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Abstract

Abstract

Autonomous systems have become an interconnected part of everyday life with the
recent increases in computational power available for both onboard computers and
offline data processing. The race by car manufacturers for level 5 (full) autonomy in
self-driving cars is well underway and new flying taxi service startups are emerging
every week, attracting billions in investments. Two main research communities,
Optimal Control and Reinforcement Learning stand out in the field of autonomous
systems, each with a vastly different perspective on the control problem. Controllers
from the optimal control community are based on models and can be rigorously
analyzed to ensure the stability of the system is maintained under certain operating
conditions. Learning-based control strategies are often referred to as model-free and
typically involve training a neural network to generate the required control actions
through direct interactions with the system. This greatly reduces the design effort
required to control complex systems. One common problem both learning- and model-
based control solutions face is the dependency on a priori knowledge about the system
and operating conditions such as possible internal component failures and external
environmental disturbances. It is not possible to consider every possible operating
scenario an autonomous system can encounter in the real world at design time. Models
and simulators are approximations of reality and can only be created for known
operating conditions. Autonomous system control in unknown operating conditions,
where no a priori knowledge exists, is still an open problem for both communities and
no control methods currently exist for such situations.

Multiple model adaptive control is a modular control framework that divides the
control problem into supervisory and low-level control, which allows for the
combination of existing learning- and model-based control methods to overcome the
disadvantages of using only one of these. The contributions of this thesis consist of
five novel supervisory control architectures, which have been empirically shown to
improve a system’s robustness to unknown operating conditions, and a novel low-
level controller tuning algorithm that can reduce the number of required controllers
compared to traditional tuning approaches. The presented methods apply to any
autonomous system that can be controlled using model-based controllers and can
be integrated alongside existing fault-tolerant control systems to improve robustness
to unknown operating conditions. This impacts autonomous system designers by
providing novel control mechanisms to improve a system’s robustness to unknown
operating conditions.
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1 Motivation

Autonomous Systems cover a vast range of application domains including self-driving
cars [1], unmanned aerial vehicles (UAVs) [2], submersibles [3], humanoid-robots [4],
spacecrafts [5], manufacturing and chemical plants [6], and many more. The problem
of autonomous system control originated in the 1950s and comes from the field of
sequential decision problems [7].

Sequential decision problems [8] are generally defined as optimization problems and
cover a huge range of problems. The problems can be divided into various classes,
with the control problem being one class of problems. Due to the many variations of
sequential decision problems over 15 different research communities have developed
to address them, each with their own vocabulary, solution methods, and is supported
by at least one book and over 1000 research papers [9]. The two communities that
have made the most progress on the control problem are the Optimal Control [10] and
Reinforcement Learning [11] communities, each with very different (some argue polar
opposite [9]) perspectives and approaches.

The optimal control community enjoys a rich history and has developed mathematical
frameworks around model-based design and analysis. Model-based design is centered
around understanding the dynamics of a system and developing a model of the
underlying physics. Several control mechanisms, such as Proportional Integral
Derivative (PID) [12] and Model Predictive Controllers (MPC) [13] can be used once
a model of the system is available. The optimization problem is typically framed
around choosing the actions that will minimize a loss function over time. Stability has
been a central focus in the control community since its inception and analysis tools,
such as Lyapunov functions [14], allow system designers to guarantee the system is
controllable under certain conditions. Nearly all autonomous systems deployed in the
real-world are run with model-based controllers [12].

Reinforcement Learning is based on the Markov Decision Process [15] and originated
more recently in the 1990s [11]. The field has made incredible progress in the last
decade due to the increase in computational power available to train reinforcement
learning agents. The optimization function is typically defined as a reward function,
where the goal is to take actions that maximize the expected reward obtained over time
[1]. Neural networks and model-based simulators have been used to learn control of
complex systems, such as UAVs [16]. However, the training process typically takes
millions of iterations, which is not feasible for expensive systems in the real world that
can be crashed. Training is mostly restricted to simulated environments.
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Both communities face several problems with the control of real-world systems.
Model-based design involves approximating the real-world dynamics, and regardless
of how accurate the model is it will always remain an approximation [17]. Learning
in simulation suffers the same limitations as it is also based on a model of the system.
This problem is known as the simulation-to-reality (sim2real [18]) problem. Real-
world environments are also inherently non-stationary and it is not possible to consider
every possible failure or disturbance a system can experience throughout its operational
lifetime at design time. To further complicate the problem, many systems, such as
flying vehicles, are based on real-time control, meaning immediate actions need to be
taken to stabilize the system in case of failures. This limits many of the current control
approaches, which require a significant amount of data to confidently take a corrective
action [19].

The problem of controlling a system in known non-stationary environments has
resulted in the emergence of many sub-communities in both the learning and
control community. The learning community addresses this problem in the Meta-
Reinforcement Learning [20] and Robust Reinforcement Learning [21] communities,
while Fault-Tolerant Control [19], Adaptive Control [22], and Robust Control [23]
emerged in the control community. Interestingly, there are many overlaps in the general
approaches of both communities to overcome the non-stationary dynamics, which are
either based on the identification of the non-stationary changes (active) or creating
robustness to changes without identification at design time (passive) [24, 19].

Robustness is generally defined as the ability to operate under bounded parameter
uncertainty [25]. For example, the weight of a UAV might change for each flight
depending on varying payloads, or the number of passengers and GPS position data
might be noisy. This is different from actual failure situations such as total rotor
failures, which change the dynamics of the UAV and hence require the control system
to adapt the way the vehicle is controlled. The robust and fault-tolerant control
communities are closely related since both of these aspects are necessary for real-
world systems and this overlap is typically called Robust Fault-Tolerant Control.
Similarly, the Robust and Meta Reinforcement Learning communities also mirror
this relationship in creating robustness to parameter uncertainty and adapting to new
situations.

In summary, each of the mentioned communities is approaching parts of the same
problem with vastly different perspectives and mechanisms. If a priori information
about the system and environment is available both learning-based and model-based
controllers are feasible. There is also extensive overlap in the form of hybrid
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approaches that use mechanisms from several communities [26].

The real-time control problem in unknown non-stationary operating conditions is still
not solved by either community, as both are highly dependent on a priori information
about the system and environment, which by definition is not available at design time.
This is a major problem for the large-scale integration of autonomous systems in the
real world. This thesis focuses on the intersection between learning and control and
utilizes existing methods developed across the above-mentioned communities. The
approach is based on a well-known, modular control framework for non-stationary
systems developed in the adaptive control community, called Multiple Model Adaptive
Control [27]. This framework divides the control task into a supervisory and low-level
control problem, which allows for the integration of both model-based and learning-
based controllers. Model-based controllers have significant advantages for the low-
level control problem in the real world due to the stability guarantees provided by
the control community. Learning-based controllers provide a flexible supervisory
controller that can overcome the limitations of a pre-designed model-based supervisory
controller, such as fault identification delays and manual design efforts.

This research makes two main contributions. The first is a set of five novel supervisory
control methods that have empirically been shown to improve a system’s robustness to
unknown operating conditions. These consist of one pure model-based and four hybrid
model/learning-based control methods. The second is a novel low-level controller
tuning algorithm that automatically finds a sufficient controller set to cover all known
operating modes. The contributions are presented across nine articles. The hybrid
design of the presented methods drastically reduces the design effort required to
create a robust control system as learning is mostly automated. All learning-based
supervisory controllers presented in this thesis maintain the stability properties of the
model-based low-level controllers during training.

The contributions have the following impacts. 1) They provide control system
designers with novel control mechanisms to improve a system’s robustness to unknown
operating conditions. Currently, no control methods exist for such situations. 2) The
presented control methods can be integrated alongside existing fault-tolerant control
systems and are applicable for any autonomous system, given that a model of the
system exists. 3) The approach explored offers a new perspective on the combination
of learning- and model-based controllers and allows for future developments from
both fields, such as better model-based controllers or faster training algorithms, to
be incorporated without modifications.
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Figure 1.1: Simple control loop for without considering the operating environment.

2 Background

The control problem is presented in three parts of increasing difficulty, firstly stationary
system dynamics, followed by known non-stationary system dynamics, and finally
unknown non-stationary system dynamics. A notation and acronym overview can be
found in the table below. A simple control loop can be seen in Figure 1.1.

The behavior of a system is characterized using the tuple 〈S,Λ,A〉 and k as a temporal
index. The state of the system is described by a state vector sk ∈ S and the control
actions issued to the plant by action vector ak ∈ A. A system can operate in a set of
modes λk ∈ Λ, which characterize the operating conditions, e.g., plant fault conditions
or adverse environmental conditions. A controller/policy is a function that maps the
system states to the corresponding control actions and is defined using a parameter
vector θ. The set of modes is defined using a parameter set Λ ∈ <n, with n being the
number of parameters. External disturbances to the system and component failures are
defined in subsets E and F, such that Λ = E ∪ F.

PID Proportional Integral Derivative Controller
MPC Model-Predictive Controller
LQR Linear Quadratic Regulator
UAV Unmanned Aerial Vehicle
MMAC Multiple Model Adaptive Control
FDI Fault-Detection and Isolation
DDPG Deep Deterministic Policy Gradient
TRPO Trust Region Policy Optimization
PPO Proximal Policy Optimization
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S State space of the system
sk State vector at time k
A Control action space
aik Control action vector issued by controller i at time k
E Set of operating modes defined by known environment parameters
F Set of operating modes defined by known fault parameters
U Set of unknown modes
Λ Set of all known operating modes
λk Operating mode vector at time k
T Control Task
L Loss function of a task
Ψ Stochastic transition function
Σλ Plant Dynamics parameterized by operating mode λ
K Duration of a task
πθ Low-level system controller parameterized by θ
θ Parameters defining low-level controller π
Θ Set of controller parameters
ΠΘ Set of low-level controllers parameterized by Θ
C(Θ) Convex hull coverage of parameter space by set Θ
ϕk Controller weight vector
ω Supervisory controller parameter
Φω Supervisory control law

2.1 Control for Stationary Dynamics

The problem is formulated using a mix of notation from both learning and control
community. The notation in the individual articles accompanying this thesis may be
different.

2.1.1 Problem Description

Stationary dynamics refer to the system operating only in nominal plant states and the
environment does not change. In this situation, the dynamics can be defined using the
function Σ : S × Λ × A → S . Here, Λ is fixed for any task, i.e., the environment
parameters are known a priori and that do not change during a task, and faults do not
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occur. The objective of the system is to complete a task T defined by the tuple

T = (L,Ψ,K) (1.1)

where

• L is a loss function
L : 〈s, λ, a〉 → [0, 1] (1.2)

that assigns a [0,1] loss at time k;

• Ψ : S × Λ × A × S → [0, 1] is a stochastic transition function that estimates
the probability of reaching state s′ at k + 1 when action ak ∈ A is taken by the
control system (Ψ = P (sk+1 = s′|sk, λ, ak));

• K corresponds to the duration of the task.

The objective of solving a control task is thus to minimize the loss L in solving task T
over K time-points. Task optimization can be defined as:

Definition 1 (Task Optimization). Given a task T , select a sequence of control

actions A1:K that drive the system through a state/environment sequence S1:K,Λ1:K

to minimize
K∑
k=1
L(sk, λ, ak), (1.3)

where sk ∈ S1:K, λ ∈ Λ1:K, ak ∈ A1:K.

Note that the mode λ is fixed in the interval 1 : K. We assume that there exists an
optimal control action a∗ at every time step, i.e.,

∃ a∗k = arg min
ak∈A
L(sk, λ, ak). (1.4)

Given a controller πθ : 〈s〉 → a characterized by the parameter vector θ, the
optimization problem to solve a task for stationary system dynamics is the following

θ∗ = arg min
θ∈Θ

K∑
k=1
L(sk, λ, πθ(sk)) (1.5)

Problem 1.5 can be solved by both learning-based and model-based controllers if the
following conditions are satisfied for task T

A. L(s, λ, a) ≤ C <∞ , ∀s ∈ S, λ ∈ Λ, a ∈ A, and some bound C.
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B. Ψ and L do not change with time.

2.1.2 Model-based control

The control community has developed many generic controllers to solve Problem 1.5,
such as Proportional Integral Derivative (PID), Model-Predictive Control (MPC), and
Linear Quadratic Regulator (LQR) being among the most popular [19]. Nearly all
real-world control systems consist of model-based controllers, with the most common
being the PID controller due to its simplicity and effectiveness [12].

Model-based controllers require, by definition, a model of the system so the controller
parameters can be tuned to give the required action. Obtaining an accurate model
can be extremely challenging as all models are approximations of the real-world and
making these models more accurate is a core focus of the control community. Once a
model is obtained, a vast number of controllers and automated tuning methods become
available to solve equation 1.5.

Stability is a central focus in the control community and mathematical analysis tools,
such as Lyapunov functions, have been an integral part of the design of control
systems for several decades. System stability can typically be ensured up to a certain
parameter threshold, after which control is no longer possible [19]. For example, a
UAV controller may be designed for wind speeds up to 10km/h, anything above will
result in the loss of vehicle control [28]. The importance of stability guarantees can
not be overstated when operating in a real-world scenario, where failure can result in
catastrophic consequences such as the loss of human lives. This is one of the reasons
why real-world control systems are dominated by model-based controllers.

2.1.3 Learning-based control

The most popular controller implementation for learning-based control is by far the
neural network, specifically a deep network (deep reinforcement learning) [29]. In this
case, θ∗ represents the optimal neural network weight assignment that will map the
system states to the correct actions and is obtained by training the network on a task
offline.

Some important focuses of the learning community are performance and faster
learning. A staggering amount of new training algorithms are published every
year, such as Deep Deterministic Policy Gradient (DDPG) [30], Trust-Region Policy
Optimization (TRPO)[31], Proximal Policy Optimization (PPO)[32], etc. These
algorithms are typically designed around specific types of problems, such as discrete vs
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continuous state/action spaces, on/off-policy learning, various internal configurations
to structure the learning process (e.g. actor/critic), and how the neural networks
updates are performed. The solution to a discrete reinforcement learning problem is
Dynamic Programming to achieve the Bellman optimality criteria [11].

While all of these algorithms try to maximize the amount of information obtained from
each action taken, it is not possible to ensure these actions are always safe. Training an
agent in a real-world setting, where a bad action can have serious consequences, is not
feasible with current approaches. Training is mostly done in simulation over millions
of iterations on a task. This leads to the same constraints as model-based controllers, a
model of the system (simulator) is needed to learn a control policy.

In contrast to model-based controllers, there is no way to guarantee how a neural
network-based controller will perform in a real-world setting, as the training simulation
is only an approximation of reality [33]. This problem is widely referred to as the
sim2real transfer problem and has been one of the main hurdles in deploying learning-
based controllers in the real world [18].

2.1.4 Summary

Both model-based and learning-based control approaches require a model of the
system to tune/train a controller/policy. Model-based controllers have a clear
advantage as these controllers can be analyzed to fully understand how they will
perform under varying conditions. Learning-based controllers can only be trained in
simulation, also requiring a model of the system, but are currently lacking any stability
guarantees for the safe application in the real world.

2.2 Control for Known Non-Stationary Dynamics

2.2.1 Problem Description

Non-stationary dynamics refer to changes in the plant or environment and can be
characterized using mode transitions and are modelled as hybrid mode changes. The
dynamics can be defined using the function Σλ : S × Λ × A → S. A task for non-
stationary system dynamics is defined by the tuple,

T λ = (L,Ψλ,K) (1.6)

, where the behavior of the system depends on the parameter configuration vector
λ ⊂ Λ such that Ψλ = P (sk+1 = s′|sk, λk, ak). For example, the dynamics

Autonomous System Control in Unknown
Operating Conditions

9 Yves Sohège



2 Background

Figure 1.2: Multiple Model Adaptive Control

of a flying vehicle experiencing a rotor fault or wind conditions are different from
nominal conditions. Therefore, the parameter vector λ encodes different system and
environmental conditions.

Similar to stationary dynamics, a task for non-stationary system dynamics involves
minimizing the loss function. However, a single controller cannot solve such a task
because the second condition of Problem 1.5 is not satisfied (Ψ may change with time
depending on the operating mode).

2.2.2 Multiple-Model Adaptive Control

Multiple-Model Adaptive Control (MMAC) is a modular control framework developed
in the 1970s [34], based on the ’divide and conquer’ strategy, to deal with non-
stationary operating conditions. The control task is split into supervisory control
(high-level) and low-level control, which can be seen in Figure 1.2. A set of low-
level controllers Π = {πθ1 , · · · , πθN} is used to overcome the non-stationary nature
of the transition function Ψλ. The low-level controllers run in parallel generating an
action vector ak = {a1

k, · · · , aNk } at every time step. The supervisory control task is
to identify λk and generate a weight vector ϕk = {ϕ1

k, · · · , ϕNk } to convexly combine
the low-level control actions ak = {a1

k, · · · , aNk }. The supervisory controller can be
defined as Φω : 〈s〉 → ϕ, under the constraints that ϕi ∈ [0, 1] and

∑
i ϕ

i = 1.

Definition 2 (Multiple Model Adaptive Control). Given a low-level controller set Π
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that generates an action vector a = {a1, · · · , aN}, and a corresponding weight vector

ϕ = {ϕ1, · · · , ϕN} generated by a supervisory controller, multiple model adaptive

control applies the weighted action ab = ∑N
i=1 ϕ

iai, such that: (1) ∀i, ai ∈ a, ϕi ∈
[0, 1], and (2)

∑
i ϕ

i = 1.

The loss function for a multiple model adaptive control system can be rewritten in
terms of a weighted action vector,

min
K∑
k=1
L(sk, λk, akϕk), (1.7)

where sk ∈ S1:K, λk ∈ Λ1:K, ak ∈ A1:K, and ϕk ∈ [0, 1]1:K.

The actions applied to the system are dependent on two parts, weight vector ϕk
and action vector ak. The optimization problem to complete the task can also be
split into two parts, supervisory controller optimization and low-level controller set
optimization.

Problem 1 (Low-level Controller Set Optimization). Given a set of known operating

modes Λ = {λ1, · · · , λN}, find a low-level controller parameter set Θ∗ =
{θ1, · · · , θN} such that

Θ∗ = arg min
θi∈Θ

K∑
k=1
L(sk, λ, πθi(sk)), ∀ λi ∈ Λ (1.8)

In other words, the goal is to optimize the low-level controller set such that all known
operating modes are covered by some controller in the set. As the number of conditions
considered increases this becomes increasingly complex and is not feasible for every
possible condition. This problem can only be solved if ϕ is fixed during the low-
level controller optimization process, hence it is omitted here. The operating modes
in Λ are treated separately and are assumed not to occur simultaneously. Solving
this optimization problem results in a low-level controller set ΠΘ∗ , which contains
a controller for each mode in Λ.

The supervisory control problem cannot be solved unless a low-level controller set
exists, as the supervisory controller combines the actions generated by the controllers.

Problem 2 (Supervisory Controller Optimization). Given a set of known operating

modes Λ = {λ1, · · · , λN} and a low-level controller set ΠΘ∗ (which satisfies equation

1.8) that generates an action vector ak, find a supervisory controller parameter vector
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ω∗ ∈ Ω such that,

ω∗ = arg min
ω∈Ω

K∑
k=1
L(sk, λk, akΦω∗(sk)), ∀ λi ∈ Λ (1.9)

In other words, the supervisory controller should be configured such that the weight
vector ϕk applies the loss minimal action from the action vector ak to the system.

2.2.3 Switched vs Blended MMAC

There are two main types of supervisory controllers, Switched [35] and Blended
(Mixed) [27]. Both have the same convex combination constraint, i.e.

∑
i ϕ

i = 1,
but they differ in the parameter range allowed for ϕ. Most systems utilize a switched
supervisory controller where each weight takes a discrete value of 0 or 1, and given
the constraint, this only allows a single controller full control at any time. This makes
perfect sense when the best performing low-level controller is known.

Blended Control allows controller weights from a continuous parameter range, such
that 0 ≤ ϕ ≤ 1. In most cases, this is used for partial fault-tolerant control [2]
or in situations where the entire dynamics of the vehicle change, such as a tilt-rotor
aircraft [36]. Blended control is a more complicated supervisory controller than simply
switching due to the increased parameter range of ϕ [37].

2.2.4 Model-based Supervisory control

Model-based design of supervisory controllers typically revolves around fault-
detection and isolation (FDI) using a set of system monitors, such as Kalman Filters
(and the many variations). Each monitor is tuned for a specific operating mode in Λ,
which creates a one-to-one mapping of system monitors to low-level controllers. This
is one of the main reasons switching-based supervisory controllers are so common
[38].

This approach has two fundamental drawbacks, which are the need for a priori

knowledge of the operating mode to tune the filter and an inherent delay in the mode
estimation computation. The delay in model-based FDI mechanisms is a big problem
for real-time control systems, such as UAVs. A supervisory controller based on model-
based identification can only work for known operating conditions considered at design
time, as a system monitor needs to be tuned for each mode.
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2.2.5 Learning-based Supervisory control

Neural networks are powerful function approximators and can be used to implement
the same functionality as the set of system monitors. Training a neural network
to generate the weight vector ϕ has mostly been explored for switched control as
it overcomes the inherent FDI delays experienced by model-based controllers [39].
Learning-based supervisory controllers are also easier to tune as training is mostly
automated, which overcomes the manual tuning of system monitors required by model-
based methods.

Currently, no real-time training algorithms exist and most learning-based supervisory
controllers are trained offline. There is significant progress in the online- and meta-
learning community [40]. Meta reinforcement-learning is working towards controllers
that can adapt to novel task/operating conditions with a small amount of data. These
methods currently fail when the novel task is too different from the set of training
tasks but have developed significantly in recent years [20]. However, meta-learning is
typically applied to learn full system control and has not been used to train supervisory
controllers so far.

2.2.6 Summary

Model-based supervisory controllers typically involve pre-defining system monitors
for each λ ∈ Λ and switching control to the corresponding low-level controller.
Learning-based controllers can implement the same functionality as a set of system
monitors but with significantly less tuning effort and no fault-detection and isolation
delays. Overall, both approaches are feasible for autonomous system control in known
operating conditions.

2.3 Control for Unknown Non-Stationary Dynamics

2.3.1 Open Problem Description

It is impossible to know all faults and adverse environments a system can experience
in its operational lifetime a priori. This means there will always be an unknown set of
modes U not available at design time. The only difference to the known non-stationary
dynamics problem is that the operating mode can be known or unknown, λ ∈ Λ ∪U.
The dynamics of such a system can be defined using the function Σλ : S×Λ×U×A →
S. The loss function and task definition do not change besides λ ∈ Λ ∪ U. Both
Problem 1 and 2 can be extended to U but cannot be solved by current learning- or
model-based controllers.
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Open Problem 1 (Low-level Controller Set Optimization). Assuming there exists an

unknown set of operating modes U and given a set of known operating modes Λ =
{λ1, · · · , λN}, find a low-level controller parameter set Θ∗ = {θ1, · · · , θN} such that

Θ∗ = arg min
θi∈Θ

K∑
k=1
L(sk, λk, πθi(sk)), ∀ λi ∈ Λ ∪U (1.10)

Since no a priori information about the set U is available at design time, it is not
possible to solve open problem 1. The supervisory optimization problem can be
similarly extended, if we assume open problem 1 is solved but suffers the same
problem.

Open Problem 2 (Supervisory Controller Optimization). Assume there exists an

unknown set of operating modes U. Given a set of known operating modes Λ =
{λ1, · · · , λN} and a low-level controller set ΠΘ∗ (assumed to satisfy equation 1.10)

that generates an action vector ak, find a supervisory controller parameter vector ω∗

such that,

ω∗ = arg min
ω∈Ω

K∑
k=1
L(sk, λk, akΦω∗(sk)), ∀ λi ∈ Λ ∪U (1.11)

The fundamental problem that both learning-based and model-based controllers face is
the dependency on a priori knowledge of the operating modes Λ. Currently, no control
methods exist for situations when λ ∈ U.

The main goal is to investigate if a learning-based supervisory controller can be trained
on known operating conditions Λ to improve the robustness of a system to unknown
operating modes U. The presented supervisory control methods use a blended
supervisory controller because of the increased parameter range of ϕ. This gives
a supervisory controller more options to combine the action vector ak for unknown
operating conditions.

3 Approach

Open Problems 1 and 2 are interdependent and usually, the low level controller
optimization problem must be solved before the supervisory control problem becomes
feasible. However, when a system encounters an unknown operating mode in a real-
world situation, some controller set Π must be present. If we assume that a suitable
control action a∗ for λ ∈ U can be interpolated using some optimal combination ϕ∗

of the actions generated by the existing controller set Π, then Open Problem 2 can be
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Figure 1.3: Multiple Model Adaptive Control open problems for unknown conditions

addressed. This thesis presents a set of novel supervisory control architectures that
can be used to improve the robustness of a system to unknown operating modes and
a novel low-level controller tuning algorithm that can reduce the size of the controller
set required compared to traditional approaches. The relevant paper under discussion
in each subsection is indicated and further discussion and results can be found in Part
2.

3.1 Supervisory Control Problem

Open Problem 2 is approached under the assumption that a suitable control action a∗

exists for λ ∈ U.

3.1.1 Switching vs Blending Supervisory Control - Papers A/H

A comparative study between switching and blending model-based supervisory
controllers is presented in two articles on different application domains, a simple water
tank system, and a car steering trajectory tracking task.

In summary, a blended controller is less sensitive to FDI delays and false-positive
identification. The speed and accuracy of FDI are found to be critical to the
performance of switched supervisory controllers. The results show that sharing control
between several controllers using blended control can reduce the impact of badly tuned
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low-level controllers.

Further, for the case of unknown operating environments, a switched control
framework is restricted to the low-level controllers defined at design time as no
interpolation is possible. For the remainder of the thesis, the supervisory controllers
investigated are based on a blended controller due to the ability to interpolate between
control actions.

3.1.2 Randomized Blended Control - Paper B

The first contribution of this thesis is an alternative supervisory control methodology
based on randomization instead of identification when λ ∈ U. The idea behind
randomizing the supervisory control actions is that in an unknown operating
environment, where no a priori information exists, every low-level controller has an
equal chance of being the one that can stabilize the system. A continuous uniform
probability distribution ∆, defined over interval [α, β], is used to sample the blending
weight vector, ϕk ∼ ∆(α, β), where [α, β] = [0, 1] and

∑
i ϕ

i = 1. Note [α, β] is fixed
in this article. The key notion that makes this approach work is that randomization is
computationally cheap and allows the weights to be re-sampled at every iteration of
the control loop. By using a uniform probability distribution to sample the blending
weights, control is essentially distributed uniformly over the entire low-level controller
set.

In the event of an unknown operating condition, this approach has the advantage of
not relying on any single controller at any time, as is the case with identification-
based supervisory controllers. Given that the operating condition can’t be identified
in real-time, the single controller an identification-based approach uses is essentially
chosen randomly. The phrase ’Don’t put your eggs in one basket’ seems appropriate to
describe the idea behind fast randomized blended control when λ ∈ U. One clear
drawback of this approach is that it is sub-optimal because of the fixed sampling
interval [α, β] and the uniform distribution used.

Randomized Blended Control was empirically compared against a Switched Controller
with optimal fault-detection and isolation on a quadcopter trajectory tracking task
under rotor loss of effectiveness. The switched controller contains a priori

knowledge of the optimal ϕ∗ for the unknown operating mode, making it an
unrealistic benchmark. We introduce FDI delays of varying lengths to compare
how randomization performs against optimal but time-delayed identification. The
quadcopter simulation uses a cascading PID controller architecture for position and
attitude control. Fault tolerance is focused on the attitude control system using a set of
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PID controllers for roll and pitch control and both supervisory controllers use the same
low-level controllers.

The results show that randomized blended control outperforms the benchmark
switched controller, if the FDI delay is larger than 0.5 seconds, the smallest time
delay investigated. This is significant because unknown operating modes cannot
be identified, which means randomized blended control can offer an alternative and
effective supervisory control approach for unknown operating modes. A major
advantage of randomized blended control is that no a priori knowledge is needed.

3.1.3 Learning-based Supervisory Control - Papers C/D/E/F/G

The next contribution is a set of four novel learning-based supervisory controllers
that are empirically shown to improve robustness to unknown operating conditions.
The contribution is spread over five articles, all focused around quadcopter trajectory
tracking under various faults and disturbances. Three articles (Paper D, E, and G) are
centered around offline training on Λ. One article (Paper C) represents a framework to
check the feasibility of learning blended control online when λ ∈ U. The final article
(Paper F) presents the advantages of applying learning in a hybrid control framework
as utilizing model-based controllers drastically simplifies the control task compared to
learning direct control of the system.

Paper D: The first supervisory control approach is based on learning to directly
generate the blending weights for the controller set offline and is referred to as Deep
Reinforcement Learning Blended Control (DRLBC). This approach represents an
identification-based method as no randomization is involved in the control loop. A
neural network is used to directly map states to controller weights, sk → ϕk ∈ [0, 1].
A blending-based neural network as a supervisory controller overcomes the drawbacks
of both switched and model-based control, namely FDI delays and manual system
monitor definition.

Paper E: The second supervisory control approach is a combination of Randomized
Blended Control and DRLBC, called Deep Reinforcement Learning Randomized
Blended Control (DRLRBC). The neural network is used to map the states to an
improved parameter interval for randomization, sk → [αk, βk] ∈ [0, 1]. This allows the
interval to change during the execution of a task. The blending weights are sampled
from the uniform distribution as before ϕk ∼ ∆(αk, βk). As the system experiences
changes in λk, the neural network can control the interval used for randomization.
Instead of distributing control equally over all controllers, adding a neural network to
guide the randomization is shown to further improve robustness to unknown operating
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conditions.

Paper G: The third supervisory controller is based on an extension of DRLRBC. The
key difference in this approach is the use of a neural network to learn the parameters of
a continuous multivariate probability distribution, such as a Dirichlet distributionD(δ).
The blending weights are sampled such that, ϕk ∼ D(δk), where δk parameterizes the
distribution. DRLRBC learns two parameters to form an interval for each of the N
controllers resulting in a 2*N -sized action space for the agent. However, D(δ) only
requires one parameter for each controller, which reduces the agent’s action space
by half. Another major advantage of using a Dirichlet distribution is that samples
always sum to 1, which naturally enforces the blended control constraints on ϕ, i.e.∑
i ϕ

i = 1. This approach has shown the most promise empirically and overcomes
the drawbacks of using a uniform probability distribution, while also simplifying the
learning problem.

Paper C: The fourth supervisory controller is based on Q-learning with a simplified
blending space as a preliminary investigation into the feasibility of online learning.
The agent learns to generate ϕk from a discretized blending space, such that ϕi ∈
[0, 0.1, · · · , 1]. This simplifies the action space of the agent compared to the previously
presented controllers. While the results show the agent can improve robustness over
time online, better-suited algorithms and implementations have been developed since
this article was published, such as RL using decision trees [41].

Paper F: The final article compares the complexity of learning control using a hybrid
blended control framework comprising of a learning-based supervisory controller and
a set of model-based low-level controllers against directly learning full system control.
The results show that it is significantly simpler to learn a supervisory controller because
model-based controllers remove the need to learn nominal system control, which can
take learning-based approaches a huge number of episodes.

3.1.4 Summary: Supervisory Control in Unknown Operating Modes

The results from articles A and B highlight the advantages of using blended control
over switched control and present a novel supervisory control architecture based on
randomization for unknown operating modes. The results presented in articles C -
G show that a learning-based supervisory controller can be trained offline on known
operating conditions Λ to improve the robustness to unknown operating conditions
U. Three neural network-based supervisory controller architectures, based on both
randomization and identification, are presented. All three can improve robustness
when λ ∈ U by training on the known conditions Λ offline. Preliminary results

Autonomous System Control in Unknown
Operating Conditions

18 Yves Sohège



3 Approach

show online learning can also improve robustness when λ ∈ U, however better
implementations are available that need to be investigated. The hybrid MMAC
architecture ensures that the actions of the learning-based supervisory controller do
not break the stability guarantees of the model-based low-level controllers. This also
eliminates the need to learn nominal system control, which is a major advantage over
other hybrid or learning-based fault-tolerant control approaches.

3.2 Low-Level Controller Tuning Problem

Open Problem 2 was investigated based on the assumption that a suitable control action
a∗ exists for λ ∈ U. The action vector is ultimately dependent on the controller
parameter set Θ. For Open Problem 1, the assumption transforms to the existence of an
optimal controller parameter configuration θ∗ for λ ∈ U. This is the same assumption
from two perspectives. If we further assume that one of the presented supervisory
controllers is later used to approximate a∗, then the low-level controller parameter
tuning problem transforms into ensuring that θ∗ ∈ C(Θ), where C(Θ) defines the
convex hull coverage of parameter set Θ.

Traditional tuning approaches treat every operating mode separately such that θi ∈ Θ
is tuned for λi ∈ Λ. While this approach has been shown to work in practice it leads
to a rapidly growing low-level controller set as more conditions are considered. If the
low-level controller set is instead tuned based on the coverage provided by the entire
set C(Θ), then Θ only grows if the required controller is not already covered by the set.
For this kind of tuning approach, all operating modes in Λ must be considered together
instead of separately.

3.2.1 Convex Hull-based Controller tuning - Paper I

The third contribution of this thesis is a novel learning-based controller tuning
algorithm (Paper I) that automatically constructs a convex hull in the low-level
controller parameter space given a set of operating modes Λ. Instead of optimizing for
a single optimal parameter, the presented algorithm finds a region of suitable controller
parameters for each mode. The regions for all modes are then combined using a convex
hull. The extreme parameters that define the combined convex hull can be used as Θ,
which ensures a sufficient coverage of the controller parameter space for Λ.

This type of tuning ensures that the size of the parameter set Θ is not dependent
on the number of operating modes considered, i.e. |Θ| 6= |Λ|. This is empirically
demonstrated on a quadcopter trajectory tracking task with five known operating
modes, |Λ| = 5. Using traditional tuning approach results in five low-level controllers,
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i.e. |Θ| = 5. The results show that the presented algorithm can achieve comparable
robustness to five operating conditions using only three controllers, |Θ| = 3. This
is because the parameter coverage of the set as a whole is more important than the
number of parameters within the set. Traditional tuning approaches do not consider
the coverage of the controller set, which leads to an unnecessary growth in the size
of Θ. This is the reason the presented algorithm can reduce the number of required
parameters compared to other approaches.

The algorithm is based on a novel combination of existing algorithms including
Particle Filtering [42], clustering, and convex hulls. All of these algorithms are
extensively documented and parameter tuning is well understood. The presented
algorithm requires one additional parameter that represents the acceptable loss
threshold on a task. The extreme parameters used for Θ are currently selected manually
and this can be automated in the future by integrating extremum-seeking methods.

3.2.2 Summary: Low-Level Controller Tuning for Unknown Operating Modes

A novel convex hull-based low-level controller tuning algorithm is presented in article
I. The controller set found using the presented algorithm is empirically compared
against a traditional tuning method on a quadcopter trajectory tracking simulation
under several faults and disturbances. The results show the algorithm can reduce
the size of Θ compared to traditional approaches, without a loss in performance. No
other tuning algorithms based on convex hulls currently exist. The presented tuning
algorithm can ensure that the controller parameter space is sufficiently covered for
λ ∈ Λ and provides best-effort coverage for λ ∈ U, based on the a priori knowledge
available at design time.

3.3 Thesis Contributions:

Fault-tolerant control approaches are generally split into two categories, active and
passive. State-of-the-art active fault-tolerant control methods mainly rely on residual
analysis to identify faults and disturbances and are generally considered more effective
but are highly dependant on the speed of identification and accuracy of the model [43].
Passive approaches are entirely tuned at design time and offer little flexibility outside
of the known operating conditions. Learning-based control approaches have made
significant advances in recent years but currently have limited application to unknown
operating conditions as no models or data exist for these situations and are lacking
stability guarantees [33]. This thesis makes the following contributions:

A. A novel randomization-based supervisory control approach for unknown
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operating conditions. This approach overcomes the dependency on a priori

knowledge and mode-estimation delays inherent to existing identification-based
supervisory control approaches.

B. A set of four novel learning-based supervisory controllers that have been
empirically shown to improve a system’s robustness to unknown operating
conditions. A key advantage over existing hybrid and learning-based control
approaches is that the presented supervisory controllers maintain the stability
guarantees of the model-based low-level controllers during training.

C. A novel learning-based controller tuning algorithm that can reduce the number of
low-level controllers compared to other tuning approaches, without a significant
loss in performance. This is achieved by constructing a convex hull in the low-
level controller parameter space based on all known operating conditions Λ.

Together, these contributions advance the current state of the art by offering a new
perspective on how to address unknown operating conditions. Instead of identifying
the exact operating condition using computationally expensive analysis and using a
single controller, randomization and blended control are used to distribute system
control over all controllers simultaneously. This novel concept is further extended
using learning-based methods to improve the distributions used for randomization
based on existing fault knowledge at design time. The novel low-level controller tuning
algorithm was developed to complement the presented supervisory control methods
and overcomes the large growth in the set of controllers required to provide fault
tolerance using current methods. The results presented in the accompanying articles
show that the presented approaches outperform current state-of-the-art approaches
under unknown operating conditions and warrant further investigation and real-world
tests.

3.4 List of Impacts:

A. This thesis provides control system designers with novel control mechanisms to
improve a system’s robustness to unknown operating conditions. Currently, no
control methods exist for such situations.

