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Abstract 20 

Nisin A is a potent antimicrobial with potential as an alternative to traditional antibiotics, and a 21 

number of genetically modified variants have been created that target clinically relevant 22 

pathogens. In addition to antimicrobial activity, nisin auto-regulates its own production via a 23 

signal transduction pathway, a property that has been exploited in a protein expression system 24 

termed the Nisin Controlled Gene Expression (NICE) system. Although NICE has become one 25 

of the most popular protein expression systems, one drawback is that the inducer peptide, nisin 26 

A, also has inhibitory activity. It has already been demonstrated that the N-terminal region of 27 

nisin A contributes to antimicrobial activity and signal transduction properties, therefore, we 28 

conducted bioengineering of nisin at positions Pro9 and Gly10 within ring B to produce a bank 29 

of variants that could potentially be used as alternative induction peptides. One variant, 30 

designated nisin M, has threonines at positions 9 and 10 and retains induction capacity 31 

comparable to the wild type nisin A, while most of the antimicrobial activity is abolished. 32 

Further analysis confirmed that nisin M produces a mix of peptides as a result of different 33 

degrees of dehydration of the two threonines. We show that nisin M exhibits potential as a more 34 

suitable alternative to nisin A for the expression of proteins that may be difficult to express, or to 35 

produce proteins in strains that are sensitive to wild type nisin. Moreover, it may address the 36 

increasing demand by industry for optimization of peptide fermentations to increase yields or 37 

their production rate. 38 

 39 

 40 

 41 

 42 
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Importance 43 

This study describes the generation of a nisin variant with superior characteristics for use in the 44 

NICE protein expression system. The variant, termed nisin M, retains an induction capacity 45 

comparable to the wild type nisin A but exhibits significantly reduced antimicrobial activity and 46 

can therefore be used at concentrations that are normally toxic to the expression host. 47 

 48 

 49 

 50 

 51 
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Introduction 62 

Producing high quantities of proteins of biotechnological and pharmaceutical value from their 63 

natural sources can have economic challenges. Although Escherichia coli has been the dominant 64 

player in the production of recombinant proteins for decades, several issues including the 65 

presence of endotoxin or lipopolysaccharide requires expensive and often problematic 66 

downstream purification processes (1). The lactic acid bacteria (LAB) Lactococcus lactis has 67 

gained importance as a host for heterologous protein expression due to its well understood 68 

genetics and metabolism, generally regarded as safe (GRAS) status, as well as the availability of 69 

a wide range of genetic tools. Indeed, a major advance with regards to protein expression in L. 70 

lactis was the discovery and use of gene expression systems based on a number of inducible 71 

promoters. These include promoters that respond to the environment such as P170, which is 72 

upregulated at low pH (2) and zinc-based systems that respond to zinc availability (3).  One of 73 

the best known and most widely employed expression systems is the nisin-inducible controlled 74 

gene expression (NICE) system (4, 5) which stems from the nisin biosynthetic operon 75 

(nisABTCIPRKFEG) found in some L. lactis strains (6). Nisin is a 34 amino acid peptide and is 76 

the most extensively studied bacteriocin (ribosomally synthesized, antimicrobial peptides 77 

produced by bacteria) (7, 8). It targets a wide range of Gram-positive bacteria, including food 78 

pathogens such as Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus and clostridia 79 

(9, 10). Nisin induces its own biosynthesis via a two-component signal transduction pathway 80 

NisRK (6) and has led to the development and application of a food grade expression system 81 

using L. lactis as the host (11). The NICE system encompasses both regulatory elements of the 82 

nisin operon, PnisA, the nisin-inducible promoter (cloned into several expression vectors) and 83 

nisRK, the two component histidine kinase response regulator system (harboured by compatible 84 
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plasmids or inserted on the chromosome of a suitable host strain). The system is ‘switched on’ 85 

by the addition of nisin in the nanomolar range which activates the receptor NisK. NisK activates 86 

NisR by phosphorylation and the activated NisR induces expression at the nisin A promoter (4). 87 

The NICE system has been extensively used to produce proteins in L. lactis, such as 88 

bacteriophage lysins and metalloendopeptidases to demonstrate their potential in dairy 89 

fermentations (12, 13). Moreover, NICE can, under certain conditions and with some 90 

modifications to the system components, also be used in other species of LAB and in other 91 

Gram-positive bacteria (11, 14). Its numerous advantages include ease of use, exquisitely 92 

controlled and efficiently induced expression and amenability to large-scale production 93 

processes. As an example, nisin induced fermentations of the antimicrobial lysostaphin have 94 

been carried out and even identified areas of the NICE system that need improvement (5). 95 

However, for industrial applications, nisin addition remains costly (15). Another drawback of the 96 

system is that the inducing peptide is also toxic due to its potent antimicrobial activity. 97 

Therefore, a nisin peptide that retains its induction capacity whilst having little to no 98 

antimicrobial activity would be highly desirable. The gene-encoded nature of the nisin peptide 99 

makes genetic engineering to develop certain characteristics of the molecule an attractive and 100 

feasible option. Although the bioengineering of nisin commenced over three decades ago, the 101 

majority of studies have largely focused on identifying nisin variants with enhanced 102 

antimicrobial activity or an extended-antimicrobial spectrum (10, 16, 17). The importance of the 103 

N-terminus rings A and B with respect to induction has been highlighted on a number of 104 

occasions (6, 16, 18). These studies involved either combinatorial saturation mutagenesis of 105 

rings A and B (18) or the application of alanine scanning approaches to assess the antimicrobial 106 

activity and induction properties of various nisin derivatives (16). 107 
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In this study, we carried out a more comprehensive bioengineering approach and created banks 108 

of nisin derivatives that have been randomized at positions 9 (P9X) and 10 (G10X) individually 109 

and in combination (P9XG10X) and assessed them for antimicrobial activity in conjunction with 110 

their ability to induce the nisin promoter using GFP and β-galactosidase reporter systems. 111 

 112 

 113 
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Results 127 

Creation and screening nisin derivatives for antimicrobial activity and induction capacity. 128 

