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Cooperation and competition between pathogens can alter the amount of individuals affected by a coinfection.
Nonetheless, the evolution of the pathogens’ behavior has been overlooked. Here, we consider a coevolutionary
model where the simultaneous spreading is described by a two-pathogen susceptible-infected-recovered model in
an either synergistic or competitive manner. At the end of each epidemic season, the pathogens species reproduce
according to their fitness that, in turn, depends on the payoff accumulated during the spreading season in a
hawk-and-dove game. This coevolutionary model displays a rich set of features. Specifically, the evolution of
the pathogens’ strategy induces abrupt transitions in the epidemic prevalence. Furthermore, we observe that
the long-term dynamics results in a single, surviving pathogen species, and that the cooperative behavior of
pathogens can emerge even under unfavorable conditions.

DOI: 10.1103/PhysRevE.105.034308

I. INTRODUCTION

Understanding the diffusion of pathogenic agents is im-
portant as its aftermath reverberates on many aspects of our
lives from health policies to economy, from politics to the
transportation of people and goods [1–5]. Lately, the scientific
community has devoted tremendous efforts in elucidating the
dynamics behind these phenomena [6–9]. Despite the many
achievements of computational epidemiology, the spreading
of multiple pathogens has received less attention than ex-
pected. This comes as a surprise as phenomena such as
comorbidity and cross-immunity constitute the norm rather
than the exception. The former indicates the simultaneous
presence of multiple diseases within the same host. The latter
denotes the acquisition of immunity towards a certain disease
as a result of infection by another one. In the epidemiology
jargon, pathogens supporting comorbidity are indicated as
cooperators, whereas the others as competitors. Cooperative
pathogens may mutually promote their contagion like the
Spanish flu and pneumonia [10], or HIV coinfections [11].
Some types of influenza are, instead, examples of competitors
[12–17]. Moreover, comorbidity and cross-immunity are not
observed exclusively among distinct pathogenic strains. For
example, high levels of genetic diversity can provide a sub-
strate for selection and rapid adaption, which are crucial to

*fakhteh.ghanbarnejad@gmail.com

escape immune system recognition, developing resistance to
drugs, and adapt to new host types (spillover) [18]. Curiously,
cases of cooperation have been reported also between distinct
variants (quasispecies) of human H3N2 influenza [19,20].
Consequently, the amount of literature about the spreading of
cooperative [21–27] and competitive [28–33] pathogens has
grown over the years.

Despite these evidences, the models developed hitherto
assume that the strategy of a pathogen to cooperate—or not—
is costless. In the evolutionary game framework, however,
cooperation has a rather different meaning and implies always
the payment of some costs [34–36]. For instance, the cooper-
ative behavior of the Spanish flu exhibited towards secondary
infections led to high death rates of the host subjects, making
this synergistic epidemic—or syndemic—prone to relatively
“quick” disappearance [10]. Notably, the evolution of spread-
ing pathogens has been rarely considered [37–40].

In this paper, we envision an evolutionary scenario where
interacting pathogens have two different strains with cooper-
ative and defective strategies, and evolve while maximizing
their own benefit. We extend the two-strain susceptible-
infected-recovered (SIR) model of Chen et al. [23] by
intertwining it with an evolutionary infection game, and show
under which conditions synergy and competition emerge. We
observe that the evolution of the pathogens’ strategies rever-
berates on the epidemic prevalence. Moreover, the dynamics
foster more the survival of single strains, i.e., strategy, rather
than the coexistence of multiple strains.
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II. THE MODEL

We combine two distinct processes:(i) the simultaneous
spreading of two different pathogens and (ii) the evolution
of their strategies. The former takes place over a short, con-
tinuous timescale (within the season) indicated by variable t ;
whereas the latter occurs on a longer, discrete one (between
two seasons) denoted by variable T . The two processes are
intertwined by using the outcome of the spreading as the input
of the evolution and vice versa. The two phases of spread-
ing and evolution of strategies take place sequentially in a
cyclic way until a global stationary state (GSS) is reached. We
explain first the spreading and evolutionary game dynamics
separately, and then describe how these processes (named
phases 1 and 2) are combined together.

A. Spreading dynamics

In each season, the model describes the simultaneous
spreading of two pathogens A and B that obey an extended
SIR compartmental dynamics [23]. Each pathogen, σX , has
two strains corresponding to its cooperator (C) and defector
(D) strategies.

