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In this paper we investigate strain and local polarization field effects in zinc-blende indium gallium nitride
(InGaN) alloys and quantum wells. To do so we parametrize and establish a Stillinger-Weber potential with
parameters fitted to hybrid functional density functional theory data. The developed model gives very good
agreement with quantities to which it has not been fitted, such as Kleinman parameters of cubic III-N materials
or the composition dependence of the lattice constant in InGaN alloys. Equipped with this model, we extract
the composition dependence of elastic constants C11 and C12 in InGaN alloys, including bowing parameters for
these quantities, which may form input for continuum-based calculations. Furthermore, applying this model to
InGaN alloys and wells reveals that random alloy fluctuations can lead to strong local strain field fluctuations.
Building on this information, we present a model that allows for the calculation of connected local built-in field
fluctuations at the microscopic level, accounting for first- and second-order piezoelectric effects. The approach
is general and can be applied to any zinc-blende III–V alloy or heterostructure investigated in the frame of
semiempirical models (e.g., valence force field models) targeting strain fields on an atomistic level. Here,
building on our Stillinger-Weber potential we show that local strain fluctuations in zinc-blende InGaN quantum
wells can lead to strong piezoelectric built-in field fluctuations. This contribution has been widely overlooked
in previous theoretical studies of these systems. Finally, we briefly discuss the impact of these polarization field
fluctuations on carrier localization effects in such quantum well systems.

DOI: 10.1103/PhysRevB.103.165201

I. INTRODUCTION

In recent decades, the III-nitride semiconductors have
emerged as among the most promising materials for many
novel applications in areas, such as photovoltaics, micro-
light-emitting diodes (μ LEDs) and high-electron-mobility
transistors [1–3]. In particular, indium gallium nitride (In-
GaN)/GaN heterostructures grown along the c axis of the
wurtzite (WZ) crystal phase form the basis for modern high-
efficiency blue LEDs which have revolutionized the field of
solid-state lighting [4–7]. In principle, the emission wave-
length of InGaN alloys can be tailored to span across the
entire visible spectrum by varying the InN content; however,
WZ InGaN-based LEDs suffer an efficiency drop in the green
spectral range and at longer wavelengths [8–11]. Since there
are currently no other materials that emit efficiently in the
green spectral range, this gives rise to the so-called “green
gap” problem.

This efficiency drop is, in part, attributable to the presence
of very strong electrostatic built-in fields arising from strain-
independent (“spontaneous”) and strain-dependent (“piezo-
electric”) polarization fields in c-plane WZ InGaN quantum
wells (QWs). These fields localize electrons and holes
to opposite interfaces of the well thereby lowering the
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wave-function overlap and, consequently, the radiative recom-
bination probabilities [10,12–16]. A number of potential ways
to reduce these electrostatic built-in fields, originating from
both the underlying WZ structure and the growth along the
c axis, have been considered by previous studies. Previously,
growth of heterostructures along semi-/nonpolar directions in
the WZ crystal structure [17–24], growth of ultrathin InGaN
layers [25,26], as well as the use of the metastable zinc-blende
(ZB) phase [27–30] have been considered.

In this paper, we focus on the last of these approaches
since it has several distinct potential benefits when compared
to WZ-based systems. First, ZB InN and GaN have slightly
smaller band gaps than their WZ counterparts [31,32] so that
less InN content is required in order to reach the green/yellow
spectral region. This is an advantage as incorporation of large
amounts of In is experimentally challenging [33]. Second,
in an ideal picture, QW structures utilizing the ZB (cubic)
phase of the constituent nitride materials and grown along the
[001] direction of the crystal should present no macroscopic
spontaneous [34] or piezoelectric-related built-in fields, given
the absence of shear strain [35,36]. Thus, ZB InGaN wells
offer a promising route to closing the green gap.

However, it is important to note that alloy fluctuations and,
thus, the associated strain field fluctuations in (for instance) an
InGaN alloy may lead to local built-in fields which fluctuate
on small length scales. It has been shown in the literature
that these potential fluctuations are present in WZ InGaN
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systems and have both beneficial and detrimental effects on
radiative recombination rates in this alloy [12,37]. On the
one hand, it has been demonstrated in the literature that alloy
fluctuations and, thus, the connected potential fluctuations in
c-plane WZ InGaN QWs give rise to strong carrier localiza-
tion effects [10,37–41]. These localization effects are widely
assumed to explain [12,13] the insensitivity of the efficiency
of InGaN-based devices emitting in the violet-blue spectral
region to the very high defect densities present in these struc-
tures (these can be ∼109 cm−2 [6]). On the other hand, such
carrier localization effects can cause in-plane separation of
holes and electrons in these QWs [10,38,42], which further
reduces the wave-function overlap and is, thus, deleterious for
the efficiency of the device. Furthermore, theoretical studies
of bulk ZB InGaN have shown that atomistic effects are also
likely to play a prominent role in this material [43–45]. On
the whole, random alloy effects must be taken into account to
achieve an accurate description of the electronic and optical
properties of these systems. However, although some previous
atomistic calculations have been performed on bulk ZB InGaN
[43–47], all works [28,30,48,49] that have theoretically stud-
ied ZB InGaN QWs employed continuum models which, by
their nature, neglect atomistic effects and, thus, alloy-induced
polarization fields. These studies also neglected the deviation
from linear variation of the elastic constants, which has been
shown to impact transition energies in wurtzite systems by up
to 25 meV [50].

We also stress that local alloy-induced effects in III-N
materials, such as InGaN, are expected to be much more
pronounced when compared to other III–V ZB materials,
e.g., InGaAs. This stems, for instance, from the fact that
the piezoelectric coefficients in InN and GaN are at least a
factor of order two larger than those of InAs or GaAs [51].
Furthermore, whereas the lattice mismatch between InAs and
GaAs is ≈7%, this mismatch is ≈10% [51] in the case of
GaN and InN. All these factors will amplify the impact of
alloy fluctuations on the local built-in fields, and findings
on InGaAs systems cannot necessarily be carried over to an
InGaN alloy.

In this paper, we take a first step towards filling this gap by
performing an atomistic analysis of strain effects and the local
built-in piezoelectric potential in an InGaN/GaN QW. Given
that highly accurate ab initio approaches, such as “standard”
density functional theory (DFT) are too computationally
heavy to simulate nanoscale objects, such as heterostruc-
tures where supercells with several thousands of ions must
be considered, we present, develop, and use a semiempirical
interatomic potential to achieve this goal. For reasons outlined
in Sec. II, we choose the Stillinger-Weber (SW) interatomic
potential. Our theoretical framework, thus, allows the relaxed
atomic positions to be found so that Poisson’s equation may
subsequently be solved to obtain the electrostatic potential
arising from the resulting local strain field. The presented
approach includes first- and second-order piezoelectric ef-
fects and can be applied to other ZB material systems for
which strain effects are to be targeted in a microscopic
picture. Overall, our framework, therefore, gives an ideal
starting point for future atomistic electronic structure calcu-
lations, employing, for instance, semiempirical tight-binding
models [52].

