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Abstract  

This paper investigates the enhancement in the performance of bridges resulting from the use 

of tuned mass dampers (TMD) to reduce vibration induced by bridge-vehicle interaction. The 

enhancement in performance is demonstrated through the relative improvement of the 

reliability index of the structure once TMDs are retrofitted. In computing the reliability index 

the paper considers statistical variability in both the vehicle loading and the bridge resistance.  

Improvements in the bridge response due to installation of TMD are evident from 

improvement in the reliability index computed using the first order second moment (FOSM) 

method. The vehicle is modelled as a standard quarter car while the bridge is modelled as an 

Euler Bernoulli beam element. Performance of bridge often deteriorates with time due to 

several factors.  The efficiency of TMDs in improving the reliability of the bridge response 

with respect to degradation of the bridge condition with time is also shown.   

 

1.Introduction 

The interaction of bridges and the vehicles that traverse them gives rise to dynamic 

magnification of static effects. The displacement due to vibration results in the generation of 

magnified stresses due to dynamic effects, which increases the probability of failure and 

decreases the reliability index of the bridge with respect to its maximum response. However, 

with a proper vibration control mechanism like a TMD installed, dynamic stresses can be 

lowered and as a direct consequence, the reliability of the structure can be relatively 

improved. Bridge-vehicle interaction also increases the vertical acceleration of the vehicle 

itself. And becomes a source of discomfort for the passengers. By controlling vibration, 

problems related to excess stress on vehicle and passenger discomfort are solved to a great 

extent. 

Behaviour of a bridge under the action of moving load has been discussed in details by Fryba 

[1]. Hayashikawa and Watanabe [2], Cai et al [3], Klasztorny and Langer [4], Genin et al [5] 

have discussed the problem of a quarter car model of a vehicle moving over a flexible 

guideway modelled as an Euler Bernoulli beam element. To mitigate vibration effects in 

bridges due to vehicular loading, several control mechanisms have been employed.In this 

paper, a passive TMD has been chosen as a vibration control mechanism. The frequency and 

damping ratio of the TMD is adjusted or tuned with that of bridge in such a way, that the 

TMD absorbs the major part of excitation and mitigates the vibration of bridge. Den Hartog 

[6] showed the efficiency of a TMD to suppress vibrations of a SDOF system under harmonic 

loading. With damping included, the tuning frequency and damping basically become outputs 

                                                 
 



of an optimisation problem. The TMDs perform satisfactorily when the exciting frequency 

has a narrow window (Inman [7]). 

 For bridge vibration problems, tuning proposed by Den Hartog has not always been very 

efficient.  Igusa and Xu [8] have examined both single and multiple TMDs with the natural 

frequency distributed over a range and have found multiple TMDs to be more effective and 

robust than the single one. Park and Reed [9] have found uniformly distributed TMDs to 

perform better than linearly distributed ones. Abe’ and Fujino [10], Kareem and Kline [11], 

Yamaguchi and Harnpornchai [12] and Wang et al [13] have discussed the advantages of 

multiple TMDs over single TMD. Kwon et al [14] and Jo et al [15] have considered 

interaction of high-speed vehicles with three span steel box girder bridges and have advocated 

the use of critical damping value in TMD suggested by Tsai [16] to avoid the beating 

phenomenon due to inadequate damper tuning. Warburton and Ayorinde [17] however, have 

previously showed that for a TMD with small mass ratio with respect to the bridge, exact 

tuning may turn out to be rewarding.  

All the above-mentioned formulations of the problem consider both resistance and loading to 

be deterministic. In reality there are considerable variability in both load and resistance. To 

account for this variability, one can opt for a probabilistic formulation of the variables. For 

such a formulation, the idea of safety of a structure will be related to its reliability index 

computed for different failure modes -as found from the maximum response of the structure. 

The reliability index can be computed using the basics of first order second moment (FOSM) 

theory. This paper considers the variability in loading and resistance of a bridge and discusses 

the improvement of bridge response using TMD from a reliability perspective. 