Cooperators (σXC ): A strain of pathogen σX that cooper-
ates with other strains.

Defectors (σXD ): A strain of pathogen σX that competes
with other strains.

Following the above definitions, the pathogenic population
is composed by four different species, namely, AC , AD, BC ,
and BD. These species follow an SIR dynamics and interact
with each other yielding a 25 states model whose transitions’
diagram is shown in Fig. 1.

In agreement with the case without strategies, and without
loss of generality, the recovery rates are set equal to 1 (i.e.,
r = r′ = 1). Moreover, we assume that the rates of infection
depend only on the strategy of the pathogen occupying the
host, which is equivalent to imposing a symmetry in the
parameters’ space. According to such a symmetry, we can
write the infection rates of empty hosts as αC = αD = α.
Accordingly, for a host already occupied by one pathogen, we
pass from four rates (i.e., βCC , βCD, βDC , and βDD) denoting
all the possible combinations of pairs of strategies to just
two of them, namely, βCC = βDC = βC and βDD = βCD = βD.
After imposing the aforementioned symmetries, we can write
the system of ordinary differential equations describing the
spreading dynamics using an approach similar to that intro-
duced in [23]. Hence, we can define the groups of individuals
actively infected by a species as

XAC = [AC]+[ACBC]+[ACBD]+[ACbC]+[ACbD],

XAD = [AD]+[ADBC]+[ADBD]+[ADbC]+[ADbD],

XBC = [BC]+[ACBC]+[aCBC]+[ADBC]+[aDBC],

XBD = [BD]+[ACBD]+[aCBD]+[ADBD]+[aDBD] . (1)

Capital letters denote infected states, whereas small letters
denote recovered ones. The notation [·] indicates the density
of individuals in a given state, while the sum of all 25 states is
normalized to 1.

FIG. 1. Transition scheme of the two strategies double SIR
spreading dynamics. We display all the possible transitions among
compartments in the multidisease propagation of pathogens A and
B. The introduction of strategies for pathogens expands the original
transition scheme introduced in [23], which now translates into a 25
states diagram. Capital letters denote infected states, whereas small
letters denote recovered ones. The infection transition is denoted by
a single arrow for simple pathogen contagion, and by double arrows
for multiple pathogens infection

Considering the definitions of infected groups displayed in
Eqs. (1), we can write the complete set of equations modeling
the spreading dynamics [Eqs. (2)]. Despite the high number
of equations, the system in Eq. (2) depends only on three
parameters: α, βC , and βD. The next section illustrates how
these parameters are related with each other.

˙[S] = −α[S]XAC − α[S]XAD − α[S]XBC − α[S]XBD ,

˙[AC] = α[S]XAC − βC[AC]XBC − βD[AC] XBD − [AC],

˙[AD] = α[S]XAD − βC[AD]XBC − βD[AD]XBD − [AD],

˙[BC] = α[S]XBC − βC[BC]XAC − βD[BC]XAD − [BC],

˙[BD] = α[S]XBD − βC[BD]XAC − βD[BD]XAD − [BD],

˙[ACBC] = βC[AC]XBC + βC[BC]XAC − 2[ACBC],

˙[ACBD] = βD[AC]XBD + βC[BD]XAC − 2[ACBD],

˙[ADBC] = βC[AD]XBC + βD[BC]XAD − 2[ADBC],

˙[ADBD] = βD[AD]XBD + βD[BD]XAD − 2[ADBD],

˙[aC] = −βC[aC]XBC − βD[aC]XBD + [AC],

˙[aD] = −βD[aD]XBD − βC[aD]XBC + [AD],

˙[bC] = −βC[bC]XAC − βD[bC]XAD + [BC], (2)

˙[bD] = −βD[bD]XAD − βC[bD]XAC + [BD],

˙[aCBC] = βC[aC]XBC + [ACBC] − [aCBC],
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FIG. 2. Dependency of occupied host infection rate β on the value of parameter c, according to Eq. (3), for four values of rate α. The
vertical dashed line denotes the value of c at which βC = βD = α. The horizontal dotted line at β = 1 separates the subcritical region from the
supercritical one.

