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Abstract

This thesis divides into two distinct parts, both of which are underpinned by the

tight-binding model. The first part covers our implementation of the tight-binding

model in conjunction with the Berry phase theory of electronic polarisation to

probe the atomistic origins of spontaneous polarisation and piezoelectricity as well

as attempting to accurately calculate the values and coefficients associated with

these phenomena. We first develop an analytic model for the polarisation of a one-

dimensional linear chain of atoms. We compare the zincblende and ideal wurtzite

structures in terms of effective charges, spontaneous polarisation and piezoelec-

tric coefficients, within a first nearest neighbour tight-binding model. We further

compare these to real wurtzite structures and conclude that accurate quantitative

results are beyond the scope of this model but qualitative trends can still be de-

scribed. The second part of this thesis deals with implementing the tight-binding

model to investigate the effect of local alloy fluctuations in bulk AlGaN alloys

and InGaN quantum wells. We calculate the band gap evolution of Al1−xGaxN

across the full composition range and compare it to experiment as well as fitting

bowing parameters to the band gap as well as to the conduction band and valence

band edges. We also investigate the wavefunction character of the valence band

edge to determine the composition at which the optical polarisation switches in

Al1−xGaxN alloys. Finally, we examine electron and hole localisation in InGaN

quantum wells. We show how the built-in field localises the carriers along the

c-axis and how local alloy fluctuations strongly localise the highest hole states in

the c-plane, while the electrons remain delocalised in the c-plane. We show how

this localisation affects the charge density overlap and also investigate the effect

of well width fluctuations on the localisation of the electrons.
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Chapter 1

Introduction and overview

We begin this thesis with a short background and motivation, in Sec 1.1, on why

we studied the electronic properties of III-nitride material using the tight-binding

model. This is then followed in Sec.1.2 by an outline of the structure of the thesis

and an overview of the primary results.

1.1 Background and motivation

III-nitride semiconductors are a technologically important set of materials. The

alloys of InN, GaN and AlN have photon emission wavelengths that span a range

from the near infrared, through the visible spectrum and into the deep ultraviolet

giving them a wide range of applications. These applications include, but are not

restricted to, detectors, light-emitting diodes, and lasers operating in the UV range

with applications such as power electronics, optical storage, medical diagnostics

and treatment, sterilization processes, Blu-ray DVD lasers and the basis for white

light LEDs [1, 2]. Consequently interest in the fundamental properties of these

materials has steadily grown over the past 20 years since the first demonstration of

III-nitride LEDs by Nakamura and co-workers in 1993, work for which he, Amano

and Akasaki were awarded the Nobel Prize for Physics in 2014.

As appealing as the applications of the III-nitride materials are, they are equally

difficult to realise. One of the fundamental differences between the III-nitrides

(to clarify, by III-nitrides we are referring to InN, GaN, AlN and their respective

alloys) and other III-V semiconductors is the structure. The III-nitrides form in

1
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the wurtzite crystallographic phase while III-V materials (such as arsenide- and

phosphide-based compounds from which devices such as LEDs and laser diodes

are commonly fabricated) form in the zincblende phase. When fabricating low-

dimensional structures, such as quantum wells, wires or dots from wurtzite ma-

terials spontaneous polarisation contributes to a ‘built-in’ potential that localises

electrons and holes at opposite interfaces, decreasing their overlap and also, as a

result, the optical recombination efficiency of the device. Another characteristic

of III-nitride materials is their strong piezoelectric response. Piezoelectricity is

the name given to the phenomenon where applying strain to certain (polar) crys-

talline solids induces a polarisation field in the material. Strain, induced from

either the large lattice mismatch at the interfaces or from local alloy fluctuations,

further contributes to the built-in polarisation potential in III-nitride nanostruc-

tures. Defects in the growth of these structures also affect optical recombination in

these devices, but in spite of high defect densities they still exhibit high quantum

efficiencies [3, 4]. In order to better inform the growth and design of III-nitride

based materials and devices, both in Tyndall and by partners in European projects

(DEEPEN and ALIGHT), we investigated these processes and effects at an atom-

istic level.

In order to model these effects we employed the semi-empirical tight-binding model

to calculate the electronic structure of III-nitride materials. The strongest features

of the tight-binding (TB) model are that it is atomistic and can deal with large

nanostructures (up to ≈ 105 − 106 atoms). It employs a minimal basis set con-

structed from linear combinations of atomic-like orbitals. This atomic basis allows

us to investigate the effect of specific interactions and to calculate the electronic

structure of large supercells while still being able to include atomistic effects. We

employ the TB model in conjunction with the Berry phase theory of modern po-

larisation to analyse the microscopic origins of spontaneous polarisation and the

piezoelectric effect in wurtzite materials. We also implement the TB model to

include local atomistic effects in supercell calculations of bulk Al1−xGaxN alloys

and InxGa1−xN quantum wells.

1.2 Thesis outline and overview

Chapter 2, Theory and Methods, introduces the TB model as well as the Berry

phase theory of polarisation. This chapter is written with the audience of a final
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year undergraduate or first year postgraduate physics student in mind so as to

serve as a general introduction to the tight-binding method. We begin with a

discussion of periodic crystal lattices and how we can exploit their symmetry to

simplify our calculations. Then after introducing the idea of Bloch sums we develop

the TB model and show how the Hamiltonian is constructed. The foundations of

the modern theory of polarisation are presented in the second half of this chapter,

where we introduce the concept of the Berry Phase.

Chapter 3, Berry phase polarisation calculations of III-V materials, deals with

our implementation of the TB model in conjunction with the modern theory of

polarisation to investigate, on a microscopic scale, the piezoelectric effect and

spontaneous polarisation in III-nitride semiconductors. We first present an ana-

lytic implementation of this theory by studying a linear chain of atoms. With a

minimal basis of one s-orbital per site we show how the Berry phase varies linearly

with strain and also linearly for small values of the bond polarity αp. This simple

model helped us to build an understanding of how to implement and benchmark

the numerical calculations for the full 3-dimensional structure.

For the full 3-dimensional calculations we first show the similarity between ideal

wurtzite and zincblende structures in terms of effective charges, spontaneous po-

larisation and piezoelectric coefficients, within a first nearest neighbour TB model.

We demonstrate how accurate quantitative results are inaccessible with this model

and explain how this may be due to a fundamental limitation of the model. We

investigate the effect of specific third nearest neighbour interactions on the spon-

taneous polarisation and crystal field splitting of ideal wurtzite structures. When

investigating real wurtzite (which differs from the ideal case in that not all the

bond lengths and bond angles are equal) we show the parameter sensitivity of the

model. We again show how quantitative results are beyond the scope of this model

but demonstrate that qualitative trends can be described.

In terms of timeline, this work represents the first three years of my research.

Extensive efforts were undertaken to improve the model and extract useful re-

sults but this proved, ultimately fruitless and had to be abandoned. We then

changed focus for the second half of the thesis, implementing our knowledge of the

TB model within supercell calculations of III-nitride alloys. In conjunction with

models previously developed within the Photonics Theory Group here in Tyndall,

we analysed the effect of local alloy fluctuations, on an atomistic scale, on the

electronic properties of bulk Al1−xGaxN alloys and InxGa1−xN quantum wells.
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In chapter 4, Band gap bowing and optical polarisation switching in Al1−xGaxN

alloys, we present a detailed theoretical study of the band gap bowing of wurtzite

AlGaN alloys over the full composition range. Our theoretical framework, based

on the atomistic TB model, includes local strain and built-in potential variations

due to random alloy fluctuations. We extract a bowing parameter for the band

gap of b = 0.94 eV, which is in good agreement with experimental data. Our

analysis shows that the bowing of the band gap mainly arises from bowing of

the conduction band edge; for the composition dependence of the valence band

edge energy we find a close to linear behaviour. Finally, we investigate the wave

function character of the valence band edge as a function of GaN content x. Our

analysis reveals an optical polarisation switching around x = 0.75, which is in the

range of reported experimental data. This work has been accepted for publication

in Physica Status Solidi (b).

Chapter 5, Electron and hole localization in InxGa1−xN quantum wells, presents

our analysis of how local alloy fluctuations affect the localisation of electron and

hole state in InxGa1−xN quantum wells. We examined two different compositions;

In0.10Ga0.90N and In0.25Ga0.75N for structures both with and without well width

fluctuations (WWFs). The QWs with the higher InN composition of 25% were

found to have a strong built-in potential which confined the carriers to opposite

sides of the QW. In addition to this the local alloy variations gave rise to local

strain and polarisation potential fluctuations which were found to strongly localise

the highest hole states in the c-plane. This was shown to affect the charge density

overlap with the electrons, which were found to be delocalised in the c-plane. The

WWFs were found to strongly localise the first two electron states while having no

effect on the hole states. The charge density overlap was slightly reduced compared

to the flat QWs as a result of the WWFs. The In0.10Ga0.90N QWs, as a result of

their lower InN composition, had a lower built-in field. This reduced built-in field

allow both the electron and hole states to extend further into the QW resulting in

increased charge density overlap in general. Some of this work has been accepted

for publication in Physical Review B, while the rest of it is currently in preparation.

Finally, in chapter 6, we present our conclusions drawn from the work presented

in this thesis. We summarise the results and outline possible future areas of

investigation.



Chapter 2

Theory and Methods

This chapter presents the formal theory behind the models implemented in this

thesis. It begins with a discussion on periodic crystal lattices in Sec. 2.1 , Sec. 2.2

introduces the semi-empirical tight binding model, both formally and practically,

and finally Sec. 2.3 gives an exposition of the Berry phase theory of polarisation.

2.1 Periodic Crystal Lattices

The materials studied in this thesis are all tetrahedrally bonded crystalline solids.

Our aim is to determine the electronic and optical properties of these materials,

by solving the time independent Schrödinger equation (TISE):

Hψ(r) = Eψ(r). (2.1)

This is an eigenvalue problem where the Hamiltonian operator H, which repre-

sents the total energy of the system, acts on a wavefunction ψ to give the energy

eigenvalue E associated with ψ. The Hamiltonian takes the form

H =
p2

2m0

+ V0(r), (2.2)

where p is the momentum operator and V0(r) is the potential, which includes

terms due to the Coulomb potentials of the nuclei and the inner electrons, as well

5
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as others due to the repulsive interaction between the valence electrons.

V0(r) =
1

4πε0

N∑
i

e2Z

|r − r′|
+ ... (2.3)

We cannot solve this Hamiltonian analytically; there are simply too many terms.

Even computationally it is not possible to diagonalise this Hamiltonian with the

exact potential. To proceed we make approximations to this potential. These

approximations come in various flavours and varieties, and will be discussed in

more detail in the next section. Before we implement any approximations, we first

utilise the periodicity and symmetry of the crystal structure which are embedded

in the potential.

Firstly, due to the periodic structure of the crystal the potential is invariant under

translations by a lattice vector Rn

V0(r) = V0(r + Rn). (2.4)

A lattice vector connects two identical points in an infinite crystal lattice and is

expressed in terms of basis vectors ai that span the unit cell. The unit cell is the

smallest part of the structure that can be copied ad infinitum in the directions of

the basis vectors to create an infinite crystal, with an arbitrary lattice vector Rn

then given by

Rn =
3∑
i

niai, ni ∈ Z (2.5)

The points connected by lattice vectors in the crystal, being identical, must also

have equal electron probability distributions:

|ψ(r)|2 = |ψ(r + Rn)|2 . (2.6)

This implies that the wavefunctions themselves must be identical up to a phase

factor:

ψ(r + Rn) = eiφψ(r). (2.7)

One possible ansatz for the form of this phase factor φ is:

φ = k ·Rn + 2πN (2.8)
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where the wavenumber k represents the crystal momentum and the 2πN term

reflects the fact that the phase is invariant modulo 2π, which is again a consequence

of the translational symmetry of the crystal. We can redefine this term as a

reciprocal lattice vector Gm:

eik·Rn ≡ ei(k+Gm)·Rn (2.9)

and then expand Gm in a basis bi:

Gm =
3∑
i

mibi, mi ∈ Z. (2.10)

If we choose bi so that:

bi · aj = 2πδij, i, j ∈ {1, 2, 3} (2.11)

we still have:

Gm ·Rn =
∑
ij

minjbi · aj = 2πN. (2.12)

Then, by construction, bi is orthogonal to aj and ak for i 6= j, k and bi can be

written as:

bi = caj × ak. (2.13)

The scaling constant c can be found by taking the dot product of this with ai:

ai · bi = cai · (aj × ak) = 2π. (2.14)

This then gives:

bi = 2π
aj × ak

ai · (aj × ak)
. (2.15)

Thus, by defining a real space unit cell spanned by the basis vectors ai we also

define a reciprocal lattice unit cell spanned by bi. The real lattice unit cell, know

as the Wigner-Seitz cell, is invariant under translations by Rn and represents a

reproducible part of the crystal structure that can be copied to give an infinite

lattice. The reciprocal lattice unit cell, know as the Brillouin Zone, is invariant

under translations by Gm. Looking at Eq. 2.9 we can restrict k to the range

−Gi

2
≤ ki ≤ Gi

2
(where i denotes direction) since all greater values of k are

accessed by adding multiples of Gi. Hence this resticted range of k, known as

the first Brillouin zone, represents the entire dynamics of an electron in a periodic
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crystal. This reciprocal space is also known as ‘k-space’ or ‘quasi-momentum

space’, since the wave vector k is related to the momentum via p = ~k. Formally,

the reciprocal lattice is the dual of the real lattice; the reciprocal lattice of the

reciprocal lattice is the real lattice. It can also be thought of as a discrete Fourier

transform of the real lattice.

Considerations (similar to Eq. 2.7) of what form the wave function of an electron

in a periodic crystal should take lead F. Bloch to formulate the theorem that takes

his name. It states that the wave function can be descibed as the product of a

slowly varying plane wave times a rapidly varying cell periodic function, known as

the Bloch function. The plane wave part describes the extended behaviour of the

state due to the periodicity of the crystal.

ψn(k, r) = eik·run(k, r). (2.16)

The Bloch function, un(k, r), changes spatially on an atomic scale and describes

the variation within the unit cell. These wave functions are complete and or-

thonormal, ∫
Ω

d3rψ∗n(k, r)ψn′(k
′, r) = δn,n′δk,k′ (2.17)

where Ω is the unit cell volume. The wave functions are normalized to the unit cell

volume since we employ periodic boundary conditions. Periodic boundary condi-

tions assume that one surface of the unit cell is connected to the opposite surface,

for each direction (i.e. in an orthorhombic cell the top surface is connected to the

bottom, left to right and back to front). These periodic boundary conditions allow

us to model infinite crystals with a finite number of atoms while also eliminating

surface effects.

2.2 Tight Binding Model

We now turn our attention to the tight binding (TB) model, the central method

employed in this thesis to calculate the allowed energies and corresponding eigen-

vectors of an electron in a crystal lattice. The TB model evolved from the linear

combination of atomic orbitals (LCAO) model and its name contains the first ap-

proximation of the TB model; the wave functions are described by a superposition
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of the electron states of the isolated atoms:

ψ(r) =
∑
n

anφn(r). (2.18)

The next assumption made by this model is contained within it own name: namely

that the electrons are tightly bound to their respective atoms. This model is most

appropriate when electrons move slowly through the crystal, or not at all in the

case of an insulator, and therefore ‘belong’ to an atom for an appreciable amount

of time before they move on. This means electrons on neighbouring sites have

little overlap and next or second nearest neighbours (NN) have negligible overlap

as the relevant overlap integrals decrease exponentially with distance. As a result,

only first NN interactions are taken into account in our model. The basis of

isolated atoms used consists of the valence electrons that contribute to bonding

and antibonding states. To model the valence bands and also the first conduction

band near the zone centre, an sp3 basis of one s-like and three p-like states is

suffcient. To improve the fitting of the conduction band another excited s-like

state, known as s∗, is required. For a proper description of further excited states

higher up in the conduction band five d -like orbitals are implemented. The work

presented in this thesis is primarily concerned with the behaviour of the valence

bands and the lowest conduction band so sp3 and sp3s∗ basis sets are sufficient.

We can write a Bloch sum of these isolated atomic orbitals as

ψiα(k, r) =
1√
N

∑
R

eik·(R+ri)φα (r − ri) , (2.19)

where the index i is a site index which runs over the atoms in the unit cell, ri is

the position of each atom in the unit cell, α represents the orbital type (s,p,d etc.)

and N is the number of unit cells included in the sum. We can therefore expand

the wave function for a given state in a basis of these Bloch sums

Ψ(k, r) =
∑
n

an(k)ψn(k, r), (2.20)

Ψ(k, r) =
1√
N

∑
i,α

aiα(k)eik·(R+ri)φα (r − ri) . (2.21)

Here n is a composite index of i and α. We now substitute this into Eq. 2.1 (TISE),

multiply on the left by the conjugate of an arbitary state ψm(k, r) and integrate



Chapter 2: Theory and Methods 10

over the crystal, which gives us

∑
n

Hm,n(k)an(k) = E(k)
∑
n

Sm,n(k)an(k), (2.22)

where the matrix elements of the tight binding Hamiltonian Hm,n(k) are given by;

Hm,n(k) ≡
∫
d3rψ∗m(k, r)Hψn(k, r) (2.23)

and the overlap matrix, Sm,n(k) is

Sm,n(k) ≡
∫
d3rψ∗m(k, r)ψn(k, r). (2.24)

Expanding out the integral in Eq. 2.23, with the state m being denoted by the

basis state β and site j,

Hm,n = Hj,β;i,α(k) =

1

N

∑
R1,R2

eik·(R1−R2+ri−rj)
∫
d3rφ∗β(r −R2 − rj)Hφα(r −R1 − ri) (2.25)

We can change the sum over R2 to a sum over the difference between R1 and R2,

R = R1−R2. The sum over R1 then just gives a factor of N , the number of unit

cells in the calculation and we have:

Hm,n = eik·(rj−ri)
∫
d3rφ∗β

∑
R

eik·RHφα (2.26)

The integral in Eq. 2.26 represents the probability that an electron on atom i,

orbital α will ‘hop’ to atom j, orbital β. It is the amount by which the Hamiltonian

couples the two orbitals. If the two orbitals φiα and φjβ are far enough apart their

overlap goes to zero and their interaction can be neglected. Again, to reiterate, we

restrict our model to first NN interactions and special cases of second and third

NN interactions for this reason. Note that an analogous expression to Eq. 2.26

can be dervived for the overlap matrix Sm,n(k) but this is not necessary since, at a

given k value we can choose that these states are, by construction, complete and

orthonormal.

Sm,n(k) = δmn. (2.27)
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We first deal with what are known as the ‘on-site’ matrix elements of the Hamil-

tonian 〈φn |H|φn〉 (using Dirac notation). Since the φ orbitals are built from an

initial basis of isolated atomic orbitals, the energies of these terms follow similar

trends to the atomic eigenvalues. Different orbitals on the same site, being or-

thonormal, have no overlap and thus the corresponding matrix elements are set to

zero.

