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Abstract

There has been significant recent interest in local electricity trading platforms, and particularly in the application of
distributed ledger and blockchain technology for distributed, or peer-to-peer energy trading in local energy communit-
ies. Several projects worldwide have demonstrated this concept on a small scale in Low Voltage (LV) distribution
networks and microgrids. However, previous work in this area has not sufficiently addressed the potential impacts of
peer-to-peer energy trading and other local electricity trading mechanisms on the control, operation and planning of
the electricity distribution networks. Accordingly, this paper presents a methodology for the co-simulation of power
distribution networks and local peer-to-peer energy trading platforms. The distribution system simulator is inter-
faced with a peer-to-peer energy trading platform, which employs a blockchain-based distributed double auction trade
mechanism. The presented co-simulation approach is demonstrated using a case study of typical European suburban
distribution network. It is demonstrated in the paper that this approach can be used to analyse the impacts of peer-to-
peer energy trading on network operational performance. The analysis presented in the paper suggests that a moderate
level of peer-to-peer trading does not have significant impacts on network operational performance.

Keywords: distribution networks, co-simulation, peer-to-peer energy trading, distributed ledger technology,
blockchain, microgrids, network planning

1. Introduction

A number of distributed and local electrical energy
trading mechanisms have been proposed in the literat-
ure. These energy trading mechanisms are designed to
enable a more decentralized operation of the power sys-
tem, better utilisation of grid assets, and improved integ-
ration of distributed energy resources via local energy
balancing [1, 2, 3, 4, 5]. In particular, the application of
distributed ledger or “blockchain” technology for peer-
to-peer energy trading in microgrids and local energy
communities has received significant attention [6, 7, 8,
9, 10]. Several projects worldwide have demonstrated
the concept of blockchain-enabled peer-to-peer energy
trading on a small-scale in Low Voltage (LV) distribu-
tion networks and microgrids [11, 12, 13]. A systematic
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review of blockchain and distributed ledger technology
in the power and energy sector and its associated applic-
ations, challenges and opportunities is presented in [14].

However, it is currently unclear if such electricity
local trading mechanisms are suitable for wide-scale
implementation and what impacts these would have on
the control, operation and planning of electricity distri-
bution systems, if implemented on a large scale.

This paper provides a framework for the co-
simulation of realistic, three-phase unbalanced distri-
bution networks and decentralised electricity trading
mechanisms. There has been a significant research in-
terest in decentralised electricity trading in the last sev-
eral years; however, most work in this area to date has
focused on energy trading mechanisms in microgrids, or
on energy-sharing between multiple microgrids. There
is a gap in the literature with regard to a methodology
for analysing the possible impacts of local energy trad-
ing on utility-owned distribution network infrastructure.
This paper addresses this gap by presenting a methodo-
logy and software tool for the co-simulation of electri-
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city distribution networks and a blockchain-based local
energy trading platform. To the authors’ knowledge,
this is the first paper that provides a framework for ana-
lysing the impacts of local energy trading on MV and
LV distribution network operational performance, ex-
amining the potential impacts on several power quality
indices, including three-phase voltage fluctuations and
imbalances. This is achieved by detailed, three-phase
modelling and simulation of typical European LV elec-
tricity distribution networks using the open-source elec-
tricity network simulator OpenDSS [15]. These dis-
tribution network models are integrated with the P2P
energy trading platform. In this paper, a blockchain-
assisted distributed double auction trading platform is
used to facilitate P2P trading between individual users
of the LV network. This paper develops a co-simulation
framework designed to investigate the potential net-
work impacts from various alternative trading mech-
anisms, including blockchain-based P2P energy trad-
ing platforms. The presented co-simulation approach
is demonstrated using the IEEE European Low Voltage
Test Feeder [16], which represents a typical European
suburban distribution network configuration.

The paper is structured as follows: Section 2 dis-
cusses the previous work on this topic. Section 3
provides an overview of the co-simulation approach
used in this paper, and describes the blockchain-based
double auction approach used to simulate P2P energy
trading. Section 4 describes the case study, Section 5
gives the results of the distribution network simulations,
and Section 6 concludes.

2. Literature Review

2.1. Current State of the Art in Peer to Peer Energy
Trading Platforms

P2P energy trading has been proposed as a means
of efficiently coordinating large numbers of highly-
distributed energy resources in power systems [17, 18].
Several authors have proposed market designs and in-
centive for energy trading between small-scale elec-
tricity producers and consumers in distribution net-
works [19, 20] and in microgrids [21].

