solvers which expose a large
number of parameters to control their behaviour there is often no single configuration
which will perform optimally across all instances. Even if there was, determining this
configuration by manual ad hoc experimentation would be near impossible. Because of
this the related fields of algorithm configuration and algorithm selection have received a
large amount of research attention in recent years [SmiO8, Kot14, KHNT19, Hoo12b].
In the rest of this section we outline the various proposed approaches to these problems

and review the relevant related literature.
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2.2.1 Algorithm Configuration

Choosing the correct values for an algorithm’s parameters can greatly increase the
algorithm’s performance over the default settings, sometimes by orders of mag-
nitude [HHLBSO09]. For this reason a variety of different methods have been proposed
to tackle the automatic algorithm configuration problem which we will review in this

section.

Problem Definition To begin we formally, define the algorithm configuration problem
as follows [Hoo12b]: Given

* an algorithm A with parameters py, ..., p; that affect its behaviour,

* aspace C of configurations (i.e. parameter settings), where each configuration
¢ € (' specifies values for A’s parameters such that A’s behaviour on a given

problem instance is completely specified (up to a possible randomisation of A)
* a set of problem instances /,

* a performance metric m that measures the performance of A on instance set / for

a given configuration c,

find a configuration ¢t € C that results in optimal performance of A on I according to

metric m.

There are a number of different types of parameters to consider depending on the context

where algorithm configuration is applied:
» Categorical: A finite, discrete set of unordered values.
* Numerical: Either integer or real valued parameter values.
* Ordinal: A finite discrete set of ordered values.

* Conditional: Certain parameters which are only activated when other parameters

assume a certain value.

Similarly, the performance metric adopted varies depending on context, however the
two most commonly used metrics optimised are runtime minimisation and solution
quality.

2.2.1.1 Offline Configuration

The most common automatic algorithm configuration paradigm at the moment is offline

algorithm configuration. Here, a training set of problem instances are collected which
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the configurator uses to learn a suitable configuration during an offline training phase.
At the end of the training phase a configuration is returned which is subsequently used
to solve all future problem instances during the production phase. For these methods to
be effective it is imperative that the training set is large enough, as too few examples
will likely produce a configuration which overfits the training data. It is also a necessary
condition of these methods that the training set be representative of the types of instances

encountered during the production phase.

Early Parameter Tuning Early attempts at automated algorithm configuration for the
field of constraint optimisation began in the early 2000’s. During this time a number of
different approaches to the parameter tuning problem were presented using techniques
such as gradient-free numerical optimisation methods [HOO1, AO06], and experimental
design based methods [BSPV02, CGRWO1, AL06] (see [ES11] for a broader overview).
These first approaches were typically limited to optimising only a small number of
continuous parameters [HOO1, BSPV02, AL06, AO06]. For this reason, Hoos refers to
these early approaches as parameter tuning and reserves the term algorithm configura-
tion for "target algorithms with many categorical parameters...dealing with an algorithm
schema that contains a number of instantiable components (typically, subprocedures or
functions)" [Hoo12b].

CALIBRA The CALIBRA system, introduced in 2006, uses both experimental
design techniques alongside a local search procedure in order to find improved config-
urations [ALO6]. The algorithm uses Taguchi fractional factorial experimental designs
to evaluate each parameter for two levels (i.e. two parameter values). The results of
these evaluations are used to identify promising areas of the configuration space which
are then explored by local search. The configurator identifies three levels (values) per
parameter using the initial evaluations then uses these in combination with fractional
experiment designs to identify nine promising configurations for each local search
iteration to explore. Local search continues to iterate and refine the values until a local
optimum is reached. At this point the search is restarted and three new values per
parameter are identified using the current incumbents. These values are again used to
identify neighbours for the local search using a fractional experiment design. This cycle

continues until the number of evaluations exceeds a predefined threshold.

CALIBRA showed that it was able match or exceed the performance of hand-tuned
solvers without any prior information. Despite this, the system is severely handicapped
due to the fact that it is limited to configuring a maximum of only five parameters, and

it’s ability to only configure parameters in the continuous domain.
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F-Race and Iterated F-Race Another early algorithm configuration approach, F-
Race, adopts a racing approach [BSPV02]. Here a fixed set of configurations compete
against one another until sufficient statistical evidence is gathered to eliminate inferior
configurations. The pool of configurations is either provided by the end user or sampled
using a full factorial design. This sampling methodology makes F-Race, as it was
originally proposed, unsuitable for configuring anything but a small number parameters.
Problem instances are solved one at a time by all configurations, after each iteration, a
non-parametric Friedman test is applied to determine if any configurations are statistic-
ally inferior. These under-performing configurations are then removed and future races
run with only the remaining configurations. This continues until a single configuration

remains or the configuration budget is exhausted.

An extension of F-Race which iteratively runs races allows parameter optimisation over
larger configuration spaces [BBS07, BYBS10]. The Iterated F-Race extension splits the
total configuration budget into a number of iterations. During each iteration the F-Race
procedure is run in the normal way. Initially, Iterated F-Race uses random sampling
to provide the initial set of configurations which avoids the combinatorial explosion
encountered using previous the full factorial design. While the initial sampling is
performed uniformly at random, later iterations replenish the pool of configurations
using a probability model which biases the selection using information from previous
iterations elite configurations. In this way, the starting configuration pool for each
iteration becomes successively stronger by refining the probability model and biasing

the search towards good configurations.

Development of Iterative F-Race is continuing in the form of the irace pack-
age [LIDLC*™16]. This package implements a number of improvements, such as
soft-restarts and elitist racing, not discussed in the original papers. Soft-restarts ensures
diversity by expanding the range of allowed configurations when the probability model
has constrained the generation procedure too much and caused new configurations to
be near identical to previous configurations. Elitist iterated racing prevents accidental
removal of configurations which have exhibited strong historical performance. The
standard version of Iterated F-Race performs the statistical test and removal based only
on runs in the current iteration. This can lead to situations where an unlucky sequence
of instances can cause the removal of a strong configuration. Elitist racing combats
this by ensuring that an elite configuration can only be removed after the configuration

dominating it has run on the same number of configurations overall.

F-Race and Iterated F-Race were originally designed for scenarios where the goal was

to optimise solution quality within a fixed time rather than reduce the overall runtime.
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Due to this the configurators under perform relative to other algorithm configurators
in runtime minimisation scenarios due to not limiting the time spent evaluating weak
configurations. An extension introducing an adaptive capping mechanism, similar
to that in ParamILS, was proposed in 2017 [CLIHS17]. This extension computed
runtime bounds using the runtime performance of elite configurations and used these
to terminate clearly inferior configurations early. This resulted in performance which
was comparable to the state of the art black box configurators in runtime minimisation

scenarios.

ParamILS The ParamILS automatic configuration framework, introduced in 2007,
is able to configure arbitrary algorithms with very large numbers of discrete paramet-
ers [HHSO07, HHLBSO09]. The framework uses a local search heuristic to explore the
configuration space. Specifically, ParamILS performs iterative first improvement search
using a one-exchange neighbourhood (changing a single parameter at a time). The
iterated local search generally begins with the default configuration as the incumbent
and proceeds in three stages. Firstly, the a new candidate configuration is created by
randomly assigning a set number of parameters from the configuration space. Then,
first improvement local search is performed by exploring each neighbourhood which
differs from the candidate by at most one parameter. The candidate is updated as soon
as an improvement is discovered and the local search begins anew from the improved
configuration. This process continues until there is no neighbouring configuration
can improve on the candidate, a local optimum. The final stage uses an acceptance
criterion to compare the locally optimal candidate and the current incumbent. If the
candidate is accepted it becomes the new incumbent and the cycle continues. In order
to avoid becoming trapped in local optima the iterated local search also uses random
restarts. Here, with a certain probability the search jumps to another random part of the
configuration space. On the termination of the search the configuration with the best

performance is returned.

The paper introduces two concrete instantiations of the ParamILS framework, BasicILS
and FocusedILS. The two methods differ in the method used to evaluate whether
one configuration is better than another, namely the number of instances evaluated.
BasicILS runs both configurations on the same fixed size set of instances (and seeds)
and deems the configuration with better performance (e.g. mean runtime) over the set
to be superior. FocusedILS on the other hand adaptively selects the number of instances
to evaluate two configurations on. FocusedILS will only consider the performance
of one configuration better than another if they have both run on the same number

of instances. The configuration with a smaller number of runs performs additional
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runs until both have the same number of runs. In the case where both configurations
have the same number of runs one extra run is performed for each. Additionally the
FocusedILS comparison procedure tracks the number of configurations evaluated since
the last improvement and performs this many additional runs with a new incumbent
when it is discovered. This ensures that good configurations have a large number of

numbers and so lowers the likelihood of incorrectly removing a strong configuration.

Adaptive capping was introduced in a follow up journal paper in 2009 [HHLBS09].
This addresses the issue that if solvers are allowed to execute to completion much of
the configuration time is spent evaluating sub par configurations. Adaptive capping
remedies this by terminating runs whose execution time exceeds a bound set by the cur-
rent best configuration. The paper proposes two versions of this mechanism, Trajectory
Preserving and Aggressive Capping, though both operate in a similar manner. A lower
runtime bound is computed based on the runtime of the best configuration in addition to
some slack. The bound computed by Trajectory Preserving adaptive capping makes use
of only the runtime of the best configuration encountered during the current iteration
of the search procedure. This approach does not change how the search procedure
progresses while still reducing the evaluation overhead. Aggressive Capping imposes
a tighter bound by using the solving times from the overall incumbent (globally) to
terminate expensive runs. Though this method alters the trajectory of the search, it has
been shown to improve the overall configuration procedure by allowing more search

iterations.

The combination of these methods allowed ParamILS show very impressive results on
a variety of solvers, sometimes improving performance over manual configuration by
orders of magnitude. Of particular note is ParamILS’ ability to successfully configure

the highly parameterised mixed integer programming solver CPLEX [IBM14].

GGA and GGA++ The Gender-Based Genetic Algorithm (GGA) uses a genetic,
population based approach to algorithm configuration [AST09a]. As is common with
genetic algorithms GGA models each configuration as a genome creates new candid-
ate configurations by means of crossover. A novelty in GGA’s approach is that the
algorithm uses two gender pools, a competitive and non-competitive pool, with different
selection pressures to drive the evolutionary procedure. This approach servers two
purposes, to limit the time spent on expensive target algorithm runs, and also to ensure
certain level of diversity is maintained. Configurations are assigned to the two pools
at random. The configurations in the competitive pool compete for the right to mate
(perform crossover) by racing to solve instances in the training set. Once a certain fixed

percentage of configurations from this pool has solved the instances, the other runs are
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terminated. This approach ensures that the configuration budget is used by the best
configurations rather than wasting evaluating poor configurations. The configuration in
the non-competitive pool do not compete and are instead included to ensure diversity
is maintained. Offspring are produced by selecting a parent configuration from each
pool and combining these by means of crossover. The offspring is assigned to either the
competitive or non-competitive pool at random. Configurations that have remained for

more than a specified number of iterations are removed.

GGA++ extended this idea by using surrogate models to genetically engineer superior
offspring during the crossover process [AMS*15]. A surrogate model was built to
predict configuration performance using a specially designed random forest. This
random forest was constructed to more accurately predict the performance of high
performance configurations at the expense of more general accuracy. The surrogate
model was then used to select the most promising offspring amongst the many potential
crossover possibilities. This paper also proposed using the surrogate model to choose
more attractive parents from the non-competitive pool, however this approach was

shown to under perform in empirical evaluations.

Sequential Parameter Optimization Sequential Parameter Optimization (SPO) was
one of the earliest algorithm configuration procedures to champion the sequential model-
based optimization approach [BBLP05]. SPO begins by sampling design points (in the
algorithm configuration case configuration vectors) from the design space by means of
a Latin hypercube design. The number of design points to sample, d, and the number of
response values to evaluate these design points on, 7, is specified by the user. The results
of these sample runs are used to compute the value of the performance metric we wish
to optimise (e.g. mean, quantiles etc.). This provides us with tuples that map the design
points to the values for optimisation. A noise free Gaussian process model is then fitted
to resulting (design point, response value) tuples. The resulting model is probed by
sampling 10,000 design points uniformly at random and the n best according to an
expected improvement measure are the response value of these is measured 7 times.
The current incumbent is included amongst the set of configurations to be evaluated. At
this point the new incumbent is determined based on the chosen performance metric. If
the incumbent is one which has previously been encountered r is increased. Then the
process begins again by fitting another noise-free Gaussian process model to the newly

evaluated points.

Two important extensions have been proposed for the SPO procedure to improve
its performance and general applicability to algorithm configuration. The first,

SPO* [HHLMO09], introduces two changes: Firstly it improves the model quality by
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performing a log transformation of the response variable. Secondly, it alters the way
in which potential incumbents are evaluated to ensure that any new incumbent is the
design point with the most response value evaluations. It achieves this using a doubling
intensification method inspired by FocusedILS [HHSO07].

The second extension, Time-Bounded Sequential Parameter Optimization (TB-
SPO) [HHLM10] introduces a number of additional improvements. It removes the
Latin hypercube initialisation procedure and instead fits the initial model to a single
point (in the case of algorithm configuration, the default configuration). Future points
are sampled alternately at random, and using the expected improvement measure based
on the trained model. This work also determines the period between model updates
based on the cost of updating the model. Further to this the work reduces the cost
of training the model by training on a random subset of the previously encountered
points, rather than an ever growing training set (a technique called projected process
(PP) approximation).

SPO and its extensions demonstrated promising results, however, it was limited to

optimising numerical parameters on single problem instances.

SMAC Sequential Model-Based Algorithm Configuration (SMAC) was created with
the aim of addressing the limitations of SPO in order to make it generally applicable to
the algorithm configuration context [HHL11]. The paper introducing SMAC first defines
a simple time-bounded Sequential Model-Based Optimization (SMBO) framework.
This framework consists of an initialisation procedure to select the initial incumbent.
This followed by three steps in a loop until the configuration budget is exhausted: a
model fitting procedure, a configuration selection procedure (based on the fitted model),
and an intensification procedure to compare new configurations against the current
incumbent and update as necessary. TB-SPO is an instantiation of this framework. The
paper proceed by introducing two concrete instantiations of the SMBO framework:
Random Online Aggressive Racing (ROAR) and SMAC.

ROAR is a simple model-free instantiation of the SMBO framework with the primary
goal of demonstrating how TB-SPO’s intensification procedure can be extended to
handle multiple problem instances. The intensification scheme used in ROAR relies
on the property that variance of a comparison between two configurations is better
reduced by evaluating a larger number of instances once than by evaluating a single
instances multiple times [BirO5]. The intensification procedure is provided with a list
of configurations to compare against the incumbent. Each time a new configuration

is compared against the incumbent an additional run on randomly selected (instance,
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seed) pair is performed by the incumbent. Following this the candidate configuration
iteratively performs runs on the instances previously solved by the incumbent using a
doubling scheme. These evaluations proceed until either the candidate configurations
performance lags behind that of the incumbent, resulting in elimination, or the candidate
solves an equal number of instances to the incumbent with equal or better performance
and achieves promotion to incumbent. This intensification scheme is similar to that used
in FocusedILS except that the order the instances the candidate configuration must solve
is random instead of fixed for each iteration. This is done to reduce the sensitivity of the
intensification procedure. The rest of the framework is very simple, the initialisation
procedure returns the default configuration, fit model is unused as ROAR is model free,
and the selection procedure simply returns a configuration from the configuration space

uniformly at random.

The SMAC instantiation of the SMBO framework is an extension of ROAR which
primarily focuses on improving the model used to select new configuration. As such the
initialisation procedure and intensification procedure remain unchanged from ROAR.
The model fitting procedure is changed to allow for categorical as well as numerical
parameters by replacing the Gaussian process model seen in other SPO implementations
with a random forest model [BreO1]. Random forests have previously been shown to
be suitable for this task while also provided estimates of the uncertainty in a given
prediction [BMO04]. Specifically SMAC trains a random forest to learn a joint model
consisting of both configuration and instance features with the goal of predicting the
log transformed mean runtime (though other target values are possible). The log
transformation is applied as it has previously been shown to improve runtime prediction
quality [XHHLBOS8]. By learning a joint model, SMAC avoids complications around

providing the same instances for all configurations as training data.

SMAC uses this model to improve the configuration selection procedure by using the
random forests uncertainty estimate to identify areas with large expected improvement
values (i.e. areas with low predicted cost and high uncertainty). Specifically SMAC
uses multi-start search to identify a small number (ten in the paper) of configurations
with locally maximal expected improvement. It supplements these configurations with
a large number (10,000 in the paper) of uniformly sampled configurations. These are
combined and sorted according to their predicted expected improvement. The resulting
list of configurations is interleaved with random configurations to ensure diversity while
being processed by the intensification procedure. Using these techniques SMAC has
achieved state-of-the-art results and is widely used in many configuration contexts
today [BBvB17, THHL13, LBMS17].
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Golden Parameter Search Recent work investigating algorithm configuration land-
scapes suggests that in many cases the parameters exhibit uni-modal response val-
ues [PH18]. As such, optimisation procedures used in many algorithm configuration
systems are unnecessarily complex. Golden Parameter Search (GPS) exploits this
property and proposes a relatively simple approach to semi-independently optimise
parameters in parallel [PH20]. Specifically, GPS uses the golden section search al-
gorithm to efficiently reduce the bounds around an optimal numerical parameter value.
When a new optimal parameter value is identified it is propogated to all other parameter
searches. Due to parameter interactions previously identified can become stale, to
combat this the parameters weight decays over time and eventually it must be rerun.
GPS also exploits the fact that typically a small number of parameters have a large
impact on the solver performance by using a bandit approach to determine which para-
meter to optimise next. By combining these techniques GPS was able to achieve strong
performance, even outperforming state-of-the-art configurators on a number of TSP,
SAT, and MIP benchmarks.

2.2.1.2 Configuration with Theoretical Guarantees

The configuration methods outlined in the previous section fall under the broad heading
of heuristic techniques; they use heuristics to guide their search for improving con-
figurations towards promising areas of the search space. While such techniques have
been shown to perform very well in practice, they lack theoretical guarantees and are
susceptible to poor performance in the worst case (for example when presented with an
adversarial run of instances). For this reason, a number of recent papers have proposed
methods which are highly likely to find approximately optimal configurations with a

runtime which dominates existing methods in the worst case.

Structured Procrastination In 2017, structured procrastination (SP) was introduced
as a way of finding (e, )-optimal configurations [KLBL17]. A configuration, c, is (e,
d)-optimal if:

1. Its expected running time over an instance distribution is within a factor of the
optimal configuration, c,,. Formally, R(c) < (1 + €)R(copt), Where R denotes

the expected running time over an instance distribution.

2. There exists a cutoff time threshold, #, such that the probability of the configura-

tion timing out is less than ¢ over the instance distribution.

SP runs in an anytime manner; the longer the algorithm is run for the more accurate its

estimate of 0 becomes. Upon termination, the algorithm returns this ¢ value in addition
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to the selected configuration.

SP maintains a bounded length first in first out queue for each configuration under
consideration. These queues are filled with tuples containing a problem instance and
a solving time out. Initially each configuration is processed in a round robin fashion,
taking the instance and time out at the head of that configuration’s queue and attempting
to solve the instance within the time out. If the instance is solved with the allotted
time, the solving time is used to compute a lower bound for the configuration solving it;
the mean solving time over all solved instances. Otherwise, the time out threshold is
doubled and the instance is added to the end of the queue. The configuration with the
smallest lower bound on expected runtime is selected and the (instance, time out) tuple
at the top of it’s queue is processed. Using this greedy approach and time out doubling,
SP is able to process instances and establish an accurate estimate of a configurations

expected runtime without expending more effort than is required.

Kleinman et al. extended this work to add adaptivity to the SP algorithm [KLBLG19].
Adaptivity allows the configurator to use a smaller number of samples to estimate
the performance in cases where there is a low variance, the original paper lacked this

property, instead treating every input as if it were the worst case.

Leaps and Bounds Leaps and Bounds, proposed by Weisz et al. in 2018, builds on
the SP approach to provide a similar yet improved configuration procedure [WGS18].
The paper outlines a simpler algorithm which improves on the runtime bound of
the SP method by more accurately estimating the runtime budget required for each
configuration. The algorithm is adaptive (requires fewer samples when variance is
low), but lacks the anytime property (¢ and d must be specified up front). The work
also empirically evaluates the performance of "Leaps and Bounds" against "Structured
Procrastination", showing the total configuration time required by the former to be less
on real world SAT instances.

An extension to Leaps and Bounds, CapsAndRuns estimates a per configuration runtime
cap then uses a Bernstein race on the configurations to determine the best one [WGS19].
The paper also outlines a new theoretical upper bound on the expected runtime which is

a significant improvement over existing bounds.

It is worth noting that although Leaps and Bounds, CapsAndRuns, and Structured
Procrastination provide strong theoretical guarantees, heuristic methods are likely to

greatly exceed their performance in most realistic algorithm configuration scenarios.
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2.2.1.3 Online and Dynamic Configuration

Online and dynamic configuration have many different names and definitions in the
literature. In this section we refer to methods which perform configuration on a stream
of instances as online algorithm configuration methods. We use the term dynamic
algorithm configuration methods for algorithms which update their internal settings
on-the-fly during solving rather than between problem instances (these are sometimes

referred to as adaptive or reactive methods elsewhere in the literature)?.

Online Configuration Instance Specific Algorithm Configuration (ISAC) can be
considered a hybrid offline and online configuration approach [KMST10]. At its core
ISAC uses the GGA configurator to learn configurations for clusters of instances during
an offline training period [ASTO9b]. These clusters are computed offline using the
instance features by the g-means clustering algorithm [HEO3]. G-means is an extension
of k-means clustering algorithm that removes the requirement to specify the number of
clusters, k. During the production phase new instances which are sufficiently close to a
cluster are solved using the learned configuration for that cluster. If the instance is not
close enough to any cluster it is solved by a fall-back configuration which has decent

performance across the entire set of instances.

ISAC cannot be considered an online configurator as both clustering and training
occur offline. However, an extension to ISAC, Evolving Instance-Specific Algorithm
Configuration (EISAC) [MMO13], proposes a way of detecting, online, when the
instances have drifted enough and uses this to trigger reclustering and reconfiguration of
the resulting clusters. EISAC is initialised in the same way as ISAC (g-means clustering
of instances according to their features, training a configuration per cluster using GGA).
Where EISAC differs is that as new instances are being processed it recomputed the
clusters. These recomputed clusters are compared to the original using the Rand
measure [Ran71]. If the clustering is deemed to be sufficiently different (according
to a user defined threshold) then GGA is used to compute new configurations for the
clusters. The frequency that this retraining occurs at can be controlled by adjusting the

similarity threshold.

Another method of configuring an algorithm online is the Continuous Search
paradigm [AHS10, AHS12]. This work uses the downtime between solving instances to
find continually improving search heuristics for constraint programming without using

an explicit training period or instances. Continuous Search begins with no information

?Dynamic configurations adapt to the state of the search online, however, the control policy is often
learned or provided offline.
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about the quality of the available heuristics (as such it uses the default heuristic), it
then adopts a lifelong learning approach that learns which heuristic to use and adapts to

changes in the incoming instances as it processes the stream of instances.

This is achieved by using two modes: a production (or exploitation) mode, where
incoming instance are solved using the current heuristic model, and a learning (or
exploration) mode where the system uses available idle time to evaluate alternative
heuristics on the last encountered instance. The new information gained from running
these evaluations is added to the training set and used to update the heuristic model.
Specifically, a support vector machine is trained to predict whether or not the heuristic
is better than the current heuristic model (binary classification). The description vector
used to train this model consist of both instance and heuristic features. In this way
solutions are returned quickly when required while also improving and adapting the

heuristic model over time.

Dynamic Algorithm Configuration Continuous Search has also been shown to be
applicable to the dynamic configuration context in a similar way [AHS10, AHS12]. This
technique is applied to a constraint-based solver using search restarts. Restarts occur
when the search has backtracked a user specified number of times. At the beginning of
the search and every time a restart occurs a description of the instance and search state
is computed encompassing both static features (problem definition, variable size and
degree information, constraint information etc.) and dynamic features (global statistic
on search progress as well as local statistic on the evolution of a given strategy). This
description is used to update update the heuristic selection model in the same way as
the online variant described above. The major difference is that instead of deciding on
the heuristic to use for a particular instance the model now predicts which heuristic to

use for the window between search restarts.

Recently a Dynamic Algorithm Configuration framework has been proposed which
formulates the problem as a contextual Markov decision process (MDP) [BBE*20].
The MDP is contextual in the sense that it takes instances into account, specifically
creating multiple MDPs with shared state and action spaces but differing transition and
reward functions. The states of the MDP are defined by search and instance states at
a particular timestep (similar to the description used in dynamic Continuous Search
for model learning). The action states of the MDP consist of how the configurator can
assign parameter values. The transition function is the probability of reaching a certain
state in the next timestep by applying a particular action to the state at the current

timestep.
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This work proposes to use reinforcement learning to optimise the policies based on a
reward function. This reward function can be dense i.e. available at every timestep
like distance to goal, or it can be sparse e.g. runtime at the end of an algorithm run.
Two separate pieces of work have demonstrated how this framework can be employed
to dynamically configure well known optimisation algorithms parameters: learning
step-size adaptation for the covariance matrix adaptation evolution strategy (CMA-ES)
and learning heuristics for the Fast Downward planner [SBA*20, SBHT20].

In addition to the two frameworks outlined above, Continuous Search and Dynamic
Algorithm Configuration, a large number of other methods for adapting parameter values
during solver or algorithm execution have been proposed. Some well known examples
include reactive tabu search [BT94], dynamic restart policies [KHR"02], and greedy
randomized adaptive search [Res09] (see [BB07] for a more complete overview.)

2.2.2 Algorithm Selection and Portfolios

Closely related to algorithm configuration is the algorithm selection problem [Ric76].
This technique exploits the complementary nature of many combinatorial solvers and
the fact that often there is no single best solver for all instances® [XHHL12]. The
algorithm selection problem asks, given a set of algorithms and problem instances to
identify a performance mapping such that the best algorithm for each instance can be
selected. More formally, the problem can be defined as follows [Ric76, KHNT19]:

Given
* aset P’ of instances of a problem P,
* aset of algorithms A = Ay, ..., A, for solving P,

e a performance metric p : A x P’ — R that measures the performance of any

algorithm A; € A on instance set ',

construct a selector S that maps any problem instance = € P’ to an algorithm S(z) € A
such that the overall performance of S on P’ is optimal according to the performance

metric p.

Figure 2.9 shows the structure of a typical contemporary algorithm selection
model [Kot14]. The selection model S uses features representing the problem space

P and machine learning techniques trained on some training data to learn a mapping

3 Algorithm selection is not strictly limited to combinatorial optimisation (e.g. ensemble methods for
machine learning), however, for the purposes of this review we will primarily present it in this context.
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Figure 2.9: A model of the algorithm selection problem [Kot14]. Dashed lines represent
optional links.

from a problem instance = to one of the algorithms in A such that performance p is

maximised.

By adopting this framework algorithm selection based solvers have enjoyed a great deal
of success in many domains [KKHT15, HKMO14c, AGM14], most notably SATZilla
which took first place in several tracks at the SAT Competition 2009 and SAT challenge
2012 [XHHLBOS8, XHS"12]. In fact these techniques became a victim of there own
success and were banned from these competitions for a number of years and later
relegated to their own track. More recently, in an attempt foster innovation in general
portfolio and algorithm selection research rather than finely tuned solutions for par-
ticular domain algorithm selection specific competitions have been run in 2015 and
2017 [LvRK19]. Given the abundance of literature written about algorithm selection
and related problems we limit this review to approaches which have had the most impact.
However, readers who wish to further explore this area are invited to read the more
comprehensive algorithm selection surveys by Smith-Miles, Kotthoff, or Kerschke et
al. [Smi08, Kot14, KHNT19].

2.2.2.1 Offline Selection

SATzilla The per-instance approach SATzilla is one of the best known algorithm
selection systems. SATzilla 2007 gained a large amount of attention by winning multiple
medals in the 2007 SAT Competition [ XHHLBOS]. It uses the training data to determine
pre-solvers which attempt to solve the problem instance before feature computation
takes place (as this can be an expensive undertaking). A backup solver which has the best
average solving time on the training set is also identified. Training instances which the

pre-solvers fail to solve are used to train algorithm specific hierarchical hardness models.
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Separate ridge regression models are trained for SAT and UNSAT instances. Then
a Sparse Multinomial Logistic Regression (SMLR) classifier is trained to predict the
probability that an instance an instance is SAT or UNSAT. Finally, the ridge regression
model’s predictions are combined, weighted according to the probability output by the

SMLR classifier. A subset of solvers which achieve the lowest total runtime is selected.

During the online phase the pre-solvers are used initially to attempt to solve the instance.
Failing that, features are computed and used by the hierarchical hardness model to
identify the fastest predicted solver to solve the instance. If for some reason features

cannot be computed the backup solver is used for solving.

Satzilla 2012 replaces the hierarchical hardness model with a cost-sensitive sensitive
pairwise classification approach [XHS " 12]. This approach trains a classifier for each
pair of solvers to predict which will provide the best performance. These classifiers take
into account the impact an incorrect classification has on the performance. The solver

with the most votes across all pairwise classifiers is selected to solve the instance.

