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Abstract—HTTP Adaptive video Streaming (HAS) is the dom-
inant traffic type on the Internet. When multiple video clients
share a bottleneck link many problems arise, notably bandwidth
underutilisation, unfairness and instability. Key findings from
previous papers show that the “ON-OFF” behaviour of adaptive
video clients is the main culprit. In this paper we focus on
the network, and specifically the effects of network queue
size when multiple video clients share network resources. We
conducted experiments using the Mininet virtual network envi-
ronment streaming real video content to open-source GPAC video
clients. We explored how different network buffer sizes, ranging
from 1xBDP to 30xBDP (bandwidth-delay-product), affect clients
sharing a bottleneck link. Within GPAC, we implemented the
published state-of-the-art adaptive video algorithms FESTIVE
and BBA-2. We also evaluated impact of web cross-traffic.

Our main findings indicate that the “rule-of-thumb” 1xBDP
for network buffer sizing causes bandwidth underutilisation,
limiting available bandwidth to 70% for all video clients across
different round-trip-times (RTT). Interaction between web and
HAS clients depends on multiple factors, including adaptation
algorithm, bitrate distribution and offered web traffic load.
Additionally, operating in an environment with heterogeneous
RTTs causes unfairness among competing HAS clients.

Based on our experimental results, we propose 2xBDP as
a default network queue size in environments when multiple
users share network resources with homogeneous RTTs. With
heterogeneous RTTs, a BDP value based on the average RTTs
for all clients improves fairness among competing clients by 60%.

I. INTRODUCTION

Recent years have witnessed a tremendous rise in multi-
media communications and content sharing over the Inter-
net. Specifically, HTTP Adaptive Streaming (HAS) has been
adopted by the major video content providers because HTTP is
widely used, and is supported by Content Delivery Networks
(CDNs). This raises several concerns regarding the impact of
sharing network bottlenecks among HAS [1] and non-HAS
traffic [2]. When multiple video clients share a bottleneck link,
performance issues such as unfairness and quality instability
arise [1]. Additionally, when video traffic is mixed with
interactive traffic (e.g., VoIP or web), Mansy et al. [3] show
that a HAS client may saturate the network queue, causing the
bufferbloat effect for the VoIP client. Motivated by the issues
raised in previous studies, we seek an in-depth understanding
of bottleneck queue size selection on the performance of
Internet traffic under different operating conditions.

*Modified with Errata Changes

In HAS systems, each video clip is split into a series of
fixed-duration segments, the duration being typically 2-10 sec-
onds. Each segment is encoded into different representations
that have different data rates. The HAS client implements
an adaptation algorithm which takes into account the current
operating conditions in order to determine the appropriate
segment quality to select. The performance of HAS systems
is affected by many parameters including client-, video-, and
system-specific parameters. Client-specific parameters include
application buffer size and the design of adaptation algo-
rithm, video-specific parameters are mainly related to video
encoding parameters such as encoding rates, while system-
specific parameters include network delay, capacity, number
of competing streams, nature of competing traffic, and traffic
management policy.

Most of the proposals in the literature focus on the design
of video adaptation at the client [4]–[7] and overlook net-
work configuration. However, several recent studies [8], [9]
indicated that advanced traffic management techniques, such
as rate shaping, could improve the streaming performance
when multiple clients share a bottleneck link. However, such
techniques require changes to the configuration and operation
of routers, while today most routers still implement simple
forwarding techiques and FIFO queues. The size of network
queues plays an essential role in absorbing short packet bursts
and smoothing outgoing packet departures, but determining
the right buffer size can be challenging. In this study, we
extensively investigate the impact of dimensioning the network
FIFO queue size at the bottleneck link on the performance of
HAS and web browsing applications. To the best of our knowl-
edge, this paper is the first study that extensively investigates
the impact of network queue size on multiple HAS and non-
HAS clients sharing network resources.

In this work, we conduct our performance evaluation in
an experimental testbed that uses real video content and
Internet traffic. Our video clients use two state-of -the-art
streaming adaptation algorithms, namely: FESTIVE [5], and
BBA-2 [7], which we implemented in the open-source GPAC
video player. These algorithms represent two popular types of
adaptation philosophies, namely rate-based and buffer-based.
Our web clients browse the most visited 250 web-pages across
different user interests. Across a range of different settings we
investigated both video-only operation as well as mixed video
and web traffic.