The participation of large numbers of distributed
users with flexible demands in the electricity market is a
related concept, which is discussed in [5, 22, 23]. Gen-
erally, time-of-use electricity pricing has been used as a
means of incentivising demand response in an efficient
manner [24]. One of the issues associated with this is
the possibility of reducing the load diversity factor and
creating new demand peaks if all users take advantage

of the same low price period [22]. Alternative electri-
city pricing schemes designed to mitigate against this
problem and improve distribution network utilisation
have been investigated in [5]. The transactive energy
approach outlined in [1, 2] aims to provide a network
environment for distributed energy nodes as opposed
to the traditional hierarchical grid structure, and recent
years have seen significant efforts towards standardisa-
tion of these techniques and ensuring wide-scale inter-
operability.

An approach for carrying out P2P energy trades
between buyer and seller agents using an iterative
double auction mechanism is proposed in [25]. This ap-
proach was implemented using blockchain algorithms
in [7]. This paper investigates methods for coalition
formation amongst peers and the results in [7] suggest
that this approach is effective in terms of maximizing
social welfare, with acceptable convergence and com-
putational complexity. A consortium-based approach
to peer-to-peer electricity trading system was proposed
in [9]. This approach was demonstrated using case
studies featuring electricity trading between Electric
Vehicles (EVs).

Previous work has also studied the interactions
among interconnected autonomous microgrids [26]. A
joint energy trading and scheduling strategy for these
was developed in [27]. A transactive energy trading
framework for distribution system operation, dealing
with both economic issues in energy trading and the
technical issues is proposed in [28], where the trans-
active energy trading problem is solved based on Al-
ternating Direction Method of Multipliers (ADMM). A
review of game theoretic approaches as they apply to
local energy trading is given in [29].

A P2P market structure based on a Multi-Bilateral
Economic Dispatch (MBED) formulation is introduced
in [30], allowing for multi-bilateral trading with product
differentiation, for instance based on consumer pref-
erences. The issue of prosumers’ individual prefer-
ences for the source/destination of the energy they con-
sume/produce is also explored in [31]. An industrial
application of P2P energy trading, with a machine-to-
machine based implementation of blockchain energy
trading between chemical plants is discussed in [10].
The role of battery flexibility in local electricity markets
is dealt with in [32]. A multi-agent-based simulation
framework for evaluating the performance of different
local energy trading mechanisms was presented in [33].
The security and privacy implications of local electricity
markets are discussed in [3] and [4].
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Figure 1: Overview of approach for co-simulation of electricity Distribution Network (DN) and peer-to-peer (P2P) energy trading platform.

2.2. Peer to Peer Project Trials and Demonstrations

A number of P2P energy trading trials and demon-
stration projects have been carried out to date (e.g. [11,
12, 13, 34]). An exhaustive list of recent projects in
this area is provided in [14]. However, the scope of
such projects is typically limited by regional and na-
tional electricity grid and market regulations [35]. In
all cases studied, the aim has been to develop scalable
P2P energy trading solutions, suitable for large-scale
implementation. However, most trials in this area to
date have focused on demonstrating P2P energy trad-
ing in small localised areas served under microgrid, or
“private wire” arrangements in order to avoid regulatory
problems.

The anticipated benefits of P2P energy trading in-
clude better utilisation of power network assets and re-
duction of energy losses due to shorter transmission dis-
tances (e.g. energy is consumed closer to its source
compared to current power system arrangements) [14,
36]. At the distribution network level, energy balancing
can be achieved locally where sufficient distributed en-
ergy resources are available. This reduces the need for
grid import and upstream network asset investment.

However, the impacts of large-scale adoption of P2P
energy trading on distribution network operation and
planning are very unclear. To the authors’ knowledge,
the co-simulation of local P2P energy trading markets
and electricity distribution networks has not been invest-
igated in detail in the literature to date.

3. Methodology

3.1. Overview of Co-simulation approach
In order for P2P energy trading to gain acceptance on

a larger scale, it will be necessary for network operators
to have the capability to model its impacts on the dis-
tribution networks, and the potential effects on network
performance and reliability. The OpenDSS distribution
network simulator is selected for this purpose since it is
an open-source tool designed for modelling three-phase
LV networks in detail and also since it is capable of in-
teracting with the Python or MatLab software packages
via an in-built Component Object Model (COM) inter-
face. Python or MatLab can then be used to manage data
input/output and automate electricity network simula-
tion runs. An overview of the co-simulation approach
used in this paper is provided in Figure 1.

