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Abstract

A wireless sensor network can become partitioned due
to node failure, requiring the deployment of additional
relay nodes in order to restore network connectivity.
This introduces an optimisation problem involving a
tradeoff between the number of additional nodes that
are required and the costs of moving through the sen-
sor field for the purpose of node placement. This trade-
off is application-dependent, influenced for example by
the relative urgency of network restoration. We propose
two heuristic algorithms which integrate network de-
sign with path planning, recognising the impact of ob-
stacles on mobility and communication. We conduct an
empirical evaluation of the two algorithms on random
connectivity and mobility graphs, showing their relative
performance in terms of node and path costs, and as-
sessing their execution speeds. Finally, we examine how
the relative importance of the two objectives influences
the choice of algorithm.

Introduction
Wireless Sensor Networks consist of multiple sensing and
relay units which communicate with each other using radios,
exchanging information, making joint decisions on network
and sensing configurations, and transmitting their data over
multiple hops to one or more sink nodes which have access
to the wider world. WSNs are becoming increasingly impor-
tant for monitoring phenomena in remote or hazardous en-
vironments, including pollution monitoring, chemical pro-
cess sensing, disaster response, and battlefield monitoring.
As these environments are uncontrolled and may be volatile,
the network may suffer damage, from hazards, direct attack
or accidental damage from wildlife and weather. They may
also degrade through battery depletion or hardware failure.
The failure of an individual sensor node may mean the loss
of particular data streams generated by that node; more sig-
nificantly, node failure may partition the network, meaning
that many data streams cannot be transmitted to the sink.
This creates the network repair problem, in which we must
place new radio nodes in the environment to restore connec-
tivity to the sink for all sub-partitions.

There are four main subtasks in the problem: (i) deter-
mining what damage has occurred (i.e. which nodes have
failed and what radio links have been blocked); (ii) deter-

mining what changes, if any, have happened to the accessi-
bility of the environment (i.e. what positions can be reached,
and what routes are possible between those positions); (iii)
deciding on the positions for the new radio nodes; and (iv)
planning a route through the environment to place those
nodes. The problem thus involves both exploration and op-
timisation, and depending on circumstances may require the
placement of nodes before the changes to connectivity and
accessibility have been fully mapped. In this paper, we con-
sider the simpler problem in which we assume the explo-
ration tasks have already been completed, and so our aim is
to optimise our use of resources in the static fully observed
problem. We assume possible locations for new radio nodes
are limited to a finite set of positions where a node can be
securely placed and which can be accessed. Radio nodes are
expensive, and thus solutions which require fewer nodes are
preferred. Physically moving around the environment may
be expensive in energy use, may take significant time, or
may expose the agent placing the nodes to danger, and thus
solutions which allow cheaper path plans are also preferred.
Depending on the application, either one of the two objec-
tives may be more important: placing expensive nodes in, for
example, agricultural pollution monitoring favours solutions
with fewer nodes, while restoring connectivity during disas-
ter response favours solutions that can be deployed quickly
even if they require more nodes. Thus the network repair
problem is multi-objective.

Our contribution is the novel problem of simultane-
ous network connectivity restoration with constrained route
planning, in the presence of obstacles, and the develop-
ment and analysis of two heuristic algorithms. We assume
a known connectivity graph which includes all possible new
node locations and existing nodes, and where the edges indi-
cate that two positions could communicate with each other.
We also assume a mobility graph over the same set of posi-
tions, but where the edges represent a possible path between
two positions. We propose two heuristic algorithms which
integrate network design with path planning, and which
trade-off the objectives of node cost and path cost. Our first
algorithm, called Shortest Cheapest Path (SCP), prioritises
node cost, and first finds the minimum number of nodes re-
quired to heal the network; it then finds the cheapest path
which visits all the new node positions. The second algo-
rithm Integrated Path (IP) integrates the two objectives by



adding weights into the connectivity graph to approximate
the mobility cost of establishing each link, and then searches
for the cheapest tree that connects all existing nodes. We
conduct an empirical evaluation of the two algorithms on
random connectivity and mobility graphs. The SCP algo-
rithm tends to find graphs with fewer nodes, while the IP al-
gorithm finds slightly larger solutions but with cheaper mo-
bility costs. The SCP algorithm is significantly faster, partic-
ularly on dense graphs. Finally, we examine how the relative
importance of the two objectives influences the choice of al-
gorithm.

