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Acoustic deformation potentials of n-type PbTe from first principles
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1Department of Physics, University College Cork, College Road, Cork T12K8AF, Ireland
2Tyndall National Institute, Dyke Parade, Cork T12R5CP, Ireland

(Received 25 May 2018; published 3 August 2018)

We calculate the uniaxial and dilatation acoustic deformation potentials �L
u and �L

d of the conduction band L
valleys of PbTe from first principles, using the local density approximation (LDA) and hybrid functional (HSE03)
exchange-correlation functionals. We find that the choice of a functional does not substantially affect the effective
band masses and deformation potentials as long as a physically correct representation of the conduction band
states near the band gap has been obtained. Fitting of the electron-phonon matrix elements obtained in density
functional perturbation theory (DFPT) with the LDA excluding spin-orbit interaction (SOI) gives �L

u = 7.0 eV
and �L

d = 0.4 eV. Computing the relative shifts of the L valleys induced by strain with the HSE03 functional
including SOI gives �L

u = 5.5 eV and �L
d = 0.8 eV, in good agreement with the DFPT values. Our calculated

values of �L
u agree fairly well with experiment (∼3–4.5 eV). The computed values of �L

d are substantially smaller
than those obtained by fitting electronic transport measurements (∼17–22 eV), indicating that intravalley acoustic
phonon scattering in PbTe is much weaker than previously thought.

DOI: 10.1103/PhysRevB.98.085201

I. INTRODUCTION

It has recently become possible to calculate electronic
mobility of bulk semiconductors from first principles, without
any empirical parameters [1–13]. Nevertheless, the accuracy
of these first-principles methods based on density functional
theory (DFT) is still not well established. Electronic mobility
of a semiconductor is determined by carrier effective masses
and scattering rates of the electronic states near the band gap
[14,15]. However, band gaps are typically underestimated us-
ing the standard approximations for the exchange-correlation
energy in DFT [16]. This may lead to the inaccurate description
of the curvatures of the conduction and valence bands near the
energy gap, particularly for direct narrow-gap semiconductors.
Consequently, it is essential to correctly describe the electronic
bands near the gap in order to reliably compute electronic
mobility of semiconductors.

The issue of the accurate representation of the electronic
states relevant for transport is particularly severe in PbTe,
which is one of the most efficient thermoelectric materials in
the mid-temperature range (500–900 K) [17–20]. PbTe has a
direct narrow band gap at four equivalent L points [21–23].
When spin-orbit interaction (SOI) is taken into account using
the local density approximation (LDA) in DFT, the direct
band gap at the L point is underestimated to such a degree
that the conduction and valence bands invert and mix heavily
[24–26]. This is termed a “negative band gap” and results in
the charge carrier effective masses in poor agreement with
experiment [24,26]. Such issues in reproducing the electronic
band structure of PbTe indicate that it is much more challenging
to model its electronic thermoelectric transport properties from

*ivana.savic@tyndall.ie

first principles [27–30] than the lattice thermal conductivity
[31–35].

The strength of electron-phonon scattering in PbTe also
remains elusive due to the outlined issues in characterizing
the electronic band structure. In particular, the strength of
intravalley acoustic phonon scattering, which depends on the
curvature of the conduction and valence band edges, is not
well determined. Intravalley acoustic phonon scattering may
be described with deformation potential theory [36,37], in
which its strength is determined by an effective deformation
potential �. Empirically, this parameter can be determined by
choosing a transport model with selected scattering mecha-
nisms and fitting to electronic transport measurements. In the
case of n-type PbTe, this approach yielded �L = 22 ± 2 eV
for the conduction band minima at L [19,38,39]. However,
for the L valleys in the cubic structure, there are two linearly
independent deformation potentials: uniaxial and dilatation
deformation potentials �L

u and �L
d [37]. The values of �L

u

can be obtained directly from piezoresistance or ultrasonic
measurements, yielding �L

u ∼ 3–4.5 eV [38,39]. Combining
these values of �L and �L

u gives �L
d ∼ 17–22 eV [38,39]. In

contrast, early empirical pseudopotential calculations found
�L

u = 8.3 eV and �L
d = −4.4 eV [40]. A recent first-principles

study reported only the electronic scattering rates of PbTe
resolved by each phonon mode, which were calculated using
the electronic band structure with the negative direct gap at L
[30].

In this paper, we determine the acoustic deformation po-
tentials of the conduction band L valleys of PbTe using first
principles and state-of-the-art hybrid exchange-correlation
functionals. We verify that the LDA excluding SOI and the
hybrid HSE03 functional including SOI capture a positive band
gap and the effective electron masses in excellent agreement
with experiment, in contrast to the LDA including SOI.
We show that different exchange-correlation functionals give
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similar band masses and deformation potentials, as long as they
correctly describe the character of the conduction band states
near the band edges. We calculate �L

u = 7.0 eV and �L
d =

0.4 eV by fitting the electron-phonon matrix elements obtained
using density functional perturbation theory (DFPT) with the
LDA excluding SOI. We also calculate deformation potentials
from relative band shifts due to strain following the approach of
Van de Walle and Martin [41–44], which allows us to compute
deformation potentials using hybrid functionals. To the best of
our knowledge, DFPT implementations that link with hybrid
functionals are still unavailable. Using the approach of Van de
Walle and Martin, we obtain �L

u = 5.5 eV and �L
d = 0.8 eV

with the HSE03 functional including SOI, which are close to
our results using the same approach and the LDA without SOI
(�L

u = 8.0 eV and �L
d = 0.5 eV), as well as our DFPT results.

Contrary to the values determined empirically from transport
measurements [19,38,39], we find that �L

d ∼ 0.5 eV, and the
effective deformation potential is approximately proportional
to �L ∼ 6 eV. This finding is of considerable significance in
understanding the material properties that determine carrier
transport in PbTe.

II. METHODOLOGY

Within the low-temperature and low carrier concentration
regime, the four conduction band minima at the L points in
PbTe can be well described by a parabolic energy dispersion
with respect to the wave vector k:

E(k) = Ec + h̄2�k2
‖

2m∗
‖

+ h̄2�k2
⊥

2m∗
⊥

. (1)

Ec is the energy of the band edge, h̄ is the Planck constant, and
�k‖ and �k⊥ are the parallel and perpendicular components
of the wave vector k − kL, where kL corresponds to the L
valley minimum. Charge carriers behave as free electrons with
effective masses m∗

‖ or m∗
⊥ depending on the direction of

motion: along the longitudinal axis parallel to kL or along the
transverse axes perpendicular to kL, respectively. We verify
this assumption and extract the values of m∗

‖ and m∗
⊥ from

first-principles calculations of the electronic band structure,
along with values of the band gap.

