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Abstract: The majority of genetic variants affecting complex traits map to regulatory regions of
genes, and typically lie in credible intervals of 100 or more SNPs. Fine mapping of the causal
variant(s) at a locus depends on assays that are able to discriminate the effects of polymorphisms or
mutations on gene expression. Here, we evaluated a moderate-throughput CRISPR-Cas9 mutagenesis
approach, based on replicated measurement of transcript abundance in single-cell clones, by deleting
candidate regulatory SNPs, affecting four genes known to be affected by large-effect expression
Quantitative Trait Loci (eQTL) in leukocytes, and using Fluidigm qRT-PCR to monitor gene expression
in HL60 pro-myeloid human cells. We concluded that there were multiple constraints that rendered
the approach generally infeasible for fine mapping. These included the non-targetability of many
regulatory SNPs, clonal variability of single-cell derivatives, and expense. Power calculations based on
the measured variance attributable to major sources of experimental error indicated that typical eQTL
explaining 10% of the variation in expression of a gene would usually require at least eight biological
replicates of each clone. Scanning across credible intervals with this approach is not recommended.

Keywords: eQTL; CRISPR-Cas9; single-cell clone; fine-mapping; power

1. Introduction

Genome-wide association studies (GWAS) over the past decade have been highly successful in
identifying tens of thousands of loci influencing disease risk [1–3], but the fine mapping of causal
variants has failed to keep pace. Exhaustive studies of Crohn’s disease and type 2 diabetes associations,
for example, indicate that the average credible interval size for hundreds of loci remains over 100 SNPs,
and fewer than 15% of the loci have been reduced to a single high-confidence causal polymorphism [4,5].
This gap in knowledge impedes both the understanding of the biological functions of risk loci and
the progress in clinical genetic risk assessment. There are three main challenges to fine mapping.
First, the haplotype structure of the human genome ensures that multiple SNPs lie in high linkage
disequilibrium (LD) with the peak association signal so that it is rarely possible to promote one variant
as causal on statistical evidence alone. Second, it is now clear that at least one-third of loci harbor
multiple independent associations, most with overlapping credible intervals [4–6]. Third, the majority
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of the risk loci are located in non-coding regions of genes [7,8], where they exert their function through
regulation of gene expression. Tools for predicting the function of such causal variants generally have
low predictive value [9,10].

Moderate-to-high throughput methods are needed to prioritize likely causal variants by
experimentally monitoring their effects on gene expression [11]. Two broad classes of approaches have
been described: massively parallel reporter assays and genome editing. Massively parallel reporter
assays a couple of short segments of potentially regulatory DNA to guide barcodes, which are transcribed
following transfection into cells or animals. Sequencing approaches allow identification of under- or
over-represented barcodes, indicating differential expression due, for example, to polymorphisms.
Genome editing approaches now most commonly use CRISPR-Cas9 to introduce short insertions,
deletions, and substitutions into targetable regions across the whole genome. RNA sequencing or other
functional readouts, such as fluorescence of a reporter gene, can be used to monitor the impact of specific
variants. Recent CRISPRi and CRISPRa pooled screening assays utilize catalytically dead/inactivated
Cas9 enzymes (dCas9) that bind to but do not cut the target site. These modified Cas9s have their
endonuclease activity removed, but they are still able to bind to the target sites where they contribute
to inhibition or activation of gene expression via fused effector domains, such as KRAB (CRISPRi) and
VP64 (CRISPRa). They have enabled high-throughput screening of genomic elements, influencing
transcription [12] and cellular phenotypes [13–16], with single-cell transcriptome readout. However,
the majority of these strategies screen regulatory intervals rather than individual SNPs, so they are not
appropriate for fine-mapping causal variants.

Here, we showed the feasibility of gene-centric single-cell clonal analysis, focusing on a handful
of genes known to influence the risk of inflammatory bowel disease (IBD) through modulation of
gene expression in immune cells. Specifically, we chose to examine four genes with evidence for two
independent cis-expression Quantitative Trait Loci (eQTL) intervals each, as well as GWAS-significant
associations with IBD. The CDGSH iron-sulfur domain 1, CISD1, and serologically defined colon cancer
antigen 3, SDCCAG3, genes are associated with both ulcerative colitis and Crohn’s disease [17,18].
The autocrine motility factor receptor, AMFR, encodes a glycosylated transmembrane receptor that is
also an E3 ubiquitin ligase, knockdown of which in the acute monocytic leukemia cell line, THP-1,
induces cell cycle arrest and apoptosis, indicating a critical role for AMFR in cell proliferation [19].
NFXL1 is one of the most up-regulated genes in IL-4 induced macrophages [20].

We used an experimental strategy for targeted SNP evaluation wherein microdeletions targeting
candidate eSNPs were introduced by CRISPR-Cas9 and then isolated as single-cell clones on a
uniform genetic background. Although homology-directed repair (HDR) would provide a more
precise evaluation of allelic replacement, the low efficiency relative to non-homologous end joining
(NHEJ) and expectation that indels might have larger effects led us to use NHEJ in these experiments.
We chose the HL60 cell line, a pro-myelocytic lineage, which can be induced to undergo differentiation
toward neutrophil- or monocyte-like fate, allowing the evaluation of SNP effects in different cell
types. Given the challenges in demonstrating conclusively the impacts of a single causal variant,
we discussed sources of experimental variance encountered with this strategy, including batch, clonal,
and differentiation effects, and used these to derive realistic power estimates for dissection of causal
variants. Comparing these estimates with empirically defined eQTL effect sizes, we concluded that
this approach is generally incapable of resolving most regulatory associations to single causal variants.