3S 3S proposes a semi-static solver schedules approach [KMS™11]. This approach
combines a nearest neighbour based algorithm selection approach with a static schedule
of solvers. The rational behind this is to hedge against incorrect selections made by
the algorithm selection procedure by also running a static schedule of solvers for a
percentage of the solving budget (in the paper 10%). The algorithm selector partitions
the training set using g-means clustering (similar to ISAC) [HEO3]. For each cluster
the best k value is identified based on the weighted distance. The solver with the
lowest solving time on the k nearest neighbours is selected. The static schedule uses
column generation to calculate a set of solvers and solving budgets which will solve
the most training instances. One notable aspect of this approach is that it achieved
excellent performance (seven medals including two gold) across tracks in the 2011 SAT
competition without tailoring its approach to each specific track (i.e. it trained once on
a fixed set of instances and solvers). This demonstrated the strength of a low-bias/non

model-based approach.

Cost Sensitive Hierarchical Clustering (CSHC) CSHC builds on 3S by replacing
the k-nearest neighbours clustering approach with a cost sensitive hierarchical clustering
method [MSSS13a]. CSHC retains the static schedule of solver run for 10% of the
solving budget. The proposed clustering method starts with all methods in a single
cluster and recursively identifies hyperplanes until the cluster size reaches a certain
size threshold (in this work, 10). Each misclassification in a cluster incurs a cost, the

hyperplane is chosen to reduce the aggregated cost per cluster.
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More recent work has extended this approach by introducing the idea of recourse to
the selection procedure [AST18]. Recourse-CSHC determines the confidence in the
selectors choice by comparing the performance of the chosen solver to the average
performance of all solvers on the neighbouring instances in terms of standard deviations.
If the selected solver’s performance greatly exceeds that of the others the selector can
be confident in its choice. If not the selector opts to use either a predetermined static
schedule of solvers that exhibit strong performance over all instances for a period of
time or a dynamic schedule which selects solvers and their budget based on the problem
instances nearest neighbours. Recourse-CSHC also exposes many of the parameters

controlling the selection process and tunes these using the GGA configurator.

ASAP V2 and V3 ASAP v2 and v3 ranked first and second in the Algorithm Se-
lection competition 2017 respectively. Similar to 3§ and CSHC, ASAP combines a
global presolving schedule with an instance specific selector [GSS17]. Unlike the afore-
mentioned approaches, ASAP identifies an optimal split between the computational
budget for the pre-scheduler and algorithm selector by formulating the problem as a
bi-objective optimisation problem and identifying the knee point using heuristics. Due
to the interdependence of the pre-scheduler and algorithm selector (the selector should
excel where the pre-scheduler fails and vice versa), ASAP incrementally trains both in

alternate phases as follows:

1. Build a scheduler which maximises the number of training instances solved in a

short time budget.

2. Train a random forest regression model on a per algorithm basis to predict solver
performance on the training instances. The outcomes from Step 1. are used as

additional features.

3. Create the final pre-scheduler to optimise the number of instances solved with
less weight given to instances which can be solved quickly using the selector

from the previous step.

4. Train a performance model over all training instances again using the results
off the pre-scheduler construction as features. This model will then serve as the

algorithm selector.

The primary difference between ASAP v2 and v3 is the number of solvers in the pre-
scheduler is fixed to three in version 2 and optimised to a value between one and four in

version 3.
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CPHydra CPHydra adopts a case-based reasoning approach to portfolios and
achieved first place in the CSP solver competition in 2008 [OHH*08a]. During training
CPHydra solves a set of training instances using the solvers in the portfolio to construct
a case base. In the online phase the most similar for each of the incoming instances are
identified (using a weighted k-nearest neighbours, k=10). A constraint program is used

to maximise the number of cases solved in the given time budget.

Proteus Proteus exploits the ability to encode CSP problems as SAT in order to extend
the pool of high quality solvers across problem domains [HKMO14c]. The selector
uses a hierarchical model to select which encoding and solver to use. At the root it
decides whether the instance should be solved in it unaltered CSP form or converted to
SAT. If the problem is converted to SAT the selector then decides which SAT encoding
to use (direct, support, order). Finally, when the problem representation is decided, the
selector chooses the optimal solver to solve the instance. The authors conduct extensive
studies at each branching point to decide the which model and set of features to use for
each decision. The best performing approach uses regression models (M5P and Linear
Regression) and mostly CSP features (SAT direct-order features are used in a single

case).

2.2.2.2 Online Selection

SUNNY SUNNY builds a schedule of CSP solvers in a portfolio online without any
prior training [AGM14]. SUNNY finds similar instances to the current instance using
k-nearest neighbours. It then selects a minimum subset of solvers that could the solve
the greatest number of neighbouring instances and schedules them based the number of

neighbouring instances solved.

SUNNY-AS2 is an improved version of SUNNY with a number of enhanc-
ments [LAMG20]. It capable of handling multiple domains and appeared in the
Algorithm Selection competition 2017 finishing in 3" behind the ASAP algorithm
selectors. The two main enhancements in SUNNY-AS2 are a wrapper based feature
selection method to remove unhelpful instance features, and a method for tuning the

value of k which determines the number of neighbours to choose.

Multi-Armed Bandit Approaches A common approach to online algorithm selec-
tion is to treat the problem as a multi-armed bandit problem. Here, the goal is to
estimate the underlying reward distribution given a fixed number of evaluations while

attempting to maximise the reward achieved. In the context of the online algorithm
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selection problem, each incoming instance provides an evaluation opportunity while

solving the instance (potentially considering solving time) is the reward.

Gagliolo presents an online selection system, GambleTA, which uses a multi-armed
bandit approach to select between time allocators (parallel portfolio schedulers) [GS06].
This is modelled as a multi-level problem where the lower level constructs time al-
locators based on the observed reward (solving time) and the higher level is tasked
with selecting between these time allocators. EXP4 is used as the bandit problem
solver [ACFS02]. The downside of this approach is that EXP4 cannot handle unboun-
ded losses, as such it is necessary to arbitrary bound on algorithm runtimes which
invalidated the optimal regret property of the solver. An extension to this work proposes
a simpler version of the bandit solver framework which is able to handle unbounded
losses [GS11].

DeGroote et al. outline another approach to online algorithm selection using contextual
multi-armed bandits to select which solver to run [DCBK18]. Initially a set of random
forest regression models are trained per algorithm using instance features to estimate
performance on some offline training data. During the online phase a multi-armed
bandit approach using the trained models selects which algorithm to run. This work
evaluates three selection schemes: greedy which always chooses algorithm with the
best predicted performance, and two common approaches from the literature which
aim to balance exploration and exploitation, e-greedy and upper confidence bound
(UCB) [BC12]. Surprisingly, they find that the greedy approach outperforms the
balanced approaches. The models are updated periodically using only the information
gained from the selected algorithms. The work shows that even a relatively simple
online learning approach is competitive with the state-of-the-art offline systems on
many scenarios in ASlib [BKK™16].

2.2.3 Combined Algorithm Selection and Configuration

Given the close relationship between algorithm selection and algorithm configuration it

is unsurprising that a number of combined approaches have emerged.

Hydra Hydra builds a portfolio of solvers configured so that their performance is
complementary [XHL10]. It achieves this by adapting the performance metric used
when configuring the solver. The solvers performance is taken if it exceeds that of the
portfolio otherwise performance performance of the portfolio is used. This drives the
configurator to find configurations which improve the overall quality of the portfolio

without penalising configurations which are outperformed by another solver and would
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not have been selected anyway.

ISAC++ In this work ISAC is improved by altering adopting an algorithm selection
instead of k-nearest neighbours to determine which configuration to use [AGMS16].
Specifically, ISAC++ clusters instances and configures a solver per cluster using GGA as
in the original algorithm. Where ISAC++ differs is that it uses cost-sensitive hierarchical
clustering to decide which configured solver to use. Using this scheme ISAC++ is
able to outperform Hydra and win multiple categories in the 2013 and 2014 MaxSAT

Evaluations.

Cedalion Cedalion uses algorithm configuration to build a sequential planning port-
folio [SSHH15]. It does this in a greedy iterative fashion. Starting with an empty
portfolio, a configurator (SMAC in this work) is used to configure a solver on a set
of planning instances. The solving time budget is added to the configuration space
allowing the configurator jointly optimise both the configuration and solving time. The
learned (configuration, time) pair are added to the portfolio and all instances solved
by this pair are removed from the training set. At this point a new configuration is
learned and the procedure continues until convergence or the solving budget has been

exhasuted.

AutoFolio AutoFolio uses algorithm configuration to automatically optimise both the
choice of algorithm and algorithm parameters for a highly parametric solver [LHHS17].
Specifically they use the algorithm configurator SMAC to configure Claspfolio 2 al-
gorithm selection framework on a variety of scenarios from ASlib [HHL11, HLS14,
BKK*16]. Remarkably, this simple approach of applying an existing configurator
to an existing highly parametrised algorithm selection framework yields significant
improvement in ten out of thirteen scenarios evaluated and state-of-the-art performance

on seven of those ten.

CASH Combined algorithm selection and hyperparameter optimisation (CASH) em-
ploys a similar idea applied to the field of automated machine learning. AutoWEKA
exposed the machine learning library WEKA’s models and hyperparameters as config-
urable parameters to produce a 786-dimension parameter space [THHL13, KTH'17].
This is then optimised using SMAC or a Tree of Parzen Estimators approach to max-
imise performance based on some chosen metric (e.g. mean squared error) on a set of
examples [HHL11, BBBK11]. AutoSklearn uses the same idea to fit models from the
well known scikit-learn machine learning library [FKE*15, FEF20, PVG™11].
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confStream confStream is a combined algorithm selection and configuration system
for stream clustering algorithms [CTBP20]. It uses a sliding window approach to
determine which algorithm to use for the next window. Candidate algorithms and
configurations are evaluated on a set of test instances from the previous window to
determine their merit. Configuration occurs by taking an algorithm from the portfolio as
a parent this parent’s parameter values are altered by sampling from a biased probability

distribution similar to F-Race in order to produce a child configuration [BYBS10].

2.2.4 Runtime Prediction, Parameter Importance, and Learning
2.2.4.1 Runtime Prediction and Analysis

Previously we have seen how empirical performance models (EPMs) which predict a
solvers runtime based on solver, instance or configuration features form the core of
many algorithm selection and configuration systems (see e.g. [XHHLBOS, HHL11]).
In this section we will briefly review the literature related to runtime prediction and its

applications.

Leyton-Brown et al. outline the methodology for training EPMs and run a case study
on using EPMs to predict the runtime of combinatorial auction instances in [LNS09].
Hutter et al. show that random forests and Gaussian processes provide strong predictive
performance across a range of combinatorial problems [HXHLB14]. This work also

introduced a new set of descriptive features for SAT, MIP and TSP instances.

Hurley et al. argue that due to the stochastic elements present in many solvers a single
run is insufficient to characterise the performance of a solver on an instance [HO15].
This work demonstrates that in the SAT competition 2014 there is significant overlap
between the runtime distributions of the top three solvers, and that any ordering could
feasibly have occurred. Statistical bounds are presented for each of the solvers. Ad-
opting statistical over single point predictions is offered as a potential antidote for the
problem in the case of runtime prediction while comparing on the basis of runtime

distributions is suggest for empirical evaluations.

Arbelaez et al. show that it is possible to estimate the runtime performance of parallel
local search algorithms by analyzing there sequential runtime distribution [ATC13,
TARCI16]. Similarly, [ATO16] presents a way of predicting the runtime distribution
of sequential and parallel local search solvers on an instance. This is achieved by
identifying a suitable distribution, fitting the distribution’s parameters using a regression
model, and applying order statistics to predict the runtime distribution of the parallel

algorithm.
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Surrogate models, which use EPMs to predict the runtime of a solver solving an
instance, have been proposed as a way of greatly reducing the time needed to evaluate
configuration algorithms [EHHL15, ELH™ 18]. This work outlines how best to collect
training data and use it to learn a surrogate model which can be use as a replacement
for expensive solver evaluations. Practical considerations such as how to handle right-

censored data (due to runtime caps), and model performance are also discussed.

2.24.2 Instance Ordering and Improved Learning

Two concepts related to instance ordering outside algorithm selection and configuration
domain which have received significant attention are Curriculum Learning and Self-
Paced Learning [BLCWO09, KPK10]. Curriculum Learning advocates ordering problem
instances from simple to complex to increase the learning rate of the model (neural
networks in this work). The work demonstrates using toy examples the effectiveness of
this approach, both in terms of model accuracy and convergence rate. Closely related to
this work is the concept of self-paced learning. While curriculum learning defines the
curriculum (instance ordering) prior to solving, self-paced learning proposes a dynamic
approach where feedback about the model’s current ability is used to determine which
instance (based on difficulty) is supplied next. Jiang et al. note that neither system
is perfect; curriculum learning fails to account for feedback from the learner while
self-paced learning may be prone to overfitting as it is entirely driven by training
loss [JMZ"15]. They propose a unified framework, self-paced curriculum learning,

combining both approaches and balancing self-pacing using a regularisation term.

Returning to the algorithm configuration domain, a similar concept is proposed by Styles
et al. to improve configuration scaling performance [SHM12]. Because algorithm con-
figurators typically require a large number of evaluations to achieve sound performance,
difficult instances in the training set can stymie the configuration procedure. The ap-
proach partitions the train instances into easy and intermediate difficulties (reserving
hard instances for testing). The work shows that configuring on the easy set of instances
then using intermediate instances to validate and select which configurations to use for
solving the difficult instance outperforms training and selecting based on a single class

of instances only.

Order racing protocols extend this work by using racing protocols for the validation
and selection procedure [SH13]. Configuration takes place as normal using the easy
instances. For validation, the intermediate instances used for selection are ordered
by difficulty (based on default configuration solving time) and solved using a racing

procedure which removes configurations when there is enough statistical evidence to
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do so. This greatly reduces the cost of validation by gathering evidence using the
intermediate instances which can be solved fastest and using this to remove under
performing configurations. The work evaluates two racing methods, a variant of F-Race,

and a novel approach based on permutation tests showing the latter to be more effective.

Another approach proposed to improve the performance of algorithm configurators is
warmstarting [LH18]. This work proposes using previous configuration runs to warm-
start the current configuration procedure in two ways: by initialising the configurator
with a set of strong configurations based on previous configuration runs and using the
data from previous runs to train the initial model (this only applies to model-based
approaches). The initialisation procedure presented adds configurations to the pool in a
greedy manner by selecting the configuraions which reduce the cost of the pool the most,
this is similar to the method Hydra uses to construct portfolios [XHL10]. To warmstart
the model individual EPMs are trained on data from previous configuration runs and
combined with a model trained on the current data using a linear model optimised to

reduce the combined models root mean squared error.

2.2.4.3 Parameter Importance

Not all parameters have the same impact on solver performance. In this section we
outline a number of methods which have been created to identify critical parameters

which influence the solver the most.

Forward Selection In the first work that we are aware of which aims to assess the im-
portance of parameters in the configuration, forward selection is used to identify a subset
of parameters which yield strong predictive power of the solvers performance [HHL13].
This approach trains regression models using an increasing set parameters (incrementally
adding one parameter at a time) using data collected by evaluating randomly selected
configuration and instance pairs. The downside of the forward selection approach is that
it is very expensive, requiring a model to be trained for each free parameter. This work
shows that relatively few parameters (as little as two) account for the bulk of the solver
performance and that relatively simple models can accurately predict this performance.
A method for assessing the relative impact of the selected parameters is also proposed
by observing the reduction in prediction performance by removing the parameter from

the set used for prediction.

fANOVA A more efficient approach to guaging a parameters impact using functional
ANOVA is outlined in [HHL14]. Here a random forest regression model is trained using

runs of the configurations to predict performance. This model display the relationship
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between configurations and performance. This model is decomposed using functional

ANOVA to identify parameter importance and the interaction between parameters.

Ablation Analysis Brute force ablation analysis is another method used to identify
parameter importance [FH16]. This method analysis the path between two configura-
tions for example the default and the configurator incumbent by iteratively modifying
one parameter at a time and retaining the configuration with the best performance. This
allows the procedure to identify changes which result in improvement and those which
are a by-product of the configuration process. Modifying a single parameter at a time
incurs a major computational overhead (over 100 days CPU time are reported in the pa-
per). To address this, the authors propose a racing approach based on F-Race [BYBS10]
to reduce the number of configurations required. An extension to this which uses
surrogate models in place of full evaluations renders the approach feasible for typical
use cases [BLET17].

Tools In addition to the methods outlined a number of tools have been created to help
with the analysis of the configuration space. SpyBUG is a tool designed to help identify
invalid or erroneous configurations which can cause solvers to fail [ML16]. SpySMAC
and its successor CAVE are tools which make the analysis of parameters easier by gener-

ating plots, visualisations and reports based on configuration runs [FLH15, BMLH18].

2.3 Chapter Summary

In this chapter we provided an extensive overview of the relevant literature required
to place this thesis in context. Specifically, we outlined the techniques, methods
and heuristics used to solve various combinatorial optimisation problems such as the
Constraint Satisfaction Problem, Boolean Satisfiability, and Integer Programming. The
chapter also presented an overview of techniques for automatically selecting, combining,
and optimising the options available when solving hard combinatorial problems so that

performance is maximised.
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Chapter 3
Real-time Configuration Framework

Summary. This chapter motivates the need for real-time algorithm
configuration. We show how, with the advent of modern multi-core systems,
tuning solver parameters while solving problem instances with no increase
in wallclock time has become an achievable goal. A high level overview of
our proposed real-time algorithm configuration framework is presented, as
well as an outline, in broad terms, of the functions of each of the constituent

components of this framework.

The work presented here has appeared in the peer-reviewed conferences
AAAI 2014 [FOMTI14], SoCS 2014 [FMOTI14] and IJCAI 2015 [FMO15].

3.1 Motivation

3.1.1 Prevailing Configuration Methodology

In Section 2.2.1 we saw how automatic black-box algorithm configuration is able to
remove the burden of manually configuring algorithms with tens or even hundreds of
parameters from the end-user. This frees up time to spend on more important work while
eliminating the need for extensive domain knowledge of the algorithm’s parameters
and potential interactions. Automatic algorithm configuration allows the designers of
algorithms to extract the best possible performance from their algorithms by tailoring
the algorithm settings to the particular context where it will be applied. This in turn

enables a fairer comparison between algorithms.

These advantages are achieved by using computers to systematically evaluate the con-

figuration space and shift the search towards areas where improvement is more likely to
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be discovered. A number of different methods for this have been proposed including
racing [BYBS10], genetic algorithms [ASTO9b], iterated local search [HHLBSO09], and
sequential model based optimisation [HHL11], to name but a few. While these configur-
ators function very differently, they all use the same offline configuration methodology.
Here a set of representative training instances is collected, the configurator is assigned a
time budget during which it trains on these, and then produces a configuration that is

used to solve all new instances going forward.

3.1.2 Exploiting Parallelism for Real-time Configuration

In many practical applications of combinatorial optimisation it may not be possible to
fulfil the requirements of the offline configuration methodology. This could be either
because a representative set of training instances is unavailable or there is not enough

time to perform the necessary training.

In many common business scenarios, such as delivery routing or advertising space
auctions, instances will arrive in the form of a stream. The business’ ultimate goal is
to find a solution in the minimum amount of time possible. Over time the instance
distribution of this stream may shift, for example due to an uptick in deliveries caused
by a global pandemic or increased competition for advertising space at Christmas. This
can cause an unwelcome degradation in solving performance. The obvious solution is
to (re)configure the solver for this these new instance distributions. However, doing
so requires that the business collect a sufficient sample of these new instances to train
on and allocate enough time to learn the new configuration (during this time solving

performance will still be impacted).

Here we propose a variant of the algorithm configuration problem that we call real-
time algorithm configuration aimed at providing a solution for the use case outlined
above. Real-time algorithm configuration combines the process of finding a solution
and configuring the solver while processing a stream of instances. It is a solutions first
approach to algorithm configuration; solutions should be returned to the user in the
minimum amount of (wallclock) time possible (or within a user defined slack period
of this minimum). Improving the solver configuration is a secondary, but nonetheless

important, goal of real-time algorithm configuration.

In this thesis we show that due to the prevalence of modern multi-core systems it is
now possible to build such a system. Moore’s Law says that the transistor count in
an integrated circuit will double every two years [M*75]. This law has held true to

this day. However, due to heat issues that arise from increasing single core clock
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Figure 3.1: CPU trends from 1975 to 2017. Credit [Rup18].

speeds, increases in transistor count have been accomplished through additional CPU
cores rather than higher CPU frequencies in recent years. Figure 3.1 provides a strong
illustration of this trend [Rupl8]. We see that the number of transistors (orange)
continues to rise exponentially while processor clock speed (green) and performance
(blue) have stagnated or show only a modest increase since 2005. As a counterbalance
to this the number of logical cores (black) have begun to increase exponentially since
2005. Today, even consumer CPUs can have a large number of physical CPU cores,
for example AMD’s latest processor the Ryzen Threadripper 3990X has 64 physical
CPU cores. This trend looks set to continue for the foreseeable future and as such
algorithms that exploit multiple cores effectively will benefit greatly from the increase

in parallelism.

The Real-time Algorithm Configuration through Tournaments (ReACT) framework
that we outline in the rest of this thesis exploits the parallelism offered by multi-core
systems in order to perform comparisons between configurations with no increase in
wallclock time. As additional processing cores in desktops and workstations are often
left idle and unused we are allowed increased performance essentially for free in many
cases. In cases where there is a cost associated with using additional cores, such as
when using a cloud computing service, the ReACT framework still provides value as
the reduced overhead due to aggressive run termination means that only the resources

required to reach a solution quickly are used. Finally, the framework is still a black-box
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configuration method; parallel architectures are exploited at the framework level, rather
than the solver level, so no additional instrumentation or modifications are required to

the solver other than a lightweight wrapper and configuration space specification.

Before describing the framework and its components we first offer some discussion
around the challenges a real-time algorithm configuration system must overcome and

the way these shape our decisions around the design of the framework.

In order to compare two or more configurations without increasing the wallclock time we
must be able to run configurations in parallel. Therefore it is necessary that the ReACT
framework run on a system which is able run at least two solvers. This requirement is
increasingly easy to satisfy but still worth consideration. It is also worth noting that
while all of the experiments in this thesis are run on a single CPU system, there is no
reason that these methods cannot be distributed across multiple machines provided
sufficiently accurate communication and measurements can be achieved. Throughout
this thesis we also assume instances arrive in a constant stream without break or
interruption. Section 3.2.2 outlines how, in this scenario, the parallel racing approach at
the core of the ReACT framework is effective at inferring information about the quality

of configurations without increasing wallclock time required to receive a solution.

As the primary goal of real-time configuration is to solve the instance at hand as quickly
as possible, the methodology and methods used must be as computationally inexpensive
as possible. This is particularly important to remember when considering components

that typically incur a large overhead such as model training or feature computation.

The requirement to return a solution in the minimum achievable time also limits our
ability to compare configurations on the same instance. As instances arrive in a constant
stream and solutions must be returned as quickly as possible, we solve every instance
once and only once (terminating all other configurations upon finding a solution). As
such it is impossible to directly compare different configurations on the same instance.
Direct comparison is the method commonly used by offline algorithm configuration to
establish a configuration runtime distribution. The ReACT framework instead opts to use
a ranking-based approach where only the (typically censored) ranking of configurations
is considered. Specifically, the framework uses standard competition ranking where
configurations which compare equally (for example in the case of timeouts) receive the
same rank number. A consequence of this is that the time taken to solve is not considered;
given that each instance is solved only once by a single configuration we cannot
determine if the solving time was the result of the instance difficulty, configuration
quality, or a combination of both factors. Despite these limitation we show in the

rest of this thesis that ranking provides a good enough proxy for traditional runtime
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comparison to achieve strong configuration performance.

With these considerations in mind, we dedicate the rest of this chapter to outlining our
proposed framework and its constituent components. Section 3.2.1 presents a high-level
overview of the framework and how its various parts interact. In Section 3.2.2 we discuss
the intricacies of the ReACT framework’s parallel racing approach, while Section 3.2.3
describes the framework’s configuration pool and leaderboard. Section 3.2.4 shines light
on the function candidate selection procedure and, finally, Section 3.2.5 summarises the

important aspects of configuration generation and removal.

3.2 ReACT: Framework and Components

The ReACT framework has been designed to be modular and extensible. This allows
for future algorithm configuration practitioners and end users to build extensions and
improvements easily. In this section we deliver a high-level overview of the constituent
components and how they interact with one another. We also attempt to provide some
intuition as to why such approaches are effective in practice. However, we leave

experiments with concrete instantiations of the ReACT framework to Chapter 4.

3.2.1 Framework Overview

The ReACT framework can broadly be divided into three main parts: a racing and
selection component, a ranking system and configuration pool, and pool maintenance
methods. Within each of these components there are a number of constituent methods.
Figure 3.2 illustrates the various parts of the ReACT framework, the methods that make

up these parts and the interactions between these methods.

The racing component consists of a runner that runs the combinatorial solvers with dif-
ferent configurations in parallel. This piece of the system is also tasked with terminating
all runs when one of the solvers has found a solution or when the allotted solving time
is exceeded. The runner also handles parsing the solution and result information so that
it can be used by the ranking system easily and written to output. The other part of the
racing component is the configuration selector. This uses leaderboard information in
order to provide a set of configurations to the runner (the exact details of this is covered
in Chapter 5). The selection method uses the available ranking information from the

leaderboard.

The ranking component holds a pool of configurations as well as information about

how these configurations are performing relative to one another. This pool contains
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all configurations currently being evaluated. There is a direct mapping between the
leaderboard (if ranking is used) and the configurations available in the configuration
pool. The leaderboard is updated by means of the ranking system which receives race
outcome information directly from the runner component. The leaderboard is integral
to driving the decisions that occur in a number of other methods in the configuration

system.

The pool maintenance component contains methods for the intelligent addition and
removal of configurations to and from the configuration pool. The removal strategy
evaluates the current state of the leaderboard and uses this information to decide which
configurations are non-competitive and can safely be removed without impacting the
configuration procedure. The generation strategy is called to replace configurations
that are removed from the configuration pool with new configurations that have the
potential to perform better. New configurations are generated using parameter values in
the domains defined in the parameter configuration space file. This file also specifies
dependencies between parameters. There are a number of strategies for generating
competitive new configurations. These must carefully balance exploring the space of
potential configurations with exploiting information gleaned from existing known good
configurations. Strategies for both generation and removal are discussed in more detail
in Chapter 6.

Algorithm 7 codifies Figure 3.2 and shows the role of the black box functions on this
configuration procedure more clearly. The algorithm’s inputs consist of a parameterised
solver, A, a stream of instances to solve, II, the configuration space for solver A, ©, a
set of configuration to include in initial evaluations ©,,5, the maximum time allowed
to solve an instance, ¢, the size of the configuration pool/leaderboard, L,,, and the
number of configuration to evaluate in parallel, ,,. The ReACT algorithm processes
a potentially infinite stream of instances, as such it does not return a value, however
solutions to solved instances and logs detailing the current incumbent configurations are
written to file. Function names written in all capitals are open to the user to implement.
In Sections 4.2 and 4.3 we outline and benchmark two potential concrete instantiations

of this framework.

Lines 11 and 12 show how the configuration pool, C P, is initialised by combining
the configurations supplied for warm starting with a set of configurations uniformly
sampled from the configuration space in order to produce a configuration pool of size
L,,. This configuration pool is used to produce a leaderboard, L, that maps between

configurations and the chosen rating system.

With both leaderboard and configuration pool initialised we are ready to begin pro-
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Algorithm 7 ReACT Framework

1: procedure REACT(A,II, ©, O, 1, L,, R,)

2 Input: A, A parameterised combinatorial solver.

3: I1, A stream on combinatorial problem instances.
4

5

O, The parameter configuration space of the solver algorithm A.
Ous, A set of configurations from the configuration space, O, used to
warm start the configuration (these are optional).

6: t, The cutoff time or maximum allowed time for solving each instance.
7: L,,, The number of configurations held in the leaderboard.
8: R,,, The number of configurations to be run in parallel.
9: Side Effects: Instance solution, s, written to output file.
10: Evolving list of current incumbents, ©,,., written to file upon instance
solution.

11: Orana < SampleRandomCon figurations(L, — |Os|, ©)
12: CP =0,:UB,una > Initialise the configuration pool with warm start and

random configurations.
13: L < INITIALISE LEADERBOARD(C P)

14: for instance, 7 in II do

15: C < SELECT CANDIDATES(CP, L, R,,)

16: R, s + RaceParallel(r, A,C,t) > R is a vector which holds the runtime
and solution status of each solver. s is the instance solution, this is output to file.

17: L <~ UPDATE LEADERBOARD(R, C')

18: CP = C P— REMOVE CONFIGURATIONS(L)

19: C'P = C' PU GENERATE CONFIGURATIONS(L, C'P, ©, L,)

20: end for

21: end procedure

cessing the stream of instances (Line 14). For each available core the SELECT CAN-
DIDATES function chooses a configuration to run from the configuration pool using

information from the chosen rating system (Line 15).