To calculate deformation potentials due to long-wavelength
acoustic phonons [36,37], we follow the procedure outlined
by Fischetti and Laux [45] and Murphy-Armando and Fahy
[1]. We may describe the interaction between electrons and
acoustic phonons with a slowly varying potential dependent
on the deformation potential tensor �αβ [37,46] as

Hep =
∑
αβ

�αβεαβ (r), (2)

where α and β are Cartesian coordinates, and ε(r) is the local
strain tensor at r [47]. Considering the L and X valleys of a
cubic material, the deformation potential tensor consists of two
linearly independent terms, �ν

d and �ν
u, ν ∈{L, X} [37]. �ν

d

is the dilatation deformation potential, and represents the shift
in band energy due to a dilatation in the direction normal to
the axis of the valley ν [37]. �ν

u is the uniaxial deformation
potential, and corresponds to the band shift due to a uniaxial
stretch along the direction of the valley ν, and a corresponding

compression perpendicular to this direction so that volume
is preserved [37]. In this case, the electron-phonon coupling
Hamiltonian can be written as [37,47]

Hep = �ν
dTr[ε(r)] + �ν

u(k̂ν · ε(r) · k̂ν ), (3)

where k̂ν is a unit vector parallel to the k vector of the valley
ν.

We calculate the uniaxial and dilatation deformation po-
tentials for the conduction band L valleys of PbTe from first
principles by linking the electron-phonon coupling Hamil-
tonian from the deformation potential theory with that of
DFPT. Within DFPT, the electron-phonon matrix element for
an electron scattering event from a state k and band n to a state
k′ and band m via a phonon with wave vector q and branch
index s can be defined as [48]

Hmn(k; qs) =
∑

b

∑
α

(
mc

mb

) 1
2

es
αb(q)

× 〈umk+q| ∂αb,qv
KS |unk〉uc , (4)

where es
αb(q) is the αth Cartesian component of the phonon

eigenvector for an atom b with mass mb. mc is an arbitrary
reference mass [48], and we choose it to be equal to the mass
of the unit cell for consistency with deformation potential
definitions [49]. The subscript “uc” in Eq. (4) indicates that the
integral is carried out within one unit cell. unk is normalized
to unity in the unit cell, and is the lattice periodic part of the
wave function ψnk expressed in Bloch form as N

−1/2
l unke

ik·r,
where Nl is the number of primitive cells. ∂αb,qv

KS is the lattice
periodic part of the perturbed Kohn-Sham potential expanded
to first order in the atomic displacement (see Ref. [48] for
further details). We note that the above definition of the
electron-phonon matrix element is not the typical one given in
the DFPT literature, which corresponds to Eq. (4) multiplied by
the “zero-point” displacement amplitude lqs = (h̄/2mcωqs )1/2

[2,7,48].
To calculate deformation potentials using DFPT, we fit the

electron-phonon matrix elements given by Eq. (4) in the limit of
q → 0 with the Fourier transform of the deformation potential
Hamiltonian of Eq. (3):

Hep = �ν
des (q) · q + �ν

u

(
es (q) · k̂ν

)(
q · k̂ν

) ≈ Hnn(k; qs),

(5)

where es (q) is the strain polarization vector. Using Eq. (5),
we derive the expressions for Hep in the deformation potential
theory along high-symmetry q directions for transverse and
longitudinal acoustic phonons in terms of �L

u and �L
d [37]. We

then calculate the electron-phonon matrix elements Hnn(k; qs)
using DFPT for the same phonon polarizations and directions.
Finally, we extract the deformation potentials from the linear
terms of polynomial fits to Hnn(k; qs) versus |q| for all
considered phonon polarizations and directions. Further details
of the implementation of this approach are given in Appendix
A.

We also calculate the deformation potentials of PbTe
following the pioneering work of Van de Walle and Martin
[41–44] on relative band shifts due to strain in semicon-
ductors. We use this method as an alternative method to
compute deformation potentials and validate those calculated
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from the DFPT approach. Furthermore, coupling this method
with hybrid functionals, which give a better representation of
electronic states near the band gap compared to LDA, allows
us to properly include the effects of spin-orbit coupling. The
approach of Van de Walle and Martin has been applied to
a wide range of semiconductors to capture band offsets at
semiconductor interfaces and deformation potentials close to
experiment [42]. A detailed discussion of the calculation of �L

u

and �L
d following this approach is given in Appendix B.

Our electronic band structure calculations, performed
with the LDA exchange-correlation functional [50,51], are
carried out with the Hartwigsen-Goedecker-Hutter (HGH)
norm-conserving pseudopotentials [52] using the ABINIT code
[53,54]. We use the Vienna ab initio simulation package (VASP)
[55,56] to perform electronic band structure calculations using
the generalized gradient approximation (GGA) of Perdew,
Burke, and Ernzerhof (PBE) [57,58] and the screened Heyd-
Scuseria-Ernzerhof (HSE03) hybrid functional [59–62]. In the
PBE/HSE03 calculations, the basis set for the one-electron
wave functions is constructed with the projector augmented
wave (PAW) method [63,64]. We carry out the LDA calcula-
tions using the HGH pseudopotentials with the 6s26p2 states
of Pb and 5s25p4 states of Te explicitly included in the valence
states. For the PAW pseudopotentials, we also include the
semicore 5d10 electronic states of Pb in the valence states
since this leads to a better agreement of the band gap and
the effective masses of PbTe with experiment.1 We calculate
the matrix elements 〈umk+q| ∂αb,qv

KS |unk〉uc directly from the
density functional perturbation theory (DFPT) method [48,65]
as implemented in ABINIT [53,66,67], using the LDA functional
and the HGH pseudopotentials excluding SOI.