2. Materials and Methods

2.1. eGenes, Candidate eSNPs, and Control SNP Selection

The eGenes CISD1 and SDCCAG3 were chosen due to the colocalization of eQTL signals and
association with inflammatory bowel disease [21]. NFXL1 and AMFR were included as they are
essential for myeloid cell differentiation. Candidate eSNPs were selected from one of at least two
independent eQTL credible intervals at each locus identified in a multiple eQTL studies using stepwise
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conditional regression [6] in two large peripheral blood microarray datasets—the Consortium for
the Architecture of Gene Expression (CAGE) [22] and Framingham Heart Study (FHS). They were
also confirmed to be eQTL in monocytes [23]. It remains possible that they are not actually active in
HL60 cells or their derivatives, and our experiments should be interpreted with this in mind. We also
evaluated each SNP in the credible interval with Combined Annotation Dependent Depletion (CADD)
score [24] and evolutionary probability (EP) [25]. In each credible interval, we chose the SNP with
the lowest p-value, named as “Top SNP”, SNPs with low evolutionary probabilities (EP) of the minor
allele and (or) high CADD scores, named as “Both” and “High CADD”, respectively (Table 1). We also
picked SNPs as negative controls with no eQTL signals and in linkage equilibrium with the top SNP,
named as “Control”. Conditional eQTL profiles can be visualized using our eQTL Hub shiny browser
at http://bloodqtlshiny.biosci.gatech.edu/.

Table 1. Guide RNAs and target SNPs. Each guide RNA targets on the “SNP”, which is within a
credible set of “gene”. The effect size (z-score) of each SNP from the eQTLGen browser [26]. “Top SNP”
is the SNP with the lowest p-value in the credible set. Several criteria were used to predict the likelihood
of candidate SNPs: “High CADD” is the SNP with high CADD (Combined Annotation Dependent
Depletion) score that has a high level of deleteriousness of its variants, including Indel variants; “Top”
is the SNP with the strongest signal of eQTL-mapping; “Both” is the SNP with both high CADD score
and low evolutionary probabilities (EP) of the minor allele; “Control” is the negative control SNP in
high linkage disequilibrium (LD) with the top SNP but low CADD and normal EP.

gRNA Gene Top SNP SNP Z-Score Type Genome Location Coding Region

RG14 SDCCAG3 rs10870171 rs3812594 −34.60 High CADD Exon of SEC16A Yes
RG16 CISD1 rs4397793 rs4397793 −23.84 Top Intron of TFAM No
RG17 CISD1 rs4397793 rs648138 −70.54 Control Intergenic of TFAM No
RG19 CISD1 rs2590375 rs2590363 −100.37 Both Intron of IPMK No
RG20 CISD1 rs2590375 rs1416763 −100.27 Both Intron of CISD1 No
RG26 NFXL1 rs116521751 rs321622 −63.35 Both Intron of NIPAL1 No
RG34 AMFR rs8060037 rs8060037 −14.09 Top Intron of NUDT21 No

2.2. SNP-Targeting and gRNA Screening Design

The chromosomal position of each candidate SNP in reference genome hg19 was obtained from
the dbSNP database [27] by searching their RSID. The sequences flanking the targeted SNP were
fetched from the NCBI Reference Sequence (RefSeq), providing a gRNA screening window [28]. In each
window, all the 19-base sequences followed by the correct Streptococcus pyogenes Cas9 protospacer
adjacent motif (PAM) sequence (NGG) were collected as candidate gRNAs. gRNAs with GC rate over
80% or less than 10% were filtered out to assure better-cutting performance, and only the gRNAs with
a distance of cut site to targeted SNP not more than 10 nucleotides were selected for off-target effect
analysis. The in silico predictions of their off-target effects were tested using COSMID [29]. The online
tool is available through https://crispr.bme.gatech.edu/.

2.3. Single-Cell Clone Generation

HL60 (ATCC, Manassas, VA, USA, CCL-240) and HL60/S4 (ATCC, Manassas, VA, USA, CRL-3306)
cells were grown in suspension at 2 × 105 to 1 × 106 cells/mL in RPMI-1640 with 10% FBS, 2 mM
L-glutamine, and 100 µg/mL normocin. After culturing for 18 h to 24 h, cells were pelleted at 200 g for
3 min. Used media was collected and filtered to obtain conditioned media. Bulk cell suspensions were
serially diluted on a 96-well plate with conditioned media to facilitate cell growth. Statistically, there
were wells that only had a single-cell. Alternatively, some single-cell clones were generated by sorting
bulk cells by flow cytometry on a BD FacsAria Fusion with 100-micron nozzle at 37 ◦C and seeded
onto each well of a 96-well plate with the same conditioned media.

http://bloodqtlshiny.biosci.gatech.edu/
https://crispr.bme.gatech.edu/
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2.4. Myeloid Lineage Differentiation

The differentiation of cells into neutrophils was achieved by culturing with 1 µM retinoic acid
(RA) [30]. Cells were seeded 18 h before treatment at 2× 105 cells/mL. HL60 cells were treated for 4 days,
and HL60/S4 were treated for 2 days. During differentiation, cell density and viability were checked
every 24 h to maintain 2 × 105 to 1 × 106 cells/mL cell density. Additional culture media with RA was
added if needed. Cells treated with the same volume of ethanol were used as a negative control.

Differentiation of cells into monocytes was achieved by culturing with 100 nM α1,
25-dihydroxyvitamin D3 (D3) dissolved in ethanol [31]. Cells were seeded at 1.5 × 105 cells/mL at least
18 h before treatment. Both HL60 cells and HL60/S4 were treated for 3 days. During differentiation, alive
cell density was checked and normalized every 24 h to maintain 2.5 × 105/mL cell density. Additional
culture media with D3 was added if required. Cells treated with the same volume of ethanol were
used as negative controls.

2.5. Flow Cytometry

After collection, cells were washed with PBS twice at room temperature. Cells under neutrophil
differentiation were then incubated with 7-aminoactinomycin D (7-AAD) (ThermoFisher Scientific,
Waltham, MA, USA, cat. No. A1310) and PE-conjugated mouse anti-human CD11b (clone ICRF44)
(BD Biosciences, San Jose, CA, USA, cat. No. 557321) or PE-conjugated isotype control mouse mAb
(clone: MOPC-21) (Biolegend, San Diego, CA, USA, cat. No. 400112) for 40 min at 4 ◦C in the dark.
Samples were analyzed by BD FacsAria Fusion with a 100-micron nozzle at 4 ◦C. Cells under monocyte
differentiation were incubated with V450 mouse anti-human CD14 (BD Biosciences, San Jose, CA, USA,
cat. No. 560349) and adenomatous polyposis coli (APC) mouse anti-human CD71 (BD Biosciences,
San Jose, CA, USA, cat. No. 551374) or V450 mouse IgG2b (BD Biosciences, San Jose, CA, USA, cat. No.
560374) and APC mouse IgG1 (BD Biosciences, San Jose, CA, USA, cat. No. 555751) for isotype control.
Samples were analyzed by BD FACSMelody at 4 ◦C. All data were analyzed with FlowJo software
v10.6.1 downloaded from https://www.flowjo.com/.