Line 16 shows the function RaceParallel which handles running multiple solvers in
parallel with the selected configurations. The first configuration to return a solution
sends a terminate signal to the other runs. To account for any discrepancies in start time,
and thus ensuring that each approach is evaluated fairly, the termination signal also
encodes the time required by the quickest configuration to finish. When all runs have
finished or been terminated, the winner is the configuration with the lowest time taken
to solve the instance. In the case of optimisation problems an instance is considered
solved when a solution is found within a certain, user-specified, tolerance of the global
optimum,; this is done because proving optimality can take a large amount of time
relative to finding the solution. We note that unlike in the GGA configurator [AST09b],
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where a given percentage of the participants in a tournament are considered the winners,

here we only consider the best configuration as the winner.

The tournaments in ReACT are inspired from the tournaments in GGA. The tournaments
serve a particularly important function in ReACT, in that they ensure that the user’s
solving experience is not affected by the search for more effective configurations.
Solutions are provided while configurations are simultaneously evaluated, due to the
parallel nature of the approach. As solvers using poorly performing configurations are
terminated once a solution is found by any parameter setting in the pool, the user only
has to wait as long as it takes for the best parameter setting to find an answer. The

solution is output to a file or standard output.

The RaceParallel function also handles parsing the solver output to be passed to the
ranking system so that the leaderboard can be updated with the latest results. The
procedure used to update the leaderboard, UPDATE LEADERBOARD, is dependent
on how the leaderboard itself is structured and can be implemented in different ways
(Line 17).

In order for the configuration procedure to progress and to prevent stagnation in the
configuration pool it is necessary to introduce new and improving configurations where
possible. REMOVE CONFIGURATIONS uses the leaderboard to safely remove un-
derperforming configurations thus freeing up space for potentially better candidates.
The function GENERATE CONFIGURATIONS often drives improvement by utilising
prior information about the quality of the configuration from the leaderboard when
creating new candidate configurations. This function is also responsible for deciding
how the balance between exploring the configuration space and exploiting known good
configurations is handled. Lines 18 and 19 show how REMOVE CONFIGURATIONS
and GENERATE CONFIGURATIONS work in tandem to clear and replenish the
configuration pool.

In all, this framework provides a strong backbone to create a powerful and extensible
online configuration system. The subsequent sections delve each component in more
detail.

3.2.2 Parallel Racing

At the core of the ReACT system is parallel racing. This involves racing solvers
instantiated with different configurations against each other on the same combinatorial
problem instance using the multiple cores available. Such racing allows us to infer a

ranking over the configurations without increasing wall-clock time required. This is
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possible by terminating runs as soon as possible (after the problem instance has been

solved once).

Example 3.2.1. To give a concrete example lets take a synthetic toy problem where we
simplify the act of solving problem instances to its essence. We remove instance and
solver variation so that each individual configuration has the same single deterministic
solving time on every instance. This solving time is sampled from a normal distribution
(mean = 50, standard deviation = 12.5) and truncated to between 0 and 100 seconds.
Whether solving times follow this distribution is not a concern as the only goal of this
example is to evaluate parallel racing (and how this scales) in comparison to other

solving schemes in isolation from external influences.

Parallel vs Sequential Solving Comparison

600 4 B Parallel (First Solved - Wallclock)
B Sequential (First Solved)
Il Parallel (Solve All - Wallclock)
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g 400 1 mmm Parallel (Solve All - CPU Time)
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Figure 3.3: The average solving time of various solving approaches and configuration
counts on a synthetic problem instance (over 1000 runs).

Figure 3.3 shows the results of these simulations. The bar chart shows the average
solving time for a single instance (averaged over 1000 runs). We evaluate five different
approaches, three sequential and one parallel. We present both "wall-clock time"
(elapsed real time) and "CPU time" (the time elapsed across all CPU cores) for the
parallel approach. In the sequential case these times are equivalent as a single core is

used in all cases.
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Parallel (First Solved) All configurations are run in parallel and terminated upon the
earliest completion. This is the approach used in ReACT and provides partial
information (best configuration only, all others are terminated and considered

equal) on the configuration ranking with little overhead.

Parallel (Solve All) Configurations are run in parallel to completion allowing a com-
plete ranking of each configuration evaluated on that instance to be created.
Wall-clock time is determined by the longest running configuration (or cutoff),
while CPU time is the summation over all configurations solving times (identical

to its sequential counterpart).

Sequential (Brute-Force) All configurations are run to completion. This method
takes the longest time to run but also provides the most information by giving the

solving times and rankings for all participating configurations.

Sequential (First Solution) The run is terminated when any configuration finds a
solution. While it is possible to quickly solve sequential instances using this
method there are a number of drawbacks. No information is provided about the
quality of configuration in relation to the others e.g. the worst configuration in
the pool could be evaluated first and solve the problem. In cases where there is
no timeout, as in this simulation, the first configuration evaluated in the sequence
will always be used to solve the instance, this could lead to potentially very long

solving times.

Sequential (Capped) Configurations are run sequentially with the current incumbent
providing a tightening bound. Runs are terminated when the solving time exceeds
that of the current incumbent. It provides a good balance between gaining
information about configuration performance and solving time. This can be
considered an aggressive form of the "adaptive capping" scheme introduced
in [HHLBSO09] as runs are terminated as soon as the incumbents solving time is
exceeded, normally a multiple of the solving time is used. Adaptive capping is
a common technique used in almost all state of the art algorithm configurators
today [HHLBS09, HHL11, CLIHS17].

Figure 3.3 shows that in terms of wall-clock time the parallel approach (cyan) has
the fastest solving time in all scenarios utilising two or more cores. Intuitively this
makes sense as the parallel approach will always solve the instance using the fastest
configuration amongst those evaluated. It is also worth noting that the solving time for
this approach continues to decrease as the number of configurations evaluated increases.

As more configurations are tested the likelihood of finding a better configuration
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increase, this in turn will lead to a faster run termination.

The parallel approach trades fast wall-clock solving time for increased CPU computation.
The parallel approach CPU solving time (pink) shows a modest improvement over the
sequential capping approach (yellow) on average. Analogous to the wall-clock results,
the parallel CPU solving time improves as additional configurations are tested. It is also
worth noting that while the mean solving time for these two approaches is comparable
the sequential approach has a large variance which is absent in the parallel case. The
CPU time for the parallel approach can be calculated exactly as ¢, x n, where ¢, is
the solving time of the best configuration and n is the number of configurations run
in parallel. The sequential capping approach has the same solving time in the best
case (best configuration evaluated first) but 7", ¢,, in the worst case (configurations

evaluated in descending order of configuration time).

A first solution approach (green) provides the fastest mean solving time amongst the
sequential solvers. There are however a number of drawbacks to this approach the
most critical being that it cannot be used to perform algorithm configuration as no
information about relative performance is gained. In addition to this, the solving time is
decided entirely by which configuration is evaluated first and the cutoff time. In fact,
this toy problem is very forgiving for this approach as all configurations are solvable
between 0 and 100 seconds and selected from a normal distribution. For this reason
the mean solving time for this approach (over 1000 runs) is equal to the mean sample
distribution, 50 seconds. If the instances where generated more unforgivingly, such
as sampled from a heavy-tailed distribution with no upper bound on solving time, this

approach would suffer as slow configurations would eclipse better performing ones.

The longest solving time overall is as a result of the brute-force solving approach. The
CPU time required is the same for both sequential (red) and parallel (black), though
the wallclock time required is improved by parallelisation (blue). Allowing every
instance is run until completion (either cutoff time or solving) allows the configurator
to gain the most information about every configurations ranking relative to one another.
This information comes at the cost of a large slowdown in overall solving time. This
additional cost is difficult to justify as the additional information gained is about poor
configurations and so unhelpful for steering the search towards promising areas of
the search space (though model based configurators can likely use this information to
train more accurate models). The drastic improvement observed in the Iterated F-Race

algorithm with the addition of adaptive capping further supports this theory [CLIHS17].

It is clear from the above example that when solving instances with the objective of

tuning a combinatorial solver there is a trade off between solving time and information
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gain. On one extreme, approaches that expend only enough computing effort to solve
the instance at hand provide too little information to conduct any configuration. On the
other extreme methodologies that fully evaluate every instance to completion are often
too slow to be practically useful. For this reason most prominent algorithm configurators
adopt a compromise; capping the runtime by the best known solving time. If a parallel
architecture is employed this capping can be even more aggressive while still proving
information to allow configuration to occur. This aggressive capping approach uses only
the resources required to solve the problem quickly while also gaining some information

about the ranking of the configurations.

3.2.3 Configuration Pool and Leaderboard

In the previous example the information gained from each run is limited, as only the
winning configuration is determined; the finishing order of other solver configurations
are unknown due to early termination. The situation is further complicated by the
fact that individual solver runs exhibit large fluctuations in solving times on the same
instances due to stochastic behaviour such as randomised branching [HO15]. Despite
these challenges it is still possible to use information from preceding races to surface
good solver configurations. Utilising tested quality configurations in future races allows
us to provide a bound on the worst-case performance as a solver run will not take longer

than the solving time of the current incumbent.

Example 3.2.2 extends the previous example so that the winning solver configuration
is part of the pool for future instances. While this a simplified synthetic example, it
demonstrates the core idea of ReACT’s approach: parallel racing and persistence of
good configurations. Chapter 5 will take a more in depth look at advanced ranking
strategies and selection methods aimed at nullifying the effect of stochasticity and noise

in real world solving runs.

Example 3.2.2. Example 3.2.1 explored how various parallel and sequential approaches
to solving performed on a single instance. Here we extend this to examine the effect of
having the best configuration persist between instances. Configurations are generated in
the same way as example 3.2.1 but now we solve 100 of the synthetic instances in a row.
The configuration with the best solving time is included in the pool of configurations
used to solve the next instance. We run this experiment 1000 times and show the mean
solving time for the entire run in Figure 3.4. For clarity, only the most viable approaches
from Example 3.2.1 are examined, namely "Parallel (First Solved)" and "Sequential
(Capped)". A brute-force approach where all instances are run to completion is included

as a baseline (this is equivalent to "Parallel (Solve All - Wallclock)" or "Sequential
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Parallel vs Sequential Solving Comparison
with Persistent Winners

I Parallel (First Solved - Wallclock)
I Parallel (First Solved - CPU Time)
50000 A Sequential (Capping)

Il Brute Force

40000 A

30000 -

20000 -

Avg. Cumulative Solving Time (s)

10000 A

1 2 3 4 5 6 7 8 9 10 11 12
Configuration Count

Figure 3.4: The average cumulative solving time of various solving approaches and
configuration counts on a run of synthetic problem instances with the winning configur-
ations persisting between instances.

(Solve All)" in Example 3.2.1).

Figure 3.4 show the results of these experiments. The most striking result is how the
combination of two primitive implementations of parallel racing and winner persistence
are able to drastically reduce the wallclock time required for the parallel approach
(cyan). Notice also that this technique continues to improve as additional cores are
added thus increasing the likelihood of finding an improving configuration due to
the larger portfolio being run. The addition of winner persistence has closed the gap
between the CPU time required for "Parallel (First Solved)" (pink) and "Sequential
(Capped)" (yellow) with the former showing only the slightest of leads over the latter.
The reason for this marginal lead is that the parallel approach is able to discover the
best configuration in a run as soon as it finds a solution to an instance. On the other
hand, the sequential approach must run the current incumbent first and then evaluate all
other candidates using the incumbent time for capping until the new best is discovered.
Figure 3.5 provides a visual representation of this. Looking closely at Figure 3.4 we
see that the divide between approaches grows as additional cores are utilised. Intuitively

this stands to reason; as the number of cores grow, the probability of the "new best"
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running earlier in the sequential run drops. Another factor that would cause this bound
to grow is if improving candidate configurations are included in the run frequently.
Such a situation would arise when the configuration generation procedure is particularly
strong. Finally, and unsurprisingly, we see that the brute-force approach (red) gains
very little from keeping the incumbent from the previous races around (though there is
a marginal improvement as while n — 1 configurations are selected at random and run

to completion, one configuration is constantly improving due to winner persistence).

Example 3.2.2 shows the impact that keeping a strongly performing configuration for
future evaluations can have. The naive approach in Examples 3.2.1 and 3.2.2 can
be dramatically improved by sampling from a fixed set of high quality configurations.
We see in Algorithm 7 this configuration pool can be seeded with a set of known
good quality configurations (for example the solver defaults) with the remainder of the
allotted pool size filled in with configurations sampled at random from the configuration

space.

In the ReACT framework we limit the size of the pool. This is a necessity for two reasons.
Firstly, from a practical point of view, allowing an extremely large or continuously
growing configuration pool will consume excessive amounts of system resources such
as memory. This is undesirable as one of the primary design principles of this ReACT
framework is to keep the configurator footprint as small as possible. Secondly, the
larger the pool the more difficult it is to evaluate each configuration thoroughly. For
example, we are able to randomly sample six configuration at a time from the pool, a
configuration pool of size 30 will take just 13 evaluations to reach a 0.95 probability
of sampling every configuration. Extending the size of the pool to a much larger 250
configurations increases the required number of evaluations to 120 to reach the same

probability. The formula for calculating the probability that a given instance is selected

is given as:
1 — P(NotSelected)
where ParallelR
arallel Runs
P(NotSelected) = (1 — Foats
(NotSelected) = ( PoolSize )

From this it is apparent that the ratio of parallel evaluations to the configuration pool
size drives the probability of configurations being sampled. When more configurations
are run in parallel a larger configuration pool will work better. We see that when
a configuration pool is large enough, the probability of an individual configuration

being selected in any one run drops so low that an excessive number of configuration
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Sequential Run Capping

300 1 I Running Time
I Time Saving
250 A
200 A
()
£
=}
5 150 Current Best
100 A
New Best
50 A
0 4
Config 1 Config 2 Config 3 Config 4
(a) Sequential Runtime Capping
Parallel Run Capping
300 4 I Running Time
I Time Saving
250 A
200 A
()
£
=}
5 1501 Current Best
100 -
New Best
50 A

Config 1 Config 2 Config 3 Config 4

(b) Parallel Runtime Capping

Figure 3.5: A visual representation as to why parallel runtime capping outperforms
sequential runtime capping.
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races are required to reliably sample it. Because of this, it becomes difficult to collect
enough performance data on the configuration to assess its strength relative to other
configurations and to build a robust and stable leaderboard. Algorithm 7 shows us
that the leaderboard is integral to many of the other processes which drive the ReACT
system such as candidate selection, configuration removal, and configuration generation.

For this reason it is imperative that the leaderboard be as accurate as possible.

3.2.4 Candidate Selection

With the configuration pool and leaderboard in place we turn our attention to the
candidate selection procedure. This function (Line 15 of Algorithm 7) is responsible
for selecting which configurations to run on an incoming instance from the configuration

pool.

The candidate selection procedure often works in tandem with the leaderboard. The
selection procedure uses the information from the leaderboard to select strong configur-
ations which are likely to result in fast solving times. However, the relationship between
these components works both ways. In order to improve the quality of the ranking in the
leaderboard the selection procedure must strike a balance between using known good
configurations and testing configurations that the system knows less about. Consistently
using only reliable high quality configurations will lead to good performance but fails
to explore the configuration space and so stunt improvement. On the other hand, only
using new and untested configurations will explore the configuration space rapidly at
the expense of the runtime performance. Luckily, as the ReACT system is parallel by
nature it is possible to get the best of both worlds. To do so we must find a blend of
configurations recognised to be good, in order to provide a bound on solving time, and
unproven configurations with the potential to surpass the incumbent and improve the
entire pool. Finding such a blend has a number of subtleties and also depends on the
properties of the instance stream being processed. In Chapter 5 we investigate various

blending methods to more fully understand how best to perform candidate selection.

Finally, it is also worth noting that in certain cases, such as the ReACT concrete
instantiation described in Section 4.2, the selection procedure can be quite basic. Here,
we are able to run all configurations due to the small configuration pool size. In these
cases the candidate selection procedure has no work to do, instead simply returning all

configurations.
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3.2.5 Pool Maintenance

To allow the ReACT configurator to explore the configuration space effectively the
configuration pool must not be allowed to stagnate. This is achieved through culling
underperforming configurations and replacing them with new and potentially improving
candidates. We refer to the combination of removal and generation as pool maintenance.
Pool maintenance in Algorithm 7 is handled by the functions REMOVE CONFIGURA-
TIONS and GENERATE CONFIGURATIONS (Lines 18 and 19). Pool maintenance
is a nuanced subject where both the removal and generation procedure must strike
balances. Chapter 6 covers the intricacies of pool maintenance in depth. However to
place pool maintenance in the broader context of the framework we will give a brief

synopsis of the challenges faced when adding and removing configurations.

Removing configurations from the configuration pool allows an equal number of new
configurations to be added. The more new configurations that are added to the config-
uration pool the faster we are able to explore the configuration space and the greater
the likelihood of discovering improvement. As such, ideally the removal procedure
would rapidly remove any and all configurations which are known to not provide a
benefit in solving instances. It is important that in the process of quickly removing
underperforming configurations that the system does not also inadvertently cull a good
configuration. Establishing the quality of a configuration requires evaluating the config-
uration on multiple instances. In general the more evaluations performed the higher our
confidence in the assessment of that configuration. This leads to a trade off between
speed and confidence. It is possible to quickly remove configurations after a small
number of evaluations, however to do so runs the risk of unwittingly also removing a
configuration which can provide value to the solving process. On the other hand, we can
carefully assess the caliber of a configuration through many evaluations but this lowers
the turnover in the configuration pool and slows the search for improving configurations.
Striking a balance between these competing factors is the key to a powerful removal

procedure.

Removing weak candidates is only part of the pool maintenance system, the other part
is generating new potentially stronger configurations to fill the void left by removals.
We can generate configurations that are minor variations of existing well performing
configurations in the pool which exhibit similar good performance. The issue with solely
focusing on this intensification approach is that it fails to adequately explore the larger
configuration space and leads to becoming trapped in local optima. On the other extreme
generating vastly different candidate configurations (through random sampling or other

means) explores more of the configuration space but fails to exploit information gained
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from previous runs. It is also improbable to discover good configurations without using
some method of driving the search towards promising areas of the configuration space.
Therefore robust generation procedures interleave both intensification and diversification
to discover good configurations and then further improve them. The literature describes
a number of different ways to achieve this goal [HHLBS09, AST09b, HHL11]. The
design of the ReACT framework allows for the easy implementation of most approaches
in the GENERATE CONFIGURATIONS procedure with the only caveat being that the

computation cost does not impact the real-time nature of the configurator.

3.3 Chapter Summary

In this chapter we demonstrated that there is a real and practical need for the real-
time algorithm configuration system outlined in this thesis. We detailed how, with the
proliferation of multi-core systems, improving a combinatorial solvers configuration
(parameter settings) while processing a stream of instances with no increase in wallclock
solving time is now possible. An overview of our proposed novel framework for real-
time algorithm configuration, ReACT, was presented along with explanations of the

operations and interactions of the various component parts.
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Chapter 4

Instantiations of the ReACT

Framework

Summary. In this chapter we provide two concrete instantiations of the
ReACT framework, ReACT and ReACTR. We motivate the design decisions
and important implementation details for both instantiations. We also
present a full empirical evaluation of both instantiations which show them
to be competitive with, or even exceed, the performance of the current

state-of-the-art in offline algorithm configuration.

The work presented here has appeared in the peer-reviewed conferences
AAAI 2014 [FOMTI4], SoCS 2014 [FMOTI14] and IJCAI 2015 [FMO15].

4.1 Introduction

In Chapter 3 we presented the Real-time Algorithm Configuration through Tournaments
(ReACT) framework. In this chapter we build on this work by implementing two
concrete instantiations of the framework, ReACT and ReACTR. For each component in
the framework we discuss and justify the implementation details chosen. In addition to
this we outline the results of experiments conducted to evaluate each instantiation against
both the solver defaults and configuration using a state-of-the-art offline configurator.
Section 4.2 describes our first implementation of the ReACT framework, ReACT,
and shows that despite its simplicity it is able to achieve strong results. ReACTR
which improves on this initial work by adding a robust ranking system is described

in Section 4.3. This section also shows ReACTR to be on a par with or exceed the
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performance of existing state-of-the-art offline configurators across multiple domains

and solvers.

4.2 ReACT: Real-time Algorithm Configuration through

Tournaments

4.2.1 Overview

The first ReACT framework instantiation we will look at is ReACT [FMOT14]. ReACT
was the first incarnation of the framework and was created with the purpose of exploring
to what extent the ideas of the ReACT framework could work. Though many of the
approaches used in this instantiation are simple they serve to show how the overall
concept of the framework performs. We show that despite some naive design choices it is
still possible to achieve performance exceeding that of the default solver configurations
and approaching that achieved by state-of-the-art offline configurators. To begin we
describe how each of the black box components in Algorithm 7 is realised. After that

we evaluate the system and provide numerical results.

4.2.2 Leaderboard and Selection

Initialise Leaderboard Algorithm 8 shows the leaderboard and selection procedure
implementations utilised in ReACT. To keep track of the performance of the configura-
tions, we use a score keeping leaderboard L. This leaderboard is represented by the n x n
matrix which is created by the function INITIALISE LEADERBOARD (Algorithm 8,
Line 1). Anentry L(cy, co) represents the number of times configuration ¢; has had
a lower solving time than ¢, (assuming a solving time minimisation objective). Here
solving time refers to the time taken to reach a solution that is within a user specified
tolerance of the optimal in the case of optimisation problems or any satisfying solution

in the case of satisfaction problems.

Candidate Selection With the leaderboard set up it is time to solve incoming in-
stances. Recall from Algorithm 7 that for each instance in the instance sequence,
ReACT uses the function SELECT CANDIDATES to decide which configurations
should race against one another. In this instantiation of the algorithm, because the
configuration pool size matches the number of parallel runs, SELECT CANDIDATES
is simply a wrapper that returns all the configurations in the configuration pool (Al-
gorithm &, Line 6).
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Algorithm 8 ReACT - Leaderboard and Selection

1: function INITIALISE LEADERBOARD(CP)
2 Input: C P, The current configuration pool.

3: Output: L, The initialised leaderboard for tracking configuration performance.

4: L+ 0™ > an n X n matrix initialized to 0
return L

5: end function

6: function SELECT CANDIDATES(CP, L, R,)

7: Input: C' P, The current configuration pool.

8: L, The leaderboard for tracking configuration performance (not used).
9 R,,, The number of configurations to be run in parallel (not used).

10: Output: C', The list of configurations to run.

11: return C'P
12: end function

13: function UPDATE LEADERBOARD(R, L, C)

14: Input: R, The runtime and solution status of the race.
15: L, The leaderboard for tracking configuration performance.
16: C, The configurations which ran in this race.

17: Output: L, The updated configuration leaderboard.

18: for configuration ¢; in C do
19: for configuration ¢, in C; ¢; # ¢ do
20: if R[cy][status] = Solved and R|cy][status] # Solved then
21: L(Cl, Cg) — L(Cl, Cg) +1
22: end if
23: end for
24: end for
return L

25: end function

Leaderboard Update After the selected candidates have finished racing against one
another the race results are passed to the UPDATE LEADERBOARD procedure to
perform a leaderboard update (Algorithm 8, Line 13). The procedure iterates over all
pairs of configurations, the value of the cell in the corresponding matrix scoreboard is
incremented in cases where one configuration triumphs over another. All other matrix

cells remain unedited.
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4.2.3 Pool Maintenance

Algorithm 9 ReACT Instantiation - Pool Maintenance
1: function REMOVE CONFIGURATIONS(L, m, r)

2 Input: L, The leaderboard for tracking configuration performance.

3: m, The minimum number of wins needed before configuration removal.

4 r, The win-loss ratio required before a configuration is removed.

5: Output: C,.,,00e, A list of configurations to remove from the configuration

pool.

6: Cremove — @

7: for configuration ¢; in C' do

8: for configuration ¢, in C; ¢; # ¢ do
) . L(c1,c2)

9: if L(Cl, CQ) Z m and m Z r then

10: Cremove ¥ Cremove U €2

11: end if

12: end for

13: end for

return C,pove
14: end function

15: function GENERATE CONFIGURATIONS(L, CP, ©, L,)

16: Input: L, The leaderboard for tracking configuration performance (not used).
17: C' P, The current configuration pool.

18: ©, The parameter configuration space of the solver algorithm A.

19: L,,, The number of configurations held in the leaderboard.

20: Output: 44, A list of new configurations to add to the configuration pool.

21: Clada < SampleRandomCon figurations(L, — |CP|,©)
return C, 44
22: end function

4.23.1 Configuration Removal

After the scores are updated for the winners of the tournament, we cull weak configura-
tions from the pool using the REMOVE CONFIGURATIONS method (Algorithm 9,
Line 1). This method introduces two variables, m and r, which are specific to this
instantiation of the framework. m, the minimum number of "wins" necessary to exclude

a configuration, and r, the parameter weakness ratio.

We define a configuration ¢; as weak if it has: (a) been beaten by another configuration,

¢, at least m times and (b) the ratio of the number of times ¢, has beaten ¢; to the
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number of times c; has beaten c, is greater or equal to r. The former criterion ensures
that configurations are not removed without being given ample opportunity to succeed.
The latter criterion ensures that the domination of one configuration over another is
not just due to random chance. In this implementation of ReACT, we set m = 10 and
r = 2, meaning a configuration is weak if it has lost to another competitor at least 10
times and has lost to another parameter setting twice as many times as it has beaten that
parameter setting. For example, if c; beats ¢, ten times, but ¢, beats c; twenty times,

then ¢ is a weak configuration and will be removed.

Although the approach is relatively straight forward, the presented scoring component
does provide a reasonable guarantee that once a new improving configuration is found
that it will retain those settings. In particular, for every time one new configuration
defeats another, the latter must solve two additional instances to prove its dominance
over the first. This means that any new candidate must prove its merit only a few times
before it is taken seriously and becomes hard to remove by the current incumbent. Yet
the requirement to solve twice as many instances simultaneously guarantees that it is
possible for a new configuration to come along that does not have to spend a large
number of runs to prove it is superior. This property allows the configuration to quickly
adapt to changes in the observed instances while mitigating the chances we will get rid

of a good configuration on a whim.

4.2.3.2 Configuration Generation

In striking a balance between intensification and diversification in its generation strategy,
this ReACT instantiation tends towards diversity. Dominated configurations are replaced
by those sampled at random from the configuration space (Algorithm 9, linel5). The
randomly sampled parameterisations provide strong diversification to avoid local optima.
At first glance, simply choosing new configurations completely at random may seem
too simple to actually function. However, there is a good reason for this randomness.
As the instances change over time, diversity amongst parameters is critical to being
able to find new configurations for those instances (this idea is discussed further in
Chapter 5).

Here intensification is achieved by replacing poorly performing configurations. This
strategy is still quite conservative, which stands in contrast to train-once parameter
tuners like GGA, which intensifies through a strict selection procedure, or ParamILS,
which has a greedy iterative first improvement step. ReACT benefits from keeping
parameter settings that are "good enough" around. These configurations could turn

out to be beneficial if the instances shift in a particular direction. By keeping such
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parameters alive, our approach is always prepared for whatever may come next from
the instance sequence. We only remove configurations when it is clear that they are
dominated by other configurations, although it is possible that we are sometimes unlucky

and throw out a good configuration.

One of the main drawbacks of this strategy, however, is that finding good configurations
by chance is not easy. We are aided by the fact that there tend to be regions of good
configurations, rather than single parameter configurations that perform extremely well;
the downside of this approach is that by taking only one point from this region rather
than systematically exploring it we may miss better configurations. By maintaining
diversity, ReACT can hold on to parameters from a number of good regions and is
prepared for new types of instances. In Section 4.3 we will show how more reasoned

generation procedures lead to large performance improvements.

4.2.4 Experimental Setup and Datasets

In order to properly test ReACT, we require a dataset with several properties. First, the
instances must be relatively homogeneous, i.e. the instances are all of a similar type or
variant of a problem. Without homogeneity, we cannot assume that a single parameter
set can work well across all of the instances. Heterogeneous datasets are best handled
using per-instance algorithm configuration and algorithm selection techniques which
can tailor a solution to the diverse instances present in a heterogeneous dataset. Second,
the instances must be hard, but not too hard. Instances requiring too much time to solve
will timeout, thereby offering no information to an algorithm configurator about which
parameter setting is best. This results in the configurator performing a random walk.

Meanwhile, datasets that are too easy will not provide noticeable gains.

We use two distinct datasets of combinatorial auctions problems encoded as mixed
integer problems that we generated using the Combinatorial Auction Test Suite
(CATS) [LBPS00a]. Using CATS, we were able to create datasets consisting of a
homogeneous set of instances that are solvable in a reasonable amount of time. CATS
has a number of different options for generating problem instances, including the
number of bidders and goods in each instance, as well as the type of combinatorial

auction.

We focused on two types of auction distributions (regions and arbitrary) in order to
provide homogeneous datasets for our tuner to work with. The regions problem class
i1s meant to simulate situations where proximity in space matters. This is typically the

case when plots of land are auctioned, where developers typically seek adjacent plots of
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land for developments. Alternatively, the arbitrary class is designed so that there is not
a determined relation between various goods, as is likely to be the case when dealing
with, for example, collector’s items. While both datasets deal with combinatorial
auctions, the structures of the corresponding instances are very different and therefore
lend themselves to different solution strategies. The reader is referred to the original
CATS algorithm description [LBPS00a] for more information about the instances.