The results of our analysis of the binary III-nitrides and
bulk InGaN show that the SW potential makes predictions for
these materials that are quantitatively similar to those from
highly accurate hybrid functional DFT, indicating that the
potential is suitable for such purposes. Building on these find-
ings, we extract bowing parameters for the evolution of elastic
constants with InN content; this information can be used in
continuum-based calculations where evolution of the mate-
rial parameters with alloy content is required. Furthermore,
we provide insight into the magnitude and impact of local
strain effects by studying the distributions of bond lengths and
two-body interaction energies extracted from various InGaN
supercells. Finally, our analysis of an In0.15Ga0.85N/GaN QW
reveals large local fluctuations in the strain and piezoelectric
potential, an aspect widely ignored in the literature. Overall,
the scale of these fluctuations supports strong (hole) wave-
function localization in ZB III-nitride QWs, an effect which
is likely to have a large impact on the properties of devices
based on these wells.

The paper is organized as follows. In Sec. II, we outline
the theoretical basis of the paper. Then, in Sec. III A, we
investigate and benchmark the developed SW model by ex-
tracting quantities, namely, the Kleinman parameters to which
the model has not been fitted and comparing them to hybrid
functional DFT data from the literature. In Sec. III B we focus
on bulk properties of ZB InGaN alloys predicted by the poten-
tial, whereas in Sec. III C a ZB InGaN/GaN QW is targeted,
including an analysis of the piezoelectric potential arising
from first- and second-order effects. Finally, we summarize
our work in Sec. IV.

II. THEORETICAL FRAMEWORK

In this section, we describe the theoretical models used in
the paper. In Sec. II A, the SW potential is introduced, and the
parameter-fitting procedure delineated, whereas in Sec. II B,
the method utilized to calculate the local built-in piezoelectric
potential in a QW is described in detail.

A. Stillinger-Weber potential

We seek an accurate description of microscopic atomistic
effects while retaining the ability to model systems containing
thousands of atoms. Semiempirical interatomic potentials, be-
ing classical approximations to the interactions between ions,
are well suited to these requirements as they explicitly take
account of each ion in the system but are much faster than
ab initio approaches. Numerous different models have been
used in the past [53–59]. In this paper, we use the SW poten-
tial, implemented using the software package GULP [60,61].
This potential is among the simplest and, hence, is ideal for
large-scale simulations but is also particularly well suited to
describing directional bonds in tetrahedrally bonded crystals.
Valence force field models can also do this, but Coulombic
effects must be included to accurately describe the III-nitrides
due to their high bond ionicity [55], and inaccuracies may
persist even with this adjustment [62].
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FIG. 1. Schematic of a triplet of ions in the lattice with bond
lengths and angles from Eq. (4) marked.

Stillinger and Weber [57] approximated the potential en-
ergy of the unit cell as a sum of two- and three-body terms,

U (r1, r2, . . . , rn) =
∑
i, j
i< j

v2(ri j ) +
∑
i, j, k

i< j<k

v3(ri, r j, rk ), (1)

where the ri’s are the positions of the n ions in the unit cell
and i, j, k = 1, . . . , n are subject to the inequalities, which
ensure each pair or triple is counted exactly once. ri j is the
distance between ions i and j. The function v2 has the profile
of a typical two-body interaction and is written as the product
of a rational function (which goes to infinity at zero) and
an exponential that brings the potential to zero at the cutoff
distance ai j with continuity of all derivatives,

v2(ri j ) =
{

Ai j
(
Bi jr

−4
i j − 1

)
exp

( σi j

ri j−ai j

)
, if ri j < ai j,

0, if ri j � ai j .
(2)

One always assumes that the parameters Ai j, Bi j, σi j , and ai j

for any two ions depend only on their species. In the following
we consider an ideal lattice (e.g., no defects), thus, a given
cation will only get close enough to interact with its neighbor-
ing anions and vice versa (e.g., Ga ions in GaN usually only
have N ions as nearest neighbors); so each binary material
requires only one such parameter set, namely, {A, B, a, σ }.

The three-body contribution from each distinct triplet of
ions (see Fig. 1 for a schematic) is written as [57]

v3(ri, r j, rk ) = h(ri j, r jk, θi jk ) + h(rik, ri j, θki j )
+ h(r jk, rik, θ jki ), (3)

where θi jk is the angle subtended at ion j, etc. The term
h(ri j, r jk, θi jk ) is nonzero only if ri j < ai j and r jk < a jk

whereupon,

h(ri j, r jk, θi jk )

= λi jk exp

(
γi j

ri j − ai j
+ γ jk

r jk − a jk

)
(cos θi jk− cos θ0)2, (4)

and similarly for the other two terms. We set θ0 =
arccos(−1/3), the ideal tetrahedral angle in ZB so that v3 ex-
plicitly includes strong directional bonding. As above, in this
paper only cation-nitrogen nearest-neighbor distances become
less than the cutoff distances, so h(ri j, r jk, θi jk ) is nonzero
only if there is a cation where θi jk is subtended and nitrogen

ions at the other two sites or vice versa. Hence, a binary ma-
terial has only four free three-body parameters: λN, γN, λC,
and γC where the subscript denotes the species that lies where
θi jk is subtended (N: nitrogen; C: cations, e.g., Ga, In or Al).
Correspondingly, at most one of the terms in Eq. (3) will be
nonzero as at least one of ri j, rik , and r jk will be greater than
the cutoff distance. Note that in the above, most parameters
are defined so that they differ from the original definitions of
Stillinger and Weber [57] by a factor containing σ or ε (the
energy unit), e.g., A = εASW, B = σ 4BSW, etc.

To determine values for the different parameters, we treat
them as free and adjustable, thereby enabling the SW model
to reproduce key material properties, such as elastic constants.
We note here that the primary focus of our paper consists
of the binary materials InN, GaN, and the corresponding
alloy InGaN. However, in the model development we also
target AlN so that the potential may also be used to study, for
instance, AlGaN-based heterostructures. Thus, we derive SW
parameters for all three cubic binary materials. Here, we opt
to fit the parameters such that the SW potential reproduces
two of the three independent elastic constants of the ZB binary
materials, namely, C11 and C12 (in Voigt notation) and the
cohesive energy per bond (−ε). In addition, although we do
not include it explicitly in the least-squares fitting procedure,
if the lattice parameter a0 of a given parameter set deviates
significantly from literature values, the set is discarded. As
few reliable experimental data for the full elastic tensor of the
cubic nitrides exist, we use data obtained by Caro et al. [63]
using hybrid-functional DFT (HSE06) as a reference point for
our paper. Their lattice parameters are also used (which differ
by <1% from experimentally determined values [31,32,64])
as reference values for data predicted from our SW potential.
A number of studies have estimated the bond energies of
the III-nitrides, and we take the averages of those given in
Refs. [65–69]; the averages are of the order of eV and the
standard deviations are all �0.07 eV. The values fitted to (as
well as the values of C44 and a0) are presented in Table I along
with those predicted by our SW potential and the deviations.

The fitting of the model to material parameters uti-
lizes GULP’s built-in capabilities; GULP fits to observ-
ables αfit

i by minimizing the sum of squares function
S = ∑Nobs

i=1 wi(αfit
i − αi )2 using the Newton method with a

Broyden-Fletcher-Goldfarb-Shanno update of the Hessian at
each iteration [60,61]. Any choice may be made for each of
the weighting factors wi—however, we find that a good fit
cannot be made to all three elastic constants (regardless of
whether or not we fit to ε).