〈φiβ |H|φiα〉 = εαδαβ (2.28)

Adjustments are commonly made to these eigenvalues to model effects due to

asymmetries in the crystal. These asymmetries, which can be due to internal

properties of the crystal (e.g. crystal field splitting) or external influences (e.g

strain) cause a splitting in some eigenvalues that would otherwise be degenerate.

More detail of these methods is given in Sec. 4.2; for the moment it is sufficient

to say that the on-site matrix elements are fitted by starting from their respective

atomic eigenvalues.

The interaction terms 〈φm |H|φn〉, also known as ‘hopping ’ matrix elements, con-

tain potentials from three different atoms requiring numerous and difficult three

centre integrals to be calculated. Slater and Koster [5] introduced a two centre in-

tegral approximation in which the effects of the three centre terms can be neglected

or incorporated into the two centre approach. In their paper Slater and Koster

provide a formalism for evaluating the hopping matrix elements in terms of these

two centre integrals and direction cosines. Direction cosines are the projection of

an orbital’s amplitude in the direction of a bond vector joining two atoms.

The direction cosines associated with a hopping matrix element gives the propor-

tion of the relevant orbitals pointing along the vector joining their two sites. In

some sense it is a measure of the overlap of the two orbitals. The strength or

magnitude of the interaction is given by the two centre integral parameters or

interaction parameters.

For an sp3 or sp3s∗ basis the interaction parameters are classified into two differrent

types σ and π (there is a third, δ, but this is only associated with d-states). These

parameters are depicted in Fig. 2.1. Vssσ models two interacting s-states. Vsapcσ

and Vscpaσ represent the interactions between an s-state and one of the lobes of

a p-state, the difference between them being where the states are situated- on

the cations (c) or anions (a). Interactions between two p-states are split between

two terms, Vppσ and Vppπ. The σ term describes that part of the interaction that
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Figure 2.1: An “artist’s”(!) impression of the different types of two centre
integral parameters for s and p type orbitals

results from the fraction of the lobes that are pointed directly towards each other

while the π term descibes the contribution from the fraction of the p-states that

are aligned in parallel, as depicted below in Fig. 2.2.
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Figure 2.2: The decomposition of two px orbitals in directions normal and
parallel to the bond vector, that contribute to the π and σ interactions respec-
tively.

The interaction terms for the s∗ orbitals mirror the form of those for the s states.

In practice however, the Vss∗σ and Vs∗s∗σ are generally neglected in the sp3s∗

Hamiltonian as the Vs∗pσ terms provide the required modulation of the conduction

band.

These interaction parameters are combined with the direction cosines to give the

relevant Hamiltonian matrix elements, according to the following formalism pro-

vided by Slater and Koster:

〈s |H| s〉 = Vssσ (2.29)

〈s |H| px〉 = l(Vspσ) (2.30)

〈px |H| px〉 = l2(Vppσ) + (1− l2)(Vppπ) (2.31)

〈px |H| py〉 = lm(Vppσ)− lm(Vppπ) (2.32)

〈px |H| pz〉 = ln(Vppσ)− ln(Vppπ) (2.33)
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where l, m, and n are the direction cosines of the bond vector. In our model,

because we deal with III-V materials which are binary compounds, we distinguish

between two types of Vspσ interaction, namely Vsapcσ and Vscpaσ. These specify on

which atomic species the particular orbitals are based, i.e if the s orbital is on the

cation or anion site.

Particular care must be given as to how the sign of these interaction terms are

assigned. The rigorous way to do this is to take the absolute value of the direction

cosines and obtain the sign from the sign of the interacting orbital lobes. The

s states are defined to be positive and p states have both positive and negative

lobes. If two positive lobes are overlapping it gives a negative interaction and

if two lobes of opposite sign interact it gives a positive interaction term. It is

for this reason that Vssσ and Vppπ are defined as negative. An issue arises when

the p orbitals are interacting with their neighbouring s states. The p orbitals are

generally, by convention chosen to be oriented with their positive lobes along the

positive directions of the cartesian axes. This means that the p states have the

same symmetry, in terms of sign, as the axes and hence also the direction cosines.

The s states, being spherically symmetric (positive in all directions) do not have

this symmetry.

The sign of the interactions between an s and a px orbital placed at the origin and

along the positive axis then depends on whether the p-state is placed at the origin

(Vpsσ) or the s-state is at the origin (Vspσ). By convention it is presumed that the

first of the two states named in the subscript is at the origin and so Vpsσ is taken

to be negative (positive orbital overlap) and Vspσ is taken to be positive (positive

s orbital overlapping with negative p orbital lobe). This issue also applies to the

s∗ states since they have the same symmetry as the s states.

Before we construct our tight-binding Hamiltonian with the on-site energies and

hopping matrix elements we must first deal with how strain affects the eigenvalues

and eigenvectors of the crystal. One approach to model the effects of strain on the

band structure is to introduce corrections to the on-site energies [6, 7]- we follow

this approach in chapters 4 and 5. This procedure only fits the band structure

correctly at the zone centre (k = 0, also known as the Γ point) and certain other

high symmetry points. To model the strain effects on the full band structure bond

length scaling and bond bending terms are introduced. The bond length scaling

terms are taken to depend on the ratio of the equilibrium bond length (d0) over

the strained bond length (d) raised to the power of a free parameter (η). How
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the Hamiltonian matrix elements change due to a change in bond angle is already

included through the way the direction cosines are defined. The interaction terms

are then scaled by these terms,

Vαβ′m

(
d0

d

)ηαβ′m
(2.34)

where α and β are indices over basis states and m is the interaction type. The

scaling exponents were originally set to 2 by Harrison, based on band structure

scaling arguments [8]. However setting all the exponents to 2 does not provide a

good description of the strain dependence of high symmetry energy states. There-

fore, several authors have developed exponent sets chosen to give an improved fit

to key deformation potentials, which we follow in chapter 3 in our Berry phase

analysis of spontaneous polarisation and piezoelectricity.

The method of making corrections to the on-site energies is described in more detail

in chapters 4 and 5, where it is used to help determine the effects of local strain

due to alloy fluctuations in both bulk III-nitrides and quantum well structures.

2.3 Berry Phase Theory of Polarisation

We now turn our attention to how the wavefunctions, calculated from the tight

binding model, are used to calculate the electronic polarisation in periodic crystals.

The method is known as the Berry phase theory of polarisation and has its roots

in the adiabatic theorem of quantum mechanics.

2.3.1 The Adiabatic Theorem

The adiabatic theorem was first proven by Born and Fock in 1928 [9] and states

that if a particle is initially in the nth eigenstate of the Hamiltonian H and the

Hamiltonian evolves sufficiently slowly in time then the particle will remain in the

nth eigenstate of the final Hamiltonian. We will now give a brief proof of this to

show the origins of the Berry phase.1

1This proof follows that given by D. Griffiths [10].
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As mentioned in the previous section the TISE gives the allowed eigenvalues and

eigenvectors of a system if the Hamiltonian is independent of time. The states

then evolve by picking up a phase factor, known as the dynamical phase,

Ψn(t) = ψne
−iEnt/~ (2.35)

where En is the eigenvalue corresponding to the state ψn. (Note that the position

dependence of the system is implied but not explicitly stated, as we are only

interested here in the time dependence.) When the Hamiltonian changes with

time the eigenvalues and eigenvectors are also time dependent:

H(t)ψn(t) = En(t)ψn(t). (2.36)

These eigenvectors form an instantaneous orthonormal set

〈ψn(t)|ψm(t)〉 = δnm (2.37)

and are also complete. As a result the general solution to the time dependent

Schrödinger equation (TDSE)

H(t)Ψ(t) = i~
∂

∂t
Ψ(t) (2.38)

can be written as a linear combination of the instantaneous eigenvectors

Ψ(t) =
∑
n

cn(t)ψn(t)eiθn(t) (2.39)

where

θn(t) = −1

~

∫ t

0

En(t′)dt′ (2.40)

represents the dynamical phase. We can substitute Eq. 2.39 into Eq. 2.38 to give

i~
∑
n

[
ċnψn + cnψ̇n + icnψnθ̇n

]
eiθn =

∑
n

cnHψne
iθn . (2.41)

The θ̇n term gives −En/~ so by Eq. 2.36 the third term on the left cancels with

the term on the right, leaving

∑
n

ċnψne
iθn = −

∑
n

cnψ̇ne
iθn (2.42)
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If we take the inner product with arbitrary eigenvector 〈ψm|, and using the

fact that the eigenvectors are instantaneously orthonormal, we have on the left

〈ψm|ψn〉 = δmn which gives

˙cm(t) = −
∑
n

cn〈ψm|ψ̇n〉ei(θn−θm). (2.43)

In order to evaluate the 〈ψm|ψ̇n〉 term we differentiate Eq. 2.36 with respect to

time

Ḣψn + Hψ̇n = Ėnψn + Enψ̇n, (2.44)

and, again, taking the inner product with 〈ψm|

〈ψm|Ḣ|ψn〉+ 〈ψm|H|ψ̇n〉 = Ėnδmn + En〈ψm|ψ̇n〉 (2.45)

Noting that, again by Eq. 2.36, 〈ψm|H|ψ̇n〉 = Em〈ψm|ψ̇n〉 for n 6= m we then have

〈ψm|Ḣ|ψn〉 = (En − Em) 〈ψm|ψ̇n〉. (2.46)

Inserting this into Eq. 2.43 we get

˙cm(t) = −cm〈ψm|ψ̇m〉 −
∑
n6=m

cn
〈ψm|Ḣ|ψn〉
(En − Em)

e(−i/~)
∫ t
0 [En(t′)−Em(t′)]dt′ (2.47)

There are two important things to note at this point. Firstly it is obvious from

the denominator in Eq. 2.47 that we are assuming that none of the eigenvalues

are degenerate. This is an important issue in implementing these calculations and

will be revisited later. Secondly up to this point the above expression is exact. We

now implement the adiabatic approximation by assuming that Ḣ is very small.

(This is not a trivial thing to prove rigorously, see [11]). Hence the sum over

n 6= m drops out leaving

˙cm(t) = −cm〈ψm|ψ̇m〉 (2.48)

which is a linear first order differential equation with the solution

cm(t) = cm(0)eiγm(t) (2.49)

where

γm(t) = i

∫ t

0

〈
ψm(t′)| ∂

∂t′
ψm(t′)

〉
dt′ (2.50)



Chapter 2: Theory and Methods 18

Thus, if a particle starts out in the nth eigenstate (which means cn(0) = 1 and

then cm(0) = 0 for all m) and the Hamiltonian evolves adiabatically then the

particle remains in the nth eigenstate and has changed only by a phase factor

Ψn(t) = eiθn(t)eiγn(t)ψn(t). (2.51)

This is the adiabatic theorem as stated, QED. The quantity γn is the phase change

in a wavefunction as the system changes adiabatically from an initial state at time

t′ = 0 to some final point t′ = t. A geometric phase, as these type of phase changes

are generally known, can arise from a change in any ‘slowly’ varying parameter on

which the Hamiltonian is implicitly dependent.

2.3.2 The Berry Phase

When Born and Fock originally proved the adiabatic theorem in 1928 [9] they

correctly suggested that the geometric phase could be cancelled out by a change

of gauge and hence ignored it. The translational invariance of any closed system

means that a coordinate transformation, a shift of the origin, simply induces a

phase shift in the system which does not change the physics of the system . Thus

by selecting the change of gauge that induces an equal and opposite phase change

to that of the geometric phase, Born and Fock argued that the geometric phase

can be ignored. The idea of geometric phase lay dormant for the best part of

thirty years until S. Pancharatnam discovered that the phase difference between

two nonorthogonal states of polarized light had geometric origins [12]. However it

was not until Michael Berry’s seminal paper in 1984 [13] that the geometric phase

came to prominence again. He showed that geometric phases that resulted from

adiabatic and importantly cyclic evolutions are gauge invariant and consequently

have real observable effects. The Berry phase can be defined generally as

γn(C) = i

∫
C

〈ψn(R)|∇R|ψn(R)〉 dR (2.52)

where R is any adiabatically varying parameter on which the system depends and

C is the closed path traced out by R in its parameter space. As a result of the

closed path requirement all changes of gauge cancel in the inner product giving

a nontrivial γ. The inner product that is integrated over is known as the gauge

potential or Berry connection, and this is gauge dependent. A simple example of
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a Berry phase is that of parallel transport. Imagine a vector at the north pole

of a sphere and pointing in an arbitrary direction. If this vector is transported

in a closed loop down a line of longitude to the equator, across the equator and

back to the north pole via any other line of longitude the vector is then pointing

in a new direction. The angle between the old and new direction is equivalent

to the solid angle enclosed by the closed loop traversed and is also the geometric

phase picked up by the process. Effects resulting from geometric phases are often

described as ’global change without local change’. Foucault’s pendulum, falling

cats and parallel parking are all everyday examples of this [14]. 2

In light of this discovery, many phenomena were realised in retrospect to be man-

ifestations of a geometric phase. Pancharatnam obviously was credited with the

first discovery, though it is still more commonly called the Berry phase. Mead and

Truhlar [16] when considering the Born-Oppenheimer approximation revealed an

additional geometric phase but they neglected it for similar reasons to Born and

Fock. The Guoy effect, a result of something called the Bargmann invariant, was

also realised to be equivalent to the Berry phase [17]. In 1959 Aharanov and Bohm

postulated that a potential is in itself a fundamental physical entity (a new idea at

the time) and that a nonzero vector potential could still interact with an electron

in the absence of an electric or magnetic field and hence any acting force [18]. This

was shown to have its roots in a geometric phase. The Jahn Teller effect [19] and

quantum Hall effect [20] are also explained in terms of a geometric phase.

After Michael Berry’s paper in 1984 there were many extensions and generalisa-

tions of the idea. The more important ones for our interests are Wilczek and Zee’s

generalisation for degenerate Hamiltonians [21] and Zak’s derivation of the Berry

phase for energy bands in a solid [22]. Wilcek and Zee’s work is important because

it allows us to deal with band crossings which otherwise create poles in Eq. 2.47.

Zak makes use of the periodicity of the Brillouin zone to form a closed path and

thus reduces the calculation to an integral over a one-dimensional parameter space.

2This phenomenon, known as anholonomy in physics or holonomy in mathematics, was al-
ready known to Gauss. In mathematics holonomy is described by Hannay angles [15].
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2.3.3 Modern Theory of Polarisation

Classically, the polarisation of a crystalline solid is defined as the integrated dipole

moment of the charged particles within a unit cell divided by the cell volume Ω0

∆P =
1

Ω0

∫
Ω0

d3rrρ(r) (2.53)

where ρ(r) is the charge density. Due to the delocalised nature of the electrons

it is not possible to define the polarisation in this way without introducing a

dependency on the shape of the cell. A breakthrough came when Resta [23]

and also Vanderbilt and King-Smith [24] developed what became known as the

modern theory of polarisation. Resta proposed that the change in the electronic

contribution to the polarisation is due to an adiabatic current flowing through the

crystal. This current is induced by an adiabatic change in a parameter upon which

the crystal Hamiltonian implicitly depends (e.g. strain, temperature, electric field

or sub-lattice displacements etc.).

∆P e = ∆P e(∆t)−∆P e(0) =

∫ ∆t

0

dtj(t). (2.54)

This was then interpreted in terms of geometric phases and the electronic polari-

sation was recast as

∆P e = − if |e|
(2π)3

M∑
n=1

∫
BZ

d3k〈unk|∇k|unk〉 (2.55)

where f is the occupation number of the states, unk is the cell periodic part of the

Bloch wavefunction ψnk and M is the number of occupied bands. The integrand

is of course the Berry connection. There are two important things to note here.

Firstly, because of the closed path requirement of the Berry phase formalism we

can only calculate polarisation differences, from an intial state to a final state.

Secondly, since Eq. 2.55 is effectively the Berry phase times a constant factor, and

the phase is defined modulo 2π, the polarisation is defined modulo eR
Ω

(where R

is a lattice constant parallel to P ). Numerically Eq. 2.55 is implemented as

Pei = −fe(∆k)2

(2π)3

∑
k⊥

Φk⊥ (2.56)
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where Φ(k), the Berry phase, is calculated as

Φk⊥ = Im ln
J−1∏
j=0

det〈um,k⊥,kj |un,k⊥,kj+1
〉. (2.57)

This represents a discretization of the Brillouin zone into a mesh of parallel strings

each positioned at k⊥ and divided into J points, denoted by kj. This is clarified

in the next chapter.

The numerical implementation of this model for calculating the spontaneous and

piezoelectric polarisation of group III-V materials in both wurtzite and zinc blende

structures is the focus of chapter 3.



Chapter 3

Berry phase polarisation

calculations of III-V materials

3.1 Introduction

3.1.1 Motivation and Overview

We present in this chapter our implementation of the tight-binding model in con-

junction with the Berry phase theory of polarisation. The TB method has, overall,

proved very useful in describing many properties of III-V and related materials,

as we will show in chapters 4 & 5. This motivates the question of whether we

can use the TB method with the Berry phase theory of polarisation to provide

an atomistic description of the contributing factors to spontaneous polarisation

(Pspon), effective charges and the piezoelectric (PZ) effect. The PZ effect and

Pspon are well documented processes in the growth and band structure engineering

of semiconductor heterostructures. There was, however, when this study began,

no clear understanding of trends in these effects at a microscopic level. The TB

model gives us an atomistic description of the electronic structure of III-nitride

materials. It also allows us to examine the contributions from specific interactions

to the polarisation properties of these materials.

We begin the chapter by presenting a fully analytic model of a linear chain of

atoms that shows how the Berry phase varies as strain, polarity and asymmetries

in the interaction potentials are introduced. We show how, for small values of these

22
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parameters, the Berry phase of the system changes linearly and as the polarity

increases non-linear effects become more dominant. We then discuss some of the

technical considerations involved in the numerical calculation such as convergence

and the mesh of k points used. Finally, we present our numerical results. We show

the similarity of zinc blende (ZB) and ideal wurzite(WZ) structures, within our

TB description, in terms of Pspon, effective charges and PZ coefficients. The same

properties are then calculated for real WZ structures and we demonstrate that,

although the model gives a reasonable qualitative description of the electronic

polarisation, accurate quantitive results that depend on the total polarisation are

beyond the scope of this model.

