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 Highlights  

• Novel bandwidth widening concept validated using sloshing liquid metal mass  

• Increased bandwidth achieved using a liquid metal filled mass  

• Bandwidth widening dependent on acceleration due to oxide skin on liquid metal  

• Liquid metal damping effects show enhanced performance  
 
 
Abstract: 

Linear vibrational energy harvesting devices typically have narrow bandwidths, which limits their 

practical use, because the resonant frequency needs to match the frequency of the vibration source 

in order to maximize power generated. This paper presents a method of widening the bandwidth 
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by using a highly dense liquid metal filled mass, which creates a sloshing effect that changes the 

center of gravity of the cantilever device during motion. The shift in center of gravity causes the 

resonant frequency of the cantilever to change. Since the resonant frequency of the device is 

constantly change during oscillation of the cantilever, this results in a widening of the bandwidth. 

The displacement of the dense liquid metal has more influence on the center of gravity compared 

to other less dense liquids thus increasing the bandwidth. The paper demonstrates a 6.5x increase 

in bandwidth for the liquid metal filled mass compared to a typical air-filled mass with only a 9.6% 

reduction in power at 1 g acceleration. Acceleration effects and mechanical damping were also 

investigated and presented within the paper.  

 

 
Keywords: Bandwidth, Energy Harvester, Piezoelectric, Cantilever, liquid metal 
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1. Introduction: 

Vibrational energy harvesting systems have been extensively investigated over the past decade and 

their demand continues to increase due to the Internet of Things. Their main goal is to replace 

batteries to create a completely self-sustaining system that harvests energy from the ambient 

environment. There are various methods of harvesting energy from vibrations, the two most 

common methods include: piezoelectric and electromagnetic which operate based on matching the 

resonant frequency of the device to the frequency of the vibration source. Cantilever-based 

structures typically include: a beam, an energy harvesting material (piezoelectric or coils), and a 

mass. Typically, these devices have a high Q-factor or narrow bandwidth (1-4), which allow them 

to generate high power but also makes the device not practical, because if the vibration source 

does not match the resonant frequency the power generated is significantly reduced. Linear energy 

harvesters with < 250 Hz resonant frequency typically have bandwidths of < 2 Hz (1, 3, 5), and 

the resonant frequency of micro-scale devices can deviate by 1-5% due to manufacturing or design 

issues (6, 7), so at the very least the bandwidth needs to cover potential frequency errors due to 

manufacturing, but ideally it will cover a larger frequency ranges to compensate for any frequency 

shift from the vibration source. 

 

Previous attempts to increase the bandwidth include: non-linear cantilever design (duffing 

resonators) (8-10), mechanical stoppers (11), repulsive forces (12), array of devices (3), and sliding 

masses (13). All of these methods increased the bandwidth but did so by lowering the Q-factor 

which resulted in a decrease in power density. Recent attempts of increasing bandwidth without 

significantly reducing power have involved methods of altering the center of gravity of the mass 

during cantilever oscillation, such as a water filled mass to create sloshing effect (14, 15) and a 
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rolling mass (16). Another method of compensating for frequency mismatch is tuneable devices, 

which involve altering the stiffness of the beam material (17-19), but these usually involve 

complex materials/structures that require power in order to generate power. 

 

This paper builds upon the previous attempt at widening the bandwidth using water filled mass 

(14) by using a highly dense liquid (liquid-metal, GalinstanTM). The aim of this paper is to 

experimentally demonstrate that the sloshing effect of a denser liquid filled mass will lead to an 

increase in bandwidth without significant reduction in power. A liquid filled mass is the preferred 

option over rolling masses because it is easier to integrate into both macro and micro-scale devices. 

Rolling masses are difficult to implement in micro-scale devices, due to complex microfabrication 

technique requirements.  Previous attempts have demonstrated the capability of embedding liquids 

and powders into silicon masses (20). Liquid metal is about 6x denser than water thus the liquid 

material will have a more significant effect on the change of the center of gravity as the liquid is 

sloshed inside the mass. This paper investigates the bandwidth affects as well as acceleration, 

frequency sweep, and mechanical damping affects. 