Preliminaries
An undirected graph G is a pair (V,E), where V is a set of
vertices, and E is a set of edges = {(x, y) : x ∈ E, y ∈ E}.
We can augment a graph with a cost function, which is nor-
mally either a vertex-weight w : V → N assigning a cost
to each vertex, or an edge-cost c : E → N assigning a cost
to each edge. A subgraph S of G is a graph S = (V ′, E′),
where V ′ ⊆ V and E′ ⊆ E. The vertex-weight of S is
then Σv∈V ′w(v), while the edge-cost of S is Σe∈E′c(e).
A path P from vertex x0 to xn in a graph G is a sequence
of edges < (x0, x1), (x1, x2), ..., (xn−1, xn) >, where each
edge (xi, xi+1) ∈ E. The edge cost of a path P is Σe∈P c(e).
A circuit is a path in which xn = x0. A cycle is a circuit
in which x0(= xn) is the only vertex that appears twice. A
connected graph is one in which there is a path between ev-
ery pair of vertices. The problem of finding a minimal cost
circuit in an edge-weighted connected graph is NP-hard. A
tree is a connected graph with no cycles, and a subtree of a
graph is simply a subgraph which is also a tree. For a graph
G=(V,E), a spanning tree is a subtree T = (V,E′). If we
select a subset τ of V (the terminals), then a Steiner tree for
τ in G is a subtree T = (V ′, E′) in which τ ⊆ V ′. In other
words, a spanning tree is a subtree that spans all vertices of
a given graph while a Steiner tree is a subtree that spans a
given subset of vertices. The problem of finding a minimal
Steiner tree in an edge-weighted graph is NP-hard, and re-
mains NP-hard even if all edge-costs are equal. If the edge
costs are all the same, then the problem is equivalent to that
of finding a minimal vertex-weighted Steiner tree with equal
costs.

A wireless network can be represented by an undirected
graph G=(V,E), where the vertices represent radio nodes and
the edges represent viable radio links between the nodes. We
assume all radio links are symmetric, and thus the graph is
undirected with at most one edge between any pair of ver-
tices.

The Network Repair Problem
We assume all possible accessible positions for the radio
nodes are known, as are the potential radio links between
them. Some connected components of the original network
will still exist, and our aim is to select enough new positions
for radio nodes to create a connected graph. We represent
this problem as a set τ , where each v ∈ τ is a connected
component, and a connectivity graph GC = (V,EC), where
τ ⊆ V and each vertex v ∈ V − τ is a possible location,

and each edge (vi, vj) ∈ EC represents a potential radio
link between the two positions. If vi ∈ τ or vj ∈ τ then
the edge represents a potential link from the new position to
any radio in the connected component. We assume all radios
have the same cost, and so we associate a unit vertex weight
function w with GC , such that w(v) = 1 for each v ∈ V ,
representing the cost of positioning a radio at that position.
Our first aim is then to find a Steiner tree S in GC for τ ; that
is, a connected set of vertices that includes all components
in τ . If we find a minimal Steiner tree (minimising w(S))
then we ensure as few radios are used as possible.

We assume accessibility paths are known between the dif-
ferent candidate radio positions, and that there is a known
cost of moving between any pair of positions, where the cost
may represent time, energy, distance or hazard. We represent
this as a graph GM = (V,EM ) with an associated edge cost
function c. For any set V ′ ⊆ V , a circuit P in GM that vis-
its all vertices in V’ represents a tour for the agent, and we
can compute the associated path cost. For any given Steiner
tree S = (V ′, E′C), a circuit P in GM that visits every ver-
tex v ∈ V ′ − τ then represents a possible tour in which
the agent can place all necessary radio nodes to reconnect
the network. Minimising c(P ) ensures that the cheapest cir-
cuit is selected. Note that the two objectives may conflict: a
larger Steiner tree may allow a cheaper path, and more ex-
pensive path may be required for a smaller Steiner tree.

We can now state the formal problem:

• PROBLEM: Network Repair.
• INSTANCE: A graph GC = (V,EC) with a unit vertex

weight function (w(v) = 1, for all v ∈ V ), a graphGM =
(V,EM ) with an edge cost function c, and a terminal set
τ ⊆ V .