III. CHARGE CARRIER EFFECTIVE MASSES

Figure 1 shows the electronic band structure of PbTe calcu-
lated using (a) the LDA and HGH pseudopotentials excluding
SOI, (b) the LDA and HGH pseudopotentials including SOI,
and (c) the HSE03 hybrid functional and PAW pseudopoten-
tials including SOI.2 The combination of the LDA tendency to
underestimate the band gap [16] and the effects of SOI results
in an inverted band gap in PbTe. When relativistic effects
are taken into account in the LDA functional, the previously
degenerate second and third conduction and valence band
states split [see Figs. 1(a) and 1(b)]. This spin-orbit splitting
causes the valence band maximum to be repelled upward, while
the conduction band minimum is repelled downward [24,25].
The resulting band gap is underestimated to such a degree

1The band gap and the parallel and perpendicular effective masses
of the conduction band L valley of PbTe calculated using the HSE03
functional and the PAW pseudopotential that includes the 6s26p2

valence states of Pb are 0.33 eV, 0.3me, and 0.035me, respectively
(me is the free-electron mass).

2The LDA-HGH electronic structure calculations for a primitive
unit cell were carried out using a four-shifted 12 × 12 × 12 k-point
grid for Brillouin zone sampling of electronic states and a 45-Ha
energy cutoff. The corresponding HSE03/PBE-PAW calculations
were performed using an 8 × 8 × 8 k-point grid and a 18.4-Ha energy
cutoff.
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FIG. 1. Electronic band structure of PbTe, calculated using (a)
the LDA and HGH pseudopotentials excluding spin-orbit interaction
(SOI), (b) the LDA and HGH pseudopotentials including SOI, and
(c) the HSE03 hybrid functional and PAW pseudopotentials including
SOI. The energies of the valence band maximum (blue dashed line)
and conduction band minimum (red dashed line) are also highlighted.
The Fermi level at 0 K has been set to 0 eV.

that the topmost valence band and bottommost conduction
band become interchanged and mix heavily near the L point
[24,25], forming a “negative band gap” [26]. Furthermore, the
� valley (along the�-K direction) becomes the highest valence
band, forming an indirect band gap with the lowest unoccupied
energy state at L [see Fig. 1(b)], at odds with experimental
observations [21–23].

In order to precisely determine whether we have a positive
or negative band gap, we compute the overlap of the periodic
parts of the conduction and valence band wave functions at
the L point with the wave functions of the same bands at wave
vectors away from L. We consider only the first electronic
states on either side of the Fermi level, which correspond to
the highest occupied state at 0 K, and is set to 0 eV (see
Fig. 1). We label the periodic part of the wave function of
the state below the Fermi level |uk,h〉, and the periodic part of
the wave function of the state above the Fermi level |uk,e〉. We
define the valence band state at L as the band state that satisfies
| 〈uL,h| uk,h〉 | > | 〈uL,h| uk,e〉 | for wave vectors k sufficiently
far from L. The conduction band state at L is similarly defined
as the band state that satisfies | 〈uL,e| uk,e〉 | > | 〈uL,e| uk,h〉 |
for wave vectors k sufficiently far from L. If the character
for the conduction and valence band states changes as a
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FIG. 2. Electronic band structure of PbTe near the Fermi level at 0 K along the �-L-W line calculated using (a) the LDA excluding spin-orbit
interaction (SOI), (c) the LDA including SOI, and (e) the HSE03 hybrid functional including SOI. A solid red (blue) line shows a state whose
character mostly corresponds to that of the conduction (valence) band as deduced from wave-function overlaps (see text for explanation). The
overlaps | 〈uL| uk〉 |2 of the periodic part of the wave function for the lowest conduction band (labeled as e) and the highest valence band (labeled
as h) at the wave vector k with the wave function of one of these two bands at the L point calculated with (b) the LDA excluding SOI, (d) the
LDA including SOI, and (f) the HSE03 hybrid functional including SOI.

function of k, the values of | 〈uL,h| uk,h〉 | and | 〈uL,e| uk,e〉 |
will become substantially smaller than those of | 〈uL,h| uk,e〉 |
and | 〈uL,e| uk,h〉 |, respectively, as the k vector moves away
from L [see Fig. 2(d)]. We choose the wave vector k to be
along the �-L-W line, which corresponds to the directions
along which we extract the values of m∗

‖ (L → �) and m∗
⊥

(L → W). We plot these wave-function overlaps in Fig. 2 for
(b) the LDA and HGH pseudopotentials excluding SOI, (d)
the LDA and HGH pseudopotentials including SOI, and (f) the
HSE03 hybrid functional and PAW pseudopotentials including
SOI.

By computing the described wave-function overlaps, we
confirm that the inclusion of SOI within the LDA-HGH level
of theory results in a negative band gap. Figure 2(d) illustrates
that the band state at L above the Fermi level overlaps more
strongly with the band states below the Fermi level for wave
vectors away from L. Therefore, |uL,e〉 mainly exhibits the
character of the valence band. Conversely, the band state at L

below the Fermi level overlaps more strongly with the band
states above the Fermi level for wave vectors away from L,
which indicates that |uL,h〉 has the character of the conduction
band. This analysis confirms the change of the conduction and
valence band states character as the wave vector k varies [see
Fig. 2(c)], and the presence of an inverted band gap. As a result,
effective masses calculated with the LDA functional including
SOI3 are in poor agreement with experiment (see Table I).

In contrast, the LDA-HGH level of theory excluding SOI
correctly represents the character of the conduction and valence
band states near the gap in PbTe despite the band-gap overes-
timation [see Fig. 2(b)]. The band state at L below (above)
the Fermi level overlaps more strongly with the band states

3Effective masses were calculated by fitting Eq. (1) over a k-vector
range of approximately 1/20 of the distance of the �-L and L-W lines,
respectively.

TABLE I. Electronic band gap (Eg) and valence and conduction band effective electron masses (m∗,v and m∗,c, respectively) of PbTe
calculated with the LDA, PBE, and HSE03 exchange-correlation functionals including/excluding spin-orbit interaction (SOI), compared to the
previous HSE03 and quasiparticle self-consistent GW calculations and experiment. me is the free-electron mass.