The input data includes “User data”, which com-
prises of the demand profiles of each user in the LV
network, along with EV demand profiles and/or photo-
voltaic (PV) generation profiles, as appropriate. The
“DN data” provides the OpenDSS simulator with the
necessary information of the physical structure of the
distribution network, including the network layout and
the characteristics of power lines, transformers, and net-
work control elements, such as voltage regulators. The
“P2P energy trading simulator” implements the distrib-
uted double auction trading mechanism described in
Section 3.2 of this paper. The “DN simulator” car-
ries out 3-phase time series simulations of the electri-
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city distribution network (DN) using OpenDSS [15].
Data is exchanged between each of these elements us-
ing comma-separated value (.csv) files. Finally, Python
or MatLab may be used to manage data input/output and
provide the post-processing and visualisation of the out-
puts from the network simulations.

MatLab is used to provide an interface between the
Python energy trading simulator, OpenDSS, which is
capable of quickly solving complex three-phase unbal-
anced networks. Initially, attempts were made to incor-
porate all of the relevant electrical network constraints
in the same Python simulation code that implements the
energy trading algorithms. However, this was found to
be infeasible, due to the complexity involved in model-
ling unbalanced three-phase distribution networks real-
istically, and therefore a dedicated DN simulator was
preferred. In this paper, MatLab was also used to pro-
duce the results shown in Section 5. The co-simulation
approach outlined in Fig. 1 also has the advantage that
the network model in OpenDSS can be replaced with a
different distribution network without re-writing the Py-
thon code for energy trading. It is also possible to im-
plement alternative local energy trading mechanisms in
Python without needing to make changes in OpenDSS.
The proposed co-simulation approach enables full end-
to-end simulation of P2P energy trading in LV distri-
bution networks, considering all relevant electrical net-
work constraints (voltages, network branch loading lim-
its, reliability and power quality requirements, and fault
levels).

3.2. Overview of Peer to Peer Energy Trading Platform

Figure 2 shows the workflow of a peer in the block-
chain P2P network in the blockchain energy trading
simulator. It has three parallel processes. Process 1
tries to form a new block from unconfirmed transac-
tions which can be interrupted by Process 2 if it receives
a new valid block. Process 3 implements activities of
each peer as they participate in energy trading. It creates
transactions according to market model. For example,
such transactions may represent the bid of an auction or
a solution to a double auction. The simulator uses asyn-
chronous event simulation in Python and agent based
modelling.

A double auction [8, 25] is used as a trade model for
P2P energy trading in this paper. In double auction,
buyers (who need energy) and sellers (who have excess
energy) submit their reservation price (and amount of
energy to buy or sell) to an auctioneer. A buyer’s reser-
vation price is the maximum price it will pay for energy
and a seller’s reservation price is the minimum price at

which the seller will sell its energy. The auctioneer de-
cides on the price for energy exchange and subsets of
the buyers and sellers who will trade. McAfee’s mech-
anism [37] is used to determine the winner (who trades
energy and at what price) of a double auction.

3.3. Centralised versus Decentralised Double Auction
Mechanisms

There are several problems with a centralized double
auction for P2P energy trade as follows:

• Robustness: Centralized auction is not robust as
failure of the auctioneer would fail the entire trade
operation.

• Trust in the auctioneer: The auctioneer may col-
lude with a few peers to alter the result of the auc-
tion. Hence peers must evaluate their trust on the
auctioneer.

• Local price: Price for energy exchange may be
determined by peers who are long distance apart
from other peers. The approach in [37] is used to
determine winner of the double auction. Accord-
ing to this mechanism the price for energy trade is
determined by bids of a buyer and seller pair such
that (a) buyer’s bid more or equal to the seller’s bid
and (b) there is not other buyer-seller pair who sat-
isfies the first condition. In a large network, it may
happen that such a pair of buyer-seller peers are
situated at distant locations from other peers. Due
to long distance from other peers they may not en-
gage in energy trade. Hence such price should not
be used for energy transfer for the entire peer net-
work.

• Local exchange: Peers who are located at distant
locations from each other may trade energy, which
can cause energy losses due to long transmission
distances.

• Security: It is difficult to ensure security of in-
formation shared in peer to peer energy trade.
Also, such a trade platform is vulnerable to cyber
attacks.

The blockchain-based distributed double auction for
P2P energy trade proposed in [7] and [8] is used to mit-
igate these problems. The blockchain mechanism [38]
allows us to securely store transaction records between
two peers in a peer to peer network. Security of block-
chain maintained transaction record is guaranteed by
encryption and distributed consensus protocol. The
blockchain mechanism eliminates the requirement of a

4



Figure 2: Overview of Python-based blockchain energy trading simulator.

trusted third party to verify a transaction between two
parties. In the proposed distributed double auction, any
peer may act as the auctioneer and the blockchain mech-
anism ensures that each peer acts lawfully while it acts
as an auctioneer.