Previous studies utilising site‐directed and alanine scanning mutagenesis of nisin have revealed 129 

that the N-terminal ring structures are an important region required to activate NisRK (16, 18). In 130 

particular, mutagenesis of ring B has been shown to modulate antimicrobial and induction 131 

activity. We selected this location as a suitable target for the generation of variants to screen for 132 

our desired activities. In order to fully exploit the potential of the nisin ring B we undertook a 133 

complete randomisation of the two amino acids in Pro9 and Gly10, both alone (P9X, G10X) and 134 

in combination (P9XG10X) using NNK scanning of both codons in the nisin A structural gene 135 

(nisA) as previously described (7). A bank consisting of 1,452 individual variants created in L. 136 

lactis NZ9800 pCI372nisA (pDF05) were screened for antimicrobial activity using deferred 137 

antagonism agar diffusion assays and their ability to induce the nisin promoter, PnisA fused to a 138 

gfp reporter gene. The impact of mutations targeting position nine (proline) on antimicrobial 139 

activity was assessed using an overlay assay and resulted in zones ranging from those 140 

comparable to the wild type control to those devoid of any observable activity. Analysis of 141 

colonies using mass spectrometry and/or DNA sequencing identified 12 different amino acid 142 

substitutions corresponding to P9H, P9E, P9S, P9T, P9N, P9A, P9M, P9I, P9V P9L, P9W, and 143 

P9F (Figure 1A). Substituting P9 with an alanine (P9A) had no impact on either antimicrobial 144 

activity or induction capacity. A number of variants (P9H, P9E, P9W and P9F) displayed a loss 145 

of both properties. Several others (P9M, P9L, P9N, P9V and P9I) displayed a significant 146 

reduction in antimicrobial activity (between 50-65% of wild type) as well as a reduced ability to 147 

induce the gfp reporter. Notably, P9T and P9S exhibited a slight reduction in antimicrobial 148 
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activity (70-75%) but retained 100% and 75% induction capacity respectively compared to the 149 

wild type control (Figure 1A), which was in agreement with previous studies (16, 18). It is 150 

significant that replacement of P9 with either threonine or serine introduces hydroxylated 151 

residues which could act as substrates for the lanthionine modification machinery. Indeed, 152 

colony mass spectrometry (CMS) of the P9T and P9S producers revealed the presence of masses 153 

corresponding to the presence of both unmodified (threonine or serine) and modified residues 154 

(dehydrobutyrine (Dhb) or dehydroalanine (Dha)) (Table1). 155 

Analysis of 144 variants where position 10 (glycine) was targeted, revealed that the majority of 156 

clones exhibited either wild type activity or displayed a complete loss of both antimicrobial 157 

activity and induction capacity. Mass Spectrometry (MS) and DNA sequencing determined that 158 

almost all of the active variants had retained the original glycine at position 10 (wild type), but 159 

we also detected variants corresponding to G10T and G10S (Figure 1B). Here too, CMS 160 

identified a mixture of both modified and non-modified residues in the case of G10S (i.e. G10S 161 

and G10Dha) but this was not observed when threonine was present at position 10. A variant that 162 

displayed little reduction in activity (>50%) had an alanine (G10A) substitution (Figure 1B). A 163 

selection of variants that lacked both antimicrobial activity and induction capacity were 164 

subjected to DNA sequencing analysis, which identified substitutions corresponding to G10F, 165 

G10W and G10L. The inability to detect as wide a range of active variants at this position may 166 

arise from the fact that several variants in this position (including G10D, G10N, G10H, G10R, 167 

G10L and G10P) have been linked with the loss of threonine dehydration at position 8, meaning 168 

that ring B does not undergo cyclization (18). 169 

We then set out to vary both residues 9 and 10 simultaneously. As expected, screening of the 170 

doubly randomized P9XG10X bank revealed far fewer bioactive variants (approx. 5.6% of the 171 
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total) of which the majority were wild type (38/64). The remainder exhibited varying degrees of 172 

antimicrobial activity ranging from 10-50% with a concomitant loss in induction capacity (data 173 

not shown). However, one clone was conspicuous in that despite its apparent lack of 174 

antimicrobial activity, it retained an induction capability comparable to the wild type nisin A 175 

(Figure 2A). DNA sequencing analysis revealed a variant corresponding to P9T/G10T (both 176 

residues replaced with a threonine, Fig 2B). Furthermore, CMS revealed the presence of masses 177 

corresponding to the doubly-modified TT peptide (Dhb9Dhb10) but also species with one 178 

modified residue to Dhb and a mass close to a peptide with no modified threonine residues 179 

(Figure 2A; Table 1). Purification of the derivative P9T/G10T, we termed nisin M, was carried 180 

out with our standard nisin purification protocol and subsequent high-performance liquid 181 

chromatography (HPLC) evaluation revealed the presence of two major peaks (data not shown). 182 

Mass spectrometry analysis of these fractions revealed the presence of one peptide of 3365 Da 183 

(consistent with the presence of two Dhb’s) and a second peptide of 3383 Da (consistent with a 184 

peptide with one threonine and one Dhb). Additionally, a mass in close agreement to a non-185 

modified peptide with threonines in both positions was also observed (data not shown). 186 

 187 

Minimum inhibitory concentration (MIC) of nisin M 188 

Following HPLC and freeze-drying of combined fractions to obtain pure peptides, MIC assays 189 

were carried out using equimolar concentrations of nisin A and nisin M against a range of Gram 190 

positive targets including genera into which the NICE system has been previously introduced 191 

(Table 2). The MIC was determined to be the lowest concentration of peptide that resulted in the 192 

absence of visible growth of the target strain after 16 hours under the appropriate growth 193 

conditions. We established that the MIC of nisin M against a standard laboratory indicator L. 194 
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lactis HP was 2.5 µg mL-1, reflecting a 16-fold increase in MIC compared to wild type nisin A 195 