B. The presented control methods can be integrated alongside existing fault-tolerant
control systems and are applicable for any autonomous system, given that a
model of the system exists.

C. The approach explored offers a new perspective on the combination of learning-
and model-based controllers and allows for future developments from both

Autonomous System Control in Unknown
Operating Conditions

21 Yves Sohège



3 Approach

fields, such as better model-based controllers or faster training algorithms, to
be incorporated without modifications.

D. The simulation files for all experiments presented in the articles accompanying
this thesis have been made available for the research community. These
are centered around quadcopter trajectory tracking under various external
disturbances and internal system faults. The modular implementations are based
on Python and MATLAB and provide a flexible basis for future research on
robust fault-tolerant quadcopter control.

3.5 Scope

The overall goal of this thesis is to develop novel control methods that improve
a system’s robustness to unknown operating conditions. This is accomplished by
combining methods from several communities to overcome the disadvantages of
each on their own. The open problem that is studied is extending multiple model
adaptive control to unknown operating conditions, where no a priori knowledge
exists. This problem can be divided into two open sub-problem, supervisory controller
optimization and low-level controller set optimization. All of the work was completed
within the MMAC framework with the major focus on Blended Control. MMAC is
a state-of-the-art control framework that can be applied to any system with multiple
controllers. Blended Control ensures smooth transitions between the controllers and
allows for the synthesis of new controllers from within the set. MMAC allows for
a hybrid control framework that can take advantage of the stability properties of
model-based design and the adaptability and ease of tuning offered by learning-based
control methods. The modular framework design allows existing fault-tolerant control
systems to be extended with the presented control methods. Future developments in
both learning and control, such as better model-based controllers or real-time learning
algorithms to be integrated without major modifications.

The supervisory control problem (Open Problem 2) is approached assuming a suitable
action a∗ for an unknown mode λ ∈ U can be interpolated from the action vector.
The low-level controller tuning problem (Open Problem 1) is approached under the
assumption that an optimal controller tuning θ∗ exists for the unknown modes λ ∈ U.
Open Problem 1 can then be translated into a parameter coverage problem but it is
currently not possible to guarantee θ∗ ∈ C(Θ) without a priori knowledge of U. Such
situations are beyond the scope of this thesis, as the presented methods will not improve
robustness when θ∗ /∈ C(Θ).
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A preliminary comparison between the presented methods show that using a neural
network to generate the underlying probability distribution for randomized blended
control (Paper G) is most promising. A thorough comparison in terms of different
neural network architectures and training algorithms for the presented supervisory
controllers is left for future work and is expected to further improve the methods. The
focus of this thesis is on investigating a variety of methods to give system designers
more options depending on the capabilities of the system of interest. For example,
micro-aerial vehicles with limited onboard computing power will benefit more from
the computationally cheap randomized supervisory controller, instead of a learning-
based supervisory controller, which could be more useful for larger systems.
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Figure 1.4: Thesis Contributions visualized on MMAC architecture.
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Figure 1.5: Thesis Overview Flowchart
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4 Contributions

My contributions to the below articles are summarized here. I conducted all of the
experiments and empirical validations that each article is based on. I also developed
most of the novel algorithms that are presented, while it has to be mentioned that
both Gregory Provan and Marcos Quinones-Grueiro were instrumental in providing
essential definitions, mathematical underpinnings of the methodology, theoretical
proofs, and writing to get these articles accepted. A percentage-based indicator is
given along with a summary of each article to highlight my proportional contribution.
Note: Paper H falls outside of the main contributions of this thesis.

Paper A represents an initial robustness investigation and comparison of Switched and
Blended control. The empirical validation is conducted using MPC controllers
on a two-tank system experiencing valve and pump faults under various FDI
delays. The main results are that blended control is less impacted by FDI delays
and more robust to faults overall. This is because a switched framework usually
requires a parameter to reach a certain threshold before a fault is identified
and control is switched. I contributed the experimental implementation, result
analysis, image generation and the experimental section in the article.
Contribution: 50% , Co-Authors: 50%

Paper B proposes a novel supervisory control methodology based on randomization
instead of identification, called Randomized Blended Control (RBC). The main
focus of this article is the theoretical stability and stabilizability properties of
using a randomized blending weight. The main contribution of this article is
that RBC is a theoretically sound and empirically effective supervisory control
method. It was validated on a real-time quadcopter trajectory tracking task
under rotor faults. The key property that makes randomization comparable to
identification-based approaches is the computational simplicity that allows for
the weights to be re-sampled at every iteration of the control loop, overcoming
the computational delay experienced by identification-based methods. For
unknown operating conditions, this approach can overcome the requirement of a

priori knowledge but is sub-optimal due to the uniform probability distribution
used to sample the weights. This paper forms the basis for safe learning-
based supervisory control. An untrained and randomly initialized learning-based
controller will essentially behave like randomized blended control at the start of
the training phase. My contributions to this article were the concept design and
experimental implementation and evaluation. The mathematical formulation,
stability analysis and other theoretical aspects were done by my co-authors.
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4 Contributions

Contribution: 30% , Co-Authors: 70%

Paper C shows initial results for using a learning-based supervisory controller. Q-
learning is used to train a supervisory controller to generate the blending weights
under unknown operating conditions. The main result is a demonstration that the
blending weights can be learned online within a few hundred training epochs but
this is not fast enough for real-time learning. The experiments are conducted on
a quadcopter trajectory tracking task under rotor loss of effectiveness. I wrote
the majority of the article (from section 4 on-wards) and conducted all of the
experimental work, algorithm design and result analysis.
Contribution: 70% , Co-Authors: 30%

Paper D utilizes an offline training method to train a supervisory neural network
controller on known operating conditions to directly generate the blending
weights. The empirical validation is carried out on a quadcopter trajectory
tracking task under heavy rotor faults. The main result is that a neural network
can improve the robustness to known operating conditions compared to a
switched controller. This removes the need to manually define the system
monitors of a model-based supervisory controller as well as improving the
reaction speed of the supervisory controller. A drawback is that for unknown
operating conditions, the supervisory controller does not contain randomization
in the control loop. My contributions to this article were the algorithm design,
description and implementation of experimental analysis. Sections 1 and 4 were
contributed by my co-authors.
Contribution: 70% , Co-Authors: 30%

Paper E investigates a combination of the methods proposed in Paper B and D. A neural
network is used to generate an upper and lower bound, which are used as a sub-
space to uniformly sample the blending weights. This combines the advantages
of RBC and learning-based supervisory controllers and improves the robustness
to unknown operating conditions by incorporating randomness into the control
loop. The main contributions of this paper are a novel supervisory controller
and empirical validation on a quadcopter trajectory tracking task under known
and unknown operating conditions including rotor faults, wind disturbances, and
attitude and position noise. I contributed the algorithm design, description and
implementation of experiments and analysis and wrote the majority of the article.
Contribution: 70% , Co-Authors: 30%

Paper F formalizes the general hybrid control framework investigated throughout this
thesis. The main contributions are a comparison of pure learning-based
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4 Contributions

controllers with a hybrid control framework in terms of the complexity of the
learning problem. The experiments are conducted on a quadcopter trajectory
tracking task under rotor faults. The hybrid approach can utilize the benefits of
both model-based and learning-based control methods. The analysis shows that
utilizing model-based controllers for low-level control and applying learning
strictly on a supervisory-level drastically simplifies the problem size. This is
mostly due to the smaller action space of the supervisory control problem. An
extension to the framework presented in Paper E is also included. The neural
network generates the mean and standard deviation of the probability distribution
used for RBC directly, instead of an upper and lower bound. This removes the
limitations of using a uniform distribution. I contributed the implementation of
experiments and analysis and wrote the majority of the article. Section 1 and 2
were contributed by my co-authors.
Contribution: 70% , Co-Authors: 30%

Paper G incorporates a training method from the field of robust reinforcement learning
called Domain Randomization to train the supervisory controllers. The control
architecture is the same as in Paper F but the training methods investigated can
apply to any of the neural network-based supervisory controllers presented in
this thesis. Empirical validation is done using trajectory tracking experiments for
a quadcopter subject to rotor faults, wind disturbances, and severe position and
attitude noise. The performance is compared to RBC to analyze the improvement
obtained through training. The results show that training can drastically improve
the overall performance of the system in a variety of operating conditions. I
contributed the experimental design and implementation as well as writing most
of the sections while my co-authors contributed sections 1,3 and 4.3.
Contribution: 60% , Co-Authors: 40%

Paper I presents a novel low-level controller tuning algorithm based on the construction
of a convex hull in the low-level controller parameter space. Traditional point-
based estimation methods result in a large growth in the number of required
controllers. The algorithm is empirically validated on a quadcopter trajectory
tracking task under five different operating conditions by tuning PID controllers.
The results show that the controller set obtained through the presented approach
yields a smaller controller set than traditional tuning methods without any loss
in performance. For this article I contributed algorithm design, the experimental
implementation and analysis and wrote most of the sections. My co-authors
contributed sections 1 and 3.
Contribution: 70% , Co-Authors: 30%
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5 Publications

5 Publications

5.1 Conference Papers

A Yves Sohège and Gregory Provan. Comparing Switching vs. Mixing Model-

Predictive Control for Robust Fault-Tolerant Control published in Proceedings

of the 28th International Workshop on Principles of Diagnosis (DX’18), Brescia,
Italy, 2018.

B Gregory Provan and Yves Sohège. Fault-Tolerant Control for Unseen Faults

using Randomized Methods published in the Proceedings of the 4th International

Conference on Control and Fault-Tolerant Systems, Casablanca, Morroco, 2019.

C Yves Sohège and Gregory Provan. Online Reinforcement Learning for

Trajectory Following with Unknown Faults published in the Proceedings of the

26th AICS Irish Conference on Artificial Intelligence and Cognitive Science,
Dublin, Ireland, 2018.

D Yves Sohège, Marcos Quiñones-Grueiro and Gregory Provan. Unknown Fault

Tolerant Control using Deep Reinforcement Learning: A blended control

approach published in the Proceedings of the 30th International Workshop on

Principles of Diagnosis, Klagenfurt, Austria, 2019.

E Yves Sohège, Marcos Quiñones-Grueiro, Gregory Provan and Gautam Biswas.
Deep Reinforcement Learning and Randomized Blending for Control under

Novel Disturbances published in the Proceedings of the 1st Virtual IFAC World

Congress, Berlin, Germany, 2020.

F Yves Sohège, Marcos Quiñones-Grueiro and Gregory Provan. Neural-Symbolic

Fault Tolerant Control for Quadcopter Trajectory-Following Tasks published in
the Proceedings of the 31st International Workshop on Principles of Diagnosis,
Tennessee, USA, 2020.

G Yves Sohège, Marcos Quiñones-Grueiro and Gregory Provan. A Novel Hybrid

Approach for Fault-Tolerant Control of UAVs based on Robust Reinforcement

Learning published in the Proceedings of the International Conference on

Robotics and Automation 2021, Xi’an, China, 2021.

H Gregory Provan and Yves Sohège. Comparison of control and cooperation

frameworks for blended autonomy published in Proceedings of the 16th

European Control Conference, Limassol, Cyprus, 2018.
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6 Conclusion & Future Work

5.2 Journal Articles

I Yves Sohège, Marcos Quiñones-Grueiro and Gregory Provan. Learning

Sufficient Low-Level Controller Parameters for Blended Control in Non-

Stationary Conditions published in the Journal of Robotics and Autonomous

Systems 2021 (pending acceptance)

6 Conclusion & Future Work

The control of autonomous systems in unknown operating conditions is an open
problem for both the optimal control and reinforcement learning communities, due
to the lack of a priori knowledge in terms of models and simulators. For the large-
scale integration of autonomous systems in the real world, where unknown operating
conditions are unavoidable, this problem needs to be addressed. Currently, system
designers have no methods at their disposal to handle unknown operating conditions.
This impacts the overall robustness of autonomous systems operating in the real world.

This thesis addresses many of these problems by providing system designers with a set
of control mechanisms to improve robustness in unknown operating conditions. This
thesis is focused on a hybrid control framework that can overcome the disadvantages
of both model-based and learning-based control approaches. This is accomplished by
dividing the control problem into supervisory control and low-level control. Model-
based controllers can provide stability guarantees, which give them a significant
advantage over learning-based controllers for the low-level control problem. Learning-
based supervisory controllers implemented using neural networks can overcome
the fault-detection and isolation delays inherent to most model-based supervisory
controllers. Further, it significantly reduces the effort required by system designers
to define a supervisory controller, as training is mostly automated.

The hybrid framework investigated in this thesis provides a new perspective on how
to combine learning and model-based control. This new framework ensures the
learning-based component can influence the control system, while maintaining many
existing model-based stability guarantees. This is a significant advantage over other
hybrid control frameworks. There are two main contributions. 1) A set of five novel
supervisory control architectures that can improve robustness to unknown operating
conditions. 2) A novel convex hull-based low-level controller tuning algorithm that
automatically finds a sufficient parameter coverage for all known operating conditions.
This provides a solid basis for the supervisory controllers presented while reducing the
number of required low-level controllers compared to traditional tuning approaches.
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6 Conclusion & Future Work

The methods presented can be applied to any autonomous system, where models
are available and can be integrated alongside existing fault-tolerant control systems
designed to handle known operating conditions. The choice of control method for
unknown operating conditions largely depends on the available processing power of
the system of interest. Randomized Blended Control can be useful for small systems,
such as micro-aerial vehicles with limited processing power, due to the computational
simplicity. Larger systems, where this limitation is not as prominent, may benefit more
from one of the computationally heavy, learning-based supervisory controllers that can
improve control in unknown operating conditions even further.

As the learning and control community mature, faster training algorithms and better
model-based controllers will be developed. By decomposing the control task into
separate problems, the developments from either community can be integrated into
the hybrid framework without modifications. This is due to the modular design of the
multiple model adaptive control architecture used as a basis for the presented approach.

There are many ways this work can be extended in the future. The most obvious
next step is to validate the results presented in this thesis in a real-world setting.
Another promising avenue of research is the online learning extension as this was
shown to be feasible but better algorithm and simulator implementations are now
available. A formal comparison of the three offline learning supervisory controllers
presented would also be interesting as this thesis only demonstrates the feasibility of
each approach.

One significant limitation of the presented hybrid approach is the lack of online
reconfiguration mechanisms for the low-level controller set for situations where the
required control signal is outside of the convex hull of the low-level controller
parameter set defined at design time. In future work, this could be overcome by
incorporating the online-learning extensions not only on the supervisory level but also
as a low-level controller reconfiguration mechanism to adapt to extreme situations.
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Paper A

Comparing Switching vs Mixing
Model-Predictive Controllers for
Robust Fault-Tolerant Control

Abstract

We conduct a comparative study between two approaches for combining signals from
several Model-Predictive Controllers (MPCs) designed for different fault scenarios.
The first is MPC switching where a switch dictates which of the MPC controllers is
currently active. The second is MPC mixing where all MPCs are running concurrently
and their outputs are blended in proportion to the current estimate of fault state. We
demonstrate results using a gravity drained multi-tank system. Our empirical results
show that the mixing approach responds more quickly to faults than the switching
approach. Further, we show that the speed and accuracy of fault isolation has a critical
impact on fault tolerance.
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A. COMPARING SWITCHING VS MIXING
MODEL-PREDICTIVE CONTROLLERS FOR
ROBUST FAULT-TOLERANT CONTROL 1 Introduction

1 Introduction

A fault-tolerant control system (FTC) is a system that is able to identify and recover
from system faults and continue operation as normal or to maintain stability to a desired
level of overall performance. The need for such systems in areas such as aerospace
and industrial processes, where safety and reliability is paramount, has motivated
significant research into the design and optimisation of these systems. Examples of
such systems can be seen in aircraft [44], spacecraft [45], autonomous quad-copter
systems [2], power plants, chemical reactors and ground vehicles, among many more.

FTCs can be divided into two types, passive and active. Passive fault tolerant
controllers are designed off-line against predefined models for certain operating
conditions and have no ability to react to unanticipated faults. Passive FTC enables
fast adaptation to faults, within the predefined operating conditions. Active FTC uses
on-line data to reconfigure the controller to stabilise the plant. They have a built in
fault detection mechanism which allows them to react to pre-defined faults, but makes
the controller reliant on the accuracy on this fault-detection unit. For a comprehensive
study between the two approaches see [46].

Both active and passive FTC rely, to varying degrees, on specifying the space of
faults that the system will encounter. For passive FTC, approaches such as mixing of
controllers tuned to nominal and failure modes are used to maintain system stability,
e.g., [2]. Analogously, active FTC can rely on being able to detect pre-specified faults,
such as using a bank of observers, with each observer tuned to a particular fault, e.g.
[47]. For complex systems, it is impossible to pre-specify all faults, since there are too
many fault combinations to consider, and it may be impossible to know all possible
faults as a priori. As a consequence, it is imperative that a system designer understand
the space of possible faults and their impact on a system. Creating a controller that can
interpolate its control law from predefined edges of the fault space allows it to adapt to
unknown/undefined faults by computing the optimal control policy for this fault state.
Very little work has been conducted on exploring the space of faults and their impact
on active versus passive FTC.

FTC extends traditional controllers with a method of detecting and tolerating faults.
The main purpose of a control system is reference tracking and many different types
of controllers including Model Predictive Controllers (MPCs), Proportional Integral
Derivative (PID), Feedback Linearisation (FL), etc., have been designed for this
purpose. We adopt an MPC approach, which is based on numerical optimization and
is categorised as an optimal control strategy [48]. At every time step the MPC solves
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A. COMPARING SWITCHING VS MIXING
MODEL-PREDICTIVE CONTROLLERS FOR
ROBUST FAULT-TOLERANT CONTROL 2 Related Work

an optimization problem to obtain the optimal control input for the current system
state. An MPC can be tuned to handle specific error models to make it a FTC. Several
MPCs, each designed to handle a separate fault scenarios, can be combined to create
a controller that is more robust than any individual MPC can be at maintaining the
stability of the system.

We focus on hybrid systems control, where we assume a system that can operate in
a set of N modes, with a different set of dynamics for each mode. We assume that
we have a subset of Nf failure modes, with N − Nf nominal modes. For each of
the nominal modes we pre-compute a control setting. We also need to tolerate when
certain failure modes occur, which is the focus of this article.

In this article we conduct a comparative study between two approaches for combining
several MPCs designed for different fault scenarios. The first is MPC switching where
a switch dictates which of the MPC controllers is currently active. The switching
signal is generated by the Fault Detection Unit (FDU) so once a fault is identified the
corresponding controller can be activated to handle this fault. The second is MPC
mixing where all MPCs are running concurrently and their outputs are blended in
proportion to the current fault state estimate generated by the FDU. We demonstrate
results using a gravity drained multi-tank system.

2 Related Work

This work builds on extensive prior work in fault-tolerant control (FTC) and Fault
Detection and Isolation (FDI).

In the area of FTC [25], a significant body of work has been developed and applied
to real-world systems. [49] presents a recent overview of FTC, and [50] presents
FTC with relation of system safety. Traditional methods for FTC employ a bank of
observers coupled with dedicated controllers, and perform discrete switching. This
approach enables designers to tune the system to dedicated faults, but the speed of the
system hinges on the speed of FDI. More recent approaches use mixing controllers,
e.g., [51, 52], which blend the outputs of multiple controllers and are less reliant on
FDI.

Our work builds on research into the use of weighted multiple models for adaptive
estimation and control. Early work, e.g., [53, 54] used multiple Kalman filter-
based models to improve the accuracy of the state estimate in estimation and control
problems. This early work was then extended to applications, e.g., real-world problems
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Figure A.1: Two tank gravity drained system.

[55] and fault detection [56].

Blended or weighted multiple model adaptive control (WMMAC) has been used to
make control more robust, e.g., [57, 58]. The use of multiple models within the context
of MPC, denoted Multiple Models Predictive Control (MMPC), has been addressed by
[59]. Beyond this focus on robustness, there have been few applications of multiple
blended models to FTC outside of [2]. Our work is novel in its investigation of
WMMAC for FTC. We are not aware of prior work that empirically compared active
and passive FTC approaches, or that compared the impact of faults on switching vs.
mixing supervisory FTC.

3 Running Example

We illustrate our approach using the two-tank system shown in Fig. A.1. Tank Ti has
area Ai and inflow qi−1, for i = 1, 2. This system connects together two tanks, with a
valve V1 regulating the proportion of the flow q0 and q1 into tanks 1 and 2 respectively.
The pump flow q0 and value V1 can be set between 0 and 1. A valve setting of 0 will
cause the entire flow to go into tank 1 and a pump setting of 0 will turn the pump off
completely. The control objective is to modify the pump and valve settings to maintain
a reference height in both tanks. Water from tank 1 will flow into tank 2 at a constant
rate and water will flow out of tank 2 at a constant rate. Sensors give us the current
water level h1 and h2 in tank 1 and tank 2, respectively.
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Both tanks T1 and T2 get filled from a pump, with measured flow q0. The proportions of
the flow into each tank are controlled by V1, hence, our control inputs are u = {q0, V1}.

We assume that we do not directly measure any flows other than the inlet flows q0 and
valve setting V1. As a consequence, we use the tank heights as a proxy for deriving
flows through the two-tank system. We can control the valve settings where we assume
a continuous-valued setting ranging over [0, 1].

We can use basic physics to create a model of the 2-tank system by observing mass-
balance requirements on each of the tanks, where tank Ti has area Ai, for i = 1, 2. The
state equations are given by:

Ai
dhi
dt

= qi−1 − qi,

where qi−1 denotes the flow into tank i, and qi denotes the flow out of tank i.

According to Torricelli’s Law, flow qi out of tank i, with liquid level hi, into tank j, is
given by:

qi = γ
√

2ghi, (A.1)

where the coefficient γ is used to model the area of the drainage hole and its friction
factor through the hole, and g is gravitational acceleration.

We can use equation A.1 to derive the following equations, since the inflow into tank
2 equals the outflow of tank 1:

ḣ1 = q0 − c1 ·
√
h1

ḣ2 = c1 ·
√
h1 − c2 ·

√
h2, (A.2)

where the constants c1, c2 summarize the system parameters representing cross-
sectional areas, friction factors, gravity, etc. Consequently, the parameter set is given
by Θ = {c1, c2, c3, g}. We assume that we can measure the height of liquid in each
tank. The set of state variables is {h1, h2, V1, q0}, and the set of controllable variables
is {q0, V1}.

To formally transform a non-linear system into a linear one, we need to use techniques
like small signal linearization or perturbation theory [60, 61]. For example, in small
signal linearization, an equilibrium point x0 of a fault-free non-linear function is first
identified, about which the perturbed non-linear function is expanded: x = x0 + δx.
Then we can use a Taylor series expansion, neglecting the higher order terms, to obtain
the linear function.
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4 Fault Tolerant Control Schemes

A key aspect of FTC is the ability to adopt a control law that compensates for a system
fault. Because having a single nominal-mode plant model does not allow us to simulate
faulty behaviours, modern FTC uses multiple models that attempt to cover the space of
failure behaviours [62]; many diagnostics approaches also use multiple models, e.g.,
[63].

However, in realistic problems, the dimension of the plant and of the unknown
parameter vector are large. As a consequence, the number M of models needed to
satisfy stability and controllability conditions given faults becomes prohibitively large,
since M increases exponentially with the dimension of the unknown parameter vector.
In addition, switching results in discontinuous control signals, and identification and
control are coupled [62].

In the following, we study the impact of various design choices on the FTC schemes
for two of the most advanced approaches, switching MPCs and mixing MPCs.

4.1 State-Space Model

Consider a linear time-invariant (LTI) discrete-time system of the form:

ẋ(k + 1) = Ajx(k) +Bju(k) +w

y(k) = Cx(k), (A.3)

where x, u, y are the state, control and observation vectors, respectively, and Aj, Bj

are state matrices for mode j. Finally, C is the observation matrix. We assume that
the system can operate in N possible modes M = {M1, ...,MN}, with individual
dynamics for mode j (j = 1, · · · , N), captured by the matrices Aj, Bj .

Since the hybrid system dynamics use a model for each distinct mode, we must also
have a unique control law for each distinct mode. More precisely, if we haveN modes,
then we must have a set Λ = {λ1, · · · , λN} of controllers, with a switching algebra to
define when to switch from λi to λj for i 6= j, i, j ∈ {1, ..., N}.

We thus characterize the system’s N modes by (i) a set of N controllers Λ, and (ii) a
set of N parameter settings, i.e., we can partition the system’s parameter space Ω into
a set of sub-spaces {Ω1,Ω2, · · ·ΩN}, such that sub-space Ωi corresponds to controller
Ci, for i = 1, ..., N . In other words, we assume that we can define the parameter
setting sub-spaces such that there exists a controller Λi that can guarantee a desired
performance level for Ωi, i = 1, ..., N .
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4.1.1 Observer-Based Control

We assume that we control the system (in mode i) using a state (Luenberger) observer
based on a state-space model with observer matrix L. Using the observed system with
observed state and measurement, x̂(k) ∈ Rn and ŷ(k) ∈ Rp, respectively:

x̂(k + 1) = Aix̂(k) +Biu(k) +w(k); (A.4)

ŷ(k) = Cix̂(k);

we obtain the observer equations:

x̂(k + 1) = Aix̂(k) +Biu(k) + Li(y(k)− Cix̂(k));

r(k) = y(k)− Cix̂(k);

u(k) = −Kix̂(k),

where r(k) ∈ Rp is the residual ‖ y(k) − ŷ(k) ‖ for some norm ‖ · ‖. We tune
the control matrix Ki ∈ Rl×p and observer matrix Li ∈ Rn×p so that the closed-loop
system and error dynamics are stable. We can rewrite these equations such that we
obtain

x̂(k + 1) = (Ai −BiKi)x̂(k) + Li(y(k)− Cix̂(k)) (A.5)

by substituting −Kix̂(k) for u(k) into the state equation.

4.1.2 Observer-Based Diagnosis

We partition our modes into nominal and fault modes,M∅ andMf , respectively, such
that |M∅| + |Mf | = N . We model (actuator) faults using a multiplicative fault
model with parameter 0 ≤ γ ≤ 1, where γ = 0 corresponds to nominal function and
γ = 1 to total failure. For every failure mode Mi ∈ Mf we have a corresponding
fault parameter γi. Hence we obtain the state variable equation for failure mode j:

ẋ(k + 1) = Ajx(k) +Bj(1− γj)u(k) +w(k). (A.6)

We use the residuals for mode identification. In this article we create a residual
for every system mode, i.e., our observer indicates that mode i is active if the
corresponding residual ri > ε for some tunable threshold ε > 0. If we have perfect
tuning and no noise, then we have a monotonic relationship between γi and ri > ε:
presence of fault i always leads to a detectable residual ri corresponding to that fault.

Autonomous System Control in Unknown
Operating Conditions

41 Yves Sohège



A. COMPARING SWITCHING VS MIXING
MODEL-PREDICTIVE CONTROLLERS FOR
ROBUST FAULT-TOLERANT CONTROL 4 Fault Tolerant Control Schemes

4.2 Switching Model-Predictive Control

Given that our system operates in multiple possible modes, we use a controller that can
switch between these modes. Fig. A.2 depicts a generic framework that enables control
switching of various types. In this article we examine two switching behaviours: (1)
discrete switching (where one control regime is only used at any time), and (2) mixed
switching, where we use a proportional mixture of multiple controllers at once. This
section provides an overview of these two FTC controllers.

Figure A.2: Use of multiple controllers for FTC

By using candidate controllers designed off-line, the switching architecture can use
multiple controllers, either individually or in a mixed mode. The multi-controller is
not only capable of generating any of the candidate control laws but also, by controller
interpolation, a stable mix of candidate control laws. We can design the mixing
controller to converge exponentially quickly to meet the control objective, provided
certain conditions on the plant input are met [64].

The architecture, shown in Fig. A.2, has two levels of control: (1) a low-level
controller that generates finely-tuned candidate controls for each mode and (2) a high-
level controller, called the supervisor, that influences the control by adjusting the low-
level controller, typically by selecting or weighting candidate controllers, based on
processed plant input/output data.

We now briefly outline the design of the supervisory controller that governs the
switching behaviour.

4.2.1 Discrete Switching Controller

This section summarizes the MPC approach that we adopt. A traditional MPC
controller includes a nominal operating point at which the plant model applies,
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such as the condition at which you linearize a non-linear model to obtain the LTI
approximation. We generalize that operating point in terms of a parameter sub-
space. When we consider a single fault, then we can define that sub-space in terms
of the multiplicative fault parameter γ. Since the actuator effectiveness is in the range
0 ≤ γ < 1, we have a priori knowledge on the bounds of γ̄:

γ̄ ∈ Ω ⊂ (0, 1]. (A.7)

We can then partition Ω into a set of sub-spaces {Ω1,Ω2, · · ·ΩN}, where Ωi =
[γ̄mini , γ̄maxi ] and γ̄mini and γ̄maxi are the lower and upper bounds, respectively, of
interval Ωi. For multiple faults, we must consider the fault vector γ = {γ1, ..., γm}. We
now define a multi-dimensional partition Ω into a set of sub-spaces {Ω1,Ω2, · · ·ΩN},
where

Ωi ⊆ ×mj=1γij,

and γij denotes the ith sub-space of the set of multiplicative fault parameter set indexed
j = 1, ...,m. Given this partition, we design controllerCi to guarantee optimality when
operating in sub-space Ωi.

We then design a switching supervisor that, given an estimate of sub-space Ωi,
switches to the ith controller.

We select the ith controller if residual ri is greatest, measured over all residuals that
exceed a given threshold:

Λi(k + 1) =

 Λi(k) if ri < εi ∀i
Λi∗|i∗ =ri∈R̂ {ri} if ri ≥ εi

(A.8)

4.2.2 Mixing Controller

We aim to design a mixing scheme for regulating the state vector x to a chosen set-
point, assuming the nominal system matrices A and B are known, but multiplicative
actuation errors γ are unknown. Given the system in equation A.3, sudden changes in
γ will affect the system dynamics. In response, we tune the mixing scheme to blend the
controllers appropriately. Given a set of controllers Λi, for i = 1, ..., N , each of which
guarantees optimality when operating in sub-space Ωi, we use a mixing supervisor for
sub-optimal conditions. In other words, when sub-optimality occurs, i.e., parameters
do not lie within some Ωi, we must mix “appropriate" controllers.

In this article we use a linear combination of weighted controller inputs to restore
stability given a pre-specified set of faults. In other words, given a set of N controllers
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Λ = {Λ1, · · · ,ΛN} and corresponding probability distribution {ϕ1, · · · , ϕN}, our
applied control is given by

Λ∗ =
N∑
i=1

ϕiΛi. (A.9)

We compute the distribution ϕ using the residuals for the N models, ri, i = 1, ..., N :

ϕi : ri → [0, 1]. (A.10)

We perform this mapping using the following three steps.

1. Discretization of Residuals We discretize the residual space for fault i into a set of
intervals of the form

[0, ε), [ε, ε+ δ), ..., [ε+mδ, rmax), [≥ rmax]

where ε and δ are appropriate thresholds and rmax is a maximal residual value
that indicates the fault magnitude is significant.

2. Weight Assignment to Intervals Given these intervals, we compute a weight for
the ith residual interval as follows:

wi(k + 1) =



0 if ri ∈ [0, ε)
α if ri ∈ [ε, ε+ δ)
· · · · · ·
kα if ri ∈ [ε, ε+ kδ)
· · · · · ·
1 if ri ≥ rmax

(A.11)

where α is a [0,1] weight chosen by appropriate controller tuning, and m ∈ Z+.

3. Weight Normalization Given the weights, we need to convert them into a
probability distribution so that our cumulative control signal (equation C.1)
remains stable. We assume that we start in a nominal mode, and our objective is
to define a new blended controller given a residual r(k). We denote the current
(nominal) controller at time step k as Λj(k); we assume that this controller has
probability ϕ = 1 assigned to a single mode. We denote alternative controllers
as Λ∗ = {Λl}, l = 1, ..., N, l 6= j. We denote our probability distribution for
controllers Λ1(k), ...,ΛN(k) using ϕ(k) = {ϕ1(k), ..., ϕN(k)}. We compute a
probability for time step k+ 1 from the weights through normalization. If all wi
are 0, then we maintain the current controller, Λj(k); otherwise, if some wi > 0,
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we update our weights as given below to generate a new blended controller:

ϕi(k + 1) =

 1− S if i = j
wi
π

if j 6= i
(A.12)

where π = ∑
iwi and S = ∑

i
wi
π

.

Example:

Consider the running example of a two tank system described in Section 3. We have a
single nominal mode Λ1 and two failure modes Λ2 and Λ3, denoting pump and valve
faults, respectively. Our weight intervals are {[0, .01), [.01, .02), [.02, .03), , · · · , [≥
.1], }, i.e., ε = δ = 0.01 in equation A.11. Assume that we are currently in the
nominal mode and detect anomalous residuals for the pump in the intervals [.01,.02)
and [.02,.03), corresponding to 1% error and 2% error, respectively. Taking a tuned
value of α = 10, that leads to the weights w2 = 0.1, w3 = 0.2. w1 is calculated at
1− S where S is

∑
iwi and i = [2, 3], which makes w1 = 0.7. Then from Equation 9

we generate the new control signal to be:

Λ∗(k + 1) = 0.7Λ1(k) + 0.1Λ2(k) + 0.2Λ3(k) (A.13)

4.3 Stability Properties

The weighting algorithm plays an important role in the control and stability properties
of weighted multiple model control (WMMC) frameworks. The closed-loop stability
of a WMMC system depends on three conditions [64]: (1) the model set includes the
true model(s) of nominal operation of the plant (or the closest such models); (2) the
weighting algorithm converges correctly; and (3) each local controller stabilizes its
corresponding model. In addition, the convergence rate of a weighting algorithm will
have effect on the transient process of the WMMC system.

Providing stability and optimality guarantees for controllers that use multiple models
is known to be a difficult task, e.g., [58, 65]. The study of stability properties of
switched and hybrid MPC systems has focussed on models defined using piecewise
affine systems [66]. Proof of stability assumes that a supervisory controller would
switch among low-level controllers with neighbouring, locally affine regions, such that
each low-level controller is accurate within its own affine region [67].

Proving stability for FTC is beyond the scope of this article. Nevertheless, we can
make a number of observations about this issue.
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Incipient faults Incipient faults, which can be characterized in terms of gradual drift
of a fault parameter γ, can be theoretically analysed using the piecewise affine
system framework. In other words, using results from [66] we can define a
nominal region Ωnom with an adjacent fault region Ωf such that blending of the
controllers for the two regions in guaranteed to maintain stability and optimality
of the control.

In this case, we can also show that mixing control will always outperform
discrete switched control in terms of response times for fault tolerance. The
mixing approach enables smooth compensation of faults as the degree of the
fault progresses (i.e., for any γ > ε), whereas the discrete switched controller
makes an abrupt switch from nominal to fault controllers once a fault magnitude
threshold γ∗ � ε is exceeded, ensuring a period of sub-optimal control with a
fault whose magnitude is in the interval [ε, γ∗].

Abrupt faults Abrupt faults, which can be characterized in terms of a significant
difference in at least one fault parameter γ, cannot be theoretically analysed
using the piecewise affine system framework unless we can guarantee contiguity
of nominal region Ωnom and fault region Ωf . Stability depends on the
eigenvalues of the matrix (A − BK) from a rewritten version of the observer
equations, namely equation A.5. We leave stability analysis as future work.

We have adopted a probabilistic approach based on residuals. In future work, we
plan to compare this approach with those using Kalman filters for hypothesis testing,
e.g., [58], which are computationally more complex, but may have different stability
properties.

5 Experimental Design

5.1 Software Configuration

We implemented the running example described in section 2 in MATLAB/Simulink
and ran all experiments in a simulation environment, where the real system and the
model that the controller uses to estimate the system state are identical. We injected
faults into the simulated real system by modifying the inputs and outputs of the model.
We then computed residuals using the output ŷ of the model used by the controllers
and the real system model output y. This type of simulation environment allows for
complete control of the fault injection, detection and controller output analysis.
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Figure A.3: Comparison of controllers for FTC with Pump fault at t = 50s

5.2 System Fault Injection and Detection

We injected faults into the pump and valve using the multiplicative equation (A.6),
with pump, valve and tank parameters γ1, γ2, γ3 ∈ [0, 1], respectively. γ1 simulates
the pump being blocked by only allowing a fraction of the water flow to go through the
pipe. γ2 simulates valve blockage (i.e., the valve not having full range of motion); we
use a Simulink saturation block for this fault. We implemented leaks in both tanks by
subtracting a constant value γ3 of the real system model output for the two tank levels.
We generated 4 residuals, for: valve, pump, tank 1 level and tank 2 level.

5.3 Controller Design

We designed three separate MPC controllers to handle different scenarios.

Nominal The first MPC is the nominal plant controller that is designed to handle
the no-error state of the system. The plant model was linearised at initial
model conditions with no errors present on in the system. The valve and pump
output of the controller are both between 0 and 1 representing nominal working
conditions.

Pump Fault The second controller is an MPC that has a plant model linearised when
the pump was experiencing a fault of 40% reduction in throughput. The valve
output range for this controller is also 1 but the pump output has an increased
range of 0 to 1.5, since there is a blockage in the pipe the pump should be able
to increase water flow to compensate for this. The reference signal coming into
the second MPC is the original reference set point for the two tanks plus the
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estimated error in the tank levels. The justification for this is that if the error in
the tank level and original reference is known then the required reference signal
to stabilise the plant at the required set point can be computed.