˙[aCBD] = βD[aC]XBD + [ACBD] − [aCBD],

˙[aDBC] = βC[aD]XBC + [ADBC] − [aDBC],

˙[aDBD] = βD[aD]XBD + [ADBD] − [aDBD],

˙[ACbC] = βC[bC]XAC + [ACBC] − [ACbC],

˙[ACbD] = βC[bD]XAC + [ACBD] − [ACbD],

˙[ADbC] = βD[bC]XAD + [ADBC] − [ADbC],

˙[ADbD] = βD[bD]XAD + [ADBD] − [ADbD],

˙[aCbC] = [ACbC] + [aCBC],

˙[aCbD] = [ACbD] + [aCBD],

˙[aDbC] = [ADbC] + [aDBC],

˙[aDbD] = [ADbD] + [aDBD].

B. Hierarchies between the rates of infection

As mentioned above, the dynamics of the double SIR with
cooperative and defective pathogens (i.e., the quadruple SIR)
depends on three parameters: the empty host infection rate α,
and the infection rates for hosts occupied either by a coopera-
tor (βC) or by a defector (βD) pathogen. In the following, we
show how these quantities are related to one another.

According to the definition of cooperative and defective
strategies made in the previous section, it is natural to impose
that βC > βD. Moreover, as discussed in [22], the hierarchy
between the empty host and occupied host infection rates
determines whether two pathogens act in symbiosis (i.e., their
strategy is cooperation) or in antagonism (i.e., their strategy is
defection). The former case occurs when α < β, whereas the
latter when α > β. These hierarchies between the infection
rates denote the existence of a relationship between them.
Amidst the plethora of possible choices, we decided to adopt
the following one:

βC = αc,

βD = α

c
, (3)

with c ∈ ]0,∞[ being a parameter. Imposing a relationship
between the infection rates reduces the number of free param-
eters in Eqs. (2) from three to two: α and c.

Figure 2 displays the values of βC and βD as a function of
c for four different values of α: two subcritical (i.e., α � 1)
and two supercritical (i.e., α > 1). The visual inspection of
Fig. 2 reveals that, in agreement with Eq. (3), for c = 1 one
gets βC = βD = α. Such a case corresponds to the neutral
spreading scenario in which the rate of infection is inde-
pendent on the occupation state of the host, as well as on
the strategy of the pathogen occupying it. Hence, the only
factor influencing the outcome of the dynamics is the value
of α which controls the epidemic prevalence 1 − S∞. The
value c = 1 corresponds also to the point where the hierarchy
between βC and βD changes. In Fig. 3 we plot the hierarchy
between βC and βD as a function of α and c. In particular, the
region c < 1 corresponds to the case βD > βC corresponding
to the scenario in which it is easier to infect a host occupied
by a pathogen acting as a defector than a cooperator. Although
such a scenario is biologically not meaningful, we neverthe-
less explore it for the sake of completeness.

In summary, assuming that it is easier to infect a host
already infected by a cooperator pathogen than by a defector
one, we set βCC = βDC = βC = αc and βDD = βCD = βD =
α
c with c > 0.

FIG. 3. Partition of the (α, c) space according to the hierarchy
between βC and βD. The area delimited by the red-dashed square
corresponds to the area portrayed in panels (a) and (c) of Fig. 5.
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C. Evolutionary game dynamics

The quadruple SIR model encoded by Eqs. (2) and the
hierarchies between the infection rates analyzed in Sec. II B
describe the spreading of pathogens acting in symbiosis or
antagonism with the other pathogens. However, the sole
consequence of adopting a certain strategy is how easily a
pathogen can infect a host occupied by another pathogen.
Nevertheless, from the biological point of view, facilitating (or
not) the infection from another pathogen could be thought—
among other things—as a proxy for the will of the occupying
pathogen to share (or not) the host’s resources with the
invader.

Following this hypothesis, one could model the act of in-
fecting a host as a game and, consequently, assign a payoff
to it [35]. The payoff accumulated by all the pathogens of
species X and strategy Y , �σXY

, constitutes the fitness of that
pathogen’s type which, in turn, determines its ability to repro-
duce. Hence, we can use the fitness of each pathogen’s type
computed at the end of the T th season of the spreading process
to compute its abundance in the initial seed of the (T + 1)th
season. Such an approach allows one to describe features like
comorbidity and cross-immunity as the by-product of natural
selection.

