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Abstract 
Computational approaches are increasingly utilised in development of bio-enabling formulations, 

including self-emulsifying drug delivery systems (SEDDS), facilitating early indicators of success. This 

study investigated if in silico predictions of drug solubility gain i.e. solubility ratios (SR), after 

dispersion of a SEDDS in biorelevant media could be predicted from drug properties. Apparent 

solubility upon dispersion of two SEDDS in FaSSIF was measured for 30 structurally diverse poorly 

water soluble drugs. Increased drug solubility upon SEDDS dispersion was observed in all cases, with 

higher SRs observed for cationic and neutral versus anionic drugs at pH 6.5. Molecular descriptors 

and solid-state properties were used as inputs during partial least squares (PLS) modelling resulting 

in predictive models for SRMC (r2 = 0.81) and SRLC (r2 = 0.77). Multiple linear regression (MLR) 

facilitated generation of simplified SR equations with high predictivity (SRMC r2 = 0.74; SRLC r2 = 0.69), 

requiring only three drug properties; partition coefficient at pH 6.5 (logD6.5), melting point (Tm) and 

aromatic bonds as fraction of total bonds (FArom_B). Through using the equations to inform drug 

developability classifications (DCS) for drugs that have already been licensed as lipid based 

formulations, merits for development with SEDDS was predicted for 2/3 drugs.  

 

 

 

 

 

 

Abbreviations:  

PWSD, Poorly Water-Soluble Drug; LBF, Lipid-Based Formulations; SEDDS, Self-emulsifying drug 

delivery systems; GIT, Gastrointestinal tract; O/W, oil-in-water; DCS, Developability Classification 

System; DCS, Developability Classification System; rDCS, Refined Developability Classification 

System; An Absorption Number; Do, Dose Number; BCS, Biopharmaceutics Classification System; 

SEDDSMigylol812, Migylol 812 based SEDDS, SEDDSOliveOil, Olive Oil based SEDDS. 

 

 

 

 

 

 



   
 

   
 

Introduction  
Increasing numbers of poorly water soluble drugs (PWSD) in development pipelines has intensified 

the need for bio-enabling formulations to enhance oral bioavailability (1, 2). One such approach 

involves administration of drug substances in Lipid-Based Formulations (LBFs), which enhance 

apparent solubility of PWSDs, while potentially also increasing absorption via stimulation of 

endogenous lipid absorption pathways for lipophilic xenobiotics. Despite numerous commercial 

examples of LBFs, with previous estimations of up to 4% of orally administered drug products utilising 

LBFs (3), it was recently observed that relative numbers of new commercial products using LBFs 

have declined over the last decade (4). Such statistics suggest challenges to more widespread 

adoption of LBFs among pharmaceutical companies, potentially linked to a lack of clear guidance on 

appropriate early screening to guide bio-enabling formulation selection (5).  

Self-emulsifying drug delivery systems (SEDDS) fall under the umbrella term LBFs, and refer to 

combinations of oils with surfactants and co-solvents which spontaneously emulsify forming a stable 

emulsion on dispersion in the gastrointestinal tract (GIT) (6). Ability to self-emulsify and maintain 

solubilisation on dispersion is a key SEDDS performance determinant. Typically, the drug dose 

should be soluble in the SEDDS vehicle, and much effort is focused on determining the inherent lipid 

solubility of the drug, usually involving resource intensive drug solubility screening in a range of lipid 

excipients (7, 8). More recently, the application of computational models, in conjunction with drug 

biopharmaceutical profiling, has been explored to support higher throughput formulation selection for 

LBFs (9, 10). While certain computational approaches aim to determine drug properties which 

produce favourable oral drug candidates, other tools have instead examined molecular properties that 

may signal necessity for use of bio-enabling strategies or alternatively signal greater suitability for a 

particular type of bio-enabling strategy. Regarding the latter, a number of noteworthy studies have 

demonstrated utility of computational pharmaceutics approaches to predict lipid solubility to act as a 

guide for maximal dose loading in LBF pre-concentrates (11-14). Critically, while predictions of the 

drug solubility in lipids are useful to guide initial understanding of the maximum dose loading in the 

SEDDS vehicle, this approach does not represent the sole criterion for LBF suitability.  

Modifications in the GIT upon SEDDS ingestion are crucial in determining formulation performance, 

as solubilisation capacity in luminal media can be altered dramatically following SEDDS emulsification 

and through interactions of lipid excipients with endogenous solubilising species (15-17). SEDDS 

dispersion leads to increased drug solubilisation, transient supersaturation, and potentially 

precipitation, thereby presenting drugs to intestinal fluids at concentrations exceeding their equilibrium 

solubility (18). From a biopharmaceutical perspective, apparent drug solubility in intestinal fluid upon 

SEDDS dispersion appears critical in determining LBF suitability. Accordingly, the lipid formulation-

performance classification system emphasises formulation capability to retain solubilisation upon 

dispersion and digestion (19). The use of simulated biorelevant fluids in such in vitro assessments is 

likely to be a more reliable indicator of whether a SEDDS approach can effectively solubilise the dose 

in vivo. Biorelevant testing is an integral part of pharmaceutical characterisation, revealing 

concentrations likely to be soluble within human intestinal fluids (HIF) (20, 21), while a key tenet of the 



   
 

   
 

Developability Classification System (DCS) is the use of biorelevant solubility in fasted state simulated 

intestinal fluids (FaSSIF) as an improved guide to in vivo performance and drug developability (22). 

More recently, a refined DCS (rDCS) extended this developability concept to include customised in 

vitro assessments of supersaturation and precipitation risks involving Absorption Number (An) and 

Dose Number (Do) (23). Such developability guides, along with decision trees utilising biorelevant 

media instead of buffered aqueous media (22, 24-26), signify emerging emphasis on developability 

and biopharmaceutical concepts in early product testing. However, as in vitro techniques utilised to 

predict the dose that is effectively solubilised in vivo can be complex and resource heavy, 

development of models capable of predicting this dose are strongly merited (27). 

With regard to both advancing LBF computational pharmaceutics and use of biopharmaceutically 

relevant conditions, our hypothesis was to apply a computational approach to predict solubility 

increases upon SEDDS dispersion. Given the inherent complexity of the mixed colloidal species 

formed upon dispersion of SEDDS with endogenous biliary lipids, approaches to predict apparent 

solubility are considered complex at this stage. As an alternative, the solubility increase achieved via 

SEDDS dispersion in FaSSIF, relative to drug solubility in FaSSIF, represents a more realistic 

modelling parameter. This can be used to inform the maximal dose solubilised within the intestine, 

assuming experimental drug solubility in FaSSIF is known. Accordingly, this study attempted to apply 

a computational approach in relating drug properties to predict solubility increases (i.e. solubility 

ratios) following SEDDS dispersion. This approach can therefore be used to effectively guide the dose 

number (Do) produced in intestinal fluids. Subsequently, this study explored suitability of linking the 

predicted Do to the framework provided by the DCS and hence, providing a tool for guiding 

developability of a SEDDS formulation strategy in early stage drug development. To achieve this aim, 

apparent drug solubility of 30 PWSD was experimentally determined upon dispersion in FaSSIF of 

two prototype SEDDS. SEDDS were selected based on prior ability to spontaneously emulsifying, 

forming a stable microemulsion and were composed of either a medium chain (SEDDSMigylol812) or 

long chain (SEDDSOliveOil) oil phase, with a common surfactant, co-surfactant blend in order to 

examine their excipient effects (27). Solubility ratios (SRMC and SRLC) achieved versus FaSSIF 

solubility were collated with drug descriptors to develop computational models and predictive 

equations. Through prediction of DCS classifications, this work aimed to advance the concept of 

computational pharmaceutics to inform drug developability, exemplifying use of predictive tools to 

expedite formulation options in early development. 

 

Methods 
Dataset Selection  
A dataset of 30 structurally diverse PWSD was selected (Table 1). Drugs were selected based on a 

range of criteria including availability of published reports of drug properties, utilisation in previous 

LBF computational modelling publications and drugs commercially licensed as LBFs (11, 12, 25, 28). 

Light absorbing ability of the compounds’ UV-chromophores were also considered, to allow sufficient 

detectability by the fibre optic UV probes of the µDISS Profiler. A final drug data set was selected to 



   
 

   
 

ensure a sufficient representation of drugs categorised as anionic (8), cationic (9) and neutral (13) 

overall at pH 6.5. The Henderson-Hasselbalch equation was used to determine ionisation at pH 6.5 

(Table 1). All drug compounds were purchased from Kemprotec Ltd (Cumbria, United Kingdom). The 

final dataset displayed a wide physiochemical profile of molecular weight (MW) (230-868.44 g/mol), 

lipophilicity (clogP) (2.1-7.1) and melting point (Tm) (79-296.5ºC). 