2. Materials and Methods 

The concept of using a liquid filled mass to widen the bandwidth has been demonstrated previously 

with water based liquids (14, 15). The mechanism is based on altering the center of gravity of the 

mass by creating a sloshing affect. Typical rectangular cantilever structures have a resonant 

frequency that is based on a single point mass and is presented using the following equation:  
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    (1) 

Where E is the elastic modulus of the beam, m is the mass, w, t, and L are the width, thickness, 

and length of the beam. Adding liquid to the mass creates another load component to the mass, 

and if it were a solid mass the equation would remain the same. However, if the liquid is sloshing 

then the center of gravity changes as a function of time and the equation is no longer valid as the 

ACCEPTED M
ANUSCRIP

T



Sloshing liquid-metal mass for widening the bandwidth of a vibration energy harvester 

mass cannot be modelled as a simple point mass. Fig. 1a and Fig. 1b demonstrate the concept of a 

center of gravity shift due to sloshing liquid mass. Using the Rayleigh principle, the equation for 

a non-center point mass becomes: 
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Where r= Δx/(L+lm) where lm is the length of the mass and L is the overall length of the cantilever 

and Δx is lateral displacement change in the center of gravity from the initial position as 

demonstrated in Fig. 1c. The formula and derivation were previously described in more detail (12, 

14), however the formula describes how the resonant frequency changes due to a change in the 

center of gravity. Previously it was demonstrated that density of the liquid significantly influenced 

the amount of bandwidth, and the viscosity of the fluid was important for creating the sloshing 

effect at a specific acceleration. The mass of the cantilever in this case is comprised of the 

cantilever beam (which is negligible), the mass of the chamber (plexiglass), and the mass of the 

liquid. Therefore, a denser liquid will have a more significant affect on the overall mass, and any 

displacement of the liquids center of gravity due to sloshing will significantly alter the resonant 

frequency. The sloshing of the liquid causes the resonant frequency to change as the cantilever is 

in motion. The summation of all of these resonant frequencies accounts for the increase in 

bandwidth. The increase in bandwidth is dependent on the density of the liquid, the viscosity (as 

this affects the sloshing properties), the displacement of the cantilever beam due to applied 

acceleration, and the frequency. 

 

In order to significantly increase the bandwidth, a liquid metal (GalinstanTM) was embedded within 

the mass and filled to 50% volume, as a 100% fill would prevent a sloshing affect. Galinstan is a 

metal consisting of Ga, In, and Sn and is a liquid at temperatures > -19°C, has a density of 6.44 g 

cm-3 (~6.4x of water), and a viscosity of 0.002 Pa s (~2x of water). The material has been highly 

researched over the past few years in the area of stretchable electronics (21). Galinstan was chosen 

as the liquid because of its high density and low viscosity, which makes it an ideal candidate for 

this application. The low viscosity should allow sloshing to occur at low acceleration, while the 
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high density will allow increased bandwidth. However, Galinstan forms an oxide layer when 

exposed to air, which will limit the sloshing effects. The oxide formation can be reduced 

chemically or physically by applying surface stress to the film. If sloshing does not occur, then the 

liquid metal will behave like a stationary mass with a linear energy harvester. A commercial 

piezoelectric energy harvester (Volture V25W, Mide) was used as the cantilever substrate in this 

paper in order to validate the concept at the macro-scale. The mass and beam were a scaled up 

version of a typical MEMS device (1, 5, 22) A custom mass was manufactured from plexiglass 

with cavity dimensions of 2 x 2 x 2 cm3 and a wall thickness of 5mm and a top lid thickness of 

5mm that was screwed in to prevent liquid from leaking along with a rubber O-ring. The cavity 

held 8 ml of liquid of which only 4 ml of liquid metal was inserted into the mass. The mass was 

attached to the cantilever beam using double sided adhesive. A picture of the manufactured device 

is shown in Fig. 1d. The device was then mounted on a vibration shaker (ET-126, Labworks), with 

an accelerometer to give acceleration feedback. The cantilever was connected to an oscilloscope 

along with a variable resistor for impedance matching. The experimental concept investigated a 

comparison between a liquid-metal filled mass, an empty cavity mass (air-filled mass), and a water 

filled mass.   