 

2. Solution of the Bridge-Vehicle interaction Problem 

2.1 Description of the problem 

The bridge is modelled as a homogeneous Euler Bernoulli beam with equivalent stiffness. The 

mass per unit length of the beam is m. Mass of the vehicle wheel is mw and that of the body is 

mb. The subscripts w and b represent the wheel and the body of the vehicle respectively. The 

vehicle is taken as a quarter car model moving with a constant velocity (v) and possessing two 

degrees of freedom representing the vertical motions of wheel and body. An assembly 

consisting of two sets of springs (kb, kw) and dampers (cb, cw) represents the suspension 

system of vehicle.  The yield stress (fy) of the material, the self-weight of the beam (ml) and 

the total mass of the vehicle (mw+mb) are taken as random variables.  Angular movements of 

the vehicle are neglected. Tuned mass dampers are modelled to be connected to the beam with 

a parallel spring and damper system. For the case of multiple tuned mass dampers, the i
th

 

TMD with mass mzi at a distance xi from the left support has a spring stiffness kzi and a 

damping value czi. The vehicle is assumed to move on smooth surface, never losing contact 

with it. Bouncing and impact effects are not considered. The beam is modelled as simply 

supported. The length, moment of inertia, section modulus and modulus of elasticity of the 

material of the beam are given by l, I, zx and E respectively. Figure1 shows the model of 

bridge vehicle interaction with TMD installed as described in this section. 

 



 
 

2.2.Equations of motion 

Considering the equilibrium condition for the vehicle body, vehicle wheel and an arbitrary i
th

  

TMD separately, we get the following equations: 

( ) ( ) 0y y y y ym c kb b bb b w b w            (1)       

( ) ( ) 0y yy y y ym m c kb w w wb w w w           (2) 

 ( ( ) 0)i i ii i
mz z zy yc kz z               (3) 

 

respectively. The absolute displacements for the vehicle body, vehicle wheel, an arbitrary i
th

 

TMD and beam are yb, yw, zi and y respectively. Considering m’ number of TMD at locations 

x1…xm’ we have the beam equation as 

4 2 '
( ( ) ) ( ) ( ) ( )

4 2
1

my y y
EI c m m y m y m m g x vt m g m z x x

b b w w b w zi zi i itx t i

 
  

         
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 (4) 

The acceleration due to gravity is g and  is the Dirac Delta function. The damping coefficient 

of the beam is c and x is an arbitrary distance on the beam from the left hand side. This partial 

differential equation is split up by the technique of separation of variables to get a system of 

ordinary differential equations in space and time separately. 

 

2.3.Separation of variables in beam equation 

By solving the undamped free vibration response of equation (4) by the method of separation 

of variables, the eigenfunction is found to be a linear combination of Sin, Cos, Sinh and Cosh 

terms. Introducing the simply supported boundary condition, i.e. (0)=(l)=0 (no deflection) 

and ’’(0)=’’(l)=0 (zero moment) only the Sin term is retained. Here (x) is the 

eigenfunction chosen as Sin(nx/l). The natural frequency of the beam is thus 



(n
2


/l

2
)(EI/m)

1/2
. The damping in the beam is considered to be small. Using the orthogonality 

property of the assumed eigenmodes n(x), we have                                                                            

 
0

2( ) / 2

l

x dx l
n

             (5)  

Following standard technique of separating variables, i.e. multiplying the right hand side of 

equation (4) by eigenmodes and integrating over length l, gives the following relation 

 

   
2 ( , )2( ) 2 ( ) ( ) ( )

0

l F x t
t t t x dxq q q nn nn n n n l m

       = R(t)     (6) 

where n=1,2…and qn(t) represents the response of beam with respect to time as per equation 

(6) for n
th

 mode of vibration. 

Integrating the right hand side of equation (6) and incorporating the sampling property of 

Dirac Delta function, the right hand side of equation (6) is determined to be         

 R(t) =
'2

{( ( ) } ( / ) ( _ ) ( / )}

1

m
g Sin n vt l g Sin n ly ym m m m m m xziw b w b zi zi iw bml i

     


(7) 

The displacement of the beam at distance x from left and at an instant of time t after the 

vibration starts is given by  

y(x,t) = ( ) ( )

1

n
t xq nn

j
 


    (8) 

 

2.4.Transformation to non-dimensional coordinates 

Cai et al [3] had suggested finding maximum static deflection at the centre point with respect 

to the first assumed mode as:       

ym = q11(l/2) = 2(mb+mw)g/(ml1
2
)    (9)  

 

Here n is denoted as the n
th

 natural frequency of the beam. The transformed non-dimensional 

variables used in the equation are b, b, w, w,  w, b, m,  f, v and , each being equal 

to (kb/mb)
1/2

, cb/(2mbb), (kw/(mw+mb))
1/2

, cw/2(mw+mb)w, (mw+mb)/ml, mw/ml, mb/ml, 

mw/mb, w, b/w, vt/l and x/l respectively. 