For the regions dataset, we generate our instances with 250 goods (standard deviation
100) and 2000 bids (standard deviation 2000). The instances we generated can be solved
in under 900 seconds using the default solver configuration. Combining this with a
solver timeout of 500 seconds means that some of the instances are challenging, but
can be potentially solved with slightly better configurations within the time limit. The
arbitrary instances were generated with 800 goods (standard deviation 400) and 400

bids (standard deviation of 200). These experiments maintained the 500 second timeout.

We solve the instances in our dataset with IBM CPLEX [IBM14]. CPLEX is a state-of-
the-art mathematical programming solver used widely both in industry and academia.
The solver has over 100 adjustable parameters that govern its behaviour, and has been
shown in the past to be rather amiable to automated configuration [KMST10, HHL11].
Specifically, we use the version of CPLEX in algorithm configuration benchmarking
library ACLib, namely version 12.6.1. ACLib is commonly used in the literature and

provides a configuration space description for CPLEX that exposes 74 parameters.

When generating our benchmark dataset, we removed all instances that could be solved
in under 30 seconds using the default CPLEX parameter settings. These instances are
too easy to solve and would likely introduce noise into our configuration procedure due
to system timing variances. We stress that removing these instances can be justified in
the presence of a straightforward pre-solver, a practice commonly used for algorithm
selection techniques prior to predicting the best solver for an instance. Our final regions
dataset is comprised of 2,000 instances whose difficulty, based on performance of the
default parameters, was mainly distributed between 30 and 700 seconds, but with all
instances being solvable in under 900 seconds, as shown by Figure 4.1a. Meanwhile,
the final arbitrary dataset comprises of 1,422 instances, whose distribution of runtimes

with default parameters can be seen in Figure 4.1b.

4.2.5 Experimental Evaluation

We test our methodology on three different scenarios on each of the two combinatorial

auction datasets. In the first, we assume that instances are being processed at random,
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The CPLEX default configuration solving time distribution for both regions

and arbitrary combinatorial auctions datasets.

so we shuffle all of our data and feed it to our tuner one at a time. We also try two

variations where problems change steadily over time. In the first case, we assume that

the auction house grows and is able to take in larger inventories, so the number of

goods in each new instance is monotonically increasing. In the second case, we create

a scenario where the auction house becomes more successful, thus each new problem

instances has a monotonically increasing number of bids. Regardless of the scenario,

however, each instance is given a timeout of 500 seconds on a 2X Intel Xeon E5430

Processors (2.66Ghz) with 8 cores. We restrict ourselves to using only 6 cores so as to
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leave some overhead for system processes in order to avoid any impact on timings.

As a comparison, in addition to the default parameters, we compare ReACT with the
state-of-the-art train-once approach SMAC [HHL11]. Here we simulate the case where
initially no training instances exist and we must use the default parameters to solve the
first 200 instances. SMAC then uses the first 200 instances as its training set and is
tuned for a total of two days. After those 48 hours, each new instance is solved with the
tuned parameters. In all presented results we follow the generally accepted practice of
tuning multiple versions with SMAC and selecting the best one based on the training
performance. In our case we present both the result of the best found SMAC parameters,
and the average performance of the six configurations we trained. We refer to these
as SMAC-VB and SMAC-Avg, respectively. Note that in this case SMAC-AVG is the
performance one would expect from running SMAC on a single core. SMAC-VB on
the other hand is equivalent to running all 6 tuned versions of SMAC in parallel using

the same number of cores as are available to ReACT.

For our evaluations, we compare two versions of ReACT. In the first, we assume that no
information is known about the solver beforehand, and thus all the initial configurations
are generated at random. We refer to this case as ReACT-cold. Additionally, we also

test ReACT-warm, where one of the initial configurations contains the default settings.

To avoid presenting a result due to a lucky starting configurations or random seed, we
run each version of ReACT three times, and present the average of all three runs in
the plots and tables of this section. Figures 4.2 and 4.3 summarise the results on the
regions datasets. First note that Figure 4.2a presents the cumulative average time per
instance for the scenario, where the number of goods continuously increases with each
instance. Note that the default curve rises steadily with each new instance. This is
because as the number of goods increases, the difficulty of the problem also increases,
and the default parameters are unable to adapt. Alternatively, notice that ReACT-warm,
which initially has the default parameters as one of its starting parameters, is able to
adjust to the change and achieve a significant improvement after only 150 instances.
Even when the initial parameters are chosen at random, ReACT-cold is able to quickly
achieve a level of performance such that the cumulative average outperforms the default

in only 400 instances.

Figures 4.2b and 4.2c tell a similar story. In each case within observing 200 to 400
instances either version of ReACT is able to overtake the performance of default CPLEX
parameters. The fact that ReACT comes so close to the performance of SMAC with such
a simple approach, in which the next configuration is selected completely at random,

shows the power of the core ReACT framework ideas: parallel racing and aggressive
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(c) Dataset with random ordering of instances.
Figure 4.2: Cumulative average runtime of techniques on the three permutations of the

regions dataset. The x-axis specifies the total number of observed instances. The y-axis
specifies the solution time in seconds.
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capping.
The true benefit of ReACT is visible clearly in Figures 4.3a, 4.3b, and 4.3c. These

figures present the cumulative amount of time saved by the associated methodology over
using the default parameters. After observing the corresponding cumulative average
time, it is no surprise that the savings continuously improve with each newly observed
instance. What we also observe at first glance is that the parameters found by ReACT
perform as well as those for a typical result after a 2-day SMAC run. ReACT seems
not that much worse than the SMAC-VB. This observation, however, is somewhat
misleading. Recall that in order to find the SMAC parameters, a 2-day training period
is essential. During this training time a company would have been forced to use the
default parameters, which do not scale well. If we consider that on average instances
are coming in continuously, in the time it took to train SMAC, another 800 instances
would have gone by. However, with ReACT, good parameters are found throughout the
testing period. In fact, we are able to definitively tune over 70 parameters in real-time
with minimal overhead and achieve a performance drastically better than default. We

also achieve a performance on par with the average SMAC run.

Furthermore, let’s hypothetically assume that after we observe the first 200 instances,
that no new instances arrive for the next two days. This is an unlikely scenario, but it
allows us to definitively show the computational cost of the training in Figures 4.3a, 4.3b,
and 4.3c in the form of SMAC VB-inc and SMAC Avg-inc. Here, we clearly see that
even after the remaining 1800 observed instances, the parameters found by SMAC are
not able to offset the upfront cost of finding them. Meanwhile ReACT, is able to find its

parameters with no temporal overhead.

Note also that this means that although SMAC VB inc appears to steadily converge
on ReACT, it may not be indicative of the long term behavior. ReACT continuously
discovers better parameters as it progresses and is likely to eventually find parameters
better than those of SMAC while the parameters which SMAC uses remain unchanged.

Additionally, it cannot be said that SMAC VB is not using as many resources as ReACT.
We tune several versions of the solver in parallel and use the lowest per-instance solving

time in our results. Thus, SMAC VB utilises the same number of cores as ReACT.

Figures 4.4 and 4.5 show the plots on arbitrary auctions for a random ordering of
incoming instances and also scenarios where the number of goods and bids increase
with each subsequent instance. Note that for this dataset the cold-started ReACT is
slower in finding a parameter set that outperforms the default, yet even on these harder

instances the gains become evident. And just like in the regions scenarios, the upfront
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(c) Dataset with random ordering of instances.

Figure 4.3: Cumulative time savings of techniques on the three permutations of the
regions dataset. The x-axis specifies the total number of observed instances. The y-axis
is the number of seconds saved over the default configuration of CPLEX.
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(c) Dataset with random ordering of instances.

Figure 4.4: Cumulative average runtime of techniques on the arbitrary dataset. The
x-axis specifies the total number of observed instances. The y-axis specifies the time in

seconds.
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Figure 4.5: Cumulative savings of techniques on the arbitrary dataset. The x-axis

specifies the total

number of observed instances. The y-axis is the number of seconds

saved over the default configuration of CPLEX.
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Figure 4.6: Histogram showing the number of new winning configurations appearing
per 100 instances solved on the Regions dataset (sorted goods ascending).

tuning costs necessitated by SMAC are hard to overcome.

As an alternative view of the results, Table 4.1 presents the amount of cumulative
time saved by each tuning approach over the default parameters. The numbers are in
thousands of seconds. In all cases, ReACT is able to outperform default parameters
and is on a par with SMAC Avg. Given the fact that the CPLEX solver has been hand
tuned by experts for over a decade and SMAC is the current state-of-the-art, this is an
encouraging feat. Interestingly, for the case where the new regions instances arrive in
a random order, ReACT overtakes the performance of the average SMAC parameter
set and is on close to that of SMAC VB. This is likely because the first 200 randomly
sorted instances tend to be harder in general, so two days might not be enough to fully
tune SMAC. However, ReACT is not affected by this as it does not require initial offline

tuning.

We show one last piece of experimental evidence in order to show that this instantiation
of the ReACT framework does not just find a good configuration and remain using it
for the entire configuration run. This competition is important as a dominant incumbent
could lead to stagnation in the configuration pool. Using cold-started ReACT on the
Regions dataset (sorted by ascending number of goods) we investigate how often newly
introduced configurations are successful. The histogram in Figure 4.6 shows the average
number of times a new configuration wins a tournament in a discretised time period

over the solution horizon. Unsurprisingly, our method has a significant amount of
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"churn" as it begins to sort through poor configurations at the beginning of its execution.
However, this short period of tumult ends fairly quickly, with ReACT finding a few new
configurations in each subsequent 100 instance period. Of important note is that new
configurations are winning right up to the end of the period of optimisation, exactly as

we would expect.

It is interesting to note that, while we continuously observe new potential configurations
that occasionally win the tournament, in all our scenarios there is usually one parameter
set that the solver continuously comes back to two thirds of the time. This means that
our approach is able to quickly find a good configuration and use it as a new core, while
occasionally taking advantage of some configuration getting lucky. Here the parallel
racing mechanism of the ReACT framework behaves like a parallel portfolio approach
by selecting a strong pool of potential candidates to compete in parallel on an instance.
The fact that no other configuration is able to kick this core one out, is also a testament
that the scoring metric we use is fair yet resilient to noise. This is again confirmed by
stating that for warm start ReACT, in all observed cases, the default parameters are

thrown out after at most 300 instances.

4.3 ReACTR: Real-time Algorithm Configuration through

Tournament Ranking

4.3.1 Overview

Although straightforward in its implementation, our first instantiation of the ReACT
framework showed the potential of real-time algorithm configuration. ReACT was
able to very quickly find high quality configurations in real-time while still return
problem solutions in as little time as possible. We will now turn our attention to another
instantiation of the ReACT framework, Realtime Algorithm Configuration through
Tournament Rankings (ReACTR), which introduces enhancements to every part of the
original. Specifically, we expand the configuration pool and invoke a far more involved
candidate selection procedure to decide which configurations should be evaluated once
a new instance arrives. We also improve how and which candidate configurations should
be introduced into the pool of potentials to be evaluated. Most importantly, we show
how a ranking scheme commonly utilised to rank players in games, TrueSkill, can be
exploited to more accurately measure the quality of the configurations in the current

pool.

The primary reason for ReACT’s success was that it always ran the best configuration,
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and had a very aggressive removal policy, throwing out anything as soon as it was even
hinted to be subpar. The trouble with this strategy, however, was that it failed to store a
history of candidate configuration successes. Due to this, a new configuration could
potentially remove a tried and tested candidate simply by getting a few lucky runs when
it was first added to the pool. Therefore, it should be clear that the success of the ReACT
methodology resides in the strategies used for each of the steps. Particularly important
is the consideration of which configurations to evaluate next (SELECT CANDIDATES),
which configurations should be discarded (REMOVE CONFIGURATIONS), and how
new configurations should be added to the pool (GENERATE CONFIGURATIONS).
This section targets each of these questions, showing how employing a powerful leader-

board to rank the current pool facilitates all other decisions.

4.3.2 Leaderboard and Selection

Leaderboard At the core of the enhancements made to produce the ReACTR in-
stantiation of the ReACT framework is a strong and stable method of comparing the
relative merit of the configurations under consideration. To this end we seek inspiration
from the competitive games. In the world of competitive games, it is critical to have
an unbiased way to compare an individual’s performance to everyone else. A trivial
way to do this is to simply have everyone play everyone else. Naturally, for popular
games like chess, Go, checkers, Halo, Counter-Strike etc., there are a plethora of people
playing at any given time, with players coming and going from the rankings on a whim.
This is almost identical to the situation that ReACT faces internally. At any given time
there are a number of competitors in the pool, which can be removed and replaced by
new entrants based on their relative strength. At the same time, ReACT needs a method
for quickly determining the comparative quality of each of the contestants in the pool,
to know the ones worth utilising and those that can be discarded. It therefore makes
sense to employ a leaderboard ranking algorithm, such as those commonly utilised for

board-game and video-game ranking.

The de facto standard for ranking systems is the Elo rating system and its many exten-
sions [Elo78]. For brevity we will leave a full discussion of the various ranking systems
to Chapter 5. However, it suffices to know that the Elo predictor introduces the idea that
the point difference in two players’ ratings should correspond to a probability predictor

on the outcome of a match.

The issue with most Elo based ranking systems is that they are primarily designed for
two player games. Therefore, for games involving 3+ players, all combinations of pairs

must be created and updated independently in order for classic Elo approaches to work.
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To solve this multi-player problem for online games, the Bayesian ranking algorithm
TrueSkill [HMGO6] was invented. TrueSkill measures both a player’s average skill,
1, as well as the degree of uncertainty (standard deviation), o, assuming a Gaussian
distribution for a player’s skill. TrueSkill uses Bayesian inference in order to rank
players. After a tournament, all competitors are ranked based on the result, the mean
skill is shifted based on the number of players below a player’s rank and the number
above, weighted by the difference in initial average ratings. Again we will leave
discussion of specifics to a later chapter. In these experiments we use a highly-rated

open source Python implementation of TrueSkill [Zon14].

The ability to accurately and quickly rank multiple configurations competing in each
race lays a strong foundation for the other components in this ReACTR instantiation.
Additionally, the confidence metric provided by TrueSkill is a highly desirable feature
that helps the system to determine whether it is worth continuing to evaluate a con-
figuration or whether it can be safely discarded. The improved ranking system also
allows for an increase in the number of candidate configurations under consideration at
any one time. For these evaluations we have increased the size of the leaderboard and

configuration pool to thirty while maintaining the number of parallel evaluations at six.

To use TrueSkill with ReACTR we initialise our leaderboard as a mapping from config-
urations to TrueSkill scores (Algorithm 1, Lines 5 and 6). The TrueSkillScore function
simply creates an object to track the skill (1) and confidence deviation (o). Initially
we use the default values of i = 25 and o = 8.33 for generated configurations and a
marginally higher p value for any configurations included by warm starting (this allows

these configurations to be included in the initial selection).

At the conclusion of a race in ReACTR information about the competitors and the
race results are passed to the TrueSkillScoreUpdate function to recalculate the skill
and confidence for each configuration (Algorithm 1, Line26). TrueSkill uses Bayesian
methods to calculate the updated scoring information while the exact calculations are
performed by approximate message passing on a factor graph representation of the
model. Chapter 5 discusses this in more detail and we refer the reader to [HMGO06] for
full details of the methods.

Candidate Selection Using TrueSkill for ranking allows each member in our current
pool of thirty potential configurations (this can be set an arbitrary value) to have an
associated score declaring its quality, as well as confidence rating of this score. To
guarantee that the overall solver’s performance will be as good as is currently possible,

the best known configuration is always among those that is evaluated. We refer to the
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Algorithm 10 ReACTR Instantiation - Leaderboard and Selection

1

2:

[98]

Nk

10:
11:
12:
13:

14:

15:
16:
17:
18:
19:

20:
21:
22:
23:

24:

25:

26:

27:

28:

29:

30:

function INITIALISE LEADERBOARD(CP)
Input: C P, The configurations in the current configuration pool.

Output: L, The initialised leaderboard for tracking configuration performance.

L+ 0
for configuration cin C'P do
Llc] < TrueSkillScore()
end for
return L
end function

function SELECT CANDIDATES(CP, L, R,)
Input: C'P, The current configuration pool.
L, The leaderboard for tracking configuration performance.
R,,, The number of configurations to be run in parallel.
€, The portion of configurations used for exploration of the configura-
tion space.

Output: C', The list of configurations to run.

C <+
C = C U SelectBestTrueSkillScore(CP, L, R, x 1 — ¢€)
C' = C U Select Random(CP, L, R,, * €)
return C'
end function

function UPDATE LEADERBOARD(R, L, C)
Input: R, A vector which holds the runtime and solution status of the race.
L, The leaderboard for tracking configuration performance.
C', The configurations which ran in this race.

Output: L, The updated configuration leaderboard.

ranks < GetRanks(C, R) > GetRanks returns a vector containing 1 for the
race winner and 2 for all other competitors.

tSscores < TrueSkillScoreUpdate(C,ranks)

for configuration cin C' do

Llc] + tsscores|c]
end for
return L

end function
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method used to select the configurations to run from the leaderboard as the sampling

strategy or the candidate selection procedure.

We must always include the current best configuration in order to bound our runtime,
and a number of sampled configurations so that we can explore the configuration space,
our sampling method can be considered a parallel variation of the commonly used
e-greedy strategy. e-greedy strategies are used in situations where there is a trade-off
between exploration and exploitation. The strategy uses the best known option a portion
of the time while randomly sampling other options the rest of the time. In our scenario
we have the luxury of using multiple cores and so are able to dedicate a portion of these
to running incumbents while simultaneously exploring with the other cores. In these
experiments we chose, somewhat arbitrarily, to run the top two known solvers and the

others chosen at random(e = 0.66).

4.3.3 Pool Maintenance
4.3.3.1 Configuration Removal

Even with a high quality ranker, such as TrueSkill, if there are no good configurations
in our pool of contenders, we will never be able to improve our overall performance.
Therefore, we must decide when a configuration is considered inferior and how confident
we need to be in this estimation. For these ReACTR experiments we empirically

discover good threshold values to use.

Because the evaluation of ReACTR on real data requires us to run a solver for non-trivial
amount of time over a large number of instances, finding the best strategy for removing
instances can be extremely expensive. To overcome this, we simulate the process
using synthetic data. Specifically, we know that because our instances are relatively
homogeneous in practice, any configuration of a solver would have a particular expected
performance with some variance. We further assume that there is a particular mean
expected performance and a mean variance. Therefore, each configuration of a solver
is simulated by a normal distribution random number generator with a fixed mean and
standard deviation. Once this simulated solver is removed, it is replaced by another
one, where the new mean and variance are assigned randomly according to a global
normal random number generator. This means that most of our simulated solvers have a
similar performance, with those being significantly better than others being increasingly

unlikely.

Given these simulated solvers, the objective of ReACTR is to find a solver that leads to

the shortest cumulative solving time for 500 instances. Of course since these solvers
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Figure 4.7: Heat-map showing the combined effect of the number of kept configura-
tions and TrueSkill’s confidence rating(lower values indicate higher confidence). The
colourbar shows the cumulative solving time in seconds.

are random we repeat the experiment several times. What we observe is displayed in
Figure 4.7. Specifically we observe that the best strategy for removing configurations
from the pool of contenders is by keeping the top 15-20 configurations and anything in

which we have a better than 5.0-5.5 uncertainty rating.

We use these values for our ReACTR experiments going forward removing anything
that falls outside the top 15 configurations and has a confidence value of less than five
(remember the confidence value represents a confidence interval, so a smaller value
means more certainty). The function REMOVE CONFIGURATIONS in Algorithm 11
(Line 1) shows this in action. The jiresn value is set to that of the 15" ranked
configuration (outside of the function) while oy,..s, 1s hardcoded to the empirically
derived value. The function then iterates over all configurations and adds those which
fail to meet the criteria to the removal list. In all of the upcoming experiments that we
have conducted using these emperical values performed filtering of the instances quite
proficiently, however, it is a distinct possibility that these hardcoded values may not

be optimal in all cases. For this reason, we investigate alternative and more adaptive
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Algorithm 11 ReACTR Instantiation - Removal and Generation

1:
2
3:
4
5

10:

11:
12:
13:
14:
15:

function REMOVE CONFIGURATIONS(L, C, pithreshs Tthresh)

Input: L, The leaderboard for tracking configuration performance.
C, The list of configurations.
Wihresh, The TrueSkill score threshold.
Othresh, Lhe TrueSkill confidence required.

Output: C'.,,00e, The configurations to remove from the configuration pool.

Cremove <_ @

for configuration, c in C' do
> Lower TrueSkillConfidence score indicates the system is more confident.
if TrueSkillScore(c) < ppresn and TrueSkillCon fidence(c) < Oypresn

then

Cremove — Cremove Uc
end if
end for
return C,.,,ove

end function

16: function GENERATE CONFIGURATIONS(L, CP, ©, L,, I, n, m)

17:
18:
19:
20:
21:
22:

23:

24:

25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:

Input: L, The leaderboard for tracking configuration performance.
C P, The current configuration pool.
©, The parameter configuration space of the solver algorithm A.
L,,, The desired number of configurations.
1, The ratio of exploration to exploitation.
n, The number of top configurations to consider for breeding.
m, The mutation probability.

Output: C44, A list of new configurations to add to the configuration pool.

Cadaa <0
N« L, —|CP|
fori < 1to N do
if Random() < I then > Exploration
Cudd < Cagq U Sample RandomCon figurations(1, ©)
else > Exploitation

P, < Select RandomFromBest(n,CP, L)
P, < Select RandomFromBest(n, CP, L)
child < Crossover(P,, B,)
if Random() < m then
child <— Mutate(child)
end if
Codd < Cuaa U child
end if
end forreturn C,

40: end function
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solutions for instance removal in Chapter 6.

4.3.3.2 Configuration Generation

Every configuration which is removed from the leader-board must be replaced by a
newly generated configuration. In order to balance exploration of new configurations
and the exploitation of the knowledge we have already gained, ReACTR uses two
different generation strategies. Our method for this is demonstrated in the GENERATE
CONFIGURATIONS function of Algorithm 8. In the same way we did with the ReACT
instantiation of the framework we ensure diversity by generating configurations where
the value of each parameter is set to a random value from the range of allowed values

for that parameter (Line 29).

Additionally, ReACTR exploits the knowledge it has already gained through ranking
by using a crossover operation similar to that used in genetic algorithms. For this, two
parents are chosen from amongst the highest ranked configurations then with equal
probability each parameter takes one of the parents values (Lines 31, 32 and 33).
For these experiments we decided, somewhat arbitrarily, upon the top 5 as being high
ranking (controlled by the variable n in our pseudocode). Additionally, like a standard
genetic algorithm, some small percentage of the parameters are allowed to mutate (Line
35). For our experiments we set the variable m, which controls mutation probability to
0.05. That is, in 5% of cases, rather than assuming one of the parent values, a random

valid value is assigned instead.

We allow for a variable, I, to control the balance of exploitation to exploration, or in
other words, the percentage of generated versus random configurations we introduce
(Line 28). In the following experiments we generate exploration and exploitation

configurations in equal proportion i.e. I = 0.5.

4.3.4 Experimental Setup and Datasets

In addition to the two combinatorial auction datasets used to assess the performance of
ReACT, we evaluate ReACTR on six new SAT datasets. These datasets are selected
from the configurable SAT solver challenge (CSSC) [HLB"17]. CSSC 2014 ran four
tracks: Industrial SAT+UNSAT, crafted SAT+UNSAT, Random SAT+UNSAT, and
Random SAT. At least one dataset from each track in the competition is selected in
order to represent a broad variety of SAT domains. In particular we choose competition
datasets where configuration resulted in the largest improvement over default. We also
take this opportunity to test ReACTR’s effectiveness on the three winning solvers in

CSSC 2014. Below we summarise these new solvers and datasets.
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Table 4.2: Configurable SAT Solver Challenge Solvers Overview [HLB*17]

Solver # Parameters # Configurations Reference
c i r cond. original  discretised
Lingeling 102 139 0 0 1x 1094 1 x 10"  [Biel3]
ProbSAT 5 1 3 4 00 1x10° [BS12]
Clasp-3.0.4-p8§ 38 30 7 55 00 1 x 10% [GKNSO07, GKS12a]

These ReACTR experiments where run on the same systems following the same meth-
odology as previous ReACT experiments (describe in Section 4.2.5), as are all other
experiments in this work, unless otherwise noted. We show the results for the SMAC
VB scenario only as this matches the resources used by ReACTR and so is a fairer com-
parison. SMAC was tasked with optimising the PAR10 score which penalises timeout
at ten times the cutoff value. In all cases we perform six runs of each configuration
method and present the average result to account for variance and the stochastic nature

of solvers.

4.3.4.1 Solvers

Lingeling is a CDCL SAT solver which ranked 1% in the industrial track of the
CSSC 2013 [Biel3]. It also placed highly in the crafted SAT+UNSAT and random
SAT+UNSAT (achieving 3™ and 2™ place respectively). In these experiments we use
the 2013 version of Lingeling which exposes 241 parameters, the largest configuration
space in the competition. The exact break down of the parameter types exposed is

summarised in Table 4.2.

Clasp-3.0.4-p8 is a conflict-driven nogood learning answer set programming
solver [GKNSO07, GKS12a]. It also has the ability to solve (Max-)SAT and pseudo-
Boolean problems. It won both the crafted SAT+UNSAT and random SAT+UNSAT
tracks in both CSSC 2013 and CSSC 2014 (it also achieved 3™ in the CSSC 2014
industrial track). The SAT solving portion of Clasp has 75 parameters including 55

conditional options to control its search strategies (summarised in Table 4.2).

probSAT is described as "a pure and simple probability distribution based solver...
probably one of the simplest SLS solvers ever presented" by the paper introducing
it [BS12]. probSAT exposes only nine parameters which primarily control shape of the
probability distribution. Despite its simplicity probSAT managed to achieve 1% place in
the random SAT track of the CSSC 2014.

At this juncture it is worth noting that parallel versions of both Lingeling and Clasp
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Table 4.3: Configurable SAT Solver Challenge Datasets Overview [HLB*17]

Benchmark # Train # Test # Variables # Clauses Reference
Circuit Fuzz 299 585 5.53k+7.45k 18.8k+25.3k [BLB10]

GI 1032 351 11.2k+17.8k 2.98m=8.03m [Torl3, MB13]
N-Rooks 484 351 38.2k4+37.4k 125k4126k [MS14]

K3 300 250 262+43 1116+£182 [BTH14]

3enf 500 250 35010 1493+0 [BY13]
Ssat500 250 250 1000+0 426040 [TBH11]

exist [Bie10, GKS12b]. Similarly CPLEX is able to take advantage of multiple cores
present in the system [[BM14]. Despite this, in all of these experiments we opt to
use the single threaded versions provided in the Algorithm Configuration Library
(ACLib) [HLF*14]. This is in keeping with the methodology used to evaluate previous
parallel configuration approaches from the literature such as GGA(++) and distributed
SMAC [AST09b, AMS*15, HHL12]. It should also be pointed out that there is no
reason that ReACTR would be unable configure parallel solvers, however, given the

resources required to evaluate this we leave this for future work.

4.3.4.2 Datasets

Circuit Fuzz For the Industrial track we use circuit fuzzing instances. This dataset
was independently generated using FuzzSAT [BLB10]. FuzzSAT first generates a
boolean circuit and then converts this to CNF. We solve these instances using the
popular SAT solver Lingeling [Biel3]. The circuits were generated using the options
—i 100 and -I 100. Any instances that could be solved in under 1 second using the
lingeling defaults were removed. The resulting dataset contained 884 instances which
was split into 299 training and 585 test!. We use a time-out of 300 seconds for this
dataset, the same as that used in the CSSC 2013.

Graph Isomorphism (GI) These instances in the crafted SAT+UNSAT track are
created by encoding the graph isomorphism problem as a SAT problem [Tor13, MB13].
Due to this formulation the resulting instances typically contain a large number of
clauses (see Table 4.3). The dataset we use consists of 1032 training instances and 351
test instances. We solve these instances using the Clasp solver with a time-out of 300
seconds.

'The number of test instances differs from the description in [HLB T 17] but private correspondence
with the authors confirms this to be the correct figure for CSSC 2013
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N-Rooks Our second crafted SAT+UNSAT dataset considers a variant of the classic
N-Queens problem where instead of placing n queens on an n X n checker board
we must instead place a number of rooks in such a way that they cannot attack each
other [MS14]. The instances in this particular dataset are unsatisfiable, requiring n + 1
rooks be placed on an n x n board. The generator is parametrised to allow rooks to
be fixed to certain rows or columns thus making it easier to prove unsatisfiability. The
dataset consists of 484 training instances and 351 test instances. These are again given

a 300 second solving budget using Clasp.