2.6. Immunofluorescence

After collection, cells were washed with PBS twice at room temperature. Then, cells were incubated
with Hoechst-33342 (ThermoFisher, Waltham, MA, USA, cat. No. H3570) for 10 to 15 min at 37 ◦C
in the dark. Ten microliters of the cell suspension were used to make a slide, which was sealed with
clear nail polish. UV excitation and microscopic imaging were done on an Olympus IX73 inverted
microscope system.

2.7. RNA Isolation

Cells were grown in suspension at 2 × 105 to 1 × 106 cells/mL in RPMI-1640 with 10% FBS, 2 mM
L-glutamine, and 100 µg/mL normocin. Cells were seeded at 2 × 105 cells/mL 18 h to 24 h before
extraction. Each clone had two biological replicates, except bulk HL60/S4. One million cells from each
sample were collected by centrifuging at 300 g for 5 min. Total RNA was isolated and purified by
RNeasy Plus Mini Kit (Qiagen, Hilden, Germany, cat. Nos. 74,134 and 74,136). Quality control of RNA
samples was assessed with a Bioanalyzer 2100 instrument (Agilent, Santa Clara, CA, USA).

2.8. Bulk RNA-Seq and Differential Gene Expression Analysis

cDNA library preparation for single-cell clones was performed using Illumina TruSeq Stranded
Sample Preparation, Low Sample (LS) Protocol. Sequencing was performed on an Illumina HiSeq
2500 at Georgia Tech, generating 100 bp paired-end libraries with an average of 51.8 million paired
reads per sample. Library preparation for differentiated cells was performed using the NEBNext
Ultra II Directional RNA Library Prep Kit for Illumina (New England BioLabs, Ipswich, MA, USA,
cat. No. E7760S). Sequencing was performed on Illumina NextSeq, high output, generating 75 bp

https://www.flowjo.com/
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paired-end libraries with an average of 36 million paired reads per sample. The gene expression data
is available at the Gene Expression Omnibus (GEO) under the accession code GSE135507.

RNA-Seq quality control was initiated with Trim Galore, which was used to trim the 13 bp
Illumina standard adapter (‘AGATCGGAAGAGC’) by default, after which quality control was
reported by FastQC. Reads were mapped to the hg38 human reference genome by STAR [32], and on
average, the mapped reads were 90% of total reads. Aligned sequencing reads were counted with the
intersection-strict mode in HTSeq [33] to get read counts for each gene. Scale factors of each sample
were computed using the trimmed mean of the M-value (TMM) algorithm in the R package, edgeR [34].
Raw read counts were normalized by scale factors and then transformed into log2 counts per million
reads (CPM). Genes were kept if expressed in at least three samples. A total of 11,746 genes were kept
in single-cell clone RNA-Seq, while 13,485 genes were kept in differentiated cell RNA-Seq.

Differential gene expression analysis was conducted in edgeR with generalized linear models to
contrast the effects of each treatment group. Pairwise comparisons between control and neutrophil
derivative, control and monocyte derivative, as well as within each clone of each type of cell, were
performed. Likelihood ratio tests were assessed to obtain lists of differentially expressed genes and
following Benjamini-Hochberg false discovery rate correction.

Gene ontology analysis was performed using ToppFun [35]. By uploading a list of differentially
expressed genes (FDR < 0.001) from the differential gene expression analysis into the website, functional
enrichment features were listed, including pathways, Gene Ontology (GO) terms, and phenotypes.
Gene ontology analysis was also performed by enrichR [36,37], with four sets of differentially expressed
genes (FDR < 0.001) uniquely in HL60 monocyte (968 genes), HL60/S4 monocytes (521 genes), HL60
neutrophils (1462 genes), and HL60/S4 neutrophils (2275 genes).

Principal component analysis (PCA) was performed on 17 single-cell clone samples and
47 differentiated cell samples by “prcomp” function in R, with default settings. Principal variance
component analysis (PVCA) was performed in JMP Genomics 8 (SAS Institute, Cary, NC, USA), which
sums the weighted proportions of each variance component associated with covariates of interest in
order to estimate the overall contribution of biological and technical factors to the gene expression
variation. Plots were plotted with R package, ggplot2.

2.9. Variant Calling

Variants were called by GATK [38,39] best practice RNA-seq short variant discovery (SNPs
and Indels). Raw RNA-seq reads were mapped to hg19 by STAR [32]. “SplitNCigarReads” was
used to split reads that span introns and hard clip mismatching overhangs. Variants were called by
“HaplotypeCaller” with default settings. Due to the high false-positive rate of calling variants from
RNA-seq data, the “VariantFiltration” function was used to filter potential false-positive calls. Clusters
of at least three SNPs within a window of 35 bases were excluded, and calls with read depth lower
than 50 were filtered. Moreover, the variant calls were only included if they were consistent in the two
biological replicates of the same clone, and only exonic polymorphisms were counted.

2.10. Fluidigm qRT-PCR

Fluidigm real-time qPCR was conducted on a 48× 48 nanoscale microfluidic chip with 48 EvaGreen
probes targeting transcripts of the CRISPR targeted genes, as well as a representative set of lymphoid
and myeloid cell marker genes [40], and housekeeping genes. The 48 array samples included single-cell
clone CRISPR-edited HL60/S4 from two batches and experimental controls. A total of 2304 qRT-PCR
assays with 30 amplification cycles were conducted in parallel according to the manufacturer’s protocol.
The average Ct value was computed at the exponential phase of each PCR amplification reaction.
Since large Ct values correspond, counter-intuitively, to low expression, modified expression values
were computed as the Ct values subtracted from 30 (the maximum number of PCR cycles), and
the negative outputs were set as 0. This results in a range from null to 30, where each increment,
in theory, represents a doubling of initial transcript abundance. To clean up the data, samples with
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more than 40 unexpressed genes and probes expressed in less than 5 samples were removed. Processed
expression data and sample phenotypic information are provided in Tables S1 and S2, respectively.
We noted that numerous studies have established the high sensitivity of Fluidigm relative to standard
qRT-PCR [41–43] and that all expression levels were in the normal range of detection and not subject to
drop-out seen with very low abundance transcripts.

