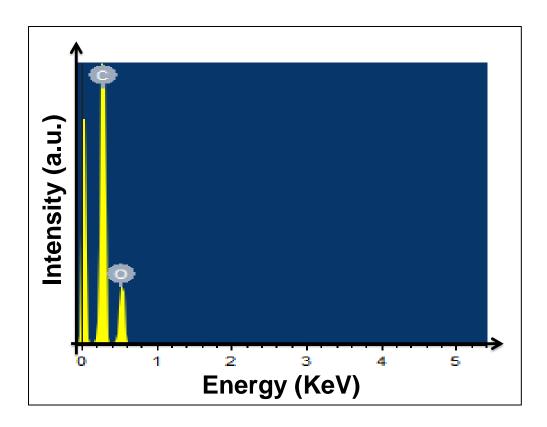
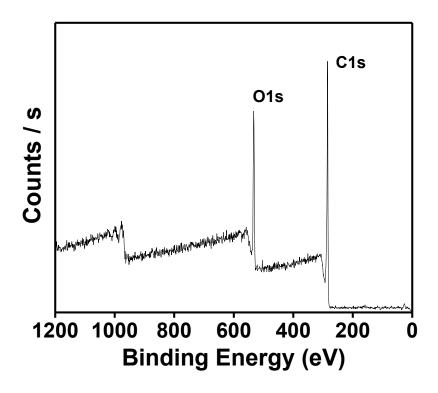


Title	Natural carbonized sugar as a low-temperature ammonia sensor material: experimental, theoretical and computational studies
Authors	Ghule, Balaji G.;Shaikh, Shoyebmohamad F.;Ekar, Satish U.;Nakate, Umesh Tukaram;Gunturu, Krishna Chaitanya;Shinde, Nanasaheb;Naushad, Mu;Kim, Kwang Ho;O'Dwyer, Colm;Mane, Rajaram
Publication date	2017-11-20
Original Citation	Ghule, B., Shaikh, S. F., Ekar, S., Nakate, U. T., Gunturu, K. C., Shinde, N., Naushad, M., Kim, K. H., O'Dwyer, C. and Mane, R. (2017) 'Natural carbonized sugar as a low-temperature ammonia sensor material: experimental, theoretical and computational studies', ACS Applied Materials and Interfaces, 9(49), pp. 43051–43060. doi:10.1021/acsami.7b13122
Type of publication	Article (peer-reviewed)
Link to publisher's version	10.1021/acsami.7b13122
Rights	© 2017, American Chemical Society. This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials and Interfaces © American Chemical Society, after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/10.1021/acsami.7b13122
Download date	2024-04-19 02:34:59
Item downloaded from	https://hdl.handle.net/10468/5210

Supporting Information:


Natural Carbonized Sugar as a Low-temperature

Ammonia Sensor Material: Experimental,


Theoretical and Computational Studies

Balaji G. Ghule, Shoyebmohamad Shaikh, Satish U. Ekar, Umesh Nakate, Krishna Chaitanya Gunturu, Nanasaheb M. Shinde, Mu. Naushad, Kwang Ho Kim, Colm O'Dwyer, and Rajaram S.

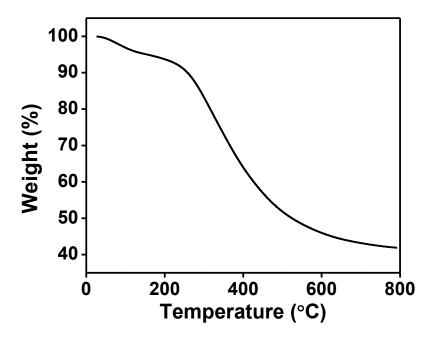

Mane

Figure S1: EDX analysis of CS sample showing presence of only carbon and oxygen without any other impurities.

Figure S2: XPS survey of CS sample showing presence of only carbon and oxygen without any other impurities.

Figure S3: TGA of CS sample showing loss of material with respect to temperature.