In light of the above reasoning, the act of infecting a
host splits into two main scenarios: one in which the host is
empty, and another in which it is already occupied by another
pathogen. Assuming that the total amount of resources avail-
able in the host is equal to one, let us discuss the two scenarios
separately.

If the host is empty, then the pathogen infecting the host
will have access to all of its resources regardless of its strategy.
Therefore, the payoff, π , associated to the event of infecting
an empty host (i.e., single infection) is equal to π = 1. If
the host is occupied instead (i.e., in the secondary infection
event), the value of the payoff depends on the combination
of the strategies of the pathogen infecting the host, and of
the pathogen already present within the host. Since we as-
sume that pathogens can either cooperate or defect, and that
cooperators are more keen to share the host’s resources than
defectors, we can adopt the payoff matrices of the Hawk and
Dove (HD) game [34,41], given by

( C D
C 1

2 γ

D 1 − γ − 1
2

)
, A′ =

(C D
C 1

2 1 − γ

D γ − 1
2

)
, (4)

with γ ∈ [0, 1
2 ]. The payoff, πX,Y , of a pathogen with strat-

egy X infecting a host infected by another pathogen with
strategy Y corresponds to the element aX,Y (X,Y ∈ {C, D})
of A. Analogously, the payoff of a pathogen with strategy
Y occupying a host that gets infected by another pathogen
with strategy X corresponds to the element a′

X,Y of A′. The
fitness of species σ , �σ , depends on the history (i.e., the
sequence) of its contagion record (events). Finally, the con-
centration, ρi, of species i in the spreading seed of season T +
1 is regulated by the so-called replicator equation [35,36],

given by

ρT +1
i

∣∣
t0

= ρT
i

∣∣∣
t0

[
1 + �T

i

∣∣∣
t∞

− �
T
∣∣∣
t∞

]
, (5)

where i = {AC, AD, BC, BD} and ρT
i |t0 is the concentration of

species i at the beginning (t0) of spreading season T . �T
i |t∞

is the fitness of species i equivalent to the total payoff ac-
cumulated during spreading season T . Finally, �

T |t∞ is the
average of the fitness obtained during season T by all species
�

T |t∞= 1
4

∑
i�

T
i |t∞, and t∞ denotes the time t at which the

spreading dynamic reached its stationary state. According
to Eq. (5), species with fitness higher than the average will
proliferate, whereas those with fitness lower than the average
will become extinct [36].

D. The coevolutionary model

Figure 4 summarizes the main features of our coevolu-
tionary dynamics model, in which the spreading and the
evolutionary game dynamics introduced previously corre-
spond to the so-called phases 1 and 2 of our model.

At the start of each season (i.e., t = t0 = 0), the epi-
demic seed is composed exclusively of a mixture of species
AC , AD, BC , and BD. The initial pathogen concentrations, ρi

(i ∈ {AC, AD, BC, BD}) evolve according to Eq. (5) (phase 2).
Without losing generality, we fix the size of the total initial
infectious seed for all seasons, i.e.,

∑
i ρ

T
i |t0= 0.05 ∀T . Dur-

ing each spreading season, T , the different pathogen species
spread according to Eqs. (2) (whose reaction kinetics is sum-
marized in the top left panel of Fig. 4 and details are shown in
Fig. 1) and accumulate payoff via infection events according
to the infection game introduced in Sec. II C (Fig. 4, top right
panel). Specifically, a pathogen X	 infecting a susceptible
host S receives a payoff πX	

= 1 regardless of its strategy.
If, instead, the host is already infected by another pathogen
Y
 , i.e., in a secondary infection, the payoff of the infecting
pathogen, πX	

, is given by the (	,
) element of matrix A
of Eq. (4) according to the four possible combinations of
the (infecting, infected) pathogens’ strategies: (C,C), (C, D),
(D,C), and (D, D) (similar reasoning applies to payoff πY


using matrix A′). The choice of the payoff scheme (i.e.,
the game) associated with the secondary infection event is
dictated by the idea of how the pathogens share the host’s
resources. Moreover, the idea that cooperators will share the
host’s resources while defectors will try to fight to seize them
all, reverberates also on the properties of the secondary in-
fection rates βC and βD which (i) depend exclusively on the
strategy of the pathogen already occupying the host and (ii)
controls the hierarchy existing among them i.e., βC > βD). For
these reasons, a payoff scheme like that of the HD game fits
quite well with our model. Considering other payoff schemes
like the Stag-Hunt one which are typical of “coordination
dynamics” (i.e., where the best strategy is to coordinate with
the other player and adopt the same strategy) clashes with
the idea of having finite host’s resources. A similar reasoning
applies to the case of the Prisoner’s Dilemma [36].