Formulations 
Two SEDDS previously utilised for oral delivery of a model PWSD in preclinical studies were chosen 

(27). SEDDSMigylol812 contained 40% w/w medium chain triglycerides (Miglyol 812) with 20% w/w 

surfactant (Kolliphor RH 40 - polyoxyl-40-hydrogenated castor oil) and 40% w/w co-surfactant (Tween 

85 - polyoxyethylene-(20)–polysorbitan trioleate). SEDDSOliveOil contained 40% w/w long chain 

triglycerides (olive oil), while quantities of surfactant and co-surfactant remained similar to 

SEDDSMigylol812, with 20% Kolliphor RH 40 and 40% Tween 85. Migylol 812N is primarily composed of 

C8 and C10 fatty acids (approx. 60:40%). Olive oil contains saturated and unsaturated fatty acids of 

primarily C16-C18 chain length. Miglyol 812N was kindly gifted from IOI Oleo GmbH (Hamburg, 

Germany), while Olive Oil, Tween 85 and Kolliphor RH 40 were purchased from Sigma-Aldrich 

(Ireland). SEDDS were prepared by weighing exact excipient quantities into a screw cap glass tube 

and incubated at 37 °C, overnight on a stirring plate 200 rpm (Mixdrive 15, 2MAG, Germany).  

Media Preparation 
Phosphate buffer (PhBpH6.5) and FaSSIF-V1 were prepared according to biorelevant.com (Croydon, 

UK) protocol and adjusted to pH 6.5 using a Model 3510 pH/mV/Temperature Meter (Jenway, UK). 

FaSSIF-V1 was chosen due to high correlation with HIF and availability of drug solubility datasets (29, 

30). Water was obtained from a MilliQ water system. All chemicals and solvents were of analytical or 

high-performance liquid chromatography (HPLC) grade and purchased from Sigma-Aldrich (Ireland). 

Conditions for simulating dispersion of the SEDDS in intestinal fluids were produced by dispersing 

SEDDS (1:200 dilution) in PhBpH6.5 (i.e. PhB pH6.5-SEDDSMigylol812 and PhB pH6.5-SEDDSOliveOil) and 

FaSSIF (i.e. FaSSIF-SEDDSMigylol812 and FaSSIF-SEDDSOliveOil). This lipid dilution was chosen to be 

typical of reasonable lipid concentrations found in a biorelevant volume.   

Media Characterisation: Media Droplet Size and Zeta Potential 
Droplet size (nm) and polydispersity index (PDI) of FaSSIF, FaSSIF-SEDDSMigylol812, FaSSIF-

SEDDSOliveOil, PhB pH6.5-SEDDSMigylol812 and PhB pH6.5-SEDDSOliveOil were measured using Dynamic 

Light Scattering (DLS) with a Malvern Zetasizer Nano ZS (Malvern Analytical, US) with a 4mW 633nm 

He-He laser at 37°C with a backscattering angle of 173° using the Stokes-Einstein equation. 

Measurements were performed with unfiltered samples in disposable UV-cuvettes from Sarstedt AG 

& Co. KG (Numbrecht, Germany) (10 x 4 x 45 mm). Refractive indices used were 1.1333 (PhBpH6.5) 

and 1.334 (FaSSIF) (31). The electrophoretic mobility i.e. ζ-potential, of colloidal structures in the 

media was measured using the Zetasizer in disposable folded capillary cells (DTS1070) using the 

Helmholtz-Smoluchowski equation (32). Each analysis was conducted in triplicate, presented as 

mean ± standard deviation.   



   
 

   
 

Experimental Solubility Determination 
Apparent drug solubility studies in FaSSIF, FaSSIF-SEDDSMigylol812 and FaSSIF-SEDDSOliveOil were 

experimentally determined over 24 hours as the 24 hour time point was used for solubility ratios. 

Solubility was determined via either shake flask with RP-HPLC/UV analysis (6 drugs) or µDISS 

Profiler (Pion INC, Woburn, MA) (24 drugs), where preliminary studies verified method comparability 

(Supplementary Materials).  

Shake Flask Method 
Drug was added in excess to triplicate glass vials containing either FaSSIF, FaSSIF-SEDDSMigylol812 

or FaSSIF-SEDDSOliveOil (n=3). pH was maintained at 6.5 prior to experiments. Vials were placed on a 

stirring plate (Mixdrive 15, 2MAG, Germany) in a 37°C incubator at 300 rpm. 300 µl samples were 

removed at 2, 4, 6 and 24 hours. Excess solid was separated using a centrifuge for 15 minutes at 

21,380 x g (Mikro 200 R, Andreas Hettich GmbH & Co. KG, Germany). Samples were diluted in 

acetonitrile for analysis via RP-HPLC/UV. Drug Detection was conducted using an Agilent 1200 series 

HPLC system. The columns and mobile phases used for each drug analysed along with injection 

volume, flowrate and detection wavelength can be found in supplementary materials.  

µDISS Profiler 
Apparent drug solubility (n = 3) was determined at a stirring rate of 300 rpm over 24 hours (37°C). 

Path length of the in situ UV probes was varied (1 - 5 mm) depending on anticipated concentration 

range and the UV absorbance properties of the drug molecule. Standard spectra were collected for 

each compound at pH 6.5 and a linear relationship (r2 > 0.99) was established between absorbance 

and concentration in each case. The experimental run was performed in six vials where a large 

excess of API was added (10-20 times more than the anticipated FaSSIF solubility) to account for the 

potentially large solubility enhancement. These vials contained 15 ml FaSSIF-SEDDSMigylol812 or 

FaSSIF-SEDDSOliveOil and a cross-bar magnetic stirrer. Two additional channels were used as blanks 

to consolidate for potential issues with background changing FaSSIF UV absorbance over time. The 

in situ UV probes scanned the samples at predefined time intervals (30 minutes). Concentrations 

were determined by considering area-under-the-curve (AUC) in second derivative spectra, to lessen 

interference from background turbidity. A range of wavelengths were utilised to quantify drug. Data 

was interpreted using the Au Pro software (Version 5, Pion INC, MA, USA).  

Drug Physiochemical and Molecular Properties 
In excess of 250 descriptors including physiochemical and modelling descriptors were obtained from 

ADMET Predictor 9.5 (Simulations Plus, USA). Tm was obtained from literature (11, 24, 28). 

Biorelevant solubility values in FaSSIF, FeSSIF and PhBpH6.5 were obtained from literature sources 

where available (28, 33). In absence of published data, predicted solubility values were generated 

(ADMET Predictor, Ver. 9.5, Simulations Plus Inc., US). Highest licensed drug dosage strengths were 

obtained from the European Medicines Agency (EMA) or Food and Drug Administration (FDA) 

databases. 



   
 

   
 

Biopharmaceutical Data Analysis  
Apparent drug solubility values in all media are presented as mean ± standard deviation (n=3) 

(Supplementary Materials). Solubility ratios (SR) for the 30 drugs with either FaSSIF-SEDDSMigylol812 

(referred to as SRMC) or FaSSIF-SEDDSOliveOil (referred to as SRLC) versus FaSSIF were calculated 

via Equation 1:  

(1) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑅𝑅𝑅𝑅𝑆𝑆𝑆𝑆𝑆𝑆 (𝑆𝑆𝑅𝑅) = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆 𝐹𝐹𝐴𝐴𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹−𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆 𝐹𝐹𝐴𝐴𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹

 

SR standard error (SE) was calculated from Equation 2 as previously reported (24): 

(2) SE = 𝑆𝑆𝑅𝑅 𝑥𝑥 �𝑆𝑆𝐴𝐴2

𝐴𝐴2
 +  𝑆𝑆𝐵𝐵

2

𝐵𝐵2
 

Where A, B, SA and SB refer to the mean measured solubility values (24hrs) and standard errors for 

A (FaSSIF) and B (FaSSIF-SEDDS) respectively. In order to assess capacity for SEDDS to bridge the 

fasted-fed state solubility gap, SRMC and SRLC were related to comparative SRs for each drug using 

FeSSIF solubility in place of drug solubility upon SEDDS dispersion i.e. FeSSIF/FaSSIF. Graphs 

illustrating SRs were obtained using Prism (Version 5, Graphpad, USA). Linear regression was 

performed using Excel (Microsoft Office, 2016) to assess correlations between SR and individual drug 

properties or solubility in various media. To test significance between paired solubility values in 

FaSSIF-SEDDSMC versus FaSSIF-SEDDSLC the distribution of the difference was used to determine 

normality. A two sided bootstrap-paired test (5000 samples) was used to determine significance (p < 

0.05). A simple scatter plot was produced for FaSSIF-SEDDSMigylol812 versus FaSSIF-SEDDSOliveOil 

and regression coefficients fitted for interpretation and a bootstrap test for the coefficients conducted. 

A two sided independent samples t-test was used to analyse media droplet sizes and Levene’s test 

was used to check for equality of variances. A p-value < 0.05 indicated a violation of equal variance. 

All statistical analysis was conducted using SPSS Statistics (Version 26, IBM Corporation, US). 