 The variable in time, t is transformed to non dimensional where =t. Equations1, 2,3 and 

6 are transformed to non-dimensional equations 10,11,12 and 13 respectively.  
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The non-dimensional uppercase symbols are obtained by dividing corresponding lowercase 

symbols by ym. Similarly, un is transformed from qn through division by ym. 



The parameter  is introduced because of the sampling property of Dirac Delta function. The 

value of  is 1 when the vehicle is on the bridge and 0 immediately after the vehicle leaves 

the bridge. 

 

2.5.Generation of matrices 

It is possible to work with the current formulation accounting for any number of beam modes 

with any number of TMD positioned arbitrarily. The damping ratio for the bridge is very 

small and hence the transient response should be taken into account. In the present problem 

exact tuning has been selected. For multiple tuned mass dampers, the TMDs are uniformly 

distributed. In what follows n(v) will stand for Sin(nx/l) and n(xi) for Sin(nxi/l).  The 

system of equations formed can be written in a matrix system of second order ordinary 

differential equation as 

      [ ]{ } [ ]{ } [ ]{ } { }p p p qCM K       (14) 

where [M], [C] and [K] are the system mass, damping and stiffness matrix respectively. The 

load vector is given by {q} and the unknown degrees of freedom are listed in {p} as a vector. 

[M], [K], [C] and {q} are all time dependent. This system of second order ordinary 

differential equation can be solved by numerical techniques. Kwon et al [9] and Jo et al [10] 

have suggested the use of the average acceleration technique using a method of direct 

integration since it is unconditionally stable. Here the system of equations is converted in a 

state space form and solved for the unknown displacements using 4/5
th

 order Runge Kutta 

method.The displacements are related to moment and shear force according to the relations 

     M(x,t) = 
n

2 2

n n

i=1

- EI(d (x)/dx )q (t)       (15)  

V(x,t) =
n

3 3

n n

i=1

- EI(d (x)/dx )q (t)      (16) 

respectively. Once these responses are found, reliability analysis can be done taking the 

variability of different parameters into account by statistical distributions.

  

 

3.Reliability Analysis 

The formal reliability of a structure may be taken to be a probability of safety or proper 

performance of the structure over a given period of time [18]. The present discussion about 

this topic will be constrained to that which is important for the present problem. The bridge 

considered in the problem will be assumed to have failed under the action of bending 

moment, shear or due to deflection separately. Here the term failure does not necessarily 

mean the collapse of a structure as a whole but rather a condition whereby we will declare the 

structure to have failed according to some predefined threshold value of response. Information 

about both load and resistance are assumed incomplete and hence they are to be modelled as 

probability distributions. One can refer to the new equation (also known as failure function) 

formed by subtracting load from resistance as G(x). The variable x becomes a vector for 

multidimensional problems. For this formulation the probability of G(x) being less than zero 

expresses the failure probability. It is sufficient to know the mean and standard deviation of 

the distributions in the safety margin format of first order second moment (FOSM) reliability 

analysis. The reliability index is taken to be the relative measure of safety. The reliability 

index  is given as 

z/z       (18) 

zbeing mean and z, the standard deviation of the joint distribution derived from the 

interaction between load, R and resistance, S, such that z=S-R. The probability of failure (pf), 

assuming normal distribution is given as the value of standardized normal, i.e. The 



probability of failure represents a degree of belief rather than having frequentist connotations. 

An increase in reliability index would indicate a better performance of the structure. In the 

present discussion the failure functions are chosen to be 

 

fyzx – (wl
2
/8 + Mmax) = 0                            (18) 

         0.6fyA – Vmax = 0                            (19) 

  l/100 – (5l
4
/384EI + ymax) = 0                            (20) 

with respect to moment(M), shear(V) and deflection(y) respectively. The subscript represents 

the corresponding maximum effects. 

It is very important to note that limiting values for systems with dynamic effects are often 

different from the static case. In the present discussion the failure criteria is not changed since 

the performance of TMD would be best visualised under unchanged failure criteria when both 

static and dynamic effects are combined.  