LDA1 LDA1 PBE1 HSE031 HSE032 QSGW 2 Expt. 1 Expt. 2
(excl. SOI) (incl. SOI) (incl. SOI) (incl. SOI) Ref. [24] Ref. [26] Ref. [21] Ref. [22]

Eg (eV) 0.54 −0.32 0.08 0.24 0.20 0.29 0.193 0.193

m
∗,v
‖ /me 0.294 0.834 0.618 0.341 0.296 0.338 0.255 0.310

m
∗,v
⊥ /me 0.023 0.622 0.184 0.030 0.029 0.029 0.024 0.022

m
∗,c
‖ /me 0.216 5.295 0.362 0.246 0.223 0.247 0.210 0.240

m
∗,c
⊥ /me 0.037 0.031 0.120 0.027 0.027 0.027 0.021 0.024

1Calculated at the theoretically predicted 0-K lattice constant.
2Calculated at the low-temperature experimental lattice constant.
3Increases to ∼0.3 eV at room temperature [23].
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above (below) the Fermi level for wave vectors away from
L, and thus it mainly exhibits the character of the valence
(conduction) band. This confirms the correct ordering of states
at L and a positive band gap when SOI is excluded, and
verifies that our effective electron masses are extracted from
physically correct states. Indeed, the effective electron masses
of PbTe calculated with the LDA excluding SOI are very
close to experiments (see Table I). We thus anticipate that the
LDA excluding SOI may reasonably well describe electronic
transport properties of PbTe. We note that the energy separation
of the first and second conduction band states without SOI is
considerably smaller than in the case including SOI, which
may lead to some inaccuracies in the electron-phonon matrix
element calculations.

In order to more accurately describe the energy differences
and curvature of the states near the band gap of PbTe, we also
carried out hybrid functional calculations. The effectiveness
of screened hybrid functionals [59] in capturing structural,
elastic, and electronic properties has previously been shown
for a wide range of semiconductors [68–70]. In particular,
the documented ability of the HSE03 functional [59–61] to
correctly reproduce the band gap and correct ordering of
states with the inclusion of SOI in lead chalcogenides [24]
is the main motivation for its use in this work. We show the
electronic band structure of PbTe calculated with the HSE03
functional including SOI in Fig. 1(c). We note that the PBE
functional including SOI, which was used to construct the
HSE03 functional, yields a very narrow positive band gap and
poor effective masses compared to experiment (see Table I).

The HSE03 functional including SOI reproduces the band
gap and effective masses of PbTe to excellent agreement
with experiment and previous hybrid functional [24] and
quasiparticle self-consistent GW (QSGW ) [26] calculations
(see Table I). This is due to the fact that the HSE03 functional
obtains the correct ordering of states near the band gap,
which we confirmed by computing the previously defined
wave-function overlap [see Figs. 2(e) and 2(f)]. Thus, there
is no entanglement of the conduction and valence bands in
HSE03 calculations as obtained using the LDA with SOI [24].
Furthermore, the valence band maximum is found at L, and
not along the �-K direction, as was the case for the LDA
including SOI. The HSE03 functional also captures a much
larger energy separation of the first and second conduction
band states compared to the LDA without SOI. This potentially
resolves any issues whereby incorrect hybridization with the
second conduction band might compromise the calculation of
the electron-phonon matrix elements near the conduction band
minimum.

We further confirm the accurate description of the elec-
tronic band structure of PbTe using the HSE03 functional by
comparing the calculated hydrostatic pressure gap coefficient
with experiment. The hydrostatic pressure gap coefficient is
defined as the change in the electronic band gap with respect
to pressure, dEg/dP .4 The value of dEg/dP calculated with
the HSE03 functional compares very well with experimental
data [71–73], and captures a decreasing band gap with pressure

4We simulated pressure by setting the lattice constant to 0.999 × a0,
where a0 is its theoretically predicted equilibrium value.

TABLE II. Hydrostatic pressure gap coefficient of PbTe calcu-
lated with the LDA, PBE, and HSE03 functionals with and without
spin-orbit interaction (SOI), compared to measurements at 4 [71], 77
[72], and 300 K [73].

dEg/dP (incl. SOI) dEg/dP (excl. SOI)
(×10−6 eV/bar) (×10−6 eV/bar)

LDA +2.1 −4.6
PBE −4.9
HSE03 −7.0
Expt. [71,72] −7.4
Expt. [73] −7.5

(see Table II). Thus, we expect that the hybrid functional will
accurately describe changes in the electronic band structure
due to strain or pressure, of particular importance when
computing deformation potentials.

The LDA functional excluding SOI also gives the correct
sign of dEg/dP since it correctly captures the sign of the band
gap. The calculated value of dEg/dP with the LDA excluding
SOI is in fair agreement with experiment (see Table II). This
indicates that the DFT-LDA level of theory excluding SOI
may give fairly accurate values of the deformation potentials
of PbTe. However, the agreement with experiment is not as
good as that of the HSE03 functional, possibly due to the
small energy separation of the first and second conduction
band states. In contrast, the calculated value with the LDA
including SOI yields an increasing band gap with pressure due
to the inverted ordering of the conduction and valence bands
and heavy mixing of states near the band edges [24]. This
finding further suggests that the LDA including SOI may not
reliably describe the deformation potentials of PbTe.

IV. DEFORMATION POTENTIALS OF PBTE

We calculate the acoustic deformation potentials of PbTe
using all the exchange-correlation functionals considered so
far. We expect that the LDA functional excluding SOI and the
HSE03 functional including SOI will give reasonable values
since they both give a good description of the electronic band
structure of PbTe. To compute deformation potentials using the
LDA excluding SOI, we use both DFPT and the relative band
shifts approach proposed by Van de Walle and Martin [41–44].
For the HSE03, PBE, and LDA functionals including SOI, we
use the approach of Van de Walle and Martin [41–44].

We first compare the calculated values of the deformation
potentials of PbTe, obtained using DFPT with the LDA func-
tional excluding SOI, with those from experiments [19,38,39]
(see Table III). The computed uniaxial deformation poten-
tial of PbTe, �L

u = 7.0 eV, agrees reasonably well with the
experimental values. The value of �L

u = 3 eV was obtained
from piezoresistance measurements, whereas the value of
�L

u = 4.5 eV was obtained from the ultrasonic technique
(see Refs. [38,39] and references therein). In contrast, our
calculated value of the dilatation deformation potential of
PbTe, �L

d = 0.4 eV, is considerably lower than the corre-
sponding values deduced by fitting a model to electronic
transport measurements, �L

d ∼ 17–22 eV [19,38,39]. The large
discrepancy between our calculated values of �L

d and those
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TABLE III. Deformation potentials of PbTe calculated using
density functional perturbation theory (DFPT), and the relative energy
shift of the L valley under strain (see text for explanation), using
the LDA and HGH pseudopotentials excluding spin-orbit interaction.
Our values are compared to those from previous calculations and
experiment.