Multivariate Data Analysis and Modelling Parameters 
Multivariate data analysis (MDA) was conducted using Unscrambler (Version 11, Camo Analytics, 

US). Molecular structures were acquired as smiles from PubChem and used as inputs for the ADMET 

Predictor software (Version 9.5, Simulations Plus, California, USA) to calculate >250 molecular 

descriptors. These were added to PSA and Tm and used as variable inputs for Principal Component 

Analysis (PCA) and Partial Least Squares (PLS) modelling. Modelling responses were the logarithm 

of SR in both SEDDS (logSRMC and logSRLC). PCA was first applied randomly to aid training/test set 

identification. A split of 70:30 (21:9 drugs) of training:test set was used to increase model robustness. 

Training set criteria was that it covered the test set chemical space along with a relatively even spread 

of SRs. Influential outliers were placed in the test set if they displayed both large residual and high 

leverage in the Influence plot. A Hotelling’s T2 ellipse was also applied for outlier detection (95% 

confidence interval).  

PLS was used to establish important descriptors for predicting SRMC and SRLC. The nonlinear 

iterative partial least squares (NIPALs) algorithm was utilised and all 250+ variables were mean 



   
 

   
 

centred, de-identified and standardized through scaling by standard deviation. Descriptors displaying 

the same value for all drugs were removed, along with skewed descriptors. To limit overfitting 

potential, a limit of two principal components was used. Variable reduction was performed to 

decrease complexity and noise. A Marten’s uncertainty test was applied to help identify important 

variables and assess stability. This involved a “jackknifing” procedure and production of sub-models to 

identify non-significant variables (34). Variable weighted beta coefficient rankings from the Important 

Variables plot and their p-values were also used to remove unimportant variables. Variables in the 

same area of the correlation loadings plot were removed leaving a singular variable. Variables near 

the centre of this plot were removed. Any change in r2 calibration and r2  validation was monitored. 

Model accuracy was validated by the Root Mean Square Error (RMSE) of validation and calibration. 

Models were validated by a full cross validation (leave-one-out) to improve power and by test sets of 

drugs not used in model development to strengthen general applicability. 

Solubility Equation for Predicting Biopharmaceutical Dose Number and DCS Class.  
It was then investigated if easily interpretable equations based on drug properties could predict SRMC 

and SRLC. Multiple linear regression (MLR) was performed using Excel (Microsoft Office, 2016) to 

investigate correlations between selected significant PLS model variables versus logSRMC and 

logSRLC. Equation development was monitored by descriptor p-values, the f-value, r2 and adjusted r2. 

The same training and test sets as PLS were used.  

DCS classification of each drug was obtained using solubility and permeability parameters outlined 

previously (22, 23). While drug permeability was predicted from the ADMET Predictor (Version 9.5, 

Simulations Plus Inc., US), solubility criteria was obtained using a dose/solubility ratio in 500mls of 

media using equation (3): 

(3) 𝐷𝐷𝑆𝑆 = 𝑆𝑆𝑆𝑆𝐷𝐷𝐴𝐴
(𝑆𝑆𝐷𝐷𝑆𝑆 )(𝑉𝑉𝐷𝐷𝑆𝑆)

 

Where, Dose is the highest dose, Ssi apparent solubility in biorelevant media i.e. FaSSIF, Vsi is the 

available fluid volume for dissolution in the small intestine (500 ml). 

Solubility criteria for DCS classification using experimentally determined solubility’s upon SEDDS 

dispersion was calculated using equation (4): 

(4) 𝐷𝐷𝑆𝑆(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆) =
𝐷𝐷𝑆𝑆𝐷𝐷𝐷𝐷

(𝐶𝐶𝐷𝐷)( 𝑉𝑉𝐷𝐷𝑆𝑆)
 

Here, Cs is apparent drug solubility upon SEDDS dispersion in biorelevant media i.e. FaSSIF-

SEDDS.  

For DCS classifications using the predicted solubility ratios (SR) from the MLR equations, Cs(Predicted) 

was calculated using equation 5:  

(5) 𝐶𝐶𝐷𝐷(𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝑆𝑆𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃) = 𝑆𝑆𝑅𝑅 ∗ 𝑆𝑆𝐷𝐷𝑆𝑆  



   
 

   
 

Where SR is the predicted solubility ratio upon SEDDS dispersion from the MLR equations and Ssi is 

apparent solubility of the compound in biorelevant media i.e. FaSSIF. Incorporating equation 5, 

solubility criteria for DCS classifications upon SEDDS dispersion was predicted using equation 6:  

(6) 𝐷𝐷𝑆𝑆(𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃𝑆𝑆𝑃𝑃𝐴𝐴𝐴𝐴𝑃𝑃) = 𝑆𝑆𝑆𝑆𝐷𝐷𝐴𝐴
(𝐶𝐶𝐷𝐷(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃))( 𝑉𝑉𝐷𝐷𝑆𝑆)

 

 

Predicting DCS Classifications of Commercial LBF Drugs  
To assess the equations’ general applicability to make predictions for drugs outside equation 

development and validation, Do(Predicted) was applied to a list of drugs that have been successfully 

commercialised as LBF products (4). DCS classifications were produced using Do(predicted) values 

(Equation 6), to predict if dose solubility limitations for the commercial drugs would be overcome upon 

SEDDS dispersion. FaSSIF solubility was obtained from literature or from the ADMET Predictor 9.5 

(Simulations Plus, USA) (Fagerberg et al., Fagerberg and Bergstrom, 2015). Predicted classifications 

were compared to classifications using FaSSIF solubility alone (Equation 3). 

 

  



   
 

   
 

Results 
SEDDS Characterisation on Biorelevant Dispersion  
SEDDSMigylol812 and SEDDSOliveOil both dispersed in FaSSIF and PhBpH6.5 to form uniform stable 

microemulsions with droplet sizes between 36-70 nm. PhB pH6.5-SEDDSMigylol812 and PhB pH6.5-

SEDDSOliveOil displayed significantly different mean droplet sizes (* p < 0.05) (Table 2). Droplet sizes 

of FaSSIF-SEDDSMigylol812 and FaSSIF-SEDDSOliveOil Ralso differed (* p < 0.05) and were smaller than 

PhBpH6.5-SEDDSMigylol812 and PhB pH6.5-SEDDSOliveOil. All PDI’s obtained were below 0.26 indicating 

droplet sizes on dispersion were moderately homogenous. In terms of charge, values close to zero 

mV were observed for PhBpH6.5-SEDDSMigylol812 and PhB pH6.5-SEDDSOliveOil as all SEDDS excipients 

were non-ionic and neutral. FaSSIF displayed an overall net negative charge (-14.67 mV), which 

remained, though reduced in magnitude, through dispersion of SEDDSOliveOil (-5.73 mV) and SEDDS 

Migylol812 (-5.35 mV) (Table 2). 

Solubility in Biorelevant SEDDS Dispersions – Comparison of SEDDS Migylol812 and SEDDS 

OliveOil  
For the 30 drugs, solubility in FaSSIF-SEDDSMigylol812 was higher than FaSSIF-SEDDSOliveOil as a 

paired bootstrap test revealed a significant difference in drug solubility between these medium chain 

and long chain lipid dispersions (* p < 0.05). Comparatively, the beta coefficient of the regression line 

for FaSSIF-SEDDSMigylol812 versus FaSSIF-SEDDSOliveOil was significant according to a bootstrap for 

coefficients test (* p < 0.05). A strong correlation was established between drug solubility in FaSSIF-

SEDDSMigylol812 and FaSSIF-SEDDSOliveOil (r2 0.97) (Figure 1), suggesting that for every 100 unit 

increase in FaSSIF-SEDDSOliveOil solubility units, FaSSIF-SEDDSMigylol812 increases on average by 

105.6 solubility units. Consequentially, this indicates that solubility determined in one lipid dispersion 

may be used to estimate solubility in the other.  

 

Solubility Ratio Trends 
Solubility ratios (SR) for 30 PWSDs upon dispersion of two SEDDS was experimentally determined 

(Figure 2), where SR >1 was seen in all cases, indicative of increased drug solubility on SEDDS 

dispersion in intestinal media. SRs ranged from 1.13 - 64.4 fold for SEDDSMigylol812 and from 1.04-59.7 

fold for SEDDSOliveOil. In presence of both SEDDS, Clotrimazole and Fenofibrate displayed the highest 

SRs. Trends in ionisable drugs were analysed. Cationic drugs appeared to consistently display high 

SR, with all such compounds displaying solubility gains of >2, with 3 and 2 drugs respectively 

displaying SR >10 fold in presence of SEDDSMigylol812 and SEDDSOliveOil. In contrast, solubility gains for 

anionic compounds appeared less pronounced, with 8/9 anionic drugs displayed SR <5. However, for 

Candesartan Cilexetil, a SR >16 was observed with both SEDDS. Candesartan Cilexetil is an 

ampholyte where the hydrogen attached to the O-CH(CH3)-O group in the cilexetil side chain is 

moderately acidic, being between the oxygen rich ester moieties, while also possessing a basic 

functional group. This ampholytic nature may have contributed to its deviation from the general trends 

observed for other anionic drugs. Neutral drugs displayed a wide range of SRs, while Celecoxib and 

Venetoclax deviated strongly from the trend of similar SRs in SEDDSMigylol812 and SEDDSOliveOil, with 

Celecoxib displaying a SRMC of 17 compared to a SRLC of 7, while Venetoclax also displayed a 



   
 

   
 

difference between SRMC and SRLC i.e. 12 versus 7. To assess SEDDS ability to mirror solubility 

increases in fed-state versus and fasted-state media, SRs obtained were compared to 

FeSSIF/FaSSIF solubility ratios. SRMC and SRLC exceeded SR FeSSIF/FaSSIF for 24 and 23 of the 30 

drugs respectively (Figure 3).  This observation confirms the utility of SEDDS as effective bio-enabling 

systems to bridge the fasted-fed state solubility gap (35).  