K3 This dataset from the random SAT+UNSAT track is a collection of randomly
generated 3-SAT instances generated using the random instance generator from the
2009 SAT competition [BTH14]. The instances were generated in batches of 100
with a variable count in the range 200 to 325 (increasing in increments of 25) and a
corresponding clause count which places them at the phase transition (clause to variable
ratio of approximately 4.26). There are 300 train and 250 test instances which we solve

with Clasp given a 300 second time-out.

3CNF This is another set of randomly generated 3-SAT instances from the random
SAT+UNSAT track of CSSC 2014. These instances are generated using ToughSAT
with 350 variables and 1493 clauses so that they are at the phase transition [BY13].
Clasp with a 300 second cut-off to solve the 500 train and 250 test instances.

SSATS00 This dataset consists of 500 5-SAT instances (split evenly between train
and test) from the random SAT track of CSSC 2014. The instances are generated to
have 500 variables and 10000 clauses (a clause-to-variable ratio of 20) [TBHI11]. Our
solver of choice for these instances is the SLS solver probSAT given a solving budget
of 300 seconds.

For a full description of all solvers and datasets see the paper outlining the
CSSC [HLB™17]. It is important to re-emphasise here, that ReACTR by its nature is an
online algorithm, and therefore does not require a separate training dataset. However,
in order to compare to existing methodologies, a training set is necessary for those

approaches to work hence why the datasets are split into train and test groups.

4.3.5 Experimental Evaluation

This section outlines two sets of experiments conducted to evaluate ReACTR. The first

set, published in the paper introducing ReACTR [FMO15], uses three scenarios: the
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two combinatorial auctions datasets used to evaluate ReACT (regions and arbitrary,
solved by CPLEX), and a set of circuit fuzzing instances from the CSSC 2013 (solved
by Lingeling). Our second set of experiments expands on this work to show ReACTR’s

versatility using two new solvers and five new datasets from the CSSC 2014.

To begin with we look at this first set of experiments, where we show two separate
scenarios for ReACTR. First, we consider a scenario where there is a collection of
training data available beforehand, or alternatively a training period is allowed. We refer
to this approach as "ReACTR Merged", where the configurator is allowed to make a
single pass over the training instances to warm-start its pool of configurations. Secondly,
we evaluate "ReACTR Test", which assumes no prior knowledge of the problem, and
starts the configuration process only when it observes the first test instance. It is worth
noting that this warm-start procedure differs from the warm-start outlined in the previous
ReACT experiments hence the difference in terminology. We believe that warm-starting
by including the solver defaults, as shown in the previous experiments, to be the most
common scenario for the end user of ReACTR to encounter, and for this reason, all
ReACT and ReACTR runs in this section seed their configuration pools with the solver

default configuration.

For comparison we evaluate both versions of ReACTR against a state-of-the-art static
configurator, SMAC [HHL11]. For completeness, we investigated SMAC when trained
for 12, 24, 36 and 48 hours. This way we cover scenarios when a new solver is
configured each night, as well as the best configuration SMAC can find in general. We
observed that on our particular datasets performance improvements stagnated after 12
hours training, except in the case of the regions dataset (for which we show the 24 hour
training). Furthermore, because ReACTR uses six cores, six versions of SMAC are
trained using the ’shared model mode’ option, which allows multiple SMAC runs to
share information. Upon evaluation, all six configurations are run and the time of the
fastest performing SMAC tuning on each instance is logged. By doing this the CPU
time used by SMAC and ReACTR is comparable.

We also show the results for both the previous version of ReACT (on the merged dataset

described above), "ReACT Merged" and the default solver configurations.

Figure 4.8 shows the rolling average (total time to date/instances processed) on the
circuit fuzz dataset. We can see that both versions of ReACTR easily outperform the
Lingeling defaults. What is more interesting is that ReACTR is able to outperform
SMAC (trained for 12 hours) after a single pass over the training set (taking under
4 hours). Even without the warm-start, ReACTR is able to find parameters that are

significantly better than the defaults and not too far off those that were otherwise
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Figure 4.8: Lingeling Configuration: Circuit fuzzing dataset.
configured.

In Figure 4.9, we see that on the Arbitrary Combinatorial Auction dataset, configuration
is extremely important, and that all configurators are able to find the good configura-
tions. In Figure 4.10, however, we once again see that both versions of ReACTR find
significantly better configurations than those that can be found after 12 hours of tuning
SMAC, and even the configuration found after 24 hours of tuning SMAC.

Table 4.4 shows the amount of time each configuration technique requires to go through
the entire process. This shows the amount of time needed to train the algorithm and the
amount of time needed to go through each of the test instances. The times are presented
in 1000s of seconds. Note that in all cases, ReACTR Merged requires less time to train
and also finds better configurations than SMAC. However, if training time is a concern,

then ReACTR Test requires significantly less total time than any other approach.

We now focus our attention on the second set of experiments, configuring the solvers
Clasp-3.0.4-p8 and ProbSAT on a variety of benchmarks from the CSSC [HLB*17].
Given the larger number of datasets and the expense involved in running these configur-
ation experiments we limit ourselves to a subset of evaluations run on the previous three

benchmarks. Specifically we run the solver default configuration, ReACTR Merged,
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Figure 4.10: CPLEX Configuration: Regions combinatorial auctions dataset.
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Table 4.4: Summary of training, testing and total time needed for the various configura-
tions on the benchmark datasets.

Time taken (1000s)

Solver ReACTR SMAC (number of hours)

Default Test Merged 12 24 36 48
Train 0 0 24 | 43 86 130 173
Regions Solve 363 | 109 88 | 185 141 110 102
Total 363 | 109 112 | 228 227 240 275
Train 0 0 19| 43 86 130 173
Arbitrary  Solve 253 61 54| 58 57 57 57
Total 253 61 72 | 101 143 186 230
Train 0 0 13| 43 86 130 173
Circuit Fuzz  Solve 32 25 18| 21 21 21 21
Total 32 25 31| 64 107 150 194

Table 4.5: Mean total solving time and number of time-outs for various scenarios from

the CSSC 2014.
Default ReACTR SMAC
Solve Timeouts Solve Timeouts Solve Timeouts
Time (s) Time (s) Time (s)
Train 0 NA 33577 NA 172800 NA
clasp-3.0.4-p8 Test 32068 33 11651 0 9725 0
3enf-v350 Total 32068 33 45228 0 182525 0
Train 0 NA 40153 NA 172800 NA
clasp-3.0.4-p8 Test 14391 43 12878 35.5 9003 15.66
gi Total 14391 43 53030 35.5 181803  15.66
Train 0 NA 2771 NA 172800 NA
clasp-3.0.4-p8 Test 2306 0 1049 0 719 0
K3 Total 2306 0 3820 0 173519 0
Train 0 NA 17940 NA 172800 NA
clasp-3.0.4-p8 Test 29551 82.83 8831 10.83 2365 0
queens Total 29551  82.83 26771 10.83 175165 0
Train 0 NA 447 NA 172800 NA
probSAT Test 75000 250 294 0 124 0
5SAT500 Total 75000 250 741 0 172924 0

and SMAC with 48 hours training (the default scenario supplied by ACLib, where all
new test scenarios are sourced [HLF"14]).

Looking at Table 4.5 we see that in this set of experiments there is a clear ranking both

in terms of overall solving time and the number of instances which time-out. In all

cases SMAC achieves the lowest total solving time and number of time-outs on the test

set. ReACTR also always improves over the performance of the default configuration
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on the test set but to a lesser extent.

Considering the overall configuration time rather than just the time taken to solve
the test instances shifts these results considerably. In three of the five benchmarks
no configuration would be the preferable option (in terms of solving time)! On the
remaining two benchmarks, N-Rooks and SSAT500, ReACTR achieves the lowest
overall solving time despite including the time to perform a single pass over the training
set (which is not strictly necessary, but does result in a better configuration). The results
on the SSATS500 dataset are particularly impressive; a single pass over training set,
taking only 447 seconds, allowed all test instances to be solved where previously all

timed out.

There are however two important caveats to these results. Firstly, if eliminating time-
outs is important in the use case then foregoing configuration is only viable in a single
case, the K3 benchmark. Configuration using ReACTR would be preferable for the
3CNF and 5SATS500 datasets while SMAC would be the superior choice for both the GI
and N-Rooks benchmarks (ReACTR also reduces the number of time-outs over Default
in these cases but not to the same extent). The fact that SMAC reduces the number
of runs which time-out is not surprising as it is tasked with reducing the PAR10 score
which penalises failed runs more heavily. ReACTR on the other hand does not account
for problem difficulty or failure and as such tends to reduce the median solving time.
Secondly, these results consider the test set in isolation and assume there are no further
instances to solve. By definition SMAC attempts to find a configuration which reduces
the solving time of the entire runtime distribution of instances while ReACTR strives to
adapt and find continually improving configurations over a potentially infinite stream
of instances. In both cases increasing the size of the test set would likely skew the
total solving time results in favour of the configurators as there is a greater time saving
per instance when using a configurator. It is also worth remembering in this scenario
that increasing the size of the test set allows ReACTR perform additional configuration

while the configuration discovered by SMAC remains unchanged throughout.

Delving into the configuration performance of individual SAT domains we see that
ReACTR’s performance on the crafted track (Figure 4.11) was poorer relative to that
on the random track (Figure 4.12). Figure 4.11a shows the cumulative average solving
time of ReACTR only marginally improves upon the default configuration while SMAC
achieves a modest, but much larger speed up (10.5% vs. 37.4%). Similarly, we see
in Figure 4.11b that although the improvement through configuration is much greater
on the N-Rooks benchmark, ReACTR’s speed-up of 70% 1s poor relative to the 92%
improvement achieved by SMAC.
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(b) Clasp Configuration: N-Rooks dataset.

Figure 4.11: ReACTR cumulative avg. solving times on Crafted SAT+UNSAT datasets.
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(b) Clasp Configuration: K3 dataset.

Figure 4.12: ReACTR cumulative avg. solving times on Random SAT+UNSAT datasets.
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Turning our attention to the benchmarks from the random SAT+UNSAT track (Fig-
ure 4.12) we see that the situation for ReACTR improves slightly. Figure 4.12a that both
configurators provide a large increase in solving speed over default and are approxim-
ately on a par with one another: 63.7% vs. 69.7% for ReACTR and SMAC respectively.
Likewise Figure 4.12b shows that both configurators dramatically reduce the average
solving time per instance albeit with a larger disparity in the percentage of improvement
between them, 54.5% reduction for ReACTR as opposed to 68.8% reduction by SMAC.

Finally, the dataset SSATS00 from the random SAT track exhibits the largest reduction
in solving time through configuration. Table 4.5 shows that both configurators achieve
an solving time improvement of over 99% on the dataset. While ProbSAT was unable to
solve a single instance using its default settings all instances were solved in only a few

minutes with configuration showing just how important quality configuration can be.

These results are positive and show that ReACTR is working as intended; configuring
a solver while processing a stream of instances without any distinct training period.
However, they are not in line with what we might have expected based on the results of
the first set of experiments where ReACTR performed on a par with or exceeded the

performance of SMAC on all datasets.

Investigating this further leads us to a few possible explanations. It is possible that
ReACTR did not process enough instances in the warm-up (training) period to achieve
good performance. This is unlikely as the dataset which exhibits the worst performance,
Graph Isomorphism, solves the most training instances and has the longest warm-up
period (see Table 4.3). Another possibility we consider is that ReACTR outperforms
SMAC on larger configuration spaces. This holds true in the case of Lingeling however
it is improbable as both CPLEX (74 parameters) and Clasp (75 parameters) have

similarly sized configuration spaces to search.

The most likely explanation for ReACTR’s under performance is the instance runtime
distribution of the new datasets. Figure 4.13 shows the distribution of default config-
uration run-times to have a heavy positive skew with a very light tail in most cases
i.e. many extremely easy instances with few challenging instances. The case is further
strengthened by observing that the two datasets exhibiting the strongest performance,
3CNF and Circuit Fuzz, also have runtime distributions with the heaviest tails (see
Figures 4.13a and 4.13f) while ReACTR’s weakest performance occurs on the dataset
with the highest frequency of very easy instances, GI (Figure 4.13b). To quantify
this we calculate ReACTR’s median solving time for all datasets. The datasets where
ReACTR performs well, arbitrary auctions, regions auctions, circuit fuzzing, and 3CNF

have median solving times of 32.51, 31.13, 18.09, and 43.82 seconds respectively while
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Figure 4.13: Default configuration solving time distributions for all benchmarks.
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the median times for the benchmarks where ReACTR under performs, GI, N-Rooks,
K3, and 5SAT500 are 0.12, 0.75, 0.43, and 0.85 seconds. Clearly from this evidence
we see that an abundance of instances that can be solved extremely quickly negatively

impacts on ReACTR’s configuration procedure.

While this explains the conditions which lead to ReACTR’s poor performance, it does
not explain why SMAC outperforms ReACTR in these situations. We believe multiple
factors are at play here. Firstly, as ReACTR does not weight instances by solving time
and instead relies on ranking it is likely that small fluctuations (for example due to
system scheduling) will have a greater impact on this ranking and derail the search
procedure. This lack of weighting is a limitation of the ReACTR system (explained in
detail in Section 6.2.5) that means that ReACTR may over fit the more common easy
instances at the expense of solving performance on the more difficult instances which
have a larger impact on the overall solving time. Secondly, as we have shown previously,
SMAC’s performance can be improved when its upfront training is performed on easier
instances. We saw this effect in Figures 4.3 and 4.5 where training on a dataset with a
lower number of goods or bids can outperform SMAC trained on a randomly selected
sample of instances. This phenomenon has also been noted independently and proposed

as a method of improving configuration performance on more difficult instances [SH13].

4.4 Chapter Summary

In this chapter we presented two concrete instantiations of the ReACT framework,
ReACT and ReACTR. We motivated and discussed the implementation choices of
the various component parts and empirically evaluate both configurators against the

state-of-the-art offline configurators on a variety of benchmarks with favourable results.
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Chapter 5

Leaderboard, Candidate Selection and

Instance Ordering

Summary. In this chapter we outline the intricacies of the various ranking
mechanisms which are applicable to the ReACT framework. We discuss
each of their relative strengths and weaknesses, in particular we justify the
use of the Bayesian ranking system TrueSkill as the cornerstone for our

primary ReACT framework instantiation, ReACTR.

With an understanding of the leaderboard and ranking mechanism in place
we then describe how these methods and others are applied to provide a
robust method for candidate selection. Here we assess the performance
achievable by different selection metrics and methods of combining these
metrics. Additionally, we demonstrate that the optimal combination de-
pends on the composition of the incoming instance stream and that there is

no fixed hierarchy to these blending methods.

The contents of this chapter has appeared in the peer-reviewed proceedings
of ACM Symposium on Applied Computing 2016 [FO17] and the journal
Fundamenta Informaticae [FO19].

5.1 Leaderboard and Ranking

The previous chapter demonstrated that the leaderboard and ranking system is at the
core of the ReACT system. The leaderboard is utilised by a number of components

in the framework: the selection procedure to select quality configurations to run; the
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removal component to identify under performing configurations to purge; and even by
the generation method to single out promising configurations to be used as a template

for new configurations.

Naturally, because of the important function that ranking plays in the framework we look
for a ranking method that is both easy to compute and accurate. For this reason we turn
our attention to the world of competitive games where there is a large body of research
on the ranking of players and teams in multiplayer games such as chess and online
video games [HMGO06, KGK16, TLZ105, Gli98]. Being able to accurately gauge a
global ranking based on head-to-head competitions is very valuable for handicapping,
qualification invitations and fair match making. In this remainder of this section we
outline a number of competing ranking systems, the concepts behind them, as well as

their relative strengths and weaknesses.

5.1.1 Bradley-Terry Model

Developing a method to produce a ranking given a series of pairwise comparisons
has been an area of study for many years. One of the seminal papers in the field is
by R. A. Bradley and M. E. Terry who proposed the so called Bradley-Terry model
in 1952 [BT52], though it was studied much earlier by Ernst Zermelo[Zer29]. This
model provides a probability estimate of one player beating another given a set of paired

comparisons. More formally this can be expressed as

Vi
Yi + 74

P(i > ) =

where 7, and y; are positive scores associated with the performance of players ¢ and j
respectively. This could, for example, be derived from the number of times ¢ wins over
j in a football season. P(i > j) gives the probability that i wins or is preferable to j.
The parameters of this model are fitted by means of maximum likelihood estimation
[H"04]. The log-likelihood is given by

0(y) =D wyIn vy — wiy In(vy; + ;)]

m m
i=1j=1

where m is the number of competitors and w;; is the number of times competitor ¢ beats

competitor j.

This model is very useful having many practical applications such as evaluating results

from sensory panels [Bra53] and ranking results for search engines [RJ07]. The model
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also lays the foundations for much of the work that followed such as Elo, Glicko, and

TrueSkill rating systems which we will discuss in the upcoming sections.

5.1.2 Elo

One of the most widely known ranking systems is the Elo rating system which was
developed by Arpad Elo in the late 1950s and adopted by the International Chess
Federation (FIDE) in 1970 [G1i95]. Elo-type systems are now widely used for many
different games (albeit parameterised differently) from soccer to scrabble.

The Elo rating system asserts that a players skill can be modelled by a normal distribution
(though many chess rating schemes now use a logistic distribution as it provides a better
fit). Furthermore, Elo puts forward the idea that the points difference between two
players’ ratings is a probability predictor for the match outcome. In chess an average
player is expected to have a rating of about 1500 points (although this varies between
federations as there is no single implementations) [GJ99]. Somewhat arbitrarily, a 200
point difference in skill equates to an approximately 76% chance of the higher rated

player winning. The formula for computing win probability is

1
- 1 + 10(Rp—Ra)/400

Ea

where R4 and Ry are player A and B’s respective ratings. F4 is player A’s expected

score (probability of winning plus half the probability of a tie).

Example 5.1.1. Consider the case where player A has a rating of 1700 and player B
has a rating of 1500. We compute the probability of player A winning as:

1

Ea= 1 + 1((1500—1700)/400 =0.76

The rating points assigned by the Elo system during an update are zero-sum,; if player
A gains points in a score update player B loses the same number of points. The number
of points wagered is not fixed and is instead dependant on the expected outcome of the
game and the K factor. The more unexpected an outcome the more points are lost by
the party which has been upset. This is logical as a player with a much lower expected
score triumphing over a player with higher expected score suggests that the assigned
scores are incorrect and a large update is required. The K factor is a type of weighting
that is applied to updates. Generally, newer players are assigned a higher K factor by
the organising body (e.g. FIDE) that drops as the player gains experience. This scheme
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allows new players to quickly arrive at their new score while allowing more experienced

players to maintain a relatively stable score.

Formally the updates to a players score are performed as follows:

Ry=Rs+ K(Sy— Ex)

Here, R/, is the updated score, R 4 represents the previous score, K is the applied K
factor, Sy is the score achieved in the game, and E 4 is the players expected score for

the game.

Example 5.1.2. To continue the previous example, player A’s rating following a win
over player B would be updated in the following way (assuming the FIDE K value of
20):

', = 1700 4+ 20(1 — 0.76) = 1704.8

The Elo rating system is conceptually easy to understand and computationally inex-
pensive to run. This, combined with the strong approximation of player skill that Elo
provides, has allowed it to become the defacto standard for ranking algorithms. Despite
this, the Elo system is not without its flaws. Primary amongst these, particularly in the
context of a ranking system used in ReACT, is the fact that it is only designed for two
player games. To calculate ratings for more than two players, such as the races at the
core of the ReACT framework, it is necessary to perform a pairwise comparison for all
pairs of competitors in the race. When adopting such an approach one must be careful
with the sequencing of the comparisons and score updates so as to reflect that the races

occured simultaneously.

Another issue facing Elo is its inability to model draws. Within the Elo system draws
are considered a half win and half loss. This overlooks the fact that draws can supply
valuable information. For example if a new player with a low Elo score draws with a
player holding a much higher score we can infer that the players are somewhat equal
in skill level. This also leads to difficulty interpreting the expected score of games.
Remember that expected score is the probability of winning plus half the probability
of a draw. Consider an expected score of 0.6, on one extreme this could suggest that
the player has a 60% chance of winning and 0% chance of a draw, on the other it could

imply a 20% win chance and 80% draw percentage, or anything in between.

The final issue worth mentioning is that Elo fails to provide confidence in the rating
it has assigned. A player that has a score of 2000 after 500 games is more likely to
be accurate than someone who has the same score after just 10 games, yet this is not
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explicitly modelled. Careful selection of the K factor can help alleviate some of the
issues surrounding score uncertainty, however this is an art rather than a science. The
drawback is normally remedied by considering a player’s rating as being provisional
until they have completed a certain number of games, typically twenty or thirty. This is a
deal breaker for using Elo in ReACT-based systems as we aim to assess a configurations

confidence as quickly as we possibly can.

5.1.3 Glicko and Glicko-2

The Glicko rating system, introduced in 1999, aimed to address some of the perceived
short comings in the Elo system [G1199, Gli198]. Primary amongst the improvements
introduced by the Glicko system is the inclusion of a so called rating deviation, RD, for
each player. Adopting this methodology allows Glicko to do away with the provisional
ranking period used in Elo and to more accurately describe the system’s confidence in a
rating at any given time. The rating deviation allows a player’s skill to be described in
terms of a confidence interval rating than a single rating as is the case in the Elo system.
In Glicko a player’s rating is provided as a 95% confidence interval bounded by their
score minus 1.96 times their rating deviation and their score plus 1.96 times their rating
deviation respectively. To give a concrete example, consider two players, P, with score
of 1700 and a RD of 30, and P, with the same score, 1700, but a much higher RD of
120. This gives us a 95% confidence interval for both players of:

P_a = (1700 — 1.96 x 30,1700 + 1.96 x 30) = (1641, 1759)

P_b= (1700 — 1.96 x 120, 1700 + 1.96 x 120) = (1465, 1935)

Under the Elo system both of these would be considered equivalent, however by adding
the rating deviation it is apparent that the system is far more confident in P,’s skill,
this shown by the narrower skill range. On the other hand, the wide rating interval of
P, shows that the system is not yet confident in the players skill, believing it to range

somewhere between 1465 and 1935.

Unlike the Elo system, ratings updates in Glicko are not zero sum. The number of points
gained or lost takes into account the systems confidence in the rating of each player.
The system will not drastically change a the score for a player with an established rating
that it is confident in. On the other hand if a new player (or a player the system is not
confident in) scores a suprising win against an established higher ranked player the
system is likely to make a large update to their score. Intuitively this makes sense as

triumphing over a stronger opponent suggests that their current score is too low. The
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specifics of these updates are beyond the scope of this theses, but we refer the reader to

the Glicko paper for full information on the algorithms [Gli99].

Glicko-2, introduced in 2001, builds on the foundations laid by the original Glicko
system by introducing a measure of performance volatility in addition to the rating
and rating deviation measure [GliO1, Gli13]. This extension models the variability of
a players performance within a given "rating period". A rating period consists of a
number of games which are grouped together and considered to occur simultaneously
for the purpose of ranking updates. A player who performs consistently during games
in the rating period will have a low volatility score, erratic performances produce a
larger volatility rating. We mention this extension primarily for completeness as the
ReACT framework does not derive much benefit from it. This is due to the fact that
ReACT must use a short rating period of a single race which makes it impossible to
detect volatility in performance. It is necessary to do this in order to produce ratings as
quickly as possible, without ncurring the overhead of waiting for a number of races to

complete.

Though Glicko addresses some of the short comings of the Elo rating system it still lacks
the ability to rate competitions with more than two players. This is a requirement for
the ReACT system as races will almost always consist of more than two configurations.
In order to use Glicko for games involving three or more players, all combinations of
pairs must be created and updated independently in order for either of these classic

approaches to work.

5.1.4 TrueSkill

To solve the multi-player problem for online games, the ranking algorithm TrueSkill
was introduced in 2006 [HMGO6]. TrueSkill is able to rank multiple players (and teams
of players) as well as explicitly modelling draws. TrueSkill draws much inspiration
from the Glicko system in the way it models player skill; the system tracks both a
player’s average skill, i, as well as the degree of confidence in that score (standard
deviation), o, assuming a Gaussian distribution for a player’s skill. TrueSkill uses
Bayesian inference to perform updates on player’s rankings [HMGO6]. Each player’s
skill rating and deviation are used as the prior. After a tournament, all competitors are
ranked based on the result with surprising results inducing a larger update than expected
results. The result of this is that a player that is expected to win (higher i value) gains
little by beating a lower ranked opponent. However, if a lower ranked player beats a
higher ranked player, then the lower ranked player will usually receive a large increase

in their p value (depending on the systems certainty). As a player competes in more
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Figure 5.1: Cumulative solving time using Glicko and TrueSkill for ranking.

tournaments TrueSkill becomes more confident in the p that is assigned and so the

uncertainty value, o is reduced after every tournament played.

TrueSkill is quite efficient when performing updates due to the use of approximate
message passing on a factor graph representation of the probabilistic model. Factor
graphs are a probabilistic graphical modelling technique used to encode probabilistic
distributions. The graph is a bipartite graph consisting of two types of nodes, variables
which represent a known or sought value, and factors which define the relationship
between variables in the graph. Approximiate message passing (an efficient iterative
approach for solving the standard linear regression problem) is used to compute the
marginal distribution over the variables [DMMO09]. The specifics of this algorithm are
beyond the scope of this description, however, we refer the reader to the TrueSkill paper
for full details [HMGO6].

5.1.4.1 Performance of ReACTR using TrueSkill Ranking vs. Glicko Ranking

For ReACT, the confidence metric provided by Glicko-2 and TrueSkill is a highly
desirable feature that could help determine whether it is worth continuing to evaluate

a configuration or whether it can be safely discarded. We implemented versions of
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the ReACTR algorithm utilising both ranking algorithms. Figure 5.1 shows the result
of one of these experiments on the set of arbitrary combinatorial auction instances
modeled as mixed integer programming problems and solved using the CPLEX solver
(Section 4.3.4 provides a more detailed description of this setup). This figure shows the
cumulative solving time for solver tuned with ReACTR algorithm and using the two
ranking methods. We see that TrueSkill is able to help bring better configurations to the

top, resulting in superior overall performance in the long run.

5.2 Candidate Selection

ReACT’s parallel racing mechanism provides it with a way to evaluate multiple con-
figurations side by side. This is what allows ReACT to function in an online fashion.
An important part of this parallel racing mechanism is being able to correctly identify
which configurations should be evaluated on each instance. Parallel algorithm port-
folios face a similar challenge when selecting which solvers to run on each instance.
Portfolios generally aim to maximise coverage of the number of instances by running
complimentary solvers [HKMO14a]. This is often achieved by looking at instance
features and predicting which solvers will work well on which instances [XHHLBOS].
ReACTR does not use instance features, but instead relies on past performance data
and a ranking system to determine which instances to select for each instance. As such,

it performs in a per-set manner rather than on a per-instance basis.

Given that only a limited number of configurations may be run in parallel, the challenge
lies in balancing the exploration of the large configuration space with maintaining good
performance by using "proven" configurations. This is known as the exploration versus
exploitation trade-off and is a well-studied issue [VMOS, KP14].

The candidate selection procedure plays a vital role in the ReACTR system and its
overall performance. In this section we explore various combinations of performance

metrics in order to identify those which provide the best performance.

5.2.1 Selection Metrics

One of the aims of this chapter is to more fully understand the candidate selection pro-
cedure used in ReACTR. ReACTR’s current candidate selection policy uses TrueSkill as
its performance metric. In our experiments we evaluate a number of different perform-
ance metrics, and various methods of combining them. The Epsilon-Greedy approach is
still used (as outlined in Section 4.3.2), so a proportion of candidates selected are always

random to ensure a certain level of exploration within the parameter pool. In addition
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to these, a number of "good" candidates are selected based on various performance

metrics as discussed below.

In addition to testing TrueSkill as a performance metric we also look at a number of
simple metrics based on the number of wins and how recent those wins were. In this
context a winner is defined as the configuration that outperformed its competitors by
solving a problem instance first. In our experiments we use a shorthand to label the mix
of selection procedures used; this takes the form nSEL where n is the number of config-
urations selected by the selection method SEL. The selection method abbreviations and

explanations are as follows:

* TS (TrueSkill) - These configurations are selected according to their TrueSkill

Score€.

* LW (Last Winners) - Keeps a list of the most recent race winners. It then selects
the n most recent unique configurations. e.g. 1LW uses the configuration which
solved the previous instance fastest. 2LW uses the winners of the races on the
two most recent instances (or potentially more if both were solved by the same

configuration) etc.

* WIN# (Win Count) - The number of times a certain configuration has performed
best. It is important to note this is not normalised based on the number of runs
the configuration has taken part in. e.g. if a configuration has run in ten races and
won five, its win count is 5. WIN# sorts the configurations by descending win

count and takes the n configurations with the most wins.

* WIN% (Win Percentage) - Similar to Win Count but normalises for the number
of runs in which a configuration has participated. This normalisation makes Win
Percentage a better metric as it is no longer biased towards configurations with
more runs. e.g. if a configuration has run in ten races and won five, its win
percentage will be 0.5. Again WIN% sorts the configurations by descending win
percentage and takes the n configurations with the highest win percentage.