Valve Fault The third controller is designed for valve fault scenarios, by linearising
the model at a point where the valve setting is limited. The reference signal and
controller output signal ranges are the same as for the nominal controller, but
this controller favours the use of the pump flow over the valve setting to stabilise
the plant output.

5.4 Discrete Switching and Merging implementation

We implemented discrete switching and merging approaches on identical systems
using the three controllers described in section 5.3, but with different supervisory
controllers.

Discrete Switching In the discrete switching implementation, higher level control
mechanism analyses the current fault detection output and chooses which
controller is the appropriate one for the current fault state. The decision is made
by the current maximum error signal. The pump fault controller uses the two
water levels in the tanks as the trigger signal. The valve controller uses the valve
residual error as the trigger signal. The higher of the two tank error signals
is compared to the valve error to decide which controller should get control.
Error signals must be over 0.1 to make the system robust against false positive
error signals and allow the nominal controller to control the plant under normal
conditions.

Merging-Based Switching For the merging mechanism we implemented a look up
table of weights, with error signals of the water tank error and valve error used
as indexes into it. The weights allow for linear interpolation of the output signal
and are defined as follows: {0.0 , 0.1 , 0.2 , ... 0.9, 1}. Every percent in
the error signal will index into a higher weight, up to 10%. E.g. 0.01 valve
error signal and 0.00 error signal in the tank levels will correspond to 10% of
the output signal being generated from the valve error controller, 0% from the
pump fault controller and 90% from the nominal controller. If the two weighted
signals added together are greater than 1 they are both incrementally reduced
until their sum is equal to 1. This allows for the proportion of the signal to be
preserved in extreme error cases. This interpolation mechanism is simple and
has a corresponding controller merging configuration for every value in the error
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space.

6 Experimental Analysis

We ran experiments to compare the impact of faults on FTC designs based on discrete
switching and merging approaches. We also examined the impact of time for fault
isolation on FTC, since it is typically assumed that faults can be isolated instantly,
even though the switching times do not have to be known a priori.

6.1 Switching vs. Merging

We ran experiments for single faults (pump/valve/leak) and double faults (pump and
valve). Figure A.3 shows the results for inducing a pump fault at t = 50s: the merging
approach starts modifying the control signal immediately and restores set-point levels
in tanks 1 and 2 by t = 65s; the switching approach does not perform a discrete
switch until t = 70s, when the impact of the fault on tank levels exceeds the specified
tolerance, and only restores set-point levels in tanks 1 and 2 by t = 90s.

Figure A.4: Comparison of controllers for FTC with Pump and Valve fault

Figure A.4 shows the results for inducing a valve fault at t = 0s and a pump fault at
t = 50s. The merging approach starts modifying the control signal immediately (given
the valve fault) and restores set-point levels in tanks 1 and 2 by t = 30s; the impact of
the pump fault is also quickly corrected.

In contrast, the switching approach does not perform a discrete switch to correct the
valve fault until t = 10s, when the impact of the fault on tank levels exceeds the
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specified tolerance. The pump fault correction is also later than that for the mixing
approach.

6.2 Impact of Delays and Fault Isolation Errors

Figure A.5: Impact of delay in FDI on switching and merging controllers for FTC with
Pump fault.

Figure A.5 shows the results of a delay of 5s on computing FDI results. This basically
delays the possibility of switching and creates a greater impact on the system due to
the fault.

Figure A.6: Impact of inaccuracy in FDI on switching and merging controllers for FTC
with Pump fault.

Figure A.6 shows the results of an inaccuracy in correctly isolating the fault on FDI
results. Such inaccuracy must be taken into account since FDI is never perfect. These
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results have a large impact on the possibility of switching, which creates a significant
impact on the system control due to the thrashing of the control. In contrast, the impact
on mixing control is much less.

7 Discussion

Our results show a clear difference between discrete switching and mixing supervisory
control in the presence of faults. The mixing supervisory control is more robust
to faults and to errors in the FDI outputs. Further, the mixing supervisory control
responds faster to faults than does the discrete switching approach. This improvement
results from the dynamic blending of all controllers, such that even small errors
are taken into account in the output signal. The supervisory controller is actively
compensating for faults with a blend that is proportional to the faults seen, hence a
small fault will be compensated immediately with a small portion of the output coming
from the fault controller. Should the error persist the portion of the fault controller will
become increasingly larger until it composes the entire output signal. However, in
comparison to the switching approach, the change of controller is gradually increasing
which means by the time the fault threshold has been reached the system is already
moving towards a stable state and will reach this earlier than the switching approach.
Even in the case where a big fault occurs which is greater than the threshold, the
merging approach will simply act the same as the switching approach and let the
dedicated fault controller take 100% of the output signal, so it will always perform
better or equal to the switching approach.

We plan to extend this work in several ways. First, we plan to compare the active FTC
methods presented with passive robust and adaptive MPC control. Second, we plan to
use machine learning to adaptively tune our system to unseen anomalies/faults. We are
also investigating more complex application domains, such as multi-copter drones.
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Paper B

Fault-Tolerant Control for Unseen
Faults using Randomized Methods

Abstract

Real-time tolerance to novel faults is often needed to avoid catastrophic outcomes.
However, no real-time solutions currently exist for novel faults: e.g., isolating the
underlying fault and implementing an appropriate control may be too time-consuming
or require a priori fault information. For such circumstances, we propose a novel
approach that uses fast randomized control switching to stabilize a system, without
any state estimation. We first show theoretically that, for a properly tuned controller, a
randomized approach guarantees mean-square stability and is guaranteed to converge
to an optimal solution. We then empirically demonstrate the efficacy of this approach
on trajectory following in a quadcopter UAV.
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1 Introduction

Systems subject to faults typically adopt fault-tolerant control (FTC) methods to ensure
that they can accomplish a range of tasks [68]. A typical FTC method first identifies the
fault given some anomalous behaviour, and then uses a pre-defined fault controller to
ensure task completion [69] by switching control from a nominal to a fault controller.

One drawback to FTC for real-time systems is the computational effort and time
required for system (e.g., fault) identification may cause control disruptions and poor
system performance. Second, FTC requires a priori controller design for all faults D,
and hence cannot deal with novel D.

In this article we adopt an approach that addresses these two drawbacks. We model
the possible changes to a system using a hybrid systems model Ψ that can operate in
a finite set Υ = {υ1, υ2, · · · , υV } of modes. Ψ can evolve according to a stochastic
system switching rule σ(k) that captures the random nature of mode switching, e.g.,
the random onset of faults. We model a controller than can switch control signals in
response to system mode changes, using rule γ(k). Given the onset of anomalies
(computed using a system monitor), without performing system identification we
perform random control mode switching.

To date, research has focused on stability properties for a stochastic hybrid system Ψ,
e.g., [70, 71]. In addition to stability properties, our interest is in the stabilizability and
the performance of a randomized switching controller relative to an ideal (reference)
controller, given the significant computational advantages of the former. We derive
theoretical results for a suitable performance metric, and demonstrate the properties of
the randomized approach on a quadcopter. Our results provide theoretically-sound,
computationally-simple techniques for controlling a vehicle that is encountering
(unforeseen) faults for which either no control laws exists or the controls would take
too long to compute before a crash occurs.

Our contributions are as follows:

• We formalize a system subject to random faults in terms of a discrete-time dual
switching system;

• we show that a randomized switching controller can stabilize a system given
appropriate controller tuning;

• we show that the loss of a randomized switching controller can get arbitrarily
close to the minimal loss ξ∗ of a reference controller, as time k →∞;
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• we validate our theoretical results using a quadcopter UAV.

2 Related Work

Fault-tolerant control has been addressed using many approaches, including methods
based on system structure [25], fuzzy systems [72] or data-driven methods [73]. All
these methods assume that the set of faults is known a priori, in constrast to the
approach we propose.

This paper extends work done in switched control by examining randomized blended
approaches. Several authors have examined stability and stabilizability properties of
discrete-time dual switching linear systems, e.g., [70, 74, 75]. [70] deal with stability
properties of discrete-time dual switching linear systems, with deterministic switching
for control inputs. [74] examine stochastic models for both system and control
switching, but do not cover issues of relative performance of different controllers. [75]
address performance of stochastic control switching, but not for blended control.

3 Notation and Preliminaries

3.1 System Model

Table B.1: Notation

Symbol Key
x(k) state vector
u(k) control vector
y(k) observation vector
σ(k) process switching function
Λ process probability matrix
υ(k) process mode vector
α(k) process parameter vector
γ(k) control switching function
Π control probability matrix
ϕ(k) control mode blend distribution
T̃1:T reference task over time 1 : T
ξ1:T loss function over time 1 : T

Systems that switch between operating modes exhibiting different continuous
dynamics are known as switched systems [76]. The transition from one mode to
the other is given by switching variables, which evolve according to a switching
rule. We can design switching rules to model system mode changes due to stochastic
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disturbances [77], or due to control inputs [71]. If we model stochastic switching
variables as being driven by an underlying Markov chain, a linear switched system
turns into a Markov jump linear system [78].

We formalize our approach using a system Ψ that is subject to both (a) stochastic jumps
governed by the process σ(k), and (b) switches dictated by the control signal γ(k).
We define a discrete-time dual switching linear system Ψ, a class of switched linear
systems with two (either stochastic or deterministic) switching variables, as follows:

Definition 3 (State-Space model Ψ). A discrete-time dual switching linear system Ψ is

described by

x(k + 1) = A
γ(k)
σ(k)x(k) + B

γ(k)
σ(k)u(k) (B.1)

y(k + 1) = C
γ(k)
σ(k)x(k) (B.2)

where k is the discrete time index, x(k) ∈ Rn is the state, u(k) ∈ Rm is a control input,

y(k) ∈ Rp is the performance output, σ(k) and is a time homogeneous Markov process

taking values in the set Υ = {υ1, υ2, · · · υV }, with transition probability matrix Λ, γ(k)
is a switching signal taking values in a finite set U = {u1, ω2, · · ·uM}, with transition

probability matrix Π. More precisely, the entry λij ≥ 0 of Λ represents the probability

of a transition from mode υi to mode υj , namely λij = P{σ(k + 1) = υj|σ(k) = υi}.
Λ is a right-stochastic matrix.

A matrix, e.g., Aγ(k)
σ(k)x(k), defines the dynamics for Ψ at time k given system mode

σ(k) and control mode γ(k). If we define ρ(k) as the process probability distribution
at time k, then its evolution is governed by the difference equation ρ(k+ 1)′ = ρ(k)′Λ,
where ρ(0) = ρ0. If we further assume that Λ and Π are irreducible and aperiodic
Markov matrices, then the Markov process admits a unique stationary (strictly positive)
probability distribution; for example, the distribution ρ̄ satisfies ρ̄′ = ρ̄′Λ. The state
dynamics of the overall system Ψ is characterized by a set of tuples (Aji , B

j
i , C

j
i ), i ∈

Υ, j ∈ U .

Figure B.1 depicts a schematic for our approach. On the left we see the controller
switching, where the supervisory controller (via a randomised switching function
γ(k)) generates a distribution ϕ(k). On the right the system switching function σ(k)
randomly selects a plant model Ψi corresponding to mode υi.

We characterise the evolution of Ψ not just using a sequence of discrete modes, but
quantify the magnitude of each mode using a parameter α. We define the mode vector
υ(k) = {υ1(k), · · · , υL(k)} the set of modes defining Ψ at time k. Associated with
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Figure B.1: System and controller framework

the mode vector is the parameter vector α(k) = {α1(k), · · · , αL(k)}. For example,
for systems with fault-modes the mode parameter α(k) can capture the degree of
degradation of a fault. Table B.1 summarizes our notation. We denote a sequence
{Z(1), · · · , Z(K)} using {Z(k)}k∈N. In our notation we denote vectors by bold-faced
symbols, matrices by capitalised symbols, and temporal indices by k.

3.2 Running Example

We use as our running example a quadcopter. As shown in Fig. B.2, motor Mi (i =

Figure B.2: Schematic of quadcopter

1, 2, 3, 4) produces thrust force in rotor i, which can be modulated by the control system
along the vertical body axis; see, e.g. [2], for full quadcopter system details.

We define a linear model for the quadcopter in terms of Ψ (Definition 3), where1

• the state variables in x include 3D positions of the quadcopter in the inertial
frame, xI , yI and zI respectively, and Euler angles for roll (φ), pitch (θ) and yaw
(ψ), together with their derivatives;

• the control vector u = [f1 f2 f3 f4] denotes the lifting forces for each rotor
(i = 1, ..., 4);

1We suppress time indices for ease of exposition.
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• the observation vector is y = [φ θ ψ xI yI zI ].

For simplicity, we assume that the state model Ψ can switch randomly from nominal
to fault states: i.e., Υ = {υn, υf}. The nominal state υn assumes fault-free operation,
while the fault state υf encompasses actuator faults that can occur in any combination
of rotors. The fault degree for rotor fault-mode υf is in the range [0,1], such that 0
denotes failed and 1 totally healthy. For example, transition matrix Λ below defines
faults occurring with probability 0.01, and faults being permanent once they occur.

Λ = υn(k + 1)υf (k + 1)υn(k)0.990.01υf (k)01

In our control model, we assume that we tune 5 possible control modes: one for
nominal operation (u0), and one for rotor fault, denoted ui for i, i = 1, 2, 3, 4. A
discrete switching controller can thus switch among these 5 possible control modes.
In the simplest case, a uniform distribution for control switching defines a switching
matrix Π is a 5× 5 matrix with all entries of 0.2.

3.3 Performance Measures

This section describes our task and how a controller measures its performance on that
task.

Definition 4 (Task). A task T1:T is a sequence of observed world states from time 1 to

T : T1:T = {y1, , · · · ,yT}.

We focus in this article on controlling the system to execute a reference task, T̃1:T , by
executing a sequence of controls {u}k∈N. The control performance is measured by a
loss function, defined below.

Definition 5 (Loss Function). A loss function ξ(u,α) : u(k)×α(k)→ [0, 1] assigns

a loss ∈ [0, 1] to a control u(k) executed given a state characterised by α(k).

We define the cumulative loss of an executed task T1:T as

ξu1:T =
T∑
i=1

ξ (u(i),α(i)) for u ∈ U . (B.3)

Given this loss function, we can characterize a notion of relative loss as follows.

Definition 6 (Relative Loss). Relative loss is the difference between the loss ξu1:T of a

controller sequence u1:T and the loss ξu
∗

1:T of an ideal (reference) controller sequence
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u∗1:T :

∆(u1:T ,u
∗
1:T ) =‖ ξu1:T − ξu

∗

1:T ‖ . (B.4)

Definition 7 (Task Optimisation). Given a reference task T̃1:T and initial conditions

x0, compute a control sequence u1:T that minimizes relative loss of u1:T .

Example: Quadcopter Trajectory Optimisation Task We illustrate loss functions
using a trajectory optimization task. A trajectory is a temporally-indexed set of
coordinates in 2D or 3D, denoted ζ(k). We denote the reference (desired) trajectory as
ζ∗(k), and the executed trajectory as ζ̃(k), with corresponding control sequences u∗1:T

and ũ1:T , respectively.

Definition 8 (Trajectory Relative Loss). We can represent the relative loss of trajectory

following as a mean-square difference between reference and executed trajectories,

i.e., ∆(ũ1:T ,u
∗
1:T ) = ∑T

k=0 ‖ ζ∗(k) − ζ̃(k) ‖2 for a trajectory over time points k =
0, · · · , T .

We formulate an optimization version of the trajectory following problem, where we
seek to find the control sequence u∗1:T that minimizes the trajectory loss over time
points k = 0, · · · , T : u∗1:T =u∈U ∆(u0:T ,u

∗
0:T ). Figure B.3 shows an example of

a trajectory optimization task for a quadcopter, where we must follow the diamond-
shaped trajectory shown.

Figure B.3: Trajectory for quadcopter
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3.4 Blended Controller Models

This section describes the details of our switching control models. We first describe
blended (or mixing) control [51], and then extend this to randomized blended
switching. Blended control is an adaptive control method that creates smooth
controller switching (due to switching among proportional controller inputs rather than
discrete controllers) and adapts well to uncertainty in model parameters [79]. However,
the design of the blend function is complex, and the switching function requires as
input the current state estimate. For example, [2] describes a blended control approach
for quadcopter fault-tolerant design.

Blended Control: We assume that we have a controller that is tuned to the mean
parameter for each system mode, i.e., given M control modes we have M tuned
controllers. We use a blended control approach to be able to accommodate the
continuous-valued parameter space.

Definition 9 (Blended Control). Given a collection of controllers U = {u1, · · · ,um}
and a control blend distribution vectorϕ, a blended control is a weighted combination
~u = ∑

i ϕiui such that: (1) ∀i, ui ∈ U , 0 ≤ ϕi ≤ 1, and (2)
∑
i ϕi = 1.

Without loss of generality, we can characterise a blended controller solely in terms of
the weight vector ϕ = {ϕ1, · · · , ϕm}, given a fixed set of controllers U .

Example 1. In our quadcopter we assume that each rotor can be faulty, resulting

in a loss of effectiveness of that rotor, which we parameterize using αi ∈ [0, 1] for

rotor i, where 0 denotes disabled and 1 denotes fully functional. The vector α =
{α1, · · · , α4} specifies the fault parameter vector. Assume that rotors 1 and 2 both

have fault parameter 0.95, and the other rotors are normal. For control vector u =
{u0, · · · , u4}, where u0 is the normal controller and ui < i = 1, ..., 4 is the fault

controller, we can apply a blend vector ϕ = {ϕ0, · · · , ϕ4} = {0.6, 0.2, 0.2, 0, 0}, i.e.,

we stabilise the quadcopter using a combination of the normal controller with fault

controllers for rotors 1 and 2.

A randomized switching function γ(k) switches control at each discrete step in
a random fashion. For blended control, the transition probability matrix is a 3-
dimensional matrix Π, whose elements are denoted by %ijl , P (ϕl(k + 1) =
uj|ϕl(k) = ui), which is the probability of a transition from the lth element of control
mode ui to the lth element of control mode uj . Here, ϕ(k) is a probability distribution
of blended control mode assignment at time step k.

A blended control sequence corresponding to a task T1:T can be represented as
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{ϕ}1:T = {ϕ(1), · · · ,ϕ(T )} since the controller vectoru is fixed. A reference control
sequence is a loss-minimal control sequence for executing a task T1:T .

Definition 10 (Reference Blended Control Sequence ). Given a collection of

controllers U = {u1, · · · ,um} and a control blend distribution vector ϕ, a reference

control sequence is a loss-minimal control sequence for T1:T :

{ϕ̃}1:T =ϕ1:T (ξ1:T ) (B.5)

4 Theoretical Results

This section summarises our theoretical results. We prove two classes of result:
(1) “standard" control theory results concerning the stability and stabilizability of a
randomized controller; and (2) results concerning how well a randomized controller
performs a tasks with respect to a reference controller. We summarise our results as
follows:

A. Stability: given a system Ψ subject to stochastic fault, we show that ∃ system
matrices (A and B of Definition 3) such that Ψ converges to a stable state, which
we define in terms of mean-square stability (MSS) [Sec. 4.1].

B. Stabilizability: given a system Ψ subject to stochastic fault, ∃ a switching
function γ that generates a control sequence {γ}k∈N that guarantees MSS [Sec.
4.2].

C. Performance given known modes Υ: we can synthesize a randomized blended
control sequence whose performance converges to the performance of a
reference controller [Sec. 4.3].

D. Performance given unknown modes Υ′: we can synthesize a randomized
blended control sequence whose performance converges to the performance of
a reference controller if the worst-case loss is bounded for any unknown mode
ῠ ∈ Υ′ [Sec. 4.3].

4.1 Stability Properties

Assessing stability of system Ψ given switching due to system fault process {σ(k)}k∈N
is a robust stability problem. The standard approach defines stochastic stability, in
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terms of mean-square stability (MSS), which states that the expectation of the system
state norm asymptotically converges to zero.

Definition 11 (Mean Square Stability). A system Ψ exhibits mean square stability

(MSS) if for any initial condition (x0, υ0), and any switching sequence (σk)k∈N,

lim
k→∞

E(‖ x(k) ‖2)→ 0. (B.6)

We first consider a system with no control inputs, i.e., we can represent Ψ as x(k+1) =
Aσ(k)x(k). Using this definition, we can state the conditions for stability in terms of
the system matrix Aσ(k), independent of the control switching process, using a result
from [78].

Lemma 4.1 (Mean Square Stability). A system Ψ exhibits mean square stability (MSS)

if ∃ a system matrixAσ(k) such that for any initial condition (x0, υ0), and any switching

sequence {σ(k)}k∈N, equation B.6 holds.

4.2 Stabilizability Properties

Assessing stability of system Ψ given switching due to control inputs {γ(k)}k∈N is a
stabilization problem and requires assessing the properties of a switching control law.
Lemma 4.2 states that one can design Ψ such that MSS holds.

Lemma 4.2 (Mean Square Stabilizability). A system Ψ (Definition 3) is mean square

stabilizable if there exists a switching control law

{γ(k)}k∈N defined as a time homogeneous Markov chain such that, for any initial

condition (x0, γ0), equation B.6 holds.2

4.3 Performance Computation

This section provides a theoretical basis for assessing the performance of randomised
switching, with regard to an idealized controller, or reference controller. We will show
comparative performance for two cases: (1) known modes, and (2) unknown modes.

4.4 Performance: Known Mode Set Υ

This section shows results for relative performance of reference and randomized
controllers when the system mode switching covers a set Υ of known system modes.

2Proofs for Lemmas 2, 3 and 4 are in the Appendix.
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When the system modes are known and appropriate controllers are tuned for these
modes, we can show that the loss of a randomized control system converges (in
expectation) to that of a reference control system.

Lemma 4.3. ∃ a system Ψ (Definition 3), a randomised controller sequence

{ϕ̃(k)}k∈N, and a reference controller sequence {ϕ∗(k)}k∈N such that mean square

convergence (MSC) of { ˘ϕ(k)}k∈N and {ϕ(k)}k∈N as k → ∞ is guaranteed for any

known mode υ ∈ Υ.

4.5 Performance: Unknown Mode Set

In the case when the system modes ῠ ∈ Υ may be unknown, we must introduce a
notion of bounded loss to provide reasonable guarantees for any controller. By this we
ensure that, for any controller, the instantaneous loss for any unknown system mode
ῠ ∈ Υ does not cause total failure of the system Ψ. We thus add an extra task constraint
to Definition 7, i.e., a bound ε on the instantaneous loss that corresponds to a system
crash, e.g., due to a fault for which no recovery action is possible.

Definition 12. Bounded instantaneous loss is a loss such that: ξ(u(k),α(k)) < ε for

k = 1, ..., T and ε ∈ [0, 1].

Given this additional constraint, we can prove the following result using Lemma 4.3:

Lemma 4.4 (Unknown Mode MSC). ∃ a system Ψ (Definition 3), a randomised

controller sequence {ϕ̃(k)}k∈N, and a reference controller sequence {ϕ∗(k)}k∈N such

that mean square convergence (MSC) of { ˘ϕ(k)}k∈N and {ϕ(k)}k∈N as k → ∞ is

guaranteed if the worst-case loss is bounded for any unknown mode ῠ ∈ Υ′.

5 Empirical Analysis

This section summarizes results of an empirical study of randomized blended control
(RBC) using a quadcopter on a trajectory following task. We focus on two topics,
namely: (1) stability and stabilizability given faults; and (2) performance relative to
reference controller CR. We used an ideal (perfect) controller as the reference; to
make this controller more realistic, we studied its performance when varying delays are
introduced to mimic inference-time for fault isolation, which we encode as a delay τ .
Relative loss is the difference in flight-path deviation between the actual and reference
paths.

In our experiments, we induce a rotor fault at t = 15s in the quadcopter, and then
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examine the ability of our controllers to recover from the fault and to maintain a stable
trajectory. We conducted experiments for rotor fault degrees of υ = 0.98 and 0.91 with
similar results. Figure B.4 (c-f) shows the results for υ = 0.91 and delay values τ . On
the left side of each graphic is a plot of the flight path of the quadcopter and on the
right plots for Error Rate of Change $ (yellow), Current Tracking Error ρ(red) and
Current Blend ϕ (blue) against simulation time. These figures show how a fault causes
a deviation in the flight path, which is reflected in $ and ρ, as well as the impact of
varying τ (delay due to fault isolation).

We examined two types of RBC: fault-based RBC (Figure B.4 (a)), where RBC is
invoked when the deviation exceeds a threshold (i.e., we stabilize a fault for t =
15−19); and clock-based RBC (Figure B.4 (b)), where RBC is performed throughout,
switching at each tick of a clock with period κ (κ = 0.5s here). The smaller the value
of κ the better is the clock-based RBC. For large faults (as in this example), the clock-
based RBC recovers faster and with smaller deviation than does fault-based RBC.

Our benchmark CR with no delay (τ = 0) performed the best (by definition). Figures
B.4 (c-f) show that flight deviations increase with τ , with a delay of τ = 2s causing
a crash before the fault controller can be applied. The randomized architectures both
performed extremely well, having a deviation similar to CR with τ = 0.5s, and only
30% worse than CR with τ = 0. This indicates that RBC is competitive with state-of-
the-art controllers, as one can trade off FDI inference time with fast switching times in
RBC.

6 Conclusions

This article has shown that randomized blended control is a theoretically sound
approach for stabilizing a system that is encountering novel faults for which no control
laws are known. More precisely, we have shown that there exists a collection U of
controllers that can be randomly blended to recover from a novel fault D, without
identifying the state description of D. This result extends robust control, which
guarantees stability for D that is strictly bounded, or other control methods (e.g.,
adaptive, sliding-mode) for which D must be known a priori. Our results generalize
naturally to environment disturbances other that system faults.

We have demonstrated empirically that: (a) the randomized approach can be used
recover from unanticipated faults without fault isolation; and (b) the randomized
approach can perform trajectory following in the presence of disturbances with small
loss of optimality compared to a reference controller.

Autonomous System Control in Unknown
Operating Conditions

63 Yves Sohège



B. FAULT-TOLERANT CONTROL FOR UNSEEN
FAULTS USING RANDOMIZED METHODS 6 Conclusions

(a) Fault-based Randomized Blended Control

(b) Clock-based Randomized Blended Control

(c) CR with τ = 0s

Figure B.4: υ = 0.91 at t = 15s, a) Randomized fault-based Blending, b) Randomized
clock-based, c)-f) Optimal blend CR delayed by varying τ
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(a) CR with τ = 0.5s

(b) CR with τ = 1s

(c) CR with τ = 2s

Figure B.5: υ = 0.91 at t = 15s, a) Randomized fault-based Blending, b) Randomized
clock-based, c)-f) Optimal blend CR delayed by varying τ
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7 Appendix

This section describes key proofs, all of which cannot be included due to space
constraints.

Lemma 4.2 (Proof): We rewrite the state equation of Definition 3 such that u(k) =
K
γ(k)
σ(k)x(k), and defining the matrix Ãγ(k)

σ(k) = A
γ(k)
σ(k) + B

γ(k)
σ(k)K

γ(k)
σ(k) . This enables us to

rewrite the state equation of Definition 3 as x(k + 1) =
[
A
γ(k)
σ(k) +B

γ(k)
σ(k)K

γ(k)
σ(k)

]
x(k) =

Ã
γ(k)
σ(k)x(k). �

Performance Given Known Modes

Our supporting Lemmas are as follows: We first characterize the relative loss of two
randomised switching sequences:

Lemma 7.1. The relative loss ∆(ϕ̃1:T , ϕ1:T ) for two randomised switching sequences,

ϕ1:T and ϕ̃1:T , can be expressed such that ∆(ϕ̃1:T , ϕ1:T ) ∝ W 2(ϕ̃1:T , ϕ1:T ), using a

W 2 measure as per Definition 2 of [75].

Lemma 7.2 then shows that the relative loss for randomised control is equivalent to the
distance W 2 between the reference and randomised distribution sequences.

Lemma 7.2. For a task T1:T and randomised and reference distribution

sequences, {ϕ̃(k)}k∈N and {ϕ(k)}k∈N respectively, the relative loss is given by

limk→∞W
2(ϕ̃1:T , ϕ1:T ) = 0.

Proof: From Lemma 7.1, we can express the relative loss for {ϕ̃(k)}k∈N and
{ϕ(k)}k∈N as W 2(ϕ̃1:T , ϕ1:T ). We can view the reference controller as a Dirac delta
distribution at each k ∈ N, since its value is a single control signal. Since we are
computing the W 2-distance between a Dirac delta distribution and a distribution, we
know (by Proposition 1 of [75]), that limk→∞W

2(ϕ̃1:k, ϕ1:k) = 0. �

We use the next lemma to show the necessary and sufficient conditions for mean square
convergence (MSC) given a randomised controller.

Lemma 7.3. Given a system Ψ and system switching sequence {σ(k)}k∈N with

switching probability π(k), Ψ is MS-stable if and only if the matrix Ajσ(i) at time step i

(given controller switching mode i) satisfies

lim
k→∞

 1∏
i=k

 m∑
j=1

πj(i)(Ajσ(i) ⊗ A
j
σ(i)),

→ 0.

Proof: We start by using a result (Theorem 1) from [75], which provides the following
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identity for W 2:
W 2(k) = [In]TΓ(k)[µ̂(0)µ̂(0)T + ˆΣ(0), (B.7)

where Γ(k) =
 1∏
i=k

 m∑
j=1

πj(i)(Ajσ(i) ⊗ A
j
σ(i))

 ,
In is the n× n identity matrix, and µ̂(0) and ˆΣ(0) are the mean and the covariance of
the distribution of the pdf π(k).

We now must justify the necessary and sufficient properties of our claim.

⇒: If limk→∞ Γ(k) = 0, this implies that W 2(k) → 0 as k → ∞, which in turn
implies that W → 0.

⇐: We prove this part of the claim by contradiction. Suppose that limk→∞ Γ(k) 6= 0.
Then the distance W never reaches 0 (by equation B.7), which then implies that MS
stability does not hold. Hence we have a contradiction. �

Lemma 4.3 (Proof): This Lemma follows from Lemmas 7.1, 7.2 and 7.3. If we
assume that a reference controller guarantees convergence, then Lemma 7.2 states that
the randomized controller is MSC, and Lemma 7.3 shows that the system Ψ must be
definable in terms of the matrix A. �

Performance Given Unknown Modes

Lemma 4.4 (Proof): We start by assuming a bound on worst-case loss; this guarantees
that the disturbance will not cause even a reference controller to be unable to stabilize
the system. If the reference controller guarantees stabilizability, then by Lemma 7.3
the randomized controller will also guarantee stabilizability. Further, by Lemma 4.3
we know there must exist a system (defined in terms of matrix A) such that MSC is
guaranteed. �
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Paper C

Online Reinforcement Learning for
Trajectory Following with Unknown
Faults

Abstract

Reinforcement learning (RL) is a key method for providing robots with appropriate
control algorithms. Controller blending is a technique for combining the control output
of several controllers. In this article we use on-line RL to learn an optimal blending of
controllers for novel faults. Since one cannot anticipate all possible fault states, which
are exponential in the number of possible faults, we instead apply learning on the
effects the faults have on the system. We use a quadcopter path-following simulation
in the presence of unknown rotor actuator faults for which the system has not been
tuned. We empirically demonstrate the effectiveness of our novel on-line learning
framework on a quadcopter trajectory following task with unknown faults, even after a
small number of learning cycles. The authors are not aware of any other use of on-line
RL for fault tolerant control under unknown faults.
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1 Introduction

One of the most important uses of reinforcement learning (RL) is for controlling
robots, using reinforcement learning control (RLC). It has been shown, e.g., [80] that
RLC can provide a model-free method for learning control of a robot, e.g., a quadrotor.

Model-free RLC assumes that the control system starts with no model and solves the
Bellman equation based on running experiments with appropriate rewards, to create
a matrix of values that serves as the model. Although model-free RLC can prove
accurate, its main disadvantage is a long convergence time. Since the policy space for
robotic interactions can be extremely large, RLC requires a large number of iterations
to achieve convergence. In addition, if the plant is unstable (as is that of a quadcopter),
or safety is an issue, using RLC can prove difficult in practice.

The alternative approach is to use model-based RLC, which is also known as iterative
learning control (ILC). ILC refines the reference or input signals of a desired maneuver
based on data from previous executions. This can be used to update model parameters
or extend an existing model.

We assume that we have modelled the quadcopter with a linear approximation of the
underlying non-linear flight dynamics. Further, we assume that unmodeled dynamics
(in our case, faults) can be represented as linear multiplicative term to the actuation
dynamics. Given planned trajectory inputs uk, each ILC iteration can be decomposed
into two steps: (1) disturbance estimation, where a Kalman filter computes the current
estimate of the disturbance ; and (2) input update,where we compute an improved
quadrotor input, uk+1. Using this framework, the input can be abstracted at any
level; e.g., from robot thrust and angular velocities [81] to the position commands for
trajectory following [82, 83, 84]. Experiments show that few iterations (on the order
of 10-20) are needed to characterize repeatable disturbances and improve tracking
performance.

The majority of applications of RL assume that learning is done off-line. However,
there are many situations in which a robot will encounter novel situations and needs
to adapt to those situations. We address that scenario in this article. In particular, we
examine a quadcopter that has been pre-programmed with a set of controls and uses
control blending to operate within a known control environment. However, for novel
scenarios the robot must adapt. We introduce novel actuator faults into a quadcopter,
and use ILC to learn new control laws.

We have defined the quadcopter to have a hierarchical control architecture. The lower-
level controllers use PID methods to control each of the quadcopters three axis of
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movement. The higher-level controller uses blends of the lower-level controllers to
control flight trajectories. We have pre-defined a set of control laws for nominal
and fault modes. We then subject the quadcopter to unseen fault and then allow the
quadcopter to repeat the novel conditions for the unseen faults to learn new high-level
control laws.

This article proposes the first use of ILC for learning novel fault-tolerant control laws.
We empirically demonstrate that we can learn new controls from a small number of
learning trials.

2 Related Work

This work builds on extensive prior work in RL, fault-tolerant control (FTC) and Fault
Detection and Isolation (FDI).

A significant body of work exists for RL for robotics applications, dating from [80].
This work is related to work on trajectory following, e.g., [82, 83, 84]. For this class of
application, several instances of learning quadcopter control have been achieved [85];
however we are not aware of prior work that uses Reinforcement Learning to learn the
optimal blending of controllers and achieve fault tolerant control.

In the area of FTC [25], a significant body of work has been developed and applied
to real-world systems. [49] presents a recent overview of FTC, and [50] presents
FTC with relation of system safety. Traditional methods for FTC employ a bank of
observers coupled with dedicated controllers, and perform discrete switching. This
approach enables designers to tune the system to dedicated faults, but the speed of the
system hinges on the speed of FDI. More recent approaches use mixing controllers,
e.g., [51, 52], which blend the outputs of multiple controllers and are less reliant on
FDI.

Fault-Tolerant Control (FTC) can be divided into two types, passive and active. Passive
fault tolerant controllers are designed off-line against predefined models for certain
operating conditions and have no ability to react to unanticipated faults. Passive FTC
enables fast adaptation to faults, within the predefined operating conditions. Active
FTC uses on-line data to reconfigure the controller to stabilise the plant. For a
comprehensive study between the two approaches see [46]. Both active and passive
FTC rely on specifying the space of faults that the system will encounter. For passive
FTC, approaches such as blending of controllers tuned to nominal and failure modes
are used to maintain system stability, e.g., [2]. Analogously, active FTC can rely on
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being able to detect pre-specified faults, such as using a bank of observers, with each
observer tuned to a particular fault, e.g. [47]. For complex systems, it is impossible
to pre-specify all faults, since there are too many fault combinations to consider, and
it may be impossible to know all possible faults a priori. As a consequence, it is
imperative that a system designer understand the space of possible faults and their
impact on a system. Very little work has been conducted on exploring the space of
faults and their impact on active vs passive FTC.

3 Reinforcement Learning

Reinforcement learning (RL) [11] is a technique for learning control actions that are
optimal for particular states, using interactions of an agent with the environment in
which the agent obtains rewards for actions. Reinforcement learning is typcially
formalized as a Markov decision process (MDP), which is a tupleM = 〈S, U, T,R, γ〉,
where

• S is the set of possible world states,

• U is the set of possible control actions,

• T is a transition function T : S × U → P (S),

• R is the reward function R : S × U → R,

• and γ is a discount factor such that 0 ≤ γ ≤ 1.

Reinforcement learning learns a policy Π : S → U , which defines which actions
should be taken in each state. Q-learning [86] is a model-free reinforcement learning
technique that uses a Q-value Q(s, u) to estimate the expected future discounted
rewards for taking action u in state s. At each step, Q-learning applies an update
equation for Q(s, u) given by

Q(st, ut)← Q(st, ut) + α
(
rt+1 + γmax

u
Q[st+1, ut]−Q[st, ut]

)

where rt+1 is the reward observed after performing action ut in state st, α is the
learning rate (0 ≤ α ≤ 1), and st+1 is the state that the agent transitions to after
performing action ut. After Q(st, ut) converges, the optimal action for the agent in
state st is arg maxuQ(st, u).