3.4. Peer to Peer Energy Trading Platform based on a
Distributed Double Auction Mechanism

It is assumed in this paper that some or all of the
peers are “prosumers”, defined as active energy cus-
tomers with flexible load and/or generation resources.
These local energy resources may comprise of control-
lable electrical demands (e.g. EV chargers, electric heat
pumps, smart appliances), on-site electricity generation,
or battery storage equipment. These local resources can
be controlled automatically in response to electricity
price signals using home or building energy manage-
ment systems. In the analysis presented in Sections 4
and 5, it is assumed that residential customer EV char-
ging schedules can be adjusted in response to price sig-
nals.

Figure 3 shows an overview of the proposed method
for P2P energy trading. It is summarised below as fol-
lows:

1. Houses equipped with local energy resources form
a blockchain peer to peer network for energy trade.
Houses in close proximity (w.r.t the energy distri-
bution lines) with each other become neighbours in
this peer to peer network.

Figure 3: A peer informs other peers about its energy supply/demand
requirement using transactions. Any peer can act as an auctioneer if
it receives multiple supply and demand transactions from other peers.
If a peer fails to solve a double auction then it forwards its unspent
transactions to another peer. If it succeeds to solve the double auction
then it sends appropriate tokens to the peers.

5



2. Energy surplus or deficiency information are en-
coded as blockchain transactions and a peer (a
house) sends such a transaction to a neighbour to
express its energy need. For example N1 sends the
transaction T1 to N2 to express that it has energy
surplus and N3 sends the transaction T3 to N2 to
express its energy deficiency.

3. Upon receiving enough energy requirement in-
formation from its neighbours a peer executes the
double auction winner determination algorithm.
For example, N2 executes such algorithm with in-
put transactions T1,T3,T ′5.

4. If a peer finds winner of such an auction then it cre-
ates appropriate transactions to reflect such winner.
For example, N2 finds that N3 and N5 should con-
sume energy and N1 should sell its excess energy.
It makes transactions T ′1,T ′′1 and T ′3 to reflect
this result.

5. If a peer fails to determine the winner of a double
auction then it will forward its unspent transactions
to a neighbour. Such a neighbour may have more
energy requirement information and may be able
to solve the double auction. For example, N4 re-
ceived the energy deficiency information from N5
as the transaction T5 but it could not solve the
double auction. Hence N4 forwards such inform-
ation to N3 as the transaction T ′5, who solves the
double auction.

Note that the outcome an auction only indicates how
much energy a peer should consume or contribute.
However, the actual energy consumption may be differ-
ent and it will be recorded as transaction with Require-
ment field 0. We propose to create smart contract for
payments.

Given the result of each auction, the peers can form
a smart contract among them. For example if the result
of the auction states that peer mi should sell x units of
energy at price y between time [t1, t2] and m j should buy
x units of energy at price y between time [t1, t2] then, the
smart contract will involve two parties mi and m j, it will
be funded by m j with crypto-currency of value x ∗ y.

This smart contract will be triggered by energy con-
sumption information from mi and m j and such informa-
tion will decide the actual payment. For example, say mi

only contributes x1 < x units of energy. Hence it will be
paid x1∗y tokens and (x− x1)∗y tokens will be sent back
to m j. Such a crypto-currency can be part of the block-
chain infrastructure for energy trade and peers must buy
these tokens with any other currency (i.e. AC or $). How-
ever, the tokens used for energy trade information and
auction are free as each peer is endowed with fixed num-

ber of tokens to express their future energy needs and
actual energy consumption every day at a fixed time.
Sidechains [39] can be used to implement this form of
payment for peer to peer energy trade. For a full details
of the double auction method used and its mathematical
formulation, the reader is referred to [7] and [8].

Finally, each peer calculates its own energy require-
ment using weather and historical energy supply de-
mand information. Intentional mismatch between the
announced energy requirement and the actual energy
consumption may affect the performance of any peer to
peer energy trade. The blockchain keeps secure records
of such information and any such malicious behaviour
can be identified. Hence the proposed solution is a de-
terrent of such malicious behaviour.

3.5. A Smart Contract Implementation of the Distrib-
uted Double Auction

The distributed double auction mentioned in the pre-
vious section can be implemented as smart contracts.
Figure 4 illustrates the sequence diagram of the smart
contract execution of the distributed double auction.
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Figure 4: Sequence diagram of smart contract based execution of the
distributed double auction.

The steps to implement smart contracts for the dis-
tributed double auction are as follows:
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1. The following steps are executed after every fixed
finite interval such as in every 5 minutes.