* DEF (Defeats) - Defeats must be used in conjunction with another performance
metric. Defeats chooses the n configurations that have defeated the configuration
selected by that metric the most. e.g. Given the mix of selectors 1WIN#1DEF,
IWIN# will select the configuration with the highest number of wins, con f,,.
IDEF will then order the remaining configurations by the number of times they

have competed against con f,, and won.

* RAND (Random) - Selects configurations uniformly at random.
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We typically use multiple selection procedures that are applied in the order they are
listed. For example 2TS2LW2RAND will select two configurations using TrueSkill
ranking(TS) first, then two using the Last Winners procedure (LW) and finally two at
random (RAND). If a configuration has already been selected by a previous selection
procedure then the next matching configuration which has not already been chosen. If a
no configurations match a selection criteria the configurations are instead selected at

random.

A number of baseline selection strategies are also provided. Due to the differing nature
of the runs, different baselines are proposed for static and dynamic datasets. In the static
case, three baseline strategies are provided. First, the Oracle baseline shows the results
for the virtual best system, which selects the best solver for every instance. This is the
best performance that is possible to achieve. Single Best shows the best single solver
that minimises the overall total solving time. Random selects the required number of
solvers at random for each instance and chooses the best solving time from these. In the

dynamic case the baseline is the average running time of the untuned solver.

5.2.2 Datasets and Instance Generation

For these experiments we use three different datasets. Two datasets, PROTEUS-2014
and SAT12-ALL, are taken from the Algorithm Selection Library (ASLib) [HKMO14a,
BBD*12, BKK'16]. These are static datasets with a fixed number of solvers where run
times for all solvers are precomputed. In this scenario each solver in the dataset equates
to a different configuration. This allows us simulate ReACTR runs by iterating over
the instances in these static datasets in the same way that ReACTR would but using
the precomputed solving times instead of performing a solver run with a configuration.
As the pool of "configurations" (solvers) is fixed we do not employ the removal and

replacement procedures normally used in ReACTR.

Excluding ReACTR’s removal and replacement procedure also allows us to study the
effects of ordering and candidate selection in isolation. The caveat to this is that the
interaction between these procedures cannot be studied and as such full ReACTR runs
may behave differently. However, it is necessary to use static datasets as conducting a
full run using the ReACTR system requires a large number of CPU hours (or days) and
does not readily parallelise. As the simulated run is quick to compute, the static results
are based on 100 runs that allows us to better estimate the variability in performance of

the selection methods and compare them more accurately.

The first static dataset, PROTEUS-2014, comprises 4021 constraint satisfaction prob-
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lems solved using 22 different solvers. We use Mistral as the default solver [Heb0S8].
This is in keeping with the methodology used in the paper that created this data-
set [HKMO14a]. Instances that the default solver solved in less than two seconds
were filtered out. Additionally any instances where all solvers hit the 3600 second
cut-off time were removed. This left 2595 instances for analysis which were neither
too easy nor too difficult. Four different orderings of these 2595 instances were then
considered: Lexicographic, Shuffled, Easy-to-Hard, and Hard-to-Easy. Lexicographic
orders the instances based on the lexicographical ordering of the instance file paths.
This is important because the way the dataset was created means similar instances tend
to be clustered together in the same folders e.g. 8-Queens would be next to 9-Queens in
the n-Queens folder. Shuffled randomly orders the set of instances. Easy-to-hard and
Hard-to-Easy sort the instances from fastest solving time to slowest, and vice-versa,

using the default solver, Mistral.

For our feature ordering experiments we used a subset of the PROTEUS-2014 dataset
comprising 623 instances. This subset was chosen so that all feature values were present
and did not need to be computed. All 198 instance features given as part of the ASLib
dataset are used; these are described in more detail in Section 5.2.3. These feature

values are used to sort the instances in both ascending and descending order.

The second static dataset, SAT12-ALL, contains a mix of 1614 Boolean Satisfiability
(SAT) instances taken from SAT competitions. These are solved using 31 different
solvers. Lingeling is selected as the default solver for this dataset [Biel10]. Lingeling
is a highly parameterised SAT solver which has performed well in recent configurable
SAT solver challenges[HLB " 17]. Again, any instances that take less than 2 seconds to
solve with the default solver, Lingeling, or are unsolved by any solver within the 1200
second cutoff time, were removed. The remaining 1474 instances were again ordered in
the four orderings outlined above. Similar to PROTEUS-2014, for our feature ordering
experiments we only used a subset of the instances where all instance feature values are
available. This gave a dataset comprising 721 instances. We ordered by all 115 instance
features, which will be described in Section 5.2.3, in both ascending and descending

order.

In addition to the two static datasets, a dataset consisting of combinatorial auction MIP
instances was also used. This benchmark does not have pre-calculated run times and
must be solved by the CPLEX solver (being configured by the ReACTR system) to
determine the runtime for each instance. Due to computation time involved in running
ReACTR over a large number of instances (in the order of a day for each configuration

run), each run using this dataset is evaluated only 10 times. All dynamic experiments
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were run on a system with 2 x Intel Xeon E5430 processors (2.66Ghz) and 12 GB RAM.
The system has 8 available cores but only 6 are used so as to allow room for background
processes and other overhead without affecting timing. The Algorithm Configuration

Library(ACLib) [HLF" 14] framework was used to run the dynamic experiments.

Four different combinatorial auction domains are combined to create the dynamic
benchmark based on combinatorial auctions. These instances are generated using the
Combinatorial Auctions Test Suite (CATS)!. The four domains generated are arbitrary,
paths, regions, and scheduling. Arbitrary combinatorial auctions have no clear con-
nection between the goods being auctioned e.g. antiques. The Paths domain models
combinatorial auctions based on paths in space, generally a route between two points e.g.
truck routes. Regions simulates combinatorial auctions where the adjacency in space
of goods matters e.g. parcels of land. Scheduling instances simulate auctions where
temporal scheduling auctions e.g. selling time on a machine. Arbitrary and regions
instances were both generated using 100-100 goods and 100-2000 bids, paths instances
have between 512 and 2048 goods with 3000-10000 bids, while scheduling instances
have 128-256 goods and 3000-10000 bids. These parameters were chosen in order
to create instances that proved challenging for the mixed integer programming (MIP)
solver used, CPLEX [IBM14]. CPLEX 12.6 is used with 74 discretised parameters as
provided by ACLib. The first 200 instances for each domain, that were solvable within
30 to 600 seconds using the default CPLEX configuration, are then merged to create a
benchmark with 800 challenging but solvable instances. When solving using ReACTR
a cut off time of 180 seconds was used, which allows room for the configurator to

improve over the default solver configuration.

5.2.3 Features

The SAT12-All dataset uses 115 SAT instance features that are used by SatZilla in the
2009 SAT competition [XHHLBO09]. For the sake of brevity we will not exhaustively
list all features, however, they can be divided into subgroups: problem size features,
variable-clause graph features, variable graph features, balance features, proximity to
Horn formula, DPLL probing features, local search probing features, survey propagation

features and clause learning features. A technical report describing these features in
more detail is available [ XHHLB12].

The PROTEUS-2014 dataset contains instances and features used in the Proteus hier-
archical portfolio of solvers [HKMO14c]. Proteus uses both SAT and CSP solvers,

sometimes encoding a CSP problem in SAT and solving using a SAT solver if this is

'Mttp://www.cs.ubc.ca/~kevinlb/CATS/ [LBPS00c]
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expected to improve performance. Therefore, the PROTEUS-2014 dataset contains a
mixture of both CSP and SAT features. There are 36 CSP features which were originally
used in CPHydra [OHH"08b]. These include statistics about the domain sizes, the type
of constraints and the progress of the Mistral solver when run for 2 seconds. The SAT
features used for the PROTEUS-2014 dataset are similar to those of SAT12-All outlined
above. The one notable difference is that the features are calculated from multiple

different SAT encodings of the CSP instances (support, direct order and direct).

5.3 Experiments on Fixed-set Solver Datasets

5.3.1 Lexicographical and Runtime-based Ordering

These experiments have two goals, to explore which candidate selection strategies work
best, and also what effect the instance ordering has on the overall solving time. To do
this different performance metrics (described in Section 5.2.1) are used and combined

in a number of ways and then evaluated on multiple instance orderings.

Figure 5.2 shows box plots representing the solving time using various selection mech-
anisms on the SAT12-ALL dataset which has been ordered lexicographically. The
sampling methods are ordered by their median values, which is indicated in the boxplot
by the red central line. The blue box shows the first and third quartiles (the 25th and
75th percentiles). The lower whisker shows Q1 — 1.5 x I() R, while the upper whisker
shows Q3 + 1.5 x IQR, where ()1 and ()3 are the first quartile and third quartile,
respectively, and the inter-quartile range, I Q) R is the difference between them. Outliers

are marked with black crosses.

Three baselines are included to give some context to the results. Oracle chooses the
best possible solver for each instance. Random selects six solvers at random for each
instance and logs the best time achieved from the six. Single Best is the solver which
has the lowest overall solving time over all instances. All of the selection methods shown
outperform both the Random and Single Best baselines which shows that using any
of the ReACTR selection methods alone even without the ability to modify or introduce
new solvers or configurations still gives an improvement and is a worthwhile endeavour.
Though not shown, this result holds across all orderings of both PROTEUS-2014 and
SAT12-ALL datasets.

Figure 5.2 shows a jump in solving time when transitioning from 1LW 5SRAND to
SWIN% 1RAND. All selection policies to the left of 1LW SRAND in Figure 5.2 use

Last Winners (LW) as a selection component, after that point only combinations of
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Figure 5.2: Comparison of all candidate selection methods on the SAT12-ALL dataset
ordered lexicographically (Avg. of 100 runs).

TrueSkill, Win Percentage and Defeats (described in Section 5.2.1) are used instead.
It is clear that having Last Winners as part of the selection policy is important for
SAT instances that are lexicographically ordered. When the instances are ordered
lexicographically rapid changes in the domain type occur, for example when switching
from a folder containing hardware verification to cryptography instances. By using the
last winning configuration these changes are detected quickly rather than waiting for a
TrueSkill score or Win Percentage to rise sufficiently for the candidate to be selected
by those metrics. Supporting this hypothesis is that none of the other SAT orderings,

which are shuffled instance-wise, show this sharp jump.

There is a smaller jump also visible between the ninth and tenth box plots (1TS 1LW
4RAND and SLW 1RAND) which appears to be caused by the reduction in the number
of random candidates. Last Winners, in the SAT lexicographical case, seems to need
a larger number of random candidates included. Since the domains encountered are
changing rapidly, a heavy emphasis on exploration within the leaderboard is required.
Random selection provides this exploration and allows the selection policy to quickly

discover the best solver for the current instance type, while using Last Winners allows
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Figure 5.3: The solving time for the best performing candidate selection mechanisms
for each PROTEUS-2014 ordering when evaluated on all other orderings (Avg. over
100 executions).

the best solver to be kept and used for upcoming instances. This behaviour is not typical
for the other orderings or datasets where normally more exploitation using only one or

two Random exploration candidates is favoured.

Note that selection policies that include Defeats appear to under-perform. When
examined more closely Defeats adds little improvement over selecting randomly. In
general, it appears the majority of any good performance observed when Defeats is

used can be attributed to the TrueSkill part of its composition.

Figures 5.3 and 5.4 show the best selection policies from each individual ordering
evaluated on all of the other instance orderings for both PROTEUS-2014 and SAT12-
ALL respectively. The y-axis is shown in a log scale in order to include the baseline
results. Again we see that all selection policies outperform the Random and Single
Best baselines. In both cases we see that instances that are ordered lexicographically
are solved faster than all other orderings using the optimal selection policy. Shuffled
instances, though not solved fastest, have the smallest deviation in solving time. This is

most obvious in the case of Proteus Shuffled.

The lexicographically sorted Proteus dataset is solved fastest using a combination of
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Figure 5.4: The solving time for the best performing candidate selection mechanisms
for each SAT12-ALL ordering when evaluated on all other orderings (Avg. over 100
executions).

TrueSkill and Last Winners. This is in keeping with what was shown in Figure 5.2
and for possibly the same reasons outlined previously. The other orderings appear
to express a preference for certain candidate selection models as well regardless of
dataset. Shuffled instances from both Proteus and SAT are are solved most quickly
using a Win Percentage-based system (SWIN% 1RAND and 1TS 3WIN% 2RAND,
respectively). Similarly, selection policies using TrueSkill and Last Winners perform
best on instances that are ordered from hard-to-easy (2TS 2LW 2RAND for Proteus
and 3TS 1LW 2RAND for SAT). The only ordering that bucks this trend is Easy-to-
Hard, favouring a TrueSkill and Win Percentage-based model for Proteus (2TS 3WIN%
1RAND) but a TrueSkill and Last Winners approach for SAT (3TS 1LW 2RAND).

Some commonality amongst the most preferred selection policies is also visible. Fig-
ure 5.3 shows that Proteus Lexicographical and Hard-to-Easy fare best using 2TS 2LW
2RAND, while Figure 5.4 shows both SAT Easy-to-Hard and SAT Hard-to-Easy agree
on 3TS 1LW 2RAND as the optimal selection policy. This may signify that these ratios
are the right balance for those particular datasets. Unfortunately there is no general
consensus on ratios across datasets, though Proteus Hard-to-Easy does have 3TS 1LW

2RAND as a second choice suggesting some commonality is present.
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5.3.2 Feature-Based Ordering

Our initial ordering experiments in Section 5.3.1 showed that instance ordering by
runtime does make a difference to the configuration process. Positive improvements
in the total solving time can be achieved based on simple runtime or lexicographical
ordering alone. In this section we extend these ordering experiments to investigate the
effect of ordering instances based on their feature values. Instance features can reveal
much about the instances being processed such as their size, structure, and how the
instance changes when a solver is run on it for a short period of time; we refer to running
a solver in this way as "probing". Most features can be computed quickly, often by just
parsing the instance file. Understanding how ReACTR performs on orderings based
on different instance features provides a greater understanding of the what impacts
configurator performance and how this might be exploited for improvement. These
experiments show where ReACTR achieves its best and worst performance in certain

domains.

Getting these insights leads to a greater understanding of how ReACTR will perform
in real world scenarios. Companies are often faced with a stream of increasingly
large problems to solve. For example a ride-sharing company might see the stream of
instances it must solve grow in size and complexity as the company expands over time,
or there can be similar effects between off-peak and rush-hour periods at a daily level.
Similarly a factory may face increasingly difficult scheduling problems as the company
employs more staff or takes on more orders. Though there is no direct control over the
type of instances encountered it is still important to be aware of how the configurator
responds to the size of certain features increasing and decreasing so as to avoid any

pitfalls.

The previous experiments focused on which of the selection policies is most preferred
whereas the goal of these experiments is to study the effect of instance feature ordering.
As such we use a single candidate selection policy for the experiment: 2TS 2LW
2RAND comprising two TrueSkill, two Last Winners and two Random selectors. This
candidate selection policy was chosen as it performed best in two of the previous
PROTEUS-2014 experiments. Candidate selection policies containing a mixture of
TrueSkill and Last Winner also performed well on the SAT12-All dataset making this a

good compromise choice for both datasets being investigated.

The instances in the SAT12-All dataset are each described using 115 features. These
are ordered both ascending and descending to give a total of 230 different instance
orderings. Each instance ordering is evaluated 100 times using the simulated Re-

ACTR run methodology outlined in Section 5.2.2. Each run uses a different seed
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so that any stochastic parts of the selection procedure produce different results. We
compared the distribution of total runtimes for each instance ordering against the
distribution given by 100 runs of both Random and Easy-to-Hard orderings using
a statistical hypothesis test (Student’s t-test). Of the 230 different SAT feature or-
derings 223 were statistically better (P=0.01) than Random ordering while 200 were
statistically better than the Easy-to-Hard ordering. No ordering was statistically worse
than Random, though four orderings did have worse average runtimes (UNARY and
POSNEG_RATIO_CLAUSE_max sorted both ascending and descending). Eight or-
derings were statistically worse than the Easy-to-Hard ordering (POSNEG_RATIO_ -
CLAUSE_min, POSNEG_RATIO_VAR_min (ascending and descending), gsat_—
FirstLocalMinStep_CoeffVariance, POSNEG_RATIO_CLAUSE_max (as-
cending and descending) and UNARY (ascending and descending)).
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Figure 5.5: SAT12-All: Cumulative runtime graph for best and worst feature orderings
with baselines (Avg. over 100 executions).

Figure 5.5 shows the average cumulative solving time for the instance feature orderings,
with the best and worst performance as well as the baselines Random ordering, Easy-
to-Hard ordering and Hard-to-Easy ordering. Even the worst feature ordering was
only 1.9% slower than Random while the best feature ordering was 28.9% faster than

Random. This suggest that we should prefer that instances arrive in almost any feature-
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based ordering as the majority of orderings provide an advantage over Random ordering
and the few orderings that perform worse incur only a relatively small performance
penalty. In other words, ordering instances randomly seems to be the worst thing one

can do: it is preferable to receive instances in an order that recognises instance size or
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Figure 5.6: SAT12-All: Box-plots of the ten best, ten worst and three baselines (Avg.
over 100 executions).

Figure 5.6 shows box plots for the performance of the best ten orderings, the worst ten
orderings, and three baselines (Random, Easy-to-Hard and Hard-to-Easy). Features
that are appended with DESC are sorted in descending order. It is immediately obvious
that there is a large gap between the best performing orderings and the worst. This
is to be expected given the low p-values seen when statistically comparing these
distributions against Random. What is somewhat surprising is that the disparity between
the performance of the baselines and the worst performing feature orderings is quite
small. While Easy-to-Hard outperforms Random, and Random outperforms Hard-to-
Easy — which agrees with what was shown in previous experiments — all of the baselines

are scarcely better than even the worst-performing ordering based on features.

Looking more closely at the features themselves we can see that statistics about the

number of learned clauses (sorted descending) dominate the top ten. These clause
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learning features are based on a two second run of Zchaff_rand. DIAMETER_mean
is the mean diameter of the variable graph. VCG_CLAUSE_max is a Variable-Clause
Graph feature for the maximum clause node degree. cluster_coeff_mean is the
mean clustering coefficient of the Clause Graph. 1objois_mean_depth_over_-
vars is a DPLL Probing feature which gives an estimate of the search tree size. This
suggests that focusing on the constrainedness of instances, and specifically considering
more tightly constraint instances first, is a good strategy. Instances of this kind provide
greater opportunity to learn, since the relative strength of different solver configurations
will be more clearly discernible. If one focuses on instances that are easy for all

configurations, then there is little to distinguish them.

Manual inspection of the orderings produced by sorting on these features shows that
instances from similar domains tend to cluster together (not shown). This is akin to
what we saw in the Lexicographic ordering in our previous experiments. However,
feature based ordering is more powerful than Lexicographic ordering in that it does not
rely on instances being within the same folder to group similar instances e.g. crypto
instances from the SAT 2007 competition will still appear near crypto instances from

the SAT 2009 competition despite not being in the same directory.

We see in Figure 5.6 that the sorting order (ascending or descending) is important for
the top performing features. For example DIAMETER_mean sorted ascending is the
best performing feature taking on average 109k seconds, however DIAMETER_mean
sorted descending is ranked 145th (132k seconds). It should be noted that both are
still statistically better than all baselines. The opposite seems to be true of the poorly
performing features whose runtime is close to that of the Random ordering. Both
ascending and descending orderings of UNARY, POSNEG_RATIO_CLAUSE_MAX and
POSNEG_RATIO_VAR_MIN are in the worst ten performing.

Turning our attention to the PROTEUS-2014 dataset again, we find that a large per-
centage of feature orderings outperform the Random ordering. Of the potential 396
orderings (198 features sorted both ascending and descending) 376 have a lower average
total solving time. After analysing these results using Student’s t-test we find that 310
feature orderings give a statistically significant improvement over the Random order-
ing while only four where statistically worse (direct_cluster-coeff-mean_-
DESC, support_cluster-coeff-mean_DESC, csp_dyn_log_stdev_-
weight, directorder_VCG-VAR-max). The ordering with the fastest total solv-
ing time was 32.1% faster than Random ordering while the worst was 6.2% slower.
When comparing against Easy-to-Hard, we find that 74 feature orderings perform

statistically better while 221 are statistically worse.
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Figure 5.7: PROTEUS-2014: Cumulative runtime graph for best and worst feature
orderings with baselines (Avg. over 100 executions).

Figure 5.7 shows the average cumulative solving time for the best and worst feature or-
dering in addition to the three baselines. The progression for best ordering is interesting
in that it follows the gradient of the Random ordering for the first 300 instances before
solving the remaining 323 instances extremely quickly. This somewhat contradicts the
idea that solving the easiest instances first is always desirable. However, it is important
to remember that these are static experiments with a fixed pool of solvers. In the
dynamic case it may be desirable to solve the easiest instances first and by doing so

learn more configurations quickly.

The box-plots in Figure 5.8 show that unlike SAT12-All the ten worst orderings do
perform worse than the baselines though not too much worse than the Random or-
dering. The features for the PROTEUS dataset are interesting in that they contain a
mixture of CSP and SAT features. The SAT features are replicated for three different
encodings used when encoding the CSP instances to SAT (DIRECT, DIRECTORDER,
and SUPPORT). These encodings are prepended to the feature names to indicate the
encoding used, while CSP features have CSP prepended to them. Both the ten best
and ten worst performing orderings contain at least one of each type of feature. It is
also interesting to note that the PROTEUS and SAT datasets do not agree on the best
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Figure 5.8: PROTEUS-2014: Box-plots of the ten best, ten worst and three baselines
(Avg. over 100 executions).

features to order by, in fact CLUSTER_COEFF_MEAN_DESC is the second best feature
ordering in SAT whereas it is the third, fourth and sixteenth worst in PROTEUS for
SUPPORT, DIRECT and DIRECTORDER encodings respectively.

Variable-graph node degree statistics seem to be important for ordering the PRO-
TEUS dataset. The maximum node degree occurs twice in the ten best order-
ings (DIRECTORDER_VG-MAX_DESC, SUPPORT_VG-MAX_DESC) while the mean
node degree also appears in the top ten (DIRECT_VG-MEAN_DESC). Statistics re-
lating to the Variable-Clause graph occur three times in the top ten (SUPPORT_ -
VCG-CLAUSE-MEAN_DESC,DIRECT_VCG-CLAUSE-COEFF-VARTIATION_DESC,
SUPPORT_VCG-VAR-MEAN_DESC). These are both interesting since the variable
graph and the variable-clause both relate to the constrainedness of the instances, mir-
roring some of the intuition that lies behind successful variable ordering heuristics for

search which prefer more constrained instances, and prefer higher degree variables.

For the CSP features the average predicate shape and arity are important as is the max-
imum arity (CSP_PERTEN_AVG_PREDSHAPE_DESC, CSP_MAX_ARITY, CSP_-—
PERTEN_AVG_PREDARITY). As with the SAT instances visual inspection of the

132



5. LEADERBOARD, CANDIDATE SELECTION 5.4 Experiments on Non-fixed Solver
AND INSTANCE ORDERING Configurations

orderings produced by these features shows that they tend to group instances from
similar domains together (not shown). This, of course, might simply be a consequence

of how these problems are modelled.

Looking at the worst ten features to to use for ordering we see that the clause

graph features relating to the clustering coefficient perform poorly (SUPPORT_ -
CLUSTER-COEFF-MAX_DESC, SUPPORT_CLUSTER-COEFF-COEFF-VARIATION_ —
DESC,DIRECT_CLUSTER-COEFF-MEAN_DESC, SUPPORT_CLUSTER-COEFF-MEAN_ —
DESC). Two features relating to proximity to Horn formula also appear; the mean

and max number of occurrences in a Horn clause for each variable (DIRECT_ -
HORNY-VAR-MEAN, DIRECTORDER_HORNY-VAR-MAX). Similar to the point made
previously, the poor performance from using these features reflects the poor performance

associated with variable ordering anti-heuristics that prefer less constrained instances.

5.4 Experiments on Non-fixed Solver Configurations

The experiments upto this point in the chapter have used static datasets and ignored the
interplay between ordering and the pool maintenance methods, namely configuration
removal and generation. While enforcing these limitations was necessary to make
the experiments computationally feasible, it does leave some unanswered questions
around the impact of ordering on full ReACTR runs. The experiments in this section
involve running ReACTR in full which constantly adds and removes configurations
to the configuration pool. This differs substantially from the static case we studied
above, where a fixed set of solvers were constantly being selected from. Due to the
lengthy solving time incurred by full ReACTR runs, these experiments are limited to
using a single selection policy. We use the candidate selection policy used in the feature
ordering experiments (2TS 2LW 2RAND) for the same reasons outlined previously.

The overall objective of these runs is to reduce the mean solving time.

Initially the effect of grouping on solving time was examined. The combinatorial
auctions benchmark is an amalgamation of four different types of combinatorial auction
instances. By "grouped" we mean that instances are organised by class, and all instances
are kept together though within the group they may be ordered differently (Shuffled,
Easy-to-Hard, Hard-to-Easy).

Figure 5.9 shows a scatter plot of grouped vs. ungrouped instance solving times for
various orderings. All points occur above the identity line which means that ungrouped
performance improves upon that of grouped in every case. This result is somewhat

unexpected especially considering that the lexicographically-ordered instances (a type
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Figure 5.9: A scatter plot showing the total solving time for grouped vs. ungrouped in-
stances on the Combinatorial Auctions benchmark (Avg. over 10 ReACTR executions).
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Figure 5.10: Instances Solved vs. Solving Time for grouped instances of the Combinat-
orial Auctions benchmark (Avg. over 10 ReACTR executions).

of grouping) had the lowest solving time in the static experiments. One possible

explanation for this is that a type of over fitting occurs when the configurator only

encounters instances of a single type. Due to the fact that all instances are of a single type
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initially, specialised configurations may beat more generally applicable configurations
and cause them to be removed. This hypothesis is supported by the trajectory of the
grouped and shuffled instances in Figure 5.10. Here, the solving time for the initial
group looks promising with a steep incline in the plot but after changing groups at 200
instances the slope becomes flatter, denoting slower solving time. Student’s T-Test
shows that both the Ungrouped Hard-to-Easy and Shuffled orderings outperform their
Grouped counterparts (P=0.006 and P=0.054 respectively). The Easy-to-Hard results
were not found to be statistically better (though this could be due to the relatively small

number of runs).

The box plots in Figure 5.11 provide further evidence that grouping is not beneficial
during dynamic ReACTR runs. Interestingly, not only do all grouped runs perform
worse than their ungrouped counterparts but they also exhibit a much larger spread in

terms of solving time.
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Figure 5.11: The total solving time for various orderings of the Combinatorial Auctions
benchmark both grouped and ungrouped (Avg. over 10 ReACTR executions).

Figure 5.11 also shows that ordering instances by Easy-to-Hard results in the fastest
solving time regardless of grouping or not; Shuffled instances are in the middle in terms
of solving time, and Hard-to-Easy instances take the longest to solve. This agrees with
what would be expected intuitively. At the start the configurator has not had a chance to

find any improvement and so solving hard problems is detrimental to the overall solving
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Figure 5.12: Instances Solved vs. Solving Time for ungrouped instances of the Combin-
atorial Auctions benchmark (Avg. over 10 ReACTR executions).

time. Figures 5.10 and 5.12 show what is happening more clearly: Hard-to-Easy solves
fewer instances early on and, as such, the configurator learns less while also solving the
instances more slowly because the configurations have not improved yet. Easy-to-Hard
is able to solve the easy instances first which even the default configuration, which
is used due to warm starting, should solve relatively quickly. Because the instances
at the beginning of the Easy-to-Hard ordering are less challenging, ReACTR is also
able to solve more in a short amount of time. This allows the configurator to learn
better configurations much faster than if it were solving hard instances. By the time the
solver has reached the more difficult instances at the end of the Easy-to-Hard order of
instances it has learned multiple good configurations to make solving difficult instances

much quicker.

5.5 Chapter Summary

In this chapter we investigated the effect instance ordering and candidate selection
have on the real-time algorithm configurator ReACTR. We demonstrated that both the
selection procedure used to select configurations and the order which instances arrive in

have a significant impact on ReACTR’s performance.

Furthermore we showed that instance ordering and the selection procedure used are

linked. Some candidate selection procedures are better suited to certain instance
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orderings than others. Choosing the correct selection procedure can lead to marked

improvements in configurator performance.

The efficiency of ReACTR when configuring over streams various instance orderings
was also examined. Using two static datasets (where no configuration replacement
occurs) in different domains we showed that ordering based on nearly any feature value
was better than doing so at random. We also evaluated difficulty and group-based
orderings using full ReACTR configuration runs. Somewhat surprisingly in this case
grouping appeared to hamper the performance of the configurator. We believe this is
due to overfitting that occurs when the configurator encounters only one type of instance

for a long time and discards more generally applicable configurations from its pool.
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Chapter 6
Configuration Pool Maintenance

Summary. This chapter considers how the internal pool of configurations
in ReACTR is maintained. In order for the real-time algorithm configuration
system to function effectively it must evaluate configurations and remove
those that are subpar as quickly as possible. However, there is a tradeoff
to be made; quickly removing configurations comes with a greater risk of
inadvertently removing strong configurations. In this chapter we discuss
various removal strategies and metrics that aim to maximise efficiency while
minimising the risk of unwittingly removing good configurations. Every
configuration that is removed must be replaced by another. The quality of
the replacement configurations generated dictates the level of improvement
that the configurator will be able to achieve. For this reason the procedures
used to generate new configurations are of the utmost importance. We
show that a simple approach based on genetic algorithms can provide good
quality configurations while maintaining a small enough computational
overhead to be practically applicable to the real-time system. Additionally,
we demonstrate how model-based techniques can be leveraged to reduce

the configuration space for more efficient search.