3.1.2 Zinc blende and wurtzite structures

We now introduce the specific structures we examined. Fig. 3.1 shows a 12 atom,

[111] oriented zinc blende (ZB) unit cell, a 12 atom ideal wurtzite (WZ) cell and

a 12 atom real WZ cell. The Bravais lattice of the ZB system is face-centered

cubic (FCC), while the Bravais lattice of the WZ structure is hexagonal-closed-

packed (HCP). The ZB structure consists of two interpenetrating FCC lattices, one

consisting of cations and the other of anions, offset along the diagonal of the cell

by one bond length. The WZ structure can be thought of as two interpenetrating

HCP lattices offset by 5/8 of the c-lattice vector along the c-axis. When looking at

the ZB structure along the [111]-direction and the WZ structure along the c-axis

([0001]-direction) we see how the individual layers of atoms are very similar and

the atoms in both are arranged hexagonally giving them a C3v symmetry. The

difference between the two structures in how these layers are stacked. The main

difference between ZB and ideal WZ can be seen by looking at the atom labelled

‘E’ in the ZB cell (third red atom from the bottom). In the WZ structures this

atom is placed directly above atoms ‘A’ and ‘B’, it has undergone a rotation of

180◦ (because of the tetrahedral structure, this is equivalent to a 60◦ rotation). If

you translate atom ‘A’ through atom ‘C’ in ZB you reach the same position as

atom ‘E’. Applying the same operation to the ideal WZ cell does not find another

anion or cation. Real WZ, as the name suggests is the geometry that is the

most energetically stable and hence found in nature. Ideal WZ is a hypothetical

structure that is strained so that all the bond lengths and bond angles are equal

and hence has the same tetrahedral environment as ZB. In real WZ there are

internal asymmetries in the tetrahedra denoted by two dimensionless parameters
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Figure 3.1: 12 atom unit cells for ZB, ideal WZ and real WZ (Taken from the
thesis of Dr. Miguel Caro with authors permission).

u and c/a. The internal displacement parameter u scales the bond length of the

bond oriented along the c axis only. The c/a ratio has the effect of changing the

bond angles and also slightly changing the bond lengths of the other three bonds.

These effects are exaggerated in the real WZ unit cell depicted in Fig. 3.1.

3.1.3 Previous work

There were three previous investigations which implemented the model as we have;

Bennetto and Vanderbilt [25], Di Ventra and Fernandez [26] and Iessi et al [27]. All

three attempted to calculate Born effective charges by measuring the polarisation

induced due to a sub-lattice shift. Bennetto and Vanderbilt reported a consistent

underestimation of the published experimental values by a factor of 20%. They

also noted that the two improvements they tried to make to the model “were

actually found to lead to a worsening agreement with experiment”. These two

improvements involved including the non-orthogonality of the wavefunctions and

using an off diagonal position operator. Di Ventra and Fernandez presented similar

findings but noted that the use of an extended basis set including an excited s∗

orbital does offer some small improvement. Iesse et al focused on the sensitivity

of the results to the values of scaling exponents used. They also showed that
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in the tight-binding model, when using a diagonal position operator, the Bloch

phase (the plane wave factor in the wavefunctions) cancels out in Eq. 3.28. For

these reasons we also used a diagonal position operator. All of the issues raised

by these papers are addressed at different stages in this chapter. We still required

more insight into the model than was available in the published literature. It

was for this purpose we examined a simple one-dimensional model of a distorted

linear chain of atoms and analytically calculated the Berry phase as various factors

were changed. The purpose of this was not only to develop an understanding and

intuition for trends in the piezoelectric response but also as a method to develop

simple benchmark tests for the full numerical 3D calculation.

3.2 Linear Chain Model

The model we set up was a linear chain of atoms with one s-orbital per site and

two atoms per unit cell. Specific cases were then examined to probe the effects of

various parameters on the Berry phase, e.g strain, polarity and asymmetry in the

tight-binding interaction parameters. The general model, presented below, was a

polar chain of atoms where one sub-lattice (red, in Fig. 3.2) has been displaced by a

distance d. This displacement causes an asymmetry in the interatomic interaction

potentials which is denoted by ∆. The two atom unit cell has length L and a

relaxed bond length of L
2
. The on site energies of the s-orbitals are taken as +ε

and −ε respectively. Note that the Berry phase that we calculate here corresponds

to the electronic polarisation only, not the total polarisation.

V+V−

ε ε

L

d

−ε −ε

V+ ∆ ∆ ∆

Figure 3.2: Linear chain of atoms with asymmetric interactions (V ± ∆), on-site
energies ε (blue) and −ε (red), with the red sub-lattice displaced by a distance d relative
to the blue sub-lattice.
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The Hamiltonian for the above system for Bloch states with wave number k is

given by;

Hk =

(
ε 2eikd[V cos(kL

2
)− i∆ sin

(
kL
2

)
]

2e−ikd[V cos(kL
2

) + i∆ sin
(
kL
2

)
] −ε

)
(3.1)

with the lower eigenvalue given by

E(k) = −

√
ε2 + 4V 2 cos2

(
kL

2

)
+ 4∆2 sin2

(
kL

2

)
(3.2)

From Eq. 3.1 we also have that;

(ε− E)α + 2eikd
[
V cos

(
kL

2

)
− i∆ sin

(
kL

2

)]
β = 0 (3.3)

so that,

β =
(E − ε)α

2
[
V 2 cos2

(
kL
2

)
+ ∆2 sin2

(
kL
2

)]e−ikd [V cos

(
kL

2

)
+ i∆ sin

(
kL

2

)]
(3.4)

where α and β are the amplitude of the eigenstate ψ on the blue (+ε) and red

(−ε) sites respectively. We wish to compute the matrix element〈ψ(k)|ψ(k + dk)〉
and then use the calculated product to evaluate the phase φ. This can be done

using the normalisation of ψ and the above equation to get expressions for α and

β but it is much simpler if we set the amplitude on one of the basis states to be

purely real. Now if we fix α to be purely real then β must have the same phase as

e−ikd
[
V cos

(
kL

2

)
+ i∆ sin

(
kL

2

)]
(3.5)

We can now define ψ as

ψ(k) =

(
α(k)

[β0(k) + iγ] e−ikd

)
(3.6)

and if we expand ψ(k + dk), to linear order, we get

ψ(k + dk) =

(
α(k) + dα0

dk
dk

β0e
−ikd + d

dk

(
β0e
−ikd) dk + i

(
γe−ikd

)
+ d

dk

(
γe−ikd

)
dk

)
(3.7)
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We can now use this to compute 〈ψ(k)|ψ(k + dk)〉;

〈ψ(k)|ψ(k + dk)〉 =

α2 + αdα0

dk
dk

+β2
0 + β0

dβ0
dk
dk− idβ2

0dk

+iγβ0 + iβ0
dγ
dk
dk + dγβ0dk

−iγβ0 − iγ dβ0dk dk− dγβ0dk + γ2

+γ dγ
dk
dk− idγ2dk

(3.8)

From requiring ψ to be normalised we have α2
0 + β2

0 + γ2 = 1. Some terms also

cancel to give us

〈ψ(k)|ψ(k + dk)〉 =1 + α
dα0

dk
dk + β0

dβ0

dk
dk− idβ2

0dk + iβ0
dγ

dk
dk− iγ dβ0

dk
dk− idγ2dk

(3.9)

≈eα
dα0

dk
dk + β0

dβ0
dk
dk− idβ2

0dk + iβ0
dγ
dk
dk− iγ dβ0

dk
dk− idγ2dk

(3.10)

Which, when the product of k-values is computed from one end of the Brillouin

zone to the other, gives us

j=J−1∏
j=0

〈ψ(k)|ψ(k + dk)〉 = e

∫ π
L

− π
L

[
αdα0

dk
+ β0

dβ0
dk
− idβ2

0 + iβ0
dγ
dk
− iγ dβ0

dk
− idγ2

]
dk

(3.11)

Both α0 and β0 are even in k so the first two terms, being odd in k, drop out of

the integral. Then, when the imaginary part of the log of this product is taken,

we get an expression for the Berry phase as

Φ =Im ln

j=J−1∏
j=0

〈ψ(k)|ψ(k + dk)〉 (3.12)

=

∫ π
L

− π
L

(
β0
dγ

dk
− γ dβ0

dk
− dβ2

0 − dγ2

)
dk. (3.13)
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To assist in solving Eq. 3.13, we note that |β2| can be defined as 1−αp(k)

2
, where

αp(k) =
ε√

ε2 + 4
[
V 2 cos2

(
kL
2

)
+ ∆2 sin2

(
kL
2

)] . (3.14)

Using this expression for the modulus and getting the phase from Eq. 3.5, we can

write β0 and γ as

β0 = g(k)V cos
(
kL
2

)
γ = g(k)∆sin

(
kL
2

) (3.15)

where

g(k) =

√
1− αp(k)

2[V 2 cos2
(
kL
2

)
+ ∆2 sin2

(
kL
2

)
]

(3.16)

Using these expressions for γ and β0 the integral for the Berry phase gives

φ =

∫ π
L

− π
L

g(k)2

[
V∆L

2
− dV 2cos2

(
kL

2

)
− d∆2 sin2

(
kL

2

)]
dk (3.17)

which simplifies to

φ =

∫ π
L

− π
L

1− αp(k)

[V 2 cos2
(
kL
2

)
+ ∆2 sin2

(
kL
2

)
]

V∆L

4
− d (1− αp(k))

2
dk (3.18)

or

φ =

∫ π
L

− π
L

g(k)2V∆L

2
− d (1− αp(k))

2
dk (3.19)

The above integral has two competing terms which we shall call ‘spontaneous’ and

‘strain-induced’, respectively. Both of these terms have both covalent and polar

contributions. These can be separated out as follows;



Chapter 3: Berry phase polarisation calculations of III-V materials 29

φ =

∫ π
L

− π
L

∆L

4V

1

cos2
(
kL
2

)
+ ∆2

V 2 sin2
(
kL
2

)︸ ︷︷ ︸
covalent

(3.20)

− ∆L

4V

αp(k)(
cos2

(
kL
2

)
+ ∆2

V 2 sin2
(
kL
2

))︸ ︷︷ ︸
polar

(3.21)

+
−d
2︸︷︷︸

covalent

+
dαp(k)

2︸ ︷︷ ︸
polar

dk

where the first two terms are the ‘spontaneous’ ones and the last two are the ‘strain-

induced’ terms. The ‘strain-induced’ terms are linear in d, due to our expansion

of ψ to only linear order, and are responsible for the piezoelectric response in

the crystal. We make the following approximation for αp(k), which should be

appropriate for small ∆ (∆� ε).

αp(k) =
ε√

ε2 + 4V 2 cos2
(
kL
2

) (3.22)

=
ε√

ε2 + 4V 2 − 4V 2 sin2
(
kL
2

)
=

ε√
ε2 + 4V 2

1√
1− 4V 2

ε2+4V 2 sin2
(
kL
2

)
=

αp√
1− α2

c sin2
(
kL
2

)
where αp and αc are defined as the bond polarity and covalence, respectively, and

also α2
p + α2

c = 1. Our expression for φ now has the form

φ =

∫ π
L

− π
L

−d
2︸︷︷︸
A

+
dαp

2
√

1− α2
c sin2

(
kL
2

)︸ ︷︷ ︸
B

+
∆L

4V

1

cos2
(
kL
2

)
+ ∆2

V 2 sin2
(
kL
2

)︸ ︷︷ ︸
C

(3.23)

− ∆L

4V

αp√
1− α2

c sin2
(
kL
2

) (
cos2

(
kL
2

)
+ ∆2

V 2 sin2
(
kL
2

))︸ ︷︷ ︸
D

dk
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All four integrals now have analytic solutions. The first one, term A, is trivial.

Integrals B and D are complete elliptic integrals of the first and third kinds, re-

spectively. Complete elliptic integrals, however, are evaluated in terms of power

series expansions and hence do not offer any further simplification. At this stage

we solve Eq. 3.23 numerically. In Fig. 3.3 we show how the Berry phase, as cal-

culated via the integral in Eq. 3.23 for small, finite ∆ and d = 0, varies with ε/V .

It can clearly be seen that for small ε the Berry phase varies linearly with ε and

eventually, for large enough ε non-linear terms have a strong effect.

Figure 3.3: How Eq. 3.23 varies as a function of ε/V for finite ∆ and d = 0.

The strain dependence of the Berry phase φ is described by a term, linear in d in

both integrals A and B of Eq. 3.23. In the case of a homopolar compound, where

αp = 0, the phase is exactly linear with strain giving an electronic contribution to

the polarisation of −ed/2L. The ionic component, defined as the dipole moment

per unit volume is also linear in d and so the two contributions, ±ed/2L, cancel

out giving no piezoelectric response for homopolar compounds, as expected. We

see as αp grows so does the linear strain dependence in polar materials through

the contribution from integral B. As previously mentioned, φ increases linearly

and rapidly for small values of ε/V but above values of ±0.1 converges to π or

zero. Thus, as this term is scaled by d in integral B, even for small strain in

polar materials we see a strong piezoelectric response. Fig. 3.4 shows how the

integral C in Eq. 3.23 varies with ∆. This is equivalent to the case where both

d = 0 and ε = 0. The dependence of φ on ∆ is interesting in that it jumps, almost



Chapter 3: Berry phase polarisation calculations of III-V materials 31

discontinuously, to ±π/2 for any non-zero value. This might relate to spontaneous

polarisation being due to the breaking of symmetry but considering we dropped ∆

from integral B in the approximation of Eq. 3.22 and also the fact that ∆ and ε,

as we have defined them, are not independent in reality, we are reluctant to draw

any strong conclusions from this.

Figure 3.4: How Eq. 3.23 varies as a function of ∆ for d = 0 and ε = 0.

In summary, we note the dependence of the Berry phase on the polarity of the

material, even in the absence of strain. We show why there is no piezoelectric

response for homopolar compounds as well as demonstrate how polar materials

have a strong piezoelectric response.

3.3 Numerical Implementation

3.3.1 Grids and Strings

In order to implement the numerical definition of the Berry phase polarisation

Eq. 2.57 a discrete 3-dimensional grid must first be set up over the entire Brillouin

zone. This grid has two components, first a set of uniformly distributed points,

k⊥, are selected in a plane perpendicular to the direction in which the electronic

polarisation is being calculated. Then, at each of these points, strings of parallel

kj points are created that run from one end of the Brillouin zone to the other (from
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k0 = −π/a to kJ−1 = π/a, where a is a lattice vector parallel to the direction of

polarisation). The density of points in the entire grid is then determined by the

number of points in the plane and the number of points per string. This will be

shown later to be an important factor in determining the accuracy of the results.

The phase change of the eigenvector unk along each string is then calculated by

taking the overlap of the eigenvector at the first point in a string with the next

point on the string and then taking the product of this element at all subsequent

kj points in the string:

φnk⊥ = Im ln
J−1∏
j=0

〈un,k⊥,kj |un,k⊥,kj+1
〉. (3.24)

The number of points needed to converge to the contribution from each string was

checked and it was found that J = 100 points was sufficient for our calculations.

One careful consideration must be taken to maintain the periodic boundary con-

ditions of the cell; the eigenvector at the final point in the string, which is a full

reciprocal lattice vector Gi from the first, should be replaced by the eigenvector

at the first point that is phase shifted by the full lattice vector:

〈un,k⊥,kJ | = eiGi·r〈un,k⊥,k0|. (3.25)

Once the phase of each string is obtained the total phase per band is calculated

by summing over all strings. The Berry phase theory of polarisation is limited to

describing the behaviour of insulating crystal materials for the simple reason that

partially filled bands do not behave adiabatically. This does not affect the appli-

cability of this theory to III-V materials, since we are looking at semiconductors

in their ground state. The total phase of the crystal is then given by summing

over all occupied states.

Φtot =
∑
n

∑
k⊥

φnk⊥ (3.26)

The reader may have noticed that this is not consistent with Eq. 2.57. This is

because the above formulation of the Berry phase requires the bands to be non-

degenerate at all k points. In order to deal with band crossings and degenerate

bands a different approach is needed. Instead of summing over individual bands

one must calculate the determinant of the overlap matrix S;

Smn(kj,kj+1) = 〈um,k⊥,kj |un,k⊥,kj+1
〉. (3.27)
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To clarify, this is still done at each k point along a string and the strings are still

summed over. Thus the electric polarisation is calculated as

Pei = −fe(∆k)2

(2π)3

∑
k⊥

Im ln
J−1∏
j=0

det〈um,k⊥,kj |un,k⊥,kj+1
〉 (3.28)

3.3.2 Choice of Unit Cells

When constructing the mesh of strings for this calculation we mentioned that they

run from one end of the Brillouin zone to the other and that one must impose

the periodicity of the unit cell by phase shifting the first element to replace the

last. This task becomes complex when dealing with a Brillouin zone that is not

prismatic. Take for example the zinc blende (ZB) structure, one that plays an

important role in our calculations. The simplest unit cell that describes this face

centred cubic (fcc) structure is a two atom unit cell; one atom at the origin and

another at (a/4,a/4,a/4) where a is the lattice constant and has the following

lattice vectors:

(a/2,a/2, 0) (3.29)

(a/2, 0,a/2) (3.30)

(0,a/2,a/2). (3.31)

None of these lattice vectors are orthogonal; they give a Brillouin zone that has the

shape of a truncated octahedron. Then when trying to calculate the Berry phase

of this structure the length of the strings varies across the Brillouin zone and hence

so also do the reciprocal lattice vectors, Gi. The calculation is greatly simplified

if one employs a unit cell where at least one of the lattice vectors is orthogonal

to the other two. This gives a prismatic Brillouin zone where the strings are all

of equal length. Of course, one requires that the Brillouin be prismatic along the

direction that the polarisation is being calculated.

For this reason, our first implementation of the Berry phase theory of polarisation

with a TB Hamiltonian was using an 8 atom ZB unit cell that had both a cubic

unit cell and Brillouin zone.
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3.3.3 The Need for a Reference Structure

In section 2.3.3 we briefly stated that the Berry phase theory of polarisation can

only be used to calculate polarisation differences. This is due to the closed path

requirement of the formalism. We can again use the periodicity of the structure

to simplfy the calculation. Consider a crystal structure that is subjected to an

adiabatic change that does not return to its initial state, for example a sublattice

displacement in a ZB structure, and this change is denoted by λ where λ = 0 is

the initial state and λ = 1 is the final state. We can construct a closed loop in the

2-dimensional phase space of λ and k, as shown in Fig.3.5. The Berry phase and

Figure 3.5: The closed loop in a λ-k phase space along which the Berry phase
is evaluated.

hence the polarisation is obtained by evalualing the following contour integral for

each of the four sides of this path:

Φ = −i
∮
C

〈u(λ)
n,k|∇ku

(λ)
n,k〉. (3.32)

Since k = 0 and k = Gi are equivalent k points sections II and IV of the line

integral are equal and opposite and do not need to be calculated. This means

that the form of the adiabatic change no longer concerns us, only the end points.