DFPT Band shift Previous calculation Experiment

�L
u (eV) 7.0 8.0 8.3[40] 3, 4.5 [39]

�L
d (eV) 0.4 0.5 −4.4 [40] 17 − 221[39]

1Obtained by fitting a model to electronic transport measurements.

evaluated from experiments will be discussed later in more
detail.

Our value of �L
u = 7.0 eV calculated using DFPT with the

LDA excluding SOI agrees fairly well with that of an early
empirical pseudopotential calculation �L

u = 8.3 eV [40] (see
Table III). In contrast, our calculated value of �L

d = 0.4 eV
differs from the value of �L

d = −4.4 eV obtained in the
same work. However, we note that these previous values were
obtained with an empirical, non-self-consistent augmented
plane wave method [40]. Thus, we do not expect quantitative
agreement with these results. Interestingly, both our and the
previous computed values for �L

d differ significantly from the
values estimated from electronic transport measurements.

Next, we compare the values of deformation potentials
calculated using DFPT and the approach of Van de Walle and
Martin for the LDA-HGH level of theory excluding SOI, also
shown in Table III. The value of �L

u = 8 eV calculated from
the strain induced splitting of the L valleys agrees well with the
value of �L

u = 7 eV from DFPT. Furthermore, the calculated
value of �L

d = 0.5 eV using the relative band shift method for
the LDA functional without SOI is close to that calculated using
DFPT, �L

d = 0.4 eV. We thus find an overall good agreement
between our calculated values of deformation potentials using
the two methods, and ascribe the small differences between
the two methods to the various numerical approximations
described in detail in Appendices A and B.

The deformation potentials of PbTe calculated with the
HSE03 functional are fairly close to those of the LDA ex-
cluding SOI (see Tables III and IV). The value of �L

u = 5.5 eV
calculated with the HSE03 functional is in better agreement
with the experimental value of �L

u = 4.5 eV than those of
the LDA excluding SOI. We note that if we exclude the
5d10 electronic states of Pb from the valence states of PAW
pseudopotentials, we obtain �L

u = 6.6 eV, in better agreement
with the LDA-HGH result of �L

u = 8.0 eV obtained using

TABLE IV. Deformation potentials of PbTe calculated from the
relative energy shifts of the L valley under strain using the LDA, PBE,
and HSE03 exchange-correlation functionals including/excluding
spin-orbit interaction (SOI).

LDA LDA PBE HSE03
(excl. SOI) (incl. SOI) (incl. SOI) (incl. SOI)

�L
u (eV) 8.0 7.7 7.3 5.5

�L
d (eV) 0.5 −1.6 −0.2 0.8

the Van de Walle and Martin approach. This suggests that
the difference between these two functionals may be due to
the inaccurate description of the energy separation of the first
and second conduction band states in the LDA excluding
SOI. The HSE03 functional yields a value of �L

d = 0.8 eV,
consistent with those calculated with the LDA excluding SOI.
Consequently, the values of �L

d calculated with both the HSE03
including SOI and the LDA excluding SOI are substantially
smaller than the values of �L

d = 17–22 eV estimated from
electronic transport measurements.

The consistency of our dilatation deformation potential
values calculated using different approaches suggests that
the discrepancy with the values evaluated from transport
measurements is unlikely to be due to an error in our im-
plementation of either approach. Furthermore, our effective
masses and uniaxial deformation potential agree very well with
previous measurements. We note that the values of dilatation
deformation potentials extracted from experiments depend on
the chosen transport model and the parameter values used. In
extracting the deformation potentials of PbTe, Ravich et al.
[39] assumed that the electronic mobility as a function of
carrier concentration at 77 K is limited by three scattering
mechanisms: impurity scattering, polar optical scattering, and
acoustic phonon scattering. Using experimental parameters
for the former two mechanisms, the electron mobility limited
by these was subtracted from the experimental values. An
effective deformation potential was then obtained by fitting a
relatively simple model to the remaining mobility. On the other
hand, LaLonde et al. [19] entirely attributed electron-phonon
scattering to acoustic mode phonons, and fitted their model to
electronic transport measurements for a range of temperatures
and carrier concentrations. Based on all these considerations,
we conclude that the dilatation deformation potential is indeed
of the order of �L

d ∼ 0.5 eV as our calculations show, and thus
much weaker than previously believed.

Interestingly, the deformation potential values calculated
using the the approach of Van de Walle and Martin using
different exchange-correlation functionals are in fairly good
agreement with each other, even when their band structures are
not correctly described (see Table IV). When SOI is accounted
for at the LDA level of theory, we calculate �L

u = 7.7 eV
from the strain-induced L valley splitting. This value is close
to the values calculated using the LDA functional excluding
SOI and the HSE03 functional including SOI. Furthermore,
the value of �L

d = −1.6 eV obtained using the LDA including
SOI is not dramatically different from those calculated using
the LDA excluding SOI and the HSE03 functionals (but it has
a different sign). The deformation potential values obtained
using the PBE functional excluding SOI are also consistent
with all these values.

The analysis above indicates that obtaining the correct
character of the states near the band gap may not be critically
important for determining the correct order of magnitude of the
deformation potentials of PbTe. This may be due to the fact that
the conduction and valence bands at L have a mirror symmetry,
so that their inversion does not have a large influence on the
deformation potentials. Furthermore, the values of dilatation
deformation potentials are very small and their change of sign
depending on the band edge states character may not affect
charge transport much. However, reliable transport calcula-

085201-6



ACOUSTIC DEFORMATION POTENTIALS OF n-TYPE … PHYSICAL REVIEW B 98, 085201 (2018)

tions require accurate effective masses in addition to accu-
rate deformation potentials. Only those exchange-correlation
functionals which capture all these quantities correctly will
be able to properly describe electronic transport. Our analysis
shows that the LDA excluding SOI and the HSE03 including
SOI may provide a sufficiently accurate representation of the
electronic transport properties of PbTe.