6.1 Removal Strategies

The rate an online configuration system is able to evaluate new configurations is
predominantly determined by the removal strategy it adopts. As the configuration pool
is fixed in size, weak configurations must be removed in order to make room for new

candidate configurations. Increasing the number of candidates evaluated makes it more
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likely for the system to encounter superior configurations. For this reason the rate at
which subpar configurations are removed is directly linked to the configuration search

speed and the success of the real-time configuration system.

While rapidly removing inferior configurations allows the configuration search to pro-
gress quickly, it is important not to remove viable candidates or strong incumbents in
this haste. In an ideal situation we would be able to evaluate each configuration only
once and decide definitively whether it will solve future instances quickly or not. This
is the case when optimising parameters for deterministic functions such as artificial
optimision test functions (Ackley, Branin etc.). However, in a general algorithm config-
uration scenario this does not hold true; various instance encodings and stochastic solver
decisions produce a distribution of different runtimes for each instance. This is further
compounded when looking at multiple instances that can have different properties and
levels of difficulty. The number of quality configurations in a configuration space is
typically eclipsed by quantity of poor configurations. Therefore it is of the utmost
importance that when good configurations are discovered that they are not removed
prematurely. Any removal strategy adopted for a real-time configuration system must
be robust enough to evaluate configurations quickly with a high degree of accuracy.
Therefore, there is a careful balance to be struck between quickly removing under-
performing configurations without endangering those that contribute to the success of

the configurator.

In the rest of this section we look at a number of potential removal procedures from
simple to complex. Section 6.1.1 looks at simple numerical approaches while in section
6.1.2 we demonstrate how the ranking systems, used previously for candidate selection,

can be applied to rank and remove configurations from the candidate pool.

6.1.1 Simple Numerical Methods
6.1.1.1 Individual Win/Loss Ratio

One simple removal strategy is to look at the ratio of wins and losses. This can be done
at the individual configuration level or using a pairwise comparison against another
configuration. Considering the individual case, the ratio is calculated as the number
of configuration races that that configuration has finished fastest (assuming a runtime
minimisation objective, as with all our experiments) divided by the number of runs in
which that configuration has participated. This will give a number between 0 and 1
where 1 is a perfect win rate. This approach has the advantage that it is extremely fast

to compute and easy to interpret.
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There are, however, also a number of disadvantages to this method of removal. All
instances (races) are considered equal with no advantage given to more recent wins.
This may not necessarily be a bad thing: if all instances are known to be homogeneous
then recent wins are no more important than older wins. However, if the instances drift
over time, as is common in online stream processing scenarios, then weighting more

recent instances more heavily can be an advantage.

Setting this aside, the simple win ratio approach to removal also has another challenge in
that it must be manually tuned. Deciding at what cut-off point to remove a configuration
is not as simple as choosing the ratio because that ratio does not tell the whole story
of how much an instance has been tested. For example, a configuration that has won
one of the 2 races it has competed in and another configuration which has won 400 of
the 800 it has competed in both have win ratio of 0.5 however we can be much more
confident in our estimation of the latter’s ability because there is a much larger sample
of evidence. For this reason the win ratio removal strategy should be used with an
additional criterion that specifies the minimum number of runs used before removal.
Requiring a fixed minimum number of evaluations contradicts the earlier stated goal of

removing under-performing configurations as quickly as possible.

6.1.1.2 Pairwise Win/Loss Ratio

Another simple ratio based removal strategy is to compare all pairs of candidates in
the configuration pool that have competed against one another a sufficient number of
times. The inter-configuration win-loss ratio is then used to determine if one candidate
is dominating another. Adopting this pairwise approach rather than the individual
approach helps remove configurations that are superseded by others rather than relying

on the individual ranking.
The procedure for determining a weak paramaterisation p to be removed is as follows:
1. been beaten by another parameterisation, p’, at least m times and

2. the ratio of the number of times p’ has beaten p to the number of times p has

beaten p’ is greater or equal to 7.

The former criterion ensures that parameterisations are not removed without being given
ample opportunity to succeed. The latter criteria ensures that the domination of one
parameterisation over another is not just due to random chance. This is the removal
strategy that is used in the initial version of our real-time algorithm configuration system,
ReACT.

140



6. CONFIGURATION POOL MAINTENANCE 6.1 Removal Strategies

6.1.2 Ranking Systems

While conceptually simple, numerical methods provide a low overhead method for
identifying weak configurations. There is much more room for improvement by using
more involved methods. In Chapter 5 we saw that ranking methods originally designed
for ranking players in games can provide accurate estimations of a configuration’s
merit. Previously we used these techniques as part of the selection procedure in order to
identify promising candidates to compete. Conversely, such methods can also be used
to both identify subpar configurations and gauge the level of confidence our system
has in the rank assigned. By using this information as part of the removal mechanism
it is possible to more accurately identify which configurations can safely be removed.
As an added bonus, the system already uses these methods to compute the ranking for
selection purposes so there is no increase in computational resources required. Here we

focus on the two most promising ranking techniques: Glicko and TrueSkill.

6.1.2.1 Glicko

The qualities which Glicko possesses that make it suitable for selecting configurations
are also very useful when deciding which configurations to purge from the pool; namely
its quality ranking and confidence estimate (ratings deviation). However, it also faces
the same drawbacks: it was designed as an improvement to the Elo rating system and
as such only handles two player games. Pairwise comparisons allow the ranking of
multiple configurations but this is a workaround rather than using the system as designed.
Using this workaround also greatly increases the amount of computation required as all
pairwise combinations of configurations must be evaluated. In the interest of brevity we
will not repeat the details of the Glicko system, instead we refer the reader to section

5.1.3 for a full description of the Glicko and Glicko 2 ratings systems.

6.1.2.2 TrueSKkill

Similar to Glicko, TrueSkills ranking and confidence intervals provide a powerful
mechanism for removing weak configurations quickly and safely (high confidence in
low performance). TrueSkill has a number of additional benefits over Glicko as well. It
is designed with games featuring 2+ players in mind from the outset. Also, as it was
originally devised by Microsoft for ranking players in large multi-player online video

games the calculations are fast and able to scale massively.

Finally, and most importantly, TrueSkill outperforms Glicko. In Chapter 5 we outline
the results of an experiment where we implemented the ReACT framework using both

ranking systems and evaluated them against one another. This comparison showed us
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that TrueSkill’s system, which allows it to compare multiple configurations simultan-
eously, is superior for our purposes. This allows us to have confidence in selecting

TrueSkill as the ranking algorithm to select weak configurations for removal.

6.1.2.3 TrueSKkill Thresholds

With a powerful ranking method selected to identify configurations for removal, it is
important to correctly configure its thresholds in order to achieve the best performance.
At this juncture it is again important to reiterate the trade-off that must be made between
fast removal and confidence. We can quickly purge many configurations, however,
increasing the risk of inadvertently removing a good configuration. In order to avoid this
we examined three different methods of identifying the cut-off point at which to remove
configurations: fixed score removal, a quantile-based approach, and using TrueSkill’s

built in ability to calculate win probabilities.

Fixed Score Removal The most straightforward method of defining removal
thresholds is to specify fixed TrueSkill skill and confidence values. When the system is
confident that a configuration’s skill has dropped below this cut-off the configuration is
removed. The issue with this is that it requires the user to have some intuition about
appropriate values or conduct trials to identify appropriate values. Another challenge
with this approach is that the system does not adapt to changes in the score distribution

for example score inflation due to better configurations being added.

Example 6.1.1. For example assume the configuration pool consisted of the following
four configurations and their associated TrueSkill scores:

* A-p=243,0=06.9

* B-uy=278,0=32

C-pu=2950=18
e D-p=227,06=25

Given a fixed score removal threshold of 1 = 25.0, 0 = 5.0 we would select configura-
tion D for removal. Notice that although configuration A’s score is below the threshold,

we are not confident enough in this rating to remove it yet.

Quantile-Based Removal Alternatively we can specify the quantile cut-off and re-
move configurations that fall below this. This method dynamically adjusts the threshold
to account for changes in the scoreboard skill distribution. However, this method also

requires a confidence level to be specified which may be difficult to infer in advance.
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Example 6.1.2. This time we examine a quantile-based removal scheme which remove
configurations with a threshold of the middle quantile (median) and with confidence
o = 7.0. We use the same set of configurations and scores as the previous example. In

this case the removal threshold is mu = 26.05 so we remove configurations A and D.

Win-Probability Removal While the empirically derived skill and confidence values
used for candidate removal in ReACTR work well, TrueSkill offers us a more widely
applicable approach requiring little configuration. Using the ;o and o values provided by
TrueSkill it is possible to calculate the win probability between two configurations. As
TrueSkill skill is modelled as a normal distribution it is possible to calculate the overlap
between the distributions. Using the cumulative distribution function of this overlap we

are able to calculate the expected win probability of each configuration.

Example 6.1.3. Our final removal metric example looks at a win-probability removal
scenario. Again we use the same set of instances and scores as the previous examples
and fix our win-probability threshold at 0.2. We use TrueSkill’s built-in method to
calculate the win probability of the other configurations against the incumbent (C) with

the following results:
* A-0.29
* B-04
* D-0.15

Configuration D has only a 15% of winning against configuration C and so it will be

removed.

Evaluation To evaluate each of these methods we opt to use data from six common
datasets covering a range of solvers and optimisation domains. This data comes
from algorithm configuration runs of ACLib used to train surrogate models [HLF* 14,
ELH™18]. These are:

* lingeling_circuitfuzz
* clasp_queens

* cplex_rcw

e minisat_randomk3

* probsat_7sat90

* cplex_regions200
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Solving Time Distributions
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Figure 6.1: Runtime distribution of instances used.

As this data is collected from offline configuration runs many instances are only solved
by a small number of configurations. Online configuration runs may introduce a
configuration at any point while processing stream, as such we select a subset of 100
instances from each dataset which have been solved by a large number of configurations
to ensure a ready supply. Where there are still insufficient configurations for the run,
for example when using very aggressive removal thresholds, we supplement this supply
with dummy configurations which are recorded as timing out in every race in which they
participate. To avoid a glut of real configurations early on followed by many dummy
configurations we introduce real configurations at a rate proportional to their availability
and the number of instances left to be solved (rate = remaining real configs-+-remaining
instances). Figure 6.1 shows the distribution of total solving times for each configuration

(excluding dummy configurations).

Computing the outcome of these races inexpensively by processing existing run data
allows us to perform 100 runs of each threshold instantiation. For each run the instance
ordering remains identical but we alter the configuration starting pool selection, and the
order in which new configurations are supplied leading to completely distinct races. We
use similar ReACTR parameters to our other experiments, namely pool size 30, race
size 6 and epsilon-greedy selection with a single good configuration and 5 random; note

that this is slightly different from the 2 good and 4 random used in Chapter 3.
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We test multiple settings for each threshold method. In the case of fixed score we
evaluate y in the integer range 24 to 27 (inclusive) as well as high and low confidence
level for o, 3 and 6 respectively; the default TrueSkill starting value in ReACT is p1 = 25
and o = 8.33. For the quantile experiments we use the three quartiles (0.25, 0.5, 0.75),
and the same high and low confidence values as with fixed scores. Finally, we assess

values in the range 0.1 to 0.4 in increments of 0.1 for our win-probability thresholds.

Figure 6.2 shows the results of these experiments. The columns in Figure 6.2 show
different threshold methods: Fixed Score, Quantile, and Win Probability, respectively.
Each row displays a different dataset. The X-axis shows the number of configurations
evaluated while the Y-axis represents the total solving time in seconds. For clarity
of comparison the scale of the axes is fixed across all subfigures. Table 6.1 presents
summary statistics for total solving time in seconds (7ime) and number of configurations

processed (Configs) for these experiments.

Quantile-based removal methods appear to perform best overall in terms of solving time.
Settings that favour more aggressive removal, i.e. ()5 and (3, are most effective. It is
not as easy to select which confidence level to apply as this seems largely dependent on
the dataset. Looking at the configuration processing speed it is clear that quantile-based

methods tend to process fewer configurations than other removal methods.

Fixed score method’s solution times are competitive with quantile-based methods when
the correct parameters are used. Fixing © = 26 and o0 = 3 provides the best overall
solving performance across datasets. It is important to note here that these experiments
are run on a relatively small stream of 100 instances, on larger streams it is likely that

the score distribution will drift and cause fixed values to become suboptimal.

Finally, and somewhat surprisingly, removal using the calculated win-probability per-
forms considerably worst across all datasets. Removal methods based on the win
probability exhibit the two extremes in terms of processing speed also. A win probabil-
ity of 0.4 leads to an excess of removals. Given that 6 configurations are evaluated in
each race (with the incumbent being one of those) and there are 100 races, we would
expect an absolute maximum of 500 configuration evaluations which this exceeds. This
implies that even configuration that won a race were removed. On the other end of the
spectrum a win probability of 0.1 is too cautious and fails to evaluate any configurations

beyond the starting pool.
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Solving Time vs Removal Rate
Lingeling - Circuit Fuzz

Fixed Score Quantile Win Prob.
4000 - . . k
* x* L. * o
"
ok, A e bk .
j SARY 24 . { B3 p
3000 mtx,. ok . ¥
clasp - N Queens
4000 A 1 1 ’
-4'"
2000 A b b .
R SR ) Woene. « < 7
CLASP - RCW
u=24,0=3.0
.t u=24,0=6.0
6000 - T T o u=250=3.0
‘:' u=250=6.0
—~ 5000 A . § ] :i X H=26,0=3.0
v *, e "" o . . 4+ U=26,0=6.0
iZ 4000 A N ] 1 + u=27,0=6.0
> —— — — 01, 0-3.0
S MiniSat - randomK3 Q:0=6.0
8 T+ ] X Q0=30
T 2500 A . . s + Qao=60
° | X 05,0=30
2000 - 1 1 g + 0s0=60
. . P P(win) =0.1
1500 { Sl *l o _ 4t ol P(win) <0.2
m'-' ‘.‘ [ ‘ < Pwin)=0.3
T T T T T T T T T T T T T T T > P(win)<0.4

probSAT - 7sat90

2000 - . .

1000 A 1 1 ‘

- it e

CPLEX - Regions 200

600 - ; ; s

500 - 1 ]

400 - 1 ] .

300 { WieMRe gy v I T | o o e J
100 200 300 400 500 100 200 300 400 500 100 200 300 400 500

Configurations Seen
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6.2 Configuration Generation

While efficient evaluation and removal are extremely important for the success of the
ReACTR real-time algorithm configuration system, it is the configurations themselves
that are the ultimate goal and dictate how long instances will take to solve. An algorithm
configurator is only as good as the configurations it generates. Therefore the higher the

quality of the configurations generated, the better the performance of the configurator.

In an ideal configuration scenario every new configuration introduced would outperform
the previous incumbent resulting in constant improvement. Unfortunately this is not
a possibility without some form of oracle that can somehow divine the quality of a
configuration. If an oracle were available we could instantly jump to the globally best
configuration or best configuration per instance. In reality the process of generating
new instances is one of trial-and-error. However, this can be conducted in an intelligent
manner such that previous knowledge and experience can guide and direct the generation
procedure to areas where improvement is more likely to be realised. Another challenge
is to decide how much time to spend exploiting this previous knowledge and how much
time to spend exploring different, diverse, solutions. This balancing act, though it sounds
simple, is actually integral to the success of the generation procedure. Allocating an
excess of time to exploring solutions similar to previous good configurations may result
in getting trapped in local optima. On the other hand, too much time spent exploring
leads to a random sampling of points in the configuration space in the hopes of landing
in a promising region. This methodology fails to utilise our existing knowledge in order

to systematically and efficiently search in areas likely to result in improvement.

Finally, it is important to note that not all parameters are created equal. In many
cases a small handful of correctly set parameters can result in the lion’s share of the
improvement [HHL13, HHL14, FH16]. By identifying and focusing on this smaller
subset of parameters rather than the full spectrum it is possible to dramatically reduce the
configuration space. In the same way that adding parameter options to a configuration
causes an exponential increase in the size of the configuration space, removing (or not
considering) parameters allows for an exponential shrinking of the configuration space

resulting in a faster search procedure. This idea is explored in subsection 6.3.

6.2.1 Exploration and Exploitation

Previously, in Chapter 5, we encountered the exploration and exploitation dilemma
when deciding which configurations to race. Generating new configurations presents us

with a similar challenge: should we choose untested parameter values and combinations,
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Figure 6.3: Cumulative solving time for ReACTR with different exploitation ratio
settings.

or recombine existing promising parameter settings?

To explore this trade-off we allow for a variable to control the balance of exploration to
exploitation, or the percentage of configurations generated at random against those en-
gineered to perform well. Figure 6.3 shows the effect of varying the ratio of exploitation
on cumulative solving time for ReACTR configuring CPLEX [IBM14] for arbitrary
combinatorial auctions instances. This experiment uses the ReACTR default instan-
tiation of randomisation for exploration and crossover as the exploitation mechanism
(described in Sections 6.2.2 and 6.2.3 respectively). From this graph, we can see that, at
least in the relation of these two methodologies, it is better to actively exploit existing

knowledge, generating a greater proportion of configurations using crossover.

Despite this, ReACTR’s default setting weighs exploration and exploitation equally in
order to avoid stagnation in the configuration pool. It is also worth mentioning that
although fixing a single value in advance is conceptually simple, the optimal ratio is
almost certainly dynamic given that it relates to the diversity within the pool, the quality
of the current configurations, and the progress of the search. This presents an interesting

avenue for future research.
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Figure 6.4: Grid vs Random Search. Credit [BB12].

6.2.2 Randomisation

One of the most intuitive and inexpensive methods of generating configurations is to
sample uniformly at random from the configuration space. While this approach appears
overly simplistic at first, it has been shown to match and outperform traditional non-
heuristic based sampling approaches such as grid search [BB12]. Random sampling
works particularly well in high dimensional spaces, such as those typically encountered
in algorithm configuration, as these often have a low effective dimension [BB12, FH16].
A function, with a large number of parameters, is said to have low effective dimension if
it can be approximated by another function with a much smaller number of parameters.
Generating configurations in this manner is entirely explorative as the search is not

guided in any way.

Bergstra and Bengio [BB12] give the example in Figure 6.4 where some function f with
x and y inputs can be approximated by another function g with just z, more formally,
f(z,y) = g(x) 4+ h(y) = g(z). The figure demonstrates that due to the structure of grid
search that the important dimension, g(z) is effectively only sampled 3 times during 9
total evaluations, on the other hand, all evaluations on this space using random sampling

provide distinct results for g(x).

Due to its effectiveness and simplicity, this random sampling approach is what was
used exclusively to generate configurations in our initial instantiation of the ReACT
framework. When generating a new configuration, ReACT sampled a random setting
for each parameter from the allowed values while taking care to correctly resolve any
conditional parameters. By generating configurations in this way, ReACT is able to
explore the large multidimensional configuration spaces quickly. This approach allowed

ReACT to achieve strong results, improving over solver defaults and closing the gap
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between it and offline configurators. ReACTR also uses this approach to generate
configurations however these are interwoven with configurations generated by genetic
algorithms in order to balance exploration and exploitation (SMAC adopts a similar

strategy for the same reasons [HHL11]).

6.2.3 Genetic Algorithms

Genetic algorithms (GA) are a class of population-based optimisation algorithms which
take inspiration from Charles Darwin’s theory of natural selection. GAs are a subset of a
wider class of Evolutionary Algorithms where potential optimisation problem solutions
are modelled as chromosomes. Each chromosome is made up of multiple constituent
genes and is scored according to some fitness function. Over a number of generations the
population of chromosomes evolves by replacing some or all of the current population
with new offspring created by recombining existing chromosomes. Chromosomes with
a higher fitness value are more likely to participate in the recombination step and as
such their genes are more likely survive, so called "survival of the fittest" in Darwin’s
work [Dar59].

GAs are flexible in that they can be used to optimise a large variety of black box
optimisation problems. This flexibility comes from being agnostic to the shape of
the search space unlike some other optimisation methods which rely on gradients.
GAs have gained wide acceptance and there is an abundance of literature outlining
improvements and real world applications ranging from aerial design to modelling E.
Coli cultivation [dAP12, RF12]. In fact, as discussed previously, genetic algorithms
have even been used very successfully in the area of offline algorithm configura-
tion [AST09b, AMS™15]. Our approach, outlined in the following sections, is tailored
to the real-time configuration problem and as such differs from GGA(++) in some

important areas.

6.2.3.1 Problem Encoding

In order to make use genetic algorithms to find improving configurations we must first
define a problem encoding and fitness function. There are a number of methods for
encoding problems to be optimised by means of genetic algorithm [SP94]. Some of
the more commonly used methods include binary encoding, tree encoding, and value

encoding.

Binary encoding is traditionally the most common method and works well for binary
values e.g. include this edge in a graph or not. However, when each value can assume

multiple values binary encoding requires that these are converted to binary vectors. In
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Table 6.2: An illustration of a drawback in the binary encoding scheme.

Parameter Binary Fitness Propagation Binary Prop.
Name Encoding Score  Probability = Probability
A 00 4.4 0.169 0.232

B 01 4.8 0.185 0.122

C 10 12.6 0.485 0.422

D 11 4.2 0.162 0.224

many cases this encoding is not a natural representation of the problem and can lead to

a number of issues.

Example 6.2.1. Binary encoding may require additional checks to ensure the gene is a
valid value. For example, to encode a value with three options, binary encoding would
require a 2-bit vector but a 2-bit binary vector can encode upto four values. Therefore it

is necessary to apply additional logic in order to forbid this illegal choice.

Example 6.2.2. Another reason to opt against binary encoding is that it adds rela-
tionships between options where there are none. In this case that would result in one
parameter value being disproportionately reproduced because it shares a single bit
with a different strong parameter value. To give a concrete example, consider the four

following categorical parameters, A-D, with associated binary encoding and scores:

Assuming parameters are added to the pool using roulette wheel selection we would
expect the probability of each parameter value propagating to be that in "Propaga-
tion Probability" column of Table 6.2 [SP94]. However, though the binary encoded
parameters are added to the pool in the same ratio, the probability of the values propagat-
ing differs, column "Binary Prop. Probability" shows this. This occurs because the

probability of each bit in the binary encoding propagates independently of one another.

Tree Encoding is typically used in genetic programming [Kum13] in order to evolve
programs where a certain structure must be maintained. GGA uses a tree encoding
in order to link related conditional parameters to one another [AST09b]. There is no
technical reason that this form of encoding could not be implemented in the ReACT

framework.

However, in our ReACTR work we instead opt to use a direct value encoding [Kum13].
With this form of encoding each variable is selected uniformly at random from the set
of of possible valid values. For categorical values this is as simple as selecting from a
list of supplied values while both integer and continuous values are selected uniformly

at random from within a range defined by an upper and lower bound.
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This method of encoding has the advantage of being easy to understand and makes no
assumptions as to the structure of the problem. Any conditional parameters (parameters
which rely on another parameter(s) for activation) are generated as normal but resolved

(removed) by way of a post-processing step.

6.2.4 Population

Typically GAs will adopt one of two approaches for maintaining the population: steady
state (incremental) GA, and generational GA. The former replaces some fraction of
the population in every generation while the later replaces the entire population every
generation. ReACTR uses a standard GA problem representation where the configur-
ation pool represents the population with each configuration in the pool representing
a different individual or chromosome. Each parameter in a configuration is a single
gene. Crossover and mutation, covered more extensively in the next section, are largely

handled in the same way as traditional GAs.

6.2.5 Tournaments and Fitness Function

As runs of the optimisation algorithms that ReACTR is designed to configure are
typically expensive, it is imperative that we keep the number of function evaluations
to a minimum. We must also gather enough information in order to effectively rank
and identify promising configurations. These conflicting requirements mean we must
deviate slightly from traditional GA tournaments which typically run all or most of the
population at each generation. GGA avoids this problem by dividing its population into

two distinct groups, one competitive and one non-competitive.

We instead opt for a different approach by using a global ranking and leader board. The
tournaments themselves consist of races with a small number of configurations, the
results of which are then aggregated into the overall leader board using a ranking system.
Typically, the results of these races are heavily censored due to the early termination of
all other runs once a solution has been determined. Given this limitation, and the fact
the fact that the algorithms being configured are typically not deterministic [HO15], we

require a robust ranking system to properly determine the merit of each configuration.

In ReACTR, we opt to use the TrueSkill ranking system to compute the global leader
board. As outlined previously, TrueSkill has a number of properties that make it ideal

for this purpose, namely:

» TrueSkill is a Bayesian skill ranking system so naturally handle uncertainty in its
ratings [HMGO6].
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* The system converges to a stable ranking far quicker than other rating systems.
The paper introducing TrueSkill claims "TrueSkill comes close to the information

theoretic limit of nlog(n) bits to encode a ranking of n players."

 TrueSkill is used to rank hundreds of thousands of players in online games so it

is also very computationally efficient.

These attributes allow us to establish an accurate global ranking of the configurations

quickly using only the censored tournament ranking data.

While this approach achieves our real-time configuration goals, that is not to say the
approach is without its drawbacks, primary amongst which is ReACTR’s inability to
account for problem difficulty. Typically offline algorithms aim to optimise a penalised
average runtime (PAR) score, usually PAR10 (where timeouts count as as ten times the
cutoff value). In an offline configuration scenario, the same problem instance is solved
multiple times by different configurations. PAR10 serves the purpose of allowing direct
comparison between runtime distributions while also penalising configurations which
fail to solve instance within the budget. Without such a penalisation, configurations that
find a solution near the end of the allotted time would be considered approximately equal
to configurations which timeout e.g. 295s SOLVE =~ 300s TIMEOUT. Distinguishing
between these scenarios is particularly important for configurators which adopt a model-
based approach to steer the search [HHL11, AMS™15].

Recent work has highlighted flaws with the penalised average runtime methodology,
namely that the magnitude of the penalty factor produces a bias in favour of reducing
the failure rate [BT18, BKT20]. It instead suggests that the problem is more naturally
framed as a multi-objective problem and that it is beneficial to use the commonly used
multi-objective performance metric hypervolume (in order to balance both runtime and

failure reduction).

In our ReACTR work, we focus solely on the former objective, specifically reducing
the median solving time. This is not simply a design choice, but a core property of the
way that the system works. ReACTR, by design, solves every problem instance once
and once only. This methodology, rooted in the practical application of the configurator,
means that a direct comparison between configurations on the same problem instance is
not possible. Instead ReACTR uses result ranking and so does not require that failed
runs be penalised, only that the relevant ranking is correct. The solving time is not
considered, nor could it be; when an instance is solved (or fails to be solved) only once
we cannot infer whether the solving time is a result of instance difficulty, configuration

quality, or some combination of both.
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Despite this limitation we show that using TrueSkill as a fitness function, by providing
an aggregate score based on the rankings, correlates well with the ground truth solving
times. Figures 6.5a and 6.5b show the cumulative average solving time and TrueSkill
score, respectively, for twenty configurations selected from previous ReACTR configur-
ation runs on combinatorial auctions solved using CPLEX. These configurations were
run to completion and the TrueSkill score was computed by randomly sampling six

configurations for each instance and simulating a race.

While ReACTR’s design precludes us from allowing multiple configurations to finish,
it is still possible to alter the configurator parameters slightly in order to make the
ranking more robust without out incurring much overhead. Specifically, we explore two
possible choices: changing minimum solving time needed before a race is considered
eligible for ranking, and allowing a short slack period after a solution is found during
which configurations are treated as equally ranked. The former, shown in Figure 6.6a, is
designed to reduce the influence of easy instances on the overall configuration ranking
(though we risk inadvertently ignoring fast solutions due to good configurations). The
idea behind the latter, displayed in Figure 6.6b, is that configurations that perform
approximately equally will be ranked as such (however this comes at the cost of a
marginal increase in runtime). Comparing TrueSkill ranking using these adjustments to
the ground truth ranking by cumulative average solving time in Figure 6.5a we see that
correlation is largely unaffected.

6.2.5.1 Parent Selection

Despite the somewhat unconventional population model and bi-level fitness function,
the end result is the same, a complete ranking of the population. This allows us to
select the fittest parents to reproduce and recombine to produce potentially even fitter
offspring. There are a number of techniques for doing this with some of the more popular
being roulette-wheel selection, stochastic universal sampling, truncated selection and
tournament selection. There are also numerous other selection methods and adaptations
of these methods but in the interest of brevity we will focus our attention only on those

which have successfully been used for algorithm configuration.

Tournament selection is a popular method for parent selection, in fact a variant of this is
used in the GA based algorithm configurators GGA and GGA++. This approach chooses
subgroups of individuals then selects the fittest individuals from within these subgroups
as the parents. Tournament selection is not currently implemented in the ReACTR
configurator, though there is no technical reason that it can not be implemented as part
of the framework in the future.
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(b) Trueskill ranking of configurations from figure 6.5a (no minimum solving time, no solution
slack time).