(0.156 µg mL-1). Nisin M displayed a similar decrease in potency against the L. lactis NZ9000 196 

gfp reporter strain and its isogenic equivalent L. lactis NZ9000 (Table 2). Several lactobacilli 197 

have been used as hosts of the NICE system including Lactobacillus plantarum, Lactobacillus 198 

helveticus and Lactobacillus brevis (14, 19). When Lb. plantarum UCC16 and Lb. brevis SA-199 

C12 were assessed, an MIC of >2.5 µg mL-1 and 1.25 µg mL-1 was observed, demonstrating a 200 

>4-fold and 16-fold decrease in antimicrobial activity for nisin M respectively in comparison to 201 

wild type peptide. (Table 2). 202 

 203 

Induction capacity of nisin A and nisin M at 10 ng mL-1 
204 

Determination of the induction capacity of nisin A and nisin M at a concentration of 10 ng mL-1 205 

was performed using two reporter systems, by way of measurement of GFP and β-galactosidase 206 

production. There was no statistical difference in the dynamics of RLU detection when the GFP 207 

reporter strain was induced with nisin A and nisin M (P >.05) (Figure 3A). Similarly, induction 208 

of the βgal+ reporter strain also revealed no significant difference between nisin A and nisin M 209 

at equivalent concentrations (10 ng mL-1) (P >.05) (Figure 3B). Moreover, the rate of expression, 210 

and therefore the rate of induction was identical for both nisin A and nisin M under the 211 

conditions tested in both GFP and β-galactosidase assays. 212 

 213 

Induction capacity and effect on growth of nisin reporter strain at higher induction 214 

concentrations 215 
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Next, we employed 50 ng mL-1, 100 ng mL-1 and 300 ng mL-1 of peptide to determine the effect 216 

of higher concentrations of nisin A and M on both protein expression and on growth of the 217 

expression host. Fluorescence (RLU) was measured to determine GFP expression and 218 

absorbance readings at OD595nm were taken to observe growth of induced strains. For each of 219 

these higher concentrations a significant difference between the level of induction by nisin A and 220 

nisin M (P <.0005) was noted (Fig. 4A-C). Interestingly, the highest RLU reading attained was 221 

from cells induced with nisin M at a final concentration of 50 ng mL-1. At this concentration 222 

induction continued for the course of the experiment (18 hrs), whereas at 100 ng mL-1 and 300 ng 223 

mL-1 induction reached maximum and decreased after 10-12 hours. Notably, there was no delay 224 

in the rate of GFP expression following induction with nisin M at 50 ng mL-1 and 100 ng mL-1 225 

(Figure 4A-B) compared to 10 ng mL-1 (Figure 3A), where fluorescence intensifies at 226 

approximately 6 hours post induction for all experiments; meanwhile, there was a minor delay of 227 

30 minutes in expression with induction at 300 ng mL-1 (Figure 4C). 228 

When the effects on growth were analysed, no significant impact on the growth of the GFP 229 

reporter strain was observed following induction with nisin M at 50 ng mL-1  (P> .05), 100 ng 230 

mL-1  (P> .05) and 300 ng mL-1  (P> .05). The OD595 of both non-induced cells and cells induced 231 

with nisin M increased approximately 5 hours post induction. However, induction with nisin A at 232 

the same concentrations resulted in a significant lag-time in growth. An increase in OD595 was 233 

not observed until 7.5, 8 and 10 hours post induction at 50 ng mL-1  (P< .05 for comparison of 234 

nisin M to WT, P< .0005 for comparison of WT to uninduced samples), 100 ng mL-1  (P< .0005) 235 

and 300 ng mL-1  (P< .0005), respectively. It is worth noting that although growth was observed 236 

by samples at these times following induction with WT nisin, there was no fluorescence detected 237 

from the same samples until 12, 16 and 18 hours, respectively (Figure 4A-C & 5A-C). 238 
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 239 

 240 

Discussion 241 

Any new technological advancements to improve the production of protein biopharmaceuticals 242 

and industrial enzymes by microorganisms is highly desirable. Potential methods to optimize the 243 

efficiency of an inducible gene expression system may involve adjustment of inducer dosage 244 

and/or the timing of inducer addition.  The Gram-positive NICE system is somewhat unusual in 245 

that the inducer peptide also has the capacity to kill the expression host, and thus induction and 246 

killing capacity must be balanced. The generation of a nisin derivative that retained its induction 247 

properties but with reduced antimicrobial properties would represent a significant improvement 248 

to the NICE system that could be applied to more sensitive strains. 249 

Previous work, where the focus has been on the nisin peptide itself, involved randomised 250 

mutagenesis of rings A and B (18) and described mutants that retained considerable auto-251 

induction abilities but with lower antimicrobial properties (and vice- versa). Similarly, Ge and 252 

co-workers (2016) applied a complete alanine scanning mutagenesis approach and reported that 253 

the N-terminal ring structures (ring A and ring B) in nisin were involved in activating NisK to 254 

act as an inducing molecule (16). In this study we focused our attention on ring B with a more 255 

systematic mutagenesis approach to identify novel derivatives with altered activity/induction 256 

properties. This proved to be successful in that we identified a nisin variant that retains induction 257 

capacity that is comparable to the wild type peptide but exhibits significantly less antimicrobial 258 

activity. 259 
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Notably, another lantibiotic, subtilin is structurally closely related to nisin and contains the same 260 

lanthionine ring structure but does not induce PnisA. Indeed, in the study by Steiß, Korn, Kötter 261 

and Entian (2015) the failure of subtilin to induce the histidine kinase NisK was shown to mostly 262 

depend on the presence of an N-terminal tryptophan, as its replacement with the aliphatic amino 263 

acid residues isoleucine, leucine, and valine led to activation of NisK (20). This suggests further 264 

bioengineering at position 1 and indeed other amino acid locations in the nisin M background 265 

could potentially enhance induction and reduce antimicrobial activity even further. 266 