In Q-learning and related algorithms, an agent maintains a table of Q[S, U ] based on
its history of interaction with the environment. An experience 〈s, u, r, s′〉 provides one
data point for the value of Q(s, u). The data point is that the agent received the future
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value of r + γV (s′), where V (s′) = maxu′ Q(s′, u′); this is the actual current reward
plus the discounted estimated future value. This new data point is called a return. The
agent can use the temporal difference equation to update its estimate for Q(s, u):

Q[s, u]← Q[s, u] + α(r + γmax
u′

Q[s′, u′]−Q[s, u])

or, equivalently,

Q[s, u]← (1− α)Q[s, u] + α(r + γmax
u′

Q[s′, u′]).

4 RL Results

This section presents a summary of our results. We have shown that RL can be used to
dynamically learn how to stabilise a robot’s trajectory given previously unseen faults.
We used a quadcopter to demonstrate how path-following deviations can be reduced
by 63-75% following few learning epochs.

We will firstly present the final Q-Matrix (Figure C.1) that was learned. Positive and
negative Q-values represent good and bad performance respectively. The large number
of negative values are due to our reward function, as will be shown in Section 5.1.
We say the matrix has converged perfectly if only a single positive Q-Value exists per
row. This is not evident in this matrix but with adjustments to the reward function and
enough learning epochs this matrix would converge. Another interesting point to note
is the magnitude of the Q-Values. The first row has significantly higher values than the
rest. This is because the first row represents the lowest deviation rate and this row will
get trained for every fault since for the deviation rate to increase to the higher partitions
it must first go through first partition. To see the improvements in trajectory following
performance for a quadcopter, we compared the RLC with the original quadcopter
configuration. As far as the authors are aware there is currently no baseline controller
for unknown faults to compare against. In future we intend to run comparisons against
other FTC architectures. We use total trajectory deviation in centimetres to gauge how
much the tracking accuracy improved. Table C.1 shows this comparison for several
magnitudes of unknown rotor faults. We denote the number of learning cycles of RLC
using µ.

Figure C.2 shows the time it took to re-stabilize the quadcopter along its trajectory
with acceptable deviation after each completed learning cycle. It is clearly visible that
after a small number of learning iterations the time to re-stabilize drastically reduces
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Figure C.1: Matrix learned after 250 learning cycles. Rows represent different system
states and each column represents a blended controller.

Table C.1: Empirical Analysis of RLC improvment in path deviation error against the
original controller.

Rotor Fault Original Quadcopter(cm) RLC Quadcopter (cm) µ Improvement
4% 532.81 131.39 100 75.34%
6% 2188.1 650.92 200 70.25%
7% 5439.9 1995.1 250 63.32%

Figure C.2: Evaluation phase τ timings.

but never converges to 0. The spikes in the graph show an increase in the magnitude
of a benchmark fault induced.

5 Reinforcement Learning Blended Control

This section describes the mapping of the RL approach to our experimental domain,
i.e. what the RL tuple 〈S, U, T,R, γ〉 means for our quadcopter domain. For the
experimental set-up we used an opensource Matlab implementation of a quadcopter
flight simulation [87]. This implementation used 4 tuned PID (Proportional Integral
Derivative) controllers to control Roll, Pitch, Yaw and Altitude (Figure C.3 Right)
respectively.

Our objective with this simulation is to implement on-line reinforcement learning for
faults of unknown origin and magnitude. As far as the authors are aware not much
work has been done using RL to learn a blended controller for unknown faults on-
line. The simulations core task is trajectory following which is defined as a list of time
indexed way point locations in the form of a triplet (X , Y , t), presenting desired X and
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Figure C.3: Left: Simulation Path. Right: Roll , Pitch and Yaw axis of the quadcopter.

Y position at time t. Given the quadcopter’s current position at time t as (x̄, ȳ) the
deviation from the trajectory can be computed as:

δt =
√

(X − x̄)2 + (Y − ȳ)2

The trajectory used is a square and can be seen in Figure C.3 Left. We define a single
learning cycle for RL as a single execution of the shown trajectory with one unknown
fault. The faults are injected at the same point in the trajectory for consistency. After
every learning cycle we allow for time to fully stabilize along its trajectory so no
residual effects from previous learning cycles will influence future learning quality.
Since we have a cyclic trajectory we can continuously repeat the learning cycles and
analyse the performance improvements over time and on-line. Each learning cycle can
be defined in terms of four phases, which are:

A. Stabilize - Ensure nominal operating conditions.

B. Learning - Random fault in specified range and stabilizing using RL.

C. Stabilize - Ensure nominal operating conditions.

D. Evaluate - Test against a benchmark error to check improvement.

The Stabilize phases simply ensure the quadcopter returns to its trajectory with
acceptable deviation rate and in nominal operating conditions before proceeding to
the following phases. The Learning phase consists of random fault injection and
stabilizing with RL. The Evaluation evaluates the current learned policy against a
benchmark fault to record the improvements learned over time, Figure C.2.

5.1 RL States

The space of unknown faults is simply too large to apply learning to each fault
individually. We hence classify the states S for our RL implementation in terms of
the effect that unknown faults have on the trajectory following task. For this metric we
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chose the deviation rate from the desired trajectory, which we define as:

ρ = d

dt

4∑
i=0

δt−i,

where δi is the trajectory error between current and desired position at time step t− i.
We then define S as a partition over the parameter space of ρ into N regions of equal
size.

5.2 RL Actions

Our action space U is defined in terms of blended control for which we use a linear
combination of predefined controllers. In other words, given a set of M predefined
controllers Λ = {Λ1, · · · ,ΛM} and corresponding weights {ϕ1, · · · , ϕM}, our applied
blended control is given by

Λ∗ =
M∑
i=1

ϕiΛi. (C.1)

where
∑M
i=1 ϕi = 1. We define our action space U as a partition of size P over the

parameter space of ϕ. The granularity of this partition will dictate how many different
blended controllers are used for learning.

We then define our Q-Matrix as Q(S, U) and set N and P to 5 and 10 respectively.
In other words we are learning the optimal blended controller for each deviation-rate
sub-partition. The size of the matrix increases drastically with the size of the partitions.
We hence chose small enough partition sizes to concentrate the learning into a smaller
region. The transition function T maps the current state and action chosen to the new
state. In our context T is already given by the simulation itself.

For RL to be able to learn on-line we must have some performance metric to evaluate
how well a controller performed during the fault recovery for each separate learning
cycle. For this metric we choose the time, τ , until the quadcopter is stabilized on its
desired trajectory.

5.3 RL Rewards

Since we use τ as our performance metric we must also compute a baseline value
to compare this against, which indicates positive or negative reward for the blended
controller used. Since we have no prior knowledge about the faults, we compute τ̄ ,
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Table C.2: τ̄ i values for each partition of S after the RL simulation.

Si S1 S2 S3 S4 S5

τ̄ i (sec) 2.8 3.6 3.9 4.3 4.7

a running average of τ . For each subspace of Si we define τ̄ i to allow larger errors
more time to stabilize. We assign credit based on the performance against the running
average.

C =

 1 if τ ≤ τ̄ i

-1 if τ > τ̄ i

given that max(ρ) < Si. The τ̄ values for each fault mode after the RL simulation can
be found in Table C.2.

5.4 Credit Assignment Problem

The Credit Assignment Problem [88] refers to the problem of identifying which action
was the one deserving credit. In our case the problem is identifying which partition Si

should receive the credit after a learning phase. This is because ρ will naturally vary
across multiple sub-partitions of S during a single learning cycle. We hence apply
RL for each of the sub-partitions. The blended controller used to control the system
is changed when ρ transitions from its current Si to Si−1 or Si+1. Figure C.4 shows
various signals and the bounds of each Si indicated as Levels from the quadcopter
simulation during a single learning cycle. The Green signal represents the changing ρ.
We indicate the transition between sub-partitions of S with red arrows. Notice the blue
signal representing the applied control signal changes when the deviation magnitude
changes. However this implementation makes it difficult to assign credit to a single
subspace, since learning was potentially applied on multiple subspaces. We combat
this by assigning proportional credit to each subspace depending on how long the value
of ρ stayed in each of the parameter subspaces. That is, the credit assigned to each Si

is:

R(Si) = C ∗ t
τ

where t is the duration that ρ was in the bounds of Si and C and τ are as previously
defined.

For this implementation we do not use γ, the future expected reward. Estimating the
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Figure C.4: Graph showing ρ (green), current error (orange) and blended controller
used (blue). The subspaces S1, S2, ..., S5 are indicated along the Y-axis using the Level
terminology.

Figure C.5: Rotor Fault magnitude ι and benchmark errors Γ throughout simulation.
Note: larger errors are given longer time to stabilize.

expected deviation rate ρt+1 is challenging as the controller is synthesised on-line and
the faults are unknown. In future work we will extend the reward function to include
the γ term.

5.5 Error Generation

We focus solely on unknown rotor faults for this article for simplicity but this
framework works for any unknown faults that cause trajectory deviations. More
specifically, we use a multiplicative term ι on the rotor speed to represent the unknown
fault. To achieve an even distribution of learning we randomize ι, such 0 ≤ ι ≤ Γ,
where Γ is the upper limit on the fault. We incrementally increase Γ after a number of
learning cycles. This will give a larger variance of deviations allowing the system to
apply learning across all sub-partitions. Figure C.5 shows the rotor fault magnitudes
used over 250 learning cycles. Note this figure shows the benchmark errors used as
well as randomized errors for training.
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Table C.3: Low level nominal and fault controller tuning for each control axis.

Controller λNφ λFφ λNθ λFθ λNψ λFψ
P 2 10 2 10 4 14
I 1.1 5 1.1 5 0.5 2
D 1.2 3 1.2 3 3.5 5

5.6 Simulation Details

For completeness we will give a full list of low level controllers and other parameters
used for the experiments. The PID controller coefficients for nominal and fault
(indicated by superscript N and F) controller for each control axis (indicated by
subscript φ, θ, ψ) can be seen in Table C.3. It is worth noting that these controllers
are not tuned for any specific fault; they are simply tuned with a more "aggressive"
coefficient. Figure C.1 shows the matrix after 250 learning cycles. We set the initial
value for Γ to 3% and increased this after every 50 learning iterations up to 7%. We
apply the fault to the same rotor every time.

6 Conclusion

In this article we presented a novel reinforcement learning approach for on-line, real-
time learning for unknown faults. We empirically demonstrated the effectiveness
of this approach on a Quadcopter trajectory following task. We noticed a 63-75%
decrease in the trajectory deviation due to an unknown fault after a small number of
learning cycles. In this set of experiments only rotor faults where investigated but
given appropriate controller pairs for blending the authors believe this approach will
work for other system disturbances such as wind or sensor faults. Since we are learning
on the disturbance space, instead of the fault parameter space, this learning approach
will work for most faults that cause a path deviation. The novelty of this approach is
that the learning phase can be conducted on-line and needs very few iterations before
converging compared to traditional RL methods. Furthermore, we are not aware of
any other RL based approach for FTC under novel faults. This could provide adaptive
FTC capabilities to systems that are not easily fixable or recoverable such as satellites
or space rovers. Our future work includes focusing on improving the learning process
and attempting training on a multitude of errors. For simplicity, this article also only
explores blends outputs of two controllers but in theory this is not a limitation. Larger
sets of predefined controllers for blending can be trained using our described method
but with a considerably larger number of training phases, which will also be explored
in future work.
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Paper D

Unknown Fault Tolerant Control
using Deep Reinforcement Learning:
A blended control approach

Abstract

It is impossible to pre-define a controller for every fault an autonomous system can
experience as some faults are unknown at design time. Current fault tolerant control
(FTC) architectures switch control to a pre-defined fault controller when a known fault
is identified. Blended control implements a controller that is composed of multiple
individual controllers instead of discretely switching between them. In this article we
present a novel fault tolerant control architecture based on blended control that uses
a high-level deep learning agent to learn the optimal blending proportions between
low-level controllers for unknown faults. Faults are abstracted to the effect they have
on the performance of a task while removing the inherent fault identification delays
experienced by existing FTC architectures. The presented architecture is validated
on a quadcopter trajectory tracking task and trained to tolerate abrupt rotor loss of
effectiveness. We compare our approach against a switched architecture with the same
underlying controllers and show its ability to learn unknown fault tolerance.
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1 Introduction

Autonomous systems have been a major focus for the fault tolerant control community
in recent years. For the application of autonomy to large scale systems they need
to tolerate unknown faults. Fault tolerance can be defined as continuing mission
performance under any fault conditions, known or unknown. Traditional switched
fault tolerant control (FTC) systems rely on prior knowledge of the effects a fault has
on the system dynamics for the fault detection and isolation unit (FDI) to identify the
fault as well as a controller to operate under these conditions [89]. After identification
Control is switched to the pre-defined fault controller. This fundamentally does not
extend to unknown faults for two reasons:

A. Identification relies on prior knowledge of the effect a fault has on the system
dynamics.

B. Fault controllers are designed to operate under known fault conditions only.

Identifying the effect a fault has on the system dynamics is complex and has an inherent
time delay. For highly unstable systems, such as quadcopters, such a delay can be
catastrophic. Blended Control is a variation of switching control that implements a
control that is composed of multiple low-level controllers simultaneously instead of
discretely switching between them.

In this article we present a novel hierarchical FTC framework based on blended control
and a deep learning high-level controller that addresses the mentioned problems.
The FDI unit and control switching function are replaced by a deep learning agent,
specifically a deep deterministic policy gradient (DDPG) agent. This is an abstracted
approach to learn the effect of a fault on the task performance rather than the
system dynamics. Degrading task performance due to any faults is optimized through
changing the blend weight vector which removes the need for prior knowledge of a
fault and addresses problem 1. The low-level controllers are designed based on the
type of reaction to a fault instead of for pre-defined fault conditions while providing
similar control responses under nominal conditions. This allows for synthesis of new
controllers for unknown faults by adapting the blend weight vector and addresses
problem 2. The presented architecture provides a novel integration of existing
controllers to deep learning FTC and is validated on a Quadcopter trajectory tracking
task with abrupt rotor loss of effectiveness. We show the presented architecture is
able to track a given trajectory closer than a switched architecture based on the same
low-level controllers under rotor loss of effectiveness of 50% while also generating a
improved control signal.
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Figure D.1: Deep Learning Blended Control architecture showing the 3 main parts:
Low-level controllers, High-Level Controller and Blending Function.

Our contributions are as follows:

• We present a novel hierarchical fault tolerant control architecture with the ability
to learn unknown fault tolerance through blended control and a high-level deep
learning agent.

• The architecture is validated on a quadcopter trajectory tracking task under
unknown rotor loss of effectiveness faults. The trained controller shows
robustness to the trained faults and exhibits less oscillations around the reference
signal than the low-level controllers.

The remainder of this article is structured as follows: Section 2 gives a detailed
overview of the presented architecture. We compare our architecture to current state-
of-the-art FTC architectures and applications of deep learning for control in Section 3.
We discuss deep reinforcement learning and its application to control in Section 4. The
implementation and training on a quadcopter simulation is given in Section 5 followed
by experimental validation in Section 6.

2 Deep Reinforcement Learning Blended Control

We will firstly give a detailed overview of the presented architecture, referred to as
Deep Reinforcement Learning Blended Control (DRLBC), to improve the overall
clarity of the article. An architecture diagram of DRLBC can be seen in Figure D.1.
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The framework can be broken down into three parts which will be discussed in detail:

A. Low-Level Controllers

B. High-Level Controller

C. Blending Function

2.1 Low-Level Controllers

In hierarchical control architectures the low-level controllers generate the control
signals that are directly applied to the systems actuators (motors, valves, etc). Several
types of well known controllers exist for system control such as Proportional Integral
Derivative (PID), Model-Preditive Controllers (MPC) or Linear Quadratic Regulators
(LQR) to name a few. In this article we will restrict the low-level controllers to PID
controllers which are an industry standard way of controlling automatic systems but the
presented framework works with any low-level controllers. Traditionally an optimal
controller is designed offline for a system model under predefined operating conditions.
Fault tolerance is achieved through redundant controllers designed for known fault
conditions. The number of faults a system is tolerant for depends on the number of
low-level controllers predefined at design time. In this article, the set of low-level
controllers are not designed for specific operating conditions but based on the type of
reaction to a disturbance or fault and are denoted Ω = {ω1, · · · , ωN}. Figure D.2
shows the reaction of two differently tuned PID controllers to a fault. Gain parameters
for these can be found in Table G.2. Higher gain parameters cause the controller
to have a more aggressive response to a fault and performs better for aggressive
flight maneuvers (top) while smaller gain parameters have a smoother response which
results in more precise control but slower stabilization after faults (bottom). The blue
line representing the actual state variable that is manipulated stabilizes on the black
reference line for both controllers. The controllers reactions shown in Figure D.2 are
used in the quadcopter simulation experiments and will be elaborated on further in
Section 5.1.

2.2 High-Level Controller

In traditional switched architectures the high-level controller contains the FDI unit
which identifies the effect of faults on the system. The high-level controller selects
which of the low-level controllers is active at any time and provides fault tolerance
capabilities by switching control to the predefined controller once a known fault is
identified. In the presented architecture the high-level controller is implemented with
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Figure D.2: Quadcopter attitude controller outputs for trajectory tracking under rotor
fault. Y-Axis represents Reference and Actual position as well as controller response
in red, Aggressive (Top) and Smooth (Bottom).

a deep neural network instead of a set of state observers that identify faults. In this
article we will use a Deep Deterministic Policy Gradient network [90] which will be
described in more detail in Section 4. The low-level controller outputs, Ω , and a
subset of state variables representing the performance on a task are used as an input
for the high-level controller. The objective is to learn the optimal blend of low-level
controllers to maximise the systems performance on a task. Faults that impact the
performance of the system can be mitigated generically in real time without having
to define specific fault observers. The output of the high-level controller is defined as
the blend weight vector ϕ = {ϕ1, · · · , ϕN} that specifies the weight of each low-level
controllers in the blended control signal ~ω applied to the system.

2.3 Blending Function

The blending function takes as inputs the low-level controller outputs {ω1, · · · , ωN}
and the blend weight vector {ϕ1, · · · , ϕN} and outputs a blended control signal ~ω.
Formally blended control can be defined as follow:

Definition 13 (Blended Control). Given a collection of controllers Ω = {ω1, · · · , ωN}
and a blend weight vector ϕ = {ϕ1, · · · , ϕN}, blended control is a weighted

combination ~ω = ∑
i ϕiωi such that: (1) ∀i, ωi ∈ Ω, 0 ≤ ϕi ≤ 1, and (2)

∑
i ϕi = 1

The two constraints imposed on the blend weight vector ensure that ~ω is bound by
the low-level controller outputs. Further, if the low-level controllers output the same
control signal, blending to any proportions will have no effect. In Figure D.1 these
constraints are shown in the blending function block for clarity but can be imposed on

Autonomous System Control in Unknown
Operating Conditions

83 Yves Sohège



D. UNKNOWN FAULT TOLERANT CONTROL
USING DEEP REINFORCEMENT LEARNING:
A BLENDED CONTROL APPROACH 3 Running Example & Related Work

the high-level controller outputs for a simpler implementation.

3 Running Example & Related Work

We will use the quadcopter with abrupt rotor loss of effectiveness (LOE) as a running
example for the remainder of this article. Quadcopters are unmanned aerial vehicles
that use four propellers to maneuver and have gained increased attention in the research
community in recent years . These vehicles have fewer actuators than degrees of
freedom, and hence are called under-actuated: only four actuators (propellers) are used
to control six variables, the coordinates x, y, and z, and the roll, pitch, and yaw angles
of the quadcopter, denoted φ, θ, and ψ, respectively. Hierarchical PID-based control is
a standard way to control quadcopters. The dynamical equations of a quadcopter are
complex, due to the highly coupled state-space. Due to space limitations, we give a
brief summary of quadrotor dynamics and details of how rotor faults are represented,
and refer the reader to [91] for details.

We define the dynamics of the quadcopter in the non-linear state space form

ẋ = f(x) + g(x)(1− ς)u(t), (D.1)

where x = [x ẋ y ẏ z ż φ φ̇ θ θ̇ ψ ψ̇]T is the state vector, control input u(t) =
[U1 U2 U3 U4]T = %(υ1 υ2 υ3 υ4), % is a non-linear function in the angular velocity
of motor i, and we denote a multiplicative fault model with parameter 0 ≤ ςi ≤ 1 for
i = 1, ..., 4, where ςi = 0 corresponds to nominal function and ςi = 1 to total failure.

Quadcopters have been shown to be able to maintain flight even after the complete
loss of one or more rotors [92]. Several applications of deep learning for quadcopters
exist which mostly focus on learning the direct control mapping of state space to
motor commands [93, 94, 95]. This usually requires large amount of training data
and complex fine tuning of the reward functions to accurately represent the desired
behaviour.

The application of deep learning for FTC of a quadcopter has been achieved by
learning a complementary controller that adjusts the nominal controller output during
a rotor fault [96]. The success of this approach compared to other adaptive control
strategies is attributed to the continuous output of the neural network and removal of
the FDI unit to identify when a correction to the nominal controller is needed.

A large amount of work has been done on FTC through hierarchical control
architectures [89, 97]. An extension to the traditional switched architectures is blended
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Table D.1: PID parameters for aggressive and smooth reactions to faults from a quadcopter
simulation.

P I D
Aggressive 12 5 5

Smooth 5 1.1 3

control. Blended control has been proven to be safe as the applied control signal
will always be bound by the underlying controllers and will at worst perform like a
switched architecture [27]. Blended control has been successfully applied for FTC of
a quadcopter with partial rotor failure in [2] but has received little success outside of
this due to the complexity of generating adequate blending weights.

3.1 Comparison to DRLBC

We contrast the presented DRLBC architecture to current state of the art approaches.
The deep learning algorithm is applied to an abstracted high-level task while relying on
existing control mechanism to control the vehicle. This reduces the overall complexity
of the learning task as nominal system control is already established which usually
takes a large number of learning iterations and fine tuning an accurate reward function
to achieve. The direct mapping of state space to motor commands is a highly complex
function. Every additional input to the deep learning algorithm increases the size of
the space that is explored which is a reason for the long convergence times experienced
by the application of deep learning to control tasks. DRLBC only uses a subset
of the state space variables as an input which reduces this space drastically. If the
underlying controllers provide safe responses with varying performance on a task,
DRLBC guarantees a safe exploration space for the agent during training as any blend
weight vector used will create a control signal bound by the safe controller outputs.

The presented architecture is able to generically identify degrading performance since
no fault specific observers are used in the high-level controller. Faults have an
effect on the performance an autonomous system is able to achieve on its task. For
example abrupt rotor LOE on a quadcopter will cause overall instability and reduce
the trajectory tracking accuracy the quadcopter is able to achieve. By choosing inputs
for the high-level controller that represent the performance on a given task the deep
learning agent is able to identify when system performance degrades and learns to
optimize this through the selection of an adequate blend weight vector. For a trajectory
tracking task such a performance measure could be the current trajectory tracking
error as it captures the overall task the system is executing. To be able to distinguish
the effects different faults have on the overall system we extend the set of high-
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level controller inputs with a subset of the state variables that represent the changing
conditions of the system. The angular state of a quadcopter is heavily effected by rotor
faults. This would be an adequate input for the high-level controller to learn the effect a
rotor fault has on the system performance without specific observers monitoring these
states. This abstraction allows the system to learn how to maintain control during
unknown faults or even when the fault is not identifiable from any state variables.

With specifically tuned fault controllers blended control is mostly limited to the
correction of partial faults. The calculations of the correct blending weights for partial
fault control is complex as the FDI observers need to be able to identify the magnitude
of the fault and then calculate the adequate blend weights. DRLBC is not limited to
partial fault tolerance as the low-level controllers are not tuned to be fault specific.
Blending low-level controllers based on the type of control that is required allows
for the deep learning agent to synthesise a new controller when system performance
degrades due to any fault. The complexity of defining the blending weights is left to
the deep learning agent. Theoretically this framework can learn fault tolerance on-line
given an adequate training environment but this is beyond the scope of this article.

4 Deep Reinforcement Learning (DRL)

The standard setup for reinforcement learning is a decision maker called agent that
interacts with an unknown environment E in discrete time steps for achieving a goal.
The information exchanged between the agent and its environment is reduced to
three signals: one signal to represent the choices made by the agent at ∈ <N (the
actions), one signal to represent the basis on which the choices are made xt ∈ <M

(the observations), and one scalar signal that represents the agent’s goal rt ∈ < (the
reward) [98]. Here, we assumed the environment is partially-observed (xt = st where
st is the state vector).

The agent makes a decision based on a policy π that maps the states to a probability
distribution over the actions π : S → P(A). The environment is modeled as a Markov
decision process defined by a four tuple: {S ,A,T ,R}. The transition function T :
S ×A×S → [0, 1] allows to estimate the probability of reaching state s′ at t+ 1 given
that action a ∈ A was chosen in state s ∈ S at time t, p(s′|s, a) = Pr{st+1 = s′|st =
s, at = a}. The reward function estimates the immediate reward R ∼ r(s, a) obtained
from choosing action a in state s.

The goal of the agent is to learn a policy that maximizes the future discounted reward
Rt = ∑T

i=t γ
i−tr(si, ai) over a time period T without explicit knowledge about
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the shape of the reward or the dynamics of the environment. Therefore, solving
a reinforcement learning problem means, roughly, finding the policy function that
maximizes the expected reward over the long run. One approach to find the best policy
is to derive it from the so-called action-value function that approximates the expected
reward for any state and action pair. Hence, the optimal action-value function Q must
be learned

Q∗(st, at) = max
π

Eri≥t,si>t,ai>t∼π[Rt|st, at] (D.2)

Deep neural networks have been successfully used as function approximators for
learning the optimal action-value function. The Deep Q Network (DQN) algorithm
was first proposed to deal with continuous state spaces [99]. However, DQN can only
handle low-dimensional action spaces mainly because of the curse of dimensionality.
Then, Lillicrap et al. (2015) proposed an off-policy actor-critic algorithm using deep
function approximators that can learn policies in high-dimensional, continuous action
spaces [90]. Their algorithm, called Deep Deterministic Policy Gradient (DDPG),
promotes stability and efficiency by training the network off-policy with samples from
a replay buffer and using a target Q network to give consistent targets during temporal
difference backups.

Learning a set of deep neural networks for direct fault-tolerant control of a quadrotor
is a complex problem. The two main challenges are the design of an appropriate
reward function and the time-consuming exploration process required given the high-
dimensional action and observation space required. We leave a deeper investigation
into these challenges for future work. The goal of using reinforcement learning in this
work is to design an agent that maps from an observation vector to the optimal blended
weight vector depending on the system state.

5 Quadcopter Implementation and Training

Hierarchical PID-based control is a standard way to achieve quadcopter trajectory
tracking. A trajectory is a temporally-indexed set of coordinates in 2D or 3D, denoted
ζ(k). We denote the reference (desired) trajectory as ζR(k), and the executed trajectory
as ζ̃(k). The goal of a trajectory tracking task can be defined as minimizing the
Trajectory Loss.

Definition 14 (Total Trajectory Loss). We can represent the total trajectory loss as a

difference function between reference and executed trajectories, i.e., L0:T = ∑T
k=0 ‖

ζR(k)− ζ̃(k) ‖ for a trajectory over time points k = 0, · · · , T .

Autonomous System Control in Unknown
Operating Conditions

87 Yves Sohège



D. UNKNOWN FAULT TOLERANT CONTROL
USING DEEP REINFORCEMENT LEARNING:
A BLENDED CONTROL APPROACH 5 Quadcopter Implementation and Training

Figure D.3: Quadcopter Deep Reinforcement Learning Blended Control architecture.

For simplicity we will focus on 2D (x, y) trajectory tracking. Figure E.1 shows the full
architecture diagram implemented on the quadcopter which will be discussed similarly
to Section 2, omitting the blending function details as they do not change.

5.1 Low-Level Controllers

A PID controller for each x and y axis generates the desired Roll (φ) and Pitch (θ)
reference angular state needed for the quadcopters to execute the desired trajectory.
The low-level roll and pitch controllers translate the desired angular states into motor
throttle commands which are applied to the vehicle. We disregard ψ, the rotational
state of the quadcopter, as it is not relevant for the 2D position. By changing the
gain parameters of the roll and pitch PID controllers we change how the quadcopter
responds to a divergence of the reference trajectory. To achieve a blended control
architecture at least one extra controller is needed for each of the angular states for
which the control is to be blended. As previously mentioned an aggressive and a
smooth controller, referred to as C1 and C2 respectively, are used and for simplicity
both roll and pitch use the same controller tuning. Table G.2 show the detailed gain
parameters used and Figure D.2 shows the difference in response to an abrupt change
in position due to some unknown fault.
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5.2 High-Level Controller

A standard actor-critic DDPG network structure is used to generate the blend weight
vector. Both actor and critic take in the same observation vector which we define as:

[φ θ δX δY C1φ C2φ C1θ C2θ]

where φ and θ are the current angular states, δX and δY represent the current trajectory
tracking error and the remainder the low-level controller outputs of C1 and C2 for φ
and θ respectively.

Since there are only two controllers for each control axis being blended and the second
blended control constraint from Definition 29 enforces

∑
i ϕi = 1, the actor output can

be defined simply as : [ ϕφ ϕθ ]. The full blend weight vectorϕ can then be calculated
as :

[ϕφ (1− ϕφ) ϕθ (1− ϕθ)]

This reduces the neural network output to one variable per control axis compared to
current state of the art approaches learning the direct control mapping of all control
signals needed to control the system. We give a brief overview of the network
architecture but details are omitted due to space restrictions. The standard DDPG
network was used without special modifications. The actor network is defined by three
fully connected layers separated by ReLU (Rectified Linear Unit) layers. Finally a
hyperbolic tangent layer with output size 2 is used to naturally enforce the blended
control constraints, bounding ϕφ and ϕθ between 0 and 1. The critic network has two
paths, one for the observation vector and the other for the actor output which are joined
after two and one fully connected layer respectively for each path. All fully connected
layer contains 32 neurons in this implementation.

5.3 Training Details

For training we use a simple sinusoidal reference path of 10 meters for the X and Y
position executed over 15 seconds. We define the performance of the quadcopter on
the trajectory tracking task as the average trajectory loss over the 15s simulation.
The performance of C1 and C2 under nominal conditions is 48.88cm and 48.86cm
respectively. The quadcopter was trained over 3000 episodes and we define other
relevant training parameters used in Table E.2.
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Table D.2: Training parameters used

Parameter Value
Discount factor 0.99
Initial learning rate of the critic 0.01
Initial learning rate of the actor 0.025
Batch size 5
Replay buffer size 5
Training steps of an episode 150
Number of episodes 3000

5.3.1 Rotor Fault Generation

We use abrupt rotor loss of effectiveness as the fault to learn which has briefly been
defined in the quadcopter model in Equation F.7. For the purposes of training we
extend the definition of the rotor faults to a triplet:

[ς γ t]

where ς defines fault magnitude, γ discretely selects the rotor and t the time of
occurrence. We define the sampling interval 0.2 < ς < 0.5 indicating a loss of angular
rotor velocity of 20-50%. Each fault parameter is sampled randomly to provide a
varied set of training data and the probability of a fault occurring at time t is set to 5%.
Each fault is applied for 0.1s which is one time step.

5.3.2 Reward function

Nominal control is already established through the low-level controllers and the
objective of the agent is to learn to tolerate any fault by maintaining nominal task
performance. The total trajectory loss over the training path under nominal conditions,
defined LN0:T , makes for a natural baseline to compare the performance achieved under
fault conditions against.

Definition 15 (Trajectory Tracking Reward). Given total trajectory loss under faults

LF0:T , the obtained reward is defined as:

R0:T = LN0:T − LF0:T

for time points k = 0, · · · , T .

where LN0:T is the average total trajectory loss of C1 and C2 under nominal conditions.
The reward function is defined independently of the faults applied to the system
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Figure D.4: Average reward obtained over 3000 episodes shown against nominal
tracking performance.

which make it extensible for any fault that effects the trajectory, for example wind
disturbances, but this is beyond the scope of this article. The reward function allows for
a positive and negative rewards indicating improved or degraded system performance
which training should maximise.

5.4 Training Results

Figure F.2 shows the average reward obtained by the agent over 3000 episodes
calculated over 100 training episodes. This figure shows that the reward stabilizes
to a positive value indicating that the agent performed better than nominal control.
We partially attribute this to the way the reward is calculated. During rotor faults the
quadcopter can actually move closer to the reference trajectory due to the steady state
error experienced during tracking. This has a positive effect on the overall trajectory
loss. Additional factors for this are explored during the experiments section. Since the
average reward is strictly positive after 1500 episodes we reason the agent has learned
to stabilize the fault correctly without having a dedicated controller predefined for the
rotor fault condition.

6 Experiments

We compare the trained blended control framework against a traditional switched
architecture based on the same low-level controllers. We set C2 as the nominal
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controller as it performs slightly better under nominal operating conditions and smooth
control is more desirable. After experimentation we found that C1 was more robust to
rotor faults which make it an adequate fault controller in a switched architecture. A
switch is triggered when the trajectory deviation is more than 2m, since the steady state
error is around 1.8m this gives a small margin of error for deviations before identifying
a fault.

We design two experiments on a 10m diamond path over 60s. We compare the average
tracking performance of C1 and C2 on their own as well as the trained DRLBC
framework and the switched control architecture. The cumulative tracking error is
dependant on duration of flight and the shape of the path. We hence use the average
tracking error as the performance measure reported in this article as it gives a better
indication of general performance. The first experiment tests the performance under
nominal operating conditions while the second compares performance under 50% rotor
faults at every 5 second interval. The rotor selection is kept random and results shown
are averaged over 10 independent runs to account for this.

6.1 Experiment 1: Nominal Control

Table D.3 shows the average trajectory loss for the 4 tested controllers. DRLBC
performs between the performance of C1 and C2 which is exactly as expected. The
switched architecture performs exactly as C2 since no fault switch to C1 is triggered.
This shows if all low-level controllers produce a similar output signal, blending to any
proportions will have little effect and nominal performance can be maintained even
with a constantly changing blend weight vector.

Table D.3: Experiment 1: Average Tracking Accuracy under nominal conditions.

Controller Average Tracking Error
C1 48.88cm
C2 48.86cm

DRLBC 48.87cm
Switched Control 48.86cm

6.2 Experiment 2: Rotor Faults of 50% at 5s intervals

Experimental results are shown in Table D.4. We firstly investigate the performance of
C1 and C2 under rotor faults. The aggressive C1 controller performs better (50.1cm
avg. error) as it reacts to faults with a higher response due to the higher PID gain
parameters. This means C1 is more robust to rotor faults and validates the selection
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Table D.4: Experiment 2: Average Tracking error under 50% rotor loss of efficiency.

Controller Average Tracking Error
C1 50.1cm
C2 60.33cm

DRLBC 50.3cm
Switched Control 55.58cm

as a fault controller for the switched architecture. C2 performs with greater deviations
(60.33cm avg. error) which is expected since the controller reactions to faults are
smoother, hence taking longer to stabilize and increasing the overall error.

The switched architecture was able to utilize some of the benefits of the aggressive
controller after the deviation had crossed a threshold and a fault was identified.
With 55.58cm tracking accuracy it performs close to halfway between the low-level
controller performances. Although this is an improvement to C2 the delay in the FDI
unit still has major implications for the overall executed trajectory. The most important
part in successfully stabilizing a rotor fault is the speed of reaction due to the highly
unstable dynamics of a quadcopter.

The blended architecture performs comparable to C1. Given that the agent is bound
between the low-level controllers the optimal result that could have been attained from
the training is 50.1cm, C1s performance. Figure D.5 shows the blend weight vector
applied during a sample run of this experiment. Most of the time both controllers are
used to control the system to some degree. It is interesting to point out that the agent
did not converge to only use C1 as one would expect since it is the better performing
of the underlying controllers. We attribute this to an improved blended controller
output compared to the individual PID controllers. Figure D.6 shows the over and
undershooting responses of the C1 and C2 PID controllers as they stabilize on the
reference signal after a rotor fault. The blended control output, shown in red, stabilizes
faster and smoother than the low-level controllers can on their own which has a positive
effect on the overall tracking performance.

The output of C1 and C2 are both not optimal to stabilize the system but the agent is
able to use them to synthesise an improved response that is more robust to oscillations
around the set-point and stabilizes quicker. This also plays a factor in the largely
positive reward seen in Figure F.2 as this shows the agent has successfully learned to
produce a less oscillating response signal than the underlying controllers while still
being able to utilize the more aggressive responses from C1 to stabilize rotor faults.

To highlight the performance difference we provide Figure D.7 which shows the
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Figure D.5: Agent actions under rotor faults for blending Roll (Blue) and Pitch (Red).

Figure D.6: Grey: Low-level controller responses and Red: Blended signal through
DRL. The blended signal is able to stabilize around the set-point quicker.
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Figure D.7: Trajectory under rotor failure for different control architectures. Red:
Switched Architecture, Blue: Blended DRL Architecture. Black: X and Y Reference.

executed trajectories from a sample run of this experiment for DRLBC (Blue) and
switched (Red) architectures. The effect of the rotor faults can be clearly seen as
abrupt deviations from the X and Y reference paths (Black) at 5 second intervals.