In this paper, we are mainly concerned with modeling
QWs grown along the [001] direction of the ZB crystal. In
a continuum-based model, as we will discuss in more detail
below, the strain along the growth direction is mainly deter-
mined by the ratio C11/C12. Thus, we aim to describe this
contribution accurately. Other semiempirical models targeting
strain fields in ZB heterostructures follow the same proce-
dure and mainly target the elastic constants C11 and C12 in
their parametrization (e.g., Keating-like potentials used in the
description of the strain field in [001]-grown heterostructures,
such as quantum dots [54,55,70,71]). Indeed, in Ref. [72] the
author shows that a parametrization of the Keating model
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TABLE I. Material parameters for InN, GaN, and AlN. The
literature elastic constants and lattice parameters are taken from
Ref. [63], whereas the bond energies are averages of those
from Refs. [65,66,68] (for InN), Refs. [65,67] (for GaN), and
Refs. [65,67–69] (for AlN). The literature and predicted (by our
potential) material parameters are denoted by the superscripts “lit”
and “pred,” respectively. The table also gives the error in the different
quantities (in percentages). More details are given in the main text.

InN GaN AlN

εpred (eV) 2.001 2.232 2.829
εlit (eV) 2.001 2.233 2.829
Error (%) 0.000 −0.045 0.000

Cpred
11 (GPa) 183.200 288.600 308.900

Clit
11 (GPa) 183.200 288.600 308.900

Error (%) 0.000 0.000 0.000

Cpred
12 (GPa) 119.200 154.100 166.500

Clit
12 (GPa) 119.200 154.100 166.500

Error (%) 0.000 0.000 0.000

Cpred
44 (GPa) 53.227 103.422 109.895

Clit
44 (GPa) 91.500 166.000 196.000

Error (%) −41.828 −37.698 −43.931

apred
0 (Å) 4.988 4.489 4.363

alit
0 (Å) 4.988 4.489 4.363

Error (%) 0.000 0.000 0.000

which gives more importance to C44 over C11 and C12 is
unsuited to describing ZB systems grown along [001]. Thus,
we weight C11, C12, and ε equally and do not include C44 in
GULP’s least-squares minimization routine. With this approach
we find a perfect fit to the first three (see Table I). Also, and
even though not fitted to, perfect agreement with the DFT
lattice constants is found. As can be seen from Table I, the
deviations of the predicted values from the targets are larger in
the case of C44. However, we note that, for instance, the widely
applied Keating model exhibits deviations in C44 values of
similar magnitude, and as explained above, these deviations
are expected to be of secondary importance for the systems
under consideration in this paper.

The optimal parameters for our SW model are presented
in Table II. We briefly note that, with the exception of A,
they are monotonic or constant in the atomic number of the

TABLE II. The SW parameter sets obtained for all three cubic
binary nitrides. The subscripts N and C refer to nitrogen and cation
(Ga, In, and Al) related parameters, respectively. They are discussed
in the text.

Parameter InN GaN AlN

A (eV) 15.661 15.950 10.996
B (Å4) 8.807 5.574 4.220
a (Å) 3.382 3.060 2.800
σ (Å) 1.881 1.642 0.870
γC (Å) 2.196 1.767 1.445
γN (Å) 2.196 1.767 1.465
λC (eV) 31.661 31.661 31.661
λN (eV) 31.661 31.661 31.661

cation species. The decrease in A as we move from GaN
to AlN is somewhat of an anomaly as A is proportional to
ε when all other parameters are fixed, and ε is largest for
AlN. However, when all parameters vary (as they do here),
changes in the others compensate for the behavior of A for
AlN. Also, as stated previously, AlN plays no further role in
this paper. Note too that the three-body constants in a given
material are almost exactly equal for the cases of N-centered
interactions (i.e., with a N ion where the angle is subtended
and C ions on the other two sites) and C-centered interactions,
e.g., γN,InN = γC,InN. That is, the N-centered and C-centered
three-body interactions are identical in a given binary. This
is perhaps not entirely surprising, and many previous studies
using the SW potential have enforced this equality during
fitting [67,73,74]. We also see that the λ constants are the
same across all three materials by construction—we decided
to fit λC,InN and λN,InN as free parameters and then fix the
λ constants for GaN and AlN to these values. Such an ap-
proach is advantageous for simulation of ternary alloys since
no averaging protocol is then required when determining the
three-body constants for a mixed triplet of ions (e.g., with one
N, one Ga, and one In). We chose the constants of InN as the
reference because correctly describing strain around In sites
in low-x InxGa1−xN is likely to be crucial for modeling of
InGaN/GaN heterostructures.

B. Theory of local polarization

As already discussed above, due to their cubic symmetry,
ZB materials do not exhibit a spontaneous polarization [34]
and when grown along the [001] direction, pure ZB QWs (no
alloy fluctuations and biaxial strain only) are free from piezo-
electric fields. This ideally grants a distinct advantage over
WZ c-plane systems in the exploitation of heterostructures for
optoelectronic device applications. However, in the presence
of local shear strain, a local piezoelectric polarization field
P(r) may be induced. Compared to other ZB III–V materials,
local effects should be much larger in ZB III-N alloys given
their (in general) much larger piezoelectric coefficients [51].
Also, it has been shown [41,75] that in polar and nonpolar
WZ systems such fields fluctuate significantly on the scale of
a few angstroms and are of much importance in accurately
describing the electronic and optical properties of WZ InGaN-
based heterostructures [39,41]. However, in ZB III-N alloys
and heterostructures, this effect has not been studied so far.
We present in the following a framework which allows us to
gain insight into these questions and is a general approach that
can also be applied to other ZB heterostructures.

A number of previous works [35,36,76–78] have demon-
strated the significance of second-order piezoelectric effects
in ZB III–V materials, and P(r) can be written as a sum of
terms first- and second-order in strain [36],

P(r) = e14

⎛
⎝ε4

ε5

ε6

⎞
⎠ + B114

⎛
⎝ε1ε4

ε2ε5

ε3ε6

⎞
⎠ + B124

⎛
⎝(ε2 + ε3)ε4

(ε1 + ε3)ε5

(ε1 + ε2)ε6

⎞
⎠

+ B156

⎛
⎝ε5ε6

ε4ε6

ε4ε5

⎞
⎠, (5)
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where the εi’s are the strain tensor components, e14 is the
single independent component of the first-order piezoelectric
tensor, and B114, B124, and B156 are those of the second-order
tensor (all in Voigt notation). This polarization, in turn, gives
rise to a charge-density ρ, with

ρ(r) = −∇ · P(r). (6)

Knowledge of ρ(r) then allows Poisson’s equation to be
solved for the associated built-in electrostatic potential φ(r),

∇2φ(r) = −ρ(r)

εD
. (7)

Here we use a constant and position-independent static
electric permittivity εD. Given that the built-in field in the
present case mainly arises from local strain fluctuations within
the well, we set εD = εD

InGaN, obtaining εD
InGaN from a lin-

ear interpolation of the dielectric constants from GaN and
InN. Furthermore, given that in the following we are inter-
ested in relatively low InN contents of 15%, the dielectric
mismatch will be small. Taking all this together, and for a
first insight into the impact of local alloy fluctuations on
local built-in potential fluctuations, assuming a constant and
position-independent εD should be sufficient for our purposes.
To implement the above procedure, we follow the approach
used in Refs. [79,80]. The strain tensor is first defined at
each ionic site by the deviation of the four nearest neighbors
from ideal positions. As an example, we consider a N ion and
its four nearest-neighbor cations Ci. Each cation is assigned
an unstrained position r0

i relative to the N ion based on the
ideal tetrahedral angle and the equilibrium bond length of
CiN—e.g., given two In and two Ga nearest neighbors, the
nominal positions might be

r0
1, r0

2 = aInN
0

(± 1
4 ,± 1

4 , 1
4

)
,

r0
3, r0

4 = aGaN
0

(± 1
4 ,∓ 1

4 ,− 1
4

)
.