2.11. Plasmid Construction

The SpyCas9 expressing plasmid pX330-U6-Chimeric_BB-CBh-hSpCas9 [44] (Addgene plasmid
#42230) was a gift from Dr. Feng Zhang. The pX330 vector was digested by BbsI. For each designed
gRNA sequence, a pair of annealed oligos was cloned into the vector before the gRNA scaffold and
after the U6 promoter. All clones were validated by Sanger sequencing (Eurofins Genomics, Louisville,
KY, USA).

2.12. CRISPR-Edited Single-Cell Clones Generation

A total of 2 × 105 HL60/S4 clone 3 cells and 1 µg of pX330 plasmid per nucleofection reaction
(program CA-137, solution SF) were electroporated using the Lonza Nucleofector 4-D based on
the manufacturer’s protocol. One microgram of pmaxGFP™ vector per nucleofection reaction was
co-transfected as the reporter. The cells were cultured at 37 ◦C for 72 h after nucleofection, and the
GFP-positive cells were sorted individually by BD FACSMelody to make single-cell clones following
standard protocols. Post-sorting, cells were grown for a week before harvesting and DNA extraction.
DNA was extracted using Quick-DNA Miniprep Plus Kit (Zymo Research, Irvine, CA, USA, cat.
No. D3024) following the manufacturer’s protocol. For each target locus, a PCR product was amplified
from the genomic DNA of cells modified by CRISPR-Cas9 and analyzed by Sanger sequencing (Eurofins
Genomics, Louisville, KY, USA). The genotype of clones selected in this study is shown in Table S3a,
and the number of clones screened and the mutations observed per clone are shown in Table S3b.

2.13. Power Simulation Studies

Power analysis was performed using the mixed model power expression utility in JMP Genomics
(SAS Institute, Cary, NC, USA). We created a design file with duplicates of 10 guide RNAs and
designated one guide as the causal variant. Additional random effect options for representing batch
effects (distributing the guides across into two batches of 5) and clone effects (where the causal variant
was represented by two different clones) allowed modeling of the impact of these additional sources
of variance. We assessed power at α = 0.05, 0.01, and 0.001 for effect sizes of the causal variant in
increments of 0.1 standard deviation units (sdu) between 0 and 2, assuming experiments with 2, 4, 8,
or 16 replicates of each guide. Batch and clone effects were assumed to be 0.1 or 0.2 sdu. For additional
analysis, three of the guides were assumed to affect gene expression, modeling the situation where
multiple linked variants account for an eQTL effect.

3. Results

3.1. Effect of Clonal Variability on Gene Expression in HL60 Cells

Since genetic screens are best performed in uniform genetic backgrounds under conditions where
environmental variation can be carefully controlled, we started by evaluating the magnitude of the
effect of biological and technical factors on gene expression in HL60 cells. HL60 is a pro-myeloid cell
line derived from a person with acute promyelocytic leukemia [45,46]. It is known to be homozygous
for a TP53 deletion and a CDKN2A premature stop codon and heterozygous for an NRAS missense
substitution. The main factors of interest were (i) batch effects, (ii) HL60 sub-type, (iii) clonal
heterogeneity, and (iv) differentiation status. A derivative known as HL60/S4 has been isolated,
which is reported to more efficiently differentiate into myeloid derivatives, such as neutrophils and
macrophages [47]. Given the almost 40 years in culture, we reasoned that point mutations that are
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likely to affect overall gene expression might have accumulated, and, to control this, we isolated three
single-cell clones (labeled 1 through 3) of HL60 and four single-cell clones (labeled a through d) of
HL60/S4. Differences in growth rates among clones and relative to the bulk parental line were noted.

Clonal variability in gene expression was monitored by bulk RNA-seq of two batches for each of
the seven single-cell clones and two parental lines. Figure 1a plots the first two principal components
(PC) of expression of 11,746 expressed genes detected with an average depth of over 50 million
paired-end 100 bp reads per sample. PC1 separated the two HL60 sub-types unambiguously, and 85%
of the variance attributable to the first five PC (86.8% of total variance) was between HL60 and HL60/S4
cells. Individual clones separated along PC2 with relatively little separation between replicates, with
the parental lines taking intermediate values. Just 14% of the variance was among clones, but residual
replicate effects accounted for less than 1% of it (Figure 1b). These results confirmed that single-cell
clones were likely genetically differentiated, implying that, as far as possible, CRISPR-Cas9 editing
should be performed on a purified clone.