2. The geographical area covered under a peer to peer
network is divided into n number of localities. It is
assumed that peers in the same locality can trade
energy. The areas may overlap, i.e., a peer may be
part of multiple localities.

3. Next, n smart contracts are created in the block-
chain network. In this smart contract model, we
will assume that a government or regulatory au-
thority will create these smart contracts with suf-
ficient funding (i.e., Gas in Ethereum network) for
each smart contract. It will be assumed that these
smart contracts will be executed for at least the
fixed time interval defined in step 1.

4. During an interval, if a house X wants to trade it
will request a smart contract Mi if it can participate
in the execution of the smart contract. The smart
contract M will determine if X can join it. Such de-
cision will be determined by the distance between
the existing participants of M and X. For example,
if X is not in the same locality as the members of
M then X will not be allowed to participate in M.

5. After a peer receives approval from a smart con-
tract for its participation it sends Hash of its bid
using a Hashing algorithm (SHA256) to the smart
contract.

6. After a fixed fraction of the time interval, say after
1 minute of a 5 minute interval, participation in all
smart contracts will be ceased and the peers will be
asked to submit actual bids and corresponding cost
(both for buying and selling). The bid of each peer
should match the Hash it has sent in the previous
section.

7. Next, each smart contract will execute the al-
gorithm [37] to determine the winner of the auc-
tion.

8. Each smart contract will inform the outcome of
the auction to its participate and the participants
should act accordingly.

9. Next, energy will be traded for the remaining of the
time interval.

10. At the end of the time interval, data from smart
meters of the each peer will be fed into the smart
contracts to verify actual energy transfer among the
participants.

11. If the smart contract can verify that participants
have acted according to the solution of the auction
then, the smart contract will transfer funds from it
to the energy producers.

We observe the following in the above execution of
the distributed double auction:

1. The synergy between the blockchain transaction
settlements and electricity network operation is as-
sumed in the above execution of smart contracts
contracts. It should be noted that the blockchain
simulator presented in this paper can predict the
expected transaction confirmation time. The ap-
proach is designed so that the expected transaction
confirmation time and the time taken for market to
clear is typically less than the time step used in the
distribution network simulation (5 minutes in the
case study presented in this paper). This ensures
synergy between the execution time of the block-
chain energy trading and distribution network con-
trol centre state estimator, or distribution network
simulation.

2. Market clearing: The distributed double auction
described in this paper is one example of an energy
trade model. It is also possible to use any other
trade model, such as those described in [7]. The
distributed auction model proposed in the paper is
an efficient trade mode with the following proper-
ties:

(a) Convergence: The proposed distributed auc-
tion completes in finite time, i.e., the number
of times a house requests a smart contract for
its participation is finite [8]. Figure 5 shows
that the distributed auction completes within
finite time.

(b) Price difference: The differences among the
prices of energy at the smart contracts is
bounded by the maximum and the minimum
allowed bid for energy. Such price difference
can be even lower if the difference between
the maximum and the minimum bid becomes
low.

Full details of the trade efficiency of the proposed
distributed double auction are provided in [8].

3.6. Characteristics of the Blockchain Simulator
We characterize the blockchain simulator using

blockchain forks and blockchain throughput. The
blockchain simulator can be used to predict the per-
formance of a blockchain network to be built using a
number of the parameters of the actual blockchain to be
developed. These parameters are:

• Network Delay: This affects the performance of a
blockchain network, as the time needed to dissem-
inate transactions and blocks depends on the com-
munication delay in the blockchain network.

• Network size: Network size can affect the perform-
ance of the blockchain, since: (a) a larger diameter

7



[Number of auctions where a peer attempts to participate]

Size of peer to peer 

energy trading market

Figure 5: Convergence time of the distributed double auction [8].

of the blockchain network will require more time
to disseminate blockchain data among all of its
peers (b) the number of transactions to be created
in the blockchain will be high for a large network.

We will use these parameters to evaluate the perform-
ance of a simulated blockchain. We will investigate the
following characteristics of a blockchain:

• Blockchain Fork: A blockchain fork is a phe-
nomenon where the blockchain splits into multiple
blockchains. In a blockchain network, it may hap-
pen that more than one miner creates a new block
approximately at the same time. Due to this incid-
ent, part of the blockchain network will accept a
new block as the most recent block and reject an-
other block while remainder of the network will do
the opposite. Hence, the most recent block will
be different for parts of the network. Blockchain
forks are problematic as double-spending is pos-
sible with a forked blockchain. The principle of
blockchain consensus is designed to resolve block-
chain forks. For example, in a Proof of Work-based
consensus, the longest branch of a forked block-
chain is considered as the valid blockchain, and the
blocks in shorter branches of the forked blockchain

are rejected.