Thus we can use the ZB crystal structure as a reference to compare wurtzite

structures against; we do not need to map the adiabatic transition between the

two crystallographic phases - we just concern ourselves with the end points. What

remains to be done is to calculate the contribution from sections I and III. These

are the previously described integrals over k space at the initial and final values

of λ.
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Zinc blende is important for our calculations not only as a reference structure for

comparison but also as an implementation test. It is shown from group theory

agruments that ZB has no spontaneous polarisation (Pspon) due to its symme-

try [28]. This was the first validation test for our codes; to show that ZB has no

spontaneous polarisation using Eq. 3.28. Using the aforementioned cubic 8 atom

unit cell the value for the Pspon obtained was of the order of 10−15Cm−2 which is ef-

fectively zero. This showed us that, so far, the results of our model were consistent

with what should be expected. We then started using this as a reference structure

against which to compare wurtzite. However, when we used [111] oriented ZB

cells, which has an equivalent orientation to that of the wurtzite 4 atom cell, the

Pspon of these ZB cells was no longer zero. The initial values obtained were of the

order of 10−4Cm−2 which is still small but cannot be explained by differences in

the input parameters or the computational process. This, we believed, was due to

our implementation of the model. This could not be ignored as it was the corner

stone of our comparisons. Work which we describe in the next section showed that

this was a convergence issue - the graph of
∑

n φnk⊥ has a very sharp peak near

to k⊥ = 0: a very fine integration mesh is required in order for Φtot to approach

zero, although a coarser grid is sufficient to calculate changes in Φtot due to the

introduction of atomic displacements in the unit cell.

3.4 Phase surfaces and Convergence

3.4.1 Homopolar Test

One test for the full calculations that was derived from the linear chain model

was to calculate Pspon for a homopolar material. In the linear chain model this is

equivalent to setting the bond polarity αp to zero. In the absence of macroscopic

strain (d = 0) for this case, the linear chain then has a vanishing Berry phase.

As a test for our calculations, we set the on-site energies in the TB Hamiltonian

equal for anions and cations and also set Vpascσ = Vpcsaσ. This is analogous to a

homopolar material such as silicon, germanium or diamond. As predicted by the

linear chain model, Pspon with this set up is almost exactly zero for any unit cell

regardless of the orientation. At this point, again to gain insight into the model,

the phase associated with each string over the grid of strings that spans the base

of the Brillouin zone was plotted.
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3.4.2 Phase surfaces

(a) 8 atom cubic (001) (b) 6 atom Homopolar (111)

(c) 6 atom Polar (111)

Figure 3.6: The phase surfaces of three different unit cells.

Fig. 3.6 shows the calculated variation in the value of the phase of each individual

string across the Brillouin zone for three of the different structures considered.

Integrating over these surfaces then gives the total phase for one of the line integrals

in Fig. 3.5. To reiterate, the difference between this and another similar calculation

of the system after an adiabatic change then gives the Berry phase. The unit cells

represented in Fig. 3.6 all have a ZB structure which means the integral over each

of these surfaces should be zero. The integrals of the first two surfaces, Fig. 3.6(a)

(an 8 atom [001] oriented GaAs cell) and Fig. 3.6(b) (a homopolar [111] oriented

cell) are identically zero. This is clear from a symmetry analysis in the case of
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Fig. 3.6(a). Here the values of the strings are distributed in a pattern similar

to a square lattice of sinusoidal waves that is symmetric about the z = 0 plane

and hence cancel almost exactly. In Fig. 3.6(b), for a homopolar structure, each

of the individual strings has zero phase and hence so also does their sum. The

final surface (calculated from a 6 atom, [111] oriented, GaAs cell) gives a total

phase of the order of 10−4. We attribute this calculated value to the shape of

the surface. While this ‘phase surface’ does have a sixfold rotational symmetry,

we cannot apply a simple symmetry analysis as in Fig.3.6(a) to deduce that the

overall value of the integral must be zero. The sampling of k points is crucial

here. Notice that as you go towards the centre of this phase surface its curvature

changes rapidly and hence the accuracy of our mid-point rule method of numerical

integration decreases. (We use a uniform grid of k strings, each centred in a small

area element k∆, so hence we use the mid-point method to calculate the integral.)

To investigate whether this was the source of error in these calculations either a

higher density mesh or a more sophisticated one was needed.

3.4.3 Convergence of the number of strings

Before we discuss the convergence of the phase due to the number of strings used

in the calculation we must first comment on some general properties of the mesh.

The calculations that were showing errors are the ones using [111] oriented ZB

unit cells (and also 4 atom wurtzite cells). The Brillouin zone of these unit cells

takes the shape of a hexagonal prism, so the mesh of strings for these unit cells is

also hexagonal,as shown in Fig. 3.7.

These hexagonal grids have a C6v symmetry (they are invariant under rotations

of 60◦) as do the phase surfaces we integrate over, e.g. Fig. 3.6(c). This allowed

us to restrict our calculations to one 60◦ wedge of the Brillouin zone. We further

increased the speed of our calculations by noticing that each of these wedges (in

the phase surface) has an axial symmetry about the line bisecting it. Hence we

needed only to calculate 1/12th of the phase surface and once proper care is given

to the boundary points we easily extended this to the full surface. In Table 3.1

we show the effect of increasing the number of strings used in the calculations.

The first column m is the number of points into which the line in the Brillouin

zone from Γ to K is discretised. M then denotes the total number of points in the

aforementioned irreducible wedge of the Brillouin zone; this is a triangular number
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Figure 3.7: An example of the hexagonal mesh of strings used for [111] oriented
zincblende and wurtzite unit cells. This grid contains 660 strings.

of m (M = m(m + 1)/2). The third column is the sum over all strings- note this

is not the total Berry phase. To obtain the Berry phase this number must be

divided by the number of strings. The final column is the calculated electronic

polarisation along the [111] direction.

m M
∑

k⊥
φk⊥ Pe Cm

−2

75 2850 -8.1844×10−3 -1.8030×10−6

120 7260 -8.1606×10−3 -7.0223×10−7

200 20100 -8.1230×10−3 -2.5164×10−7

Table 3.1: Convergence data for ZB 6 atom, [111] oriented unit cell.

Notice in column three the sum of the phase of all the strings stays almost con-

stant, independent of the number of strings (M) used. The fact that this number

is not identically zero is due to a limitation of the model used, which will be dis-

cussed later. We can see here though, that as the number of strings increases the

calculated polarisation goes to zero. It converges slowly to zero at a rate of 1/M .

Shown in Table 3.2 is the same data for a WZ 4 atom unit cell. Here we see how

the sum of the phase of each string (column 3) grows linearly with the number of

strings (column 2) and hence the polarisation converges to a non-zero value.

It must be noted here that this density of points is far above that required for

calculating values to be compared with experiment. The last row in Table 3.2
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m M
∑

k⊥
φk⊥ Pe Cm

−2

20 210 0.0199 6.0594×10−5

50 1275 0.0965 4.6948×10−5

80 3240 0.2388 4.5369×10−5

120 7260 0.5305 4.4807×10−5

160 12880 0.9391 4.4611×10−5

200 20100 1.4643 4.4520×10−5

280 39340 2.8649 4.5280×10−5

Table 3.2: Convergence data for 4-atom GaN WZ unit cell.

(m = 280) corresponds to 1.8× 109 points in the Brillouin zone (39340 strings per

one 12th wedge with 4000 points per string). Previous studies used a Monkhorst-

Pack mesh of 16×16×10, which we revert back to for the remainder of this study.

As mentioned, the motivation for doing this was to show that with our TB model

the Pspon of ZB was still zero and to show that the Pspon of ideal WZ, although

small, was non-zero.

3.5 Zinc blende and ideal wurtzite comparison

As we have shown in the previous section Pspon of a ZB structure is zero. It might

be expected in a first nearest neighbour TB model that the Pspon of ideal WZ

could also be zero. The tetrahedral, first NN environment in both structures is

identical and hence with a NN Hamiltonian the lack of inversion symmetry in ideal

WZ may not have a major influence. Hence we postulated that the non-zero Pspon

for ideal WZ that had previously been calculated in other works [29, 30] would

appear in our results when second and third NN interactions were introduced in our

Hamiltonian. As seen in Table 3.2, the Pspon of GaN with a first NN Hamiltonian

was found to be 4.5280× 10−5Cm−2, which is very small but not zero. The small

difference between this and ZB can be seen in Fig. 3.8, where line scans through

the phase surface of the two materials are shown. The lines scans run through the

high symmetry points of the Brillouin zone (from M to Γ through K and back to

M and K again), and the small difference between the two structures can be seen

in the section between M and K. This region lies at the fringe of the Brillouin

zone.
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Figure 3.8: A line scan through the phase surface of ZB GaN and ideal WZ
GaN.

This shows that with a first NN Hamiltonian, ZB and ideal WZ are almost equiva-

lent in terms of Pspon. We now introduce second and selected third NN interactions.

3.5.1 Third Nearest Neighbors

WZ, and also ZB, has 12 second NN atoms. They can be separated into two

sets of six, a co-planar set in the same xy plane as the atom at the origin and

another set of six comprised of two groups of three directly above and below the

atom at the origin, in the direction of the c axis. These two groups of six were

both found to give a small contribution to the Pspon but the contributions were

equal and opposite and cancel each other out. This is consistent with the first NN



Chapter 3: Berry phase polarisation calculations of III-V materials 41

results, since second NN interactionsare smaller than first NN ones, and since ZB

has a similar but not identical second NN environment. Consequently, we omitted

second NN interactions for this reason, and also because to accurately include

them one has to fit a much bigger set of TB parameters.

Any atom in a WZ lattice has 25 third NN. These are arranged in four layers in the

c plane and each layer has C3v symmetry (alternate layers form either a triangle or

a hexagon centred about the atom at the origin). The position of these layers along

the c-axis is not symmetric. The dominant contribution to this asymmetry is from

one specific third NN, shown in Fig. 3.9. Here two pz states are oriented directly

towards each other and are separated by 5/3 of an unstrained bond length, in the

ideal WZ structure. As a result the two orbitals have a relatively large overlap

and hence introduce a definite asymmetry into the interactions in the WZ crystal

structure

Figure 3.9: The specific third NN interaction investigated.

We included in our TB Hamiltonian a matrix element coupling pz orbitals of

third NNs directly aligned with each other along the c-axis. This interaction was

initially modelled by scaling the ppσ parameter by the ratio of the bond lengths

squared
(
d
d0

)2

(where d is the third NN distance and d0 is the unstrained bond

length) following Harrison. While this gave values for Pspon that were comparable

to previous DFT calculations [29, 30], the crystal field splitting of the valence

bands is strongly overestimated. Fitting this third NN interaction to correctly
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model the crystal field splitting then gives a negligible contribution to Pspon. As

a result we conclude that c-axis third NN interactions can contribute to Pspon but

that it would be difficult to devise a unique parameter set to consistently describe

Pspon and the crystal field splitting.

3.5.2 Effective charges

As a next step to modelling material response, we next used our model to calculate

the Born or transverse effective charges for ZB and ideal WZ materials. This also

offered the opportunity to test our implementation of the model with previously

published results employing the same methods. The effective charge is a tensor

that represents the change in polarisation in direction i due to a sub-lattice shift

in direction j,

(e∗T )ij = Ω
∂PTot

i

∂dj
(3.33)

where Ω is the unit cell volume and d is the sublattice shift. An important point

to note here is that PTot is the total polarisation, with both ionic and electronic

contributions. The electronic part is, of course, calculated using our TB and

Berry phase model. The ionic part is simple to calculate, given by the total dipole

moment per unit volume;

Pion
i =

1

Ω

∑
n

Znrn,i. (3.34)

The sum n runs over the number of atoms in the unit cell n. Zn denotes the

nominal atomic charge (in our case 3 or 5) and again i is the direction of polarisa-

tion. While this is a simple calculation, care must be taken that the quantum of

polarisation is removed before the ionic part is added to the electronic. Remember

bulk polarisation, both ionic and electronic, is defined modulo eRi/Ω and hence

is a multi-valued vector quantity. Both the electronic and ionic polarisation take

on a lattice of values, each separated by this modulus. Hence we must be careful

both when combining electronic and ionic components as well as comparing initial

and final polarisation states, that the values we take are all in the same ‘branch’ of

this lattice. We always work with the first branch, since the electronic component

is typically an order of magnitude smaller than the modulus of polarisation and
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hence no correction is required and there is no ambiguity as to which branch the

‘proper’ polarisation value lies in.

Another important consideration is the choice of origin. The same origin must

obviously be chosen for both the ionic and electronic calculations. Shifting the

origin is equivalent to a change of gauge which introduces a phase shift in the

eigenvectors and hence in our polarisation calculations. As long as this phase shift

is consistent, by using the same origin, throughout our calculation it will cancel

out in the difference between initial and final states.

With these issues given due consideration, we were first able to compare our imple-

mentation of the model with that of Ref. [27] by calculating ZB effective charges.

Compound Expt. Ref. [27] Our calc.
GaAs 2.16 1.49 1.48
GaSb 2.15 1.10 1.10
InP 2.55 2.16 2.16
AlSb 1.93 1.17 1.10

Table 3.3: Comparison of e∗T calculations, using the same parameters sets,
with each other and with experiment.

Table 3.3 shows our attempt to replicate the results of Ref. [27] for the effective

charges of four ZB compounds. The sp3s∗ TB parameters (both the interaction

parameters and the bond length scaling exponents), used in this calculation were

given in Ref. [31]. This was the only set of results published where the full param-

eter set was available. Our results match those of Ref. [27] very closely for GaAs,

GaSb and InP. The small differences can be attributed to the use of a slightly

different mesh. We suspect the difference in AlSb comes from a misprint in the

parameters in Ref. [31]. When compared to experimental results, however, a con-

sistent underestimation of e∗T can be seen in table 3.3. This trend had already been

previously reported [25]. This may be due to the fact that the minimal basis used

in the TB model cannot accurately describe the full Brillouin zone and instead the

parameters are fitted to the band structure at high symmetry points, such as Γ,

X and L in ZB. Hence with a TB model there are areas of the Brillouin zone that

have flat bands. The Berry phase calculation, which needs to sample the entire

Brillouin zone, then includes these areas of flat bands which do not contribute to

the phase. This leads to an underestimation of the electronic component of the

polarisation and hence the effective charge. The main focus of Ref. [27] was that
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these calculations are very sensitive to small changes in the parameters and this

underestimation could be improved using a set of bond length scaling exponents

that are material and bond type dependent.

Table 3.4 shows the comparison between ideal WZ and ZB structures in terms of

effective charges. As a result of the similar first NN environment of the two struc-

tures they have an almost equivalent response to sub-lattice displacements. These

calculations were carried out using WZ parameters derived by Stefan Schulz by fit-

ting the TB band structures to Heyd-Scuseria-Ernzerhof (HSE) screened exchange

hybrid functional density functional theory (DFT) band structures [30, 32]. The

same interaction parameters and on-site energies are used for the ZB calculations

so that the similarity of the structures would not be masked by possible differ-

ences in the fitting procedure. 1 It must be acknowledged however that the NN

TB Hamiltonian has longer range effects folded in, and because of the different

environment at 2NN and beyond WZ may not fit ZB perfectly and vice versa. The

results again confirm the similarity of the two structures within our first NN TB

model.

Compound ZB Ideal WZ
GaN 2.42 2.43
InN 2.72 2.71
AlN 2.84 2.84

Table 3.4: Comparing e∗T calculations of ZB and ideal WZ

3.5.3 Piezoelectric Coefficients

We next turn our attention to calculating the piezoelectric (PZ) coefficients for ZB

and ideal WZ structures. Piezoelectricity is the name given to the phenomenon

of strain-induced polarisation [33]. It is described, in tensor notation, usually, by

two sets of coefficients eijk (to first order) and Bijklm (to second order).

Ppz,i =
∑
jk

eijkεjk +
1

2

∑
jklm

Bijklmεjkεlm + · · · . (3.35)

We first consider just the linear regime eijk. In matrix or Voigt notation the linear

response is given by

1A number of different TB parameter sets can give the same, or very similar, band structures.
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Ppz,x

Ppz,y

Ppz,z

 =


e11 e12 e13 e14 e15 e16

e21 e22 e23 e24 e25 e26

e31 e32 e33 e34 e35 e36





ε11

ε22

ε33

2ε23

2ε13

2ε12


(3.36)

where εjk are the components of the strain tensor. The PZ tensor in (001) oriented

ZB has, due to its symmetry, only three nonzero coefficients and they are all equal

e14 = e25 = e36. When the strain and PZ tensors are then rotated to the (111)

direction the polarisation vector Ppz takes the form [34]

P(111)
pz =


2e′15ε

′
13

2e′15ε
′
23

e′31(ε′11 + ε′22) + e′33ε
′
33

+


e′11(ε′11 − ε′22)

2e′12ε
′
12

0

 , (3.37)

with e′11 = −
√

2
3
e14, e′12 =

√
2
3
e14, e′15 = e′31 = − 1√

3
e14 and e′33 = 2√

3
e14, so

that
e′33
e′31

= −2. This is a ratio that is used extensively later in the chapter when

studying real WZ since the ratio deviates from −2 as the structure deviates from

the ideal WZ case. The first term in Eq. 3.37 has the same form as the WZ PZ

vector

PWZ
pz =


2e15ε13

2e15ε23

e31(ε11 + ε22) + e33ε33

 . (3.38)

The macrosopic strain, given by the strain tensor εjk, also leads to internal dis-

placements within the cell. These internal displacements depend on the direction

of the strain with respect to the orientation of the crystal. When using (111)

oriented ZB cells this internal displacement is given by;

t
(111)
int =

ζazb

4
√

3
(ε11 + ε22 − 2ε33)


0

0

1

 , (3.39)
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where ζ is the Kleinmann internal displacement parameter and azb is the ZB

lattice constant. This results in an internal relaxation of the z coordinates of

either the cation or anion sub-lattice with strain. For WZ there are three internal

displacement vectors required and five parameters [35].

tWZ
1 = c0

[
ζ1ε13 + ζ5ε12, ζ1εyz + ζ5

(ε11 − ε22)

2
, ζ2 (ε11 + ε22)− ζ3ε33

]
, (3.40)

tWZ
2 = a0

[
−ζ4ε12,−ζ4

(ε11 − ε22)

2
, 0

]
, (3.41)

tWZ
3 = tWZ

1 + tWZ
2 − 2c0

[
ζ5ε12, ζ5

(ε11 − ε22)

2
, 0

]
(3.42)

In this case a0 and c0 are the lattice constants of the 4-atom WZ unit cell. The

internal displacement parameters ζi are determined again from HSE screened ex-

change hybrid DFT calculations [35]. If r0, r1, r2 and r3 are the atomic position

vectors in a 4 atom unit cell, then the internal displacements are implemented as

follows;

r′0 = r0r
′
1 = (11 + ε)r1 + tWZ

1 (3.43)

r′2 = (11 + ε)r2 + tWZ
2 (3.44)

r′3 = (11 + ε)r3 + tWZ
3 . (3.45)

This treatment is then extended to the 12 atom unit cells used in our calcula-

tions. We first restrict our attention to the PZ coefficients e31 and e33 since the

macroscopic strains associated with them can be described maintaining the C3v

symmetry of the Brillouin zone. The coefficient e15 is related to shear strain which

breaks this symmetry and hence requires a larger and an adaptive mesh of strings.