After ionic relaxation, the four relative positions are denoted
by ri. We form three linearly independent vectors to span the
nearest-neighbor tetrahedron as follows:

R1 = r2 − r1,

R2 = r4 − r3,

R3 = 1
2 (r4 + r3 − r2 − r1),

and similarly before relaxation. The strained vectors are then
obtained from the unstrained by a matrix M so that R j = MR0

j
for j = 1–3. Because the “local tetrahedron basis” may rotate
slightly during relaxation, we must perform a polar decompo-
sition to extract the symmetric matrix ε,

M = (1 + ε)O, (8)

where O is an orthogonal matrix. Given ε, P is evaluated
using piezoelectric coefficients from Ref. [51] such that we
approximate the coefficients at a cation C by those for CN
and at a N site we average over nearest neighbors.

All derivatives in Eqs. (6) and (7) are next approximated by
finite differences, evaluated on the irregular grid formed by the
relaxed ionic positions [80]. This allows direct computation
of the divergence in Eq. (6), whereas in Eq. (7) it reduces to a
system of n linear equations in the values of φ at the positions

a0

Cation

Nitrogen

FIG. 2. The (nonprimitive) ZB unit cell used in this paper. The
colors blue/red denote the two sublattices.

of the n ions in the system (details of the calculation of φ are
given in the Appendix).

III. RESULTS

The following summarizes the results obtained in this pa-
per. In Sec. III A we test the capability of our SW model
by using it to predict the Kleinman/internal strain parameter
[81] for each of the binary III-nitrides since this parameter
is tightly linked to the piezoelectric response of a material.
Then, in Sec. III B we present some of the predictions made
by the potential for bulk InGaN. Finally, Sec. III C details the
results of our investigation of the local polarization field in an
InGaN/GaN QW with 15% InN content in the well layer.

A. Prediction of the Kleinman parameter

A good test of the accuracy of an interatomic potential
is its ability to predict material properties to which it is not
explicitly fitted. Since we are interested in local piezoelectric
effects, we choose the Kleinman parameter (internal strain
parameter) ζ as such a benchmark; ζ is tightly linked to the
ionic part of the first-order piezoelectric coefficient [51].

When a lattice is held under a uniform strain, the ions in
each unit cell may relax internally to a lower-energy state, that
is, the sublattices may shift relative to each other. In the ZB
structure, there are two sublattices so that one will be moved
relative to the other under the direct influence of the strain plus
any potential internal displacement. For example, in Fig. 2,
using coordinates in which the labeled nitrogen ion is fixed,
the position r of the cation after strain is given by

r = (1 + ε)r0 + t, (9)

where r0 is its initial position, ε is the strain tensor, and t
is the (single) internal displacement vector for the ZB lattice
[54,63]. Using Cartesian coordinates aligned along the princi-
pal directions of the unit cell we have, to first order in strain
[54,63],

t = −a0ζ

2
(εyz, εxz, εxy), (10)

where a0 is the equilibrium lattice constant and ζ is the Klein-
man/internal strain parameter (dimensionless). We restrict our
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FIG. 3. Change in the fractional x coordinate of cation vs exter-
nal strain for GaN. The crosses are numerical data points whereas the
line is a linear fit.

analysis to contributions to first-order in strain; higher-order
terms [51] which may come into play are beyond the scope of
the present paper.

Applying a strain with all zero components except εyz [i.e.,
ε = (0, 0, 0, 2εyz, 0, 0) in Voigt notation], and if the final and
initial fractional coordinates of the cation are ( fx, fy, fz ) and
( fx0, fy0, fz0), respectively, then,

fx − fx0 = � fx = −ζ

2
εyz. (11)

The variation, predicted by the SW potential, of � fx with εyz

is then fitted with a linear function from which ζ is found.
All calculations have been performed over a strain range of
−2% � εyz � 2%, which is small enough so that a first-order
internal-strain approximation should still be valid but large
enough to avoid numerical noise. Figure 3 shows as an exam-
ple the results obtained for GaN. The linear fit is clearly very
good, and the same is true for InN and AlN (with a correlation
coefficient greater than 0.999 in all three cases), confirming
that the strain range is indeed small/large enough.

The values of ζ found are given in Table III where we have
also included hybrid DFT values from Ref. [63] for compari-
son since there are no experimental data on this parameter for
the cubic III-nitrides. In the case of InN, the agreement with
the ab initio value is remarkable, whereas for GaN there is
some deviation, but the match is reasonably good, and for AlN
the deviation is more pronounced. However, in the following
we focus our attention on InGaN-based systems. Therefore,
the level of agreement with the DFT literature results is very
satisfactory for our purposes and further confirms the suitabil-
ity of the developed model.

TABLE III. The values of the Kleinman parameter ζ predicted by
the SW potential and the data obtained by Caro et al. [63] (ζ DFT) us-
ing hybrid functional DFT data. The percentage deviations between
the SW and the DFT values are also given.

InN GaN AlN

ζ 0.748 0.654 0.658
ζ DFT 0.760 0.580 0.545
Error (%) −1.579 12.759 20.734
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FIG. 4. The lattice constants of a number of InxGa1−xN super-
cells, plotted against x. The linear interpolation is the heuristic
expectation from Vegard’s law.

B. Bulk InGaN

Here, we study bulk InxGa1−xN systems with various val-
ues of InN content x. In the following we assume that InGaN
is a random alloy, here carrying information over from InGaN
wurtzite systems [75]. In our numerical framework this is
accomplished by constructing and relaxing supercells which
contain In and Ga ions placed at cation sites according to
a simple random number generator with their total numbers
being in the ratio x:1 − x. In doing so we have access, where
needed, to the impact of the alloy microstructure on the re-
sults. For the InN contents x = 0.25, x = 0.5, and x = 0.75
we have generated three different microscopic alloy config-
urations each. Our investigations revealed (see the discussion
below) that for each of these InN contents the calculated prop-
erties varied only slightly with alloy configuration. Thus, for
x = 0.1, x = 0.4, x = 0.6, and x = 0.9 we have evaluated
the material properties for one random alloy configuration. In
deciding on optimal supercell size, one must balance com-
putation time against the need to make the cell as large as
possible in order to best mimic a truly random structure.
We have opted for a cell consisting of 11×11×11 unit cells
of the ZB structure (a unit cell, containing eight atoms, is
depicted in Fig. 2), so that 10 648 atoms are included in the
simulation. Such system sizes are beyond the capabilities of
standard DFT. Having the same initial dimensions along each
of the Cartesian directions ensures that any artificial effects
introduced by the periodic boundary conditions apply roughly
isotropically.