• Transaction confirmation time: The transaction
confirmation time of a blockchain transaction can
be calculated as the time it takes from creation of
the blockchain to the time when the transaction
is recorded into a new block. Due to the exist-
ence of forking phenomenon, confirmation time of
a blockchain can include the time it takes to create
a fixed number of new blocks who are child blocks
of the block that contains the transaction. Trans-
action confirmation time indicates the throughput
of a blockchain. Lower confirmation time results
in higher throughput, i.e., the blockchain can suc-
cessfully record a large number of transactions.

The blockchain simulator used in this paper can be
applied to determine the number of expected blockchain
forks from the expected network delay. Figure 6 shows
how the blockchain simulator can be used to predict the
number of forks. We simulate a blockchain network
with 200 peers and 40 miners where the diameter of the
network is 5. Figure 6 shows the number of forks as
network delay is increased. It shows that the number of
forks increases as network delay is increased. This res-
ult also supports the validity of the proposed blockchain
simulator. As the network delay increases the probab-
ility that more than one miner will create a new block
at the same time also increases. This is because, after
creating a new block, a miner publishes it to the net-
work and another miner restarts its mining process after
receiving a new block. With a large network delay, the
time to reach all miners will be increased and it will be
less likely that a miner will restart its mining process.

Finally, it was demonstrated though simulation that
the blockchain simulator can be used to predict the ex-
pected throughput of the blockchain and the expected
transaction confirmation time as the network delay is in-
creased. The first parameter that will impact the trans-
action confirmation time is the size of the network. It
was found that the predicted transaction confirmation
time decreases the number of new transactions created
per second is decreased. In these simulations of block-
chain we used proof of work based consensus principle
in a blockchain network with 200 nodes, 40 miners and
network diameter 5. In Table 1, it is shown that transac-
tion confirmation time is increased as network delay is
increased.

In this paper, a full analysis of the economic feasib-
ility of the proposed blockchain implementation is not
provided. The economic feasibility will be determined
by the cost to operate the blockchain network and the
cost to execute smart contracts. The pricing algorithm
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Figure 6: Number of blockchain forks as the network delay increases.

Table 1: Expected transaction confirmation time as network delay is
increased.

Communication delay Transaction confirmation time
[ms] [s]

1 97

2 104

3 100

4 102

5 118

6 128

7 148

8 167

9 177

10 184

of smart contracts is beyond the scope of this paper.
However, the blockchain simulator can predict the per-
formance of a blockchain with respect to the proposed
investment in the blockchain network (number of nodes
and bandwidth). Therefore the blockchain simulator
can be used to estimate the cost of operating a block-
chain network for peer to peer energy trading, and can
be applied in determining the economic feasibility of a
blockchain-based peer to peer energy trading.

Proposed network size, diameter, expected 

network delay

Characterize number of forks and expected 

through put

Execute Blockchain Simulation

Satisfactory 

Performance?

Revise 

proposal for 

blockchain 

network

Proceed towards actual 

blockchain implementation

Figure 7: A workflow to determine the blockchain to be implemented.

3.7. A Method for Determining an Appropriate Block-
chain

In this section, we present the workflow to determine
an appropriate blockchain using our blockchain simu-
lator. The steps (shown in Figure 7) are as follows:

• First, fix properties of a blockchain network to be
built in terms of size of the network and network
delay.

• These parameters are used as input to the block-
chain simulator.

• Next, determine the expected number of forks and
expected throughput of the network using the res-
ults from the execution of the simulation.
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• If the computed performance of the simulated
blockchain is not satisfactory, revise the pro-
posed blockchain network properties, i.e., in-
crease/decrease blockchain network size and com-
munication bandwidth and repeat these steps
again.

4. Case Study and Distribution Network Simulation
Input Data

The distribution network impacts of local P2P en-
ergy trading schemes are investigated using a case study
carried out on the IEEE European Low Voltage Test
Feeder [16]. This test network represents a typical
three-phase European LV suburban residential system,
and includes residential demand data based on actual
measurements from residential LV customers in a dis-
tribution network in Northern England. The distribu-
tion network layout and a sample of the demand data
for each residential user connected to the network are
shown in Figure 8.