Once the spreading process reaches its stationary state, i.e.,
t = t∞ = ∞, the values of ρ, for the next season T + 1 are
given by Eq. (5) (Fig. 4, phase 2). The mixture of species in the
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FIG. 4. Schematic representation of the coevolutionary model. Phase 1 describes the processes occurring during each spreading season,
T . The left box depicts the single and multiple SIR reaction kinetics. The right box shows the corresponding accumulation of payoff, π , by
species X	 and Y
 with X, Y ∈ {A, B}, and strategy 	, 
 ∈ {C, D}. After spreading season T ends, the concentrations, ρ, of species in the
initial seed evolve following the replicator equation [Eq. (5)] (phase 2). The two phases repeat several times until the global stationary state is
reached. The parameters do not change during the dynamics.

seed evolves season after season until ρT
i reaches a stationary

state, i.e., ρT +1
i = ρT

i ∀i. Then, the coevolutionary dynamics
is considered at the GSS which is labeled as evolutionary
season T = ∞.

III. RESULTS

A. Differences between nonevolutionary
and evolutionary dynamics

We start our analysis by looking at the state of the system
at the end of the spreading dynamics, t∞, and compare it
at the first (T = 1) and the last (T = ∞) season. In Fig. 5
we portray the outcome of the coevolutionary dynamics from
both the pathogens (left panels) and the host (right panels) per-

spectives. If the composition of the spreading seed, �CD|t0 =
([AC] + [BC]) − ([AD] + [BD]), is richer in cooperation, i.e.,
�CD|t0 > 0, then cooperator strains will easily take over.

Nevertheless, there is a region of the (α, c) space where
cooperation still has the chance to thrive even though the seed
is dominated by defectors (i.e., �CD|t0 < 0). Such regions cor-
respond to the brighter areas displayed in Figs. 5(a) and 5(b),
where the colors encode the density of the pure cooperator and
defector strains at the end of the spreading season, �CD|t∞ =
([aC] + [bC] + [aCbC]) − ([aD] + [bD] + [aDbD]). Note that
the lowercase variables refer to the recovered compartments.
We find that the coevolutionary dynamics amplifies the differ-
ences of �CD|t∞ observed for the first season T = 1 [panel

FIG. 5. Characterization of the coevolutionary dynamics. Pathogens’ perspective: Panels (a) and (b) display the value of strategy’s balance
�CD|t∞ without evolution [T = 1, panel (a)], and at the GSS [T = ∞, panel (b)] as a function of α and c. Brighter colors denote populations
with a higher prevalence of cooperators. The slanted area denotes the region of the (α, c) space with βD > βC . Host’s perspective: Panels
(c) and (d) report the values of disease incidence 1 − S∞ without evolution (T = 1) and at the GSS (T = ∞) as a function of α and c,
respectively. The other parameter’s value is fixed as indicated by either the horizontal or vertical line in panels (a) and (b). The shaded area in
panel (d) corresponds to the regime βD > βC i.e., c < 1). Other parameters: γ = 0.25,

∑
i ρ

T
i |t0 = 0.05, and �CD|t0 = −0.03.
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(a)], and a region where cooperation thrives emerges, i.e.,
the bright area in panel (b) corresponding to �CD|t∞> 0. In
addition, we observe another region where defection prevails
(�CD|t∞< 0).

Figures 5(c) and 5(d) capture the effects of the evolu-
tion from the hosts’ perspective through the lens of disease
incidence (or transitivity), 1 − S∞. As we vary α [panel (c)],
we observe a transition from lower incidences for α � 1,
towards complete infection, i.e., 1 − S∞ � 1. In the absence
of evolution, that is, for a single season only (T = 1), the
transition between these regimes is smooth, whereas the cat-
alytic effect of the evolutionary dynamics, i.e., over many
seasons (T = ∞), triggers the appearance of a gap in the
transition. Even though at first glance the gap resembles the
discontinuous transitions observed in the cooperative SIR
coinfection models [23,42], they are not the same. In fact,
in nonevolutionary SIR coinfection models the gap occurs
exclusively for cooperator only pathogens, whereas purely
defector pathogens do not make any gap (see the competitive
regime in Ref. [23]). Instead, in our case both cooperators
and defectors spread at the same time, thus highlighting the
inability of the latter to suppress the gap. Also, the transition
occurs at smaller values of c and greater values of α, compared
to cooperative only SIR dynamics (see Eq. (7) in Ref. [42]).