7 Conclusion

In this article we presented a novel fault tolerant control architecture with the ability
to learn unknown fault tolerance. This was achieved through the reliance on existing
low-level control mechanism and an abstract application of deep learning to the high-
level control task. Using blended control, this architecture exploits a new way to
integrate deep learning algorithms to well known hierarchical control architectures.
Low-level controllers are designed based on the type of response they provide under
fault conditions rather than for specific fault conditions. The FDI unit and it’s
associated delays are replaced with a DDPG agent that generically identifies degrading
performance on a task in real time and learns to optimize for the new conditions. This
architecture was implemented on a quadcopter trajectory tracking task under rotor
loss of effectiveness faults for which no identification or pre-defined optimal control
mechanism exists. We validated the effectiveness of the approach through training
and experimentation showing the blended controller is able to synthesize an improved
control signal that handles the unknown fault as well as improve oscillations around
the reference value. The size of the learning problem is greatly reduced compared
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to current state of the art approaches to learn direct control of state space to control
signals. We showed the presented approach can track a trajectory under rotor faults
more accurately than a switched architecture with the same low-level controllers.

Future work includes the training for several faults simultaneously and different
application domains. More complex blending functions or different neural network
designs pose a large frontier for exploration for the research community which can
provide more new ways for control systems to learn to adapt to unknown faults and
drive the application of autonomy to large scale systems.
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Paper E

Deep Reinforcement Learning and
Randomized Blending for Control
under Novel Disturbances

Abstract

Enabling autonomous vehicles to maneuver in novel scenarios is a key unsolved
problem. A well-known approach, Weighted Multiple Model Adaptive Control
(WMMAC), uses a set of pre-tuned controllers and combines their control actions
using a weight vector. Although WMMAC offers an improvement to traditional
switched control in terms of smooth control oscillations, it depends on accurate fault
isolation and cannot deal with unknown disturbances. A recent approach avoids
state estimation by randomly assigning the controller weighting vector; however,
this approach uses a uniform distribution for control-weight sampling, which is sub-
optimal compared to state-estimation methods. In this article, we propose a framework
that uses deep reinforcement learning (DRL) to learn weighted control distributions
that optimize the performance of the randomized approach for both known and
unknown disturbances. We show that RL-based randomized blending dominates pure
randomized blending, a switched FDI-based architecture and pre-tuned controllers
on a quadcopter trajectory optimisation task in which we penalise deviations in both
position and attitude.
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1 Introduction

Enabling agents to act autonomously is a significant challenge, with many unsolved
tasks. One unsolved task is enabling a system to operate safely in novel scenarios,
since it is impossible to pre-compute controllers for all disturbances (e.g., faults or
external disturbances like wind), let alone scenarios that cannot be predicted during
design-time.

We focus on systems for which real-time control (RTC) is important. In particular,
we use a quadcopter [91] as our running example. A quadcopter is a well-studied
unmanned aerial vehicle that use four propellers to maneuver. These vehicles
have fewer actuators than degrees of freedom, and hence are called under-actuated.
Improper design of RTC can lead to crashing. Current state of the art quadcopter
control utilizes a cascading PID-architecture [100].

Two approaches for RTC have been developed. The control-theoretic approach uses
model-based methods to develop controllers, and relies on state estimation to compute
a controller appropriate to a given state. The AI-based approach uses model-free
methods, and relies on machine learning to estimate control parameters for given
operating conditions.

Both approaches have strengths and weaknesses. The control-theoretic approach

can generate controls with precise guarantees, but state estimation introduces latency
into applying controls, and typically these model-based solutions require a priori

knowledge of all potential states. The AI-based approach requires time to learn
controls for novel scenarios, so cannot respond in real-time to such situations.

We propose an approach that is based on Weighted Multiple Model Adaptive Control
(WMMAC), a state-of-the-art passive adaptive control technique that blends the
outputs of a set of low-level controllers. WMMAC was first introduced in [27] as an
improvement of discrete switching-based multiple model approaches. Blending avoids
the control oscillations that are problematic in other switching methods, e.g., discrete
switching [101] and sliding-mode control [102], since all control assignments consist
of a blend of multiple controllers so switching is inherently less abrupt.

Most blending algorithms rely on (a) a priori controller specifications and (b)
identification mechanisms (e.g., Kalman-filters) to estimate the probability of a known
disturbance and adjust the blending proportions accordingly. Few blending algorithms
for unknown disturbances (where identification is impossible) exist; for real-time
controllers, delays or miss-identification of faults can be catastrophic.
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One recent WMMAC approach for stabilizing systems subject to novel disturbances
uses a randomized blending (RB) distribution over all controllers without performing
state estimation [103]. The weakness of this approach is that it uses a uniform
distribution for controller sampling, which leads to sub-optimal control in comparison
to an ideal optimal controller.

This article proposes a stable, real-time controller for novel disturbances that does
not require on-line fault detection and diagnosis. We extend randomized blending
(RB) control with reinforcement learning (RL) [98] to design an agent that learns how
to adapt the blending distributions depending on the system state and environmental
conditions. We use deep reinforcement learning to teach an agent how to parameterize
the RB distribution depending on the scenarios encountered. This approach improves
on traditional RL methods for real-time control (e.g., [93, 95, 104]) as the RB
guarantees stability for the exploration phase of novel scenarios, whereas no stability
guarantees exist for any existing RL-based controller in novel scenarios. Further,
the randomization inherent in control execution provides an excellent basis for RL
exploration, as it provides good coverage of the control space under the novel situation.

Our contributions are as follows.

• We present a novel real-time control system based on WMMAC with
randomized blending and deep reinforcement learning. The agent is trained to
learn the optimal randomized blending distribution offline for known faults given
a static controller set. We show the trained framework is able to maintain control
for unknown disturbances by shifting the randomized blending distributions
accordingly in real time.

• We demonstrate our approach using a trajectory-following task for a quadcopter,
by comparing its path- and attitude-deviation performance against that of two
hand-tuned controllers, a (non-learning) randomized approach, and a traditional
switching controller. We show that a neural-network based high-level controller
trained for two fault conditions, abrupt rotor faults and attitude sensor noise,
outperforms the other architectures under unknown disturbance conditions
including wind-gusts, position noise and a combination of all known and
unknown faults.

• The proposed fault-tolerant control scheme does not require an online fault-
detection step.

The paper layout is as follows: Section 2 outlines various relevant control architectures
and deep reinforcement learning. We introduce the generic Deep Reinforcement
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Learning Randomized Blended Control (DRLRBC) architecture in section 3 and the
general quadcopter model in section 4. Section 5 gives the implementation and training
of DRLRBC on a quadcopter followed by experimental evaluation and conclusion in
section 6 and 7 respectively.

2 Background & Related Work

This section discusses relevant background and control architectures explored in this
article. We introduce manually-tuned controllers and then some hierarchical control
frameworks. We are interested in comparing different high-level frameworks that use
the same low-level controllers.

(1) Manual-tuning is widely done but balancing the system behaviour for different
operating scenarios during the tuning process is extremely complex. Sub-
optimal system controllers that exhibit unwanted behaviour during specific operating
conditions are common. In this article two manually tuned controllers are designed to
exhibit a specific behaviour, referred to as C1 and C2. The low-level controller set for
any high-level control architecture compared in this article will always consist of C1

and C2.

(2) Discrete Switching is a hierarchical control architecture based on a set of low-level
system controllers tuned for specific operating conditions. A large amount of work
has been done on hierarchical control architectures [89, 97]. A high-level controller
identifies changes in operating conditions such as faults and discretely switches control
between the system controllers using a switching function. A drawback of this
architecture for novel disturbance scenarios is that no pre-defined controller exists
as controller design requires a priori knowledge of the operating conditions. By
definition the performance of the pre-defined controllers is inherently unknown for
novel scenarios, but one controller must maintain system control which leads to
unknown performance.

(3) Weighted Multiple-Model Adaptive Control (WMMAC) uses a high-level
controller to blend the inputs of a set of low-level system controllers, each of which is
defined for a specific operating condition. Formally:

Definition 16 (WMMAC). Given a collection of controllers Ω = {ω1, · · · , ωm} and

a control distribution vector ϕ = {ϕ1, · · · , ϕm}, the blended control signal is given

by a weighted combination ~ω = ∑
i ϕiωi such that: (1) ∀i, ωi ∈ Ω, 0 ≤ ϕi ≤ 1, and

(2)
∑
i ϕi = 1
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Constraints (1) and (2) ensure that the blended control signal is bound between the low-
level controller outputs. In [105] the stability of WMMAC is proven for a discrete time
stochastic plant and [106] discusses a systematic distribution of controllers for MMAC.
A major drawback of the WMMAC approach is that computing blend weights relies on
FDI techniques, which are dependent on a priori knowledge about the disturbances.
Further, detection and isolation may be inaccurate and takes inherently takes time,
which can be problematic for RTC.

(4) Randomized Blended Control (RBC) is a randomized version of WMMAC. RBC
avoids the estimation phase of WMMAC, and uses randomization to estimate a blend
distribution by sampling uniformly over the space of all low-level controller weights.
[103] show that, given unknown disturbances, RBC can stabilize a system, and that
its performance for known scenarios converges to the performance of the optimal low-
level controller.

Control of multiple-model systems using mixing has been shown to be stable for
situations in which the (fixed) unknown parameter set of the plant is assumed to lie
in the convex hull of the control parameters of the multiple models [107]. This has
recently been extended to the case of systems with an unknown varying parameter
set [108]. Using these notions, [103] also show stability of the randomized approach,
bounded by the convex hull of the available controllers.

(5) RL-based control. We now introduce our approach, which extends the Non-

Learning (NL) RBC with an architecture based on Deep Reinforcement-Learning
(DRL), which we call Deep Reinforcement-Learning RBC (DRLRBC). DRL [11]
has successfully been able to learn accurate controllers for complex systems such as
quadcopters and cars [109, 93]. Further, although optimal control and RL have been
developed in different communties, they are both capable of solving the same optimal
control task [9]. One weakness of RL-based control approaches is the training-time
required to learn control of the system for each of several operating conditions, and the
complexity of defining an accurate reward function. Currently, no approach exists that
can provide stability guarantees under novel disturbances. This article extends the RBC
approach with deep RL in order to learn a controller weight distribution that is tailored
to the observed environmental/fault conditions. To simplify the training process, we
use for our training data a restriction of the entire state space of the quadcopter, namely
attitude loss and low-level controller outputs.
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Figure E.1: The DRLRBC architecture (with two controllers).

3 Deep Reinforcement Learning Randomized Blended
Control

We will give a generic overview of the presented architecture, referred to as Deep
Reinforcement Learning Randomized Blended Control (DRLRBC). An architecture
diagram showing a two controller example can be seen in Figure E.1. We will discuss
the architecture in four parts: (1) Low-Level Controllers, (2) Performance Estimate,
(3) Blending Function and (4) High-Level Controller.

3.1 Low-Level Controllers

In this article, we will restrict the low-level controllers to PID controllers, which are
an industry-standard way of controlling automatic systems [91]. Fault tolerant control
architectures tune low-level controllers for different operating conditions to achieve
fault tolerance under those conditions [97]. Although MPC and LQR controllers have
been applied to quadcopters, they are typically designed around a fixed operating point
and require extensive modelling effort [100]. The investigation into these controllers
is planned future work and beyond the scope of this article. The set of low-level
controllers outputs is denoted Ω = {ω1, · · · , ωN}. Figure 1 shows an example
architecture with two controllers.

Autonomous System Control in Unknown
Operating Conditions

102 Yves Sohège



E. DEEP REINFORCEMENT LEARNING AND
RANDOMIZED BLENDING FOR CONTROL
UNDER NOVEL DISTURBANCES

3 Deep Reinforcement Learning Randomized
Blended Control

3.2 Performance Estimate

We define δ = [P , E ], where P indicates overall system performance and E the current
control effectiveness. These measures are system- and task-dependent and give the
agent a real-time measure of how well the task is being achieved.

3.3 Blending Function

In developing DRLRBC we must make additional modifications to RBC. We adapt the
RBC input parameters to allow an external input Λ, referred to as the Randomization

Bounds Vector (RBV), to control the range from which ϕi is sampled. Λ is a set of
tuples [λ−i , λ+

i ] , one tuple for each low-level controller ωi ∈ Ω, indicating the range
from which the randomized blend weight ϕi is sampled. More precisely :

Definition 17 (Bounded Randomized Blending). Given a collection of controller

outputs Ω = {ω1, · · · , ωm} and Randomization Bounds Vector Λ =
{[λ−1 , λ+

1 ], · · · , [λ−m, λ+
m]}, the control distribution vector ϕ = {ϕ1, · · · , ϕm} is

randomly sampled such that for the weighted combination ~ω = ∑
i ϕiωi the following

constraints hold: (1) ∀i, ωi ∈ Ω, λ−i ≤ ϕi ≤ λ+
i , (2)

∑
i ϕi = 1 ,and (3) 0 ≤ λi ≤ 1

By introducing a bound on the range from which random blend weights are sampled
from, the space of combinations of controllers can be explored while still relying on
the stability guarantees provided by RBC under novel disturbances.

3.4 High-Level Controller

In the presented architecture the high-level controller is implemented using a deep
neural network as they are known to be excellent function approximators. Neural
networks have continuous observation and action spaces which remove the inherent
FDI delay experienced by traditional switched systems.

The observation vector for DRLRBC can generically be defined as: [δ , Ω]. The agent’s
action output is the Randomization Bounds Vector, Λ. So the goal of the agent is to
learn the mapping: [δ,Ω]→ Λ that optimizes the performance of the system on a given
task. A more detailed example of observation vector and action space will be given in
section 5.

3.5 Architecture comparison

We contrast the presented DRLRBC architecture to current state of the art approaches.
The deep learning algorithm is applied to an abstracted high-level task while relying
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on existing low-level system control mechanism to control the vehicle. This reduces
the overall complexity of the learning task as nominal system control is already
established which usually takes a large number of learning iterations and fine tuning
an accurate reward function to achieve. The direct mapping of state space to motor
commands is a highly complex function. Every additional input to the deep learning
algorithm increases the size of the space that is explored which is a reason for the long
convergence times experienced by the application of deep learning to control tasks.
DRLRBC uses a measure of task performance to direct how influential each controller
is in the applied signal, which is a much smaller problem to learn.

WMMAC enables FTC with respect to a pre-defined set of (partial) faults, but at the
expense of (a) tuning a controller for each fault and (b) using FDI to isolate the fault
magnitudes prior to controller allocation. In contrast, our approach does not require
a priori knowledge of any faults or FDI for fault isolation; our randomized controller
assignment (as tuned to actual faults via RL) handles the FTC.

The framework we propose aims to estimate the optimal blended control signal given
a static pre-defined controller set under situations it was not trained for. Since we are
calculating a convex combination of controller outputs, the overall range of the blended
signal is limited to between the low-level controller outputs.

4 Quadcopters

Quadcopters are unmanned aerial vehicles that use four propellers to maneuver and
have gained increased attention in the research community in recent years. These
vehicles have only four actuators used to control six variables, the coordinates x, y,
and z, and the roll, pitch, and yaw angles of the quadcopter, denoted φ, θ, and ψ,
respectively. The dynamic equations of a quadcopter are complex, due to the highly
coupled state-space. Due to space limitations, we give a brief summary of quadrotor
dynamics and details of how rotor faults and wind disturbances are represented, and
refer the reader to [91] for details.1

We define the dynamics of the quadcopter in the non-linear state space form

ẋ = f(x) + g(x)(1− ς)u(t), (E.1)

where x = [x ẋ y ẏ z ż φ φ̇ θ θ̇ ψ ψ̇]T is the state vector, control input u(t) =

1The MATLAB simulation codebase necessary to run the experiments in this article is available
under github.com/YvesSohege/IFAC20-Simulation.
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[U1 U2 U3 U4]T = %(υ1 υ2 υ3 υ4), % is a non-linear function in the angular velocity
of motor i, and we denote a multiplicative fault model with parameter 0 ≤ ςi ≤ 1 for
i = 1, ..., 4, where ςi = 0 corresponds to nominal function and ςi = 1 to total failure.
The wind is generated as a drag force that acts on the body frame ε.

Quadcopters have been shown to be able to maintain flight even after the complete
loss of one or more rotors under specific conditions [92]. The standard way to achieve
trajectory tracking is by employing a cascading PID controller structure, which is the
approach we consider in this article. Position controllers generate the required attitude
reference to execute the trajectory. Roll and Pitch attitude controllers generate the
required motor commands to attain the attitude. Blended control is only applied on the
attitude controllers, not on the position controllers.

Several applications of deep learning for quadcopters exist, which mostly focus on
learning the direct control mapping of state space to motor commands [93, 94, 95].
This usually requires significant training data and complex fine-tuning of the reward
functions to achieve the desired behaviour.

The application of deep learning for FTC of a quadcopter has been achieved by
learning a complementary controller that adjusts the nominal controller output during
a rotor fault [96]. The success of this approach compared to other adaptive control
strategies is attributed to the continuous output of the neural network and removal of
the FDI unit to identify when a correction to the nominal controller is needed.

The task of the Quadcopter in this work is focused on Trajectory Tracking. A
trajectory is a temporally-indexed set of coordinates in 2D or 3D, denoted ζ(k). We
denote the reference (desired) trajectory as ζR(k), and the executed trajectory as ζ̃(k).
The goal of a trajectory tracking task can be defined as minimizing the Total Trajectory
Loss:

Definition 18 (Total Trajectory Loss). We can represent the total trajectory loss as a

difference function between reference and executed trajectories, i.e., L0:T = ∑T
k=0 ‖

ζR(k)− ζ̃(k) ‖ for a trajectory over time points k = 0, · · · , T .

Given the Total Trajectory Loss over the T time-steps, the current trajectory loss at time
t can be defined asLt. Similarly, we introduce a second performance metric to measure
the attitude tracking error, A0:T , as a loss function between reference attitude ∆R(k)
and actual attitude ∆̃(k) which is omitted due to space constraints. For simplicity we
will focus on 2D (x, y) trajectory tracking but the approach extends to 3D trajectories
with minimal changes. We do not apply blending on the rotational ψ controller of the
quadcopter as this does not effect a 2D trajectory.
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5 Quadcopter Implementation and Training

In this section we will describe the implementation of the DRLRBC architecture on a
Quadcopter MATLAB simulation as well as the training details of the agent.2

5.1 Low-Level Controllers

In this article, we will use two controllers for the roll and pitch attitude of the
quadcopter. Each axis will have a C1 and a C2 controller with different tuning which
can be seen in Table G.2. Since a quadcopter is symmetric we can use the same tuning
for both axis. By changing the PID gain parameters, we change how the quadcopter
responds to different situations. The controllers were hand-tuned to nominal operating
conditions under which they perform identically in terms of trajectory loss. This is
highlighted experimentally in Table E.4 Exp1, in Section 6. However C2 has a higher
proportional gain which allows it to respond more aggressively to abrupt disturbances
than C1. We also purposely add slight oscillations around the reference when tuning
C2 by slightly lowering the derivative gain.

Table E.1: PID parameters for low-level controller tuning used.

P I D
C1 (Smooth) 2 1.2 1.3

C2 (Aggressive) 4 1.5 1.2

5.2 Performance Estimation

We use the current x and y trajectory error, denoted δx and δy respectively, as a measure
of how well the system is performing overall on its task. Blended control is being
applied on two axis of control and each needs a measure of effectiveness. For this
we select the current roll and pitch attitude error, denoted δφ and δθ respectively. We
can hence define the full performance estimation output for the Quadcopter as δ =
[δx δy δφ δθ]. These metrics allow the agent to judge how good control is for the
current scenario and adapt it to maximize the performance without explicit knowledge
of the operating conditions.

5.3 Blending Function

Since this article focuses on blended control of a controller pair a simplification can
be made to Equation 17. By relying on Constraint (2) of Equation 17 which forces the

2Real-world flights are beyond the scope of this article.
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sum of both controller weighting to be 1, after randomly generating the first weight, the
second can simply be obtained by subtraction from 1. This simplification is indicated
using χ in Figure E.1 and reduces the size of Λ by half.

5.4 High-Level Controller

An actor-critic DDPG network structure is used to generate the randomized bounds
vector Λ. Both actor and critic take in the same observation vector which we define in
full detail as [δx δy δφ δθ ω

φ
1 ωφ2 ωθ1 ωθ2], where ωφ1 indicates C1 for the roll axis, ωθ2

is C2 for pitch and so forth.

Through the additional simplification introduced to the Blending Function the agents
action output can simply be defined as [λ−φ λ+

φ λ−θ λ+
θ ], indicating the lower and

upper bounds of the randomized blending ranges for φ and θ controllers respectively.
We give a brief overview of the neural network architecture. The actor network is
defined by three fully connected layers separated by ReLU (Rectified Linear Unit)
layers. Finally a hyperbolic tangent layer with output size 4 is used to naturally enforce
the blended control constraints, bounding the agent action space between 0 and 1. The
critic network has two paths, one for the observation vector and the other for the actor
output which are joined after two and one fully connected layer respectively for each
path. All fully connected layer contains 32 neurons in this implementation.

5.4.1 Training Conditions

We use random rotor loss of effectiveness (LOE) and noise on the attitude sensors
of the quadcopter as training conditions. All rotor faults in this article are of
magnitude 10%. To vary the training conditions we set the time a rotor fault can
occur randomly, with every time-step having a probability of spontaneously losing
angular rotor velocity of 10% for one time-step. This has an impact on both attitude
and trajectory. The noise is modelled as random white noise applied to roll and pitch
state, φ and θ respectively, and is defined simply by its magnitude.

5.4.2 Reward function

We define the reward function in terms of Total Trajectory and Attitude Loss. The
agents goal is to maximize its reward function so we define the reward obtained by the
agent as:

R(t) = −(|δx(t)|+ |δy(t)|)− (|δφ(t)|+ |δθ(t)|)

which represents the sum of trajectory and attitude loss at time t. We negate this to
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allow the agent to maximize the reward. This reward function allows the agent to
learn how to improve the trajectory and attitude tracking performance regardless of
operating conditions. For training we use a straight line path of 30 meters executed
over 30 seconds. The quadcopter was trained over 3000 episodes and average reward
is calculated over 50 episodes. The agent converged after around 1500 episodes. We
define other relevant training parameters used in Table E.2 and refer the reader to the
github repository provided in section 4 for further details.

Table E.2: DDPG Training parameters used

Parameter Value
Discount factor 0.99
Initial learning rate of the critic 0.01
Initial learning rate of the actor 0.025
Batch size 32
Replay buffer size 10000
Training steps of an episode 300
Number of episodes 3000

6 Experiments

We empirically compare the simulated performance of the presented control systems
on a number of scenarios, including known and novel disturbances. We do not
consider faults that would cause catastrophic failure. Since the agent was trained on
abrupt rotor loss of effectiveness and attitude noise, we classify these as the known
disturbances. In addition wind gusts and position noise are tested and we classify these
as novel disturbances. We compare the two baseline controllers, C1 and C2, with three
high-level control architectures which utilize C1 and C2 to improve control, namely
DRLRBC, Non-Learning RBC and Switching. We define the switching condition for
the switched architecture as a trajectory deviation of 10% above nominal tracking
error. C1 is selected as the nominal controller and C2 as the fault controller. We
use a diamond shape path with diagonal length of 10 meter starting and ending in the
centre over 60 seconds with a sample time of 0.1s. Since all disturbances are modelled
with randomness we present average results taken over ten runs on each experiment.

The full list of experimental conditions can be found in Table E.3. We test nominal
conditions, three known disturbances (rotor loss of effectiveness, attitude noise and
both) and three unknown disturbances (position noise, wind gusts and all faults).
Magnitude of disturbances (rotor and wind) is given followed by disturbance trigger
probability at any time step. E.g: 10% error (30%) indicates every time-step has a
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Table E.3: Experimental Disturbance Details.

Exp # Att. Noise Pos. Noise* Rotor LOE Wind Gusts*
Exp1 - - - -
Exp2 0.02 - 10% error (10%) -
Exp3 - - 10% error (30%) -
Exp4 0.05 - - -
Exp5 - - - 0-10m/s (30%)
Exp6 - 0.05 - -
Exp7 0.02 0.02 10% error (10%) 0-10m/s (10%)

30% chance of triggering a 10% fault.

6.1 Experimental Results

We evaluate the performance on each experiment using the average Total Trajectory
Loss and Total Attitude Loss of each control system over 10 independent runs. We
present the complete set of results in Table E.4. On average across all experiments
the presented architecture is able to outperform all other control systems in terms of
attitude and trajectory tracking accuracy.

6.1.1 Known Disturbances

The training conditions included rotor faults and attitude noise. DRLRBC is able to
significantly outperform all other control systems for trajectory accuracy for all three
experiments showing the agent successfully learned to improve its performance under
known disturbance conditions. Under heavy attitude noise C1 is able to track the
attitude slightly more accurately than the DRLRBC architecture but at the expense
of trajectory loss.

6.1.2 Unknown Disturbances

Positional noise and wind gusts are used to test the control systems under unknown
scenarios. DRLRBC performs second best across all 3 experimental conditions in
terms of trajectory accuracy showing a comparable performance. In terms of attitude
tracking DRLRBC is able to perform best under wind gusts and perform comparable
to C1 and NL-RBC under the other two scenarios.
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7 Conclusion

In this article, we presented a novel hierarchical control architecture based on weighted
multiple model adaptive control, deep reinforcement learning and randomized
blending. The presented architecture is tested on a quadcopter trajectory tracking
simulation, and trained under rotor loss of effectiveness and attitude noise. We
compare the presented architecture to a non-learning randomized approach, a standard
switched architecture, and the underlying controllers working individually. We showed
that, averaged across all experiments, the presented architecture outperforms all other
baselines in terms of both trajectory tracking and attitude tracking under known and
unknown disturbances. This extends the field of fault tolerant control by providing
a novel way to apply deep reinforcement learning to high-level control tasks. In
future work, we plan to explore additional learning mechanisms, such as unsupervised
learning and a larger set of low level controllers.
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Paper F

Neural-Symbolic Fault Tolerant
Control for Quadcopter
Trajectory-Following Tasks

Abstract

Many fault-tolerant control (FTC) applications are moving from a traditional model-
based approach to one that learns the FTC actions, termed data-driven FTC. While
data-driven FTC does not require models, it requires a significant amount of nominal
and fault data, and training may be expensive. We develop an architecture for
combining model-based and data-driven FTC that aims to make use of the best aspects
of each approach. The architecture learns a supervisory controller for switching
weights across multiple model-based low level controllers. We demonstrate our
approach on learning trajectories for a quadcopter that must follow a safe region
even though it experiences rotor faults. We empirically show that our hybrid learning
approach converges to safely follow given trajectories, whereas a purely data-driven
approach requires significantly more training to converge than the hybrid approach (if
it converges at all).
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F. NEURAL-SYMBOLIC FAULT TOLERANT
CONTROL FOR QUADCOPTER
TRAJECTORY-FOLLOWING TASKS 1 Introduction

1 Introduction

Developing models for fault tolerant control of complex systems is challenging, in
that model-based approaches suffer from models being incomplete and often not fully
suited to real-world, dynamic environments. Data-driven approaches, on the other
hand, require significant amounts of data, are time-consuming to train, and are limited
to relatively simple systems. In this paper, we propose an approach that integrates
model-based and data-driven control methods, in an attempt to leverage the best
of both methods. We directly address how to integrate model-based inference and
learning, known as neural-symbolic learning [110] or model-based/physics-guided
learning [111].

Currently a great deal of research is directed towards this topic. The majority of work
in neural-symbolic diagnosis at present focuses on using physics and deep learning in
condition-monitoring of rotating machines, e.g., [112]; this approach is called physics-
based preprocessing in [111]. This work uses physical principles of machinery and
signal processing to assist with deep learning methods for diagnosing faults in simple
machines, e.g., [113, 114].

A second approach, less common in diagnosis, is constraining deep learning with
physical principles [115, 116]. Here, physics-based equations are used as an additional
regularization term in the loss function of the neural networks. This approach has been
used for diagnosis [117, 118] and prognosis [119].

We adopt an approach that is different to either of these methods: we decompose the
fault-tolerant control (FTC) task into high-level and low-level inference, and use well-
known physical controllers for the low-level control, and learning for the high-level
FTC. This approach enables us to employ well-understood PID controllers with well-
defined input parameters for low level control, and we then learn to tolerate faults

using a high-level controller. Our approach is significantly simpler than methods
that require learning all control parameters for FTC applications, since we reduce
the number of parameters to be learned to a small number of high-level (abstracted)
parameters.

We demonstrate our approach on a quadcopter that is subjected to rotor faults of various
magnitudes.

Our contributions are as follows.

• We develop an architecture for combining model-based and data-driven control
for FTC that aims to make use of the best aspects of each approach;
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• We demonstrate our approach on learning safe trajectory following for a
quadcopter that has significant faults in its rotors;

• We empirically show that our hybrid learning approach converges to safely
follow given trajectories whereas a purely data-driven approach requires
significantly more training to converge than the hybrid approach (if it converges
at all).

This article is organised as follows. Section 2 describes the FTC approach from purely
model-based and data-driven frameworks, and how we integrate these for a hybrid
approach. Section 3 introduces the quadcopter and the faults we inject. Section 4
outlines the experiments that we perform in trajectory following given rotor faults.
Section 5 presents our empirical results. We conclude in Section 6.

2 Approach

This section describes the general issues concerning hybrid learning for fault-tolerant
control (FTC).

FTC is the task of using an anomalous observation st ∈ S of a system at time t
(indicating a fault state) to generate a control at ∈ A that drives the system to a desired
("safe") state st+1 ∈ S. We can denote this as a function f θ : st × θ → at, where
θ denotes the parameters of function f that drive the system to a safe state such that
fT : st × at → st+1, with fT representing the system dynamics also known as state
transition function of a system.

2.1 Model-based FTC

The typical FTC algorithm uses a forward model to isolate a fault, and then generates
a control output given that fault.

A model-based (MB) diagnosis forward model fθTT maps state variables st and model
parameters θT to outputs (observable variables ŷ): fθTT : st × θT → ŷt. Predictive
modeling in a model-based approach entails calibrating model parameters θT using
observational data. The diagnosis process consists of using the residual, or difference
between observed data y and predicted data ŷ, to diagnose the fault responsible for the
anomalous readings νt [89].

The FTC aspect of this approach means to adapt the parameters θMB of a control law
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represented by a function fMB such that

fMB : νt × θL → at, (F.1)

where νt represents the information of the diagnosed fault.

2.2 Data-Driven FTC

We formulate our data-driven approach in terms of an agent using reinforcement
learning (RL). RL is a branch of machine learning concerned with the design of
methods that allow an agent to learn how to solve a task by interacting with an
environment. At each time step t, the agent observes the state of the environment
st ∈ S and it generates an action at ∈ A. The agent then receives information about
the next state st+1 of the environment and an immediate scalar reward rt ∈ <. The
decision made by the agent is based on a policy function fML : S → A that maps the
state space to the action space.

The environment is modeled as a Markov decision process (MDP) defined as follows:

Definition 19 (Markov Decision Process). A Markov decision process is defined by a

four tuple: M = {S ,A,T ,R} where S represents the set of possible states that the

environment can reach. The transition function T : S × A× S → [0, 1] estimates the

probability of reaching state s′ at time t + 1 given that action a ∈ A was chosen in

state s ∈ S at decision epoch t, T = P (s′|s, a) = P{st+1 = s′|st = s, at = a}. The

reward function R : S×A→ < estimates the immediate reward R ∼ r(s, a) obtained

from choosing action a in state s.

A task T is defined in this context by the tuple

T = (RT , PT (st), PT (st+1|st, at), H) (F.2)

where RT is a reward function, H represents the duration of the task, and PT (st) and
PT (st+1|st, at) determine the dynamic of the system for task T .

The goal of the agent is to learn an optimal policy function f θHML that maximizes the
expected return (the cumulative sum of rewards) for a given task T .

V f
θH
ML(st) = max

θH∈ΘH
V f

θH
ML(st) , ∀st ∈ S (F.3)
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where V f
θH
ML : S → R is called value function and it is defined as

V f
θH
ML(st) = E

[
H∑
i=0

γiR(si, ai)|s0 = st

]
, ∀st ∈ S (F.4)

where 0 < γ ≤ 1 is called the discount factor, and it determines the importance
assigned to future rewards such that it decays with time.

In deep RL, we learn a neural network model f θHML with parameters θH that represents
the optimal policy function which solves the task T such that

fML : st × θH → at. (F.5)

2.3 Hybrid FTC

In our hybrid approach, we develop a hybrid model that composes a model-based and
a data-driven model. We use the output of fMB as an input to fML, i.e.,

fHybrid : st × νt × (θL × θH)→ at, (F.6)

where fHybrid = fMB ◦ fML, and (θH × θL) is the composite parameter space.
The machine learning component will thus encapsulate the remaining unmodeled
complexity of the system in a lumped form. In this approach, the model acts in a
complementary fashion to enable adequate FTC.

The key is to define a compositional approach that takes advantage of each approach.
The next sections shows the architecture that we use for this decomposition.

3 Quadcopters

3.1 Quadcopter Dynamics

Quadcopters are unmanned aerial vehicles that use four propellers to maneuver and
have gained increased attention in the research community in recent years. These
vehicles have only four actuators used to control six variables, the coordinates x, y,
and z, and the roll, pitch, and yaw angles of the quadcopter, denoted φ, θ, and ψ,
respectively. The dynamic equations of a quadcopter are complex, due to the highly
coupled state-space. Due to space limitations, we give a brief summary of quadrotor
dynamics and details of how rotor faults are represented, and refer the reader to [91]
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for details.1

We define the dynamics of the quadcopter in the non-linear discrete state space form

st+1 = f(st) + g(st)(1− ς)at, (F.7)

where st = [x ẋ y ẏ z ż φ φ̇ θ θ̇ ψ ψ̇]T is the state vector, control input at =
[U1 U2 U3 U4]T = %(υ1 υ2 υ3 υ4), % is a non-linear function in the angular velocity
of motor i, and we denote a multiplicative fault model with parameter 0 ≤ ςi ≤ 1 for
i = 1, ..., 4, where ςi = 0 corresponds to nominal function and ςi = 1 to total failure.

Figure F.1: Two Control architectures for quadcopters showing Data-driven control
(red) and Model-based control (blue) parts.

3.2 Architecture

A quadcopter is a highly-coupled, under-actuated, nonlinear system whose control
architecture can be divided into two subsystems: an attitude system and a position
system. The rotational motion, also known as attitude, is independent of the position,
but the translational motion is dependent on the attitude of the aircraft. Using this, we
can derive the motion of the quadrotor given the position and attitude and hence define

1The Python-based simulation codebase necessary to run the experiments in this article is available
under github.com/YvesSohege/DX20-Simulation.
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inner- and outer-control loops as the attitude and position control, respectively. The
physics of a quadcopter model are well understood, and an industry-standard control
approach is to use PID or PD controllers for both low-level inner- and outer-loop
control [91]. Fault tolerance is typically achieved by tuning additional PID controllers
and using a residual-based high-level (supervisory) controller that switches between
active controllers.

Figure F.1 (top) shows a data-driven architectures that can be used for quadcopter
control, where a neural network learns all control parameters in a single black-box
model. The issue with this learning task for complex domains is the size of the
parameter space and of the data required. Figure F.1 (bottom) shows a hybrid approach,
where for low-level control we use a model-based PID architecture that decomposes
the system into inner- and outer-loop sub-controllers, using methods common to
control theory, e.g., [120]. A high-level data-driven controller then learns to tune the
low-level architecture.

When replacing any part of the lower-level control loop with data-driven approaches,
several challenges arise: (1) whereas physics based stability proofs exist to ensure
real-world safety, data-driven controllers do not have such proofs of stability and
stability cannot be empirically guaranteed outside of the training scenarios; (2) training
is usually conducted in high-end simulation environments and then transferred to a
real quadcopter, which creates a well known simulation to reality gap; (3) data-driven
controllers must be re-trained when the environment changes.

To address these drawbacks, we reformulate our system as a hierarchical control
architecture with a subset of high- (θH) and low-level (θL) parameters, i.e., such that
θ = θH ∪ θL. We use our physics-based controller to take care of low-level control
and hence only the parameters of the high-level controller must be learned. Our task
is thus reduced to learning θH and tuning θL. The benefit of this approach is that (1)
we can use a low-level, physics-based controller whose properties as well understood
and whose parameters, θL, are relatively easy to tune using well known methods for
different scenarios, and (2) we can learn over a significantly smaller parameter space
(|θH | � |θ|) for a controller whose physics is less well understood.

3.3 Comparison of Learning Tasks

This section compares the parameter spaces of our learning tasks, i.e., purely data-
driven vs. hybrid learning parameter spaces. The full state space is given by the state
vector s = [x ẋ y ẏ z ż φ φ̇ θ θ̇ ψ ψ̇]T , which is a 12-tuple. If we want to achieve
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trajectory tracking, we need to add additional information about the target location,
i.e., [xtarget, ytarget, ztarget]. Hence the full length vector has 15 parameters, each with
a continuous-valued range of possible values.

3.3.1 Model-Based

In a purely model-based FTC approach that uses PID control at the low level and a
supervisory controller, we must manually tune the PID controllers and the supervisory
controller. Further, if we pre-define the fault controllers for the rotor faults, we must
tune these controllers as well. The drawback to using specific fault controllers is the
cost of tuning each of these controllers, as well as the limitation of the approach
to single-fault scenarios, since it is impossible in typical control frameworks to
"merge" the outputs of these controllers [91]. To overcome this, a technique known
as Blended Control [103] which uses a convex combination of controller outputs
is used in this article. However, even for this latter approach one cannot adapt to
changing environmental conditions or novel faults, as one can by dynamically learning
controllers. PID controllers require three gain parameters to be tuned, for which
established mechanisms exist [97].