The voltage at the head of the feeder (MV/LV substa-
tion) is set at a fixed value (1.0 p.u.) and there is no act-
ive voltage regulation in the LV secondary network [40].
The network consists of 905 line pairs modelled as serial
impedances (consisting of resistance and reactance val-
ues) between 906 nodes. The network has a total of 55
single-phase (230 V nominal phase-to-neutral voltage)
residential users, which are nearly equally distributed to
three phases of the feeder (21 users on phase A, 19 users
on phase B and 15 users on phase C). The network simu-
lation calculates the following quantities at five-minute
intervals: voltages at each customer connection point;
active and reactive power flow in each network branch;
active power losses in each network branch; number
of low voltage violations (<0.9 p.u.); number of high
voltage violations (>1.1 p.u.); voltage imbalance across
the three phases.

In order to examine a future network scenario with
a very high penetration of distributed energy resources,
and to create opportunities for P2P trading, PV gener-
ation and EV charging demands were added at all 55
customer connection points in the IEEE European LV
test network. Residential PV units are modelled as act-
ive power injections at each load point in the LV net-
work. The PV production data is based on actual meas-
urements of rooftop PV outputs at residential homes
recorded by domestic smart meters in [41]. The PV
units have a capacities ranging from 1.6 kW to 4 kW,
use maximum power point tracking and operate at fixed
unity power factor. The EV charging data used in this
paper is taken from actual vehicle charging data from

the same study, where each EV charger is rated at 3 kW.
Table 2 lists the installed PV and EV capacity. Figures 9
and 10 show samples of the PV injections and EV char-
ging demands taken from [41].

Table 2: Installed PV and EV units and rated capacities.

PV panels EV chargers
Rated power of each unit [kW] 1.6-4 3

Number of nodes installed 55 55

Total installed capacity [kW] 180 165

In the distribution network simulation, a five minute
time step was used in order to allow analysis of the
changes in network power flows and voltages over the
course of one day. Two cases are analysed below:

• Base Case: Distribution network simulation is car-
ried out at using the demand profiles, EV charging
demands and PV generation outputs described in
Figures 8-10, with no P2P energy trading.

• P2P Case: Distribution network simulation is car-
ried out at using the same input data, and applying
the P2P energy trading based on the double auction
mechanism described in Section 3.2.

The results presented in Section 5 below provide an
analysis of the impacts on the LV test network over the
course of one entire day, using the demand profiles in
Figure 8b, the PV generation profiles in Figure 9 and the
EV charging demands in Figure 10. The co-simulation
approach outlined in Figure 1 and Section 3 is used for
both Base Case and P2P Case described above.

5. Distribution Network Simulation Results

Figures 11 and 12 show the active and reactive power
import/export recorded at the MV/LV substation trans-
former in the OpenDSS network simulation. Since the
case study has a very high PV penetration, there is a
net export from the substation in the middle of the day,
and hence kW and kvar values are negative during these
time steps. It is assumed in this paper that the LV net-
work is capable of accommodating bidirectional power
flows. The largest number of P2P energy trading trans-
actions occur between the time steps 200 and 230 (see
dashed lines in Figures 11 and 12), which approxim-
ately corresponds to the hours 17:00 to 20:00 in the day.
It can be seen that the P2P energy trading has a signi-
ficant impact on the kW and kvar flows in each phase
during these times.
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Figure 8: Distribution network test case: (a) Layout of IEEE LV test system; (b) Sample of the load profiles for 10 individual users.
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Figure 9: Samples of input data: PV active power injections.
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Figure 10: Samples of input data: EV charging demands.
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Figure 11: Active power (kW) import and export per phase at the
MV/LV over the course of one day.
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Figure 12: Reactive power (kvar) import and export per phase at the
MV/LV over the course of one day.
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A summary of the results from the DN simulations
is given in Table 3. These results show that the net en-
ergy exported from the test DN is increased by approx-
imately 19 kWh over the course of the day in the P2P
case. The reactive power imported into the test DN is
reduced by more than 6 kvarh. No significant change
is observed in the maximum instantaneous kVA power
demand (which occurs in the late evening and is driven
by EV charging load), or in the network active power
losses over the 24 hour period test as a result of the P2P
energy trading.

The impact of P2P energy trading on DN voltages
can also be measured using a voltage unbalance metric,
which describes the differences between the magnitudes
of the voltages in each phase of the three-phase LV dis-
tribution system. In this paper, the IEEE definition of
voltage unbalance is applied. This is defined in [42] as
the Phase Voltage Unbalance Rate (PVUR), the max-
imum voltage deviation from the average phase voltage
as a percentage of the average phase voltage. PVUR is
slightly reduced in the P2P Case (8.665%) as compared
to the Base Case (8.866%), Table 3.

Figure 13: Base case voltage profiles for all DN users at each five-
minute time step in simulation.