Figure 1. Heterogeneity of gene expression in single-cell clones and myeloid lineage differentiated
clones. (a) Principal component analysis (PCA) of bulk RNA sequencing of parental single-cell clones
and bulk cells. PCA was performed on a normalized log2 CPM count expression matrix of 17 samples
from HL60- and HL60/S4-generated single-cell clones. Each dot represents 17 samples, two biological
replicates for each clone and bulk, except for HL60/S4 bulk. Samples are colored by clones: warm
color dots are samples from HL60/S4 cell lines, while cold color dots are samples from HL60 cell lines.
PC1 separated samples by cell type, explaining 57.6% of the total variation. PC2 separated samples by
clones, representing 9.8% of the total variation. (b) Principal variance component analysis showed the
weighted average proportion of each variance component—cell type (85.4%), clone (14.3%), and residual
(0.3%)—all of which explained variance captured by the first five principal components (86.8% of total
variance). The majority of the total expression variance of single-cell clones was explained by cell type
and clone variance components. (c) Principal component analysis of bulk RNA sequencing of myeloid
lineage differentiated clones, performed by normalized log2 counts per million (CPM) expression matrix.
Each dot represents 47 samples from differentiated monocytes and neutrophils and undifferentiated
control cells, two biological replicates for each stimulation on each clone. Clone d was excluded due to
sequencing error. Samples are colored by cell type and differentiation lineages: monocytes are green,
neutrophils are blue, and control cells are red. To distinguish the original cell type of each sample,
HL60 cells are dark colors, and HL60/S4 cells are light colors. (d) Principal variance component analysis
showed the weighted average proportion of each variance component—original cell type (38.5%),
differentiated type (36.8%), clone (8.1%), and residual (16.6%)—all of which explained variance captured
by the first five principal components (83.9% of total variance). The 16.6% of unexplained variance
might be from the variance of biological replicates and cultural differences between two labs.
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The extent of genetic differentiation of single-cell clones was evaluated by calling genotypes
directly from the RNA-seq data. Given that false-positive calls are elevated due to errors induced by the
reverse transcriptase during cDNA preparation, and that allele-specific expression causes SNP ratios
not observed in genomic DNA sequence data, we applied variant hard filtering in GATK. Clusters of
at least three SNPs within a window of 35 bases were excluded, the variant calls were only included if
they were consistent in the two biological replicates of the same clone, and only exonic polymorphisms
were counted. On average, each of the HL60 single-cell clones differed from the bulk consensus
sequence at 103 of the 7482 single nucleotide variants (SNVs) (1.38%), passing our hard filters. A little
over fifty percent more divergence and 166 of 7104 SNVs (2.34%) were uniquely observed in HL60/S4
pairwise clonal comparisons with the bulk HL60/S4 consensus. Furthermore, approximately 3% of the
total SNVs were different in the comparison of bulk HL60/S4 and HL60 lines and their derivatives,
indicating that there was considerable genetic variability both between the two lines and in single-cell
clones. Similar findings have been reported [48] in an analysis of somatic mutation accumulation in a
cancer cell line.

Next, we asked how consistent chemical-induced differentiation is across clones. Each of the
single-cell clones, with the exception of HL60/S4 clone d, was treated with 1 µM retinoic acid
for 4 days (HL60) or 2 days (HL60/S4) in order to generate neutrophil-like cells or with 100 nM
α1,25-dihydroxyvitamin D3 for 3 days in order to generate monocyte-like cells. Figure S1 shows
characteristics of the cells stained with Hoechst to monitor changes in the morphology of the nucleus,
7-AAD to monitor cell viability, and CD11b, a neutrophil marker. Growth conditions were chosen to
optimize the balance of cell differentiation and viability, which also varied among clones. As previously
reported [47], HL60/S4 cells more readily differentiated toward neutrophil fate than did HL60 cells.
Figure S2 confirms initiation of CD14 expression, as well as the loss of CD71, both markers of monocyte
fate, to similar degrees in both bulk HL60 and HL60/S4, though variation among clones of HL60 was
also seen (also Table S4a,b), including variability of cell surface marker expression at baseline.

As with the untreated clones, gene expression was again observed to vary substantially between
the two sub-types and among clones, with a generally uniform response to treatment and relatively
small differences between replicates (Figure 1c). In a joint analysis, HL60/S4 cells tended to have more
positive values of PC1 and negative values of PC2 than HL60, and the overall cell-type accounted for
38.5% of the variance captured by the first five PC (83.9% of total variance). Neutrophils occupied an
intermediate position between monocytes and undifferentiated cells along both PC axes, and cell fate
captured 36.8% of the variance. At baseline, HL60/S4 cells appeared to be more divergent from the
derived neutrophil-like and, especially, monocyte-like cells than were HL60 from their derivatives.
Clonal differences remained significantly higher than replicate effects.

In total, 5885 and 3319 genes (FDR < 0.0001) were identified that were differentially expressed before
and after monocyte and neutrophil lineage differentiation across all clones of two cell types—HL60
and HL60/S4—respectively.

After differentiation, HL60/S4-derived monocyte cells were more transcriptionally divergent from
their parental cells than were HL60-derived monocytes: 7381 monocytic differentially expressed genes
were detected in HL60/S4, compared with 4167 genes in HL60. B2M, a neutrophil-specific differentiation
marker, was one of the 4167 genes that were differentially expressed in the neutrophil-derived clone
a, clone b, and HL60 bulk cells. There were 5079 differentially expressed genes in the monocyte
derivatives of HL60, including the transcription factors CEBPE, specifically in clone c derivatives, and
PU.1 in clone b derivatives. Similar gene markers were also documented in a time course of myeloid
differentiation [45], although we observed a higher number of differentially expressed genes at the
terminal differentiated stage of monocytes than neutrophils, whereas the opposite pattern was found
at 6 h post-differentiation [49].

Differences in the degree of inter-clonal differentiation were also detected (Figure S3). For the
monocyte derivatives, 1781 genes were differentially expressed relative to undifferentiated cells in all
of the clones of the two cell types, and these were enriched in cell cycle, neutrophil degranulation,
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and rRNA processing pathways. On the other hand, 968 genes were uniquely differentially expressed
in the HL60 clonal comparisons, also showing enrichment for neutrophil degranulation and innate
immune system pathways. Gene ontology (GO) and pathway analysis was performed by Toppfun, and
the significant GO terms and pathways (Bonferroni corrected p-value < 0.00001) for these 968 genes are
listed in Figure S4. Similarly, for neutrophil lineage differentiation, 413 differentially expressed genes
were shared by HL60 and HL60/S4, enriched for neutrophil degranulation, innate immune system
activity, interleukin-10 signaling, chemokine signaling, and cytokine signaling pathways. There were
1462 and 2275 clonal-specific differentially expressed genes in HL60 clones and HL60/S4 clones,
respectively, engaging pathways involved in cell cycle and mitochondrial function, and translation
and rRNA processing were also enriched. Significant GO terms and pathways (Bonferroni corrected
p-value < 0.00001) for HL60 and HL60/S4 are shown in Figures S5 and S6, respectively. Gene ontology
enrichment analysis of uniquely differentially expressed genes was also performed using the gene set
enrichment tool Enrichr [36,37], with results summarized in Figure S7.