 

------------------------------------------Figure 1------------------------------------------- 

 

3. Results and Discussion 

Experimental results comparing the power as a function of normalized frequency of a typical mass 

with empty cavity (air-filled) and a liquid metal filled mass are shown in Fig. 2. A normalized 

frequency was used as the liquid metal filled mass had reduced resonant frequency due to the 

added mass from the liquid metal. The additional mass from the liquid metal decreased the resonant 

frequency from ~30 Hz to approximately 20 Hz., which is in agreement with equation (1). The air-
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filled cavity demonstrated a typical linear cantilever response with a narrow bandwidth and a full-

width-half-maximum (FWHM) of 1.34 Hz and a peak power of 16.03 mW for a 1 g sinusoidal 

acceleration. The liquid metal filled mass demonstrated a significant increase in bandwidth of 8.67 

Hz, which represents an increase of 6.5x. The power was reduced by 9.6% to a peak power of 

14.48 mW. The reduction of power was due to non-linear effects from the sloshing liquid metal. 

Previous reports with water filled mass demonstrated an increase in bandwidth of 2.6x and a 

reduction of approximately 3-4% (14). This validates that using a denser liquid will significantly 

increase the bandwidth with only a small reduction in power. The liquid-metal filled mass results 

shown in Fig. 2 demonstrates the non-linear dynamic behaviour due to sloshing. The air-filled 

mass shows a smooth curve, whereas the liquid-metal filled mass demonstrates areas of peaks and 

troughs due to sloshing. These deviations can cause small variations in power at specific 

frequencies, but the overall power values are not significantly affected. 

 

------------------------------------------Figure 2------------------------------------------- 

 

The amount of acceleration was believed to have a significant effect on the widening properties as 

it will affect the sloshing properties of the liquid. To verify this, we investigated three different 

accelerations (0.1 g, 0.5 g, and 1 g). The results are demonstrated in Fig. 3. The bandwidth values 

were measured at 1.9, 3.3, and 8.67 Hz for 0.1, 0.5, and 1 g accelerations respectively. At low 

accelerations < 0.5 g no sloshing of the liquid metal was observed, so the cantilever behaved as a 

linear energy harvester. This is due to the oxide skin formation on the Galinstan. Galinstan when 

exposed to air forms a native surface oxide that is about 1-3 nm thick, this oxide layer prevents the 

material from acting as a liquid (21). A surface stress of ~ 0.5 N/m is required to break through the 

skin and allow the material to flow as a liquid (23), so an acceleration that produces >0.5 N/m of 

surface stress was required to break the oxide formation. This occurred at a value of around 0.4 g 

for this application but depends on size and mass of the liquid metal. Therefore, this technique is 

valid for high accelerations, but if the accelerations are lower than the threshold to break the oxide 
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skin then sloshing will not occur and the bandwidth will not be significantly increased. Preventing 

the oxide layer from forming could allow for increase in bandwidth with low acceleration. The 

oxxide layer of Galinstan can be prevented through the addition chemicals such asHCL or NaOH, 

as well as electrochemically (24)), or by preventing oxygen into the cavity by using vacuum 

sealing. 

------------------------------------------Figure 3------------------------------------------- 

 

Duffing oscillators and commonly used non-linear resonators often have frequency sweep 

dependencies, which means that frequency sweeps up and down give different results. This 

impacts the practicality of the device as typical vibration sources do not sweep but instead have 

random vibrations. The liquid metal filled device was measured for both up and down sweeping 

and the results are shown in Fig. 4. This demonstrates that similar values were obtained for 

sweeping up and down, therefore the device is not dependent on frequency sweeping. 

 

------------------------------------------Figure 4------------------------------------------- 

 

Damping effects are critical for vibrational cantilevers, and the mechanical damping properties 

were experimentally determined by applying an impulse square wave of 50 ms and 1 g 

acceleration. Then the voltage as a function of time was monitored and the damping was calculated 

based on the decay over a certain number of cycles. Fig. 5a compares damping of an air-filled 

mass and a water filled mass, because of the low density of water the damping of the two systems 

were similar with values of 0.067 and 0.066 for air and water respectively. The water and air 

devices had similar mass (within 10%) in order to keep the resonant frequency similar.  Fig. 5b 

compares a metal (Aluminum) mass with exact same dimensions as the plexiglass mass to the 

liquid metal filled device. A metal mass was used in comparison to match the mass values to that 
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of the liquid metal filled mass, so the resonant frequencies would be similar. The liquid metal mass 

with plexiglass was 55g as the metal mass with air filled cavity was 56 g. The results demonstrate 

that the metal mass had a mechanical damping ratio of 0.045 whereas the liquid metal mass had a 

damping ratio of 0.03. Fig. 5c compares the water filled mass with the liquid metal filled mass, 

which shows that the liquid metal mass has a lower damping ratio thus the decay in voltage is not 

as quick. This is important as some vibration sources are based on plucking or impulse, and if the 

duty cycle is low then a slower decaying energy harvester will have a higher average power (6, 25, 

26).  