Figures 13 and 14 illustrate the voltage profiles for all
55 users connected to the network for the Base Case and
P2P Case respectively. In order to simplify the voltage
analysis and to enable direct comparison between the
voltages in each case, a fixed voltage of 1.0 per unit
was assumed at the MV side of the MV/LV substation
transformer.

These results demonstrate that the proposed co-
simulation approach allows us to analyse the impact of
DN voltages of P2P trading. The user voltage profiles
in the Base Case and P2P Case are similar during time
steps where there are few P2P transactions. Figure 15

Figure 14: P2P energy trading case voltage profiles for all DN users
at each five-minute time step in simulation.
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Figure 15: Difference between Base Case and P2P Case voltage pro-
files, expressed as percentage values.

illustrates the differences between the Base Case and
P2P voltage profiles, expressed as percentage values..
The most significant changes in voltage again occur dur-
ing the time steps from 200 to 230 in Figures 13-15 (in
the late afternoon/early evening between the hours of
17:00-20:00).

6. Discussion and Conclusions

Peer-to-peer (P2P) energy trading schemes are de-
signed to enable multi-bilateral trading between elec-
tricity network users in a neighbourhood or area, in
order to balance energy surpluses and shortfalls loc-
ally. Such schemes could potentially enable greater
choice for electricity consumers and facilitate increased
levels of competition amongst large-scale and small-
scale electricity generators and retailers, with the option
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Table 3: Summary of DN Simulation Results.

Simulation result [Units] Base Case P2P Case Difference
Net energy exported [kWh] 40.06 59.12 +19.06

Reactive power imported [kvarh] 41.07 34.85 -6.22

Max complex power [kVA] 148.73 149.32 +0.59

Active power losses [%] 3.33 3.40 +0.07

Phase Voltage Unbalance Rate [%] 8.866 8.665 -0.001

of electricity product differentiation based on consumer
preferences.

The anticipated benefits of P2P energy trading in-
clude better utilisation of power network assets and re-
duction of energy losses due to shorter transmission dis-
tances. At the distribution network level, energy balan-
cing can be achieved locally, reducing the need for grid
import and upstream network asset investment.

However, the potential impacts of large-scale ad-
option of P2P energy trading on distribution network
operation and planning are very unclear, and the co-
simulation of local P2P energy trading markets and
electricity distribution networks has not been investig-
ated in the literature to date. The co-simulation ap-
proach presented in this paper provides a means of as-
sessing the feasibility of large-scale adoption of P2P en-
ergy trading schemes, analysing their impacts on the
distribution network, and validating their potential be-
nefits.

In order for P2P energy trading to gain acceptance
on a larger scale, it will be necessary for network op-
erators and other stakeholders to have the capability to
model its impacts on the distribution networks, and the
potential effects on network performance and reliability.
Accordingly, this paper presents a framework for co-
simulation of a local P2P energy trading market mech-
anisms and electricity distribution networks. The ana-
lysis presented in Sections 4 and 5 provides a case study
using this framework. P2P energy trading is carried out
using a blockchain-assisted distributed double auction
trading platform. The impacts of this energy trading
are tested using a typical three-phase European LV sub-
urban residential distribution system, where residential
demand, PV and EV profiles based on measured data
are employed in the analysis.

The paper demonstrates that this co-simulation ap-
proach can be used to analyse the impacts of P2P en-
ergy trading on network power flows and voltages. The
results in Section 4 indicate that a moderate level of P2P
energy trading did not have a significant impact on net-
work operational performance in the European LV dis-
tribution network tested. Table 3 shows that the max-

imum demand recorded in the network over the 24 hours
was not significantly affected, with the difference of less
than 1 kVA between the Base Case and P2P Case. There
was also very little difference in the phase voltage im-
balance, with the PVUR equal to approximately 8.7%
in both cases, Table 3. The results in Figs. 13-15 show
only minor differences in the voltage profiles in the late
afternoon/early evening hours (17:00-20:00).

The distribution network analysis in this paper is car-
ried out over the course of one 24 hour period and
does not examine the sensitivity to day types and sea-
sonal factors. Future work will address these issues,
and provide a more complete analysis of the impacts
of various P2P energy trading mechanisms on network
asset utilisation, reliability and power quality. Work
is ongoing to fully integrate the co-simulation test-bed
presented in this paper with Ethereum-based execution
of transactions. The eventual aim of this research is
to provide a comprehensive framework for examining
the medium to long-term effects of local, decentralised
electricity markets and P2P trading on distribution sys-
tem planning and operation, and for comparing this with
traditional, centralised market arrangements.
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