• OBJECTIVE: Find a Steiner tree S for GC , where S =
(V ′, E′C), and a circuit P in GM , such that each v ∈
(V ′ − τ) appears in the path P, which minimises the pair
of objectives (w(S),c(P )).

As an example, Figure 1 shows a connectivity graph and a
mobility graph for a set of terminals τ = {S1, S2, S3} and
a set of candidate locations {A,B,C,D,E,F,K,S}. The mini-
mal Steiner tree in the connectivity graph has the vertex set
{S1, S2, S3, A,D,K, F}. However, this is not an easy tree
for the agent to create, since there is no short path between
D and K. The Steiner tree {S1, S2, S3, S,B,E, F,K,C} re-
quires two extra radios, but allows a shorter circuit. Which
of these solutions should be selected will depend on the rel-
ative cost of the radio nodes compared to the path cost. High
radio costs and low mobility costs will prefer the first tree,
while high mobility costs will prefer the second tree.

The Shortest Cheapest Path SCP Algorithm
Our first approach assigns an ordering to the objectives. We
first try to minimise the number of nodes required to connect
all terminals. Given a minimal set of nodes, we then try to
find the cheapest circuit for the agent that visits all of those
nodes.

Since the Minimum Steiner Tree in Graphs problem is
NP-Hard, we use a heuristic algorithm, adapted from (Wu
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Figure 1: Example connectivity graph and mobility graph.

Data: A graph GC = (V,EC), a set of terminals
τ ⊂ V .

Result: A Steiner Tree T = (V ′, E′C) for τ in GC .
begin

Gτ (τ, Eτ , wτ ) = metric closure(τ,GC);
Tτ = Minimum Spanning Tree(Gτ );
T ← 0;
for each edge euv ∈ E(Tτ ) do

if node u and node v are not connected in T
then
P = shortest path replace(euv);
if P contains less than two vertices in T

then
Add P to T ;

end
else

Add to T all edges in P which are not
already in the tree T, and do not
create a cycle in T;

end
if T is connected and includes all

terminals then
break;

end
end

end
return T;

end
Algorithm 1: Steiner-MST Algorithm

and Chao 2004) (Algorithm 1). First, we create a metric clo-
sure graph for the terminals, which is a complete graph over
the terminal nodes, where each edge has a weight equal to
the shortest path between the two endpoints in the original
graph. We obtain the metric closure graph by repeated ap-
plication of Dijkstra’s algorithm. We then find a minimum
spanning tree in that graph, using Kruskal’s algorithm. We
then consider each edge in that tree in turn and, if the end
points are not yet connected in the new tree, select the corre-
sponding shortest path from the original graph. If this short-

est path contains no more than 1 vertex already added, we
add all edges into the tree, with their required vertices; if
it contains more than 1 vertex already added, then we add
those edges that are not already in the graph, and their as-
sociated vertices if needed. The most expensive operation is
the creation of the metric closure graph, and thus the entire
algorithm has complexity O(|τ ||V |2).

For the problem of finding the shortest circuit (Algorithm
2), we take all the non-terminal nodes in the Steiner tree
created above, and then for those vertices create a metric
closure graph from the mobility graph GM . We then apply
(Lawler et al. 1985)’s Greedy-TSP heuristic which is based
on Kruskal’s algorithm - we sort the edges in increasing or-
der of cost, and we then iteratively add the lowest cost edge
which does not increase any vertex’s degree to 3, and which
does not create a cycle unless it completes the tour. The run-
time is again dominated by the time of building the metric
closure graph, i.e. O(|V ′||V |2).

Data: A set of vertices V ′, a graph GM = (V,EM , c)
Result: a tour in GM visiting all nodes in V ′
begin

G′′ = (V ′′, E′′, w′′) =
metric closure(V ′, GM );
P = Greedy TSP (G′′);
return [V ′′,P] ;

end
Algorithm 2: GreedyTour

Figure 2 shows the SCP algorithm being applied to the
example of Figure 1. First we create the metric closure on
the terminal nodes, then we create a spanning tree from that
(Figure 2(a)). We then extract the corresponding Steiner tree
from the connectivity graph (b). We extract the new loca-
tions (c), construct the metric closure for those vertices (d),
and then create the tour (e), which in this case requires the
agent to backtrack out from vertices D and K. This requires
4 new nodes in total, with a mobility cost of 36.