3.3.2 Data-Driven

For the data-driven task, we must learn the direct motor commands applied to the
rotors of the quadcopter, i.e at = [U1 U2 U3 U4]. We limit the speed of each of the four
rotors to 10000 rpm, creating an action space of four actions with range [0-10000].
In the case of optimal attitude control, there is little tolerance and flexibility as to the
sequence of control signals that will achieve the desired attitude [95]. For example, to
achieve a stable hover all four motors much spin at exactly the same speed, which is
trivial to define for model-based methods but difficult for a data-driven controller to
learn due to the large continuous state and parameter space.

3.3.3 Hybrid

For the hybrid task, the supervisory controller uses a weighted combination of pre-
defined PID controllers [121]. This Randomized Blended Control (RBC) architecture
samples the blending weights used for the convex controller combination from a
probability distribution [103]. The learning task in the hybrid approach is to learn an

optimal probability distribution for RBC which can be defined by mean and standard
deviation, θH = [µ, σ]. This reduces the size of the action space of the agent to two
parameters with range [0,1]. We tune the parameters for the low-level model-based
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controllers, θL, using standard mechanisms prior to training the high-level controller.

Learning randomized blended control is thus a significantly smaller problem (in terms
of parameter space) than data-driven methods; it also has an inherently safe action
space, i.e., there is no way the agent’s actions can crash the quadcopter unless one of
the low-level controllers performs an unsafe action and even then there is only a small
random chance that this action is fully selected by the high-level controller.

4 Hybrid Quadcopter Control

In this section, we will describe the implementation of the presented approach on top
of an open source Python-based Quadcopter simulation [122]. The description will
be broken down into the model-based low-level control architecture, the learning-
based high-level controller and how the two components integrate together through
randomized blended control.

4.1 Model-based Low-Level Control

Researchers have successfully learnt the dynamics model of quadcopters through DRL
but they are not comparable to traditional controllers yet [123, 95]. Our decomposition
of the FTC task enables the integration of learning-based low-level control mechanisms
into our approach, once they become a competitive solutions. For nominal trajectory
tracking only a single roll and pitch controller is needed. Fault tolerance is provided
by additional PID controllers tuned for general fault conditions such as a high-gain
controller that responds more aggressively to wind disturbances or rotor faults. In this
article, we focus on roll and pitch attitude control and hence add a high-gain roll and
pitch PID controller for more aggressive maneuvers. For clarity we referred to this
controller as C1 and for the nominal conditions (lower-gain) controller as C2.

Table F.1: PID parameters for low-level model-based control architecture.

Axis of control P I D
X-Position 300 0.04 450
Y-Position 300 0.04 450
Z-Position 7000 4.5 5000
Roll - C1 24000 0 12000
Pitch - C1 24000 0 12000
Roll - C2 4000 0 1500
Pitch - C2 4000 0 1500

Yaw 1500 1.2 0
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4.2 Learning-based High-Level Control

We use an actor-critic neural network implemented using the stable-baselines
framework [124]. This network consists of two hidden layers of 64 neurons. The
observation space of the agent consists of a subset of the state variables as well as the
target position, namely [x y z φ θ ψ xtarget ytarget ztarget]. Quadcopter FTC
requires real-time actions from the high-level controller, as any delays in action during
a fault could, for example, cause a crash. This direct control approach avoids delays
associated with fault isolation in traditional FDI methods.

4.3 Randomized Blended Control

RBC draws the weighting vector from a probability distribution defined by mean µ
and standard deviation σ at each cycle of the control loop. In this work the high-level
controller learns the parameters defining the underlying probability distribution used
for RBC in real-time as faults occur. RBC has been shown to be stochastically stable
[103], so flight stability is ensured even when it is learning to deal with non-terminal
faults, i.e., faults for which no control is viable.

4.4 Training Details

We enforce a 1 meter safety region around the trajectory to evaluate control
performance under fault scenarios. The task of the agent is to learn to distribute control
in such a way that the quadcopter stays inside the safety region when experiencing
faults. A negative reward is applied when the quadcopter drifts outside the safety
region and a large positive reward is received when the quadcopter completes the entire
trajectory inside the safety region. The trajectories used for training need to be diverse
enough to expose the agent to a large variety of experiences. In this work, we use
straight-line trajectories to a randomized destination point within a 7-meter bounding
box. Proximal Policy Optimization (PPO) is selected as the training algorithm, with a
learning rate of 0.1.2 The agent was trained for a total of 10 million time steps, which
is approximately 12000 episodes.

4.4.1 Fault Generation

Rotor faults are one of the most common faults experienced by quadcopters and the
focus in this work. We investigate faults in any rotor and up to 30% loss of effectiveness

2Fine-tuning the parameters of a learning algorithm is a challenging task which will be investigated
in future work.
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Figure F.2: Mean Cumulative Reward obtained over 5 independent training cycles of
12000 episodes. Scores below 0 indicate the quadcopter left the safe zone during the
episode.

(LOE). Greater than 30% faults will cause a crash, and 20% causes severe disruption
to the flight path but is marginally controllable by the higher-gain controller. Instead of
exposing the agent to the entire fault space randomly, we systematically divide the fault
space into levels representing increments of 5% in the fault magnitude. We increase
the fault level when the agent does not leave the safe zone for 20 consecutive episodes.
The reward obtained for completing a trajectory is proportional to the level. Hence,
as the agent progresses to higher fault magnitudes the reward also increases as seen in
Fig. F.2, where each data point shows the cumulative reward over the last 20 episodes.
However, larger faults create more severe disturbances which is why episodes fail
towards the end of the training cycle. Since the faults are of the same type but varying
magnitudes, information learned on lower levels is relevant on higher levels. After
6000 episodes the mean cumulative rewards stops increasing showing that the agent
converged.

4.5 Data-Driven Quadcopter Controller

To date, fully data-driven controllers are restricted to simple tasks, e.g., learning how
to hover a quadcopter and simple trajectory tracking to a location [123]. Due to the
lack of guarantees of stability (as exists for many model-based controllers), there exist
no guarantees on the actions a learned controller will perform when presented with
novel faults or unmodelled dynamics, as we do in our experiments.
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Figure F.3: Experimental results showing the amount of time a quadcopter was outside
of the safety bound for rotor faults of varying magnitudes. Lower is better.

5 Experiments

This section compares the performance of the trained agent with that of (a) the high-
gain and low-gain PID controllers alone as well as (b) a uniform randomized blended
controller. Intuitively, we expect the agent to outperform the uniform randomized
approach, since this would show that the agent has learned an improved probability
distribution.

5.1 Experimental Design

To validate these hypotheses, we ran experiments on a test trajectory, a 5-meter
diamond, which is significantly more difficult than the straight line training trajectories.
Faults at two separate time points are investigated, T1 = 1800 and T2 = 2300. We test
faults of magnitude 0%, 10%, 20% and 30% , where 0% indicates nominal control, on
all rotors at each time point. As a performance metric we use the total time outside the
safety bound so the smaller the better. Figures F.3 shows the summarized experimental
results.
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5.2 Parameter Spaces

Data-driven approaches typically use all of the parameters available as observation
and generate the four motor commands as the action. The minimum observation vector
needed is the full state vector of size 15 and most approaches use additional parameters
[93]. The hybrid approach only requires a small subset of parameters that are specific
to the task since flight control is already established. We use an observation space of 9
parameters and an action space of 2 parameters creating a smaller problem compared
to the purely data-driven approach.

5.3 Trajectory Following Results

5.3.1 Hybrid Approach

We will now discuss the results presented in Figure F.3. There are four groups of bars
for each chart representing one fault level. Each bar represents a different controller
C1, C2, RBC and the trained hybrid approach, on that fault level. Each coloured stack
in a bar represents which rotor experienced the fault.

The left-most bar group in the chart represent nominal conditions (0%). As expected,
the bars in this group are identical, as no fault occurs. This also shows that the smooth
controller (C2) is much better under nominal conditions as the high-gain controller
naturally overshoots the way-points. This makes C1 undesirable as a controller
under nominal conditions. However as the fault magnitudes increase we see that
C2’s performance drastically degrades. This is because the controller cannot respond
aggressively enough to correct the effect of the higher rotor fault. The high-gain
controller is much more robust to rotor faults as the naturally aggressive reactions
can mitigate rotor faults quickly and performance is less affected.

The third bar in each bar group represents random blended control, which samples
from a uniform probability distribution over the controllers. Uniform randomized
blended control outperforms both C1 and C2 on fault magnitudes of 10% or higher.
This shows how randomization is able to utilize benefits from both controllers.

The fourth (right-most) bar in each group represents our approach which significantly
outperforms all other controllers under all fault levels. The agent is able to very quickly
shift control to the aggressive controller to mitigate the fault and then continue using
the nominal controller when the system stabilizes. This allows our approach to provide
good control under faults that would otherwise crash the system. Under nominal
conditions our approach performs comparably to the better-performing individual
controller. This shows that the agent was successfully able to learn how to parameterize
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the underlying probability distribution used for RBC, and thus provides an exciting
new way to integrate model-based low-level control frameworks with high level data-
driven controllers.

5.3.2 Data-Driven Approach

We implemented a learning-based controller where a neural network generates four
motor throttle commands, which are applied directly. The full state vector and target
location are set as the observation vector. Even when we used a simpler learned
trajectory, a simple hover at a given altitude, and increased the training length to 50
million steps (5× as much as our approach, or 48 hours CPU-time), the agent was

unable to converge. There are several possible reasons for this: (1) Parameter fine-
tuning is needed such as the learn rate, neural network size, etc.; (2) Reward shaping
- a well known open problem for complex control tasks; (3) More training time/better
hardware is needed.

6 Conclusion

We compared a purely data-driven FTC approach with a neural-symbolic approach that
uses an architectural integration of data-driven and model-based FTC.

The architecture uses models for low-level controllers, and learns a supervisory
controller for switching weights across multiple controllers. We demonstrate our
approach on learning trajectory following for a quadcopter that follows a safe region
even through it experiences faults in its rotors. We empirically show that our hybrid
learning approach converges to safely follow given trajectories, whereas a purely
data-driven approach requires significantly more training to converge than the hybrid
approach (if it converges at all). The parameter-space for the data-driven approach
is significantly larger than that of the hybrid approach, resulting in this increased
training challenge. Further, the hybrid approach inherits the stability guarantees of the
model-based component, whereas there are no similar guarantees for the data-driven
approach.
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Paper G

A Novel Hybrid Approach for
Fault-Tolerant Control of UAVs based
on Robust Reinforcement Learning

Abstract

Although the use of unmanned aerial vehicles (UAVs) is increasing, much work
remains to guarantee fault- tolerant control (FTC) properties of these vehicles. We
propose a novel hybrid FTC approach that uses a learned supervisory controller
(together with low-level PID controllers) with key stability guarantees. We use a
robust reinforcement learning approach to learn the supervisory control parameters
and prove stability. We empirically validate our framework using trajectory-following
experiments (in simulation) for a quadcopter subject to rotor faults, wind disturbances,
and severe position and attitude noise.
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1 Introduction

Researchers have developed fault-tolerant control strategies for UAVs by using
model-based, learning-based or combined techniques [125]. The performance and
robustness of model-based FTC methods is highly dependent on the accuracy and
comprehensiveness of the dynamic model of the system. A sophisticated model
leads to a more complex control strategy, which compromises the tractability of the
controller for real-time implementation. Learning-based FTC methods on the other
hand allow developing control strategies by using data obtained from the system.
Among learning-based FTC approaches, reinforcement learning (RL) has recently
shown promising results [126, 127]. However, RL methods, e.g., [128], along with
many other approaches, e.g., [129], lack control stability guarantees [125], which is of
primary importance for the control of UAVs.

In this article, we propose a novel hybrid control strategy for FTC of UAVs on the
task of maintaining the aircraft within a specified operation volume during flight. Our
approach is based on using a hierarchical control architecture formed by a collection
of model-based low-level controllers and a supervisory robust RL-based controller.
We extend our prior work on FTC for quadcopters [103, 121] by applying robust
RL methods, and validating our approach not just on simple linear trajectories but
on maintaining flight within a volume enclosing a linear trajectory.

The proposed approach integrates key properties of model-based and learning-based
methods, as follows:

A. We propose a hybrid control strategy with stability guarantees under all
but unrecoverable fault conditions [103], which maintains a satisfactory
performance for novel faults under the assumption that the effect of a novel fault
on the task to be solved is similar to previously experienced faults.

B. We leverage robust RL approaches, and use domain randomization to train the
high-level controller.

C. We propose a novel FTC approach for UAV trajectory following tasks based on
optimal operational volumes during flight.

We demonstrate stability guarantees for the proposed hybrid control approach and
empirically validate it in simulations of flying in safe spaces of urban scenarios with a
quadcopter testbed.
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2 Related Work

Commercially available UAVs present impressive trajectory tracking capabilities and
typically utilize cascading control architectures that divide the task into position and
attitude control [130, 131, 132]. Position controllers generate the required attitude
reference and attitude controllers generate the required motor commands to follow a
reference trajectory. The dynamic model of UAVs is well understood and a variety
of controllers such as LQR, PID and MPC, for both position and attitude exist [132,
133, 91]. With advances in computational power, learning-based control approaches
have made significant progress in UAVs control [134, 93, 94]. We next discuss the
advantages and drawbacks of model-based and learning-based techniques for FTC of
UAVs.

Model-based control is the most common way to control UAVs in the real-world. This
approach uses physics-based models, which can be used to establish stability proofs
and guarantee system safety. Using cascading LQR controllers, Mueller et al. [131]
show that control of a quadcopter can be maintained even after the loss of one, two
or three rotors, highlighting the power of model-based design. By adding redundant
controllers designed around different operating conditions the control system is able
to switch between controllers when a disturbance is identified, which is refereed to
as Multiple Model Adaptive Control [89]. However, obtaining models of the system
and environment for every possible operating condition a UAV can experience in a real
world scenario is not feasible [103]. This is a major drawback of using pure model-
based control methods as it limits fault tolerance to faults considered at design time.

Learning-based control, and specifically reinforcement learning, focuses on learning
the direct control mapping of measurements to motor commands [93, 94, 127].
Reinforcement learning allows to learn policies requiring a vast amount of interactions
with the system. Since real-world data is usually expensive to acquire, learning
in simulation has became a popular strategy for training an RL agent. However,
agents trained with a simulator tend to fail to generalize when transferred to the real
environment due to a mismatch between the simulation and reality, usually called the
reality gap or sim-to-real problem [135, 136, 137]. In reality, the parameters of the
simulator can be different from the real-world setting because of several reasons, e.g.,
the modeling errors, changes in the real-world parameters over time, and adversarial
disturbances. For example, varying weather conditions, sensor noise, and actuator
noise commonly occur across robotics domains. Robust reinforcement learning
addresses the problem of finding an optimal policy that is robust against parameter
uncertainties. Robustness to changing or mis-specified environmental dynamics is an
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important topic in reinforcement learning, which is crucial for overcoming the gap
between simulation and reality known as Sim2Real transfer problem, i.e. a policy
trained in a simulator is executed on a real-world domain. Agents tend to over-fit
the domain on which they are trained because of an overestimation of the policy’s
performance given by a simulation optimization bias. Thus, even small perturbations
of the real-world setting with respect to the training environment can have a significant
negative impact on the performance of the agent.

Hybrid control methods have become popular and increasingly successful for robust
quadcopter control since both learning-based and model-based control methods have
clear advantages and disadvantages. A typical approach is to use all prior knowledge,
in terms of models available, to design robust system controllers and then use a learning
component to compensate for unmodeled details. In [129], a similar hybrid control
framework is used to make a quadcopter robust to cyber-physical attacks. A low-
level cascading PID architecture is used for trajectory tracking and a neural network
is used to compensate for the attacks on the system. The neural network is used
to compensate for the missing thrust which greatly improves the trajectory tracking
capabilities under rotor fault scenarios. Other hybrid approaches learn either inner or
outer control loop only and use model-based controllers for the remainder [127, 138].
While this simplifies the complexity of the task, the direct combination of a model-
based controller output with a learning-based controller output breaks the existing
stability guarantees that make model-based controllers safe. To the best of the authors
knowledge, most hybrid approaches for UAV control suffer from this problem.

3 Preliminaries

This section presents the background on RL approaches developed to obtain robust
policies.

3.1 Robust Markov Decision Processes

A robust Markov decision process (R-MDP) is defined using a tuple (S,A,R,P , γ),
where S is the state space, A the action space, R : S × A → R represents a reward
function, γ ∈ [0, 1] is called discount factor, and P(s, a) ∈ M(S) is an uncertainty
set where M(S) is the set of probability measures over next states s′ ∈ S. An R-
MDP defines how the next state of the system is determined by a conditional measure
p(s′|s, a) ∈ P(s, a) where s is the current state and a is the action selected by an agent.

The robust RL literature usually adopts the assumption that P is structured as a
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cartesian product ⊗s∈S,a∈APs,a, which is also known as the state-action rectangularity
assumption [139]. In RMDPs, this implies that nature can choose the worst-transition
independently for each state and action.

In the standard MDP framework, an agent is defined by a policy π : S → p(A)
that maps states to distributions over actions with the goal of maximizing the sum of
the discounted rewards it receives over the future. The optimization criterion is the
following

J (π∗) = max
π∈�
Vπ(∫) , ∀∫ ∈ S . (G.1)

where the value function, V π : S → R, defines the value of being in any given state s

V π(s) = E

[ ∞∑
t=0

γtR(s, a)
]
, ∀s ∈ S . (G.2)

Traditional RL algorithms require that the system dynamics and reward function do
not change over time to be able to find an optimal deterministic Markovian policy
satisfying I.5. This property is clearly not satisfied in the R-MDP case. Therefore,
different approaches have been proposed to tackle the uncertainty around the system
dynamics. We next present two possible solutions.

3.2 Optimizing for the worst-case performance

One approach to incorporate the notion of robustness in standard RL algorithms is by
transforming the optimization problem of equation I.5 to account for the variability in
the environment. An optimal robust value function V ∗ defined over the set of possible
policies and possible changes in the system dynamics is defined as follows

J wR (π∗) = sup
π

inf
P
Vπ,p(s) (G.3)

The policy obtained by solving this optimization problem is robust in the sense of
optimizing for the worst-case expected return considering the possible evolution of
the environment. Mankowitz et al. [140] follow this approach by optimizing the
worst-case squared temporal difference error. Abdullah et al. [141] propose to make
problem G.3 tractable by constraining the reachable states of the system according to
the average Wasserstein ball around a reference dynamics.
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3.3 Optimizing for the average-case performance

Robustness can be achieved by modifying the optimization problem I.5 to maximize
the expected return across the distribution of environments. The optimization criterion
is formulated as follows [142]

J aR(π∗) = sup
π

Ep∈P Vπ,p(s) (G.4)

Domain randomization (DR) approaches; e.g., Tremblay et al. [143]) attempt to solve
this optimization by problem by exposing the policy to be learned to a multitude
of environments within the distribution of P in offline settings. Active Domain
Randomization attempts to improve the generalization power of the agent by focusing
the learning process on the parameter space which makes the dynamics of the
environment difficult to control [144].

4 Hybrid Approach for FTC

The approaches to solve the R-MDP problem presented in the previous section
have some limitations if applied for FTC of UAVs. Optimizing for the worst-
case performance leads to conservative and even pessimistic agents with sub-optimal
policies. Optimizing for the average-case performance, on the other hand, makes the
task too complex for the agent, thus r resulting in low sample efficiency, which makes
the training process a labor-intensive task leading sometimes to no convergence at all.
In both cases, the resulting agent may perform optimally across all versions of the
environment but will perform sub-optimally for each independent version. Moreover,
in none of the above cases the resulting agent provides stability guarantees.

We propose a hybrid approach that provides stability guarantees: we use a hybrid
control architecture as shown in Figure G.1. Through this control architecture, the
agent learns to adapt to the changes in the environment by learning to sample the
control actions from a set of model-based controllers. We now describe, in turn, the
model-based controllers (low-level), and learning-based controller (high-level).

4.1 Model-based controllers

A cascading PID controller architecture, consisting of three position and three attitude
controllers, is commonly used for trajectory tracking [132]. Fault tolerance is usually
provided through additional PID controllers tuned for specific faults or disturbance
conditions. For example, high-gain attitude controllers respond more aggressively to

Autonomous System Control in Unknown
Operating Conditions

131 Yves Sohège



G. A NOVEL HYBRID APPROACH FOR
FAULT-TOLERANT CONTROL OF UAVS
BASED ON ROBUST REINFORCEMENT
LEARNING 4 Hybrid Approach for FTC

Figure G.1: Hybrid control architecture for fault tolerant quadcopter trajectory
tracking. Low-level control is established using cascading PID control with additional
roll and pitch controllers. A supervisory neural network controller estimates the
probability distribution used to sample the blending weights.

wind disturbances or rotor faults. We focus on tuning roll and pitch controllers for
different conditions. A set of controllers are tuned with low-gains which increases
robustness to high attitude sensor noise. A different set is then tuned with high-
gains to increase robustness to rotor faults and allow for aggressive reactions. Under
nominal operating conditions both controllers must be able successfully follow a given
trajectory.

We show trajectories executed by each set of controllers under the three different
operating conditions in Figure G.2. The leftmost plot shows nominal operating
conditions. The green area highlights the operating region the quadcopter should stay
inside to avoid collision with obstacles in the environment. The middle plot shows the
same trajectory under heavy attitude noise (Gaussian noise with zero mean and 0.6 rad
standard deviation). The low-gain controller is able to maintain control and complete
the trajectory while the high-gain controller fails due to its aggressive nature. The
rightmost plot highlights the opposite for rotor faults scenarios (20 % loss of power)
where the aggressive reactions of the high-gain controllers are beneficial and the low-
gain controllers are unable to maintain the quadcopter within the safe region. These
contrasting types of required reactions are common across different disturbances and
a single controller can generally not provide both quick reaction and low overshoot
[145].
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.
Figure G.2: Trajectories executed under different operating conditions when using
Low-gain controllers (Blue) or High-gain controllers (Red)

4.2 Learning-based controller

The proposed learning-based approach is based on the idea of sampling over the action
space generated from a set of model-based controllers. The low-level controllers
should be defined to accommodate the plausible variability in the distribution of
environment dynamics (P). In the case of FTC for UAVs, this variability is defined
in terms of the fault scenarios to be considered as described in the previous section.

Once the set of low-level controllers is defined, the role of the supervisory agent is to
map the low-level controller outputs into the final action space. We define the final
action as taking a weighted sum of the low-level controller outputs. In other words,
given a set of low-level controller outputs a1, a2, ..., am, the final control output is
a = ∑m

i=1 ϕ(i) · ai, where each parameter ϕ(i)low or ϕ(i)high], i = 1, ...,m is drawn
from a [0, 1] interval and

∑m
i=1 ϕ(i) = 1. In this article, ϕ(i) is sampled from a Gaussian

distribution defined in terms of [µi, σi].

The learning-based controller must learn how to tune [µi, σi] for each controller i
depending on the environmental conditions. We use therefore domain randomization
(DR) to train the learning-based controller. DR considers an extended uncertainty
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set, including wind and position noise. Given a bounded set of K uncertain
parameters/faults ξ ∈ RK , DR uniformly samples from ξ at each episode such that
the supervisory controller experiences a different disturbance/fault in the environment.
DR enables us to generate a set of independent MDPs to cover the distribution of P
such that the agent learns to generalize overP . The training process is therefore similar
to standard DR but the agent optimizes across the action space of low-level controllers

instead of directly optimizing across the state space of the environment. In other words,
the agent learns an importance sampling strategy to accommodate to the changes in
the environment.

One advantage of our approach is that it allows us to learn/define the low-level and
supervisory level controllers separately. This is especially useful when the low-level
control problem is well understood, i.e., the controller can be defined analytically
and/or is relatively easy to tune for different scenarios. On the other hand, learning how
to adapt from one scenario to another is the job of the supervisory controller, which
can be learned through RL algorithms such as Proximal Policy Optimization [32].
Moreover, if we define a set of low-level controllers through classic control methods
with stability guarantees, the supervisory controller preserves the stability properties
of the individual policies even if it is learned through RL [103]. We demonstrate this
in the following section.

4.3 Stability Properties

This section describes the stability properties of our approach, and the range of
environments to which the approach is applicable.

This weighted multiple-model control framework has been well studied, e.g., [146,
103]. We define a control system within this framework using Ψ = 〈C,Φ, E〉, where
we assume that: (1) we have a collection C = {c1, · · · , cm} of controllers, with
a distribution (or weight function) over C, denoted ϕ = {ϕ1, · · · , ϕm}, such that∑
j ϕj = 1; (2) each controller ci, with a parameter set θi, is tuned to optimize the

performance of a corresponding model φi, i = 1, · · · ,m for environment Ei ∈ E,
such that φi is in model set Φ and optimizes the performance in Ei.

Given this framework, a weighted control output is guaranteed to be stabilizing as
described below.

Lemma 4.1. : A WMMC system Ψ is stable if the following hold (see [147]):

• φj ∈ Φ, for some j ∈ 1, · · · ,m, i.e., the true plant model is included in the fixed

models of the model set Φ.
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• each model φi ∈ Φ can generate a measured signal that is within a fixed bound

B ∈ Rn of the true signal.

• every controller ci is locally stabilizing with respect to its model φi and

parameter set θi.

Because each weighted control signal is a convex combination of controllers in the
control set C, the set of all control combinations forms a convex hull C bounded by C.
We can thus define the set of environments for which stable controllers exist under Ψ
as follows:

Lemma 4.2. : Given a WMMC system Ψ defined over controller/model set C/Φ,

with corresponding control parameters Θ = {θ1, · · · , θm}, any environment E with

parameters PE such that the optimal controller has parameters falling within the

convex hull of Θ is stabilizable using Ψ.

This second Lemma thus defines the range of environments to which our approach
is applicable. We will empirically demonstrate this using a quadcopter with a set of
2 base controllers, for which we show a range of unknown fault environments are
stabilizable.

5 Quadcopter Experiments

The quadcopter trajectory tracking implementation is based on an open-source
python simulator [148] and integrated with stable baselines [124] to create a custom
quadcopter training environment.1 We discuss the operating conditions investigated
in the experiments, the training set up for the high-level controller and experimental
evaluation.

5.1 Operating Conditions

We investigate four common disturbances to the quadcopter including rotor loss of
effectiveness, wind gusts, position sensor noise and attitude sensor noise. We denote a
multiplicative rotor fault model with parameter 0 ≤ ςi ≤ 1 for i = 1, ..., 4, where ςi = 0
corresponds to nominal function and ςi = 1 to total failure. Wind gusts are implemented
using the Dryden turbulence model [28]. Wind direction and the rotor to experience the
fault are selected randomly. We model noise using a zero-mean Gaussian distribution
of varying magnitudes. Position noise is applied to x, y and z in meters and attitude

1A repository containing all simulation files needed to replicate the experiments is made available
under "https://github.com/YvesSohege/ICRA21-QuadcopterExperiments".
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Table G.1: Quadcopter domain parameters and corresponding disturbance magnitudes
for each level.

Domain Level 1 Level 2 Level 3 Level 4
Attitude Noise 0.2 rad 0.4 rad 0.6 rad 0.8 rad
Position Noise 1 m 2 m 3 m 4 m

Wind Gust 3 m/s 6 m/s 9 m/s 12 m/s
Rotor LOE 5% 10% 15% 20%

noise to ψ and θ in radians. We partition the domain parameter space into levels of
increasing disturbance magnitudes. The full parameter ranges and for the domains and
levels can be found in Table G.1.

Table G.2: PID parameters for low-level model-based control architecture.

Axis of control P I D
X-Position 300 0.04 450
Y-Position 300 0.04 450
Z-Position 7000 4.5 5000
Roll - C1 24000 0 12000
Pitch - C1 24000 0 12000
Roll - C2 4000 0 1500
Pitch - C2 4000 0 1500

Yaw 1500 1.2 0

5.2 Trajectory tracking task and reward definition

When a fault or disturbance occurs the quadcopter starts to deviate from its path and
can no longer track a reference trajectory. However, in urban scenarios, this could lead
to collision with obstacles. We therefore consider the idea of operational volumes that
create a 1-meter safe zone around the trajectory which represents the acceptable level
of deviation to avoid collisions. The goal of the agent then is to learn how to stay
inside the safe zone. The agent receives a large positive reward if the goal location is
reached successfully and a small negative reward (-1) for every step outside the safe
zone. For an episode with δ steps outside of the safe zone, the reward is defined a δ ∗ 2
if the goal reached and −δ in case of failure. This focuses the learning on episodes
where quadcopter deviates outside of the safe zone but is able to re-stabilize to reach
the goal. When no deviation occurs the agent is performing well and no rewards are
given, which is shown in Figure G.3.
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Figure G.3: Shows reference trajectory in black with safe zone in dashed green. When
the quadcopter leaves the safe zone the agent is rewarded with a -1 while positive
rewards are only possible by reaching the goal.

5.3 Other Training Setup Details

We define the observation vector as [x, y, z, φ, θ, ψ,XD, YD, ZD], where XD, YD, ZD

represents the goal position. The action space is defined as [µ, σ]. We use proximal
policy optimization schulman2017proximal to train a neural network consisting of four
layers of 64 neurons. Straight line trajectories are generated from an initial position on
the ground to a random goal location within a 10-meter bounding box. We set a limit
of 5000 steps to complete the trajectory. The domain is selected using uniform domain
randomization. We train the proposed hybrid architecture for 10 million steps (5770
episodes).

5.4 Results & Discussion

The performance metric we will use to measure robustness to disturbances is the
average number of steps outside of the safe zone. Firstly, we investigate the
performance of the high-gain and low-gain PID controllers over entire fault space
which can be seen in Figure G.5 Top-Left and Top-Right, respectively. As discussed
previously, the high-gain PID is more robust to rotor faults and the low-gain performs
better under attitude noise which is supported by results shown in the heatmaps.
Both controllers perform poorly under heavy wind and position noise as they are not
tuned for these conditions. Secondly, we are interested in how a uniform randomized
blended controller performs across the fault space, seen in Figure G.5 Bottom-Left.
This acts as a baseline to judge how much the supervisory learning component
improved the performance by adapting the randomized weighting. We can see that
uniform randomized blended control is able to improve the performance under small
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disturbance magnitudes but is by nature sub-optimal and hence failing on any of the
severe disturbances.

In contrast, our trained hybrid architecture, Figure G.5 Bottom-Right, is able to learn
how to adjust the distribution between low-gain and high-gain controller in real time
to improve performance over the entire fault space. A significant improvement can be
seen under wind and position noise, for which neither PID controller performs well
but the agent is able to learn how to utilize them for this new environment. The only
disturbance the agent fails on is severe attitude noise which we attribute to the agent
optimizing over all domains. The episode count in each cell shows how many times
the agent was exposed to this environment during training.

6 Conclusion

We have described an approach that guarantees key control properties (e.g.,
stabilizability), in contrast to similar quadcopter control systems [129]. Our hybrid
framework enables us to provide stability guarantees based on the model-based
controllers, while learning a supervisory parameter space that is simpler than the
parameter space encompassing the entire control task. This approach thus has the
benefit of control guarantees and relatively fast parameter learning.

We have validated the FTC approach on urban trajectory-following tasks using a
quadcopter. For even relatively extreme rotor faults we show that we can learn to
maintain safe trajectories.

Our approach is limited to environments whose corresponding control parameters are
contained in the convex hull of the baseline controller parameters. We are currently
investigating how we can use RL to learn new baseline controllers for environments
not covered by our initial controller set, and initial results indicate that this set of new
controllers will grow slowly (and not exponentially) with respect to the complexity of
the novel environment sets.
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Figure G.4: Performance heatmap showing the average number of steps outside the safe zone
under various disturbances. Top - High-gain PID is robust to rotor faults but suffers on the
other domains. Bottom - Low-gain PID is robust to attitude noise but suffers on the other
domains.
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Figure G.5: Performance heatmap showing the average number of steps outside the safe zone
under various disturbances. Top - Uniform Randomized Blended Control is unable to handle
strong disturbances and Bottom - Our Hybrid Approach significantly outperforms the other
approaches over all domains except strong attitude noise.
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Paper H

Comparison of Control and
Cooperation Frameworks for Blended
Autonomy

Abstract

Autonomous vehicles, e.g., cars, aircraft or ships, will need to accept some degree
of human control for the coming years. Consequently, a method of controlling
autonomous systems (ASs) that integrates control inputs from humans and machines
is critical. We describe a framework for blended autonomy, in which humans and ASs
interact with varying degrees of control to safely achieve a task. We analyze multi-
agent tasks in which the human and AS have identical or conflicting objectives, and in
which noise is present in collaborative control. We empirically compare an algorithm
based on leader-follower control with algorithms based on blended and switching
control, given communication delays, noise and different collaboration levels. We
validate our results on a car steering control model.
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1 Introduction

Fielded autonomous systems (ASs) need to interact with humans in a variety of
ways, and hence need a framework to enable that. Here, we focus on ASs that can
incorporate a variable degree of human control, which we call blended autonomy. For
example, forthcoming autonomous cars will allow drivers to set a variety of autonomy
levels; for example, lower levels include cruise control and/or collision avoidance,
and full autonomy incorporates all driving functionality. Analogously, UAVs flying
in commercial airspace will need to follow Air Traffic Control (ATC) instructions,
entailing a mechanism to integrate human voice commands into autonomously-
generated flight planning.

Our objective is to develop a control-theoretic framework for blended autonomy that
will allow humans to interact with a collection of ASs. This is an extension of prior
work on tele-operation [149], which assumes continuous human control of a vehicle.
This work also extends frameworks for automotive autonomy, e.g., [150], in that we
generalize the single-driver and -vehicle case to a multi-agent case.

We propose a framework that focuses on the following key properties. First, we
describe a system that can flexibly operate in multiple autonomy levels as a multi-agent
system with human and AS agents that must interact to accomplish a task. Second,
the human/AS interaction may have varying degrees of cooperation and information
sharing among the agents; incomplete information sharing may arise due to lack of
transmission of state information or communications losses. We solve our blended
autonomy problem using optimal control techniques, and demonstrate the resulting
properties of algorithms like Model-Predictive control (MPC) when applied to this
task.

Our contributions are as follows:

• We formulate a control-theoretic framework for ASs that incorporates a varying
degree of human control inputs.

• We specify the AS framework in terms of a multi-agent hybrid system, and
compare three control algorithms: (1) leader-follower (e.g., as done with
Stackelberg game approaches [151]), (2) blended-control, based on weighted-
sum optimization [152], and (3) switching-control, with control assigned to the
agent whose output is closest to the optimal output.

• We illustrate our approach using MPC methods for a car steering system jointly
controlled by human and AS inputs.
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2 Related Work

Teleoperation is an area in which a human operates a vehicle at a distance. Most
approaches to teleoperation assume full human control (e.g., [149]). However, some
recent work has included blended human/robot control, e.g., [153].

A large body of work has been published on automotive blended human/vehicle
control, e.g., [154, 155, 150]. The majority of this work assumes that human and AS
controls are cooperative, and that no unsafe controls are possible. Recent work that
incorporates safety includes [155]. In contrast to this work on the automotive domain,
we develop a framework that is generic and can be extended to more than just 2 actors
(driver and AS).

Control theory has been used for developing algorithms for blended autonomy. The
most common approaches are MPC [156] and optimal control [157].

Our approach explicitly adopts a multi-objective optimization, for which a large body
of work exists for general problems [152] and for control applications [158].

Game theory has been used for action generation in blended autonomy. For example,
[159] describes experiments with different cooperation/non-cooperation strategies for
human/AS. [151] proposes an algorithm based on a Stackelberg equilibrium for
cooperative steering control.

Work also exists in attempting to model the driver’s intent. For example, [160]
proposes the use of motion primitives for cooperative blended-control driver assistance
systems. [159] proposes several human models for robot interactions. [161] examines
modes for adaptation in human-AS collaboration.

3 Technical Description

This section describes our technical formulation. We present a framework that can
accommodate arbitrary numbers of human and AS agents, but for simplicity we restrict
our discussion to a single instance of human and AS agent. We denote human with H
and AS with Υ. The actions at time t are the joint human and AS actions, denoted
u(t) = (uH(t), uΥ(t)), and the total space of actions is U . We assume that we have a
set θ of parameters in our system model Ψ. We can define a high-level version of our
task as an optimal control problem:

Definition 20 (Blended-autonomy task). A system S solves a blended-autonomy task

with objective function J using human and AS agents who collectively interact to
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optimize J within world state Xw, where human and AS agents may take on differing

levels of autonomy, by selecting actions that maximize J :

u∗ =u∈U J (u, θ). (H.1)

We will make this definition more precise in the following sections.

3.1 Multi-Agent Framework

Definition 21 (Agent ω). We define an agent ω ∈ Ω using the tuple 〈c,Φ,U , r,J 〉,
where

• c is the agent type, c ∈ {H,Υ}.

• Φ is the agent model, denoting the agent’s hybrid dynamics.

• U is the system action space, such that U = UH ∪ UΥ.

• r is the agent’s reward function.

• J is the agent’s objective function.