 

------------------------------------------Figure 5------------------------------------------- 

 

Table 1 compares results from previous liquid filled mass papers and compares the results from 

this paper. The use of a denser liquid has resulted in an increased bandwidth without significant 

reduction of power. In addition, the damping ratio was lower, which is desired for impulse based 

vibration source. 

 

------------------------------------------Table 1------------------------------------------- 

 

4. Conclusions 

In summary, the paper presented a method of widening the bandwidth of a cantilever vibrational 

energy harvesting device using a liquid metal filled mass. The liquid metal mass demonstrated a 

significant increase in bandwidth compared to previous water-based liquid masses. The highly 

dense liquid metal represents a greater portion of the overall mass of the system compared to water-
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based devices, so any change in the center of gravity of the liquid metal mass causes a more 

significant change in resonant frequency resulting in a wider bandwidth. However, at low 

accelerations the liquid metal filled mass behaves like a traditional linear system as an oxide skin 

was formed on the liquid metal, but once enough force was applied to break the skin the liquid 

began to slosh, and the system increased its bandwidth. However, the oxide skin effects could be 

resolved by creating a vacuum in the chamber, which would prevent the formation of the oxide 

and allow sloshing at low accelerations. Unlike other non-linear systems (stoppers or duffing 

resonators) this system does not suffer from differences in up or down frequencies sweeps. In 

addition, the mechanical damping ratio is affected by the liquid metal which will be beneficial to 

impulse based vibrational sources with low duty cycles. The liquid filled mass is beneficial 

compared to other sphere or rolling pin designs as it can be implemented in macro or micro-scale 

vibrational energy harvesters. 
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Figure Captions: 

Figure 1- Schematic of the vibration energy harvester device with custom mass filled with 

Galinstan (a) demonstrates the system when the device was at rest and the black circle represents 

the center of gravity of the cantilever, (b) demonstrates the system in motion where liquid metal 

creates a sloshing effect thus changing the center of gravity (black circle is the center of gravity 

during motion and the red circle was the initial center of gravity, (c) schematic demonstrating the 

center of gravity shift (d) is the experimental device setup with Galinstan filled mass, which 

demonstrates the sloshing effect. 

Figure 2- Experimental results demonstrating the power generated as a function of normalized 

frequency for an air-filled mass with no change in center of gravity and a liquid metal (50% filled) 

mass with sloshing effects. 

Figure 3- Demonstrates the logarithmic power scale as a function of normalized frequency for a 

liquid metal filled mass with varying acceleration. 

Figure 4- Experimental results demonstrating an up and down sweep in frequency of a liquid metal 

mass as a function of power. Acceleration was 1 g in both cases and sweep rate was held constant. 

The results are an average over 5 different devices. 

Figure 5- Experimental results of voltage as a function of time for various cantilever devices with 

an applied impulse (1g, 50 ms) masses. Masses were similar in all comparison cases. The results 

demonstrate the damping effects for (a) air filled vs water filled mass, (b) metal air filled mass and 

liquid metal filled mass, and (c) water filled mass and liquid metal filled mass. 

Table 1- Summary of the results in this paper compared to previous reports of various liquid filled 

masses. 
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Figures: 

 

Figure 1 

 

 

Figure 2 
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Figure 3 

 

 

Figure 4 
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Figure 5 
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Table 1 

Work Liquid  
Acceleration 

(g) 
Bandwidth 

(Hz) 

Increase 
in BW 

(%) 

Previous work (15) Water 1 4.6 256 

Previous work (14) 
Dense 
Water 1 5.13 285 

Previous work (14) Glycerol 1 4.75 264 

This Work EGaIn 1 8.67 647 
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