 

4. Example, Results and Discussion 

Numerical examples have been taken up to show the efficiency of TMD from a reliability 

perspective. Total mass ratio of TMD is taken as 0.04. Data for Figure2 is given below: 

 

m=300000N/m (mean), 30000 N/m (standard deviation), 0.1 (coefficient of variation) 

mw=29700 N (mean), 8910 N(standard deviation), 0.3 (coefficient of variation) 

mb=200000 N (mean), 60000 N(standard deviation), 0.3 (coefficient of variation) 

fy=180000000N/m
2
 (mean), 45000000N/m

2
(standard deviation), 0.25(coefficient of variation) 

zx=6 m
3
               A=8.57 m

2
(c/s area)                I=8 m

4
                 E=3x10

10
 N/m

2
 

kw=2.35x10
6
 N/m     cw=4x10

4
 N-s/m            kb=3x10

6
 N/m               cb=8x10

4
 N-s/m 

n=0.003 (structural damping ratio taken same for all modes)  

 

The mean value of fy in Figure3 is 200GPa. The cases considered for the two graphs are: 

Without TMD, 1 TMD at the middle, 3 TMDs at maximum response point of third mode and 

2 TMDs at the middle respectively. Two TMDs at the maximum response point of second 

mode is found not to be a good choice. 

Figure2 shows a gradual increase in reliability with increase in velocity while Figure3 

manifests a definite minimum value at velocity 100km/hr. 

 
                         Figure 2.              Figure 3. 

 

 It is apparent from both graphs that installation of TMDs demonstrates a relative increase in 

the reliability index of the structure. It is also important to note that so long as the vibration of 

the point of maximum response of first assumed mode is suppressed, the relative 



improvement in reliability due to introduction of additional TMDs is quite negligible. It 

should however be remembered that multiple TMDs mitigate free vibration response quickly, 

catering for a wider range of exciting frequency and are more robust than single TMD. The 

relative improvement of reliability values, rather than their absolute values are more important 

here.  

Although the graphs are shown for reliability against moment, it can be showed that the shape 

of these graphs remain unchanged for reliability against shear and deflection. The moment 

and shear are both related to space derivatives of deflection and have been given in equations 

(15) and (16). Since the response with respect to time remains unaffected due to the space 

derivatives taken, the final form for each of the response becomes 

x,t) = S + Ai.n(x)qn(t)max                                                  (21) 

where S is the static part of the response and Ai is a constant multiplicative term for i
th

 

component of response (displacement, shear, moment etc) forming from the space derivative. 

Thus, the term qn(t)max remaining unchanged, tends to govern the shape of the graphs for 

different response. 

With time, any structure tends to deteriorate and once the reliability index falls below the 

target reliability we consider it to be unfit for providing further service. Installation of TMD 

improves the reliability of the structure and we can extend the lifetime of reaching the target 

reliability without resorting to repair. 

Figure4 shows a parabolic degradation of flexural stiffness of the beam with time. We assume 

that the deterioration is 5% of initial value in the first 10 years and 10% in the next 10 years. 

The equation of deterioration, considering initial value to be 1.0 is given as 

                                                  D(t) = 1-0.0025t-0.00025t
2
                                                   (22) 

where t is time in years from an arbitrary origin. During this period reliability index against 

deflection is plotted in Figure5 for 80m length of the bridge and vehicle velocity, 100 km/hr. 

Three cases, viz. without TMD, with a single TMD and with 3 TMDs are considered. 

Arrangements of TMDs are taken as before. It can be seen that the TMDs perform better both 

in terms of the relative value of the reliability index and its rate of decrease with time. Use of 

additional TMDs however improves the reliability index very little. 

 
  Figure 4.      Figure5. 

  

The moment carrying capacity often decreases with time as well. Figure6 shows three such 

curves with parabolic profile. Although the carrying capacity has a high correlation with 

flexural stiffness, an equivalent deterioration curve keeping flexural rigidity unchanged, is 

considered for the present discussion. This shows the effect of TMD installation for the case 

of decreasing carrying capacity alone. Three TMDs have been used keeping other parameters 

similar as before. The efficiency of the TMDs is evident in Figure7. The curves involving 

TMDs reach any particular value of reliability index later than curves without TMD, thereby 

demonstrating an increase in service life.  



 
 

Another important factor that changes with time is the coefficient of variation of the random 

variables. In the present case we assume the change of coefficient of variation of fy over time 

as a linear process keeping the mean value constant. Figure8 shows three such curves. The 

mean value of fy is taken as 225GPa. Comparison is done for the system involving no TMD 

with that involving three TMDs in their previous arrangement. By choosing this significant 

variation it is seen from Figure9 that although the TMDs perform better than those without 

them, the improvement is not significant.  