Although this study highlighted ring B of nisin as a critical region in our quest to separate 267 

antimicrobial activity from induction/pheromone activity, more residue positions could and 268 

should be targeted. Studies with the natural variant nisin Z have revealed that derivatives 269 

corresponding to T2S and M17W exhibited an 11-fold and 2-fold increase in induction capacity 270 

relative to the parent peptide, respectively, while derivatives S5T and S3T had significantly 271 

reduced induction capacity (7). 272 

A computational approach evaluating the antimicrobial activity, induction capacity, production 273 

levels and immunity/sensor kinase components of natural and bioengineered nisin derivatives 274 

could provide a blueprint for the design of more efficient peptide inducers. For example, the 275 

ability of nisin P, A and H to activate PnisA fused to a gfp reporter was assessed and found to 276 

differ (21). The promoter was more sensitive to nisin A (1 ng mL-1 – 1 μg mL-1) than nisin H (10 277 

ng mL-1 – 1 μg mL-1) and nisin P (100 ng mL-1 – 10 μg mL-1). Higher concentrations of nisin P 278 

were required to activate the promotor, but it continued to induce promoter activity at higher 279 

concentrations (10 μg mL-1) whereas nisin A and H were capable of inducing the promoter only 280 

up to 1 μg mL-1 concentrations of peptides. The ability to use higher concentrations of nisin P is 281 

most likely due to its decreased antimicrobial activity as compared with nisin A and nisin H. 282 
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While this might advocate for the use of nisin P as an alternative inducer to nisin A, the peptide 283 

does not induce at the lower and commonly used inducing concentration (10 ng mL-1). Notably, 284 

the nisin M mutant generated in this study induces at both low and high concentrations. While  285 

no significant difference in growth of the induced strain compared to the un-induced control was 286 

observed, even at the maximum concentration applied (300 ng mL-1), further evaluation with 287 

even higher concentrations of nisin M are necessary and with a variety of expression host strains. 288 

However, the practicality of using such high concentrations in terms of industrial applications 289 

would need to be considered, given that cell free supernatant from a nisin M producer would be 290 

the most likely option for induction (rather than expensive purified nisin peptides); though a 291 

fermentate analogous to nisaplin (2.5% nisin A) would enable a range of concentrations to be 292 

applied irrespective of the sensitivity of host strains (e.g. induction levels above 10 ng mL-1 nisin 293 

A results in inhibitory effects on the expression strain L. lactis NZ9000) (22). 294 

Additionally, the natural variant nisin Q also displays similar antimicrobial capabilities to that of 295 

nisin A but differs in its ability to induce the nisA promoter (23). Directed mutagenesis and 296 

analysis of the four amino acids which differ between nisin A and nisin Q (A15V, M21L, H27N, 297 

I30V) may help us to more completely understand the pheromone activity of nisin. Remarkably, 298 

in the study by Ge and co-workers the derivatives L16D, L16A, L16H, L16V, M21A, M21D, 299 

and M21N all exhibited enhanced induction properties when assessed by β-Galactosidase assays, 300 

with L16D being particularly notable given it also displays a significant reduction in 301 

antimicrobial activity (16). Other regions of nisin subjected to bioengineering approaches and 302 

shown to impact on induction activity include the C-terminus and in particular serine and 303 

isoleucine at positions 29 and 30, respectively (24). Although the specifics of the interaction 304 

between the nisin peptide and NisK have yet to be fully elucidated, a recent study has provided 305 
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some insight through mutational analysis of NisK. Mutagenesis of conserved residues in the 306 

extracellular region of NisK revealed that several hydrophobic residues including two aromatic 307 

residues (Tyr113 and Phe133) are crucial for NisK in sensing nisin and regulating nisin 308 

biosynthesis (25). 309 

Elimination of the antimicrobial activity of nisin is a priority when aiming to improve the nisin 310 

peptide in terms of its suitability as a peptide inducer, such as in the NICE system. For example, 311 

Reunanen & Saris (2003) developed a method for the quantification of nisin in food samples, 312 

through the construction of a non-nisin producing L. lactis strain (LAC240), with a plasmid 313 

containing a gfp gene under the control of the nisF promoter and the constituent genes of the 314 

nisin two-component regulatory system, nisRK. It was reported that upon the addition of nisin 315 

peptide concentrations greater than 20 ng mL-1, the LAC240 cells became stressed resulting in a 316 

reduction in the quantity of GFP produced and the signal reached the background level when the 317 

concentration of nisin was approximately 60 ng mL-1 (26). Moreover, in a study that aimed to 318 

improve the response of L. lactis to freezing damage through expression of an antifreeze peptide 319 

(SF-P), the recombinant strain L. lactis NZ3900 SF-P was incubated with different 320 

concentrations of nisin (25, 50, or 100 ng mL-1 ) and at various pH and growth temperature 321 

values (27). Notably, maximal expression was observed at 25 ng mL-1, with a much lower level 322 

of expression at 50 ng mL-1 and virtually no expression at 100 ng mL-1, most likely due to the 323 

inhibitory effects of nisin A, though pH and temperature values were also a factor (27). In 324 

another study that sought to optimize the NICE system for the expression of lysostaphin for both 325 

laboratory (1 L) and industrial-scale (3000 L) applications and at high cell densities, the authors 326 

noted that the addition of too much nisin was detrimental for product formation. Notably, when 327 

the culture was induced at higher cell densities, 160 mg L-1 lysostaphin was formed with 20 ng 328 
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mL-1 nisin and 220 mg L-1 lysostaphin was produced when 40 ng mL-1 nisin was used for 329 

induction, indicative of a clear correlation between the cell density at induction and the amount 330 

of nisin that is needed for maximal induction (5). While this group reported that maximum 331 

protein yield in the NICE system is achieved by induction carried out at a cell density of OD600 = 332 