Taken together these results implied that single-cell clones differ in basal gene expression, and
although they respond similarly to treatment with retinoic acid or vitamin D3, clonal differences need
to be accounted for when evaluating the effect of CRISPR-Cas9 mutagenesis of regulatory regions of
target genes.

3.2. Isolation and Evaluation of CRISPR-Edited Single-Cell Clones

We selected seven SNPs in four genes for our initial evaluation of the effect of NHEJ-based CRISPR
mutagenesis in HL60/S4 clone 3 as a uniform genetic background. SDCCAG3, NFXL1, and AMFR were
each targeted for a single peak eQTL SNP detected by whole blood gene expression, whereas CISD1
was targeted with four SNPs in one credible eQTL interval. Potential off-target sites of each gRNA
with up to two mismatches are provided in Table S5. With genome-wide bioinformatic screening,
none of the potential off-target sites were located in coding regions, and the gRNAs had no extra
perfect match other than the designed target site. Bulk transfection efficiency was 24.8% based on the
percentage of cells expressing GFP signal. GFP-positive cells were considered capable of uptaking
plasmid vectors and were single-cell sorted to enrich the edited cells. Of all expanded GFP-positive
single-cell clones, 23 out of 166 had obtained Indels, eight of which had removed the target SNP at
both allelic copies, while the remainder affected sequences immediately adjacent to the target SNP or
only had SNP removal in one allele.

RNA-seq would be prohibitively expensive for comparing gene expression on the scale of dozens
of multiple replicated clones, so we next evaluated the potential of high throughput nanoscale
quantitative RT-PCR to detect subtle differences in transcript abundance. A 48 × 48 Fluidigm chip was
designed, facilitating the measurement of 48 genes (including the four targets, housekeeping controls,
and various markers of expression in diverse immune cell type) in 48 samples. The HL60/S4 parental
cell line and eight clones were chosen for profiling, one for each guide RNA, and each was grown in
duplicate in suspension for 18–24 h, with half the sample frozen down for storage, and the other half
used for RNA preparation from fresh cells.

For ease of interpretation, we subtracted the Ct value for each measurement from the number of
PCR cycles, 30, resulting in expression values where high values corresponded to high expression.
Figure 2a shows that this resulted in a bimodal distribution of gene expression measures, with the
smaller peak representing low-abundance transcripts. There was a major difference in the profiles of
the frozen and fresh cells, accounting for almost two-thirds of the variance explained by the first five
PCs (99.1%) (Figure 2b). To correct for this batch effect, we used Combat, which also standardized the
data to a mean of zero and standard deviation of one (Figure 2c). On this scale, most of the variance
was now among samples, whereas 9% of first five PCs (99.1%) distinguished clones by which gene was
targeted, and 9% was due to differences among gRNAs for CISD1 (Figure 2d). This implied either
that single-gene knockouts affected the expression of a substantial number of other genes, in each
clone, or that there was substantial variability among clones that by chance correlated with the nature
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of the guide RNA. We also observed that normalized CISD1 expression was lower in cells edited by
each of the four gRNAs targeting CISD1 than in the untreated control parental cell line (Figure 2e).
Clone RG17 affected a control SNP in high LD with the peak eQTL but with low CADD score [24,50]
and high evolutionary probability [25] of the alternate allele and was the only clone not significantly
different from the parental line. However, since it is unlikely that each of the other three sites causally
influences gene expression, this result served as a further caution that the process of transfection with
CRISPR reagents itself might influence cell growth and gene activity.

Figure 2. Quantification of gene expression by Fluidigm qRT-PCR and analysis of the variance
components. Kernel density plot of standardized gene expression from each sample, color-coded by
batches, before (a) and after (c) removing batch effect. Before (b) and after (d) batch effect correction,
principal variance component analysis showed the weighted average proportion of each variance
component: batch 65.3%, 0%, respectively; target gene 5.6%, 9.2%, respectively; gRNA 3.2%, 9.2%,
respectively; residual 25.8%, 81.6%, respectively. All of the components explained variance captured by
the first five principal components (99.1% and 99.1% of the total variance, respectively). (e) Expression
of CISD1. Pairwise t-tests were used to evaluate the difference between CRISPR-Cas9-edited samples
(RG16, RG17, RG19, and RG20) and negative controls. RG16, RG19, and RG20 were significantly
different from the negative control. * denotes p-value < 0.05; ns, not significant.

Similarly, inconsistent results were obtained for the other three genes, as summarized in Figure 3
and Figure S8. Each panel shows box-and-whisker plots for each of the seven guide RNAs and control
HL60/S4 cells, with the mean and interquartile range of nine single-cell clones measured with two
different PCR probes for three of the genes and one for SDCCAG3. In no case was the expression the
most extreme for the guide RNA corresponding to the linked gene. For example, AMFR expression
was highest in cells carrying a mutation in the RG16 guide, disrupting a candidate regulatory site in
CISD1, whereas AMFR expression itself was, on average, the closest to expression in the control cells.
Disregarding the control, there were also no cases where the appropriate guide RNA was significantly
different from the remaining guides. These results implied either that the selected SNPs were not
causal or that the effect sizes of causal variants were too small relative to the observed experimental
variability to detect differential expression.
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Figure 3. Quantification of all targeted gene expression in all CRISPR-Cas9-edited single-cell clones
by Fluidigm qRT-PCR (Tables S1 and S2). HPRT and GAPDH are housekeeping controls. Single-cell
clones were grouped by guide RNA, and the expression of seven probes is shown as boxplot across all
clones within each guide RNA group. Clones with the same genotype in each guide RNA group are
colored-coded. A pairwise t-test was done to test the difference between CRISPR-Cas9-edited clones
and HL60/S4 negative control. * denotes p-value < 0.05; ns, not significant.