Thus, from the graphs shown, it may be said that for short lifetime extension incorporation of 

TMDs is fruitful. 

 
  Figure 8.      Figure9. 

4.Conclusion 

 The performance of single and multiple TMD with respect to vehicle-induced 

vibration of bridges have been considered from reliability aspect considering both load 

and resistance having statistical distributions. 

 Installation of TMD demonstrates a relative decrease in the probability of failure for a 

bridge. It is more pronounced where the dynamic effect is more comparable to the 

static effects.  

 For a deteriorating bridge, installation of TMDs tends to increase its service life to a 

certain extent. 

 So long as the vibration in first mode is suppressed, installation of additional TMD 

does not affect the reliability index to a great extent.  

References 

 

 1. Fryba L., Vibrations of Solids and Structures under Moving Loads, Thomas Telford, 

London, 1999. 

2. Hayashikawa T, Watanabe N, Dynamic Behaviour of Continuous Beams with Moving 

Loads, Journal Of Engineering Mechanics Division, ASCE, 1981,107(EMI), 229-246 



3. Cai Y, Chen S S, Rote D.M, Coffey H.T, Vehicle/guideway Interaction for High Speed 

Vehicles on a Flexible Guideway, Journal of Sound and Vibration, 1994,175(5), 625-646 

4. Klasztorny M, Langer J, Dynamic Response of Single Span Bridges to a Series of Moving 

Loads, Earthquake Engineering and Structural Dynamics, 1990,19(8), 1107-1124 

5. Genin J, Ginsberg JH, Ting EC, A complete formulation of inertial effects in the guideway 

vehicle interaction problem, Journal of Sound and Vibration, 1975, 38, 15-26 

6. Hartog D, Mechanical Vibration, Dover Publications, New York, 1985 

7. Inman DJ, Engineering Vibration, Prentice Hall, New Jersey, 2001 

8. Igusa T, K. Xu, Dynamic Characteristics of Multiple Tuned Mass Substructures with 

Closely Spaced Frequencies, Earthquake Engineering and Structural Dynamics, 1992, Vol. 

21, 1050-1070. 

9.Park J, Reed D.A, Analysis of Uniformly and Linearly Distributed Mass Dampers Under 

Harmonic Excitation, 8th ASCE Specialty Conference on Probabilistic Mechanics and 

Structural Reliability, PMC2000-031                                                                                         

10. Abe’ M., Fujino Y, Dynamic Characterization of Multiple Tuned Mass Dampers and 

Some Design Formulas, Earthquake Engineering and Structural Dynamics, 1994,  Vol. 23, 

813-835. 

11.Kareem A., Kline S Performance of Multiple Mass Dampers under Random Loading, 

Journal of Structural Engineering., 1995, Vol. 121, 348-361. 

12.Yamaguchi H, Harnpornchai N, Fundamental Characteristics of Multiple Tuned Mass 

Dampers for Suppressing Harmonically Forced Oscillations, Earthquake Engineering and 

Structural Dynamics., 1993, Vol. 22, 51-62. 

13. Wang J.F, Lin C.C, Chen B.L, Vibration suppression for high-speed railway bridges 

using tuned mass dampers, International Journal of Solids and Structures, 2003, Vol. 40,  

465–491 

14. Kwon H.C, Kim M.C, Lee I.W, Vibration Control of Bridges Under Moving Loads, 

Computers & Structures, 1998,Vol 66(4), 473-480 

15. Jo B.W, Tae G.H, Lee D.W, Structural Vibration of Tuned Mass Damper Installed Three 

Span Steel Box Bridge, International Journal of Pressure VESSELS AND Piping, 2001, 78,   

 667-675 

16. Tsai H.C, Green’s Function of Support Excited Structures with Tuned Mass Dampers 

Derived by a Perturbation Method, Earthquake Engineering and Structural Dynamics, 

1993,22(11), 975-990 

17. Warburton GB, Ayorinde EO, Optimal dynamic vibration absorbers for general beam 

systems, Earthquake Engineering and Structural Dynamics, 1980, 8, 197-217 

18. Melchers R.E, Structural Reliability Analysis and Prediction, Ellis Horwood Ltd, 

Chichester, 1987 

 