5 with a final concentration of 40 ng mL-1 of nisin, we suggest that Nisin M provides for a 333 

greater flexibility with respect to inducer concentration by virtue of the attenuated antimicrobial 334 

activity of the peptides and the application of high concentrations of inducer peptide is not now a 335 

limiting factor. 336 

To date, a multitude of peptides, enzymes and vaccines of clinical and biotechnological interest 337 

have been overexpressed using nisin, including the anti-bacterial protein lysostaphin (5), a 338 

haemagglutinin of the H5N1 influenza virus (28) and Rotavirus VP6 Protein (29), to name but a 339 

few. Though several improvements have been made to the NICE system, further improvements 340 

are possible. For example, streamlined-genome mutants of L. lactis NZ9000 were generated by 341 

deletion of four large nonessential DNA regions accounting for 2.83% of the genome and 342 

evaluated as microbial cell factories for recombinant protein production. Indeed, following nisin 343 

induction, not only was the transcriptional efficiency improved but also the production levels of 344 

the expressed reporters were approximately three to fourfold enhanced compared with the wild 345 

strain (30). Additionally, expression from the ΔlacF host-strain L. lactis NZ3900 (a strain unable 346 

to utilize lactose), enabled food-grade, lactose-based plasmid selection and induction (31) whilst 347 

deletion of a specific proteinase gene (NZ9000 ΔhtrA) led to increased stability of heterologous-348 

secreted proteins (32). 349 

While the aforementioned studies focused on improving the host strain for expression of 350 

proteins, this study focuses on potential improvements that can be made to the inducing peptide 351 
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via mutagenesis of ring B, which has already been reported as playing an important role in 352 

induction capacity (16, 18). This study has demonstrated that a nisin A variant with 353 

modifications to ring B retained comparable induction capacity to the wild type nisin A peptide 354 

yet exhibited less inhibitory effects on the growth of the strain L. lactis NZ9000 when applied at 355 

concentrations as high as 300 ng mL-1 (0.09 µM). It was also determined this combination has 356 

between >4 and >16 fold less activity against various genera and species of bacteria into which 357 

the NICE system has been introduced, therefore supporting the claim that nisin M exhibits 358 

potential as a suitable alternative to nisin A for use in the NICE system. 359 

This study confirms that random mutagenesis experiments continue to be beneficial with a view 360 

to enhancing the functional properties of the nisin peptide for specific applications and provide 361 

novel nisin variants that exhibit potential for future applications in the pharmaceutical, 362 

biotechnological and industrial fields. 363 

 364 

 365 

 366 

 367 

 368 

 369 

 370 

 371 

 372 
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 373 

 374 

 375 

Materials and Methods: 376 

Bacterial strains and plasmids 377 

Bacterial strains and plasmids used in this study are listed in Table 3. 378 

Creation and analysis of a bank of nisin A ring-B derivatives 379 

Mutagenesis of the nisA gene was carried out as described previously (7). Briefly, saturation 380 

mutagenesis was carried out using pDF05 (pCI372-nisA) as template and using oligonucleotides 381 

as listed in (Table 4) containing an NNK codon in place of each native codon. PCR amplification 382 

was performed in a total volume of 50 μL with 0.5 ng of target DNA (pCI372-nisA), 1 unit 383 

Phusion High-Fidelity DNA polymerase (Finnzymes, Finland), 1 mM dNTPs and 500 ng each of 384 

the appropriate forward and reverse oligonucleotides. The reaction was pre-heated at 98°C for 385 

2 min, and then incubated for 29 cycles at 98°C for 30 s, 55°C for 15 s and 72°C for 3 min 30 s, 386 

and then finished by incubating at 72°C for 3 min 30 s. Amplified products were treated with 387 

Dpn1 (Stratagene) for 60 min at 37°C to digest template DNA and purified using the QIAquick 388 

PCR purification kit. Following transformation of E. coli Top 10 cells plasmid DNA was isolated 389 

and sequenced using primers pCI372FOR and pCI372REV (Table 4) to verify that mutagenesis 390 

had taken place. The purified products were subsequently introduced by electroporation into the 391 

strain L. lactis NZ9800 which has all the genes necessary for nisin production. Approximately 392 

150 transformants were chosen at random for each single position (P9X and G10X) and 1152 393 
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transformants for the randomised P9XG10X bank. Isolated colonies were inoculated into 96-well 394 

plates containing GM17 Cm10, incubated overnight and stored at −20°C after addition of 80% 395 

glycerol. Deferred antagonism assays were performed by replicating strains on GM17 agar plates 396 

and allowing them to grow overnight before overlaying with GM17 agar (0.75% w/v agar) 397 

seeded with the L. lactis HP indicator strain. Induction assays were carried out by replicating 398 

strains from each 96 well plate into a fresh 96 well plate containing GM17 broth pre-inoculated 399 

with L. lactis NZ9000 pNZ8150gfp+, in which GFP acts as a reporter of expression from a nisin 400 

inducible promoter (24).  Induction of GFP was monitored over 20 hours in terms of relative 401 

fluorescence units (RFU) using a TECAN Genios Fluorescence, Absorbance and Luminescence 402 

Reader using excitation and emission spectra of 485nm and 535nm, respectively. 403 

 404 

MALDI TOF Mass Spectrometry 405 

For Colony Mass Spectrometry (CMS), bacterial colonies of P9X and G10X mutants were 406 

collected with sterile plastic loops and mixed with 50 μL of 70% IPA containing 0.1% 407 

Trifluoroacetic acid (TFA). The suspension was vortexed, the cells centrifuged in a benchtop 408 

centrifuge at 8260 g for 2 min and the supernatant was removed for analysis. For MALDI TOF 409 

Mass Spectrometry of nisin M cell free supernatant (CFS) was purified prepared as follows; a 410 

1% inoculum of nisin mutant producing strains were grown overnight in 50 mL clarified TY 411 

broth and incubated overnight at 30°C. Following incubation cells were centrifuged at 5000rpm 412 

for 20 mins at 4°C. Cell free supernatant (CFS) was removed and passed through a 1 g (6 mL) 413 

Strata C-18 E column (Phenomenex) pre-equilibrated with 6 mL methanol (Fisher Scientific, 414 