Computational Prediction of Biorelevant Solubility Gain with SEDDS.   
Linear Regression revealed weak correlations between both SRLC and SRMC versus individual drug 

properties. Lipophilicity and Tm, commonly utilised as guides towards LBF suitability, displayed poor 

quantitative relationships e.g. logP (r2 0.33, 0.32), logD6.5 (r2 0.43, 0.35) and Tm (r2 0.23, 0.25). 

Therefore, a combination of variables were required to improve quantitative prediction accuracy. 

Firstly, PCA verified the dataset structural diversity (Supplementary Materials). PLS model 

development resulted in predictive PLS models for both SRs (logSRMC and logSRLC). The PLS models 

used 1-2 principle components (PC) and 5-6 variables. The logSRMC 1 PC model produced 

predictions of r2 calibration 0.81, r2 validation 0.73 requiring 5 variables; logD6.5, melting point (Tm), 

molecular weight (MW), aromatic bonds as fraction of total bonds (F_AromB) and Atom-Type 

Cumulative Electrotopological State (E-state) index for methylene carbons (SssCH2). While the 

logSRLC 2 PC model required 6 variables; LogD6.5, MW, Tm, F_AromB, SssCH2 and number of 

aliphatic rings (N_AliphR) to produce predictions of r2 calibration 0.77, r2 validation 0.67. These 

models demonstrated good predictions of test sets, summarized in Table 3. 

Enhanced Biorelevant Solubility Ratio Equation  
As 5-6 descriptors could predict SRMC and SRLC, multiple linear regression was performed to produce 

easily interpretable predictive equations. All significant variables from PLS modelling were initially 

included in MLR. Insignificant variables (p > 0.05) from these initial equations were subsequently 

removed, resulting in final equations with higher F-values and significant variables. Two equations 

were produced (Table 3), both utilising 3 properties: logD6.5, Tm and F_AromB, Similarities between 

equations was expected due to the high correlation between dispersed SEDDS (Figure 1). 

Use of Predicted Solubility Ratios to Predict Drug DCS Class with SEDDS.  
Application of the equations to predict drug DCS class with SEDDS was assessed and accuracy 

compared to comparative DCS classifications using experimentally determined solubility’s upon 

SEDDS dispersion. DCS Permeability classifications were estimated using drug permeability 

predictions from the ADMET Predictor 9.5 (Simulations Plus, USA).  While use of a computationally 

derived permeability estimate has been applied in other studies (36), it must be acknowledged that 

drug specific effects may not be adequately captured in these predicted permeability estimates. In 

total, using experimental solubility’s, 10 drugs overcame a solubility limitation i.e. transitioned to DCS 

Class I/III. Using the Do(Predicted) approach (Equation 6), this transition was correctly predicted for 8/10 

drugs (Table 4) i.e. Clotrimazole, Cinnarizine, Fenofibrate, Isotretinoin, Naproxen, Terfenadine, 

Glipizide and Venetoclax. DCS Classification using Do(SEDDS)  (Equation 4) also resulted in transitions 

to “good solubility” for Candesartan Cilexetil and Celecoxib (SEDDSMigylol812 only), however, as 

previously discussed experimental results for both drugs differed significantly from general trends 



   
 

   
 

observed, which may suggest a drug specific effects in these cases that was not captured in the MLR 

equations. 

Predicted DCS Classifications of Commercial LBF Drugs.  
The utility of the Do(Predicted) approach to guide a LBF formulation strategy was subsequently assessed 

by applying the MLR equations to a range of drugs that have been successfully licensed as LBFs. A 

total of 49 drugs were selected initially, and the DCS classification using FaSSIF solubility alone was 

employed to determine DCS class. In total, 23 drugs were initially classified as DCS class I/III, and 

therefore, did not display solubility limitations. These compounds were therefore excluded from further 

analysis as a bio-enabling strategy was not considered necessary. Applying the Do(Predicted) approach 

to the remaining 26 drugs, 10 drugs were predicted to transition from poor to good solubility, and a 

further 7 drugs were found to transition from DCS Class IIb to Class IIa i.e “dissolution rate limited” 

which can offer delivery opportunities, where the compensatory influence of high permeability has 

been stated to be significant for acceptable oral absorption during the transit time in the intestine (22). 

Therefore, this approach predicted that in 65.4% (i.e. 17/26) of drugs, a SEDDS approach was likely 

to overcome solubility limited absorption. Of the 9 drugs that remained in poor solubility classification 

after applying the Do(Predicted) approach, 8 were DCS Class IV, which may indicate that decisions to 

employ a SEDDS approach were not solely influenced by solubility considerations and that other 

factors, such as increased permeability, may have been a consideration in the choice to develop as a 

LBF (Table 5).  

Discussion 
Over the last two decades, significant strides have been made in applying computational approaches 

across the full spectrum of drug development (37). In their many forms, computational tools can 

include discovering new lead candidates with optimal drug-receptor binding affinity (e.g. Quantitative 

Structural Activity Relationships (QSAR)), to guiding on optimal physiochemical profiles (e.g. 

Quantitative Structural Property Relationships (QSPR)) or predictions of biopharmaceutical properties 

including solubility and permeability (9). While the major advances in the use of computational tools 

to-date have been focused on chemical structural design to assist the selection of new drug 

substances with optimal pharmacodynamic and/or pharmacokinetic properties, commonly referred to 

as “druggability”, more recently, the use of computational tools to guide on formulation design, or 

computational pharmaceutics, have been reported (9, 38, 39). These include approaches such as 

computational biopharmaceutical drug profiling, recently reported as an approach to predict 

physiochemical and molecular properties of drug candidates that render them more or less suitable 

for formulation via a specific bio-enabling formulation approach (9). Accordingly, there exists an 

increasing focus on development of reliable computational pharmaceutics tools, capable of guiding 

selection of appropriate bio-enabling formulation strategies, in particular for drug candidates which 

display either solubility and/or permeability limitations.  

LBFs are one such bio-enabling formulation technology that exploit the benefit of lipid excipients to 

harness the absorption pathways of dietary fats, leading to increased intestinal drug solubility and 



   
 

   
 

improving intestinal absorption. The benefits of lipid excipients to increase drug solubility were clearly 

prevalent in this study, where increased solubility was observed for all 30 PWSDs following dispersion 

of the SEDDS in biorelevant media. Indeed, the solubility increases observed were on average higher 

than the fed:fasted biorelevant solubility ratio, as SRMC and SRLC exceeded SR FeSSIF/FaSSIF for 24 and 

23 of the 30 drugs respectively (Figure 3). However, despite clear benefits as a bio-enabling 

technology, it is generally considered that LBFs have an unfulfilled potential in a commercial sense. 

Over the last decade, prevalence of commercial LBFs appears to be decreasing relative to Solid 

Dispersions (SD) (4), reflecting improved scientific knowledge on the pharmaceutical benefits of SDs 

in terms of bio-enabling effects (e.g. increased drug solubility), but also an improved understanding of 

factors influencing industrial scalability and regulatory approval (e.g. long term stability). On the other 

hand, the prevalence of commercial LBFs has tended to be relatively few, reflecting gaps in 

understanding both in terms of bio-enabling benefits and from an industrial perspective, as recently 

reviewed (5).  With this in mind, significant strides have been made in the use of in silico approaches 

to reliably predict dose loading capacity in LBFs (11, 12). This current study sought to advance the 

application of computational pharmaceutics tools to consider the impact of in vivo dispersion of 

SEDDS on drug solubility in GI fluids. In recognition of the importance of in vivo dispersion on SEDDS 

performance (40), we hypothesised that computational prediction of drug solubility increases seen 

upon dispersion of SEDDS in simulated biorelevant fluids is likely to be a key performance indicator of 

whether a SEDDS approach can effectively solubilise the dose in vivo. As such, a computationally 

predicted solubility ratio (SR), based on drug properties in combination with experimentally 

determined solubility in FaSSIF, would support more informed decisions on formulation options in 

early development, by allowing estimation of a biopharmaceutically relevant Do.  