V. CONCLUSION

The local density approximation (LDA) excluding spin-
orbit coupling and the HSE03 hybrid functional capture a pos-
itive band gap and physically correct conduction and valence
band states near the band gap in PbTe. We calculate the uniaxial
and dilatation acoustic deformation potentials of the L valley
conduction band of PbTe using density functional perturbation
theory and the LDA excluding spin-orbit coupling, and find
values of �L

u = 7.0 eV and �L
d = 0.4 eV, respectively. We

validate these values using an alternative approach to compute
deformation potentials from the relative shifts of the L valleys
under strain. Coupling this approach with the HSE03 hybrid
functional also allowed us to accurately include the effects
of spin-orbit interaction, yielding values of �L

u = 5.5 eV and
�L

d = 0.8 eV. Our results show that a particular choice of an
exchange-correlation functional is not critically important for
calculating the effective masses and deformation potentials
of PbTe, provided the functional captures physically correct
states near the band edges. Our dilatation deformation potential
values of PbTe are much lower than those obtained by fitting
electronic transport measurements, suggesting that intraval-
ley acoustic phonon scattering is considerably weaker than
assumed in prior studies.
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APPENDIX A: DEFORMATION POTENTIALS FROM
DENSITY FUNCTIONAL PERTURBATION THEORY

We calculate deformation potentials due to long-wavelength
acoustic phonons [36,37] using DFPT and following the
approach of Fischetti and Laux [45] and Murphy-Armando and
Fahy [1]. We note that DFPT is a reciprocal space perturbative
approach to calculate electron-phonon matrix elements, which
correspond to acoustic deformation potentials only in the limit
of q → 0. The detailed steps of this procedure are given below.

1. Deformation potentials

We first obtain the expressions for the acoustic deformation
potentials along high-symmetry q directions in terms of �L

u and
�L

d , using the deformation potential Hamiltonian Hep given
by Eq. (5). Since PbTe is a cubic material, we have five high-
symmetry q directions to consider: [010], [01̄1], [111], [011],

TABLE V. The expressions for Hep/q obtained from Eq. (5) for
the transverse and longitudinal acoustic phonons along the five high-
symmetry directions of q for the [111] L valley of a cubic material.
�L

u and �L
d represent uniaxial and dilatation deformation potentials,

respectively. Reproduced from Table IV of Ref. [37].

q TA1 TA2 LA

[010] 1
3 �L

u
1
3 �L

u �L
d + 1

3 �L
u

[01̄1] 0 0 �L
d

[111] 0 0 �L
d + �L

u

[110]
√

2
9 �L

u 0 �L
d + 2

3 �L
u

[11̄1]
√

2
27 �L

u −
√

2
81 �L

u �L
d + 1

9 �L
u

and [11̄1]. We write the expressions for the deformation poten-
tials Hep/q of the [111] L valley by inserting the appropriate
strain polarization vector es (q) for a given q vector into Eq. (5).
The expressions for Hep/q for the five q directions and the
associated transverse and longitudinal acoustic phonons are
given in Table V, which corresponds to Table IV of Herring and
Vogt [37]. We then calculate all listed Hep/q, using Eq. (5) and
the related electron-phonon matrix elements computed with
DFPT, as described below.

2. Matrix element calculation details

We compute the electron-phonon matrix elements given by
Eq. (4) for the transverse and longitudinal acoustic phonons
along the five high-symmetry q directions using the DFPT
method [48,65], as implemented in ABINIT [53,66,67]. We
used the LDA exchange-correlation functional excluding SOI
and the HGH pseudopotentials. In this work, we are only
interested in intravalley acoustic phonon scattering involving
the conduction band L valleys. Thus, we calculate the electron-
phonon matrix elements coupling states L and L + q (labeled
as L → L + q), as well as the matrix elements coupling states
L − q/2 and L + q/2 (labeled as L − q/2 → L + q/2). To
extract the deformation potential values as q → 0, we calculate
the electron-phonon matrix elements for a range of q along
the five symmetry directions, including as short q as the
computational cost allows. The phonon wave vectors used
in our DFPT calculations are the shortest wave vectors that
are commensurate with the k-point grids for electronic states
ranging from 8 × 8 × 8 to 48 × 48 × 48. We use an energy
cutoff of 20 Ha for plane waves.

3. Subtracting Fröhlich interaction

PbTe is a polar semiconductor and thus some portion of the
electron-phonon matrix element will be due to the interaction
of electrons with the electric field generated by oppositely
charged atoms moving out of phase with each other [74].
This Fröhlich contribution to electron-phonon coupling will be
large for longitudinal optical (LO) phonons, but it may also be
non-negligible for acoustic phonons since their eigenvectors
may contain a small LO component. To obtain deformation
potentials due to acoustic vibrations only, we subtract the
Fröhlich contribution from the electron-phonon matrix ele-
ments calculated using DFPT [75–77]. To be consistent with
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FIG. 3. Calculated intravalley electron-phonon matrix elements C(k; qs) for PbTe as a function of phonon momentum |q|, for transitions
L → L + q via a longitudinal acoustic (LA) phonon (red crosses) or via a transverse acoustic (TA) phonon (green squares), and for transitions
L − q/2 → L + q/2 via an LA phonon (blue pluses) or via a TA phonon (purple circles). For q → 0, these yield (a) C(k; qs ) ≈ 1

3 �L
u |q| for

a TA phonon along [010], and C(k; qs ) ≈ (�L
d + 1

3 �L
u )|q| for an LA phonon along [010]; (b) C(k; qs ) ≈ �L

d |q| for an LA phonon along
[01̄1]; (c) C(k; qs ) ≈ (�L

d + �L
u )|q| for an LA phonon along [111]; (d) C(k; qs ) ≈ √

2/9�L
u |q| for one of the TA phonons along [011], and

C(k; qs ) ≈ (�L
d + 2

3 �L
u )|q| for an LA phonon along [011]; and (e) C(k; qs ) ≈ √

8/81�L
u |q| for the sum of the two TA phonons along [11̄1],

and C(k; qs ) ≈ (�L
d + 1

9 �L
u )|q| for an LA phonon along [11̄1]. Fifth-order odd-polynomial fits to the matrix elements are shown with solid

lines for L → L + q and dashed lines for L − q/2 → L + q/2. Black solid and dashed lines correspond to the linear fits using the extracted
values of �L

u = 7.0 eV and �L
d = 0.4 eV for LA and TA phonons, respectively.

our definition of the electron-phonon matrix element given
in Eq. (4), we define those due to the Fröhlich interaction
as [48,77]

HF
mn(k; qs) = i

e2

�ε0
〈umk+q |unk〉uc

∑
b

(
mc

mb

) 1
2

×
∑

G

(q + G) · Z∗
b · es

b(q)