UK) and 6 mL HPLC grade H2O. The column was washed with 12 mL 30% ethanol and nisin 415 

eluted using 5 mL 70% isopropanol – 0.1% TFA. Mass Spectrometry in all cases was performed 416 
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with an Axima TOF2 MALDI TOF mass spectrometer (Shimadzu Biotech, Manchester, UK). A 417 

0.5 μL aliquot of matrix solution (alpha-cyano-4-hydroxycinnamic acid (CHCA), 10 mg mL-1 in 418 

50% acetonitrile-0.1% (v/v) TFA) was placed onto the target and left for 1-2 min before being 419 

removed. The residual solution was then air dried and the sample solution (re-suspended 420 

lyophilised powder or CMS supernatant) was positioned onto the pre-coated sample spot. Matrix 421 

solution (0.5 μL) was added to the sample and allowed to air-dry. The sample was subsequently 422 

analysed in a positive-ion linear mode. 423 

 424 

Purification of nisin A and nisin M 425 

Purifications of nisin A and variant, nisin M were carried out as per a previously employed (33) 426 

with modifications. Briefly, overnight cultures of L. lactis NZ9800 pDF05nisM (APC3920) 427 

and L. lactis NZ9700 were inoculated at 0.5% into separate purified tryptone-yeast extract (TY) 428 

broth (2 × 900 mL) supplemented with 20% glucose and 20% β-glycerophosphate, and incubated 429 

at 30°C overnight. Following incubation, the cultures were centrifuged at 6500g at 4°C for 15 430 

min. The supernatant was passed through a column containing ~70g Amberlite XAD-16 beads 431 

and subsequently washed with 500 mL of 30% ethanol. The nisin was eluted from the column 432 

using 70% isopropanol containing 0.1% trifluoroacetic acid (TFA). Simultaneously, bacterial 433 

cell pellets were resuspended in 300 mL 70% isopropanol – 0.1% TFA and stirred at room 434 

temperature for 3 h. This cell suspension was then centrifuged at 5000g at 4°C for 10 min and 435 

the supernatant was retained. The column eluant was pooled with the post-centrifugation 436 

supernatant and isopropanol evaporated using a rotary evaporator (BÜCHI Rotavapor R-205, 437 

Switzerland). The pH of the sample was adjusted to pH 4.0 and was subsequently passed through 438 

a 10 g (60 mL) Strata C-18 E column (Phenomenex) pre-equilibrated with 60 mL methanol 439 
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(Fisher Scientific, UK) and 60 mL HPLC grade H2O. After applying 120 mL 30% ethanol, nisin 440 

was eluted from the column using 60 ml 70% isopropanol – 0.1% TFA. For HPLC purification 441 

12 mL volumes were concentrated to a volume of 2 mL by rotary evaporation and applied to a 442 

Phenomenex C12 reverse-phase (RP-HPLC) column (Jupiter 4 μm proteo 90 Å, 250 mm × 10.0 443 

mm, 4 μm) previously equilibrated with 25% acetonitrile-0.1% TFA. Nisin was eluted via a 444 

gradient of 25–50% acetonitrile-0.1% TFA that was developed from 10–40 min at a flow rate of 445 

3.2 mL min-1. Nisin containing fractions were pooled and acetonitrile removed by rotary 446 

evaporation. The purified peptides were lyophilised and stored at -20°C. 447 

 448 

Minimum Inhibitory Concentration (MIC) Assays 449 

MIC’s were also carried out on strains into which the NICE system was reported to have been 450 

introduced including, Lactobacillus plantarum (Lb. plantarum) and Lactobacillus brevis (Lb. 451 

brevis) in order to determine the potential of nisin M as an alternative to nisin A in the NICE 452 

system. 453 

Minimum inhibitory concentration determinations for strains were carried out in triplicate in 96 454 

well microtitre plates (Sarstedt) as described previously (34). Plates were pre-treated with bovine 455 

serum albumin (BSA) prior to addition of the peptides. Briefly, to each well of the microtitre 456 

plate 200 µL of phosphate buffered saline (PBS) containing 1% (w/v) bovine serum albumin 457 

(BSA) was added and incubated at 37°C for 30 min. The wells were washed with 200 µL PBS 458 

and allowed to dry. Target strains, L. lactis spp. cremoris HP, L. lactis NZ9000 pNZ8150gfp+ 459 

were grown overnight in M17 broth (Sigma) supplemented with glucose (0.5%) at 30°C. Lb. 460 

plantarum and Lb. brevis were grown overnight in MRS broth (Oxoid) at 30°C. Strains were 461 
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sub-cultured into fresh broth and allowed to grow to an OD600 of ∼0.5, diluted to a final 462 

concentration of 105 cfu mL−1 in a volume of 0.2 mL. Nisin A and nisin M peptides were 463 

adjusted to a 750 nM starting concentration and 2-fold serial dilutions of each peptide was added 464 

to the target strain. After incubation for 16 h at 30°C the MIC was read as the lowest peptide 465 

concentration causing inhibition of visible growth. 466 

 467 

Comparison of nisin A and nisin M induction capacity using beta-galactosidase activity 468 

β-galactosidase activity assay was performed as previously employed (35) with modifications. 469 

Cultures of L. lactis NZ9000 pPTPLβgal+ were inoculated in M17 broth (Sigma), supplemented 470 

with glucose at 0.5% (GM17) and tetracycline (10 µg mL-1), and incubated at 30˚C overnight. 471 

Following incubation, a 1% inoculum of each replicate was sub-cultured into fresh GM17 472 

medium and incubated at 30˚C until an OD600 of 0.2-0.3 was reached. Cells were then treated 473 

separately with nisin A and nisin M purified peptides to a final concentration of 10 ng mL-1. 474 

Every hour 1 mL samples of each test were transferred to an eppendorf and centrifuged at 13,000 475 

rpm for 2 minutes (Sorvall Legend Micro 17 centrifuge, Thermo Scientific) to harvest cells. 476 

Cells were re-suspended in 1 mL lacZ buffer and 0.5 mL of this was treated with 12.5 µL of 477 