We assume that we can define three state types in our system, xw ∈ Xw, xΥ ∈ XΥ, and
xH ∈ XH , denoting states for the world, AS and human, respectively.

We define a blended-autonomy system (BAS) as a multi-agent hybrid system as
follows:

Definition 22 (BAS S). A BAS is a multi-agent system consisting of a collection of

agents ωi ∈ Ω, i = 1, ..., n, who attempt to achieve a collective task with system

reward function Rw and objective function Jw = ς(J1, ...,Jn), where ς is a reward

aggregation function for the agents. We characterize the agent interaction protocol

using χ.

3.2 Autonomous Modes

In this article we generalize the notion of mode from an indicator for operational state
to also include the autonomy levels of agents. Our notion of mode corresponds to the
notion of autonomy level in many application domains. For example, in the automotive
domain the SAE has defined six levels of autonomy for self-driving vehicles, with
level 0 denoting full human control to level 5 denoting full AS control. The levels 1
through 4 consider a blended approach where the mode defines the driving mode (e.g.,
highway cruising) with some autonomous capabilities (e.g., steering, cruise control).
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We assume that an identical operational mode can be achieved through human or AS
control. We formalize these notions in the following sections.

3.2.1 Mode Specification

We assume that a system S can operate in a discrete set of system modes Γ =
{γ1, · · · , γk}. A mode is characterized by both the operational state and the health
state of S; here we focus only on the operational state. More specifically, we define an
agent’s operational mode in terms of its autonomy level and state. For example, an air
vehicle’s operational mode can be in cruise, and it’s autonomy mode either autopilot
or human control.

We formalize modes as follows. A system S can be in one of several operational modes
at any time, denoted ΓO = {γ1

O, · · · , γkO}. Given an operational mode, the system can
be in one of several autonomy modes, i.e., where S is controlled by both the AS or
human to varying degrees.

Definition 23 (Mode γk). A system S can be in one of several modes, γ ∈ Γ, which is

given by the pair of operational and autonomy modes: Γ ⊂ ΓO × ΓA.

We use the notion of autonomy map to capture the different human/AS mode
specifications that lead to task completion.

Definition 24 (Autonomy Map). We can compute the system’s autonomy level using

autonomy map % : ΓO × ΓA → Γ.

We can use this map to identify, for example, the AS autonomy level necessary to
achieve a task given as input the human autonomy level and required mode.

We assume that Γ can take on a discrete set of values we can partition these values into
safe and unsafe modes: ϕ : Γ → {0, 1}, where 0 denotes unsafe and 1 denotes safe.
For example, for a car with human and AS inputs, the overall autonomy level must be
equivalent to full control due to inputs from human and AS for the vehicle to be safe.

3.3 Dynamical System Model

We assume that the system may operate using three different models: a world model
Ψw, and models maintained by the AS and human, ΨΥ and ΨH , respectively.

Agent i possesses a unique dynamical model, which for a single mode γ ∈ Γ we denote
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by a discrete-time equation

ξi(k + 1) = Aiξi(k) +Biui(k)

zi(k) = Ciξi(k). (H.2)

The system evolves according to a state transition function T : Xw×UΥ×UH → Xw.
The agents can also switch system modes in a discrete manner.

Since this system is hybrid, mode switches can occur due to discrete switch commands
or to continuous state evolution.

4 Multi-Agent Coordination

4.1 Assumptions

This section describes our assumptions. We assume that we have a collection of n
agents, each characterized by tuple 〈c,Φ,U , r,J 〉. We denote the (possibly unique)
ith reward and objective function as ri, Ji, and Φi, respectively, for i = 1, ..., n. Φi is
given by equations H.2, for a given mode. This framework enables us to analyze the
impact of agents who may have different objectives, or agents who may have different
sensors, and hence obtain different sensor outputs y(k) given world state x(k).

4.1.1 Reward Model

Each agent has a (potentially different) reward function, denoted as rΥ(x, uΥ, uH ; θΥ)
for the AS and rH(x, uΥ, uH ; θH) for the human, each with parameters θ. The AS
and human may not know each other’s reward functions (or equivalently, each other’s
parameters θ). The human-AS team receives a real-valued reward based on the true
state of the world and the combined control uΥ ⊕ uH .

4.1.2 Objectives

We assume that agent i has objective function Ji, and that there exists a system-
level objective function Jw. The system-level task is the optimize JW subject to
Ψw, uH , uΥ, collaboration χ, plus safety and other constraints.

We also assume that the human agent computes its control inputs uH first, and the
supervisor then needs to compute a system-level control in response to uH . We explore
situations in which the human model ΦH is either incomplete or receives incomplete
sensor inputs, so that the human actions uH are sub-optimal. This contrasts with other
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work that either assumes a perfect human model ΦH (e.g., [155]) or learns/estimates
such a model (e.g., [161]).

Figure H.1: Architecture for blended autonomy system: (a) shows the leader-follower
approach, and (b) shows the blended approach

Figure H.1 shows the two control approaches (applied at each step t) that we compare.

4.2 Leader-Follower Control Approach

This section describes how we can use game theory to coordinate the (possibly
conflicting) objectives of the agents. Figure H.1(a) shows the leader-follower
approach, where the human agent applies a control uH(t) to the vehicle, and then
the AS agent observes y(t) and then applies uΥ(t + δt) to the vehicle, for some small
δt.

In the general case, we assume that the human and AS generate controls through
solving two different optimization problems. This may arise in several situations. For
example, a human air traffic controller (ATC) may specify a landing plan for a UAV
that optimizes over all planes within the ATC’s sector, where an individual UAV has
computed a plan that optimizes its individual fuel consumption. In a different case of a
car, the human driver may may be tired and issue dangerous commands while the AS
may compute safe commands for the car.

We adopt the leader-follower approach from game theory the can be used to compute
a Stackelberg equilibrium solution, e.g., as in [151]. In this approach, the human first
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selects a control, and the AS then selects a control, and the process repeats. Given
observability of control settings for both agents, we can compute a strategy profile that
optimizes the agents’ objective functions, given the strategies of the other agent. Given
the computed strategies, we implement them using a control switching framework, in
which our controller switches from uH to uΥ at each step.

This approach does not attempt to incorporate stochastic adaptation to or learning of
the other agent’s objective function or dynamical model. It contrasts with the Bounded-
Memory Adaptation Model of [162], which uses a parameter α to capture an agent’s
inclination to adapt. For example, if human and AS disagree, the human may switch
from their control uH to the AS’s control uΥ at the next time step with probability α.

We assume that both human and AS agents minimize their respective objective
function. Then, a solution of the differential game requires solving a multi-objective
optimization problem. We adopt a receding horizon optimization approach, i.e., the
optimal controls are calculated by solving the open-loop optimal control problems for
the horizon

4.3 Blended Control Approach

Figure H.1(b) depicts the architecture for a blended autonomy system. In contrast to
the leader-follower approach, the AS and human each compute controls (uΥ and uH)
that are “integrated" in the supervisory control module in an optimal manner.

Solving a multi-objective function J w = ς(J1, ...,Jn) is computationally intractable,
so we adopt the widely-used weighted-sum method for optimization [152]. We need to
represent vectors for the collection of n agents, so we denote Φ = [Φ1, · · · ,Φn]T , and
J (u, α) = [J1(u1, α1), · · · ,Jn(un, αn)]T . We map the multiple objective functions
into a single weighted function, i.e., assigning a non-negative weight λi to each of the
i objective functions, given by J = λTJ (u,Φ), where λT = [λ1, · · · , λn]T is the
weight vector. The objective is to optimize J by selecting weights such that

∑
i λi = 1

and 1 ≥ λi ≥ 0, i = 1, · · · , n. The optimal solution is given by

u∗ =u λ
TJ (u,Φ)

In general, we need to normalize the objective functions since not all objectives have
the same range of values; after normalization we use standard optimization algorithms
to compute optimal solutions.

[159] defines, in a qualitative manner, four key types of collaboration for interaction
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Figure H.2: Bicycle Model of a car

between human and AS: collaboration that is (1) perfect; (2) collaborative but
approximately optimal; (3) subject to incomplete or corrupted communication; (4)
non-collaborative.

The key question is whether every agent knows the autonomy mode and reward model
for the other agents. These data can be communicated among agents, but if we
have disturbances in collaboration (e.g., incomplete communication) then complete
information will not be globally held. In this article we empirically compare the impact
of agents having different models, objective functions, and incomplete/corrupted
communications.

5 Bicycle Model

For our experiments we used the bicycle model whose lateral vehicle dynamics have
two degrees of freedom, lateral position and yaw angle. The vehicle model is depicted
in Figure H.2. We define our notation in Table H.1.

The lateral velocity of the vehicle vx is constant and hence the control input

corresponds to the front wheel steering angle δ of the vehicle, under the assumption
that only the front wheels can be steered.

Definition 25 (Kinematic Bicycle Model). We define the kinematic bicycle model as

[163]:

ẋ = vcos(ψ + β(δ))

ẏ = vsin(ψ + β(δ))

ψ̇ = v

lr
sin(β(δ))

β(δ) = tan−1
[
tan(δ) lr

lf + lr

]
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Table H.1: Notation used in the article

x, y Position of the center of gravity (CoG) of the vehicle
in the ground framework in (x, y)-plane

ψ, δ Yaw and steering angle of the car body
vx, vy Longitudinal and lateral speed of the vehicle

in its inertial frame
M Total mass of the vehicle
lf , lr Distance from front and rear axle to CoG
β(δ) Slip angle at the CoG
Cf , Cr Front and rear cornering stiffness
Iz Polar moment of intertia
is Steering Ratio

Since this vehicle model has more degrees of freedom than control inputs its classified
as under-actuated.

Definition 26 (Vehicle Model Φ). The dynamics of the longitudinal, lateral and yaw

motions of the whole vehicle are given in the form of state space equation H.2, where

ϕ(k) = [v(k) ω(k) y(k) ϕ(k)]T , control u(k) = [y(k) ϕ(k)]T , and A, B and C are

given as follows:

A =



−(Cf+Cr)
Mvx

−(lfCf−lrCr)
Mvx

− vx 0 0
−(lfCf−lrCr)

Izvx

−(l2fCf+l2rCr)
Izvx

0 0
1 0 0 vx

0 1 0 0


B =

[
Cf
isM

lfCf
isIz

0 0
]T
, C =

0 0 1 0
0 0 0 1

 .

We are interested in controlling the (x, y)- position and velocity v of the vehicle. The
position (x, y) of the vehicle in the ground framework is given by equation H.3:

ẋ = vxcosψ − vysinψ

ẏ = vxsinψ + vycosψ (H.3)

Definition 27 (Control Problem). Given a list of waypoints (wi)i∈I = (xi, yi, vi)i∈I ,
where (xi, yi) are the successive reference positions of the vehicle in the ground frame

and vi the successive speed references at position (xi, yi), the control problem consists

in finding a sequence of feasible control inputs δ that stabilizes the system and tracks

the reference trajectory given by the waypoints.
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Figure H.3: Double Lane change reference trajectory

Figure H.3 shows a double lane change manoeuvre which will be used as the reference
trajectory for the experiments.

6 Empirical Experiments

For our experiments we use the bicycle steering model described previously. We
implemented the Leader-Follower, Oracle-Based Switching and Blended control
framework for this vehicle on top of a Matlab Autonomous Steering demo. To simulate
the interaction of control for the described framework in previous sections between an
AS and a Human we define two Model Predictive Controllers (MPC) for uH and uΥ,
respectively. with weight assignment for the measured variables ψ and Y being set
to [1,1] for uH and [1,0.1] for uΥ. Intuitively the Human controller focuses more on
reference tracking between ψref and ψ instead of mostly on the y position tracking,
which should give smoother tracking overall. We minimize the total tracking error
ε = ∑

i∈W |yref (k)− y(k)| over displacement waypointsW . We empirically study the
impact of the following across the control approaches:

• Bad uH signals, such as a collision course or no input at all;

• Signal delays;

• Sporadic noise on the dominant control signals.

6.1 Leader-Follower

The Leader-follower (LF) framework alternates the control signals applied to the car
model at intervals of δ = 1s. Figure H.4 shows the LF framework executing the double
lane change manoeuvre in nominal operating conditions. The figure is broken into 3
sub-charts each showing different metrics during the simulation. The top consists of
the (x, y) position of the reference path (blue), actual path taken (green) and obstacles
to avoid (red circles). In the middle chart the yaw angle of the car can be seen, again
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Figure H.4: Leader-Follower framework in nominal operating conditions

reference position (blue) and actual position (green). The last chart consists of the
MPC output signal uH (orange) and uΥ (green), the applied control signal u (purple)
and η (red) which signifies the current control proportions between Human controller
and AS used to calculate u. The X-axis represents time and the Y-axis the magnitude
of the signal.

6.2 Blending

Blending combines the uH and uΥ signals using weight parameter η such that: u(k) =
uH(k)(1 − η) + uΥ(k)(η), with 0 ≤ η ≤ 1. We predict the tracking error ε between
y and yref for time the current time point k. Since by nature the current tracking error
ε will gradually increase, we can use this such that η = ε so that if control starts to
diverge, uΥ will gradually become more influential and should intuitively re-stabilize
control. Since uH plays a more dominant part in the control signal u we call this
Human Dominant Blending. Alternatively we also experiment with AS Dominant
Blending which is defined by u(k) = uH(k)(η) + uΥ(k)(1− η).

6.3 Oracle-based Switching

Oracle-based switching (OBS) is a framework that switches control to the agent whose
output is closest to that of an oracle Θ. Θ has knowledge of the reference path Θyref ,
obstacles Θobs as well as the car’s current trajectory Θσ, which is defined by fitting a
polynomial function of degree 4 to the last 5 (x, y) coordinates. Evaluating Θσ(t+ τ)
allows us to predict the path the vehicle will take during the next τ seconds.

We define our control u(k) such that the human control is applied (u = uH) if any of
the predicted y coordinates are more than β meters from the reference trajectory or the

Autonomous System Control in Unknown
Operating Conditions

152 Yves Sohège



H. COMPARISON OF CONTROL AND
COOPERATION FRAMEWORKS FOR
BLENDED AUTONOMY 6 Empirical Experiments

vehicle is on a collision course with any of the known obstacles; otherwise u = uΥ.
Formally, u(k) is generated such that:

u(k) =


uH , if div ≥ β

uH , else if col ≤ β

uΥ, Otherwise


div = |Θσ(t+ α)− Yref (t+ α)| (H.4)

col = |Θobsi(y)−Θσ(t+ α)(y)| ∀Θobsi ∈ Θobs (H.5)

Here div represents the expected future divergence to Yref and col the distance to an
obstacle for all known obstacles. β = 0.2 and α = [0.1, 0.2, 0.3];

6.4 Experiment 1: No Human input

We set uH = 0 to model a Human that has fallen asleep or is otherwise unable to
issue control commands. Figure H.5 (left) shows the difference in total tracking error
between the frameworks for the described double lane change manoeuvre. Surprisingly
the OBS and Human Dominant Blending perform very poorly. We assume this is due
to the system being allowed to get into a bad state, from which it tries to recover; in
contrast, the Leader-Follower and AS-Dominant Blending approaches always assign
a degree of control to the AS, such that even if uH = 0 the AS-Dominant Blending
and Leader-Follower are only affected slightly. However, all frameworks were able to
re-stabilize control and execute the manoeuvre without crashing into any obstacles.

6.5 Experiment 2: Human on Collision Course

We next investigated the effect of bad uH . The Human MPC controller was modified to
have a slower sampling rate, which gives it worse tracking and causes a collision during
the manoeuvre. This experiment is designed to test how the frameworks respond
to bad human input. Again, Figure H.5 (middle) shows ε for the four frameworks.
Again all frameworks were able to avoid collision and complete the manoeuvre. The
LF framework experienced a thrashing yaw angle signal, but the y position tracking
is good. Human Dominant Blending and OBS trashed less but overall tracking was
worse. AS Dominant Blending performed very smoothly for both signals and achieved
best control. This is because the Human agent has little or no control of the system,
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Figure H.5: Total tracking error for double lane change for Experiments 1,2 and 4.
Blue: Leader Follower, Orange: Oracle-based Switching , Yellow: Human Dominant
Blending, Purple: AS Dominant Blending

Figure H.6: Total tracking error for double lane change with given delays.

so being on a collision course does not affect the overall system. Given results from
Experiments 1 and 2, we can conclude that AS Dominant blending performs the best
if we cannot guarantee a good uH input.

6.6 Experiment 3: Delays on various signals

We studied the effect of delays in the following signals:

A. Oracle computation of Θ for δ = [0.5, 1, 2].

B. AS control signal uΥ for δ = [1, 2].

C. Human control signal uH for δ = [1, 2].

D. Overall applied system u for δ = [0.5].

Here, δ represents the delay on the specified signal. Due to limited space we show
only the overall tracking error ε for the specified delays. Figure H.6 correspond to
oracle and human delays, Figure H.7 to the AS and Applied signal delays. Delays can
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Figure H.7: Total tracking error for double lane change with given delays.

Figure H.8: Leader Follower Total tracking error for double lane change with noise
injected to uH at t=3s.

represent a variety of factors such as computation time for AS and Oracle and delayed
human response and are common in real systems. Hence evaluating the resilience to
delays for the frameworks is of utmost importance.

6.7 Experiment 4: Noise Rejection

Our final experiment concerns the effects of sporadic noise on the dominant controller.
For this we injected a single offset of 0.5 at t = 3s for a duration of 1 second into
the dominant control signal. We evaluate each approach in detail and show the paths
taken. Figure H.8 shows the tracking results for the LF framework.

The deviation due to noise injected is clearly visible in the Y position tracking (top).
The time taken to re-stabilize on the path is about 2 seconds. This is due to the fact
the LF framework periodically switches the actual signals, seen in the bottom plot,
which can be analysed to find that the human had just started its control period when
the noise was injected. This means the full effect of the noise were experienced for 1
seconds before the AS could intervene and we see a large deviation. We also notice
slight trashing for the remainder of the simulation Y position but more significantly in
the steering angle.

Figure H.9 shows the Oracle-based Switching simulation results. The deviation is a lot
smaller since this framework identifies the bad trajectory and switches controllers. This
is again obvious from the bottom chart in this Figure. We see the red line representing
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Figure H.9: Oracle-based Switching Total tracking error for double lane change with
noise injected to uH at t=3s.

Figure H.10: Human Dominant Blending Total tracking error for double lane change
with noise injected to uH at t=3s.

the currently controlling agent switch to the AS slightly before the uH noise was
injected. We assume this was before the path deviated before the noise and hence
the AS agent took control and the effects of the noise were limited. However, we still
see slight thrashing in the steering angle for the remainder of the simulation.

Figure H.10 describes the Human Dominant Blending under noisy conditions. The
deviation is significant but the framework is able to stabilize and execute the
manoeuvre. We notice the framework started using the AS before the injection of
noise which is why the effects were not as severe as for LF. Note here that there is no
thrashing on the yaw angle and both tracking objectives are smooth.

This is the final framework we test again this scenario. One difference to the other
Noise injection experiments is that we applied the noise to the AS Signal instead of
Human signal, since having it on the Human will have no effect. Even with that change
this framework performs the best overall. It is very smooth in the lead up to the noise
and then recovers quickly. The deviation is still significant, however. The bottom chart
shows that the blend of signals, in contrast to all other frameworks, is exceptionally
smooth and it resumes close tracking within 3 seconds.
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Figure H.11: AS Dominant Blending Total tracking error for double lane change with
noise injected to uAS at t=3s.

Finally, Figure H.5 (right) shows the comparison of total tracking errors for this
experiment. Even though the LF framework experienced a large deviation and trashing,
it still tracks accurately, since it assigns 100% of the control to a single controller,
allowing that controller to get very good tracking for that time. It is difficult for
Blending to achieve this level of tracking once the agents signals start to diverge, since
the u will always be somewhere between uH and uAS , but it’s rare that one agent has
full control to generate an un-modified (optimal) control signal. This is an advantage
the Switching frameworks have over the Blending. In contrast, this same phenomenon
causes trashing on the output as both controllers compete for control of the system.

To summarize our results:

• Bad uH signals: the less reliant the framework is on uH the better it will perform.
This is obvious from Experiments 1 and 2 which show AS blending performing
the best.

• Signal delays: Signal delays can effect performance dramatically. AS Dominant
Blending is the most resilient to delays on all signals expect when u gets delayed.
But performance from all frameworks is catastrophic in this scenario.

• Sporadic noise:. Even though position tracking might look good, in reality there
could be a lot of control thrashing which would effect the driving quality. AS
Dominant Blending once again performed the best, even though marginally, and
by far smoother than the switching frameworks in regards to yaw control.

7 Conclusions

This article has described an investigation of the impact of degree of collaboration
and communication on the ability to control a multi-agent system. We have defined
a blended autonomous system as a multi-agent system in which several forms
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collaboration are allowed. We defined the collaboration degree in terms of a control
metric, and studied the impact of different control algorithms on achieving a set-point
for a hydraulic benchmark.

Our results indicate that blended control at each step dominate the performance of
the switching control approach for Stackelberg game theory. The blended approach
converges more quickly and is significantly less likely to generate thrashing.

This study has potential ramifications for design of blended human/AS systems, e.g.,
car steering control. A clear set of control over-rides will probably be necessary to
avoid instability in joint human/AS vehicular control.
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Paper I

Learning Sufficient Low-Level
Controller Parameters for Blended
Control in Non-Stationary Conditions

Abstract

Multiple model adaptive control frameworks such as switched or blended control have
become a standard way to deal with non-stationary operating conditions for many
autonomous systems. The traditional low-level controller parameter tuning approaches
optimize a low-level system controller for each operating condition separately such
that a supervisory controller can switch between the low-level controllers as the
operating condition changes. The number of required parameters to cover the
control parameter space sufficiently using this approach grows significantly as more
conditions are considered. Blended Control is an alternative scheme where the control
output is the convex combination of a set of low-level controller outputs, thus, any
parameter contained in the convex hull of the low-level controller parameter set can
be theoretically interpolated. The low-level controller parameter set should hence
be distributed in such a way that the convex hull provides sufficient coverage of the
parameter space to interpolate any required controller parameter. However, currently
no convex hull-based tuning methods exist. In this article, we propose a theoretical
basis for how blended control methods can complete a task in non-stationary operating
conditions and present a novel learning-based algorithm that automatically constructs
a convex hull in the low-level control parameter space to find a sufficient number of
parameters to complete a task in such conditions. Compared to point-based estimation
methods, our convex hull-based approach can reduce the size of the required controller
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set. We conduct thorough empirical studies on a quadcopter trajectory-tracking task
subject to faults and disturbances and show that the proposed method can automatically
learn a controller set whose size is smaller than that defined through traditional tuning
strategies, without incurring a significant performance loss.
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1 Introduction

Autonomous systems such as self-driving cars, unmanned aerial vehicles (UAVs),
and humanoid robots are becoming increasingly popular in society. These systems
have vast application domains and require robustness to challenging non-stationary
operating conditions, especially when operating in proximity to humans such as UAV
delivery services in dense urban environments. Current fault-tolerant control methods
typically require a priori knowledge of the system and expected operating conditions
to design models and controllers specifically for those conditions [164]. However, it is
impossible to pre-define a model and controller for every possible operating condition
a system will experience in its operational lifetime at design time as there are simply
too many to consider [103].

Multiple Model Adaptive Control (MMAC) algorithms based on a supervisory
controller with multiple low-level controllers have become a standard way to deal with
non-stationary operating conditions due to their decoupled and well-understood nature.
The traditional approach is to use point-based estimation methods to find low-level
controller parameters for a known set of operating conditions, and use a supervisory
controller that can optimize the performance of the autonomous system by using a
single or combination of low-level controllers.

Switching Control implements a supervisory controller that discretely switches
between the low-level controllers. Achieving stability requires the existence of at
least one controller tuned for each operating condition [106]. Therefore, switching-
based control requires a number low-level controllers that increases exponentially
with the dimension of the parameter vector and the number of operating conditions
considered [165]. Given a controller defined over parameters θ, the optimum number
of controllers required for fast convergence of a second-level model is 2θ [166], which
further increases as multiple operating conditions are considered.

Blended Control, also referred to as Adaptive Mixing Control [27], involves using a
convex combination of the low-level controller outputs instead of discretely switching
between them. This allows the supervisory controller to interpolate any low-level
controller parameter contained within the convex hull of the parameter set of the low-
level controllers [147]. The advantages of this include smoother transitions between
controllers and the ability to interpolate a new low-level controller parameterized by
any configuration contained within the convex hull of parameters of the low-level
controllers [146]. This approach has been successfully used for partial fault conditions
[2] but identifying the correct blending weights is significantly more complicated than
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switching, as the fault identification step also requires the correct interpolation between
controllers [147]. No work has been done to characterize the required number of
low-level controllers, or the joint tuning of this collection of controllers for a blended
control architecture.

The low-level controller parameters set used for blended control should be tuned
specifically to generate a convex hull, as this ensures the set is affinely independent
and sufficient to generate any required parameter. This is quite different from the
traditional point-based controller tuning methodology developed for multiple model
control systems, as the number of controllers required in a convex hull-based tuning
approach does not increase with the number of operating conditions considered, given
the required controller parameters for each condition are contained within the convex
hull.

In this article, we present a novel learning-based algorithm that automatically finds a
sufficient low-level controller set that allows a blended control architecture to stabilize
a system under non-stationary operating conditions. The novelty of our approach is
the construction of a convex hull in the controller parameter space instead of using
point-based parameter estimation to find the low-level controller set. The extremes
of the convex hull provide a blended control architecture with a sufficient parameter
set. In comparison to point-based optimization methods that find a single parameter
approximation for a fixed operating condition, the presented approach can optimize the
low-level controllers over a continuous environment parameter range.

The contributions of this article are as follows:

A. We outline the theoretical underpinnings governing how a sufficiently large
collection of low-level controllers in a blended multiple model adaptive control
architecture can complete a task with non-stationary system dynamics.

B. We propose a novel learning-based algorithm for automatically generating a
collection of low-level controllers that can solve particular control tasks given
faults and environmental disturbances. The novelty is the convex hull-based
tuning approach to find sufficient coverage of the controller parameter space for
all conditions, instead of tuning one parameter for each condition separately.

C. We conduct thorough empirical studies on a quadcopter trajectory-tracking task
subject to faults and disturbances. As a result, we found that the proposed
method can automatically learn a controller set whose size is smaller than
that defined through traditional tuning strategies, without incurring a significant
performance loss.
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The remainder of this article is organized as follows: Section 2 provides an overview
of blended multiple model adaptive control. Section 3 gives the theoretical basis of the
problem that we are interested in. Section 4 describes two learning-based approaches
to find a low-level controller parameter set, followed by the presented approach. We
discuss the quadcopter trajectory tracking task used for the empirical validation in
Section 5 along with details of how to learn a set of attitude controllers for the non-
stationary conditions. Section 6 empirically compares the controller sets found using
our approach and a point-based optimization approach, followed by a conclusion in
Section 7.

2 Background & Notation

MMAC architectures [164, 2] involve the decomposition of a control task into low-
level system control and supervisory fault-tolerant control. A traditional approach is
to design a low-level system controller, πθ, for each operating condition λ ∈ Λ (i.e.
using multiple models) and discretely switch control between them which ensures the
system is controllable under any considered operating condition.

Definition 28 (Controllability of Known Operating Conditions). Given a system

defined over Λ = {λ1, · · · , λN} operating modes, and a controller tuned for each

mode, the system is controllable using a set of controllers Π = {πθ1 , · · · , πθN}, such

that controller θi is tuned to mode λi, i = 1, ..., N .

Blended control, also referred to as Interacting Multiple Model [167] or Adaptive
Mixing Control [168], is an instance of MMAC that uses the convex combination of
all controller outputs. Given a system defined over N operating modes, each with a
corresponding low-level controller, the supervisory controller uses an N -sized weight
vector ϕ = {ϕ1, · · · , ϕN} to combine the outputs. The weight vector can be used
to switch or interpolate between controllers providing more flexibility than discrete
switching.

Definition 29 (Blended Control). Given a low-level controller set Π = {πθ1 , · · · , πθN}
that generates an action vector a = {a1, · · · , aN} and a corresponding weight vector

ϕ = {ϕ1, · · · , ϕN}, a blended control action is the weighted convex combination

ab = ∑
i ϕiai such that: (1) ∀i, ai ∈ a, 0 ≤ ϕi ≤ 1, and (2)

∑
i ϕi = 1.

Since Blended Control uses a convex combination of low-level controller outputs,
the convex hull of the parameter set defines the possible parameters that can be
interpolated. If the set contains a parameter that can be interpolated from the remaining
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parameter set, it could theoretically be removed from the set without impacting
the convex hull coverage. Tuning each controller parameter separately can result
in a parameter set that is affinely dependent, i.e. some parameters in the set can
be interpolated from a combination of the remaining set. We define the extreme
controllers that define the convex hull as a sufficient controller set to ensure the system
is controllable.

Lemma 2.1 (Sufficient Controller Set). Given a system defined over modes Λ =
{λ1, · · · , λN} and a controller set Π = {πθ1 , · · · , πθM}, we call Π sufficient if

• ∃ some ϕ such that the blended control action ab = a∗λi , where a∗λi is the action

required to stabilize the system for each mode λi, i = 1, ..., N .

• Π is affinely independent, i.e. no controller in the set can be interpolated from

the rest of the set.

The first condition ensures that the controller parameter space covered by a sufficient
controller set can generate the required control actions for all operating conditions. The
second condition enforces that the controller parameter set only contains the extreme
parameters since all other configurations can be interpolated from these. This is the
key notion that point-based tuning approaches do not exploit. This is due to the point-
based optimization methodology, where each operating condition is treated separately
instead of considering the convex hull coverage of the parameter set for all conditions
together.

Researchers have developed a wide array of control techniques for multiple model
adaptive control [169], as well as methods for tuning individual low-level controllers
[12, 170]. Existing methods for automated tuning, e.g., [12, 170, 171, 172] often
make strong assumptions (e.g., linearity), which violate the inherent non-linearities of
complex real-world systems. The obstacles of automated parameter tuning algorithms
include computational complexity of parameter optimization [173], the difficulty of
traversing the non-linear parameter space, as well as making gradient approximations
from noisy measurements.

Significant progress in the theoretical underpinnings and practical design of
optimization- and learning-based controllers that can deal with robotics systems
involving e.g., multivariate dynamics, constraints, faults, and non-stationary operating
conditions has been made. However, the implementation of fully automated algorithms
to generate such advanced model-based controllers remains an open challenge.
Further, these algorithms-as well as gradient-based optimization methods-require the
environment parameters to remain fixed during the tuning process and are not able
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to deal with a continuous parameter range, as often no single optimal solution for
the entire range exists. The fixed models used for the tuning process are either
systematically distributed over the environment parameter range to provide adequate
controller coverage at the expense of using more controllers or using the worst-case
parameter only [106].

Both supervisory and low-level controllers require a priori knowledge about the
system and operating conditions, usually in the form of a model. The design of low-
level controllers for unknown operating conditions, where no such prior information
exists, is still considered an open problem. If the convex hull of the parameter set
contains a feasible controller configuration for the unknown condition, the system is
controllable, but the identification of the appropriate weight vector for such a scenario
is also an open problem.

A recent extension to blended control, called Randomized Blended Control (RBC),
exploits this property by using a uniformly randomized weight vector in the case of
unknown operating conditions for which no control law exists. By using fast re-
sampling of the weight vector, control can be distributed uniformly over the convex
hull of the low-level controller set. RBC is to be a theoretically sound approach
for stabilizing a system that is encountering novel operating conditions for which
no control laws are known [103]. The major benefit of using randomization is the
computational simplicity and speed which cannot be matched by identification based
approaches. A clear drawback is that using a uniform distribution is sub-optimal and
dependent on the parameter space coverage of the convex hull.

Lemma 2.2 (Controllability of Unknown Operating Conditions). Given unknown

operating mode λU 6⊂ Λ and a controller set Π = {πθ1 , · · · , πθM}, the system is

controllable if ∃ some ϕ such that the blended control action ab = a∗λU , where a∗λU is

the action required to stabilize the system under the unknown operating mode.

Several papers have shown that reinforcement learning can be used to learn a
supervisory controller that generates an improved probability distribution used for
randomized blending in real-time [174, 121, 175]. Given that a learning-based
supervisory controller can be used to optimize the weights for unknown conditions,
the remaining open problem is tuning the low-level controller set in such a way that
the convex hull contains the parameters needed for the unknown condition. The
presented learning-based framework is a step towards addressing this problem by
directly constructing the convex hull in the controller parameter space based on the
known operating conditions.
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Figure I.1: Generic hierarchical control architecture.

Θ Set of low-level controller parameters
πθi Control law function of controller i parameterized by θ
A Control action space
ai Control action issued by controller i
S State space of the system
st State vector
Λ Set of operating modes in <n with n being the number of parameters of the

system
λt Operating mode vector
E Set of operating modes defined by environment parameters
F Set of operating modes defined by fault parameters
T Task
L Loss function of a task
a∗λ Required action for operating mode λ

3 Task: Theoretical Framework

3.1 Architecture

Fig. I.1 shows the generic architecture that we use for our approach. As shown, we
have a hierarchical control system that uses a set Π of low-level controllers where
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each controller πθi is characterized by θi parameters and its respective control action
is represented by ai ∈ A. The supervisory controller assigns a system-level control
consisting of a convex combination of ai ∈ A.

In this article, we focus on learning the low-level controller parameters θ that generate
the actions ai ∈ A. In previous work [174, 121], we investigate a learning-based
approach for the control parameters of the supervisory controller and hence omit
discussion around finding the optimal blending weights from this article.

3.2 System Description

This section provides a top-level description of the system in which we are interested.
We have a system, which consists of a plant and control system, operating in an
environment. We characterize a system behavior using the tuple 〈S,Λ,A〉. The state
of the system is described by a state vector st ∈ S . We assume that the system
can operate in a set of modes λt ∈ Λ, which characterizes the plant/environment
operating conditions, e.g., plant fault conditions or adverse environmental conditions.
We represent a set of modes using a compact parameter set Λ ∈ <n, with n being
the number of parameters. We can define a subset E of environment parameters
(e.g., external wind) and a subset F of fault parameters (e.g., rotor faults), such that
Λ = E ∪ F.

We characterize our system in terms of two parameter sets:

• a parameter set for the modes λt ∈ Λ;

• a parameter set Θ for the system controllers.

3.2.1 Stationary System Dynamics

If we assume that the system operates only in nominal plant states and the environment
does not change, then we can define the dynamics using the function Σ : S×Λ×A →
S, where

• S is the system state space;

• A is the action space;

• Λ is the mode state space.

In this scenario, we assume that Λ is fixed for any mission, i.e., we know the
environment parameters a priori and that they do not change during a mission, and
that faults do not occur.
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3.2.2 Non-Stationary System Dynamics

In the situation where we allow changes in the plant and environment over time,
we characterize such changes using mode transitions. Therefore, we can define the
dynamics using the function Σλ : S ×Λ(t)×A → S.

3.3 Task Optimization for Stationary System Dynamics

Assume that we have a system aiming to complete a task T defined by the tuple

T = (L, T,H) (I.1)

where

• L is a loss function
L : 〈s, λ, a〉 → [0, 1] (I.2)

that assigns a [0,1] loss at time t;

• T : S × Λ × A × S → [0, 1] is a stochastic transition function that estimates
the probability of reaching state s′ at t + 1 when action at ∈ A is taken by a
controller of the vehicle (T = P (st+1 = s′|st, λ, at));

• H corresponds to the duration of the task.

The objective of solving a task is thus to minimize the loss L in solving task T . We
can formally state this as follows.

Definition 30 (Task optimization). Given a task T , select a sequence of control actions

A1:H that drive the system through a state/environment sequence S1:T ,Λ1:T such that

we minimize
H∑
t=1

L(st, λ, at), (I.3)

where st ∈ S1:H , λ ∈ Λ1:H , at ∈ A1:H .

Note that is this formulation the mode λ is fixed in the interval 1 : H .

We assume that there exists an optimal control action at every time step, i.e.,

∃ a∗t = arg min
at∈A

L(st, λ, at). (I.4)

Given a control policy πθ : 〈s〉 → a characterized by the parameters θ ∈ Θ, the
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optimization problem to solve a task for stationary system dynamics is the following

θ∗ = arg min
θ∈Θ

H∑
t=1

L(st, λ, πθ(st)) (I.5)

Problem I.5 can be solved if the following conditions are satisfied for task T

A. L(s, λ, a) ≤ C <∞ , ∀s ∈ S, λ ∈ Λ, a ∈ A, and some bound C.

B. T and L do not change with time.

3.4 Task Optimization for Non-Stationary System Dynamics

In this section, we investigate the theoretical underpinnings allowing a blended control
architecture to stabilize a system in non-stationary operating conditions (Contribution
1). A task for non-stationary system dynamics is defined by the tuple

T λ = (L, T λ, H), (I.6)

where the behavior of the system depends on the parameter configuration vector
λ ⊂ Λ such that T λ = P (st+1 = s′|st,λt, at). For example, the dynamics
of a flying vehicle experiencing a rotor fault or wind conditions are different from
nominal conditions. Therefore, the parameter vector encodes different system and
environmental conditions.