(q + G) · ε∞ · (q + G)

× e−i(q+G)τ b e−|q+G|2/4α, (A1)

where � is the volume of the primitive cell, and ε0 is the
permittivity of free space. G is the reciprocal lattice vector
and τ b is the position of atom b. Finally, α is the convergence
parameter for the summation over G in Eq. (A1), taken as
α = 5(2π/a)2, where a is the lattice constant [76]. Z∗

b and
ε∞ are Born effective charge and high-frequency dielectric
tensors, respectively. They are diagonal and isotropic for cubic
materials, and we calculated their values using DFPT and the
LDA excluding SOI, yielding Z∗

Pb = 6.35, Z∗
Te = −6.35, and

ε∞ = 34.85.
We calculate the desired electron-phonon matrix elements

due to acoustic vibrations by subtracting the Fröhlich contri-
bution from the matrix elements Hnn(k; qs) computed using

DFPT:

C(k; qs) = |Hnn(k; qs)| − ∣∣HF
nn(k; qs)

∣∣
〈unk+q | unk〉uc

. (A2)

In the long-wavelength approximation, both total and Fröhlich
matrix elements are imaginary if the electronic wave functions
and phonon eigenvectors are real [46,78]. However, we found
that the total matrix elements acquire an arbitrary phase in
the DFPT calculations. To avoid any phase mismatch between
the DFPT and Fröhlich matrix elements that we calculate
a posteriori, we subtract their absolute values, which is a
reasonable approximation when q → 0. We found that the
values of deformation potentials of PbTe due to the Fröhlich
interaction for the longitudinal acoustic phonons range be-
tween 0 to 0.3 eV along the five high-symmetry q directions.
To be consistent with the standard definition of deformation
potentials [46], we also remove the wave-function overlap
integral from the resulting electron-phonon matrix element
[see Eq. (A2)]. The impact of the wave-function overlap on
our calculated deformation potentials is small since its values
become close to 1 as q → 0.

We plot the values of C(k; qs) for PbTe as a function of
|q| for transverse and longitudinal acoustic modes along high-
symmetry directions in Fig. 3, including both L → L + q and
L − q/2 → L + q/2 transitions. Figure 3 shows that DFPT
calculations do not perfectly capture the linear regime as q →
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TABLE VI. Linear terms of the fifth-order odd-polynomial fits to
the electron-phonon matrix elements as defined in Eq. (A2) versus
q for acoustic phonons along the five high-symmetry directions of q
given in Table V, for both the L → L + q and L − q/2 → L + q/2
transitions.

q Mode Deformation L → L+q L − q
2 → L+ q

2
(eV) (eV)

[010] TA �L
u

3 2.27 2.29

LA �L
d + �L

u

3 4.78 4.50
[01̄1] LA �L

d 0.88 −0.66
[111] LA �L

d + �L
u 6.98 6.95

[110] TA1

√
2
9 �L

u 3.31 2.98

LA �L
d + 2�L

u

3 4.92 4.78

[11̄1] TA1+TA2

√
8
81 �L

u 2.58 2.61

LA �L
d + �L

u

9 0.13 0.10

0 for the relatively large values of |q| we used. As the q vector
becomes larger, the deviations of C(k; qs) from linearity, and
thus from the deformation potential approximation, become
larger. Similarly, the difference between the L → L + q and
L − q/2 → L + q/2 matrix elements for the same direction
and polarization increases with q.

4. Determining deformation potentials

We calculate the values of Hep/q numerically by taking the
linear term of the fifth-order odd-polynomial fit to C(k; qs)
versus q for each direction and phonon polarization of interest,
given in Table V. We use an odd-polynomial fit because
the Taylor expansion of Hnn(k; qs) for PbTe contains only
the odd terms of q. This is due to the fact that PbTe has
an inversion symmetry with respect to each atom, which
reverses the sign of its intravalley acoustic phonon eigenvec-
tors [79], while leaving the electron-phonon matrix elements
invariant.

We first calculate �L
u by performing a linear regression

fit to the linear terms extracted by fitting only to trans-
verse acoustic matrix elements along the five symmetry
directions (see Table VI). We apply equal weighting to
all directions of q with a nonzero linear term, with the
L → L + q and L − q/2 → L + q/2 matrix elements also
weighted equally. This procedure yields the value of �L

u

= 7.0 eV.
We next calculate �L

d by performing a linear regression fit
to the linear terms extracted by fitting only to longitudinal
acoustic matrix elements along the five symmetry directions.
Enforcing �L

u = 7.0 eV for all directions, this procedure
yields a value of �L

d = 0.4 eV. The linear fits using these
values of �L

u and �L
d to the electron-phonon matrix elements

for all considered directions and phonon polarizations are
shown in Fig. 3. Setting �L

u = 7.0 eV and fitting �L
d for

each q direction independently yields values ranging from
−0.7 to 2.3 eV. From the mean square displacement of these
values, we estimate that the error in our calculated �L

d is
∼ ±1 eV.

APPENDIX B: DEFORMATION POTENTIALS
FROM BAND SHIFTS

We also compute the acoustic deformation potentials of
PbTe using the approach of Van de Walle and Martin [41–44].
The calculation of �L

u is relatively straightforward since we
only need to find the energy splitting between degenerate
valleys of bulk due to strain. On the other hand, computing
�L

d is significantly more involved as it requires knowledge of
the conduction band energy shifts under strain on an absolute
scale [80]. We note that this method relies on calculating the
band shifts under strain using the finite-difference method
in finite-size supercells. These shifts correspond to acoustic
deformation potentials only in the limit of infinitely large
supercells.

Under uniaxial strain along the [111] direction, the L valleys
of a cubic material become nondegenerate and shift in energy
proportional to the uniaxial deformation potential and the
magnitude of the applied strain. These shifts in energy at the
L point may be derived from Eq. (3), which yields the change
in energy of the conduction bands [41,42] as

�E[111]
c = 2�L

uεxy, (B1)

�E[1̄11],[11̄1],[111̄]
c = − 2

3�L
uεxy. (B2)

The uniaxial deformation potential then reads as

�L
u = 3�EL

8εxy

, (B3)

where �EL is the energy difference between the [111] and the
other L valleys of the strained material.