Resultantly, our hypothesis that a relationship could be elucidated between a biorelevant SR for a 

SEDDS formulation and drug properties was demonstrated and shown to be robust. We observed, on 

a dataset of 30 PWSDs using PLS computational modelling, that 5-6 drug properties were sufficient to 

reliably predict SR upon dispersion of two prototype SEDDS (logSRMC r2  0.81, logSRLC r2 0.77). 

Subsequently, employment of MLR facilitated simplified equations for SR to be generated, requiring 

only 3 drug properties namely, partition coefficient pH 6.5 (logD6.5), melting point (Tm) and aromatic 

bonds as fraction of total bonds (FArom_B). These represent common drug properties typically 

identified and integrated into an early stage pharmaceutical drug profiling environment (10), forgoing 

requirements for molecular fragment profiling or specialised chemometric software.  

Inclusion of drug properties in this computational model, implies their importance to SR upon SEDDS 

dispersion at a mechanistic level. For the logSRMC model, important descriptors were LogD6.5, Tm, 

MW, F_AromB and SssCH2. Additionally, the logSRLC model also included N_AlipR. In terms of, 

logD6.5, Tm and MW, these are widely recognised drug properties from a pharmaceutical profiling 

context. In both PLS models, logD6.5 and MW were positively correlated with SR while Tm was 

negatively correlated. Inclusion of a partition coefficient descriptor was not unexpected due to addition 

of lipophilic SEDDS to the media, while logD6.5  was previously observed to be strongly correlated with 

PWSD solubilisation in biorelevant media (25), and an influential descriptor in modelling the 



   
 

   
 

FaSSIF/PhBpH6.5 ratio (24). Additionally, distribution coefficient has been used to characterise drug 

release from SEDDS, or more specifically the drug diffusion process from the SEDDS pre-concentrate 

into aqueous media has been related to logDSEDDS/RM i.e. the distribution coefficient of solubility in 

SEDDS pre-concentrate and the release medium (41). Conversely, the negative correlation between 

Tm and SR is most likely attributable to high Tm molecules exhibiting solid state limited solubility or 

‘brick dust’ drugs, which results in poor solubility in lipid excipients, translating to more modest SR 

values upon SEDDS dispersion. While the importance of MW as a descriptor is not unexpected given 

the influence of MW on both crystalline structure characteristics and solvation properties, in contrast 

to trends observed between MW and aqueous solubility (42), MW and SR in this case are positively 

correlated. Accordingly, as increasing size negatively influences aqueous solubility, MW may be 

indirectly conveying information regarding relative drug affinity for lipophilic formulation excipients to 

that for the comparatively more aqueous environment within the biorelevant medium. Finally, a recent 

retrospective analysis of selected physiochemical and molecular properties of drugs produced 

commercially as LBF products versus commercial SD drugs and a database of drugs not produced 

via either bio-enabling approach, found logD, Tm and MW to be significant descriptors signally 

commercial success with LBFs. Similar to this study, increasing logD and MW were found to be 

significant for LBF commercial success, while a lower relative drug Tm was found to be significant to 

reach commercialisation (4). The fact that these descriptors were significant in both a retrospective 

analysis of successfully commercialised LBFs and in this prospective SR prediction upon SEDDS 

dispersion, re-emphasises their importance as contributing factors to drug-LBF technology success 

and suitability.  

Additionally, SssCH2, F_AromB and N_AlipR were significant in PLS modelling. F_AromB was 

positively correlated to SR. While this positive correlation is in contrast to previous predictions of HIF 

solubility (28), it is likely that as increasing aromatic ring count decreases aqueous solubility (43, 44), 

and an increase in affinity for lipid excipients is seen. In this case, compounds with larger aromatic 

structures are likely to have a negative influence on aqueous solubility. Upon SEDDS dispersion, 

such compounds will associate with greater affinity to the lipid rich microemulsions droplets formed, 

resulting in a higher SR. However, contributions of aromaticity are likely complex, reliant on numerous 

factors including; attached substituents and their polarity, existence of ‘through resonance’ with 

attached substituents, as well as ion-dipole and dipole-dipole interactions with other moieties. Number 

of aromatic bonds was previously significant for in silico prediction of FeSSIF/FeSSIF blank buffer, 

further highlighting the significance of aromaticity for solubility in media with increasing lipids (25). 

N_AlipR also influences drug shape and size and is also affected by adjacent moieties. Meanwhile, 

SssCH2 examines the topological and electronic features of a structure (45) and was previously 

significant in an in silico prediction of solubility in FaSSIF buffer (25).  

This work also investigated other factors influencing SR in order to understand of how drugs 

associate with biorelevant SEDDS dispersions. In terms of drug ionisation, general trends of higher 

SR for cationic (charged basic) versus anionic (charged acidic) drugs were observed. This 

observations are in line with previous research where solubility increases in biorelevant media versus 



   
 

   
 

corresponding blank buffers for bases and neutral drugs were higher than acids (25). Such increases 

for cationic drugs, have previously been suggested to stem from favourable electrostatic interactions 

between negatively charged polar head groups of taurocholate bile salts (46, 47) and positively 

charged drugs. In this case, such bile salt related electrostatic interactions are likely to occur in both 

FaSSIF and FaSSIF-SEDDS, with net negative charges observed for all three media. The general 

trend for increased SR for cationic compounds occurred despite an overall reduction in net negative 

charge in both FaSSIF-SEDDS media relative to FaSSIF, demonstrating the possibility that additional 

electrostatic interactions may exist. As both alterations to droplet sizes and to overall charge of the 

media upon SEDDS dispersion in FaSSIF versus PhBpH6.5 were observed, interactions between the 

SEDDS and biorelevant solubilising components of FaSSIF are probable. In particular, the negative 

charges of FaSSIF-SEDDSMigylol812 (-5.35 mV) and FaSSIF-SEDDSOliveOil (-5.73 mV), were 

intermediate of the overall charges of FaSSIF (-14.67 mV) and the values close to zero observed 

upon SEDDS dispersion in PhBpH6.5 (-0.76 mV, -1.27 mV), suggesting surface association of charged 

bile salts to the oil droplets formed upon SEDDS dispersion. Such an association was previously 

proposed upon initial in vitro dispersion of a SEDDS in a biorelevant media (48). It therefore could be 

suggested upon SEDDS dispersion, favourable interactions between cationic drugs and these 

charged bile salts found at the oil droplet surface may help explain the increased SRs observed. 

Previously, electrostatic interactions between cationic drugs and free fatty acids in post digestive 

media have also been suggested as a potential mechanism for increased drug solubilisation.(40). 

However, presently such interactions are poorly understood and electrostatic interactions appear to 

not be the sole solubilising mechanism involved, given that both neutral and cationic drugs also 

displayed SRs between 1.1 and 51, hence indicating that there are a number of additional factors 

governing drug associated with mixed colloidal dispersion.  

In terms of excipient effects, SEDDSMigylol812 and SEDDSOliveOil were compared. A strong correlation 

was observed between solubility in FaSSIF-SEDDSMigylol812 versus FaSSIF-SEDDSOliveOil, suggesting 

that strong correlations previously observed between drug solubility in MCT versus LCT 

preconcentrates, and C8 versus C10 triglycerides are also observed upon SEDDS dispersion of these 

exemplary MCTs and LCTs (11, 15). In all cases solubility in FaSSIF-SEDDSMigylol812 was higher than 

FaSSIF-SEDDSOliveOil, with an overall significant difference observed (* p < 0.05). However, the extent 

of solubility difference between both was relatively small i.e. for 20 out of the 30 drugs the difference 

was < 20 %. Therefore, in terms of the choice of these exemplary MCT or LCT containing SEDDS, 

the practical implications in terms of solubility difference on dispersion in biorelevant buffer appear 

relatively minor. The merits of MCT versus LCT have been widely discussed (49, 50). While in 

general, drug solubility in most examples of MCTs is higher (1, 51), following formulation digestion, 

the digestion products of LCT may confer additional advantages (52), while it must also be 

acknowledged that these trends may not be observed for all MCT and LCTs comparisons. This study 

also identified two specific drug examples, namely Celecoxib and Venetoclax, where large differences 

in SR were observed, relating to large solubility percentage differences (58% and 43%) being 

observed between both SEDDS dispersions. The possible reason for these higher associations with 

dispersed SEDDSMigylol812 for these two neutral drugs are unclear, however this highlights a potential 



   
 

   
 

limitation of computational predictions to capture specific drug-excipient solubility effects. Therefore, 

future work with a wider range of drugs could help to increase robustness of the predictions achieved.  

Overall, this work endeavoured to advance the field of computational pharmaceutics by demonstrating 

the capacity for such predictive tools to inform developability, and specifically to guide formulation 

decisions regarding SEDDS by assessing their ability to improve the biopharmaceutical dose number. 