In table 3.5 below the electronic contribution to the polarisation induced by bi-

axial P 31
el and uniaxial P 33

el strain for ZB and ideal WZ structures is shown. Both

structures are again modelled using 12 atom unit cells and equivalent internal dis-

placements are applied. Similar to table 3.4 for the effective charges, the only full

set of TB parameters available for all the III-nitrides were those derived by Dr.

Schulz. These parameters were also used in the ZB structures so that we could

directly compare the different structures. The internal displacement parameters

used were also derived for WZ structures (by Dr. Miguel Caro [35]) but were again

applied to both structures.
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P 31
el P 33

el

Compound ZB WZ Pion ZB WZ Pion

GaN -0.0150 -0.0164 0.0150 0.0285 0.0273 -0.0288

InN -0.0172 -0.0194 0.0158 0.0358 0.0339 -0.0322

AlN -0.0190 -0.0192 0.0164 0.0441 0.0440 -0.0365

Table 3.5: Comparing the electronic component of polarisation induced by
biaxial ε11 = ε22 and uniaxial ε33 strain for ZB and ideal WZ structures.

The PZ response, in terms of the electronic contribution, are very similar for ZB

and ideal first NN WZ. This follows the same trend as the effective charges and

Pspon for these structures. Unlike the effective charges, where there is a large dif-

ference between the electronic and ionic contributions, for the PZ calculations the

electronic and ionic component are very similar in magnitude. They are obviously

of opposite sign and are also large compared to the total polarisation, generally a

factor of 10 bigger. Thus, the relatively small error in the electronic component

of the polarisation as seen in this and previous works [25, 27] leads to a large

distortion of the PZ coefficients calculated. This can clearly be seen in table 3.6,

which shows the total PZ coefficients, e31 and e33, for ZB and ideal WZ calculated

using the same parameters as table 3.5. The reason for the ratio of e33
e31

not being

exactly equal to −2 for ZB structure is that the internal displacement parameters

that were used are derived for WZ structures.

ZB WZ

Compound e31 e33 e31 e33

GaN -3.203×10−4 -0.0251 -0.13 -0.14

InN -0.14 0.36 -0.36 0.017

AlN -0.26 0.76 -0.28 0.75

Table 3.6: Comparison of the total coefficients, e31 and e33, for ZB and ideal
WZ structures.

In table 3.7 we compare our TB results to recent HSE DFT calculations of the ZB

coefficient e14, done within our group by Miguel Caro [36]. Since we use different

internal displacement parameters we cannot directly compare the electronic and

ionic components of the coefficients but instead we compared their ratio
−eel14
eion14

.
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TB DFT

Compound
−eel14
eion14

−eel14
eion14

GaN 1.00 1.16

InN 1.09 1.25

AlN 1.16 1.24

Table 3.7: Comparing the ratio of
−eel14
eion14

as calculated by our TB model and

using HSE DFT [36]

We see a general underestimation of the ratio
−eel14
eion14

calculated by our TB model

when compared to the DFT results. This shows that the model gives a good

qualitative description of the piezoelectric response for ZB and ideal WZ but as

the total coefficients show, accurate quantitative results are not attainable with

this model.

3.6 Real Wurtzite

We now finally turn our attention to real WZ structures. The difference between

ideal and real WZ, as mentioned previously, is the c/a ratio, and the internal

displacements of atoms along the c-axis, characterised by the parameter u. These

internal displacements cause a change in bond angles and bond lengths so that

they are no longer all equal. This asymmetry leads to an nonzero Pspon along the

c-axis. Shown in Fig. 3.10 is how the phase surface of ZB and ideal WZ changes

as a result of these internal displacements.

3.6.1 Spontaneous Polarisation

Shown in table A.3 is the Pspon calculated for the real WZ GaN, InN and AlN struc-

tures. The calculations were carried out with the on-site energies and interaction

parameters again from Ref.[30, 32] but two different sets of scaling exponents,

dHarr. where all the exponents are set to 2 [8] and a set, derived by Andy Lind-

say [37], dA.L. where each individual exponent is fitted to match key band structure

deformation potentials. Our results, when compared with Ref. [29], show an un-

derestimation of 50-60% for Harrison’s scaling exponents. However for GaN and
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Figure 3.10: Line scans through the phase surface of ZB (blue), ideal WZ
(orange) and real WZ (red).

InN, the set derived by Andy Lindsay give good results and show an improvement

for AlN.

Pspon (Cm−2) GaN InN AlN

dA.L. -0.026 -0.034 -0.066

dHarr -0.014 -0.019 -0.048

Ref. [29] -0.029 -0.032 -0.081

Table 3.8: Comparison of Pspon calculated using different scaling parameters.
The first row are calculated using the scaling parameter derived by Andy Lind-
say, the second row show results using Harrison’s scaling law and the last row
are DFT calculations from Ref. [29].

To reiterate, the general underestimation in these results is due, we believe, to

the minimal basis in the TB model. This basis, which gives the TB model its

must useful features i.e. that it is fast and atomistic, cannot fit the band structure

throughout the entire Brillouin zone. In the process of fitting the parameters
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to describe the eigenvalues at certain high symmetry points, other areas of the

Brillouin zone have to be neglected. Also, it is the change in the phase of the

eigenvectors that is measured in the Berry phase model but this is not directly

tested in the band structure fitting. There are a large number of parametrizations

of the Hamiltonian that give a similar band structure in the TB model and in

general an infinite number of basis sets that have the same projection. It is the

aspect of the TB model that makes it attractive for band structure calculations

that leads to its inability, in conjunction with the Berry phase model, to produce

accurate quantitative results for electronic polarisation. However, as can be seen

from the results presented thus far, the model does produce the correct qualitative

trends; e.g. the correct sign and ratio of PZ coefficients. We also see from table A.3

that the limitations of the TB model to describe the full Brillouin zone can be

overcome by using larger scaling exponents, as was seen in Ref. [27]. This, as is

shown in the next section, only works however for individual strain states and the

exponents have to be adjusted to fit different types of applied strain.

3.6.2 Piezoelectric Coefficients

Shown in table 3.9 are the PZ coefficients calculated for real WZ III-nitrides using

dHarr. and dA.L. scaling exponents, compared with the results of HSE DFT calcu-

lations [30] that also used the Berry phase method as implemented in the VASP

software package [38].

As mentioned in the previous section, the scaling exponents dA.L. that gave im-

proved results for Pspon do not improve the results for the PZ coefficients. The

small values and error in sign seen for dA.L. in table 3.9 are, again, due to the fact

that the total polarisation is due to the cancellation of the ionic and electronic

terms which are large and comparable in magnitude. In addition to this, for real

WZ polarisation differences the reference structure or initial state also has an ionic

and electronic component due to the internal displacements2. For ZB and ideal

WZ the reference structure (ZB) was centrosymmetric and hence had a zero total

polarisation and zero error associated with the reference state, the error came from

2A note on implementation. Since both initial and final states have an ionic component, both
ionic components must be corrected so that they are in the same branch of the polarisation
vector. However since the final state is strained from the initial one the volume has changed and
hence the quantum of polarisation (eR/Ω) has also changed. Therefore, for both states the ionic
polarisation must be corrected but often by different quanta of polarisation.
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Pspon GaN InN AlN

dA.L.

e31 0.412 0.105 0.247

e33 -0.884 -0.031 0.032

dHarr.

e31 7.81×10−4 -0.128 -0.211
e33 -0.053 0.316 0.681

HSE DFT

e31 -0.44 -0.58 -0.63
e33 0.74 1.07 1.46

Table 3.9: Comparison of e31 and e33 for different bond length scaling param-
eters with values calculated from HSE DFT using VASP.

the final state. In real wurtzite there is a cancellation of ionic and electronic terms

in both the initial and final state. Since the PZ coefficients are calculated as finite

differences of these two states with respect to strain this can then add to the error

in the calculated PZ coefficients in the case of real WZ. Based on the analysis pre-

sented here, we conclude that accurate quantitative piezoelectric coefficients are

not attainable using the TB model. The model can reproduce trends effectively.

Fig. 3.11 shows the calculated variation of the ionic and electronic component of

the polarisation in AlN as a function of axial strain ε33. It can be seen from the

symmetry that the majority of both components cancel out. The small difference

that determines the coefficient is then highly sensitive to small changes in the

electronic polarisation such as those due to parametrization. It is for this reason

that we do not attempt to calculate e15 or second order terms.

While this model is unable to extract accurate coefficients, it can still show qual-

itative trends. The ratio of e33
e31

is close to −2 for ZB and ideal WZ. In real WZ

we have determined the ionic component of this ratio analytically for very small

strain as;
e33

e31

=
−ζ3

ζ2 + (uid − u)
, (3.46)
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Figure 3.11: How the ionic (blue) and electronic (red) components of the
polarisation cancel in the calculation of e33.

where ζi are internal displacement parameters, u is the internal displacement pa-

rameter for real WZ and uid = 3
8
. For ideal WZ and ZB u = uid and this ratio is

dominated by the ratio of ζ3
ζ2

which is close to 2. In the III-nitrides non-ideality

increases as one goes from GaN to InN to AlN, i.e. u increases from 0.375, the c/a

ratio decreases from
√

8/3 and the ratio of ζ3
ζ2

deviates from 2. As this non-ideality

increases in the structure the ratio of e33
e31

deviates from -2, as shown in table 3.10.

Similar to table 3.5, we can take the electronic part of the polarisation induced by

the strains associated with e33 and e31 to examine the electronic part of this ratio.

The error in the electronic component of the polarisation cancels out in this ratio

and, in table 3.11, we see the same deviation from -2 as non-ideality increases. This

shows that the Berry phase and TB model gives a good qualitative description of
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ζ2 ζ3
ζ3
ζ2

u c
a

(
e33
e31

)
ionic

GaN 0.083 0.159 1.916 0.3772 1.626 -1.988

InN 0.107 0.218 2.037 0.3796 1.612 -2.151

AlN 0.086 0.191 2.221 0.3818 1.602 -2.437

Table 3.10: Deviation of the ionic part of the ratio of e33
e31

from -2 as non-
ideality increases.

the electronic polarisation properties of III-nitride semiconductors but, as we have

seen, quantitative analysis is beyond the scope of this model.

Compound
(
e33
e31

)A.L.
el

(
e33
e31

)d−2

el

GaN -1.942 -1.961
InN -2.309 -2.179

AlN -2.987 -2.530

Table 3.11: Deviation of the electronic part of the ratio of e33
e31

from -2 as
non-ideality increases.

3.7 Conclusions

In this chapter we have presented a numerical and analytic analysis of the polari-

sation properties of III-nitride materials using the TB model in conjunction with

the Berry phase theory of polarisation. With a linear chain model we show how

the Berry phase varies linearly with small values of bond polarity and strain. In

the numerical calculations we first compare ZB and ideal WZ structures within a

first NN Hamiltonian. We show how both structures have a similar polarisation

response to strain and sub-lattice displacements. Effective charges for ZB are close

to ideal WZ values. The values for the electronic component of the ZB PZ coeffi-

cient e14 match closely the corresponding ideal WZ coefficients. We demonstrate

how the values of the total polarisation, ionic and electronic, are only qualitatively

described by this model. We show how this is due to two factors, an uncertainty

in the electronic polarisation which is then amplified by the small magnitude of

the total polarisation relative to the electronic and ionic components which cancel
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to give the small total. We compare our results for both the total and just the

electronic polarisation with DFT results to illustrate this. We explain how the

uncertainty in the electronic component arises at least in part from a fundamen-

tal limitation of the tight-binding model; the minimal basis employed in the TB

model cannot span the entire Brillouin zone and, in the Berry phase theory of

polarisation, the entire Brillouin zone is sampled. We also examine the effect on

Pspon in ideal WZ of including interactions from selected third NN atoms and show

that while it effects both the Pspon and the crystal field splitting, these interactions

cannot easily and consistently model the both the crystal field splittin and Pspon.

For real WZ material we show the parameter sensitivity of the model when cal-

culating Pspon. We show how the bond length scaling exponents have a strong

effect on the electronic component, as previously shown, and that for large ex-

ponents, that were fitted to match key deformation potentials, the results can be

improved. We further show that these larger scaling exponents do not produce the

correct trends for PZ coefficients, we suggest this is because they do not improve

the description of the eigenstates but compenstate by amplifying other terms. We

finally demonstate that also for real WZ, although the model gives a reasonable

description of the electronic polarisation, accurate quantative results that depend

on the total polarisation are beyond the scope of this model. We show that our

model produces correct qualitative trends for the electronic part of the ratio of the

PZ coefficients e33
e31

but reiterate that an accurate description of total polarisation

values are beyond the scope of this model.



Chapter 4

Band gap bowing and optical

polarisation switching in

Al1−xGaxN alloys

4.1 Introduction

Nitride semiconductors InN, GaN, AlN and their respective alloys are highly at-

tractive for a variety of different applications. Amongst other applications nitride-

based systems are of interest for detectors, light-emitting diodes, and lasers oper-

ating in the UV range with applications such as power electronics, optical storage,

medical diagnostics and treatment, and sterilization processes [1, 2]. More specif-

ically the wurtzite alloy Al1−xGaxN is of particular interest for efficient emission

in the UV spectral range [39]. When designing optoelectronic devices based on

Al1−xGaxN systems the evolution of the band gap with composition x is of central

importance. Usually the band gap evolution with composition x is described by a

Végard’s law type expression:

EAlGaN
g = xEGaN

g + (1− x)EAlN
g − bx(1− x) , (4.1)

where b denotes the so-called band gap bowing parameter. Values for b reported in

the literature vary from 0.7 eV to 1.3 eV [40–47]. Recently, it has been shown that

random alloy fluctuations significantly affect the electronic and optical properties

of InGaN and AlInN alloys [30, 32, 42, 48–50]. This raises the question if random
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alloy fluctuations also affect significantly the composition dependence of the band

gap and band edge states in AlGaN alloys. Previous theoretical results seem to

indicate that these effects are less pronounced in AlGaN systems compared for

example to AlInN [40]. However, these studies are mainly performed on small

supercells (16 atoms), which might overlook wave function localization effects.

In addition to the band gap value, the light polarisation characteristics of wurtzite

AlGaN-based heterostructures have a strong influence on the light extraction ef-

ficiency of AlGaN-based devices [51–53]. It has been reported that the light out-

put efficiency of c-plane based AlGaN LED devices decreases as Al content in-

creases [1]. This is in part due to the valence band ordering of wurtzite AlN [54]

which in Al-rich AlGaN gives rise to transverse magnetic (TM) optical emission,

where the emitted light is polarised along the wurtzite c-axis direction. This or-

dering, as we discuss in detail here, switches for lower Al content in AlGaN to give

transverse electric (TE) emission (polarised in the c-plane) which in turn allows

greater light extraction efficiency for surface-emitting LED structures. Higher Al

content is desirable for UV emission but, above a certain Al composition the emis-

sion switches from TE to TM polarisation. Knowledge of the composition at which

this switching occurs is crucial to device design. As highlighted in Ref. [32] alloy

fluctuations lead to a surprisingly early switching of the valence band ordering

in AlInN (between 15-18% InN content). This switching arises from wave func-

tion localization effects due to random alloy fluctuations. Therefore, even if alloy

fluctuations are less important for the energy gap, the question remains how the

wave function character of the topmost valence band is affected by random alloy

fluctuations.

To capture effects arising from random alloy fluctuations, both large super-cells

and an atomistic description of these super-cells are required for a proper analy-

sis. Here we apply previously established atomistic tight-binding (TB) [32] and

local polarisation [30] models to study the electronic structure of random wurtzite

AlGaN alloys.

Our analysis of the composition dependence of the energy gap in AlGaN alloys

gives a band gap bowing parameter of b = 0.94 eV. This value is in good agree-

ment with recent experimental and theoretical data [40, 45–47]. In addition, we

find that the band gap bowing mainly originates from the bowing of the conduc-

tion band (CB) edge, while the valence band (VB) edge shows a close to linear
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composition dependence. Moreover, our study shows that the optical polarisa-

tion switching from TM to TE emission occurs in the range of a GaN content of

x ≈ 0.75. Although the VB edge energy shows a close to linear variation with

GaN content, the optical polarisation switching nevertheless occurs at a signifi-

cantly higher Al composition (25%) than would be expected (∼ 10%) based on

strict linear interpolation.

The chapter is organized as follows. In Sec. 4.2 we introduce the theoretical frame-

work we use to study band gap bowing and optical polarisation switching in AlGaN

systems. Our theoretical results are presented in Sec. 4.3. The composition de-

pendence of the band gap in random AlGaN alloys over the full composition range

is discussed in Sec. 4.3.1, while Sec. 4.3.2 focuses on the CB and VB edge be-

haviour with composition. Section. 4.3.3 deals with optical polarisation switching

in AlGaN alloys. Finally we summarize our results in Sec. 4.4.

4.2 Method

To achieve a microscopic description of the effect of random alloy fluctuations

on the composition dependence of the band gap in AlGaN systems, we employ a

semi-empirical sp3 TB model. The model includes local strain and built-in field

fluctuations arising from random alloy fluctuations. The theoretical framework

can be divided into several steps. Firstly, we construct super-cells with approxi-

mately 12,000 atoms in which the Al and Ga atoms are randomly distributed on

the Group III sites. For homopolar tetrahedrally bonded compounds, commonly

available force fields are based on the valence force field model (VFF) [55] or the

Keating potential [56]. A generalisation of the two models to include electrostatic

interactions explicitly was given by Martin for ZB heteropolar compounds. In

Martin’s model the total energy of atom i in a ZB unit cell is given by

Ui =
1

2

∑
j 6=i

1

2
kr(rij − r0

ij)
2 +

∑
j 6=i

∑
k 6=i,k>j

1

2
kiθr

0
ijr

0
ik(θijk − θ0

ijk)
2 (4.2)

+ kirθ
[
r0
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The different kr, k
i
θ, k

i
rθ and kirr denote the force constants. The angles between

atoms i, j and k are given by θijk, Z
∗
i denotes the effective charge and e is the

elementary charge. The permittivity of the vacuum is given by ε0 while the dielec-

tric constant of the material is denoted as εr. The Madelung constant is given by

αM , which in the case of ZB has the value αM = 1.6381. The last term in Eq. 4.2

is a linear repulsion term, required to keep the crystal stable [57]. It cancels out

linear contributions from the power series expansion of the electrostatic part of

the energy. Both summation indices, j and k, run over the first NN of atom i

except in the second last sum (marked with a prime symbol) which runs over the

whole crystal as it corresponds to the long-ranged Coulomb interaction.The factors

of a 1/2 are simply to prevent double counting over the atoms in the same unit

cell. Martin has also given the relation between the force constants of the general

VFF in Eq. 4.2 and Keating’s potential. The main advantage of using Eq. 4.2

for WZ structures is that inclusion of electrostatic terms leads to the important

qualitative result of a c/a ratio and internal parameter u that deviate from the

ideal values (
√

8/3 and 3/8 respectively). Fitting of the different force constants

and the effective charges to the structural and elastic properties of the WZ ma-

terials (work that was carried out by Miguel Caro) leads to a good quantitative

description of these quantities. The VFF model has been implemented using the

software package gulp [58].