To calculate this energy splitting from DFT, we strain the
lattice constant parallel to the trigonal [111] axis, a0,‖, and hold
it constant at a value a‖ = 1.0002 × a0,‖. We then contract the
lattice constant perpendicular to the [111] axis, a0,⊥, to a value
a⊥ such that the volume of the primitive cell remains constant.
Strain is then defined as [41,42]

εxy = −1

3

(
a⊥ − a0,⊥

a0,⊥
− a‖ − a0,‖

a0,‖

)
. (B4)

We calculate the energy difference between the nondegenerate
L valleys under this strain using DFT, and then compute �L

u

using Eq. (B3). We note that we needed to use small values of
strain, ∼0.02%–0.1%, to obtain converged �L

u values.
The dilatation deformation potential of PbTe can be deter-

mined from the shift of the conduction band minimum at L for
a dilatation ε along the [001] direction, which can be found
using Eq. (3) [41,42]:

�EL
c = (

�L
d + 1

3�L
u

)
ε = acε. (B5)

Here, ac is the hydrostatic deformation potential of the conduc-
tion band, and refers to changes of the conduction band states
under strain on an absolute scale [80]. However, the zero of
energy is undefined for a bulk crystal due to the long-range
nature of the Coulomb interaction, resulting in no intrinsic
reference for electronic states [81]. To resolve this issue, we
calculate ac following the procedure of Van de Walle and
Martin [41,42].
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We start by calculating the conduction band energies at the
L point for bulk unstrained PbTe and PbTe strained along the
[001] direction, EL

c (0) and EL
c (ε), respectively. These DFT

calculations also yield the total potential acting on electrons,
defined as the sum of ionic, Hartree, and exchange-correlation
potentials [41], the averages of which we denote as V (0) and
V (ε). Next, we construct a heterostructure which consists of
unstrained and strained materials meeting at a (001) interface,
which allows us to obtain the average total potential energies
of either region V ′(0) and V ′(ε), respectively, on an absolute
scale. We then align the total potentials of the bulk calculations
to those of the heterostructure, yielding the absolute splitting
of the conduction band energies. The hydrostatic deformation
potential for the conduction band can then be computed
using

ac = �EL
c

ε
= 1

ε

((
EL

c (ε) − V (ε)
) − (

EL
c (0) − V (0)

)
+ (V ′(ε) − V ′(0))). (B6)

We calculate the value of �L
d using Eqs. (B5) and (B6), using

the value of �L
u obtained from the strain-induced splitting of

the L valley.
To calculate the dilatation deformation potential values of

PbTe, we construct a (001) interface between the unstrained
and strained regions, with 1% of tensile strain applied perpen-
dicular to the interface. Our calculations of the bulk unstrained
and strained PbTe are performed on the four-atom supercells
whose lattice vectors are a[1/2, 1/2, 0], a[1/2,−1/2, 0],
and a[0, 0, 1], where a is the lattice constant. The het-
erostructure is then grown by repeating the four-atom su-
percells of the unstrained and strained materials along the
[001] direction to the desired length. The average po-
tential at each value of z along the [001] direction is
defined as

V (z) = 2

a2

∫ ∫
V (r)dx dy, (B7)

where a2/2 is the cross-section area perpendicular to the
[001] direction of the described heterostructures. We show
this average potential V (z) for a 16-atom PbTe heterostructure
in Fig. 4, highlighting the unstrained and strained regions.
The average potentials of bulk unstrained and strained PbTe
are overlaid on top (dashed black lines), shifted in energy
so that V (0) = V ′(0) and V (ε) = V ′(ε). As expected, there
is a deviation of the average potential of the heterostructure
from the bulk behavior in the vicinity of the interface. We
assume that the atoms occupy the ideal positions of the bulk
unstrained and strained materials for the considered [100]
interface. However, this will not be the case for all interfaces,
with certain directions producing a change in the internal
displacement parameter. This is of particular importance for
polar interfaces, where the change in atomic position produces
a dipole shift [43,82].

The supercell size introduces periodicity into the het-
erostructure calculation, and its size must be sufficiently large
to restore the bulk behavior for the average potential away from
the interface. However, we found that our calculated values of
ac did not converge smoothly with increasing supercell size.
This numerical instability was due to the relatively sparse

FIG. 4. Total average potential V (z) for a 16-atom PbTe het-
erostructure consisting of unstrained and strained regions meeting
at a (001) interface, calculated using the HSE03 hybrid functional
including spin-orbit interaction. The solid blue (red) lines show the
total average potential of the unstrained (strained) region, with average
potential energy V ′(0) [V ′(ε)]. The total average potential for each
value of z in the bulk unstrained and strained material are shown with
dashed black lines, aligned to that of the heterostructure so that their
average potential energies V (0) and V (ε) satisfy V (0) = V ′(0) and
V (ε) = V ′(ε).

set of z points defining the average potential V (z), which is
determined by the number of Fourier components in the plane-
wave expansion that is fixed by the energy cutoff (45 Ha for the
LDA-HGH calculations, and 18.4 Ha for the PBE/HSE03 PAW
calculations). For example, the calculated V (z) values did not
necessarily align to the peaks and troughs of V (z). Thus, we
performed a cubic spline interpolation of the average potential
to generate a sufficiently dense set of V (z) values. We extracted
the average potentials V ′(0) and V ′(ε) from the center of the
unstrained and strained regions of the heterostructure, where
the average potential is most bulklike. In doing so, we defined
the region over which the average potential energy is calculated
as the central four-atom subsection of the unstrained and
strained parts of the heterostructure. This procedure yielded
a better convergence with respect to increasing supercell size
(see Table VII). From the differences of the dilatation potential
values for two largest supecell sizes, we estimate that their error
in these calculations is ∼±0.1 eV.

TABLE VII. Dilatation deformation potentials for PbTe cal-
culated using the LDA functional excluding/including spin-orbit
interaction (SOI), and the PBE and HSE03 functionals including SOI,
shown for multiple supercell sizes.

�L
d (eV)

Supercell LDA LDA PBE HSE03
size (atoms) (excl. SOI) (incl. SOI) (incl. SOI) (incl. SOI)

8 3.67 2.41 −1.73 −1.20
16 −0.66 −2.32 −0.13 −0.22
24 0.2 −1.91 0.01 0.91
32 0.35 −1.69 −0.12 0.69
40 0.39 −1.66 −0.20 0.78
48 0.47 −1.55 −0.22 −
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