We solve a task for non-stationary system dynamics by minimizing the loss function.
However, a single control policy cannot solve such a task because the second condition
of the optimization problem I.5 is not satisfied (T may change with time depending on
the operating mode). Therefore, the optimization problems transforms into adapting
the control policy parameters according to the operating mode. The optimization
problem to solve a task for non-stationary system dynamics is the following

min
θ∈Θ

H∑
t=1

(
L(sλt ,λt, πθ(sλt ,λt))

)
sλt ∈ T λ,λ ⊂ Λ. (I.7)

Solving this optimization problem requires a control policy dependent on the operating
mode. This implies that the operating mode has to be identified before attempting to
solve the optimization problem. However, this is an issue for systems with small time
constants that require fast adaptation mechanisms, such as unmanned aerial vehicles.
Moreover, re-formulating I.7 as a policy selection problem is not feasible because the
system/environment parameter space Λ is continuous thus a finite set of policies cannot
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be designed beforehand.

As an alternative, we propose to reformulate I.7 as follows

min
ϕ

H∑
t=1

(
L(sλt ,λt, abt)

)
sλt ∈ T λ,λ ⊂ Λ, (I.8)

where abt = ∑J
j=1 ϕjπθj(sit),

∑J
j=1 ϕj = 1, ϕj ∈ [0, 1], and the boundary of

the policy parameter space ΘJ is defined by the set of control parameter vectors
δΘJ = {θ1, θ2, ..., θJ}. Therefore, solving the policy blending problem translates into
finding a supervisory controller that learns a mapping f : 〈st〉 → ϕ to determine the
optimal blending vector ϕ for each operating mode λ. An optimal solution for I.8 can
be found if the following condition holds

∃ θj ⊂ ΘJ | lim
t→∞

(L(sλt , λt, π∗θλ)− L(sλt , λt, πθj)) = 0,∀λ ⊂ Λ, (I.9)

where π∗θλ is the optimal control policy for operating mode λ. This conditions means
that the controller parameter space ΘJ should contain the optimal control parameters
corresponding to any operating mode in Λ. If the policy parameter space is sub-
optimal, then the equation in condition I.9 equals a constant value instead of zero.

The solution to I.8 depends on having the optimal control parameter space ΘJ . We
formulate the following optimization problem for obtaining ΘJ

arg min
ΘJ⊂Θ

[ξ
H∑
t=1

L(sλt ,λt, abt) + (1− ξ)|δΘJ |],∀λ ∈ Λ, (I.10)

where ξ is a regularization parameter, abt = ∑J
j=1 ϕjπθj(sλt , λt),

∑J
j=1 ϕj = 1, ϕj ∈

[0, 1], and ϕ is uniformly distributed over the (J − 1)-dimensional simplex.

Given that ΘJ can be formed based on the set of control parameters that determine its
boundary, we formulate two methodologies for finding the set δΘJ = {θ1, θ2, ..., θJ}.
We call the set of controller parameters that form δΘJ low-level controller set. Both
proposed methodologies rely on having a physics simulator of the real system available
and work under the assumption that a single parameter change defines each operating
mode. For a real system, this implies that multiple faults are not considered.

3.4.1 Low-level controller set optimization: a parameter coverage approach

Given the set of operating modes Λ ∈ <n, this approach works under the assumption
that the bounds of each parameter λmini ≤ λi ≤ λmaxi in λ are known. This can be
interpreted as knowing the minimum and maximum magnitude of each parameter that
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defines the change of operating conditions. For example, for a loss of effectiveness
fault in the motor of an unmanned aerial vehicle, it implies knowing the minimum and
maximum loss of effectiveness.

Knowing the range for each of the n parameters that define λ ∈ <n, we independently
generate L instances for each λi by uniformly sampling from its respective interval.
Having a set of operating modes, λ11,λ12, · · · ,λ1L,λ21, ...,λnL (λ11 = [λ1, 0, ..., 0]T ,
λ1L = [λL, 0, ..., 0]T , ..., λnL = [0, 0, ..., λL]T ), we solve the following problem for
each instance

arg min
θnL

H∑
t=1

L(sλnLt , λt, πθnL). (I.11)

The controller parameter space can be approximated therefore through the convex hull
defined by the obtained parameter set ΘJ = {θ11

⋃
θ12

⋃
...
⋃
θ1L

⋃
θ21

⋃
...
⋃
θnL}.

We therefore reconstruct the edges of the cloud of points in ΘJ to select the closed
boundary δΘJ . Many algorithms, such as Quickhull [176], for calculating convex
hulls exist and the problem has been well studied. This approach is computationally
expensive since it involves the solution of nL optimization problems. Based on the
use of particle filtering optimization method for stochastic variables, we present a
computational approach more tractable to solve this problem in the next section.

3.4.2 Low-level controller set optimization: a worst-case scenario approach

Given the set of operating modes Λ ∈ <n, this approach works under the assumption
that the instance of each parameter causing the worst performance is know, that is

λi,worst = arg max
λi,worst∈λi

H∑
t=1

L(sλi,worstt , λt, πθ),∀θ ∈ Θ. (I.12)

For example, λi = [λi, 0, ..., 0] for i = 1. This means that problem I.12 does not have
to be solved because each worst parameter configuration is known in advance. Under
this assumption, we solve the following problem for each λi,worst with i = {1, 2, ..., n}

arg min
θi,worst

H∑
t=1

L(sλi,worstt , λt, πθi,worst). (I.13)

Obtaining therefore the set of controller parameters that define δΘJ =
{θ1,worst, θ2,worst, ..., θn,worst}. This approach is computationally more tractable than
the parameter coverage approach. However, if sub-optimal solutions for each
optimization problem are found then the boundary defining Θj will define a sub-
optimal controller parameter space.
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4 Approach

In this section, we present two particle-based optimization algorithms for learning a
low-level controller sets. Particle-based algorithms [177] have been used in many
robotics applications including localization [178], PID controller tuning [179, 180],
and many more. For controller tuning, each particle represents a possible controller
parameter configuration θ and over time the algorithm learns an approximation of the
optimal controller parameters θ∗ on a given task. These algorithms typically vary in the
way the particles traverse/represent the parameter space. A major benefit is the small
number of hyper-parameters learning-based algorithms require compared to model-
based controller optimization and these parameters are generally well understood [42].
We evaluate the loss L for a particle configuration θ on a task T characterized by
operating condition λ using the notation L = eval(θ, T λ). The optimization algorithms
learn to minimize the loss obtained on a task by searching the controller parameter
space.

4.1 Particle Swarm Optimization (PSO)

Particle Swarm Optimization is a nature inspired population-based optimization
algorithm used to approximate the global optimum in a search space. Each particle in
theZ-sized population is initialized with a random position (controller parameters) and
velocity. The particles traverse the search space based on a global and local estimate
of the optimal parameter configuration at each epoch until eventually converging on a
single optimal solution [179]. At each iteration the velocity of each particle is updated
based on the previous velocity (vzt−1), a cognitive and social component (cog and
soc), indicating the current local and global estimate of the best performing controller
parameters. Both cognitive and social components are scaled by tune-able parameters
(c1 and c2 respectively) indicating their influence in the velocity updates as well as
a random component (r1 and r2). We use θzbest to indicate the local optimum for
each particle in the population and θgbest as the global optimum of all particles. The
parameter tuning for PSO is discussed in detail in [181]. The full PSO algorithm can
be seen in Algorithm 1 and returns a single approximation of the optimal controller
parameters for task T λ characterized by operating condition λ. One drawback of this
algorithm that it cannot find optimal solutions for non-stationary tasks. The algorithm
is repeated for each worst-case operating condition parameter to construct a set of low-
level controllers.
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Result: Approx. of optimal solution θ∗λ for Task T λ
Input: c1, c2, Z,maxIter, T λ;
initialize θZ0 and vZ0 randomly for Z particles;
for i = 1 to maxIter do

for z = 1 to Z do
cog = c1r1(θzbest − θzi−1);
soc = c2r2(θgbest − θzi−1);
// Velocity update ;
V z
i = V z

i−1 + cog + soc ;
// Position update ;
θzi = θzi−1 + V z

i ;
// Evaluate Particle ;
L = eval(θzi , T λ);
// Local Update ;
if θzbest > L then θzbest = L ;

end
// Global Update ;
update θgbest;

end
return θgbest;

Algorithm 1: Particle Swarm Optimization

4.2 Particle Filtering (PF)

Particle Filtering is a Monte Carlo-based method using the recursive computation of
relevant probability distributions using the concepts of sequential importance sampling
[42]. Instead of a velocity, each particle is assigned a weightwzi which is updated based
on the performance achieved by the particle configuration on a task. A Z-sized set of
particles is used to represent the probability density function of the optimal solutions
in the parameter space but the position (controller parameters) of the particles remains
fixed throughout the learning cycles. During each iteration, importance sampling is
used to sample aK-sized subset of particles, θki , based on their associated weights. The
cumulative performance LT of all particles on a task T is used to update the particle
weights after each iteration. This results in better-performing particles obtaining a
larger weight over time and after a fixed number of epochs, the best performing
controller parameters are the ones with the largest weights. A core difference between
the PSO and PF algorithms is that PSO returns a single controller parameter while
PF can have multiple equally weighted particles which represent a set of possible
controller parameters.
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Result: Extremes of Polytope Θ∗Λ
Input: θmin, θmax, σ, K, Z, maxIter, T , Λ ;
initialize Z particles, ΘZ , with uniformly distributed position over interval [θmin,
θmax] and wZ0 = 1/Z ;

foreach λi ∈ Λ do
// –Step 1: Particle Filtering– ;
for i = 1 to maxIter do

// Importance Sampling ;
θKi ∼ P (θz|wzi−1);
foreach θk ∈ θKi do

// Evaluate Particle ;
L = eval(θk, T λ〉);
// Weight Update ;
wki = L/LT ;

end
update LT ;

end
Θλi = {θz ∈ θZ |wzi ≥ σ} ;
// –Step 2: Clustering– ;
ΘC
λi

= CLUSTER(Θλi)
// –Step 3: Convex Hull– ;
Θ∗λi = HULL(ΘC

λi
)

end
//–Step 4: Combined Convex Hull– ;
Θ∗Λ = HULL({Θ∗λ1

⋃ · · ·⋃Θ∗λJ})
return Extremes of Θ∗Λ

Algorithm 2: Clustered Particle Filtering

4.3 Clustered Particle Filtering (CPF)

In this section, we present our algorithm (Contribution 2), referred to as Clustered
Particle Filtering (CPF), used to find a sufficient number of low-level controllers for
all known operating conditions. The algorithm combines three well-known algorithms,
namely Particle Filtering [42], DBSCAN [182] (clustering), and Quickhull [176]
(convex hull), in a novel way.

The algorithm is divided into three main steps, which are repeated for every operating
condition λi ∈ Λ followed by a final step. First, we run PF to get an M-
sized set of N -dimensional controller parameters that perform above a threshold σ,
denoted Θλi = {θ1, · · · , θM}. Here, σ is a tunable hyper-parameter indicating the
maximum acceptable loss on a task. Secondly, we remove outlier configurations using
a clustering algorithm such as DBSCAN, resulting in a dense cluster of controller

Autonomous System Control in Unknown
Operating Conditions

174 Yves Sohège



I. LEARNING SUFFICIENT LOW-LEVEL
CONTROLLER PARAMETERS FOR BLENDED
CONTROL IN NON-STATIONARY
CONDITIONS 5 Application Domain: Quadcopter

parameters ΘC
λi

= CLUSTER(Θλi). Thirdly, we construct the convex hull around the
cluster using the Quickhull algorithm denoted Θ∗λi = HULL(ΘC

λi
), which represents

an N -dimensional polytope of controller parameters that perform above threshold σ
on a task characterized by operating condition λi.

After repeating this process for every operating condition, the final step is combining
the N -dimensional polytopes found for J operating conditions resulting in a new
polytope that contains controller parameters for all known operating conditions,
Θ∗Λ = HULL({Θ∗λ1

⋃ · · ·⋃Θ∗λJ )}. When the extremes that define Θ∗Λ are used
as low-level controllers for a blended control architecture, the possible low-level
controller combinations contain parameter configuration for all known conditions and
hence represent a sufficient controller set. For now, we manually select the extreme
parameters and will integrate automatic extremum-generation methods in future work.
The full algorithm can be seen in Algorithm 2.

The filtering, clustering, and convex hull algorithms used in our approach can be
replaced with an equivalent algorithm. The novelty of our approach lies in how these
methods are combined to find the controller set. The hyper-parameter tuning for each
of these algorithms is also well understood. Our approach only requires the tuning of
one additional parameter, σ, which indicates the performance threshold on a given task
and is dependent on the task itself.

5 Application Domain: Quadcopter

This section describes the application domain that we use to illustrate our approach,
the quadcopter UAV. Quadcopters and other unmanned aerial vehicles have become
increasingly popular due to their immense application potential in fields like
transportation, reconnaissance [183], search and rescue [184], drone racing [185],
precision agriculture [186] , forestry [187] and many more. The physics of these
vehicles are well understood with a wide variety of low-level control architecture
and models are openly available [188, 189]. Failures in UAVs can have catastrophic
consequences which makes fault tolerance for these vehicles of paramount importance
[190].

5.1 Dynamics

The quadcopter airframe dynamics are modeled based on the UAV model presented in
[191]. The quadcopter is composed of a central hub with four arms extending radially
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and a motor at the end. The derived body forces considered are:

Fb = FM + FD +mgRIBez, (I.14)

where Fb ∈ <3 is the resulting force acting on the body frame, FM ∈ <3is the resultant
force generated by the motors, FD ∈ <3 is the drag force resulting due to the movement
of a UAV through the air,m is the mass of the UAV, g is the gravity acceleration,RIB ∈
<3 is the rotation matrix from the inertial frame to the body frame, and ez = [0 0 1]T .

The rotation matrix is calculated based on the Euler angles [φ, η, ψ] [191]. The order
of rotations from the inertial frame to the body frame considered in this work is yaw
(Z)-pitch (Y)-roll (X) assuming the UAV is moving forward in the positive X direction.
The equations of motion derived from equation (I.14) are

v̇b = 1
m

(FM + FD) + gRIBez −wb × vb (I.15)

ẇb = I−1
b (MM −wb × Ibwb), (I.16)

where vb ∈ <3 and wb ∈ <3 represent the linear and angular velocity vectors of the
UAV in the body frame,MM is the torque generated by the motors, and Ib ∈ <3×3 is the
inertial matrix of the UAV. Next, we describe how each force and torque is calculated.

The four rotating motors including propellers are used to generate motor forces FM
and torques MM . For each motor i, the force and torque generated are given by

FMi
= cTω

2
Mi

(1− γi) (I.17)

MMi
= cQω

2
Mi

(1− γi) (I.18)

where cT is the coefficient of thrust and cQ is the torque constant. The net force applied
to the airframe is the summation of the forces generated by the motors. Rotor faults
represent a partial or full loss of effectiveness (LOE) denoted by γi ∈ [0, 1], where 1
indicates full failure and 0 normal operation. The net torque acting on the quadcopter
arises from the aerodynamics (the combination of the produced rotor forces and air
resistances) applied to the vehicle.

Form drag is the most common and easily modeled aerodynamic effect. Form drag
arises due to the movement of a reference area through a fluid. The general expression
of the form drag force is

FDrag = −1
2ρCDAv2

b (I.19)
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where ρ is the air density, CD is the drag coefficient, A is the reference area that is
perpendicular to the velocity of the object vb. Drag force generated due to translation
of the quadcopter is given by

FD = −1
2ρCD

 Ayzvb,x|vb,x|
Axzvb,y|vb,y|
Axyvb,z|vb,z|

 (I.20)

where |.| is the absolute value (necessary since the aerodynamic drag always act in
opposite direction of the velocity vector), A represents the cross-sectional area of the
UAV in each plane, and vb,i represents the velocity of the i axis in the body frame. The
torque generated due to drag is considered negligible in this work.

Position and attitude of the quadcopter are estimated using on-board sensors subject to
noise. We model noise using a zero-mean gaussian distribution of varying magnitudes.
Position noise is added to x, y and z in meters and attitude noise to ψ, θ and ψ in
radians.

5.2 Control Task

The task of the quadcopter in this work is focused on trajectory tracking. A trajectory
is a temporally-indexed set of coordinates in 2D or 3D, denoted ζt over T time points.
We denote the reference (desired) trajectory as ζRt , and the executed trajectory as ζ̃t at
time t. The goal of a trajectory tracking task can be defined as minimizing the total
trajectory deviation error.

For the large-scale application of autonomous flying vehicles, there must be rules to
avoid catastrophic collisions. Federal agencies aiming to introduce regulations for
UAV traffic management are focusing on allocating 4D operational volumes that are
temporally and spatially separated for each vehicle to minimize the possibility of
collisions [192]. In the event of faults, the primary focus of the control system should
be to stay within the allocated operational volume as this minimizes the impact on the
surrounding vehicles. In this work, we consider the operational volume as a sphere
with radius R around each coordinate in the reference trajectory ζRt . This creates an
operational tube surrounding a trajectory, which can be seen in Fig. I.2. We can define
the number of steps outside the allocated operational volume as:

Definition 31 (Operational Volume Loss). Given a reference trajectory ζRt , the

executed trajectory ζ̃t and the radius of the operational volume R, we define the total
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Figure I.2: Example of Operational Volume. The red line shows a trajectory with the
green surrounding area representing the operational volume associated with it.

operation volume loss L0:T as :

L0:T =
T∑
t=0

Lt (I.21)

Lt =

1, if |ζRt − ζ̃t| ≥ R

0, otherwise
(I.22)

for a trajectory over time t = 0, · · · , T .

The objective for fault tolerant control of a quadcopter can be defined as minimizing
L0:T .

5.3 Control Architecture

Cascading control architectures have become the industry standard for commercial
quadcopters due to their well-understood nature [193]. Position control and attitude
control are separated into subsystems: the outer (position) control loop generates
the required attitude reference and the inner (attitude) control loop maps these to the
required torques and forces. A control allocation algorithm determines the reference
rotor commands based on the torques and forces. The state vector of the quadcopter
is defined as st = [x ẋ y ẏ z ż φ φ̇ η η̇ ψ ψ̇ ], where x, y, z indicate the position in
space and φ, η, ψ the roll, pitch and yaw angles. The actions consist of the four motor
throttle commands at = [U1, U2, U3, U4]. The system evolves according to:

st+1 = T (st, λ,abt) (I.23)
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Figure I.3: Quadcopter cascading control architecture. The learning focus of this
article are the roll and pitch PD controller sets.

abt =
J∑
j=1

ϕjπθj(st), (I.24)

where abt is the blended control action of J controllers at time t, such that
∑J
j=1 ϕj = 1

and ϕj ∈ [0, 1]. We use PID and PD controllers for the outer and inner control loop
respectively which is a well known quadcopter control configuration [194]. The full
modeling details and dynamics of cascading PID control of a quadcopter can be found
in [194] and are omitted for brevity. The important factor is the dimensionality of
the attitude controller parameters as these parameters are the learning focus of this
article. In this control configuration, the roll and pitch controllers are 2-dimensional,
i.e. θ = [Kp, Kd]. Since quadcopters are symmetric, both roll and pitch controller uses
the same PD gains. The hierarchical control architecture can be seen in Fig I.3. CPF
learns a polygon, while PSO learns a point, for each operating condition.

5.3.1 Learning Attitude Controller Sets

The list of operating conditions and corresponding parameters can be found in Table
I.1. For the tuning process, PSO uses the worst-case parameter (λmaxi ) and CPF
randomly samples from the continuous parameter range (λmini ≤ λi ≤ λmaxi ) at
each epoch. The minimum for each parameter is 0 and represents nominal conditions,
λmini = λ0. The discrete partition seen in Table I.1 is used in the next section and
added here for brevity.
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Table I.1: Quadcopter operating conditions indicated using sub-script and fault
magnitudes used in experiment section using superscript.

Operating Conditions Index λ1 λ2 λ3 λ4/max

Nominal λ0 - - - -
Attitude Noise (rad) λ1 0.15 0.3 0.45 0.6
Position Noise (m) λ2 0.9 1.8 2.7 3.6
Wind (m/s) λ3 3 6 9 12
Rotor LOE (%) λ4 5 10 15 20

We are interested in five different operating conditions, namely nominal, attitude
and position sensor noise, wind, and rotor loss of effectiveness. Traditional FTC
approaches optimize one controller for each worst-case operating condition, resulting
in the controller parameter set ΘPSO

Λ = {θ∗λ0 , θ
∗
λ1 , θ

∗
λ2 , θ

∗
λ3 , θ

∗
λ4}, where θ∗λi represents

the parameter configuration learned using PSO for each operating condition λmaxi ∈ Λ.

CPF finds a polygon for each operating condition represented by a set of controller
configurations Θ∗λi = {θ1, · · · , θJ}, where J controller parameters perform above
threshold σ for operating condition λi ∈ Λ. The operating parameters are sampled
randomly from the parameter range instead of considering only the worst-case.
The sets are combined as previously described to find the sufficient controller set
ΘCPF

Λ = {θ1, · · · , θM}, where M represents the number of extreme parameters that
cover the combined sets {Θ∗λ0

⋃Θ∗λ1

⋃Θ∗λ2

⋃Θ∗λ3

⋃Θ∗λ4}. In comparison to traditional
approaches that find a point, our approach constructs a polygon for each condition.
This allows our approach to ensure the parameter set is affinely independent. The
details of running PSO and CPF to obtain the low-level PD controller sets are presented
in the appendix for the interested reader. In the next section, we compare the
performance of the controller sets found PSO and CPF.

5.4 Simulator

We extend a python-based quadcopter trajectory tracking simulator [148] with the
operating conditions of interest i.e. rotor faults, wind disturbances, and sensor noise as
well as the operational volume functionality. We then create a wrapper to implement
the optimization algorithms around a single run of trajectory tracking simulation
parameterized by the roll and pitch PD controller configurations. The result of each
simulation is the number of steps outside the operational volume when using a given
PD configuration; the optimization algorithms aim is to minimize this. The full
codebase1 to run the experiments presented in this article is made available, and

1https://github.com/YvesSohege/Journal-RAS-Simulation
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requires only python to execute. Additionally, we provide video demonstrations of
the tuning processes used to obtain the controller sets in the repository.

6 Experiments

We demonstrate the feasibility and performance of our approach using the quadcopter
trajectory-tracking simulator. We present the controller sets learned using PSO (ΘPSO

Λ )
and CPF approach (ΘCPF

Λ ) and then compare the average performance of both sets
in a MMAC architecture over all operating conditions. We compare two supervisory
architectures, traditional switching with optimal FDI (unrealistic baseline) and uniform
randomized blended control (RBC). One drawback of our approach is that the resulting
controller set is not suitable for switched control, as the controllers that are found
are not fault specific. We hence omit switching using CPF controllers from the
experiments.

6.1 Controller Parameter Sets

We can visualize the PD parameter space due to its low dimensionality. In Fig. I.4,
we show the intermediate convex hulls (Θ∗λi ∈ Λ) learned using the CPF approach and
the manually selected extreme parameter set (ΘCPF

Λ , black diamond icon) to cover
the hull. We overlay the PSO controller set (ΘPSO

Λ , cross icon) and use colored
polygons/crosses to distinguish between the five investigated operating conditions.
Fig. I.4 (top) highlights the core concept of our approach - the construction of convex
hulls rather than point-based tuning. In this example, the convex hull of the five sub-
spaces ({Θ∗λ0

⋃Θ∗λ1

⋃Θ∗λ2

⋃Θ∗λ3

⋃Θ∗λ4}) can be represented using only three extreme
parameters compared to the traditional approach utilizing one controller per operating
condition. Fig. I.4 (bottom) highlights that any controller found using PSO could be
interpolated from the CPF controller set but not vice-versa. Further, the ΘPSO

Λ set is
affinely dependent, as the wind controller (blue cross) and position noise controller
(green cross) could be interpolated from the remaining PSO controllers. The point
parameters found using PSO are also contained within the corresponding convex
hulls, found using CPF, for each operating condition. This shows that a convex hull
based tuning method provides a more suitable basis to find the parameter set for a
blended control architecture (Contribution 3) and that the size of the controller set
can be reduced through the presented approach (Contribution 4). Our next step is to
investigate if this reduction causes a significant loss in performance.
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Figure I.4: Quadcopter attitude PD parameter space. Top: Coloured polygons
represent the subspaces Θ∗λi found through CPF for each operating condition. Diamond
icons represent ΘCPF

Λ and cross icons ΘPSO
Λ . Bottom: Shows the convex hull coverage

of the PD parameter space for each controller set.

6.2 Performance Comparison

We conduct two experiments to investigate the performance over fixed and continuous
environment parameters. For the first set of experiments, the parameter range for
each operating condition is divided into four fixed levels of increasing fault magnitude
indicated by λleveli ∈ Λ, where λ0

i represents nominal conditions and every level a 25%
increase in magnitude, which can be found in Table I.1. As a performance measure,
the average operational volume loss, Eq. I.21, over 100 random trajectories for each
level of each operating condition is used. We then compare the average performance
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achieved across all conditions. The second set of experiments compares the same
performance metric using a random environment magnitude, sampled uniformly from
the continuous environment parameter range λmini ≤ λi ≤ λmaxi . A Friedman test is
used to statistically compare the performance of the three architectures on 500 random
trajectories with randomized magnitudes for each operating condition.

The Friedman test validated that there was no statistical difference in the performance
achieved by the three architecture. This is visualized in Fig. I.5, which shows
the detailed performance of the three architectures for experiment 1. The average
performance over all operating conditions can be seen above each subplot and again
shows that all three architectures perform comparably. The X and Y-axis of each
subplot represent the level and type of the operating condition respectively. Each cell
represents the average loss (number of steps outside of the operational volume) for
each operating condition taken over 100 independent runs. We consider a task failed if
the loss exceeds 500 (σ = 500) and on average a trajectory is completed in 2000-3000
steps.

We provide boxplots for each operating condition from experiment 2 in the appendix.
Both experiments show that the controller set found using our approach can achieve
comparable performance to the traditional tuning approach with a smaller controller
set (Contribution 5). The CPF set performs slightly worse on average, and this is
attributed to the larger convex hull coverage but the overall impact on the control
task is not significant. It is important to note that this set of experiments serves as
an empirical demonstration of the feasibility of our approach on a complex relevant
system but we are not yet able to guarantee that the controller set found using our
approach is always smaller than the considered number of operating conditions. We
plan to investigate this in future work. However, we can guarantee that novel operating
conditions whose optimal controller parameters fall within the convex hull of the
existing controller set will not require additional controllers since a blended control
architecture can theoretically interpolate the required low-level controller from within
the hull. Our approach has an inherent trade-off over the size of the convex hull, the
number of extremal controllers, and the coverage of the selected controllers: a large
convex hull can cover more unknown operating conditions than a small convex hull,
but it sacrifices the additional loss incurred in known operating conditions.
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Figure I.6: Quadcopter attitude PD parameter space showing the convex hull coverage
of the PD parameter space for each controller set and the controllers found using PSO
on dual fault conditions.

6.3 Multiple Operating Conditions

We repeated the experiments with four novel operating conditions consisting of a
combination of two of the existing operating conditions. The baseline PSO controller
set is extended with four additional controllers for the new operating conditions. Fig
I.6 shows the controller parameter approximations found using PSO on dual fault
conditions and the convex hull coverage of the controller sets. The magnitude of the
operating conditions is reduced by half during the tuning process, as larger magnitudes
do not allow the learning algorithm to find a feasible controller. We compare a
switching architecture with optimal FDI and 9 low-level controllers ΘPSO−ext

Λ (4 single
fault, 4 double fault and 1 nominal controller), randomized blending using the single
fault PSO controller set (4 single fault and 1 nominal controller) and randomized
blending using the CPF controller set consisting of 3 controllers. The Friedman test
comparing the performance of the three architectures fails, highlighting a statistical
difference in the achieved performance. The detailed performance on each level of
the dual fault conditions, shown in Fig. I.7, demonstrates that the controller set found
using both approaches can provide fault tolerance to novel operating conditions as long
as the convex hull contains the required controller parameters. The wind and attitude
noise conditions together seem to be particularly challenging as all architectures fail
on the highest magnitude. These results demonstrate that adding more controllers
does not necessarily improve the overall performance, and the controller set obtained
through the CPF approach provides comparable performance with a significantly

Autonomous System Control in Unknown
Operating Conditions

185 Yves Sohège



I. LEARNING SUFFICIENT LOW-LEVEL
CONTROLLER PARAMETERS FOR BLENDED
CONTROL IN NON-STATIONARY
CONDITIONS 7 Conclusion

smaller number of controllers. We plan on investigating novel operating conditions
in detail in future work.

7 Conclusion

Traditional multiple model FTC approaches revolve around designing one controller
for every fault or disturbance considered at design time. While this approach has
been shown to work in practice for a limited set of known operating conditions, it
is impossible to consider every possible fault a priori. Convex hull-based tuning
methods are more suitable to sufficiently cover the controller parameter space, as point-
based estimation methods do not ensure that the parameter set is affinely independent.
This leads to significant growth in the size of the low-level controllers set when
using traditional point-based tuning approaches. In this article, we presented the
theory which allows a blended multiple model framework to complete a task in non-
stationary operating conditions. A novel learning-based framework is presented that
automatically finds a sufficient number of low-level controller parameters to solve a
non-stationary control task. The novelty of our approach is the construction of a convex
hull in the controller parameter space instead of using point-based estimation methods
to obtain the low-level controller set. By using the extreme parameters of the convex
hull as a controller set, our approach can reduce the number of low-level controller
parameters required to provide fault tolerance compared to point-based estimation.
The presented algorithm requires minimal additional hyper-parameter configuration,
as it consists of a combination of existing algorithms, including particle filtering,
clustering, and convex hulls, for which parameter tuning is well studied. We conducted
a thorough empirical analysis on a quadcopter trajectory-tracking task subject to faults
and disturbances. We showed that our proposed method can automatically learn a
controller set whose size is smaller than that defined through traditional point-based
tuning strategies, without incurring a significant performance loss. In future work,
we plan to integrate a learning-based supervisory controller that can learn how to
exploit the convex hull of the low-level controller parameter set for unknown operating
conditions and extend the presented algorithm with automatic extremum-generation
methods.
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8 Additional Experimental Details

Here we provide details on the parameters and configurations used for the
experiments. We refer the interested reader to the github repository :
https://github.com/YvesSohege/Journal-RAS-Simulation to find the required files to
replicate the experiments. Parameter details are summerized in Table I.3.

8.1 Trajectory details

We run both PSO and CPF using our quadcopter simulator and overlay the resulting
controller sets ΘPSO with the regions ΘCPF in Figure I.4. We use a randomized
reference trajectory ζR(t) over time points t = 0, · · · , T , consisting of one fixed
and two randomly sampled way-points in a 10m bounding box. The fixed way-point
represents a simple takeoff maneuver and the two randomly selected way-points ensure
low-level controllers are able to perform over a large variety of complex trajectories.
The operational volume radius R around a given trajectory is set to 1 meter. The
maximum number of steps is set to 3000 and a task is considered failed if the number of
steps outside the operational volume exceeds 1000. Details on the quadcopters model
parameters such as size and weight can be found in Table I.3. Video clips showing the
optimization process running for PSO and CPF on each environment is available in the
repository.

8.1.1 PSO Attitude Controllers

Particle-Swarm Optimization has been used to learn quadcopter PID parameters before
[179]. Each particle θi consists of a tuple representing a possible PD controller
configuration θit = (Kp, Kd), where Kp and Kd are proportional and derivative gain
parameters respectively. The performance of a particle is set to the loss defined in Eq.
I.21 when using a PD attitude controller defined by (Kp, Kd) on a random trajectory
tracking task under the worst-case fault scenario, λmax. The task is randomized to
generalize the performance over all types of trajectories, resulting in a better overall
controller configurations. A swarm of Z particles is initialized with randomized
PD configurations and velocities. At each iteration, all particle configurations get
evaluated on the task and each particle progresses towards the estimate of the optimal
PD controller configuration. This results in the particles converging on a single optimal
PD controller θ∗λi , where λi represents the environment that characterizes the task. We
define the PD controller set obtained by using PSO as ΘPSO = {θ∗λ0 , θ

∗
λ1 , θ

∗
λ2 , θ

∗
λ3 , θ

∗
λ4},

where the environment represented by λi can be found in Table I.1.
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8.1.2 PSO Parameter Details

The swarm size Z is experimentally tuned to 16, we found larger swarms did not
improve the quality of the result. The maximum number of iterations is set to 100 and
experimentally the particles converged after around 40-60 iterations. This is related to
the maximum allowed velocity which was set to 3 in our experiments and set according
to the size of the search space. A lower value results in a slower search as particles
need longer to traverse the space. The cognitive and social parameters are set to 2 and
1 respectively, which fall within the standard parameter range and are experimentally
tuned according to [195]. We run PSO 10 times for each environment and take the
average controller configurations found, which can be seen in Fig I.4. In total the PSO
experiments encompass around 25,000 individual quadcopter simulations. The PSO
process after 3 iterations and when converged can be seen for each environment in
appendix figure I.8.

8.1.3 CPF Attitude Controllers

Each particle consists of a possible PD controller configuration θi = (Kp, Kd) but
instead of a velocity we associate a weight wit with each particle. Particle filtering aims
to cover a PD parameter subspace with Z particles and randomly samples a K-sized
subset of the particles according to their current weights. Particles are evaluated on a
random trajectory tracking task and their weights updated based on the loss obtained
according to Eq. I.21. Importance resampling ensures that bad performing particles
get a progressively lower probability of being selected. One key difference to PSO
is that the fault magnitude λt used for each task is also randomized in the interval
λ0 ≤ λt ≤ λ4. Instead of converging on a single optimal solution, particle filtering can
have many equally optimal particles - resulting in a subset of optimal PD controllers.

8.1.4 CPF Parameter Details

We set the bounds of the PD parameter space θmin and θmax as 0 and 20. We use
400 uniformly distributed particles with equal starting weights. We set the sample size
to K = 20 which was determined experimentally to work best. Each CPF run takes
100 iterations totalling 2000 quadcopter simulations per environment. CPF is run 10
times on each environment for a total of 100,000 quadcopter simulations. After the
filtering process completes, DBSCAN is used with the previously defined parameters
on all particles whose average performance is below σ = 500. The resulting optimal
PD controller regions, indicated by colour for each environment, can be seen in Fig I.4.
The final clusters found and weights of each particle can be found for each environment
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Table I.2: Parameters used for experiment 1.

Parameter Label Value
PSO Z Swarm Size 16
PSO maxIter Stop criteria 100
PSO c1 Cognitive Term 2
PSO c2 Social Term 1
PSO Max velocity 3
CPF Z Population Size 400
CPF maxIter Stop criteria 100
CPF θmin Lower Bound 0
CPF θmax Upper Bound 20
CPF K Re-sample size 20
CPF σ threshold 500
CPF csize Min cluster size 4
CPF cε Cluster max. distance 1.2
Quadcopter Mass 1.2 kg
Quadcopter Propeller diameter 10 cm
Quadcopter Propeller pitch 4.5 deg
Quadcopter Arm Length 30 cm
Quadcopter Body 10 cm

in Figure I.9. We use DBSCAN [182], a well known and effective clustering algorithm
that requires two parameters. The minimum number of samples to form a cluster csize
is typically set to 2 ∗D, where D is the dimensionality of the samples; hence, for PD
tuning we use csize = 4. The maximum distance between samples to form a cluster, cε,
is empirically determined to be cε = 1.2.

9 Detailed Controller tuning results

9.1 Experiment 2: Additional Results

We compare the three architectures on each single fault operating condition over 500
random trajectories. The fault magnitudes are uniformly randomized over the entire
fault space. The results can be seen in boxplot form in Fig. I.10. We also conducted
a Friendman statistical comparison on the performance achieved by each architecture
and found no significant difference in the distributions.
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Figure I.8: Particle Swarm Optimization for quadcopter attitude PD controller gain
parameters under various fault conditions. 1) Attitude Noise : 0.6rad | 2) Position
Noise : 3.6m | 3) Rotor Loss of effectiveness : 20% | 4) Wind : 12m/s.
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Figure I.9: Clustered Particle Filtering for quadcopter attitude PD controller gain
parameters under various fault conditions. 1) Nominal Conditions | 2) Attitude Noise |
3) Position Noise | 4) Rotor Loss of effectiveness | 5) Wind
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Table I.3: Quadcopter Roll and Pitch PD controller sets found using PSO and CPF
approaches. Full set of environments can be found in Table I.1.

Controllers P-gain D-gain
PSO - Nominal (θ∗λ0) 16000 3000
PSO - Attitude Noise (θ∗λ1) 9000 3000
PSO - Position Noise (θ∗λ2) 13000 3000
PSO - Wind (θ∗λ3) 14000 4000
PSO - Rotor LOE (θ∗λ4) 17000 7000

PSO - Attitude Noise + Wind (θ∗λ1,λ3) 14000 7000
PSO - Attitude Noise + Rotor LOE (θ∗λ1,λ4) 13000 6000
PSO - Position Noise + Wind (θ∗λ2,λ3) 11000 3000
PSO - Position Noise + Rotor LOE (θ∗λ2,λ4) 17000 5000

CPF - C1 (θ1) 6000 2000
CPF - C2 (θ2) 19000 2000
CPF - C3 (θ3) 19000 9000

Figure I.10: Boxplots showing performance of each high-level architecture under
random magnitude operating parameters over 500 simulations.
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