We first study the evolution of the lattice constant with
x. After relaxation, we take the lattice constant a0 as 1

11×
the average of the lengths of the three final lattice vectors.
Because these lengths show such little variation at a given x,
differing from each other by no more than 0.01 Å, we only
relax one random configuration per value of x. The lattice
constant a0 is shown as a function of the InN content x in
Fig. 4. The lattice constant a0 displays an almost perfectly
linear variation with x; a linear interpolation between the end
points is shown in the figure with the fit only improving very
slightly when we adopt a quadratic model. This linear varia-
tion of the lattice constant with alloy content x is in excellent
agreement with experimental [33] and DFT [47,82] data. This
further supports and strengthens that the developed SW model
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provides accurate insight into strain effects in InGaN alloys,
even though the model is parametrized by using binaries only.

In a second step, we use the potential to extract further
properties of bulk ZB InGaN. One feature of InxGa1−xN
that is of much interest is the dependence of its elastic
constants on x. This information is particularly useful as in-
put to continuum-model simulations of large structures, such
as InGaN-based diodes, wherein the large strains between
adjacent material layers must be modeled accurately. GULP

features built-in functions that calculate the elastic constants
of a supercell from second derivatives of the energy density.
We implement this functionality to find C11, C12, and C44 for
InxGa1−xN at a number of values of x and then apply quadratic
fits to derive the bowing parameters. The results presented
below for x = 0.25, x = 0.5, and x = 0.75 are obtained from
an average over the three considered alloy configurations.
We have observed that the spread in the calculated data is
very small so that for x = 0.1, x = 0.4, x = 0.6, and x = 0.9
only one alloy configuration is used to obtain the elastic con-
stants. If one excludes the data points evaluated at x = 0.1,

x = 0.4, x = 0.6, and x = 0.9 (one alloy configuration) in
the fitting procedure described below, the extracted bowing
parameters deviate by less than 1%. This indicates that em-
ploying one alloy configuration is a reasonable approximation
here. The fits are always forced through the respective binary
end points, i.e., the only degree of freedom in each fit is the
bowing parameter bi j (for i j = 11, 12, or 44). That is, the fit
is of the form

Ci j (x) = (1 − x)CGaN
i j + xCInN

i j − bi jx(1 − x).

Since the SW potential is fitted to DFT elastic constants
C11 and C12 of the binaries, and since the potential has been
shown to predict structural properties, such as the lattice
constant evolution with InN content of the ternary material
reliably, it can be expected that the SW potential also gives
a good description of the composition dependence of C11

and C12 in InGaN. The bowing parameters we derive are
b11 = 35.64 GPa and b12 = 0.68 GPa for C11 and C12, respec-
tively; the value of b11 we predict is over twice that found
in Ref. [83], although our value for b12 is very similar to
their figure of 1.00 GPa (a Keating potential was used in
that work). A graphical representation of C11(x) and C12(x) is
shown in Fig. 5. On the other hand, as explained in Sec. II, the
values of C44 predicted by the SW potential for the binaries
differ by ∼40% from the literature, so we do not display
the x dependence of C44 in Fig. 5. However, as all the C44

values suffer similar errors, the bowing parameter may be
roughly unaffected. For the sake of completeness, the bowing
parameter found for C44 amounts to b44 = 23.41 GPa.

Next, we study the effects of local alloy fluctuations on
the local strain relaxation. In a binary material, all bond
lengths are the same, and plotting these on a frequency his-
togram yields a single nonempty bin centered around the
equilibrium bond length. Introducing quantities of another
material should result in the appearance of two peaks near
the equilibrium bond lengths of the binary constituents with
each peak widened due to local distortion. Such bond length
distributions are displayed in Fig. 6 for two of the studied
supercells, one with 50% InN and the other with 10% InN.
The equilibrium bond lengths of GaN and InN (bGaN
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FIG. 5. Elastic constants C11 and C12 of zinc-blende InxGa1−xN
alloys as a function of the InN content x. The solid lines represent
quadratic fits to the data. More details are given in the main text.

bInN
0 , respectively) are illustrated by dashed vertical lines, and

each distribution is scaled so that the height of each bin gives
its probability (i.e., frequency/21 296, where 21 296 is the
number of bonds in a supercell). In the 50% case, the two
peaks bound roughly equal areas, corresponding to one-half
In-N bonds and the other half Ga-N. Each peak can be seen
to be displaced towards the other, away from the ideal bond
lengths, indicated by the vertical lines. Thus, as expected, the
presence of cation C1 in the alloy tends to perturb the C2-N
bonds towards the bond length of C1N and vice versa.

In fact, the degree to which the peaks are displaced from
the ideal may be taken as an approximate measure of the
severity of local strain effects in the system. In a given dis-
tribution, we may consider each peak individually (as they
are separated by a large gap containing no counts) and take
the average of all bond lengths associated with the peak in
question. The fractional deviation of this average from the as-
sociated equilibrium bond length then gives a rough measure
of the local strain corresponding to that peak. For example,
the mean bond length in the “GaN peak” in the x = 0.5 distri-
bution is 1.970 Å, which differs by +1.345% from bGaN

0 —this
percentage is an approximation to the typical local strain about
a Ga-N bond in the material. Note that the + sign denotes
tensile strain, whereas negative strains are compressive. The
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FIG. 6. Bond length distributions for InGaN supercells at 50%
(x = 0.5) and 10% (x = 0.1) InN. The cells are not strained to a
substrate (see below), and the vertical lines indicate the bond lengths
of GaN (left) and InN (right).
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strain associated with the “InN peak” in this distribution is
about the same in magnitude at −1.047% but opposite in
sign—that is, the In-N bonds are usually compressed as would
be expected since InN has a larger bond length than GaN.
Then, in the x = 0.1 distribution the GaN and InN peaks
correspond to respective strains of 0.323% and −2.339%. The
evolution of the distribution is, thus, clear: As x approaches 0,
the InN peak becomes smaller, and both peaks move towards
bGaN

0 as the increasing number of Ga ions has a stronger
influence on the In-N bonds. The Ga-N bonds experience, on
average, almost no strain in the dilute ternary, whereas the
In-N bonds suffer large compressive (negative) strains. This is
qualitatively in line with the expected trend, but the ∼ − 2%
average local strain gives new quantitative insight into the
magnitude of local strain about In ions in dilute InGaN—this
may give rise to pronounced local piezoelectric effects, given
that the piezoelectric coefficients in III-N materials are very
large in magnitude [51].

We also note that the widths of the peaks decrease as the
InN content is decreased from x = 0.5. This implies, for ex-
ample, that for x = 0.1, 50% of the bonds in the peak near the
GaN bond length lie within 0.005 Å of the mean, whereas for
the corresponding peak in the alloy with x = 0.5, only 25.4%
of the bonds are within this distance from the mean. This indi-
cates a lower frequency of highly strained local environments
about Ga ions at lower InN content, which stems from the fact
that for lower InN content most Ga ions mainly have Ga ions
as their second nearest neighbors. A similar analysis holds for
the peak width near the unstrained InN bond length. We will
discuss consequences of the local strain on the piezoelectric
properties in more detail below for a QW wherein even larger
strains feature.