0.1% SDS and 25 µL of chloroform and incubated at 30°C for 5 minutes to dissolve cell 478 

membranes. Following incubation 100 µL of 2-Nitrophenyl-β-D-galactopyranoside (ONPG) (4 479 

mg mL-1) (Sigma-Aldrich) was added to each sample and incubated at 37°C until a yellow colour 480 

developed. To stop the reaction samples were treated with 250 µL of a 1 M sodium carbonate 481 

solution and centrifuged at 8000rpm for 5 minutes (Thermo Scientific). Absorbance readings of 482 

supernatant were read at OD420 and OD550 (SpectraMax M3 spectrophotometer, Molecular 483 
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Devices, Sunnyvale, California, USA). Measurement of β-galactosidase activity of samples was 484 

calculated as 1000 × (OD420 – [1.75 × OD550])/ (t × v × OD600) as previously described (16). 485 

 486 

Assessment of purified nisin A and nisin M induction capacity using a green fluorescent protein 487 

reporter system. 488 

Induction assays were performed previously described (24) with modifications. Briefly, cultures 489 

of L. lactis NZ9000 pNZ8150gfp+ were inoculated in M17 broth (Sigma), supplemented with 490 

glucose at 0.5% (GM17) with chloramphenicol (10 µg mL-1) and incubated at 30˚C overnight. 491 

Following incubation, a 1% inoculum of each replicate was sub-cultured into fresh GM17 492 

medium and incubated at 30˚C until an OD600 of ~0.5 was reached. Cells were then diluted to a 493 

final concentration of 105 cfu mL-1 and treated with nisin A and nisin M at final concentrations of 494 

10 ng mL-1, 50 ng mL-1, 100 ng mL-1 and 300 ng mL-1. Subsequently, 2 mL was transferred to 495 

black, 24 well microtitre plates (PerkinElmer) for induction and 200 µL into a 96 well plate 496 

(Sarstedt) for absorbance readings. Fluorescence was detected using a SpectraMax M3 497 

spectrophotometer (Molecular Devices, Sunnyvale, California, USA) where excitation and 498 

emission parameters were set to 485nm and 528nm respectively for fluorescence, while 499 

absorbance readings were taken at OD595 using a Multiskan FC microplate photometer v1.01.14 500 

(Thermo Scientific, Waltham, Massachusetts, USA). Baseline absorbance of un-cultured GM17 501 

was subtracted from the fluorescence and absorbance readings of all test samples using SoftMax 502 

Pro v6.3 and SkanIt RE v4.1 software, respectively. Fluorescence was reported as relative light 503 

units (RLU) and absorbance as OD595nm. Tests were carried out in triplicate. 504 

 505 

 506 
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 507 

 508 

Statistical analysis 509 

Statistical analysis was carried out with SPSS Statistics v2. A test of normality was performed to 510 

determine data for each test was normally distributed. For normally distributed data a Repeated 511 

Measures ANOVA was performed. For data not normally distributed a Levene’s test of 512 

homogeneity was performed, where if equal variances were assumed the Repeated Measures 513 

ANOVA was carried out; and if equal variances were not assumed the non-parametric Friedman 514 

test was performed to determine if differences between the two nisin variants induction capacity, 515 

and between the growth of the strains when induced with the peptides at higher concentrations 516 

compared to an un-induced control were significant. For ANOVA/Friedman’s results with a 517 

significant difference between groups (P <.05) a post hoc test was performed. Post hoc tests for 518 

normally distributed/equal variances assumed samples was the Bonferroni test, and for non-519 

normally distributed/equal variances not assumed samples Dunnett’s T3 test was performed. The 520 

significance threshold for all ANOVA’s and non-parametric tests performed was set at .05. 521 
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Table 1. Mass spectrometry analysis of selected derivatives 638 

 639 

 640 

Table 2: MIC of nisin A and nisin M against standard indicator strains (including those reported 641 

to have had the NICE system introduced). 642 

Indicator organism Nisin A µg mL-1 

(µM) 

Nisin M µg mL-1 

(µM) 

Fold decrease in 

activity 

Lb. plantarum UCC16 0.625 (0.1875) >2.5 (>0.750) >4 

L. lactis NZ9000 

pNZ8150gfp+ 

0.156 (0.046) >2.5 (>0.750) >16 

Ring B 

Derivative 

Predicted 

Mass (Da) 

Actual Mass 

(Da) 

Dehydrations Ref 

Observed Lacking  

P9A 3328 3327.87 8 0 This study 

(16) 

P9T 3357 

 

3356.67 

3339.62 

8 

9 

1 

0 

This study 

 

P9S 3343 

 

3342.73 

3324.69 

8 1 This study 

 

G10A 3366 3367.14 8 0 This study 

(18) 

G10T 3398 3397.76 

 

8 1 This study 

(18) 

G10S 3384 

 

3384.57 

3367.23 

8 

9 

1 

0 

This study 

(18) 

P9T/G10T 

(nisin M) 

3402 

 

3399.86 

3382.91 

3365.33 

8 

9 

10 

2 

1 

0 

This study 

Nisin A 3354 3353.44 8 0  
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L. lactis NZ9000 

pNZ8150 

0.156 (0.046) 2.5 (0.750) 16 

Lb. brevis SA-C12 0.078 (0.0234) 1.25 (0.375) 16 

L. lactis spp. cremoris HP 0.156 (0.0468) 2.5 (0.750) 16 

 643 

 644 

Table 3: Bacterial strains and plasmids used in this study 645 

Strain or Plasmid Characteristic Reference 

L. lactis NZ9000 

 

 

MG1363 derivative, NisRK integrated 

into pepN gene (pepN-). 

Most commonly used host of the 

NICE system. 

(22) 

(4) 

 

L. lactis NZ9000 pNZ8150 NZ9000 strain harbouring pNZ8150. 

pNZ8150: ScaI site for translational 

fusions, standard vector for NICE 

system, CmR. 

 

(4) 

L. lactis NZ9000 

pNZ8150gfp+ 

NZ9000 strain harbouring pNZ8150 

gfp+ under PnisA promoter. CmR. 