The local strain can then be determined from the relaxed atomic positions, fol-

lowing Ref. [59]. From the local strain the local polarisation is calculated. Here

the ith component of the polarisation vector field is evaluated at each atomic site

according to [30]:

Pi =
6∑
j=1

e
(0)
ij εj︸ ︷︷ ︸

macroscopic

+P sp
i −

e

V0

Z0
i

N0
coor

[
µi −

3∑
j=1

(δij + εij)µi,0

]
︸ ︷︷ ︸

microscopic

. (4.3)

This separates the contributions to the polarisation due to macroscopic effects,

given by the macroscopic strain εj (Voigt notation), the clamped-ion piezoelectric

coefficient e
(0)
ij , and local effects, including the spontaneous polarisation P sp

i and

also a contribution dependent on the bond asymmetry parameter µi. The quantity

µi is related to the internal strain parameters. Z0
i , V0 and N0

coor represent, respec-

tively, Born effective charge, unit cell volume and number of nearest neighbours

at the given atomic site, and e is the fundamental electronic charge.
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Having established the local polarisation field, we use a point dipole model to

calculate the corresponding built-in potential. This approach presents a solution

to the problem of solving Poisson’s equation on an irregular atomistic grid. More

details are given in Ref. [30].

This atomistic description of strain, polarisation and built-in potential has to

be coupled to an atomistic electronic structure theory. Here we choose the TB

method to achieve such a description. The required TB parameters at each atomic

site are set to the bulk value for the specific atom. To account for the band

offset between GaN and AlN, the on-site energies of the GaN TB parameters are

energetically shifted by the valence band offset. This is a widely used ansatz

[60, 61]. The on-site energies on the N sites are determined by taking a ratio of

AlN and GaN parameters according to the ratio of Al and Ga nearest neighbors

[37, 62]. These bulk TB parameters are obtained by fitting the TB band structures

to Heyd-Scuseria-Ernzerhof (HSE) screened exchange hybrid functional density

functional theory (DFT) band structures [30, 32]. Our TB model gives a very good

description of the HSE-DFT band structure, as shown for example in Ref. [30],

around the Γ-point. Due to its reduced number of basis states, the description of

e.g. the CB at the M - and L-valleys is less good. However, from our HSE-DFT

band structure calculations we find that the energetic separation ∆Γ−M between

the CB minimum at the Γ-point and the M -point in GaN is ∆GaN
Γ−M = 3.14 eV and

in AlN it is ∆AlN
Γ−M = 1.67 eV. For the splitting between Γ-point and L-point we

find ∆GaN
Γ−L = 2.58 eV and ∆AlN

Γ−L = 1.18 eV. Since in both systems the energetic

separation between the CB minimum at the Γ-point and the L- and M -valleys,

respectively, is at least 1 eV, it is justified to assume that the evolution of the

energy gap in AlGaN alloys is dominated by the band structure around k = 0,

especially for higher GaN contents. Thus, the TB model used here should be

sufficient to describe the band gap evolution in AlGaN alloys.

In the TB Hamiltonian the local strain tensor εij(r) and the built-in potential φ(r)

has to be included in order to accurately describe the electronic properties of the

AlGaN alloy. Several authors have shown that strain effects can be introduced by

on-site corrections to the TB matrix elements [6, 7]. Here we include the strain

dependence of the TB matrix elements via the Pikus-Bir Hamiltonian [63, 64] as a

site diagonal correction [30]. With this approach, the relevant deformation poten-

tials for the highest valence band and lowest conduction band states at the Γ-point

are included directly without any fitting procedure. The deformation potentials
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for AlN and GaN are taken from HSE DFT calculations [65]. Again on the same

footing as the case of the on-site energies for the nitrogen atoms, we use weighted

averages to obtain the strain dependent on-site corrections for the N atoms in

Al1−xGaxN. Our approach is similar to that used for the strain dependence of

an 8-band k · p model [63], but has the advantage that the TB Hamiltonian is

sensitive to the local distribution of Al and Ga atoms. The final part of our TB

model for the description of the electronic structure of Al1−xGaxN alloys is the

local built-in potential φ(r) arising from the piezoelectric and spontaneous polar-

isation contributions. The built-in potential φ(r) is similarly included as a site

diagonal contribution in the TB Hamiltonian [66–69].

Following recent experimental analysis for InGaN [70, 71] we also treat Al1−xGaxN

as a random alloy. For each composition x, the band gap calculations have been

repeated five times to realize different random microscopic configurations. The

band gap was evaluated as the average over the different configurations for a given

GaN content x according to:

Eg(x) =
1

N

N∑
i=1

[
Ei

CB(x)− Ei
VB(x)

]
. (4.4)

Here N is the number of configurations, five in this case, and i denotes the micro-

scopic configuration. Ei
CB and Ei

VB are the CB and VB edge energies.

4.3 Results

Having established the theoretical framework, we turn now to present the results of

our analysis. In Sec. 4.3.1 we discuss the band gap bowing of AlGaN over the full

composition range. Our theoretical results are compared with recent experimental

data, showing good agreement. The analysis of the composition dependence of the

band gap is followed by the analysis of the evolution of the band edges with GaN

composition x. In the final step we focus on the optical polarisation switching and

compare our results with the results from a linear interpolation of the crystal field

splitting and with experimental data.
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Figure 4.1: Evolution of the band gap energy of Al1−xGaxN with GaN content
(x). The black circles represent TB supercell calculations, for which a bowing
parameter of b = 0.94 eV can be extracted. The other data sets (a,b and c) are
experimental measurements [72–74], showing good agreement between theory
and experiment.

4.3.1 AlGaN band gap

The calculated band gap energy of Al1−xGaxN as a function of the GaN content x

is depicted in Fig. 4.1. Additionally, Fig. 4.1 also shows recent experimental data

from Refs. [72–74]. Good agreement is found between theory and experiment over

the full composition range. Using Eq. (4.1) we find a band gap bowing parameter

b of 0.94 eV. This lies well within the range of the reported literature values of 0.7

to 1.3 eV [40–47]. More recent data suggest a value close to 0.9 eV [40, 45–47].

The impact of random alloy fluctuations on the results can be assessed by com-

paring the variations in the energy gaps of the different microscopic configurations

compared to the average energy gap for a given composition x. Here we find that

the difference between the individual microscopic configurations and the average

value of the band gap is less than 8 meV across the full composition range. This

suggests that the strong localization effects associated with the InN-containing

alloys, InGaN and AlInN [30, 75], are not as prevalent in Al1−xGaxN.
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We note here that for device design not only the composition dependence of the

energy gap is important but that it is also useful to know how the bowing in the

band gap is distributed between CB and VB edges.

4.3.2 Composition dependence of the band edge energies

Figure 4.2 shows the calculated CB and VB edge energies as a function of the GaN

content x in Al1−xGaxN systems. From Fig. 4.2 it can be seen that most of the

band gap bowing arises from bowing of the CB edge; the VB edge energy varies

almost linearly with x. More specifically, we find band edge bowing parameters of

bCB = 0.78 eV and bVB = −0.16 eV for the CB and VB edges, respectively. These

bowing parameters were obtained by fitting to:

EAlGaN
CB = x

(
EGaN
g + ∆EVB

)
+ (1− x)EAlN

g − bCBx (1− x) ,

EAlGaN
VB = x∆EVB − bVBx (1− x) .

(4.5)

with the AlN VB edge taken as the zero of energy. Here bCB and bVB denote

the bowing parameters for the CB and VB edges, respectively. For the VB offset

∆EVB between GaN and AlN, we assume a value of ∆EVB = 0.9 eV. This is within

the range of reported literature values
[
∆E

GaN/AlN
VB = 0.15− 1.4eV

]
[50, 76–78].

Given the near linear variation of the VB edge energy it might be expected that

the crystal field splitting also varies linearly in AlGaN. The variation of the crystal

field splitting and its effect on optical polarisation switching in AlGaN is studied

in the next section.

4.3.3 Optical polarisation switching

When looking at the bulk band structure of the two binaries GaN and AlN, the

VB ordering is different in these two systems. While in GaN the topmost VB is

of Γ9 symmetry, it is of Γ7+ symmetry in AlN [79]. This difference in symmetry

leads to a difference in polarisation properties of the light emitted from GaN or

AlN [79]. The origin of the difference in the VB ordering is attributed to the

difference in the sign of the crystal field splitting energies in GaN and AlN, where

the crystal field splitting is defined as the difference in energy ∆CF between the two
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Figure 4.2: Calculated evolution of the CB and VB edge energies of
Al1−xGaxN with GaN content x. The results for the CB edge (TB-CB SC)
and VB edge (TB-VB SC) from the TB supercell calculations are given by the
open circles. The fit to the TB data, using Eq. 4.5, is given by the dashed
dotted lines. Most of the calculated bowing is in the CB with a bowing param-
eter of bCB = 0.78 eV, whereas the variation of the VB edge is nearly linear
(bVB = −0.16 eV).

topmost VB states at k = 0, when the spin-orbit interaction is ignored. Therefore

the question arises at which composition x does the character of the VB edge

change? A widely used approximation is to assume that ∆CF changes linearly

with composition x. However, this assumption is used mainly due to the lack of

more detailed information on the variation of the crystal field splitting. Here we

now use our microscopic TB model to study this question.

Values reported for ∆CF in GaN lie in the range of 9-38 meV, while for AlN values

between −169 meV and −295 meV can be found [41, 80]. As discussed above, the

difference in the sign of ∆CF reflects the difference in the VB ordering of bulk GaN

and AlN. Neglecting the weak spin-orbit coupling, the topmost valence band in

AlN mainly has pz character (the band is a superposition of atomic pz basis states

pointing along the c-axis), giving rise to TM polarised emission. By contrast,

the topmost valence band in GaN is a mixture of px and py states, giving TE

polarised emission. Hence, when one alloys the two binary compounds, the optical

polarisation of the emitted photons will switch at a certain composition.
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Figure 4.3: Calculated degree of polarisation ρ of the topmost VB state in
Al1−xGaxN as a function of GaN content x. Our data (filled circles) shows a
change in the optical polarisation direction at close to x = 0.75 (red dashed
line). The line at x = 0.91 (blue dashed line) represents the crossing point
expected from a linear variation of ∆CF.

A linear interpolation of the values from our DFT calculations for ∆CF (∆GaN
CF = 23

meV, ∆AlN
CF = −240 meV) gives the optical polarisation switching at x = 0.91.

Given that the VB edge energy changes almost linearly with GaN content, it

might be presumed that a linear interpolation is a reasonable assumption for ∆CF

in AlGaN alloys. To analyze the optical polarisation switching and the change in

∆CF in more detail, we define, similar to [53], the degree of optical polarisation

(ρ) as:

ρ =
Iz − Ix+y

Iz + Ix+y

. (4.6)

The fraction of pz-like character in the topmost valence state is denoted by Iz, while

Ix+y denotes the combined fraction of px- and py-like character. This approach,

by taking the orbital character of the valence band, is similar to the approach

used in Ref. [81] to address the optical polarisation characteristics of nitride-based

systems. In Fig.4.3 the parameter ρ varies between 1 when the valence band edge

is entirely made up of pz-like orbitals and −1 when the px,y orbitals form the basis

of the topmost valence band. From Fig. 4.3 we estimate the switching point to

be around x = 0.75. This is at a significantly lower composition than would be
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expected from a linear interpolation. It should be noted that we have neglected

spin-orbit coupling effects in the calculations. However, similarly to crystal field

splitting energies, there is also a large degree of uncertainties in the values of

the spin-orbit coupling energies. Values ranging from 5 to 22 meV can be found

in the literature for GaN. Therefore, the effects of the state mixing introduced

by the inclusion of the spin-orbit coupling in the calculations are probably still

smaller than the uncertainties in the spin-orbit coupling and crystal field splitting

energies. Furthermore, since the difference in the valence band structure between

GaN and AlN is mainly introduced by the large difference in the crystal field

splitting energy, our theory should include the main contribution that affects the

optical polarisation switching. Experimentally, Neuschl et al. [47] found, based on

polarisation dependent photoluminescence spectroscopy, the optical polarisation to

switch in the range x = 0.68−0.85. Netzel et al. [82] report an optical polarisation

switching range of x = 0.79 − 0.94 while Nam et al. [53] estimate the transition

at x = 0.75. However, these reported values are affected by the presence of

strain effects due to the underlying substrate. Compressive strain causes a shift

to lower x values while tensile strain shifts the polarisation switching to higher

Ga compositions. Neuschl et al. [47] used k.p theory to correct for the effect of

strain originating from the underlying substrate. In doing so they find an adjusted

range of x = 0.86− 0.96. Given the difficulties in experimentally determining the

degree of optical polarisation, as discussed in detail in [47], plus the uncertainties

in AlGaN material parameters, our value is close to the reported experimental

data.

Our calculations show that the optical polarisation switches at a much higher Al

composition than would be predicted using a linear interpolation, thus allowing

access to a significantly larger range of TE emitting Al-containing alloys than

might be expected.

To quantify the deviation from a linear interpolation we apply a Végard’s law like

expression to ∆CF, similar to Eq. (4.1):

∆AlGaN
CF = x∆GaN

CF + (1− x)∆AlN
CF − bCFx(1− x) . (4.7)

Here, bCF denotes the bowing parameter of ∆CF. Using our previous result that

the optical polarisation switches (and hence ∆CF ≈ 0) at x ≈ 0.75 along with

the values of −240 meV and 23 meV for ∆AlN
CF and ∆GaN

CF , respectively, we find a
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bowing parameter of bCF ≈ −0.23 eV for ∆CF. It should be noted that a similar

behaviour was recently reported in Ref. [47]. The authors also report deviations

from a linear variation of ∆CF with composition x in Al1−xGaxN systems. The

extracted bowing parameter in Ref. [47] for ∆CF is bCF = −0.12−0.06
+0.12eV. Therefore,

our finding of a bowing in the crystal field splitting energy is consistent with the

experimental data in Ref. [47].

4.4 Conclusions

In summary, we employed an atomistic TB model that includes local alloy and

polarisation effects in order to study the band gap bowing and optical polarisation

switching of wurtzite Al1−xGaxN as a function of Ga content x. Our calculation

of the band gap energy is in good agreement with experiment across the full com-

position range. We extracted a bowing parameter for the band gap of b = 0.94

eV, which is also in good agreement with experiment. We further analysed the

origin of this bowing in the CB and VB edges and fitted bowing parameters to

both; bCB = 0.78 eV and bVB = −0.16 eV. Finally, we calculated the composition

at which the band edge optical emission switches between the TE and TM polar-

isation directions. We found the switchover to be in the region x ≈ 0.75 which

is at a much higher Al composition (25%) than would have been expected (9%)

assuming a linear variation of the crystal field splitting in our calculations. This

observed non-linear behaviour of the crystal field splitting is consistent with recent

experimental observations.



Chapter 5

Electron and hole localization in

InxGa1−xN quantum wells

5.1 Introduction

We have just seen how the band gap of Al1−xGaxN alloys spans 6.2 to 3.45eV, the

upper part of the band gap range spanned by the III-nitrides. We now look at

InxGa1−xN alloys, which have a band gap range of 3.45 to 0.78eV. This corresponds

to emission wavelengths from 380 to 1800 nm, from the visible to near-infrared

range of the spectrum. Blue light emitting diodes based on InxGa1−xN/GaN

quantum wells (QWs) form the basis for white LEDs, by pumping a phosphor

they also emit in the yellow to amber range. They are also commonly used in

Blu-ray DVD lasers. Despite being widely used, these structures are not very

well understood at a microscopic level. They have very high defect densities but

still exhibit high quantum efficiencies [3, 4]. This is commonly explained in terms

of carriers being spatially localised due to local alloy fluctuations, which therefore

prevent them from diffusing to defects [3, 4, 48, 83]. InN has very different physical

properties from AlN and GaN. One example is the band gap 0.7 eV in InN and

6.2 in AlN. Furthermore there is a very large lattice mismatch of about 10% for

InN/GaN and 11% for InN/AlN. Thus, the inclusion of Indium causes a much

larger perturbation of the local atomic structure and band structure in GaN than

Al. The lattice mismatch is much smaller in AlN/GaN systems. Both of these

factors result in InGaN systems having interesting localisation affects. A local

atomistic description of the QW is thus required to analyse these localisation

67
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effects. Although the importance of alloy fluctuations has previously been reported

in experimental studies [84, 85], these atomistic effects have not been previously

modelled in QW structures. Atomistic studies, to date, have focused on bulk ZB

[86–88] or WZ [40, 50, 89, 90] InGaN alloys. InGaN QWs of realistic dimensions

are generally studied using continuum-based theoretical methods [91–93], but these

models inherently overlook alloy or built-in field fluctuations on a microscopic level.

In WZ InGaN systems these local fluctuations are much more severe compared to,

for example, ZB InGaAs alloys. The large lattice mismatch and difference in band

gap contribute to this as well as the strong electrostatic built-in fields due to

strain dependent piezoelectric response, as well as spontaneous polarisation. Thus

the electronic structure of InGaN/GaN QWs is strongly affected by local alloy

fluctuations and an atomisitc description of the structure is required.

We implement here the same model as in chapter 4, to investigate the effect of local

alloy fluctuations on the localisation of electron and hole states in InxGa1−xN/GaN

QW structures. Special consideration must be given to the built-in potential to

make sure it is continuous at the boundaries while also correctly accounting for

the contribution from the clamped ion term in the polarisation potential. We used

supercells containing just over 80,000 atoms with approximately the following di-

mensions; 10nm x 9nm x 10nm. Two compositions were examined, In0.25Ga0.75N

and In0.10Ga0.90N. We used the participation ratio (as defined in Sec. 5.2.2)as a

metric for comparing the localisation of states and show how features and trends

seen in the participation ratio affect the overlap between states. We further anal-

yse the effect of well width fluctuations (WWFs) on the electron states for both

compositions. These WWFs have been found in experimental studies to be located

at the upper QW interface [94–97]. The diameter of these well width fluctuations

is found to be ≈ 5-10 nm, while their height is between one and two monolayers.

To treat such fluctuations, we assume disk-like WWFs with a diameter of 5nm

and a height of two monolayers residing on the upper QW interface. Following

experimental evidence we treat InGaN as a random alloy [94–96, 98–100] and we

show how these random fluctuations strongly localise the hole states in the c-plane

and how this in turn effects the overlap. In other recent DFT studies of local alloy

fluctuations, the method of special quasi-random structures is introduced [101]. In

DFT quasi-random structures are need because one has to deal with small super-

cells. Quasi-random structures allow you to look at approximately 200 atoms in

a cell, which is sufficient for conventional alloys. However, localised cluster states
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have an extent substantially larger than 200 atoms. As a result, we need large

supercells to investigate effects of these statistically rare clusters.