We may gain further insight into the impact of local fluc-
tuations in the strain by finding the local interatomic potential
energy at each atomic site. To do this, we evaluate the “two-
body-energy per atom:” at a given site in the relaxed structure,
we sum the two-body interaction energies [given by Eq. (2)]
of the ion with its four nearest neighbors and divide by 2 (in
ZB, the bonds and ions are in 2-1 correspondence, i.e., there
are “two bonds to every ion”). We elect to omit the three-body
energy as its inclusion is more difficult and is expected to
yield no new information. Figure 7 depicts the distribution of
“atomic two-body energies” for the same two compositions as
in Fig. 6, namely, 10% and 50% InN content in InGaN. Five
peaks can be seen in the figure—one to each of the possible
nearest-neighbor configurations (N surrounded by four Ga; by
three Ga and one In, etc.). Of course, Ga surrounded by four
N is equivalent to N surrounded by four Ga, so such a case is
included in the leftmost peak; the analog for In. The two-body
energies of the unperturbed configurations are indicated by
dashed vertical lines (the ideal, unperturbed energy is com-
puted from ideal bond lengths). It can be seen that each peak is
shifted above its ideal energy by local strain. Furthermore, we
observe that reducing the InN content lowers the energies of
the “majority Ga sites” (i.e., the two leftmost red peaks), while
raising those of the “majority In sites” and reducing the peak
widths. This is in accordance with what was found earlier,
giving rise in the case of 10% InN to the picture of a mostly
strain-free GaN matrix embedded with In sites featuring high
strain energies.
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FIG. 7. The two-body energy per ion in the case of 50% (blue)
and 10% (red) InN. The vertical lines mark the ideal energy for each
nearest-neighbor configuration. Note that the leftmost red peak is
actually 6.5 times larger than displayed here.

One might like to mimic the structural properties of InGaN
when grown epitaxially on ZB GaN whereby the InGaN is
strained to have the same lattice spacing as the GaN substrate
along the x and y directions [(001) plane]. This scenario may
be approximated in simulation by constraining the in-plane
supercell lattice vectors to have length 11×aGaN

0 throughout
relaxation and force all three lattice vectors to remain orthog-
onal. The cell is free to relax along the z direction, and all
ions [save that at (0,0,0)] are allowed to relax internally. The
resulting distributions are displayed in Fig. 8 (both distribu-
tions correspond to the same 50% InN random configuration
from Fig. 6). The interpretation of these graphs is analogous to
above. Note that, aside from the different areas bounded by the
peaks, the effect of straining to the substrate is similar to that
of lowering the InN content, in that the peak positions undergo
similar changes. In particular, the average local strains asso-
ciated to the GaN and InN peaks in the strained distribution
are 0.092% and −2.186%, respectively. It is interesting that
straining to the substrate forces the GaN peak to be almost
symmetric about bGaN

0 so that about half of the Ga-N bonds
are compressively strained.

Having discussed the impact of the alloy fluctuations on
local strain effects, we aim now to study the consequences of
these perturbations for local electrostatic built-in fields. The
results of this analysis are presented in the following section.

C. InGaN/GaN quantum well

We next study the effects of random alloy fluctuations
inside an InGaN QW on local strain, and finally the local
piezoelectric potential, using the method outlined in Sec. II B
and the Appendix. The supercell measures 7 unit cells along
the two in-plane directions and 27 along the [001] direction,
which is the growth direction of the QW. The cell con-
tains 10 584 ions. After relaxation, the supercell measures
≈3.14×3.14×12.2 nm3. Here again, in order to simulate
straining to a GaN substrate, the in-plane lattice vectors are
constrained to the corresponding GaN lengths, and the lattice
vectors are kept orthogonal. The QW width is approximately
2.32 nm. Since we seek first insights into how local alloy and
strain fluctuations impact the local piezoelectric potential, the
system size chosen should be sufficient for our purposes. The
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FIG. 8. The bond length and two-body energy distributions with and without straining to the substrate (both with 50% InN). The blue
peaks are, thus, the same in this figure as in Figs. 6 and 7. The vertical lines are described in the main text and Fig. 7.

QW InN content is 15%, which is an experimentally viable
[29] InN content; the remainder of the supercell is pure GaN.
As before, the random In ion distribution is achieved using a
random number generator.

We first extract strain profiles of the relaxed QW. Figure 9
shows the on-diagonal components of the strain tensor εii

as functions of the z coordinate along the growth direction
([001] direction). In Fig. 9(a), an average is taken over each
horizontal ionic plane. After relaxation, most ions will have
migrated from their initial planes—however, this migration
is very small, so ions which start in the same plane finish
on approximately the plane which is at the average of their
final z coordinates. In continuum-elasticity theory the strain
tensor components εxx, εyy, and εzz for growth along the [001]
direction/z axis are given by [84]

εxx = εyy and εzz = −2C12

C11
εxx, (12)

which is on average consistent with our data. Using the bow-
ing parameters given in Sec. III B for the elastic constants of
bulk InGaN, the ratio 2C12/C11 can be estimated at 15% InN
as ∼1.11. Assuming this value, Fig. 9(a) approximately obeys
Eq. (12): (i) The compressive in-plane strains are approxi-
mately equal, and (ii) εzz is slightly larger than −εxx. However,
although the relations between the average strain components
in Fig. 9(a) are predicted by Eq. (12), a continuum approach
cannot give any information about the local profiles of these

components. As Fig. 9(a) shows, the different average strain
tensor components undergo rapid random fluctuations inside
the QW. Figure 9(b) depicts the strain along a single line
scan (i.e., with x and y constants). A standard continuum
method will not reproduce such a profile since it neglects alloy
fluctuations; there is no obvious simple relation among the
three components. Note also the magnitudes of the local strain
fluctuations with (for example) εyy undergoing a change of
∼3% over about 5 Å at one point. At a number of locations in
the well (not depicted), we record local strains of �8%. These
strains can give rise to very large local electrostatic fields as
we will see below.

Figure 10 shows a contour plot of the built-in piezoelectric
potential in one x-z plane in the QW. All calculations have
been performed employing a static permittivity εD = 9.86εD

0
throughout the supercell, where εD

0 is the vacuum permittivity
using a linear interpolation between InN and GaN values
given in Ref. [85]. The plane (for which y ≈ 17 Å) contains
only cations, but contour plots for other planes (anionic and
cationic) are qualitatively similar. The most salient feature of
the plot is the magnitude of local fluctuations of the piezo-
electric potential φ. In a continuum picture, there would be
no built-in potential at all, given that shear strains in the
case of a QW grown along the [001] direction are zero. Our
atomistic results are, thus, in stark contrast with such a picture,
revealing a rapidly varying potential landscape. These poten-
tial variations give rise to strong electric fields—for example,
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xx
yy
zz

z (Å)
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FIG. 9. (a) depicts the on-diagonal strain components εii, averaged over horizontal atomic planes as functions of the z coordinate along the
[001] direction, whereas (b) shows the components along a single line through the QW. The dashed lines indicate the approximate locations of
the interfaces of the well.
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FIG. 10. Contour plot of the built-in piezoelectric potential on
a single x-z plane in an In0.15Ga0.85N/GaN QW. The dashed lines
indicate the approximate locations of the well’s interfaces.

at (x, z) = (12, 55) Å, the field is about 3×108 V m−1 in
norm. Furthermore, the potential energy in the nearby deep
minimum at (x, z) = (10, 53) Å for a carrier with charge ±e
is 61 meV in magnitude, which gives an indication of the
expected deformation of the conduction-/valence-band edge
near this point (which is an In site). Potential energies of
magnitudes up to 160 meV are recorded at other points in the
well. Finally, note that there is a nonzero potential in the GaN
buffer layers near where they meet the active layer.