3.3. Simulation Studies to Establish Power of Fluidigm-Based Single-Cell Regulatory Assessment

We used these results to guide our design and interpretation of power calculations for experiments
designed to determine the effect of single regulatory site disruption. Our baseline scenario assumed
targeting of 10 polymorphisms in a single credible interval in which a single eQTL was assumed to
account for at least 10% of the variance in transcript abundance at the locus. Such an eQTL corresponded
to a difference of approximately 1 standard deviation unit (sdu) in a quantitative assay, such as Fluidigm
qRT-PCR or RNA-seq. Given that most single-cell CRISPR-edited clones are heterozygous, it also
corresponded to a substitution effect whereby the mutant allele increased or decreased the measured
transcript by 1 sdu. We used the mixed model power calculator in JMP-Genomics (Cary, NC) to
evaluate the sample size needed to detect an effect of this magnitude, given varying levels of clonal
variation, batch effects, and mutation differences.

For the baseline scenario, where there are neither batch nor clonal effects, 80% power to demonstrate
that one SNP had an effect that was at least 1 sdu different from the other nine SNPs was achieved
with eight replicates of each of the ten clones (Figure 4a,f). Sixteen replicates would enable detection of
an effect as small as 0.7 sdu, but four replicates would only be powered to detect a substitution effect
of 1.5 sdu. However, the experimental data indicated that individual clones generally did vary, as a
consequence of genetic background effects if the transfected cell line was not isogenic, or due to growth
differences among aliquots. Modeling these differences as a random effect of just 0.2 sdu among the ten
clones demonstrated a dramatic reduction in power to detect the main effect (Figure 4b,g). With eight
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replicates, only an effect size of 1.7 sdu was reliably detected, though 40% power was still obtained
for an effect size of 1 sdu. Doubling the size of the experiment only slightly improved the power,
whereas four replicates only facilitated the detection of effect sizes of 2 sdu. If we further considered
the scenario with a batch effect whereby half the clones had an additional random effect of 0.2 sdu
(perhaps because they were grown at a different time), then power reduced yet again, as expected
(Figure 4c,h).

Figure 4. Power curves of Fluidigm-based single-cell clone regulatory assessment of simulation studies.
(a–e) diagrams of five different scenarios and the corresponding panels (f–j) show the power calculations
for exceeding a nominal p-value of 0.05, with blue, red, green, and brown curves representing 2, 4, 8,
and 16 technical replicates of each clone, respectively. The y-axis is the power from 0 to 100 percent,
and the x-axis is the effect size of eQTL in the standard deviation unit.

A perhaps more realistic scenario is where different edits of the same polymorphic site also have
different impacts on gene expression. This could either be because the precise nature of the deletion
matters or because the independent clones have slightly different growth properties. We modeled
this scenario by allowing for two different clones representing the causal variant, also with a 0.2 sdu
random effect difference, the same as the effect of the other nine guide RNAs. In this case (Figure 4d,i),
80% power was never achieved, so it would take greater levels of replication, at least, of the putative
causal variant to see a substitution effect in the range of 1 sdu.

A related situation was where more than one of the polymorphisms in the credible interval was
responsible for the eQTL effect—for example, three sites in high LD might each account for 0.33 sdu,
summing to a combined effect of 1 sdu. To model this, we set three of the guide RNAs to be causal,
with the other seven non-functional but retained 0.2 sdu differences among clones. Figure 4e,j show
that power was greater than the same scenario with one causal variant and approximately the same as
with one causal variant and no differences among the remaining clones. Power was actually greater
with fewer replicates (red and blue curves), but, with eight replicates, 80% power still only detected
an effect size of 1 sdu, which was three times larger than the presumed individual effect sizes of the
contributing causal variants.

4. Discussion

Multiple studies have recently reported good success in mapping regulatory intervals using
high throughput approaches in human cells. A previous study [51] scanned across over 100 kb of
regulatory DNA in the TP53 and ESR1 genes using positive selection for proliferation to enrich cells
with aberrantly low expression of the target transcription factors, defining several intervals enriched
for signals that overlap with transcription factor binding sites. This approach is, however, dependent
on the ability to select on the locus, and similar to methods that sort on the basis of an engineered



Genes 2020, 11, 504 13 of 18

selectable fluorescence protein [52], only identifies high-impact sites without necessarily discriminating
effects of polymorphic sites. Another approach [53] used CRISPRa to map enhancer elements by virtue
of activation of regulatory protein-DNA interactions, filtering a handful of short DNA stretches from
hundreds of kb of intergenic sequence in the IL-2RA gene, but again without the ability to resolve
which of the SNPs in a credible interval are responsible for an eQTL. Expression CROP-seq is powered
to fine-map eSNPs with 10%–20% effect size within credible intervals by characterizing hundreds
of CRISPR/Cas9 genetically mutated single-cell transcriptomes in parallel [54]. Tewhey et al. first
demonstrated the utility of massively parallel reporter assays, including the ability to discriminate
between alleles at a pre-defined site [55]. Their results and findings from others [56,57] implied that at
least 5% of all polymorphisms in regulatory DNA had the potential to regulate target gene expression.
The concern remains though that such effects may be artifacts of short reporter genes assayed outside
the context of chromatin and complex regulatory interactions.

Our approach instead borrows from classical quantitative genetic screens in model organisms,
such as Drosophila and yeast. The objective was to create a panel of genetic perturbations in an
isogenic background, evaluating the quantitative impact of each variant relative to the frequency
distribution of effects of all other perturbations. For example, p-element insertion screens cleanly
identified dozens of genes, influencing aging, bristle number, and aspects of fly behavior [58,59]. Closer
to our experiments, another study [60] engineered a tiling path across the regulatory region of the TDH3
gene in Saccharomyces cerevisiae and used flow cytometry to quantify gene expression of hundreds of
strains, drawing inferences about the impact of stabilizing selection on transcription. We reasoned that
a similar approach should be powerful for moderate-sized laboratories without extensive experience
in human cell culture. Even though we, and others, have successfully documented regulatory effects
of CRISPR-Cas9-mutagenized candidate mutations of large effect [61,62], the results here applied to
typical moderate-effect size eQTL do not support this as a general protocol. The remainder of the
discussion deals with multiple constraints on the effectiveness of single-cell clone-based screening to
dissect credible regulatory intervals in human cell lines.