Our primary motivation for modeling these structures is not to directly improve

the current technology, although of course this is also an ancillary objective, but

to validate our model so it could be implemented within the DEEPEN research

project. The aim of DEEPEN is to develop a multi-scale simulation environment

for the modeling of devices using an atoms to systems approach. The acronym

stands for ‘from atom-to-Device Explicit simulation Enviroment for Photonics and

Electronics Nanostructures’. Within this project, the role of this work was to

validate our capability of providing an atomistic description of gallium-nitride-

based nanostructured materials by comparing our results to experimental data

provided by Paul-Drude-Institute in Berlin, another DEEPEN partner.

The work in this chapter was carried out in collaboration with Dr. Stefan Schulz,

also in the Photonics Theory Group here in Tyndall. Using codes developed

previously by Dr. Miguel Caro, Dr. Schulz generated supercells which I then

relaxed using gulp [58]. With the relaxed atomic positions, Dr. Schulz constructed

the Hamiltonian which included the on-site corrections for the local strain and

built-in fields. I then calculated the eigenstates and analysed the localisation

properties of these states and how this localisation affected the overlap between

carriers. Presented in the rest of this chapter are the results of this analysis for

four different structures, namely the two different compositons with and without

WWFs. For each case a number of different configurations were calculated to

probe the variation in the characteristics observed, but for the sake of brevity we

present one configuration for each case that is indicative of the features found and

show the others in Appendix B.

5.2 In0.25Ga0.75N flat quantum wells

In this section we present our analysis of the localisation properties of In0.25Ga0.75N

flat QWs. We begin by discussing the metrics used to measure the localisation

throughout.
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5.2.1 Localisation metrics used

Once the Hamiltonian was correctly constructed and then diagonalised we looked

at how the eigenstates were spatially distributed throughout the cell. The most

commonly used measure or metric of this property of the wavefunctions is called

the localisation length. It is defined as;

lloc =
∑
i

(
r̄− ri|ψi|2

)2
, (5.1)

where |ψi|2 is the total probability density on site i and r̄ is defined as the centre

of localisation;

r̄ =
∑
i

r|ψi|2. (5.2)

The centre of localisation, analogous to the centre of mass, defines a point in

the supercell about which the probability density is balanced. The localisation

length is thus a certain radius about this centre of localisation inside which the

majority of the probability density is contained. This metric, however, turned

out to be not easily applied to the wavefunctions calculated in this work. It

works best when describing states that are localised in one lobe or peak. As can

be seen later in Fig. 5.6 some of the hole states are strongly localised in two or

three lobes. The centre of localisation would then, by definition, be located at

a point precisely between these lobes and thus giving a much larger localisation

length than is actually the case. For this reason, we initially tested but then did

not implement the localisation length to measure the distribution of probability

density throughout the supercell.

5.2.2 Participation Ratio

The participation ratio (PR) is a much simpler but perhaps less intuitive way to

measure the localisation of a wavefunction. It is defined as:

Pr =
∑
i,α

|ψi,α|4, (5.3)

where the index i runs over the sites and α denotes the orbitals on each site. A

perfectly localised state that would have all its amplitude on one orbital of one
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site would give a PR of 1. Similarly, a perfectly delocalised state that would have

its amplitude spread evenly over all orbitals and all sites would give a PR equal

to 1/MN , where N is the number of atoms in the supercell (≈ 80, 000) and M is

the number of orbitals per atom (4). Thus, presuming of course that our states

are normalised to 1 as they are, the PR is a measure of localisation that varies

here from ≈ 10−5 to 1. For the purpose of introducing the quantities we use to

measure localisation and overlap, we will use the case of flat In0.25Ga0.75N QWs

to present them. Shown below in Fig. 5.1 are the participation ratios for the first

75 electron (Fig. 5.1(a)) and hole states (Fig. 5.1(b)) for one of the configurations

of the flat QWs with 25% indium content.

(a) PR of first 75 electron states (b) PR of first 75 hole states

Figure 5.1: Participation ratio of first 75 electron and hole states.

Note how the holes are strongly localised for the first 5 or so states, are still rela-

tively localised up 25 states and then beyond this they become more delocalised.

In the case of the electrons it can be seen how roughly the first 20 states are more

localised relative to the higher states, but there is still a large variation in the PR

of higher states. Notice also the difference in scale in the two figures, the holes

are much more strongly localised than the electrons. This is to be expected from

a basic analysis of the effective masses of the electron and hole states. A simple

linear interpolation of the published experimental values for the electron and hole

effective masses of InN [102, 103] and GaN [104, 105] give much larger values for

the effective mass of the holes (1.457 m0) than that of the electrons (0.177 m0) in

In0.25Ga0.75N. This order of magnitude difference is more clearly seen in Fig. 5.2

where the PR for all states, both holes and electrons, is normalised to the PR of
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the first hole state. Note also the axes represent the difference in energy from the

top of the conduction band for the electrons and from the top of the valence band

for the holes.

Figure 5.2: The PR for electron and hole states, normalised to the first hole
state and plotted on the same energy scale.

The delocalisation of the electron states relative to the hole states can clearly be

seen in Fig. 5.2. It also shows how the first 75 electron states cover a much larger

energy range than the first 75 holes. The energy separation between the individual

states, starting from the ground state up to the 90th state for both electrons (blue)

and holes (red) is plotted in Fig. 5.3.

5.2.3 Charge density overlap

In order to quantify and compare the overlap of different pairs of states we define

the 3-dimensional charge density overlap, following [106], as;

O =
∑
r1

∑
r2

∑
r3

ρe (r1, r2, r3) ρh (r1, r2, r3) , (5.4)
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Figure 5.3: How the energy separation of the individual states varies for
electrons (blue) and holes (red).

where ρ is the charge density for either the electrons or holes at a given site

denoted by the cartesian coordinates r1,r2 and r3. Shown in Fig. 5.4 is the charge

density overlap for the first 75 electron and hole states for the same configuration

as the previous figures. Again the axes show the energy separation between the

states, similar to Fig. 5.3. The main feature we want to note here is the ‘shelf’ in

this overlap surface, there is a lower overlap between the first 17 electron states

and all the hole states. After this there are some electron states that have a

consistently higher overlap with all hole states. Looking again at the PR of the

electrons in Fig. 5.1(a) we can see that it is the first 17 electron states that have

a slightly larger PR. This increased localisation in the electron states gives rise

to poor overlap with the all the highly localised hole states. Further analysis in

the next section shows that the increased overlap arises from electrons that are in

higher subbands, with reduced localisation along the c-axis direction. The spikes

in the PR for the higher electron states correspond to electron states that have low

overlap in Fig. 5.4. We see that there is a direct correlation between the electron

PR and the charge density overlap. There is no similar threshold for the hole states

that we could find. This calculation, in other configurations, was run for 200 hole

states, which reached 375 meV into the valence band, and no discernible change
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in the overlap was found. The first few hole states are strongly localised in the

c-plane; all hole states studied were strongly localised along the c-axis direction,

and any increase in overlap is due to delocalised electron states.

Figure 5.4: Charge density overlap for the first 75 electron and hole states.
(Eg = 2.03eV )

5.2.4 Probability density in a layer

So as to better examine the nature of the localisation of the states we sum over

the amplitude of all the sites in a single layer and plot the probability density

contained in each layer for all states in Fig. 5.5. The QW is located between

layers 18 and 38. We can see, due to the built-in polarisation potential, that the

holes are strongly localised along the c-axis (z-direction) and pinned to the lower

interface of the QW. The lowest electron states are then confined to the upper

interface of the QW, again due to the built-in potential. The probability density

of the electron states is more spread out along the c-axis. The first 17 electron

states in Fig. 5.5(a) are much more strongly localised along the c-axis direction

than the higher states. These correspond to the first confined electron band for



Chapter 5: Electron and hole localization in InxGa1−xN quantum wells 75

different values of k. They are also the same states that have a higher PR and low

charge density overlap with the hole states. After these states we see the emergence

of the second confined band. Notice how some of its probability density leaks into

the barrier but also deeper into the QW towards the hole states, hence increasing

the overlap.

(a) Probability density of electron states in each
monolayer.

(b) Probability density of hole states in each mono-
layer.

Figure 5.5: Probability density of (a) electron and (b) hole states in each of the 80
monolayers of the supercell.

5.2.5 Hole localisation

As can be seen from the PR in Fig. 5.2 and also from plotting the probability

density in each layer (Fig. 5.5(b)) the holes are much more strongly localised

than the electrons. We can see that the holes are localised along the c-direction

due to the built-in potential from Fig. 5.5(b). There still remains a question of

whether the holes are localised in the c-plane. To investigate this we plot the

hole probability densities in the c-plane as isosurfaces that contain 10% or more of

the maximum probability density. Figure 5.6 shows how the first five hole states

are strongly localised in the c-plane due to the local alloy fluctuations. The local

environment of the sites with the highest probability density for the hole states

was found to have a high indium content locally on both first and second nearest

neighbours. By comparison, the first electron state (Fig. 5.6(f)) is delocalised

throughout the cell.
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(a) Highest hole state (b) 2 highest hole states (c) 3 highest hole states

(d) 4 highest hole states (e) 5 highest hole states (f) Highest electron state

Figure 5.6: Localisation of the first five holes and first electron state projected onto
the c plane.

5.2.6 Hole overlap

When examining Fig. 5.6 we note that although strongly localised, some of the first

few hole states can have a significant overlap with each other. Take for example the

first and third hole state in Fig. 5.6(c), where the first (green) and third (yellow)

state occupy the same region of the cell. We know from Fig. 5.5(b) that both these

states are localised along z at the same interface between the barrier and QW.

A similar behaviour can be seen between states four (light blue) and five (red).

Hence, in order to measure the overlap between hole states, we define σ as;

σmn =
∑
i

|ψm,i||ψn,i|, (5.5)

where |ψm,i| =
√
ρm,i with ρm,i being the hole charge density at site i for state m.

The quantity σ, which varies between zero and one, then measures the relative

overlap of the hole states by summing over the overlap at each site. Shown in

Fig. 5.7 is σmn for the 75 highest hole states of this configuration.
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Figure 5.7: σ for the first 75 hole states.

Notice how in general the first six states have very poor overlap with higher states.

This is again due to strong in-plane localisation and correlates with the very high

PR of the first 6 states in Fig. 5.1(b). Some of these states do have good overlap

with each other; bright yellow spots can be seen between states one and three as

well as four and five in Fig. 5.7. A general increase in overlap is seen between

states 8 and 20; this is due to increasing delocalisation of states in this region.

This is again reflected in the PR in Fig. 5.1(b). After 20 states there is generally

good overlap between the holes. The states are relatively delocalised in the c-

plane and once again this corresponds to the region after 20 states with lower PR

in Fig. 5.1(b). In an infinite solid, the transition between localised and delocalised

states takes place at a well-defined mobility edge, with the hole states above the

mobility edge being localised and while those below this edge are delocalised. It is

not possible to define an exact mobility edge in the finite-size supercells considered

here. It is likely however to be in the region between 10 and 20 hole states, beyond

carriers can propagate from one delocalised state to another. The red lines through

this region in Fig. 5.7 represent states further away from the band edge that are

localised in the c-plane. An example of such a state is the 69th hole state, it has
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poor overlap with most states except for ones that are similarly localised in the

c-plane like the 15th state. The projection in the c-plane of the probability density

of these two states is plotted in Fig. 5.8. The high peak of the probability density

for both states is situated in the same region, hence they have good overlap with

each other but poor overlap with the other hole states.

(a) xy projection of 15th hole state (b) xy projection of 69th hole state

Figure 5.8: Comparison of the localisation in the c-plane of two states that have
poor overlap with the other hole states but have a strong overlap with each other.

5.2.7 Summary of In0.25Ga0.75N flat QWs.

In these structures the high InN content gives rise to a strong built-in polarisation

potential which confines the electrons and holes to opposite sides of the active

layer in the QW. It is only when the second band of electron states is reached

due to these higher electron states being more delocalised in the c-axis direction,

that there is an increase in overlap between electrons and holes. The high InN

content also gives rise to strong in-plane localisation for the highest hole states.

Local alloy fluctuations and In clustering give rise to deep local potentials in which

the highest hole states are trapped. This further deteriorates the overlap between

electron and hole states. Overall, the calculated electron states remain delocalised

in the c-plane, but the highest hole states are localised, with the mobility edge

between localised and delocalised hole states estimated to occur between the 10th

and 20th hole state, about 80 to 120 meV below the highest valence state.
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5.3 In0.25Ga0.75N quantum wells with well width

fluctuations

We next analyse the effect of well width fluctuations on the localisation properties

of the electrons. Experimental studies [94–97] show that WWFs with a diameter

of ≈ 5− 10nm and a height of one to two monolayers develop during the growth

of In0.25Ga0.75N/GaN QWs. We model these WWFs with a disk of 5nm diameter

and a height of two monolayers placed at the upper interface of the QW.

The main effect of WWFs on these QWs is that they localise the first electrons in

the c-plane. The holes are largely unaffected by the WWFs since they are localised

at the opposite interface of the QW. The lower electron states are localised within

the disk of the WWFs as shown in Fig. 5.9. All other properties of the electrons

and holes follow closely the behaviour of the flat In0.25Ga0.75N QWs. The PR

for the electrons have the same features as in the flat case; the first 20 or so

states belonging to the first confined band have a slightly larger PR than the

higher states. The probability density in each monolayer (Fig. 5.5) is also largely

unchanged for both electrons and holes. 1

(a) xy projection of 1st electron state (b) xy projection of 2nd electron state

Figure 5.9: The first electron state is strongly localised in the c-plane by the WWF
(marked by the white circle), while the second electron state is partly localised by the
WWF.

1The corresponding figures are not included here to avoid repetition and can be found in
Appendix B.
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This in-plane localisation of the electrons within the WWFs has the effect of

reducing their overlap with the hole states that are already strongly localised in

the c-plane. This is shown in Fig 5.10. The charge density overlap for these QWs

with WWFs has all the same features as the flat case except for the scale. The

magnitude of the overlap is reduced by an order of a factor of 2 compared to the

flat case. This is, perhaps, due to the fact that due to the WWFS the QW is, on

average, wider than the flat case and as a result the carriers have a greater spatial

separation, but we are not certain of this.

Figure 5.10: Charge density overlap for the first 75 electron and hole states
in an In0.25Ga0.75N including a WWF.

Optical recombination is most likely to involve the lowest electron state due to the

large energy separation between it and higher electron states. Shown in Fig. 5.11

is the charge density overlap between the first electron state and the 20 highest

hole states for the flat QW (red) and the WWF case (blue) . In QW with WWFs

we see a general poor overlap in contrast to the flat QW, due to the electron

ground state being localised within the WWF. The improvement in overlap with

hole states 3 and 9 is as a result of these states being localised in the same region

of the c-plane as the first electron state, as shown in Fig. 5.12(a) and Fig. 5.12(b).
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Figure 5.11: Charge density overlap between the electron ground state and
the first 20 hole states for flat QWs (red) and QWs with WWFs (blue).

(a) xy projection of 3rd hole state (b) xy projection of 9th hole state

Figure 5.12: The hole states that give an improved overlap with the ground
state electron, as shown in Fig. 5.11, are both localised in the centre of the QW.

In summary the WWFs cause the electrons to localise in the c-plane which further

deteriorates the overlap with the hole states.
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5.4 In0.10Ga0.90N flat quantum wells

We now turn our attention to the lower composition In0.10Ga0.90N flat QWs. Again,

we begin by looking at the participation ratio.

5.4.1 Participation Ratio

A similar behaviour to that of the structures with 25% InN content in terms

of the PR is observed, with the holes are still strongly localised relative to the

electrons. In contrast to the structures with higher InN content the hole states

eventually reach the same scale of PR values as the electrons for the range of states

studied, as shown in Fig. 5.14. This is mainly due to delocalisation along the c-

axis direction, which becomes possible because of the reduced built-in polarisation

potential compared to the structures containing 25% InN. Note also how the first

electron state has a lower PR than the second state. This is seen consistently

across all configurations and results from band folding effects due to periodicity

in the c-plane. The lowest electron state has no contribution from folded bands

and is relatively delocalised in the c-plane. By contrast, the second state has, due

to the 2-d periodicity of the supercell, contributions from at least 4 k-states. This

superposition creates states with a cosine like distribution of probability density

and hence, due to the increased number of lobes, these states are more localised

and have a higher PR.

(a) PR of first 50 electron states (b) PR of first 200 hole states

Figure 5.13: Participation ratio of first 50 electron and first 200 hole states.
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Figure 5.14: The PR for electron and hole states, normalised to the first hole
state.

5.4.2 Probability density in a layer

When we examine the probability density of each state in each layer of the structure

we see the effects of the weaker built-in polarisation potential on the localisation

of the states. For the electrons the first 10 states are localised at the barrier

interface but after these states we can clearly see the emergence of higher bands.

These higher bands, noticeable in Fig. 5.15(a) by the increased number of nodes

in the c-direction, are at energies above the GaN conduction band edge. They

therefore leak heavily into the barrier and also spread across the full QW. For the

hole states we notice something similar; after 40 states the holes begin to spread

both across the QW and into the barrier. These first 40 states belong to the first

confined band and further states with contributions from higher bands are then

more delocalised along the c-axis direction. Because of the built-in potential, the

electrons tend to first spread into the barrier on the left hand side while the holes

leak into the right hand barrier.
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(a) Electron probability density per monolayer. (b) Hole probability density per monolayer.

Figure 5.15: Probability density of electron and hole states in each of the 80 mono-
layers of the supercell.

5.4.3 Energy separation of states

We saw with the QWs with 25% InN that the first 75 electron states extended

much deeper into the conduction band than the first 75 hole states extend into the

valence band, as was shown in Fig. 5.3. As stated already, with these 10% wells,

after ten states the GaN conduction band edge is reached. In order to examine

how far into the valence band the hole states reach we calculate the first 200 hole

states. The hole states again have a much smaller separartion in terms of energy

than the electrons and all 200 states calculated are confined in the QW. The lowest

hole state calculated is still 50 meV above the GaN valence band edge.

5.4.4 Charge density overlap

The localisation properties of the states that belong to the first confined band

for both electrons and holes have a noticeable effect on the charge density overlap

between the states, as shown in Fig. 5.17. The ‘shelf’ seen after 10 electron states is

again present but less pronounced than for the 25% case. This is due to the reduced

built-in field which allows all electron and hole states to spread further into the

QW than compared to the 25% QWs. This shelf is a result of the difference in the

confinement along the c-axis direction of states belonging to different subbands, as

seen in Fig. 5.15. A smaller but similar change is seen after 40 hole states where

the states are, again, more delocalised along the c-axis direction and as a result a

general increase in the charge density overlap is seen at this point. The overlap
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Figure 5.16: How the energy separartion of the individual states varies for
electrons (red) and holes (blue).

between the lowest 10 electron states and the hole states is larger than the 25%

QWs, almost an order of magnitude bigger on average (the overlap between these

states is of the order of ≈ 10−7 for the 25% QWs). This is again a result of the

reduced confinement along the c-axis direction due to the weaker built-in field. A

steady increase in overlap can be seen as we go to higher hole states corresponding

with the increase in delocalisation along the c-axis for higher hole states seen in

Fig. 5.15.