We next briefly discuss consequences of these potential
fluctuations for the electronic properties of the well. Ideally
a full electronic structure calculation should be performed
to gain detailed insight into this question. However, this is
beyond the scope of the present paper, which aims rather to
establish an atomistic SW-based description of local strain
and piezoelectric potential, which is a prerequisite for atom-
istic electronic structure calculations. We may, however, glean
some insight by considering the results of previous works.
From Ref. [86], the effective masses of the heavy-hole (hh)
band in the [100] and [110] directions in ZB In0.15Ga0.85N
are (assuming a linear dependence on InN content) m[100]

hh =
0.814m0 and m[110]

hh = 1.382m0, where m0 is the free-electron
mass. These two directions lie on the growth plane of our
QW. The out-of-plane (along the [001] direction) mass is
m[001]

hh = 0.814m0. On the other hand, in WZ In0.15Ga0.85N,
the c-plane effective mass of the A band is m⊥

A = 0.299m0 and
the mass along the growth direction is m‖

A = 1.866m0. As we
can see, the effective masses are very comparable in magni-
tude. In general, the larger the effective mass of a carrier, the
more susceptible is the carrier to these potential fluctuations,
which, in turn, may lead to carrier localization effects (see, for
instance, Refs. [40,75]). This argument is further supported
by calculations in the literature on bulk ZB InGaN systems,
which find hole localization effects even though these studies
neglect local polarization field fluctuations [87]. Furthermore,
in Ref. [41], the authors observe fluctuations of the built-in
potential in a c-plane In0.15Ga0.85N/GaN QW that are on the
same order of magnitude as those seen here. That work con-
siders wells with and without well-width fluctuations, but in
all cases reports strong in-plane localization of holes, which is
attributed to random-alloy effects. Hence, we may expect that

the in-plane hole effective masses in the system considered
here are sufficient to cause them to localize in the presence of
the fluctuations observed. By analogy to WZ-based systems,
we conclude that such localization should have a strong ef-
fect on radiative recombination rates in devices utilizing ZB
InGaN/GaN QWs.

Turning to electrons, it has been observed in the litera-
ture that the ground-state charge densities are significantly
perturbed by random potential fluctuations [41] in c-plane
InGaN QWs. Furthermore, the electron effective masses in ZB
and WZ are almost equal [86]: mZB

e = 0.172m0 and mWZ
e =

0.181m0 (where we have used an isotropic approximation for
WZ since mWZ,⊥

e and mWZ,‖
e are very similar). Electrons are,

therefore, likely to respond similarly in both systems to local
potential variations (this has also been reflected by previous
literature results on bulk ZB InGaN systems [87]). In general,
then, we can expect that the optoelectronic properties of ZB
InGaN/GaN QWs are strongly affected by local alloy fluctu-
ations and that these effects (which have not in the past been
considered in such wells) must be taken into account in order
to model and understand these systems correctly so that the
ZB III-nitrides may be exploited in novel devices to the fullest
extent possible.

IV. CONCLUSION

In conclusion, we have presented an atomistic theoreti-
cal study of local strain and piezoelectric potential effects
in bulk zinc-blende InGaN and an InGaN/GaN QW using
a Stillinger-Weber potential. The here-developed local po-
larization model is general and can be used in conjunction
with any semiempirical model that targets strain effects on
an atomistic level. Building on this framework, we have
demonstrated that local alloy fluctuations and the connected
fluctuations in the strain field can lead to significant local
strain-dependent piezoelectric potentials in zinc-blende In-
GaN/GaN QWs. Continuum-based models previously used in
the literature overlook these effects, but our results give strong
evidence that they should have a large impact on the electronic
structure and ultimately the performance of devices utilizing
such wells.

Additionally, we have shown that our developed Stillinger-
Weber potential predicts using our here-established parameter
sets, Kleinman parameter values for the zinc-blende III-
nitrides that are in very good agreement with hybrid functional
DFT literature data; the value for InN agrees almost perfectly
with ab initio data (deviation = −1.5%), and that for GaN is
in reasonably good agreement (+12.8%). Moreover, we find
an almost perfect linear variation of the lattice constant of
InxGa1−xN alloys with InN content x over the full composition
range, in agreement with literature experimental [33] and DFT
[47,82] data. This also acts as compelling evidence that the de-
veloped Stillinger-Weber model reproduces ternary material
parameters, without being fitted to these quantities. Follow-
ing on from this, we predict bowing parameters of b11 =
35.64 GPa and b12 = 0.68 GPa for the x dependence of the
elastic constants C11 and C12, respectively. This information
may now serve as input for continuum-based models, which
require information about the composition dependence of in-
volved material parameters. Furthermore, our analysis of bond
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lengths and two-body energies per ion in bulk (freestanding)
InGaN gives insight into the magnitude of local strain fields
in this alloy; in particular, we find that in low-InN-content
InGaN (∼10%), the GaN-rich areas are almost strain-free on
average, whereas In sites suffer large local strains of ∼2%.

Finally, our analysis of a ZB In0.15Ga0.85N/GaN QW
demonstrates the magnitude and importance of the local
strain field and associated piezoelectric potential in such sys-
tems. Local strain values of �8% are observed at a number
of lattice sites, and, in general, the strain field varies very
rapidly over the scale of a few angstroms and cannot be
accounted for using standard continuum models. The strain-
induced piezoelectric potential also fluctuates strongly on
small length scales, giving rise to local electric fields of
up to ∼108 V m−1, and potential-energy minima/maxima of
depth/height ∼100 meV are observed at a number of points.
By comparing the magnitudes of the potential fluctuations
with those seen in wurtzite polar QWs [41] with the same InN
content wherein hole localization and random alloy effects
play key roles as well as considering the carrier effective
masses, we conclude that these hitherto uninvestigated effects
have a considerable impact on the optoelectronic properties of
zinc-blende InGaN/GaN quantum wells. Overall, our results
support (strong) carrier localization effects in ZB InGaN al-
loys and quantum wells, which will be investigated in further
detail in future studies.
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APPENDIX: MODIFIED FINITE-DIFFERENCE SOLUTION
TO POISSON’S EQUATION

We use the method of finite differences to approximate
derivatives numerically in this paper. However, whereas in
“conventional” finite-difference problems the function of in-
terest is known/to be found on a regular grid, we deal here
with a ZB grid that has undergone relaxation due to random
composition fluctuations, and so the method must be modi-
fied. Consider a function f (r) defined on the grid. Starting
at a fixed grid point r0, which may be a cation or nitrogen
site, we suppose that its four nearest neighbors are at positions
r1, . . . , r4 relative to r0 in the ZB lattice. One may consider
the derivative ∂ f