Do(Predicted) (Equation 6) can be easily applied as a computational pharmaceutics tool to guide 

formulation suitability, requiring only 3 readily obtainable drug properties, in addition to an 

experimentally determined drug solubility in FaSSIF. The suitability of Do(Predicted) to forecast 

developability was validated by comparing predicted to experimental Do values, showing that 8/10 

drugs were correctly predicted to transition to a “good solubility” DCS class (I/III). The two drugs, 

Candesartan Cilexetil and Celecoxib that were not predicted to transition most likely reflect the 

limitation of the model to capture drug specific solubility increases, as discussed previously. 

Subsequently, to demonstrate the real-time applicability of such predictions in a pharmaceutical 

developability context, Do(Predicted) was applied to a drug dataset outside the training and test sets, 

namely drugs previously successfully produced as commercial LBF products. The Do(Predicted) 

approach predicted that two out of three (65.4%) of these drugs would offer benefits for development 

as a LBF. Furthermore, when DCS classes using FaSSIF solubility versus DCS class using predicted 

solubility with SEDDS were compared, 8 of the 9 commercial drugs which demonstrated no class 

transition were DCS Class IV. Therefore, as these predictions are based upon drug solubility gains 

with SEDDS it is likely that permeability considerations, not only solubility benefits, were influential in 

the development of these poorly soluble and poorly permeable drugs with LBFs.  

Comparable to the stated limitation of the original DCS classification system (22), potential for 

supersaturation was not explored in these predictions. This would have particular relevance for 

ionisable drugs displaying pH dependent solubility, while weakly basic drugs in particular exhibit 

higher solubility in gastric media, along with potential for intestinal supersaturation and precipitation. 

Further limitations of the predictions are also acknowledged in terms of the deliberate omission of 

exploration of the effect of SEDDS digestion on drug solubility. We therefore acknowledge that this 

tool is conservative in its approach to solubility predictions and the solubility gains are likely to be 

under predictive of the kinetic solubility’s achieved in the gastrointestinal tract. However, from an 

industry perspective, where conservative risk:benefit approaches are often applied to formulation 

development, this low risk approach may be in line with current industrial preferences. To overcome 

any conservative nature in the application of a predicted Do, we suggest incorporation of this tool into 

the refined Developability Classification System (rDCS) as part of the initial “standardised 

investigations” (23). For a weakly basic drug, customised investigations such as the small-scale 

supersaturation/precipitation experiments as specified in the rDCS could be then triggered to test the 

potential effects of supersaturation.  

 



   
 

   
 

Conclusion 
Through combinations of in silico predictions based on drug properties, and drug solubility screening 

in FaSSIF, this work demonstrated capacity for computational pharmaceutics to inform drug 

developability. By applying a computational pharmaceutics approach this study identified drug 

properties that can be used to predict SR for SEDDS dispersions. The results demonstrated that 

integration of biorelevant experimentally determined FaSSIF solubility into computationally predicted 

dose numbers (i.e. combining molecular, physiochemical and biopharmaceutical properties), allows 

more reliable biopharmaceutically relevant and data-driven decisions to be made on drug-SEDDS 

developability. While it is acknowledged that in silico predictions are not intended to completely 

circumvent experimental solubility screening, when used in conjunction with appropriate screening 

assays, such tools can guide likely successful bio-enabling approaches in a biopharmaceutically 

informed manner. In order to advance this growing field of computational pharmaceutics for LBFs, 

renewed emphasis should be placed upon creating validated and increasingly robust computational 

predictions of drug developability with bio-enabling formulations.  
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Table 1: 

 

 

Table 1: Selection of Physiochemical and Molecular Properties of Investigated Compounds collated from literature or ADMET Predictor 9.5. 0 = no charge at pH 6.5, + = 
positive charge, - = negative charge.  Am = Ampholyte. % refers to the percentage of the drug’s ionisable groups ionised at pH 6.5 according to the Henderson-Hasselbalch 
Equation.  

Drug Compound MW (g/mol) clogP logD6.5 Acid/Base 
 /Neutral 

pKa (% ionised 
at pH 6.5) 

Classification of 
Charge pH 6.5 

Tm 
(°C) 

PSA 
(Å2) 

HBD HBA Ro5 Max Dose 
(mg) 

Albendazole 
Candesartan Cilexetil 
Carbamazepine 
Carvedilol 
Celecoxib 
Cinnarizine 
Clofazimine 
Clotrimazole 
Danazol 
Dipyridamole 
Felodipine 
Fenofibrate 
Glipizide 
Griseofulvin 
Haloperidol 
Indomethacin 
Irbesartan 
Isotretinoin 
Itraconazole 
Ketoconazole 
Mefenamic Acid 
Naproxen 
Nifedipine 
Phenytoin 
Progesterone 
Spironolactone 
Tamoxifen 
Terfenadine 
Tolfenamic Acid 
Venetoclax 

265.3 
610.7 
236.27 
406.4 
381.37 
368.6 
473.40 
344.9 
337.5 
504.64 
384.3 
360.9 
445.5 
352.77 
375.9 
357.8 
428.53 
300.44 
705.7 
531.43 
241.29 
230.26 
346.34 
252.27 
314.5 
416.57 
371.52 
471.67 
261.7 
868.44 

2.81 
5.70 
2.40 
3.88 
3.81 
4.92 
7.11 
5.08 
4.26 
3.10 
5.03 
5.20 
2.12 
2.51 
3.82 
4.03 
3.68 
6.07 
4.89 
3.67 
4.91 
3.21 
3.10 
2.09 
3.94 
3.28 
6.59 
5.60 
5.13 
6.76 

2.80 
2.89 
2.40 
2.36 
3.81 
3.98 
4.54 
5.06 
4.26 
3.02 
5.03 
5.20 
1.48 
2.51 
2.06 
1.45 
2.84 
3.99 
4.89 
3.51 
2.36 
1.10 
3.10 
2.07 
3.94 
3.28 
4.61 
3.61 
2.44 
6.54 

Ampholyte 
Ampholyte 

Basic 
Basic 
Acidic 
Basic 
Basic 
Basic 

Neutral 
Basic 
Basic 

Neutral 
Acidic 

Neutral 
Basic 
Acidic 

Ampholyte 
Acidic 
Basic 
Basic 
Acidic 
Acidic 
Acidic 
Acidic 

Neutral 
Neutral 
Basic 
Basic 
Acidic 

Ampholyte 

 10.26 (0%), 2.8 (0%) 
6 (76%) 

13.9 (0%) 
7.8 (95%) 
11.1 (0%) 
8.4 (99%) 

8.51 (99%) 
6.7 (96%) 

- 
6.59 (55%) 
5.07 (3%) 

- 
5.9 (80%) 

- 
8.3 (98%) 
4.5 (99%) 

4.12 (0%), 7.4 (11%) 
4 (99%) 
3.7 (0%) 

6.75 (64%), 4.22 (0%) 
3.89 (99%) 
4.15 (99%) 
3.93 (99%) 

8.3 (2%) 
- 
- 

8.5 (99%) 
10 (99%) 

5.11(96%) 
3.4 (99%), 10.3 (99%) 

0 
- 
0 
+ 
0 
+ 
+ 
+ 
0 
+ 
0 
0 
- 
0 
+ 
- 
0 
- 
0 
+ 
- 
- 
- 
0 
0 
0 
+ 
+ 
- 
0 

209 
163 
190.2 
114.5 
158 
119 
211 
142 
227 
163 
143 
79 
201.5 
220 
151 
160 
180.5 
174 
166 
146 
230.5 
153 
173 
296.5 
128 
134.5 
97 
147 
213 
138 

67.01 
143.3 
46.3 
75.7 

77.98 
6.48 
40 

17.8 
46.3 
145 
64.4 
52.6 

130.15 
71.1 
40.5 
68.5 

87.13 
37.3 

104.7 
69.06 
49.3 
46.5 

110.45 
58.2 
34.1 

60.44 
12.5 
47.3 
49.3 

172.03 

2 
1 
1 
3 
1 
0 
1 
0 
1 
4 
1 
0 
3 
0 
1 
1 
1 
1 
0 
0 
2 
1 
1 
2 
0 
0 
0 
2 
2 
3 

3 
8 
1 
5 
3 
2 
4 
1 
2 
12 
3 
4 
6 
6 
3 
4 
5 
2 
9 
6 
3 
3 
5 
2 
2 
3 
2 
3 
3 
10 

0 
1 
0 
0 
0 
1 
1 
1 
0 
2 
0 
1 
0 
0 
0 
0 
0 
1 
2 
1 
1 
0 
0 
0 
0 
0 
1 
1 
0 
2 

200 
32 

300 
25 

200 
25 
50 
10 

200 
200 
10 

150 
10 

500 
20 
50 

300 
40 

100 
200 
500 
500 
90 

300 
200 
100 
20 
60 

200 
100 



   
 

   
 

Table 2:  

 

 

Table 2: Size determination and ζ-potential of the media used in the course of the analysis demonstrating that 

both SEDDS dispersed uniformly to form stable microemulsions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Scatter plot of Solubility in FaSSIF-SEDDSMigylol812 versus Solubility in FaSSIF-SEDDSOliveOil displaying 

a high correlation (r2 = 0.9722). Linear regression line: FaSSIF-SEDDSMigylol812 = 42.47 + 1.056(FaSSIF-

SEDDSOliveOil) 

 

 

 

Media Size nm (SD) PDI (SD) ζ-potential mV 
(SD) 

PhBpH6.5-SEDDS Migylol812 
PhBpH6.5-SEDDSOliveOil 

FaSSIF-SEDDS Migylol812 
FaSSIF-SEDDSOliveOil 

FaSSIF 

47.71 (1.587) 
70.18 (3.003) 
36.41 (1.096) 
44.76 (0.303) 
62.52 (5.867) 

0.147 (0.01) 
0.259 (0.009) 
0.081 (0.014) 
0.197 (0.002) 
0.234 (0.073) 

-0.76 (0.49) 
-1.27 (0.32) 
-5.35 (0.31) 
-5.73 (0.16) 
-14.67 (0.42) 



   
 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: SR (drug solubility in dispersed SEDDS media/FaSSIF) achieved for Neutral, Cationic and Anionic 

Drugs (pH 6.5). Higher SRs are seen in general for Cationic and Neutral drugs versus Anionic drugs where every 

anionic drug except Candesartan Cilexetil achieved a SR < 5 in both SEDDS. 