5.4.5 Hole localisation

We see in Fig. 5.18 that although there is a reduced InN content compared to the

In0.25Ga0.75N QWs, and hence less In clusters and local alloy fluctuations, the first

5 hole states are still strongly localised in the c-plane. This is to be expected as

there is still a significant In content in the QWs causing local alloy fluctuations.

These states fill up quickly however, and after the 10th hole state we begin to see

more delocalised behaviour, as shown in Fig. 5.19. The electron states are, again,

largely unaffected by the local alloy fluctuations and remain delocalised.



Chapter 5: Electron and hole localization in InxGa1−xN quantum wells 86

Figure 5.17: Charge density overlap for the first 50 electron and 75 hole states.

(a) Highest hole state (b) 2 highest hole states (c) 3 highest hole states

(d) 4 highest hole states (e) 5 highest hole states (f) Highest electron state

Figure 5.18: Localisation of the first five holes and first electron state projected
onto the c plane.
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(a) c-plane projection of the 14th hole state. (b) c-plane projection of the 15th hole state.

Figure 5.19: The c-plane projection of the 14th and 15th hole states which are
delocalised.

5.4.6 Hole overlap

Shown in Fig. 5.20 is the overlap between hole states, calculated as we did in

Sec. 5.2.6. The first difference between this and the 25% case is the scale, notice

the colorbar goes from 0 to 1 in Fig. 5.7 whereas it starts just above 0.6 in Fig. 5.20.

This shows that there is in general a much higher overlap between the hole states

for the lower composition wells. This is due to reduced local alloys fluctuations as

a consequence of the lower InN concentration. Whereas in the 25% case we saw a

mobility edge between localised and delocalised states to occur between the 10th

and 20th hole state we see a similar transition to occur after only 4 or 5 hole states

in these 10% QWs. These states are 15 meV below the ground hole state compared

to the range of 80 to 120 meV for the 25% case. We see two areas of higher

overlap within this region, both correspond to different subbands. As we showed

in Fig. 5.15, the different subbands have different localisation characteristics along

the c-axis and as a result states in the same subband will have slightly higher

overlap than those form different subbands.

5.4.7 Summary of In0.10Ga0.90N flat QWs.

The decrease in InN content in these QWs has a strong influence on the localization

properties of these structures. Both the electron and hole states are spread much

deeper into the QW due to the decreased built-in potential. The highest hole



Chapter 5: Electron and hole localization in InxGa1−xN quantum wells 88

Figure 5.20: σ for the first 200 hole states.

states are still localised in the c-plane, but the effect is weaker than in the 25%

structures and lower hole states are delocalised throughout the c-plane. This is

a result of less alloy fluctuation and clustering effects due to the reduced InN

content.

5.5 In0.10Ga0.90N quantum wells with well width

fluctuations

The final set of QWs we examined were In0.1Ga0.9N with WWFs. Similar to the

comparison between flat QWs and the ones with WWFs for 25% InN content, the

QWs with WWFs mirror the behaviour of the flat ones for this composition too. In

contrast to the 25% case however, the WWFs do not localise the first few electrons

as strongly in the c-plane in the case of these lower composition QWs. Again the

PR and probability density in each monolayer are nearly identical to the flat QWs

while the charge density overlap has similar features to the flat case but the scale is
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slightly reduced. Shown in Fig. 5.21 is the projection of the probability density on

the c-plane for the first two electron states. We see how they are weakly localised

within the WWFs compared to the 25% case, this can be seen by comparing the

scales of Fig. 5.21 and Fig. 5.9. This is again due to the weaker built-in potential.

The electrons are not as tightly bound in each monolayer near the interface and

hence they are not pulled into the WWFs as they are in the QWs with 25% InN

content.

(a) xy projection of 1st electron state (b) xy projection of 2nd electron state

Figure 5.21: The first two electron states are weakly localised in the c-plane by the
WWF (marked by the white circle).

The c-plane localisation of the electron states, again, reduces the charge density

overlap between the electrons and holes. The same features are present in Fig. 5.22

as Fig. 5.17 (for the flat QWs); the increase in overlap after 40 hole states and the

larger jump after 10 electron states. The scale, however, is reduced roughly by a

factor of 20%.

We again compare the overlap between the electron ground state and the first 20

hole states for both the flat QWs and those with WWFs, as shown in Fig. 5.23.

We see how the WWFs slightly reduce the overlap between these states but to a

lesser extent than in the 25% QWs (Fig. 5.11).

In summary the WWFs weakly localise the electrons in the c-plane and this causes

a reduction in the charge density overlap between the electrons and holes but due

to the reduced built-in potential the effect of this localisation is not as strong as

in the QWs with 25% InN.
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Figure 5.22: Charge density overlap for the first 50 electron and 75 hole states.

Figure 5.23: Charge density overlap between the electron ground state and
the first 20 hole states for flat QWs (red) and QWs with WWFs (blue).
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5.6 Conclusions

We examined QWs with two different compositions, In0.25Ga0.75N and In0.10Ga0.90N,

for structures with and without WWFs. The higher composition QWs with 25%

InN content show strongly localised electrons and holes. The highest hole states

are confined within the c-plane due to local alloy fluctuations that give rise to

local strain and fluctuations in the built-in potential. The electrons are largely

delocalised in the c-plane but the built-in potential confines the electrons to the

upper interface of the QW. The PR of the electrons show that the first 20 electron

states are strongly localised in the c-direction and higher states begin to spread

into the QW. This behaviour is reflected in the charge density overlap where there

is poor overlap between holes and electrons that are localised along the c-direction

and improved overlap with more delocalised states. These first 20 electron states

belong to the first confined band.

In the lower composition QWs, In0.10Ga0.90N, the electron and hole states are more

delocalised along the c-direction due to the reduced built-in field. Then after the

first confined band for both the electrons and holes the states spread more into

the QW. This leads to increased overlap for these excited states but for the lower

states similar behaviour to the 25% QWs is seen. The higher holes states are

localised in the c-plane and the main improvement in the charge density overlap

is still due to excited electron states spreading further into the QW.

The effect of the WWFs, that we modelled with 5 nm wide disk at the top of QW,

was to confine the electrons in the c-plane. For the QWs with 25% InN content

the built-in potential strongly localised the electrons in the monolayers near the

interface and thus the first two electron states were confined within the disk. This

in plane localisation further reduces the overlap with the hole states that are also

strongly localised in the c-plane. A similar behaviour is seen for the In0.1Ga0.9N

QWs. The first two electron states are weakly confined by the WWFs but the

lower InN content means the built-in potential is weaker and hence the electrons

are not as strongly confined within the disk as they are in the case of the 25%

QWs. The confinement of the electrons also decreases the overlap with the hole

states but to a lesser extent than the 25% QWs.



Chapter 6

Summary, conclusions and

outlook

In this thesis we have presented an atomistic description, through the tight-binding

(TB) model, of the electronic properties of III-nitride semiconductor materials. As

outlined in the introduction, this thesis can be divided into two distinct parts, but

both are built on the foundation of the TB model. In Sec. 6.1 we give a brief

summary of the thesis and present our conclusions and in Sec. 6.2 we outline

possible future investigations.

6.1 Summary and Conclusions

After a general introduction and outline in chapter 1, we presented the foundations

of the TB model in chapter 2. We began with a discussion of periodic crystal

lattices and how we can exploit their symmetry to simplify our calculations. Then,

after introducing the idea of Bloch sums we developed the TB model and showed

how the Hamiltonian is constructed. The foundations of the modern theory of

polarisation were presented in the second half of this chapter where we introduce

the concept of the Berry Phase.

Chapter 3 dealt with our implementation of the TB model in conjunction with

the modern theory of polarisation to investigate, on a microscopic scale, the piezo-

electric effect and spontaneous polarisation in III-nitride semiconductors. We first

presented an analytic implementation of this theory by studying a linear chain of

92



Chapter 6: Summary, conclusions and outlook 93

atoms. With a minimal basis of one s-orbital per site we showed how the Berry

phase varies linearly with strain and also linearly for small values of the bond

polarity αp. This simple model helped us to build an understanding of how to

implement and benchmark the numerical calculations for the full 3-dimensional

structure.

With the numerical calculations we first compared ZB and ideal WZ structures.

After testing the convergence of the number of k points needed in the Brillouin

zone we showed how the Pspon for ZB structures is identically zero and that for

ideal WZ Pspon is very small but non-zero. We explained that this is due to the sim-

ilarity of the first NN environment of the two crystallographic phases. We further

emphasised this similarity by comparing the effective charge and PZ coefficients

for the two structures and concluded that they both have a similar response to

strain and sublattice displacement within our first NN TB description. We showed

how the calculated values for the effective charge are consistently smaller than the

experimental values published. We suggested this is due to a fundamental limita-

tion of the TB model, in that the minimal basis set used cannot describe the full

Brillouin zone, all of which is sampled in the Berry phase model. In light of this

we explained why the calculated PZ coefficients for ZB do not give quantitative

agreement with published values. The total polarisation, from which the PZ coef-

ficients are calculated, is given by the difference between the electronic and ionic

contributions. Both of these are large relative to their difference and so a small

proportional error in the electronic component leads to a large variation in the

results that depend on the total polarisation. We showed that our implementation

of the TB model with the Berry phase polarisation gives a reasonable description

of the electronic contribution by comparing it directly with values calculated with

DFT but when combined with the ionic component we see how the model fails.

In calculating the Pspon for real WZ structures we demonstrated the parameter

sensitivity of the model. The values calculated underestimate those published but

the agreement is shown to be improved by implementing a set of larger bond length

scaling exponents, fitted to match key deformation potentials. These scaling expo-

nents were shown however to not improve the PZ coefficients, with the calculated

coefficients having the wrong sign. Thus we concluded that the closer agreement

to published values in terms of Pspon is attained not by an improved description of

the eigenstates but by amplifying other factors to compensate. We again reiterate

that an accurate quantitative description of the PZ coefficients is not attainable
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with this model, for the same reasons of a small proportional error in the elec-

tronic polarisation being amplified by the relative size of the total polarisation.

We further showed that the error in calculating PZ coefficients is even larger in

the case of real WZ, partly due to the fact that the initial state in these structures

is non-centrosymmetric. We showed how the electronic component as calculated

with our TB model gives a good qualitative description of the ratio of the PZ

coefficients e33
e31

by comparing it to experimental data, thus reiterating that, while

this model provides a qualitative description of polarisation trends in III-nitride

materials, accurate quantitative results are beyond the scope of the model.

We then employed our atomistic TB model to analyse band gap bowing and optical

polarisation switching in Al1−xGaxN alloys over the full composition range. Our

model included local atomistic effects from random alloy fluctuations such as local

strain and built-in potential variation. We extracted a bowing parameter for the

band gap of b = 0.94 eV, which is in good agreement with experiment. We further

analysed the origin of this bowing in the conduction band (CB) and valence band

(VB) edges and fitted bowing parameters to both; bCB = 0.78 eV and bVB =

−0.16 eV. We calculated the composition at which the band edge optical emission

switches between the TE and TM polarisation directions. We found the switchover

to be in the region x ≈ 0.75 which is at a much higher Al composition (25%) than

would have been expected (9%) assuming a linear variation of the crystal field

splitting in our calculations. This observed non-linear behavior of the crystal field

splitting is consistent with recent experimental observations.

Finally, we implemented our TB model to study electron and hole localization

in InxGa1−xN quantum wells (QWs). We examined two different compositions;

In0.10Ga0.90N and In0.25Ga0.75N for structures both with and without well width

fluctuations (WWFs). The QWs with the higher InN composition of 25% were

found to have a strong built-in potential which confined the carriers to opposite

sides of the QW. In addition to this the local alloy variations which gave rise to

local strain and polarisation potential fluctuations were found to strongly localise

the hole states in the c-plane. This was shown to affect the charge density overlap

with the electrons, which were found to be delocalised in the c-plane. We showed

that any improvement in overlap between the electrons and hole came from higher

electron states that were delocalised along the c-axis direction. A mobility edge

between localised and delocalised hole states was estimated to occur between the

10th and 20th hole state, at an energy in the range of 80 to 120 meV below the



Chapter 6: Summary, conclusions and outlook 95

hole ground state. The WWF were found to strongly localise the first two electron

states while having no effect on the hole states. The charge density overlap was

reduced compared to the flat QWs as a result of the WWFs.

The In0.10Ga0.90N QWs, as a result of their lower InN composition, had a lower

built-in field. This reduced built-in field allowed both the electron and hole states

to extend further into the QW resulting in increased charge density overlap in

general. Similar trends to the 25% case are seen in the charge density overlap

where improvements in overlap are due to states, more delocalised along the c-

axis, that belong to higher subbands. The first 5 to 10 hole states are, again,

strongly localised in the c-plane due to local alloy fluctuations but above this the

holes begin to delocalise in the c-plane. This is reflected in a mobility edge occuring

near the 5th hole state for the 10% QWs, 15 meV below the hole ground state for

the structures considered. The WWFs again localised the first two electron states

but since the built-in field is weaker so too is the effect of this localisation.

6.2 Outlook and future work

In the case of using tight-binding wavefunctions within the Berry phase theory of

modern polarisation I do not recommend any further investigations. We tried ex-

haustively over the first three years of my research to improve the model or extract

any useful results. These attempts, most of which are not described in this thesis,

included various 3-d analytic models, different Hamiltonians (in terms of size of

basis, composition of basis, and orientation) and many different parameterisations

both in terms of TB parameters and fitting to the phase surfaces. None of these

proved fruitful. All the previously published implementations of this model had

attempted to improve the model, whether through an extended basis set, using

an off-diagonal position operator or exploiting the parameter sensitivity; they all

failed to extract useful results on anything other than the effective charge. It is my

opinion that to correctly describe the polarisation properties of III-nitride materi-

als one needs to include not just second nearest neighbours but also third nearest

neighbours to give an accurate description of the valence bands throughout the

Brillouin zone. The number of parameters required coupled with the parameter

sensitivity of the model make this a dangerous approach to follow however.
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The obvious next step for the work outlined in chapter 4, on the band gap bowing

and optical polarisation switching in Al1−xGaxN alloys is to investigate the quater-

nary alloy, Al1−x−yGaxInyN. In order to investigate the influence of local atomistic

variations on the band gap evolution with composition of Al1−x−yGaxInyN, one

must first calculate the bowing parameters of the three ternary alloys. All of these

have been investigated with the same models within our group, Al1−xGaxN was

the last one left, and we are now in a good position to investigate how local alloy

fluctuations affect the electronic properties of Al1−x−yGaxInyN.

Finally, in the case of the InxGa1−xN quantum wells there remains more work to

be done. The intermediate composition of 15% InN is the next obvious candidate

to examine the evolution of the effect of InN composition on the built-in field

and local alloy fluctuations, and how these affect the localisation of the carriers,

particularly the hole states. The important factors to investigate would be how

many of the highest hole states are localised in the c-plane and how localised are

both the electron and hole states along the c-axis direction due to the built-in

field. Lower compositions below 10% would also be of interest, possibly 5% or

8% InN content, to see at what composition do the first five hole states become

delocalised in the c-plane. Further work would also be of interest to investigate

carrier localisation effects in non-polar (and semipolar) QW structures, where

there are no (or reduced) built-in fields, but where local alloy fluctuations would

still be expected to have a strong influence on hole localisation near the valence

band maximum of the the QW structures.



Appendix A

Material parameters

In this appendix we present the material parameters for the III-nitrides that we

implemented throughout this thesis.

A.1 Material parameters used in tight-binding

calculations

A.1.1 Tight-binding paramaters

GaN InN AlN

ε(s,a) -10.6158 -11.9173 -10.2006
ε(p,a) 0.8183 0.4886 0.6637
ε(s,c) 0.9122 0.4837 2.2474
ε(p,c) 6.6788 6.5322 11.0763
Vssσ -1.4937 -0.4031 -2.0285

Vs(a)p(c)σ 1.7714 0.8192 1.3182
Vs(c)p(a)σ 3.7523 2.6567 4.4648
Vppσ 3.3194 2.8635 3.6159
Vppπ -0.7829 -0.7619 -0.6085

Table A.1: The tight-binding parameters implement for the III-nitrides.

97



Appendix A: Material parameters 98

A.1.2 Internal displacement parameters

GaN InN AlN

ζ1 0.156 0.193 0.138
ζ2 0.083 0.107 0.086
ζ3 0.159 0.218 0.191
ζ4 0.201 0.337 0.199
ζ5 0.141 0.107 0.143

Table A.2: The internal displacement parameters implement for the III-
nitrides in chapter 3.

A.1.3 Bond length scaling parameters

ηαβ GaN InN AlN

ssσ 3.6 3.4 4.5
s(a)p(c)σ 8.7 8.7 8.7
s(c)p(a)σ 8.7 8.7 8.7
ppσ 0.94 0.94 0.94
ppπ 3.25 4.74 5.72

Table A.3: The bond length scaling parameters derived by Andy Lindsay and
implemented for the III-nitrides in chapter 3.



Appendix B

InGaN quantum wells, additional

configurations.

Here we present some of the additional configurations of the InxGa1−xN quan-

tum wells examined in chapter 5. For six different configurations we present the

participation ratio, charge density overlap, energy separation of states, hole state

overlap as well as the probability density in each monolayer for both electrons and

holes. Configurations A and B are 25% flat QWs, configurations C and D are 10%

flat QWs and configurations E and F are 10% QWs with well width fluctuations.
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(a) Config. A (b) Config. B

(c) Config. C (d) Config. D

(e) Config. E (f) Config. F

Figure B.1: The Participation ratio, normalised to the first hole state.
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(a) Config. A (b) Config. B

(c) Config. C (d) Config. D

(e) Config. E (f) Config. F

Figure B.2: The charge density overlap.
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(a) Config. A (b) Config. B

(c) Config. C (d) Config. D

(e) Config. E (f) Config. F

Figure B.3: The energy separation between the states.
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(a) Config. A (b) Config. B

(c) Config. C (d) Config. D

(e) Config. E (f) Config. F

Figure B.4: The overlap between the hole states.
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(a) Config. A (b) Config. B

(c) Config. C (d) Config. D

(e) Config. E (f) Config. F

Figure B.5: The electron probability density in each monolayer.
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(a) Config. A (b) Config. B

(c) Config. C (d) Config. D

(e) Config. E (f) Config. F

Figure B.6: The electron probability density in each monolayer.
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