The effect of varying c on the disease incidence [panel
(d)] is less strong. Notwithstanding, we still observe a gap
in the transition for T = ∞. In the neutral spreading setup
βC = βD = α (i.e., c = 1), we do not observe any difference
between the incidences measured in the absence and presence
of seed evolution. Such a similarity suggests that the sole
accumulation of payoff is not enough to induce differences in
the phenomenology. Finally, we stress that the region corre-
sponding to c < 1 is biologically not meaningful as βC < βD.

B. Evolution of the strategies across seasons

A way to study the evolution of the dynamics is to look at
the evolution across the seasons of the spreading seed. More
specifically, the sum of the densities of pathogens’ species
at the beginning of each spreading season, i.e., the size of
the spreading seed, is fixed and equal to ω ∈ ]0, 1[. As the
pathogens’ densities are all positive definite, and their sum is
constant, the equation

ρAC

∣∣∣
t=0

+ ρAD

∣∣∣
t=0

+ ρBC

∣∣∣
t=0

+ ρBD

∣∣∣
t=0

= ω, (6)

describes a three-dimensional hyperplane on a four-
dimensional hypercube (i.e., a tesseract) corresponding to the
{ρAC , ρBC , ρAD , ρBD} space. Such an object and trajectories on
it are not always straightforward to visualize on a bidimen-
sional surface. Nevertheless, under certain conditions it is
possible to project the density space onto a bidimensional
surface. To this aim, let us consider two variables 0 � x � 1
and 0 � y � 1 fulfilling the following conditions:

ρAC = [AC]
∣∣∣
t=0

= ωxy,

ρAD = [AD]
∣∣∣
t=0

= ωx(1 − y),

ρBC = [BC]
∣∣∣
t=0

= ω(1 − x)y,

ρBD = [BD]
∣∣∣
t=0

= ω(1 − x)(1 − y). (7)

FIG. 6. Schema of the bidimensional projection of the four-
dimensional hypercube describing the composition of the spreading
seed in terms of the densities of each pathogen. The x coordinate ac-
counts for the pathogen’s specie, whereas the y coordinate accounts
for the pathogen’s strategy.

The x coordinate accounts for the pathogen’s species con-
centration with x = 0 (x = 1) denoting a population fully
made of pathogens of species B (A). The y coordinate, in-
stead, accounts for the pathogen’s strategy, with y = 0 (y = 1)
denoting full defection (cooperation). Not all the possible
combinations of the seed components (only three of them are
truly independent) can be mapped using the present approach.
Still, the bidimensional representation allows one to scrutinize
the dynamics between the most relevant points. Figure 6 pro-
vides a visual summary of the bidimensional projection.

The diagram’s corners correspond to pure seeds (i.e., made
of only one species with one strategy), with [AC] = ω cor-
responding to the point with coordinates (1, 1), [AD] = ω to
(1, 0), [BC] = ω to (0, 1), and [BD] = ω to (0, 0), respectively
(we are omitting the t = 0 subscript). The middle points on
the edges of the [0, 1] × [0, 1] square indicate, instead, a seed
balanced in either the pathogen’s species [e.g., [AC] = [AD] =
ω
2 with coordinates ( 1

2 , 1)] or strategy [e.g., [AC] = [BC] = ω
2

with coordinates (0, 1
2 )]. Finally, the red cross at the mid-

dle of the diagram corresponds to the case [AC] = [BC] =
[AD] = [BD] = ω

4 with coordinates ( 1
2 , 1

2 ). Therefore, the path
connecting point P ≡ (xP, yP ) with point Q ≡ (xQ, yQ) de-
notes a variation in the composition of the spreading seed
induced by the evolutionary component of our model.

We continue our analysis by studying the evolution of the
epidemic seeds between seasons, to investigate how the inter-
play between the two phases of our model impacts the overall
dynamics. To this aim, Fig. 7 displays how the concentrations
of species ρAC , ρBC , ρAD , and ρBD in the seed change season
after season until reaching the GSS.