 

 

 

 

 

 

 

 



   
 

   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: SR (drug solubility in both dispersed SEDDS media/FaSSIF and FeSSIF/FaSSIF). FeSSIF/FaSSIF SR 
is overcome with SEDDSMC for 24 drugs and with SEDDSLC for 23 drugs, demonstrating ability of the SEDDS to 
bridge the FeSSIF-FaSSIF solubility gap.  

 

 

 

 

 

 

 

 

 

 



   
 

   
 

 
PLS Models 
 

     

 
Y-Variable 

 

 
logSRMC 

 

   
Y-Variable 

 

 
logSRLC 

 
X-Variables 

 

 
logD6.5 

MW 
Tm 

F_AromB 
SssCH2 

 
 

 
 
 

  
X- Variables 

 
 

 
logD6.5 

MW 
Tm 

F_AromB 
SssCH2 
NAlip_R 

 
Explained Y- 
Variance (%) 

 
No. of PC’s 

 
RMSEC 

 
RMSEP Cross Validation 

 
RMSEP Test Set (n=7) 

 
r2 (Calibration) 

 
r2 (Validation) 

 
81% 

 
 

1 
 

0.19 
 

0.24 
 

0.36  
 

0.81 
 

0.73 
 

   
Explained Y- 
Variance (%) 

 
No. of PC’s 

 
RMSEC 

 
RMSEP Cross Validation 

 
RMSEP Test Set (n=7) 

 
r2 (Calibration) 

 
r2 (Validation) 

 
77% 

 
 

2 
 

0.20 
 

0.26 
 

0.37  
 

0.77 
 

0.67 

 
MLR  Equations 
 

      

 
Y Variable 

 
r2 

 
RMSETr 

 
RMSETe 

(n=7) 

 
F-
value 

 
p-value 

 
Equation 

 
logSRMC 

 
 
 

logSRLC 

 
0.74 

 
 
 

0.69 

 
0.23 

 
 
 

0.43 

 
0.39 

 
 
 

0.37 

 
16.02 

 
 
 

12.64 

 
3.34x10-5. 

 

 

 

1.37x10-4 

 

 

 
𝑆𝑆𝑆𝑆𝑙𝑙𝑆𝑆𝑅𝑅𝑀𝑀𝐶𝐶
=  0.6 +  0.2(𝑆𝑆𝑆𝑆𝑙𝑙𝐷𝐷6.5)  
+  1.02(𝐹𝐹_𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴𝐴𝐴) –  0.01(𝑇𝑇𝑚𝑚) 

 
𝑆𝑆𝑆𝑆𝑙𝑙𝑆𝑆𝑅𝑅𝐿𝐿𝐶𝐶
=  0.54 +  0.17(𝑆𝑆𝑆𝑆𝑙𝑙𝐷𝐷6.5)      
+  1.04(𝐹𝐹_𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴𝐴𝐴) –  0.01(𝑇𝑇𝑚𝑚) 

 
 

 

Table 3: Overview of the PLS models and MLR equations produced for SRMC and SRLC based on drug 
descriptors. Tr = Training Set, Te = Test Set. Where calibration refers to the training set and validation refers to 
the test set. RMSE = Root Mean Square Error. RMSEC = Root Mean Square Error of Calibration. RMSEP = Root 
Mean Square Error of Prediction.  

 

 

 

 

 

 

 



   
 

   
 

 

 FaSSIF  SEDDSMigylol812 SEDDSMigylol812 SEDDSOliveOil SEDDSOliveOil  

Do Equation Used: Do Do(SEDDS) Do(Predicted) Do(SEDDS) Do(Predicted) DCS Class 
Transition 

Drug DCS 
Class 

DCS Class DCS Class DCS Class DCS Class  

Albendazole IIb IIb IIb IIb IIb  

Candesartan Cilexetil IV III IV III IV IV → III 

Carbamezapine IIa IIa IIa IIa I  

Carvedilol I I I I I  

Celecoxib IIb I IIb IIa IIb IIb → IIa/I 

Cinnarizine IIa I I I I IIa → I 

Clofazimine IIb IIa IIa IIa IIa IIb → IIa 

Clotrimazole IIa I I I I IIa → I 

Danazol IIa/IIb IIa IIa IIb IIa  

Dipyridamole IV IV IV IV IV  

Felodipine I I I I I  

Fenofibrate IIb I I I I IIb → I 

Glipizide IV III III III III IV → III 

Griseofulvin IIb IIb IIb IIb IIb  

Haloperidol I I I I I  

Indomethacin I I I I I  

Irbesartan IV IV IV IV IV  

Isotretinoin IIa I I I I IIa → I 

Itraconazole IIb IIb IIb IIb IIb  

Ketoconazole IIb IIb IIa/IIb IIb IIb  

Mefenamic Acid IIb IIa IIa/IIb IIa IIb  

Naproxen IIa I I I I IIa → I 

Nifedipine IIb IIa IIa/IIb IIa IIa/IIb IIb → IIa 

Phenytoin IIb IIb IIb IIb IIb  

Progesterone IIb IIa IIa IIa IIa IIb → IIa 

Spironolactone IIa/IIb IIa IIa IIa IIa  

Tamoxifen I I I I I  

Terfenadine IIa I I I I IIa → I 

Tolfenamic Acid IIa IIa IIa IIa IIa  

Venetoclax IV III III IV III IV → III 

 

 

 

Table 4: DCS classification of the 30 drugs using both experimental and predicted solubility values. DCS Classes 

are shown using FaSSIF solubility and both experimentally and predicted solubility’s upon SEDDSMigylol812 and 

SEDDSOliveOil dispersion. The different Do equations used to obtain the solubility criteria are also shown.  

 

 

 



   
 

   
 

 

 
FaSSIF  SEDDSMigylol812  SEDDSOliveOil  

 
 

Do Equation Used Do Do(Predicted) Do(Predicted) DCS Class 
Transition 

 

Drug DCS Class DCS Class DCS Class 
 

 

Clomethiazole Edisilate IIa I I IIa → I  

Dronabinol IIa I I IIa → I  

Ergocalciferol IIa I I IIa → I  

Isotretinoin IIa I I IIa → I  

Cholecalciferol IIb I I IIb → I  

Clofazimine IIb IIa IIa IIb → IIa  

Efavirenz IIb I IIa IIb → I/IIa  

Enzalutamide IIb IIa IIa IIb → IIa  

Ethyl Eicosapentaenoate IIb IIa IIb IIb → IIa  

Fenofibrate IIb I I IIb → I  

Loratidine IIb IIa IIa IIb → IIa  

Menatetrenone IIb IIa IIa IIb → IIa  

Nimodipine IIb I IIa IIb → I/IIa  

Progesterone IIb IIa IIa IIb → IIa  

Teprenone IIb IIa IIa IIb → IIa  

Tocopherol Nicotinate IIb I IIa IIb → I/IIa  

Amprenavir IV III III IV → III  

Nintedanib IIb IIb IIb 
 

 

Azithromycin IV IV IV 
 

 

Ciprofloxacin IV IV IV 
 

 

Cyclosporin A IV IV IV 
 

 

Lopinavir IV IV IV 
 

 

Ritonavir IV IV IV 
 

 

Saquinavir IV IV IV 
 

 

Tipranavir IV IV IV 
 

 

Vinorelbine Tatrate IV IV IV 
 

 

 

 

Table 5: DCS Classification of commercial LBF drugs which displayed dose solubility limitation in FaSSIF (Class 

IIa, IIb, IV) using FaSSIF solubility and both experimentally and predicted solubility’s upon SEDDSMigyolol812 and 

SEDDSOliveOil dispersion. 
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1. Apparent solubility values in PhBPh6.5, FaSSIF, FeSSIF, FaSSIF-SEDDSMigyolo812, FaSSIF-SEDDSOliveOil, and SR for SEDDSMigylol812, SEDDSOliveOil, and FeSSIF 
versus FaSSIF. FE = Food Effect.  