The Integrated Path IP Algorithm
The SCP algorithm prioritises the number of nodes over the
mobility cost. Our second approach attempts to combine the
two objectives, adding approximate mobility costs into the
connectivity graph, and then searching for a minimal Steiner
tree on this modified graph (Algorithm 3). First, for each
edge in the connectivity graph we compute the shortest path
between the vertices in the mobility graph using Dijkstra’s
algorithm, and add that as an edge cost to the connectiv-
ity graph. We then apply the SCP algorithm on this new
problem, with the difference being in the step where we
create the Steiner tree from the minimum spanning tree of
the metric closure, since the edges in the connectivity graph
now have non-uniform costs. The runtime is dominated by
the cost of building the initial weighted connectivity graph,
O(|Ec||V |2).

Figure 3 shows the IP algorithm being applied to the ex-
ample of Figure 1. First we create the weighted connectiv-
ity graph (Figure 3(a)), then metric closure on the terminal
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Figure 2: A sample execution of Shortest Cheapest Path

Data: A graph GC = (V,EC), graph
GM = (V,EM ), an edge cost function c for
GM , a set of terminals τ ⊂ V .

Result: Number of nodes placed and a tour in GM
visiting those nodes.

begin
GC∗ = (V,EC , w∗) =
w conn graph(GC , GM );
T = (V ′, E′) = Steiner MST (GC∗);
P = Greedy TSP (V ′ − τ,GM );
return [V ′ − τ ,P] ;

end
Algorithm 3: Integrated Path Algorithm

nodes, followed by its spanning tree from (b). We then ex-
tract the corresponding Steiner tree from the weighted con-
nectivity graph (c). We extract the new locations (d), con-
struct the metric closure for those vertices (e), and then cre-
ate the tour (f). This requires 6 new nodes in total, with a
mobility cost of 30.

Experiments
Both algorithms presented above are heuristic, and take dif-
ferent approaches to the multi-objective problem. There-
fore, we evaluate them empirically on randomly generated
graphs, to compare the quality of their solutions on both ob-
jectives, and also on their runtime. For the graphs, our aim
is to represent a physical area rather than abstract random
graphs, and so we overlay the graphs on a rectangular grid.
Connectivity is based on the distance between two locations.
To represent a landscape or a building interior, we add ob-
stacles into the grid, which may hinder or forbid access. The
mobility graph is then based on line-of-sight, with some lim-
ited ability to cross the obstacles.

We generate graphs within a rectangular area consisting of
n×m squares of size 10 units. Within this space, we place k
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Figure 3: A sample execution of Integrated Path

mobility obstacles, where each obstacle is a random polygon
contained within a randomly selected pair of neighbouring
cells. For each square, we generate a random position within
it; if that position is inside an obstacle, we discard it, other-
wise we designate it as a candidate location. Each obstacle is
given a random weight w between 0 and 1, representing the
difficulty it creates for the agent to traverse it, and such that
any obstacle with a weight greater than 0.2 is assumed to be
not able to be traversed. We consider two different problem
sizes: (i) a 5× 10 grid, and thus a maximum of 50 candidate
locations, and 15 obstacles, and (ii) a 10 × 10 grid, and thus
a maximum of 100 candidate locations, and 28 obstacles.

We then create the connectivity graph by adding edges
indicating that two candidate locations are within transmis-
sion range. For each pair of locations, if they are within 10
units apart, we add an edge with probability 0.85; if they are
between 10 and 20 units apart, we add an edge with proba-
bility 0.2. For the mobility graph, we add an edge between
any pair of locations which are less than 25 units apart and
which can be connected by a straight line that does not cross
an obstacle. The weight of the edge is simply the length of
the connecting line. In order to create more dense graphs
with varied mobility costs, we then add extra edges. For each
pair of nodes separated by a distance of less than 45 we se-
lect it with a probability of 0.2; if the straight line between
them traverses any obstacle with a weight greater than 0.2,
we discard it, otherwise the cost of the edge is the distance
plus 10*weight for each obstacle it crosses.

For each of the two problem sizes, for each data point,
we generate 50 instances, and present the average solution
cost (mobility cost, number of nodes needed) and runtime.
For each instance, we randomly select candidate locations
as terminals.