The main observations are summarized as follows:
(1) Contrary to the expected behavior of the HD game, the

pure states correspond to stable fixed points of the dynamics,
whereas the balanced states are saddle points, i.e., they are
stable in one direction and unstable in the other. Hence, no
matter what the initial composition of the seed is, only one
species with one strategy survives at the GSS, while all other
species become extinct.
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FIG. 7. Evolution of the epidemic seed as two-dimensional projections of stream plots. Pure states correspond to the corners of the diagram,
while strategy or species balanced states (PX ) are located at the middle of the borders (e.g., PC ≡ [AC] = [BC]). The central point (blue
cross) denotes the mixed initial state where [AC]t0 = [AD]t0 = [BC]t0 = [BD]t0 = 1

4

∑
i ρ

T
i |t0 . The colors encode the transitivity at the GSS. The

red, dashed line is an approximation to guide the eye finding the manifold separating cooperation from defection. The arrows indicate the
displacement of the seed between epidemic seasons. We set

∑
i ρ

T
i |t0 = 0.05 and γ = 0.25, and use four sets of (α, c) pairs. See Fig. 6 of for

the details of the bidimensional mapping.

(2) Two unstable manifolds split the phase portrait ac-
cording to each of the pathogens’ features, i.e., species and
strategy.

(3) Figures 7(a) and 7(b) show that, when the simple in-
fection rate is subcritical (i.e., α < 1), the structure of the
phase portrait and the epidemic prevalence are not affected
by variations of c.

(4) For supercritical values of the simple infection rate
[α > 1, i.e., Figs. 7(c) and 7(d)], increasing c translates into an
expansion of cooperation’s basin of attraction. Hence, seeds
initially composed of more defectors than cooperators can
evolve towards fully cooperative strains.

(5) Even though changing the value of γ displaces the
intermediate stable fixed point in the “classical” HD game dy-
namics, we have verified that both the position of the unstable
manifolds and the epidemic prevalence are robust to variations
of γ .

IV. DISCUSSION AND CONCLUSION

In this paper, we have studied the emergence of synergistic
and competitive traits in a coevolutionary model intertwining
epidemic spreading and evolutionary game theory. To this
aim, we have extended the SIR model of Chen et al. [23]
by assuming that pathogens have two strategies (cooperate
or defect), and allowing that their concentration inside the
epidemic seed (whose total size is kept fixed throughout the
whole dynamics) evolves according to the replicator equa-
tion [34]. For the latter, the pathogens accumulate payoff
according to an infection game whose payoff scheme for sec-
ondary infections events maps onto the hawk-and-dove game.
The resulting coevolutionary model displays features that are
not present in either spreading or evolutionary game dynam-
ics taken singularly. In particular, the game reverberates on
the outcome of the spreading dynamics. It alters the disease
prevalence in the host and can trigger the emergence of a gap
in the transition. This phenomenon has also been observed
for nonevolutionary SIR models where two pathogens only
cooperate and sharp transitions occur for c > 2 and α < 1
[23,42]. Moreover, the interplay between the spreading and

game dynamics alters the stability of the state space’s fixed
points of the game. Pure seeds are stable solutions of the dy-
namics, contrary to the expected stable mixed scenario typical
of the hawk-and-dove game [36]. We have also observed the
emergence of a region of the phase space where cooperation
thrives even under unfavorable conditions. Such a behavior is
in agreement with the phenomenology reported for stochastic
games where cooperation emerges even in conditions where
usually it should not [43–45].

Summing up, the overall phenomenology exhibited by our
model cannot be traced back to one of the two processes
separately but emerges from their interplay. The framework
presented here constitutes a way to understand under which
conditions synergy, i.e., comorbidity, and competition, i.e.,
cross-immunity, can emerge through an evolutionary frame-
work where the hosts and the pathogens mutually interact. The
present work is a first attempt towards understanding multiple
pathogen spreading and opens new roads for theoretical mod-
eling of multistrain epidemic processes from the perspective
of evolutionary theory. Despite the richness of the dynamical
scenarios observed, we made simplifying assumptions. For
instance, we have considered a symmetric scenario for the
primary infection rates and have chosen a specific setup for
the secondary infection rates. Moreover, the values of the
parameters do not evolve across time, and we have considered
a well mixed population. Relaxing these assumptions can lead
to even more realistic dynamics.
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