Figure 6.5: The cumulative average solving time compared to TrueSkill score.
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Figure 6.6: TrueSkill score under various adjustments of ranking procedure.
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Figure 6.7: Roulette wheel vs. Top n parent selection.

Turning our attention to the selection methods that ReACTR offers, Truncated selection
selects parents for breeding from only a percentage of the fittest chromosomes. This
method ensures that the GA procedure breeds promising individuals but can also result
in a lack diversity in the pool.

Roulette-wheel selection and stochastic universal sampling behave similarly in that
both scale an individuals probability of selection relative to its fitness function. To
use the roulette wheel analogy, the size of the wheel segments are proportional to the
individuals fitness and so it is more likely the ball will land on fitter individuals. Where
these methods differ is that roulette-wheel selection performs multiple independent
spins while stochastic universal sampling performs a single spin but selects multiple
points.

While our original ReACTR work uses truncated selection, specifically the top five
configurations in the leaderboard, this approach risks causing the pool to stagnate due
to lack of diversity. The boxplot in figure 6.7 shows the distribution of solving times
for six runs each of truncated selection (top 5 by TrueSkill score) and roulette wheel

selection. The experiment is run using Lingeling on the Circuit Fuzz dataset outlined in
Section 4.3.4.2.

The first thing we notice is the difference in variance between the two parent selection
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methods. The Top-N runtimes are relatively homogeneous with a lower median solving
time whereas using roulette wheel selection leads to more variance in running time.
This result is in keeping with our understanding and intuition of these selection methods.
Roulette wheel selection will explore more diverse, potentially slower, configurations
which can impact the solving time. However, the trade-off is the ability to find new and
potentially far better configurations resulting in the superior performance for a number
of runs. Top N on the other hand will actively exploit good configurations found early

on leading to more stable solving times at the expense of stagnation.

6.2.6 Crossover

Crossover is a genetic operator that produces children by combining genes from multiple
parents. There are a plethora of different options to choose from when performing
crossover. To start with, one must decide how many parents to select for breeding
purposes. Typically two parents are selected but some methods also use three or more
parents. After deciding how many parents to use the next question is to select the
crossover method. The three most common choices for this are uniform, single-point,
and multi-point crossover. Uniform crossover treats each gene in the chromosome
individually and selects the child value with a certain probability from either parent.
Single-point crossover on the other hand selects a single point in the chromosome
and passes on all genes prior to that point from one parent and everything after from
the other parent. Multi-point crossover is just a generalisation of this approach that
selects multiple crossover points instead of one. There are also more exotic mechanisms
which rely or preserve certain properties of the problem but in the interest of brevity
we will avoid covering these. In ReACTR we use uniform crossover as this makes no
assumptions about configuration structure and allows for a larger variety of offspring.
With that said, there is no technical reason that single or multi-point crossover can not
be used within the ReACT framework.

6.2.7 Mutation

In order to introduce more diversity GAs often randomly mutate a small portion of
the chromosomes genes. This is done by allowing each child configuration to select,
with some small probability, another value from its valid values instead of adopting
one of its parent’s values. These values are selected uniformly at random similar to the
randomisation procedure described in section 6.2.2. In ReACTR the default probability

of mutation is set at 0.05.
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6.3 Model-Based Configuration Space Reduction

Algorithm configurators typically fall into two categories: model-based and stochastic
local search (as well as a number of hybrid approaches). While the bulk of our config-
uration generation work, thus far, has focused on evolutionary algorithms (a type of
stochastic local search), we now turn our attention to model-based approaches. We do
this in order to demonstrate the flexibility of the ReACT framework, offer discussion
around what may be possible, and to lay the groundwork for potential avenues of future

research.

6.3.1 Motivation

Specifically, we investigate supervised learning approaches, both regression and classi-
fication, with the aim of increasing the efficiency of ReACTR’s search procedure. We
approach in two ways: by training models to predict the quality of individual configura-
tions, and by using the trained model’s estimation of feature importance to reduce the

configuration space.

The former has been well studied in the context of offline algorithm configura-
tion [HHL11, AMS*15]. Here, we investigate if similar approaches can be applied in

an online context where the trade-off between training and solving time is more evident.

Often the most challenging aspect of algorithm configuration is the sheer size of the
configuration space to be sampled and explored. Advanced solvers such as CPLEX
and Lingeling expose a large number of parameters to the end user. While this is
an advantage in that it makes the solvers highly flexible and tunable, this flexibility
comes with the cost of a greatly increased configuration space. This configuration
space grows exponentially with the number of parameters options exposed. Lingeling
offers 241 tunable parameters leading to ~1.1 x 103 potential configurations while
CPLEX exposes 74 parameters and has a configuration space size of ~2.3 x 10%6. In
fact, the calculations presented here are optimistic estimates in that they are based on a
discretised version of the configuration space offered by ACLIib, in reality the space is
infinite due to continuous parameters. With search spaces so vast that it is impossible
to sample any more than a tiny fraction in any sort of reasonable time. Luckily for us,
just as the addition of parameters leads to a combinatorial explosion in options, their

removal results in an exponential reduction.

There is mounting evidence that in many cases only a handful of parameters are
responsible for the bulk of the solver performance improvement [HHL13, HHL14,

FH16]. Despite this, the majority work that we are aware of in this area focuses
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on post hoc analysis to identify important parameters or tools to visualise parameter
impact [FLH15, BMLHI18]. These require that a configuration run has already taken
place in order to collect the necessary data. This configuration data is then used to
identify promising parameters using forward selection, functional ANOVA, ablation
analysis, or some other technique. These approaches are typically very costly both in
terms of the initial data acquisition and additional runs required for analysis. Techniques
such as surrogate models have been shown to dramatically improve performance but

still require time to collect training data and to train the surrogate model [BLE"17].

We are aware of only one configurator, Golden Parameter Search (GPS), that actively
seeks to exploit this property as part of the configuration procedure [PH20]. GPS adopts
a brute force approach by configuring each parameter individually in parallel. GPS
employes a bandit approach to determine the order in which to process parameters with
those likely to result in improvement getting priority. This method builds on previous
configuration landscape work and assumes that parameters are largely independent

which allows it to dramatically improve the configuration procedure [PH18].

Here, we propose an alternative method for shrinking the configuration space using
off-the-shelf feature selection techniques commonly employed as part of the machine
learning pipeline in order to identify parameters which have the largest impact on the

configuration performance.

6.3.2 Regression

For our experiments we use random forest regression as our regression model [BreO1].
These models are robust to noise and feature scale while also providing estimates for
feature importance. Variants of random forest regression models are used in all current
state of the art model-based algorithm configurators [AMS™ 15, HHL11]. Additionally,
random forests have demonstrated considerable success in both surrogate optimisa-
tion of hyperparameters, and algorithm portfolios (both closely related to algorithm
configuration) [EHHL15, XHHLB12, MSSS13b].

Random forests train multiple decision trees on random subsamples of the training data
and features. While individual trees tend to overfit, aggregating the output reduces the
variance. Aggregation uses the mean of the trees predictions in the case of regression,

and majority vote for classification problems.

Typically configurators train regression models in order to predict the PAR10 score.
This model is then used to identify areas where the probability of finding improvement

is highest, or to create, assess and filter a list of potential candidate configurations. As
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discussed previously, ReACT because of its design is unable to use the PAR metric
for direct comparison. Instead, in our regression experiments we aim to predict the

TrueSkill score assigned to each configuration.

6.3.3 C(lassification

While the majority of algorithm configuration work to date has focused on empirical
performance models using regression, classification has been largely ignored. This
is despite the widespread use and success of classification techniques in algorithm
selection [MSSS13a, HKMO14b, AST18].

In this work we explore how we can use a classifier to distinguish good configurations
from bad in order to reduce the search space to explore by ReACT. We opt to use a
support vector machine (SVM) utilising a linear kernel for our [CV95]. Support Vector
Machines are a widely used machine learning technique which are effective in high
dimensional spaces such as those encountered in algorithm configuration. They attempt
to find a hyperplane which maximises the separation between data points of different

classes.

Classification techniques are also particularly well-suited to our goal of configuration
space reduction in that we wish to identify all features (parameters) that are contributors
to a certain class (high performance configurations). For this reason we train our
classifier to distinguish between configurations which have won a race previously and
those that have not. Superficially this may seem like an ill-defined class target, as race
winners are dependent on the competition they encounter, rather than any inherent
trait. However, as ReACT always includes the incumbent configuration, we know
that any configuration that wins its race is likely to have set one or more parameters
which provide a benefit to the configuration procedure (at least on the problem instance
solved.) Our ultimate goal is not classification, but to determine which parameters are
strong indicators of success so that we can focus our search efforts on these. We achieve
this goal by probing the trained model using feature selection techniques (outlined in
detail below) to identify parameters which are the strongest predictors of success or

failure.

6.3.4 Feature Selection

Feature selection is a widely used technique in machine learning to choose the features
which provide the best predictive power for a model. In a machine learning context

this is desirable in order to speed up training, reduce overfitting, and focus on features
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which are most strongly linked to the target class. Here, we exploit this final point to
identify parameters correlated with configuration performance. By focusing on a subset

of important parameters we can reduce the size of the configuration space dramatically.

Feature selection techniques can broadly be divided into two categories: minimal-
optimal and all-relevant [NPBTO7]. The former aims to reduce the feature count by
eliminating irrelevant and redundant features while maintaining an acceptable predictive
performance. The latter attempts to identify all features which are relevant to the
prediction of the target class, redundant features are not removed. All-relevant feature
selection has been shown to be much harder than minimal-optimal. For the configuration
space reduction scenario that we propose all-relevant selection is more suitable but has
been proven to be a much harder problem [NPBTO7]. Because of this we investigate
both types using an all-relevant technique, Boruta, in offline tests to demonstrate the
viability of this approach and using Random Forests built-in variable importance metric

in our online experiments where speed is an important consideration.

Boruta is a widely used all-relevant feature selection method [KR*10]. It identifies
relevant features by adding shuffled copies of each variable, called shadow variables, to
the training set. A random forest classifier is then trained on all of the variables (real
and shadow). This model provides Z scores for all features with the maximum Z score
amongst the shadow variables set as a threshold. Every feature which scores above
this threshold is considered a hit. A statistical test is used to determine the importance
of the undecided features. Those that score significantly higher than the threshold are
considered important while those which are significantly lower are labelled unimportant.
This procedure works in an iterative manner with different shadow variables generated
at each iteration until all features have been assigned a label. For these experiments we

use the widely used BorutaPy Python implementation of this algorithm.

For online scenarios we use Scikit learn’s "SelectFromModel" function which in turn
takes its feature importances from the random forest’s built in calculation of import-
ance [PVG™11]. This is a minimal-optimal feature reduction technique that we chose
primarily for its speed. In our experiments we use the Scikit’s default Gini Impurity as
the metric to split decision trees on [BFOS84]. This score is then weighted by number
of samples routed to that node (an estimate of the probability of reaching the node) and
then averaged across all trees in the random forest. As the Gini Impurity is calculated
as part of constructing the random forest the additional work required to compute the

feature importances is low.
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6.3.5 Experimental Setup

To test our hypothesis that feature selection can be used to reduce the configuration
space and improve configurator performance we devise two experiments: one offline
and one online. For the offline experiment we use previously collected algorithm
configuration ReACTR run data to train our model and perform feature selection prior
to running ReACTR online on the reduced configuration space. The aim here is not to
develop an approach which can be integrated into ReACTR, rather to evaluate if feature
selection has any merit as a method for computing parameter importance, disregarding
computational cost. The online experiments then extends this idea in such a way as
to be of practical benefit to the ReACT configuration procedure. Here the reduction
technique is integrated into the configuration loop and used during the generation of

new candidate configurations.

For these experiments we revisit two previous datasets from different domains: we use
the shuffled mixture of combinatorial auctions instances solved using CPLEX 12.6 as
described in Section 5.2.2 for our offline experiments and online regression experiments.
Meanwhile we adopt the Circuit Fuzz dataset solved using Lingeling (as described
in Section 4.3.4) to conduct both our online regression and classification trials. All
experiments are run using the same hardware and methodology as previously described,
namely servers with 2.66Ghz Intel Xeon E5430 processors with 12GB RAM.

The feature vectors are created only from the configuration parameters and do not in-
clude any instance features (which are typically used in other model-based approaches).
This choice is in keeping with the ReACT design philosophy. The mapping from para-
meter value to feature value is direct for numerical parameters, while label encoding is
applied to categorical parameters. Missing values are imputed with a unique constant
value to indicate the absence of a value. Each feature is normalised using standard
scaling so that the magnitude of their impact is on the same scale for models where this

is relevant.

6.3.6 Offline Experiments

Our offline training data is generated from the results of previous ReACTR configuration
runs and uses the TrueSkill score as the target variable. We then use Boruta to identify
all features which are relevant to the prediction of this score. Boruta is a wrapper
method and so requires that a core model be provided, for this we opt to use random

forest regression. All other Boruta parameters are left unchanged from the defaults.

Boruta identifies nine parameters as being relevant to the prediction of the TrueSkill

164



6. CONFIGURATION POOL MAINTENANCE 6.3 Model-Based Configuration Space Reduction

score. They are described in the CPLEX documentation as follows [IBM14]:
* mip limits cutsfactor - Limits the number of cuts that can be added.

* mip strategy backtrack - Controls how often backtracking is done during the

branching process.

* mip strategy rinsheur - Decides how often to apply the relaxation induced neigh-
bourhood search (RINS) heuristic.

* mip strategy subalgorithm - Decides which continuous optimizer will be used to

solve the subproblems in a MIP, after the initial relaxation.

» preprocessing aggregator - Invokes the aggregator to use substitution where

possible to reduce the number of rows and columns before the problem is solved.

* preprocessing symmetry - Decides whether symmetry breaking reductions will be

automatically executed, during the preprocessing phase, in a MIP or LP model.

» simplex dgradient - Decides the type of pricing applied in the dual simplex
algorithm.

 simplex pgradient - Sets the primal simplex pricing algorithm.

» simplex refactor - Sets the number of iterations between refactoring of the basis

matrix.

Encouragingly, two of the parameters found to be important in this study, mip limits
cutsfactor and mip strategy subalgorithm, are also identified as the most important
parameters in previous work on parameter importance using forward selection on the
CPLEX BIGMIX dataset [HHL13]. Although this method of assessing parameter
importance is still too computationally taxing to be of practical use in an online config-
uration scenario it is still considerably faster than the majority of alternative methods
of identifying parameter importance, with a typical runtime in the order of minutes or

hours.

We verify the effectiveness of reducing the configuration space in this manner by
configuring CPLEX using both the full configuration space and the reduced config-
uration space of nine parameters (all other parameter values were fixed at the solver
defaults). This reduces the size configuration space from ~2.3 x 10*% configurations to
just ~9.5 x 10° configurations. The boxplots in Figure 6.8 shows the distribution of
total solving times for ten runs of each configuration space. As with previous boxplots
the box covers the first to third quartiles with the median denoted by the central line.

The whiskers extend beyond the first and third quartiles by 1.5 x the interquartile range.
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Configuring CPLEX with ReACTR
Combinatorial Auctions Mix
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Figure 6.8: CPLEX - Combinatorial Auction Mix: Full vs. Reduced Configuration
Space.

We can clearly see that the configuration using reduced configuration space outperforms
that with the full configuration space. We ran a one-sided Wilcoxon signed-rank test to
confirm that median of the differences can be assumed negative (reduced < full) which

gives a confidence level of P<0.01.

6.3.7 Online Experiments

Having demonstrated the effectiveness of configuration space reduction in offline
experiments we now examine whether this technique can be of benefit when adapted to
work online within ReACT framework. We do this by replacing the expensive Boruta
feature selection with SelectFromModel which uses the feature importance computed
while building the model. The number of training samples is also limited to a relatively
small number examples (in these experiments one hundred) so that the model can be

trained quickly. The generation procedure works as follows:

* A highly ranked configuration is selected from the leader-board and copied
(here we use roulette wheel selection). This becomes the template for the new

configuration.

 SelectFromModel is used to identify the important parameters.
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Configuring CPLEX with ReACTR
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Figure 6.9: CPLEX - Combinatorial Auction Mix: Online Configuration Space Reduc-
tion

* Each of the important parameters is then randomly assigned a value from its

allowed values.

Figure 6.9 shows the results of the previously conducted offline experiments adapted
to the online context. The dataset is the same and a random forest regressor is still
tasked with predicting the TrueSkill score. The training set is limited to the results
encountered during this training run. Again we can see that reducing the configuration
space, this time in a dynamic fashion, results in a large, statistically significant (P <

0.01), improvement in performance.

We now examine the same technique applied to a different dataset, circuit fuzzing SAT
instances solved using Lingeling. Given Lingeling’s configuration space is ~1.1 x 10136
this is a challenging task but also the perfect showcase for these reduction techniques.
We also take the opportunity to use this test-bed to explore the effectiveness of classi-
fication as a reduction technique. Figure 6.10 shows the results of these experiments.
TrueSkill score prediction using random forest regressors is again our regression object-
ive while for classification we aim to predict the label "has_won" using a linear support

vector classifier.

Reducing the configuration space via regression clearly performs the best, however

both techniques perform significantly better than crossover. We confirm this be running
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Configuring Lingeling with ReACTR
Circuit Fuzzing

28000 A

27000 A

% 26000 A

25000 A

24000 A

23000 A

Total Solving Time (s

22000 A

21000 A ‘

20000 A

Figure 6.10: Lingeling - Circuit Fuzz: Online Configuration space reduction.

a one-sided Wilcoxon signed-rank test. This shows the regression result to be highly
statistically significant (P<<0.001) while the classification result is significant (P<0.05).

6.3.8 Running Time vs. Solution Time Trade-off

It is worth noting that the previous results show only the solver solving time. They do
not take into account the time required to train a model and generate the configurations.
While running the experiment in Figure 6.10 we tracked the impact of this generation
method. As expected the linear support vector classifier method is lightweight, increas-
ing the overall solving time by only 342 (SD=27) seconds on average. The random

forest regression model increased the total running time by 755 (SD=43).

Including the overhead of the generation for each run shifts the total solving time
distributions. Rerunning the Wilcoxon signed-rank test we find that the classification
reduction method is no longer statistically distinguishable from the default crossover
strategy. The regression result, though including a more costly training procedure, is
still highly statistically significant (P<0.001). This result illustrates a key point which
resonates throughout this thesis; in real-time algorithm configuration must carefully

balance the configuration expense against the solving time benefit.

Though all experiments in this thesis have been run on a fixed set of instances, it is
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Figure 6.11: Lingeling - Circuit Fuzz: Configuration generation times.

important to remember that the goal is to configure over a potentially infinite stream of
instances. As such, objectives must be considered over a time horizon, e.g. in the next

200 instances the investment in configuration will pay off.

Another point worth noting in the context of modelling over streams is that the model
training time can increase as the training set increases. Figure 6.11 shows the time taken
to train and generate the configurations in Figure 6.10. We can see for both models
that training time increases steadily with the number of training instances. This can be
avoided using intelligent engineering like subsampling. Efficient new methods such as
Mondrian Forests which allow online model updates, or Boruta-like feature reduction
techniques using Random Ferns to reduce all-relevant feature selection time by orders
of magnitude [LRT14, Kurl7] also show great promise. The work presented here is

only a preliminary exploration of an idea with many potential avenues for investigation.

6.4 Chapter Summary

This chapter looked at a number of metrics available to us which allow us to assess and
remove under-performing configurations from the pool. We discuss the pros and cons
of each of these approaches, ultimately demonstrating that the robust ranking system

TrueSkill is best suited to our needs. We determined how the thresholds chosen for
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TrueSkill’s skill and confidence score impact the removal and overall success of the

configuration procedure.

This chapter also examined how to generate good candidate configurations with a
minimum of computational overhead. We outline a novel genetic algorithm procedure,
designed to reduce the number of evaluations required by providing an aggregated
ranking of competitions across multiple generations. This aggregate ranking then allows
us to recombine configurations shown to be high performers using a recombination
procedure. We also showed that feature selection techniques from the machine learning
literature can be used to reduce the configuration space significantly; in doing so we
improve the configuration procedure by focusing the search on parameters with the

greatest performance impact.
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Chapter 7
Conclusions and Future Work

Summary. We finish by outlining the conclusions of the work presented
and reiterating our contributions to the body of knowledge. We also de-
scribe potential avenues of future work which are interesting and worthy of

further investigation.

7.1 Conclusions

We conclude this thesis by outlining a number of novel ideas and contributions intro-

duced within. In this thesis:

* We introduced and motivated the need to study a variant of the algorithm config-
uration problem, the real-time algorithm configuration problem. This variant of
the problem asks how much configuration can be achieved without impacting the

wallclock time needed to return a solution to the end-user?

* We outlined our proposed framework for solving this problem, the ReACT frame-
work. This framework exploits aggregate ranking, parallel computation and
aggressive runtime capping to return solutions as quickly as possible to the user
while still inferring enough information to provide a ranking of the candidate
configurations. This ranking can then be used to direct the search and achieve

constant improvement over a stream of instances.

* We provided two concrete instantiations of the framework and used these to
empirically demonstrate that the ReACT framework can achieve performance on
a par with, or even exceeding that of current state-of-the-art offline configurators

across a variety of solvers and scenarios in the combinatorial optimisation domain.
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* We investigated and provided strong experimental evidence and discussion for
each of the design choices made, namely the ranking, selection, removal, and

generation component instantiations.

* We analysed whether, and to what extent, the ordering of incoming problem
instances impacts the performance of our configurator. We also demonstrate that
the choice of candidate selection procedure is related to the properties of the

instance ordering.

* We exploit the fact that in many configuration scenarios correctly configuring
only a handful of parameters is able to achieve the lion’s share of performance
improvement. We validate this by training models to predict configuration quality
then probing these models using off-the-shelf machine learning feature selection
techniques to reduce the configuration space to only the parameters which are the

greatest indicators of quality.
The thesis defended in this dissertation was:

The performance of combinatorial solvers can be improved as a stream of instances is
being processed without prior information or training. This is possible due to real-time
algorithm configuration using parallel evaluation combined with a robust ranking

system.

We say that the overall conclusion is that it has been defended. We have outlined a frame-
work for improving the configuration of a combinatorial solver while solving a stream of
instance thus improving the solver’s performance. Additionally we have demonstrated
two concrete instantiations of the framework, discussed the methods employed, as
well as factors that impact on their performance, and empirically demonstrated their

effectiveness.

7.2 Future Work

7.2.1 Configuring the Configurator

In this thesis we have extolled the virtues of algorithm configuration, therefore we
would be remiss not to include our own algorithm amongst those that would benefit
from automatic algorithm configuration. In this work we have attempted to provide
empirical justification for the values adopted by all important components. However, as
we have adhered to the Programming by Optimization paradigm, many configuration

choices have been implemented and exposed to the user [Hool2a]. Given the size
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of the configuration space and the expense of even a single configuration run it is
infeasible to conduct a second-order configuration by traditional means. Identifying
and applying efficient methods for optimising configurator parameters is an interesting
topic of research that we hope to pursue in the future. Two relatively recent methods

appearing promising for this:

Surrogate Models Recent work has shown that surrogate models can accurately
predict a configuration’s performance on an instance in a fraction of the time that it
would take to actually solve the instance [EHHL15, ELH*18]. This is achieved by
training a model on the results of past configuration runs. Replacing the expensive
evaluations performed in the inner loop of the configuration process with low cost
surrogate model predictions would bring the cost of configuration to a level where
configuring the configurator becomes achievable. Using surrogate models to tune the
parameters of ReACTR for maximum general (or even per-set) performance is an area

of investigation that is likely to prove fruitful.

Dynamic Configuration We have set fixed parameter values to control various as-
pects of both concrete instantiations of the ReACT framework. While these static values
have been shown to perform well overall, in many cases a value which adapts to the cur-
rent state of the configuration search would achieve superior performance. The idea of
adapting parameters on-the-fly has been studied in the areas of Reactive Search, Evolu-
tionary Algorithms, and Dynamic Algorithm Configuration [BBO7, PPASN19, BBE120].
Applying some of these ideas to dynamically configure components of the ReACT
framework during search would be an interesting to investigate, possibly in combination

with the surrogate models outlined above.

7.2.2 Alternative Framework Instantiations and Improvements

The ReACT framework is designed to be modular and extensible. In this work we have
presented two possible instantiations of the framework, ReACT and ReACTR, however
there are a multitude of potential options for every component of the framework.
We are aware of at least one work that has proposed an alternative instantiation of
the framework that foregoes the ranking component in favour of using a contextual
preselection bandit approach for choosing configurations [MWB™20]. Modelling the
problem as a preselection bandit problem allows for better reasoning about the heavily
censored run data, while adopting the contextual version of this approach enables
configuration to occur on a per-instance basis. This work displays some favourable

results in comparison to our ReACTR instantiation however the overhead for the method
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used is larger.

We hope that researchers will continue to extend and improve on the foundations laid
by this framework. In particular, it would be interesting to port ideas which have been
shown to be successful in offline configuration scenarios and adapt them to the real-
time configuration context. Another component ripe for improvement is the ranking
system adopted by ReACTR. In this thesis we have shown that TrueSkill works well
and provides strong results, nevertheless it is still an off-the-shelf ranking system
designed for finding balanced games rather than algorithm configuration. A bespoke
solution tailored to this problem or a learning to rank approach offer the potential for

improvement here.

7.2.3 Exploiting Stochastic Instance Arrivals

Throughout this thesis we have assumed a constant stream of incoming problem in-
stances which we solve sequentially. Though this assumption holds true in many
practical scenarios, it is also common to encounter streams where problem instances
arrive in at random intervals. ReACT can handle these situations, however in the
instantiations that we have presented it does not leverage the properties of the stream
distribution to achieve the best performance. We consider improvements for two scen-
arios: one where a glut of instances has arrived in a short period of time and caused a
backlog, and another where there is a drought of instances such that the configurator is
left idle.

Instance Backlog When faced with a backlog of problem instances there are a number
of strategies that we can adopt. If the backlog is very large it may be preferable to
forgo configuration (or reduce the information gained) by distributing the instances
amongst the available processors in order to solve the instances quickly, in keeping
with the real-time algorithm configuration paradigm. The scale of the backlog could
also dictate the exploration and exploitation trade-off in the candidate selection strategy
used, for example if there is a large backlog it may be preferable to use more known

strong configurations over random configurations.

More advanced techniques such as online scheduling may also improve the processing
time. One possible solution from the literature which appears particularly promising for
adaptation to the ReACT context is proposed in [DAD18b, DAD18a]. Here the authors
develop a machine learning model to predict the expected runtime of an instance which
is then used as part of a mixed integer programming model to maximise the number

of solved instances. Additionally this work outlines a heuristic-based interruption
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procedure to prevent poor predictions impacting the solution process too much. Of
particular interest in the ReACT context would be altering the MIP model to increase
the configuration speed, for example by processing instances in a particular order as
demonstrated in Chapter 5 and in [SHM12, SH13]. We hope to apply these ideas to Re-
ACT as it would improve the configurator’s performance in many practical applications

where the configurator is likely to be deployed.

Instance Drought On the other extreme there may be periods where the configurator
receives no instances to process. For example, if a business only requires solutions
during normal working hours then the configurator may be idle at night time and
weekends. These periods of downtime could be effectively used to revisit previously
solved instances in order to establish things such as the full ranking of a race, the
variability in the instance solving time, or how a recently introduced configuration
would perform on a historical instance. This blurs the line between real-time and offline

algorithm configuration but does not impact on the time needed to return a solution.

Another potential use of a break in instances is to utilise the available time to employ
more expensive techniques such as training models or performing analysis over the
collected data. Once trained these models or the insights gained can be effectively
used to improve the configuration process when instances begin arriving again. The
application of these ideas is worthy of investigation as it not only expands the range of

techniques available to ReACT but also improves the configurators practical use.

7.2.4 Balancing Configuration Overhead Against Speed-up

In this thesis we have emphasised the need for methods with a low computational
overhead due to the real-time nature of the configurator and our desire to return solutions
as quickly as possible. In Section 6.3.8 we briefly discussed the impact of training
overhead and showed how using a more expensive model can potentially be worthwhile

if the time saving it provides exceeds its training cost.

A natural extension of this work is to allow more computationally expensive methods
which will "pay for themselves" over a set period of time. More formally, consider two
methods (e.g. generation); our current method m,. and another more computationally
expensive method m,.. The overhead of using these methods is o, and o, respectively.
We also define an instance horizon, h, over which we expect the method to break-even
or improve the configuration run time. The solving time of the instances in h using
method m, is denoted as t.;, (and likewise ¢, for solving with the method m.). We can

then say we would prefer the method m. over m, iff o, + top, < 0. + ton. Of course

175



7. CONCLUSIONS AND FUTURE WORK 7.2 Future Work

without an oracle we have no way of knowing the values for ¢.;, and ¢, (and to a lesser
extent o, and o, though these can likely be estimated by historical data). As such a large
part of the challenge here involves estimating these values and adapting the formula to
account for the probabilistic nature of these estimations. We suggest this as an inviting
area for future research as a solution here would clearly demarcate which methods are
applicable to real-time algorithm configuration from those that are best reserved for

offline configuration scenarios.
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