 

Drug Compound PhBpH6.5 ± SD 
 

(µg/mL) 

FaSSIF ± SD 
 

(µg/mL) 

FeSSIF ± SD 
 

(µg/mL) 

𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 −
𝑭𝑭𝑺𝑺𝑺𝑺𝑺𝑺𝑭𝑭𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 ± 

SD 
(µg/mL) 

𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭 −
𝑭𝑭𝑺𝑺𝑺𝑺𝑺𝑺𝑭𝑭𝑶𝑶𝑴𝑴𝑴𝑴𝑶𝑶𝑶𝑶𝑶𝑶𝑴𝑴𝑴𝑴 ± 

SD 
(µg/mL) 

logSRMC logSRLC logFE 

Albendazole 
Candesartan Cilexetil 
Carbamazepine 
Carvedilol 
Celecoxib 
Cinnarizine 
Clofazimine 
Clotrimazole 
Danazol 
Dipyridamole 
Felodipine 
Fenofibrate 
Glipizide 
Griseofulvin 
Haloperidol 
Indomethacin 
Irbesartan 
Isotretinoin 
Itraconazole 
Ketoconazole 
Mefenamic acid 
Naproxen 
Nifedipine 
Phenytoin 
Progesterone 
Spironolactone 
Tamoxifen 
Terfenadine 
Tolfenamic acid 
Venetoclax 

0.9 ± 0.4 
- 

227.1 ± 22.9 
46 

1.54234 ±0.51 
1.4 

- 
2.3 ± 0.3 

0.3 ± 0.05 
6.35 

1.187 
0.3 ± 0.0 

22.5 ± 0.6 
15 

77.81 
219.0 ± 78.0 
102.0 ± 4.0 

- 
- 

6.5 
- 

230.26 
11.5 

39.07 
11.16 

22 
5.9 

13.6 ± 1.3 
27.404 

0.04 

1.9 ± 0.0 
8.26 

266.1 ± 31.4 
55.9 

34.09 ± 5.12 
13.4 
6.2 

3.5 ± 0.4 
9.6729 ±1.89 

11.56 
54.278 

9.6 ±1.4 
31.3 ± 3.3 

20 ±0.9 
110.51 

443.0 ± 10.0 
112.0 ± 3.4 

52.21 
0.33 

25.91 ± 0.70 
60 

492.29 
27.8 

42.84 
25.56 
25.8 
156 

89.0 ± 4.0 
62.779 

20.729 ±0.51 

6.1 ± 0.1 
10 

524.1 ± 25.0 
305.0 ± 2.0 

226 
112 ± 2.0 

29.6 
71.1 ± 6.0 
28.8 ± 0.4 

137.2 ± 6.2 
237.0 ± 1.0 
40.4 ± 2.9 
4.3 ± 0.2 

29.2 ± 3.4 
120.9 ± 7.3 
109.0 ± 7.0 

261 
321 
0.7 

403.3 ± 16.5 
649 
401 

46.1 ± 1.0 
283 

78.6 ± 16.2 
46.0 ± 2.5 

236.0 ± 13.0 
256 

41.0 ± 0.5 
28.4 ± 2.2 

9.62 ± 1.28 
138.9 ± 9.6 

388.127 ± 13.46 
634.098 ± 5.46 
579.82 ± 33.83 
228.9 ± 10.84 

57.8 ± 1.68 
225.43 ± 17.8 
59.09 ± 1.44 
42.90 ± 1.19 

337.47 ± 29.1 
482.39 ± 47.175 

35.47 ± 0.62 
37.35 ± 0.8675 
347.44 ± 25.48 

811.48 ± 9.1 
306.29 ± 31.19 

188.3 ±6 .90 
4.763 ± 0.16 

109.32 ± 5.65 
212.46 ± 13.292 
2356.17 ± 95.78 

124.78 ± 9.93 
61.51 ± 7.24 
89.34 ± 5.98 
61.9  ±7.08 

1081.47 ± 56.36 
371.23 ± 15.46 
311.56 ± 16.03 

246.340 ± 25.75 

7.44 ± 1.634 
138.49 ± 4.63 

379.83 ± 16.47 
442.88 ± 32.49 
240.02 ± 16.07 
194.05 ± 9.45 
47.12 ± 4.24 

208.95 ± 11.27 
41.61  ± 3.79 

37.873 ± 0.907 
245.36 ± 14.63 
286.55 ± 26.29 
32.523 ± 1.27 
34.15 ± 0.57 

243.65 ± 14.83 
794.21 ± 4.77 
277.5 ± 37.22 
155.53 ± 6.30 

2.89 ± 0.5 
98.21 ± 7.43 

198.6 ± 13.19 
2255.05 ± 75.76 

101.72 ± 9.65 
56.29 ± 5.58 
62.72 ± 1.21 
47.8 ± 6.05 

882.21 ± 20.79 
329.95 ± 4.28 
224.37 ± 7.13 

138.83 ± 16.37 

0.704 
1.227 
0.164 
1.055 
1.230 
1.232 
0.969 
1.809 
0.786 
0.568 
0.794 
1.706 
0.054 
0.272 
0.497 
0.263 
0.436 
0.556 
1.159 
0.625 
0.549 
0.672 
0.652 
0.158 
0.544 
0.380 
0.839 
0.620 
0.696 
1.075 

0.593 
1.225 
0.152 
0.898 
0.848 
1.161 
0.881 
1.776 
0.633 
0.516 
0.655 
1.480 
0.017 
0.233 
0.343 
0.253 
0.395 
0.474 
0.943 
0.579 
0.520 
0.661 
0.564 
0.117 
0.389 
0.267 
0.753 
0.569 
0.553 
0.825 

0.507 
0.083 
0.294 
0.737 
0.823 
0.922 
0.679 
1.311 
0.473 
1.074 
0.640 
0.624 
-0.862 
0.164 
0.039 
-0.609 
0.367 
0.789 
0.327 
1.192 
1.034 
-0.089 
0.220 
0.820 
0.488 
0.251 
0.180 
0.459 
-0.185 
0.137 

 



   
 

   
 

2. RP-HPLC/UV methods for the 6 drugs completed using the Shake Flask Method with HPLC-UV analysis.  

Drug  Column A B Ratio Temp (°C) Flow Rate 
(ml/min) 

Inj. Vol (µL) λ (nm) 

Danazol Symmetry C18 5 µm, 4,6 x 150 mm  ACN Water 55:45 25 1 50 286 
Ketoconazole Symmetry C18 5 µm, 4,6 x 150 mm  Phosphate 

buffer 10 mM, 
pH 8.5 

ACN 
 

40:60 25 0.8 50 297 

Venetoclax Zorbax Eclipse Plus-C18 column (5 μm, 4.6 
mm x 150 mm) including Zorbax 156 Eclipse 
Plus-C18 guard column (5 μm, 4.6 mm x 
12.5 mm) 

ACN + 0.5 % TFA  Water + 0.5 
% TFA 

53:47 40 1 50 316 

 Fenofibrate Symmetry C18 5 µm, 4,6 x 150 mm  NaAc 25 mM, 
pH 5.0 
 

ACN 20:80 25 1 50 287 

Celecoxib Symmetry C18 5 µm, 4,6 x 150 mm  ACN + 
0,15%TEA, pH3 

Water  55:45 25 1 20 254 

Griseofulvin Symmetry C18 5 µm, 4,6 x 150 mm  ACN Water 55:45 25 1 50 292 
 

 

 

 

 

 

 

 

 

 

  



   
 

   
 

3. Principle Component Analysis (PCA) scores plot detailing the chemical space occupied by 

the Training and Test Sets of the dataset.  

 

61% of the variation in the dataset is explained by PC-1 and PC-2 and Venetoclax is outside the 

95% confidence level and was therefore placed in the test set.  

 

 

 

 

4. Preliminary Studies Testing the Two Solubility Methods Used.  

Drug Solubility in FaSSIF-SEDDSMigylol812 and FaSSIF-SEDDSOliveOil completed for both shake flask and 
µDISS methods using Danazol. Solubility’s were obtained using FaSSIF-V2 for the µDISS method, 
which contains a smaller concentration of lecithin, due to powder availability at that time, therefore 
a ratio of solubility in MC/LC was calculated to test similarity of results instead of direct comparisons. 

Results:  

 Shake Flask  uDiss Ratio MC/LC 
Solubility 

FaSSIF-SEDDSMigylol812 59.089 µg/mL (±1.44) 37.130 µg/mL (±0.589) Shake Flask = 1.42 
FaSSIF-SEDDSOliveOil 41.612 µg/mL (± 3.79). 22.878 µg/mL (±1.138) µDISS = 1.6 
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