∂x without loss of generality (the other two are

analogous). For the strain situations relevant for the present
paper, it can be assumed that two of the relative nearest-
neighbor positions (say r1 and r3) in the tetrahedron will
have a positive x coordinate and the other two negative. We
then average f at r1, r3 and at r2, r4, and form the symmetric
difference quotient,

∂ f

∂x
(r0) = [ f (r1) + f (r3)]/2 − [ f (r2) + f (r4)]/2

(x1 + x3)/2 − (x2 + x4)/2
. (A1)

Note, the equality is only approximate, but the equality
sign is used for typographical simplicity. The expression for
the divergence term in Eq. (6) follows immediately. Equa-
tion (7), however, involves second derivatives, so we must
apply Eq. (A1) twice. It will prove convenient to rewrite
Eq. (A1), with f = φ as

∂φ

∂x
(r0) =

∑4
i=1 sgn(xi − x0)φ(ri )∑4

i=1 |xi − x0|
, (A2)

where sgn is the signum function. Then, with ∂xφ = ∂φ

∂x , we
have [

∂

∂x
(∂xφ)

]
(r0) =

∑4
i=1 sgn(xi − x0)∂xφ(ri )∑4

i=1 |xi − x0|
. (A3)

The derivatives ∂xφ(ri ) are then evaluated using Eq. (A2).
After some algebra, we get

∇2φ(r0) =
4∑

i, j=1

a j
i φ

(
r j

i

) = −ρ(r0)

εD
, (A4)

where r j
i is the jth nearest neighbor of ri (so a second nearest

neighbor of r0) and

a j
i =

∑
ξ=x,y,z

sgn(ξi − ξ0)sgn
(
ξ

j
i − ξi

)
(∑4

k=1 |ξk − ξ0|
)(∑4

l=1

∣∣ξ l
i − ξi

∣∣) . (A5)

Here, the variable ξ runs over each of the Cartesian coordi-
nates. There are n equations (A4)—one for each r0—giving
rise to a matrix equation for the values of φ at the n ionic sites.
The matrix is singular (corresponding to the nonuniqueness
of the electrostatic potential) and sparse, so an appropriate
solver must be used. If its rows are ordered so that the first n/2
correspond to cations and the rest correspond to nitrogen ions,
then it is block diagonal so that each block may be considered
separately.
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[58] M. Łopuszyński and J. A. Majewski, J. Appl. Phys. 111, 033502

(2012).
[59] J. Tersoff, Phys. Rev. B 37, 6991 (1988).
[60] J. D. Gale, J. Chem. Soc. Faraday Trans. 93, 629 (1997).
[61] J. D. Gale and A. L. Rohl, Mol. Simul. 29, 291 (2003).
[62] D. S. P. Tanner, A study of the elastic and electronic properties

of III-nitride semiconductors, Ph.D. thesis, University College
Cork, 2017.

[63] M. A. Caro, S. Schulz, and E. P. O’Reilly, Phys. Rev. B 86,
014117 (2012).

[64] S. V. Novikov, N. Zainal, A. V. Akimov, C. R. Staddon, A. J.
Kent, and C. T. Foxon, J. Vac. Sci. Technol. B 28, C3B1 (2010).

165201-12

https://doi.org/10.1038/nmat1726
https://doi.org/10.1063/1.116981
https://doi.org/10.1143/JJAP.36.L382
https://doi.org/10.1016/S0921-5107(98)00359-6
https://doi.org/10.1002/(SICI)1521-3951(199911)216:1<427::AID-PSSB427>3.0.CO;2-K
https://doi.org/10.1143/JJAP.39.413
https://doi.org/10.1143/APEX.2.082101
https://doi.org/10.1063/1.3078818
https://doi.org/10.1002/pssb.201046422
https://doi.org/10.1063/1.4719100
https://doi.org/10.1063/1.3658803
https://doi.org/10.1038/35022529
https://doi.org/10.1103/PhysRevB.92.235419
https://doi.org/10.1038/s41598-019-45218-8
https://doi.org/10.1039/D0NR03748F
https://doi.org/10.1063/5.0012131
https://doi.org/10.1088/0256-307X/27/4/044208
https://doi.org/10.1063/1.2475564
https://doi.org/10.1186/1556-276X-7-492
https://doi.org/10.1063/1.1600519
https://doi.org/10.1063/1.2422913
https://doi.org/10.1016/j.jcrysgro.2015.02.033
https://doi.org/10.1103/PhysRevLett.96.187602
https://doi.org/10.1103/PhysRevB.84.195207
https://doi.org/10.1063/1.5002104
https://doi.org/10.1039/C6RA07540A
https://doi.org/10.1103/PhysRevB.91.035439
https://doi.org/10.1103/PhysRevB.83.115321
https://doi.org/10.1103/PhysRevApplied.10.034027
https://doi.org/10.1364/PRJ.5.0000A7
https://doi.org/10.1103/PhysRevB.80.115201
https://doi.org/10.1103/PhysRevB.82.045112
https://doi.org/10.1063/1.2364450
https://doi.org/10.1063/1.3291055
https://doi.org/10.1016/j.optcom.2004.04.012
https://doi.org/10.1016/S0038-1098(98)00007-6
https://doi.org/10.1016/j.mejo.2007.07.023
https://doi.org/10.1103/PhysRevB.91.075203
https://doi.org/10.1103/PhysRevB.80.165405
https://doi.org/10.1103/PhysRev.34.57
https://doi.org/10.1103/PhysRev.145.637
https://doi.org/10.1103/PhysRevB.1.4005
https://doi.org/10.1103/PhysRevB.29.6443
https://doi.org/10.1103/PhysRevB.31.5262
https://doi.org/10.1063/1.3678002
https://doi.org/10.1103/PhysRevB.37.6991
https://doi.org/10.1039/a606455h
https://doi.org/10.1080/0892702031000104887
https://doi.org/10.1103/PhysRevB.86.014117
https://doi.org/10.1116/1.3276426


ATOMISTIC ANALYSIS OF PIEZOELECTRIC POTENTIAL … PHYSICAL REVIEW B 103, 165201 (2021)

[65] J. H. Edgar, Properties of Group III Nitrides (IEE, London, UK,
1994).

[66] H. Lei, X. J. Jiang, J. Chen, I. Belabbas, P. Ruterana, and G.
Nouet, Phys. Status Solidi C 4, 2449 (2007).

[67] H. P. Lei, J. Chen, S. Petit, P. Ruterana, X. Y. Jiang, and G.
Nouet, Superlatt. Microstruct. 40, 464 (2006).

[68] A. K. Kandalam, R. Pandey, M. A. Blanco, A. Costales, J. M.
Recio, and J. M. Newsam, J. Phys. Chem. B 104, 4361 (2000).

[69] S. K. Nayak, S. N. Khanna, and P. Jena, Phys. Rev. B 57, 3787
(1998).

[70] J. L. Martins and A. Zunger, Phys. Rev. B 30, 6217(R) (1984).
[71] K. Kim, W. R. L. Lambrecht, and B. Segall, Phys. Rev. B 53,

16310 (1996).
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