Figure 4 shows the number of nodes placed by each algo-
rithm, as we vary the number of terminals. As the number of
terminals to be connected increases, the number of required



nodes initially rises to a peak when 25% of the locations are
terminals, and then starts to decline: as we add more termi-
nals we require more nodes until the graph becomes suffi-
ciently dense that we can start to re-use the nodes to connect
multiple terminals. The IP algorithm requires more nodes,
although on average no more than one extra node.

Number of Nodes placed with different number of 
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Figure 4: Number of nodes placed with varied number of
terminals.

Figure 5 shows the mobility costs as we vary the number
of terminals. Again, the costs rise as we increase the number
of terminals to approximately 25% of the locations, and then
start to decline. IP always produces solutions with lower mo-
bility cost than SCP, ranging from a 10% to a 21% improve-
ment. Figure 6 shows the runtime for the two algorithms.
The SCP algorithm is significantly faster, with a speedup
factor between 10 and 30.

To decide which algorithm should be selected will require
greater knowledge of the relative cost of the new radio nodes
versus the mobility costs. We should also take into account
the runtime of the algorithm, since as the graphs grow in
size, the runtime will become more significant: waiting for
the algorithm to complete may remove any benefit gained
from a shorter path. If we regard the mobility cost as the
time to traverse the circuit, we can then consider the total
time for restoring the network as being the runtime of the
algorithm plus travelling time of the agent, plus any time
required to place the nodes in position. If we assume that
the agent is a small robot, then a typical speed might be
0.1ms−1, while the time to place a node might be 30 sec-
onds. Based on the results above, for a 25 terminal problem
in the 10×10 grid, where 1 unit is 1m, the total time to repair
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Figure 5: Mobility Costs with varied number of terminals.

the network will be 300/0.1 + 13.4*30 +21 = 3423 seconds
for the IP algorithm, while it will be 350/0.1 + 13.16*30 +
1 = 3896 seconds for the SCP algorithm. In this case, the IP
algorithm will reduce the total repair time by 473 seconds.
This reduced time may be significant for network repair dur-
ing an emergency. For faster moving agents (e.g. a motor ve-
hicle over rough terrain), if we assume an average speed of
4ms−1, the total repair time for IP is 300/4 + 13.4*30 + 21 =
498, while for SCP the total repair time is 350/4 + 3.16*30 +
1 = 483, and thus SCP is slightly faster. For a given problem
size, as the speed of the agent increases, we are more likely
to prefer SCP.

We also note that the number of terminals for a fixed size
problem does not have a significant impact on the runtime,
but that there is a significant difference as we increase the
network size. Therefore, we perform another experiment in
which we vary the density of nodes and edges. More specif-
ically, we vary the maximum number of nodes able to be
placed in a single grid square from 1 to 4. During generation,
for each square, we randomly select the number of nodes to
be placed, and then select their positions. As we increase this
parameter, the number of edges increases significantly, and
particularly so for the mobility graph. The results are shown
in Figure 7, where the x-axis again shows different number
of terminals. For the SCP algorithm the runtime appears to
scale with the square of the density parameter. For the IP
algorithm, the runtime appears to grow exponentially. Note
that the density parameter relates to the density of the nodes
packed into the same geographic area, and so a higher value
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Figure 6: Runtime with varied number of terminals.

involves more nodes as well has a higher average degree for
each node in the graph. The SCP algorithm complexity is the
product of the square of the number of nodes and the size of
the Steiner tree. As more nodes are added, the graph den-
sity increases, and we expect the Steiner tree to grow sub-
linearly. However, the complexity of the IP algorithm is the
product of the number of edges and the square of the num-
ber of nodes, and so increasing the density parameter should
have a more significant effect, as indicated by the increasing
runtime. In Figure 8 we examine the results of density pa-
rameter = 4 in more detail. Although the IP algorithm saves
about 20% of the mobility costs, it is two orders of magni-
tude slower in runtime, and requires slightly more nodes on
average.

Table 1 gives a summary of the conditions under which
we would prefer one algorithm over the other. For high node
costs, dense graphs, or fast moving agents, we expect to pre-
fer the SCP algorithm, while for cases where energy costs
are significant, or where agents are relatively slow, then the
IP algorithm will be preferred.