The first constraint is variability in the mutability of targeted regulatory sites. Our approach
was mainly limited in three ways: the requirement of nearby PAM sequences and the short distance
between the cut site and targeted SNP, the variable efficiency of different gRNAs, and the distinct
Indel pattern for each SNP-targeted gRNA. We started with a list of 250 candidate polymorphisms,
approximately 10 each in two independent eQTL intervals of 13 genes, but discovered that only
two-thirds of these were suitable CRISPR targets, either because there was no nearby PAM sequence or
the target was in repetitive DNA for which it was not possible to design a guide RNA with a unique
target sequence. Up to 20% of the remaining sites were predicted to have high probability off-target
sites elsewhere in the genome, which might not matter for a scan of cis-acting effects but was not ideal.
Subsequently, we chose 10 sites as a pilot and screened an average of 24 single-cell clones for each site
(23.9 ± 6.7) by Sanger sequencing of the targeted region. As shown in Table S3b, the pilot group had
an average of four clones, each with Indels on both alleles (3.8 ± 1.8). The ratio of clones with Indels
on both alleles varied from 0% (RG11) to 25% (RG16) so that the theoretical maximum SNP removal
rate was different in each gRNA-treated group. RG14, 17, 19, 20, and 34 all had designed cut <5 bp to
the targeted SNP, but their percentage of SNP removal on both alleles varied from 0% to 16%, which
could be due to variations in the size of Indel mutations, as previously observed [63]. That is to say,
many of the CRISPR-induced mutations removed or inserted one or a few nucleotides either side of
the polymorphic site without disrupting the polymorphism itself. We concluded that obtaining at least
four different clones for a minimum of 20 sites associated with a credible eQTL interval would typically
require screening of 500 clones following various iterations of guide RNA design, with less than 100%
success and at considerable expense. Allelic replacement by CRISPR-mediated homologous repair
would be even more difficult. There are more potential optimizations that may help researchers deal
with this constraint. Further optimization can be done in transfection, such as the co-transfection ratio
of two plasmids. It is possible that different cell lines would have higher efficiency of mutagenesis.
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Other CRISPR/Cas9 delivery methods, such as lentivirus transduction, can also be beneficial for more
efficient screening.

The second constraint is clonal variability. We started by addressing a major concern with human
cell lines, which is the mutational accumulation in culture. Previous studies [48] showed that tumor
cell lines diverge genetically in as few as a dozen passages, resulting in divergent drug responses
and gene expression profiles. Accordingly, single-cell cultures of HL60 and the derivative HL60/S4
cell lines are different at the DNA sequence level and have significantly different transcriptomes,
both with and without chemical stimulation of differentiation. For a considerable proportion of
genes, these differences are of a similar order of magnitude as expected eQTL effects, namely, 20% to
50% differences in normalized abundance. While this observation strongly supports the decision
to mutagenize a single-cell clone, genetic differences may not actually be the major source of clonal
variation. Mammalian, including human, cells are much more difficult to culture than yeast or bacteria,
as thawed aliquots of frozen lines are well known to differ in growth rates and viability. The technical
replicates in Figure 1 were all grown in parallel, so did not capture this type of batch effect, which we
had not sought to quantify. However, we noted that the parallel culture of the nine mutant clones
analyzed was made difficult by variable growth rates and that some thaws failed to grow at all,
requiring the expansion of new aliquots. Consequently, batch effects of single-cell clones are a hidden
but likely considerable source of gene expression variability.

A third constraint is an expense. Assuming that the cost of RNA sequencing, including cell culture,
RNA preparation, library construction, and quality control, could be reduced to $100 a sample using, for
example, 3′ tagging, an experiment with eight replicates of 20 clones would still cost $16,000. Instead,
we adopted a nanoscale quantitative RT-PCR approach, the 48 × 48 Fluidigm array. Each of the data
points in Figure 3 was actually the average of four technical replicate qRT-PCR reactions on one plate at
the cost of just $1.20 per assay (not including culture and RNA preparation). Technical repeatability is
very high with repeated measures typically within 10%, also allowing measurement of dozens of genes
simultaneously, so Fluidigm, or similar methods like Nanostring, provides a feasible approach in theory.

However, the fourth constraint, statistical power, emerged as the most serious impediment.
A typical eQTL explains between 10% and 20% of the variance in expression of the gene it influences,
which corresponds approximately to each allele increasing or decreasing transcript abundance between
0.5 and 1 standard deviation units. We modeled the power to detect such an effect in 80% of experiments,
given the variance components observed in our experiments, and found that in the best-case scenario,
eight biological replicates would be needed to reliably detect a 1 sdu effect. However, with the
addition of modest batch effects, subtle guide RNA differences within a locus, and small differences
between different mutations induced by the same clone, power dropped considerably. All such effects
are apparent in Figure 3, suggesting that the single clone analyses, while demonstrably capable of
discriminating very large regulatory effects of 2 or more sdu, are not generally likely to be detected with
this approach. It is possible that cell lines other than HL60 may provide more repeatable results than
those described here, which may improve power under some circumstances. In this sense, independent
valuation of the magnitude of batch effects for different cell lines under different growth conditions may
be advisable, though we doubt that it will make single-cell mutagenesis an optimal screening approach.

Finally, a fifth constraint is an assumption that each eQTL can be reduced to a single eSNP. This is
the parsimonious assumption and fits readily with the conception that regulatory SNPs exert their
effects by altering the binding affinity for a specific transcription factor. Even though most eQTL
span 100 or more polymorphisms in a credible interval, the general assumption is that prioritizing
variants according to functional criteria and evolutionary conservation, using scores, such as CADD or
LINSIGHT, reduces the search space to fewer than ten candidates. However, given that these variants
are in tight linkage disequilibrium with similar frequencies [10], if they have similar functional scores,
then it is possible that the observed univariate eQTL effect is actually due to the summation of two
or smaller contributing effects. Under this scenario, the power to detect multiple causal variants is
also reduced.
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These considerations and the overwhelmingly negative results of our experiments lead us to the
recommendation not to pursue single clone-based profiling as a general approach to the fine mapping
of regulatory variants. Despite the conceptual limitation that effects are evaluated outside the context
of normal chromatin, massively parallel reporter assays seem to be more powerful and subject to less
experimental constraint.
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