(24) 

L. lactis NZ9000 

pPTPLβgal+ 

NZ9000 strain harbouring low copy 

plasmid pPTPL with β-galactosidase 

expressing gene under the control of 

the PnisA promoter. TetR 

(7) 

L. lactis NZ9800 Derivative of NZ9700 with 4bp 

deletion rendering an inactive nisin 

operon (ΔnisA), except nisRK genes. 

Host of the NICE system. 

(22, 36) 

 

L. lactis NZ9800 pDF05 

 

NZ9800 harbouring pDF05 (pCI372 

with nisA under its own promoter). 

Wild type nisin A producer, CmR. 

(22, 36) 

(7) 
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L. lactis NZ9800 

pDF05nisM 

 

 

pDF05 where codons 9 and 10 of nisA 

have been randomized. Nisin M 

producer, CmR. 

This work 

UCC Culture 

Collection 

(APC3920) 

 

Lb. plantarum UCC16 Nisin sensitive indicator 

Species in which NICE system has 

been utilized. 

UCC Culture 

Collection 

(4, 19) 

Lb. brevis SA-C12 Nisin sensitive indicator 

Species in which NICE system has 

been utilized. 

UCC Culture 

Collection 

(4, 37) 

L. lactis ssp. cremoris HP Nisin sensitive indicator strain UCC Culture 

Collection 

 646 

 647 

Table 4. Oligonucleotides utilised in this study. 648 

Primer name Sequence 

NisP9degFOR 5’ CTA TGT ACA NNK GGT TGT AAA ACA GGA GCT CTG ATG 

GGT 3’ 

NisP9degREV 5’ TTT ACA ACC MNN TGT ACA TAG CGA AAT ACT TGT AAT 

GCG 3’ 

NisG10degFOR 5’ TGT ACA CCC NNK TGT AAA ACA GGA GCT CTG ATG GGT 

TGT 3’ 

NisG10degREV 5’ TGT TTT ACA MNN GGG TGT ACA TAG CGA AAT ACT TGT 

AAT 3’ 

NisP9G10degFOR 5’ CTA TGT ACA NNK NNK TGT AAA ACA GGA GCT CTG ATG 

GGT 3’ 

NisP9G10degREV 5’ TTT ACA MNN MNN TGT ACA TAG CGA AAT ACT TGT AAT 
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 649 

 650 

 651 

 652 

 653 

 654 

 655 

 656 

 657 

 658 

 659 

 660 

 661 

 662 

Figure 1. Induction and antimicrobial activity analyses of nisin mutants with substitutions at (A)  663 

position 9 and (B) position 10.  Induction capacity (red) and antimicrobial activity (green) is 664 

GCG 3’ 

pCI372For 5’ CGGGAAGCTAGAGTAAGTAG  3' 

 

pCI372Rev 5’ ACCTCTCGGTTATGAGTTAG 3’ 
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shown as percentages (%) and ordered from highest to lowest based on biological activity of the 665 

variants. 666 

 667 

Figure 2. A: (Top) Biological activity of nisin A and nisin M as determined by deferred 668 

antagonism assays and assessment of induction capacity following induction of a L. lactis strain 669 

containing gfp+ under control of the nisin promoter. (Bottom) Colony Mass Spectrometry of the 670 

wild type nisin A producer (3353.44 Da) and nisin M comprising of a combination of 671 

unmodified peptide, single dehydration or two dehydrations at P9T/G10T (3399.86 Da, 3382.91 672 

Da, and 3365.33 Da respectively). B: Structure of nisin A where amino acids are represented by 673 

their single letter codes and modified residues are indicated as follows; Dha: dehydroalanine, 674 

Dhb: dehydrobutyrine, Abu: 2-aminoabutyric acid, Ala-S-Ala: lanthionine, Abu-S-Ala: 675 

methyllanthionine. Residues in orange and pink show amino acid substitutions for nisin M, 676 

producing 4 possible forms of the peptide. 677 

 678 

Figure 3. Induction capacity of nisin A (red/circle) and nisin M (blue/square) determined by 679 

expression of (A) GFP and (B) β-galactosidase reporter genes under the control of the PnisA 680 

promoter in L. lactis NZ9000 pNZ8150gfp+ and L. lactis NZ9000 pPTPLβgal+ respectively 681 

when induced at a final concentration of 10 ng mL-1. Negative controls (green/triangle) are 682 

uninduced test strains. Statistical analysis shows there is no significant difference between the 683 

induction capacities of nisin M and nisin A in both methods tested (P> .05). 684 

 685 
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Figure 4. Comparison of induction capacities of nisin A (red/circle), nisin M (blue/square) 686 

determined by expression of GFP  under the control of the PnisA promoter in L. lactis 687 

pNZ8150gfp+ induced at final concentrations of (A) 50 ng mL-1, (B) 100 ng mL-1 and (C) 300 688 

ng mL-1. Statistical analysis demonstrates a significant difference between induction capacity of 689 

the two peptides at all concentrations tested, (P< .0005)  Negative control in this assay is 690 

uninduced L. lactis NZ9000 pNZ8150gfp+ (green/triangle). 691 

 692 

Figure 5. Effects of nisin A (red/circle) and nisin M (blue/square) on growth of  L. lactis NZ9000 693 

pNZ8150gfp+ induced at concentrations of (A) 50 ng mL-1, (B) 100 ng mL-1 and (C) 300 ng mL-
694 

1 compared to an un-induced control (green/triangle) determined by absorbance at OD595nm. 695 

Results show no significant difference between growth of the uninduced control and cells 696 

induced with nisin M at all concentrations tested (P> .05); while there is a significant difference 697 

between the growth of cells induced with WT nisin compared to both the uninduced control (50 698 

ng mL-1:  P< .0005; 100 ng mL-1: P< .0005; 300 ng mL-1: P< .0005), and samples induced with 699 

nisin M (50 ng mL-1: P< .05; 100 ng mL-1: P< .0005; 300 ng mL-1: P< .0005). 700 

 701 

 702 

 703 

 704 
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