Algorithm IP SCP
Energy (Movement) y n
Total restoring time with low-medium speed y n
Total restoring time with high speed y y
Expensive node n y
Very dense network (d ≈ 4) n y

Table 1: IP or SCP.
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Related Work
The subject of network restoration for wireless sensor net-
works has been an active area of research. The different ap-
proaches can be classified as (i) deploying redundant nodes
so as to be able to cope with a pre-determined number of
failures, (ii) use of mobile (actor) nodes that can be moved
into position in order to restore connectivity, (iii) dispatch-
ing mobile nodes in a pre-emptive manner to avoid failures
in connectivity, and (iv) the deployment of additional nodes
to restore connectivity after failures have occurred. The lat-
ter work is closest to our research but is different in two
respects, firstly in that we optimise both the number of ad-
ditional nodes as well as the path length needed for their
deployment, and secondly in that we explicitly take into ac-
count the impact of obstacles that can alter both the available
paths and the ability of nodes to communicate directly. We
now provide a summary of the related papers.

In (Khelifa et al. 2009),(Almasaeid and Kamal 2009) the
goal is to deploy k-1 redundant nodes with the intention of
achieving k-connectivity, for example by placing nodes at
the intersection between the communication range of each
pair of nodes. The number of additional nodes required by
these approaches is prohibitive.

Several papers consider the use of mobile actor nodes
in network restoration, e.g. (Abbasi, Akkaya, and You-
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nis 2007),(Akkaya and Senel 2009),(Abbasi, Younis, and
Baroudi 2010),(Akkaya et al. 2010),(Sir et al. 2011). The
papers propose different strategies to choose the moving ac-
tors, for example, based on estimating the shortest moving
distance and/or degree of connectivity. The solution space is
quite limited, focused on dealing with a single failure and
re-connecting just two networks at a time, and with an as-
sumption that mobility is unimpeded by obstacles.

(Dai and Chan 2007) proactively deploys additional
helper mobile nodes, controlling their trajectories in re-
sponse to predicted network disconnection events. The work
assumes that the mobile nodes are always fast enough to
reach the desired destination in case of a predicted discon-
nection event, and that a full map of the physical terrain and
radio environment is available. Details of how to determine

the number of mobile nodes that are needed and the related
path planning are not provided.

(Senel, Younis, and Akkaya 2009) and (Lee and You-
nis 2010) assume multiple simultaneous failures involving
many failed nodes and a network that is partitioned into
many segments. The approach is to re-connect those seg-
ments in a centralized manner with the main objective of us-
ing the smallest number of additional nodes. (Senel, Younis,
and Akkaya 2009) uses a spider web approach to reconnect
the segments while (Lee and Younis 2010) forms a connec-
tivity chain from each segment toward a centre point and
then seeks to optimize the number of additional nodes that
are needed.

Conclusion
We have defined the new problem of simultaneous network
connectivity restoration with constrained route planning, in
the presence of obstacles. We formalise the problem as a
multi-objective problem of minimising a Steiner tree in a
connectivity graph and minimising a tour of the nodes in
that tree in a mobility graph. We present two heuristic algo-
rithms, Shortest Cheapest Path and Integrated Path. Shortest
Cheapest Path prioritises node cost, and first finds the mini-
mum number of nodes required to heal the network; it then
finds the cheapest path which visits all the new node posi-
tions. Integrated Path combines the two objectives by adding
weights into the connectivity graph to approximate the mo-
bility cost of establishing each link, and then searches for the
cheapest tree that connects all existing nodes. We conducted
an empirical evaluation of the two algorithms on random
connectivity and mobility graphs. The SCP algorithm tends
to find graphs with fewer nodes, while the IP algorithm finds
slightly larger solutions but with cheaper mobility costs. The
SCP algorithm is significantly faster, particularly on dense
graphs.

Immediate future work will involve developing a hier-
archical routing approach, which will allow us to handle
dense mobility graphs, by initially merging adjacent loca-
tion nodes into a supernode to reduce the complexity. Longer
term work will focus on expanding the problem to include
the simultaneous exploration of network connectivity and
mobility constraints as we optimise the node selection and
placement. This will require heuristic algorithms that trade-
off the cost of further exploration against the cost of placing
nodes early. We will also consider distributed algorithms, al-
lowing multiple agents and sensor nodes to collaborate to
determine the damage to the network. Finally, we aim to
tackle problems where the damage is continually changing,
and thus the solutions need to be continually regenerated.
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