Our experimental evaluations reveal many interesting obser-
vations. When multiple video clients compete for the bottle-
neck resource, we conclude:

- increasing the network queue size from the recommended
1xBDP [10] to 2xBDP improves both the average video quality
that is delivered and the system resource utilisation;

- when video clients have heterogeneous RTT delays,
employing larger network queue sizes assists the system to
improve its fairness. Note that this is a critical issue as some
content providers site their CDN distribution nodes close to,
or within, the network of the Internet service provider.

When multiple web and video users share a bottleneck link
we conclude:

- increasing the bottleneck queue size helps web clients that
compete with HAS clients by increasing their throughput and
decreasing the number of excessively delayed web pages, but
would have a scenario-dependent impact on the web page load
time.

In Section II, we present background and related work. Our
experimental methodology and platform is provided in Section
III, followed by performance results in Section IV and V.
Finally, Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

The majority of video streaming services, including
Youtube, Netflix, and Hulu, use HTTP adaptive video stream-
ing and thus it is common that multiple HAS clients share a
bottleneck link, along with other traffic. Several recent studies,
e.g. [1], [9], [11] blamed the client behaviour for frequent
quality switches and unfairness issues when multiple video
clients share a bottleneck link. The “ON-OFF” behaviour of
HTTP adaptive streaming clients in steady state is recognized
as the main source of the aforementioned issues [1]. In this
context, ON means that client is downloading a segment while
OFF corresponds to a client waiting to have sufficient space
in its buffer to request the next segment. In [11], TCP cwnd
issues are identified as an additional factor, leading to the
behaviour recognized as the “downward spiral effect”, which
can be mitigated through the use of larger segments allowing
TCP to have a better estimate of available bandwidth.

With the increasing popularity of video, its impact on other
traffic sharing a bottleneck becomes a concern. Video traffic
stands accused of triggering bufferbloat phenomena occurring
in the Internet [2]. This phenomenon occurs when large
network buffers get full with video packets causing unneces-
sarily high latency. This negatively affects the TCP congestion
avoidance algorithm, creating a standing queue, when the
number of outstanding packets in the network are larger than
BDP [12]. The number of surplus packets causes the delay,
which has a negative impact on interactive applications such
as web browsing, VoIP and video conferencing. Mansy et al.
[3] investigated the performance when one video client shares
a bottleneck link with one voice client and showed that HTTP
adaptive steaming application can cause bufferbloat and harm
other delay-sensitive applications sharing the same bottleneck.

Fig. 1. Testbed Topology

TABLE I
DIFFERENT PARAMETER VALUES FOR EXPERIMENTS

Parameter Default Range
N 6 2-8

RTT (ms) 40 20-160
C (Mbps) 6 6-30

Client Buffer (s) 60,240 60-640
Network Queue 1xBDP 1-30xBDP

Adaptive Queue management algorithms [13], notably Ran-
dom Early Detection (RED) and Controlled Delay (CoDel)
[12], have often been recognised as the solution for bound-
ing latency at the network queue. Although available in
core routers, complex and tedious configuration present a
formidable stumbling block, often leading to misconfiguration.
Instead, the popular FIFO drop-tail mechanism is still widely
used due to its inherent simplicity.

There are two well-recognized approaches for dimensioning
network FIFO queues, the rule-of-thumb [10] and the Stanford
rule [14]. The rule-of-thumb approach specifies that the bot-
tleneck queue size should equal the BDP (RTTxC, where
RTT is round-time-delay and C is the bottleneck capacity).
This rule is often applied at the edge part of the network,
where the number of flows and bandwidth capacity is relatively
small. The Stanford rule is recommended for a large number
of TCP flows (over 250) and very high speed links. Then the
recommended router queue size is BDP/

√
F , where F is the

number of TCP flows sharing the bottleneck link [14]. How-
ever, prior work has not investigated if these recommended
sizes are appropriate when video traffic dominates.

III. METHODOLOGY

In this section, we present our experimental methodology,
including details of our platform and key performance metrics.
Regarding notation, we use queue to refer to the bottleneck
link buffer and buffer to refer to the application buffer on the
client side.

A. Experimental Platform

In our experiments we use a common dumbbell topology,
depicted in Fig. 1. TABLE I shows default values and ranges
for key parameters used in the experiments. We consider N
clients sharing a bottleneck link and requesting their data from
a remote HTTP server. This topology is commonly used in
scenarios where multiple clients share network resources [1],
[3]–[7], [9]. Our platform is created using the popular open-
source Mininet system [15], which allows emulating large
networks in real-time. All the clients, server and switches are
modelled as Linux nodes within the Mininet environment.



We evaluate the streaming performance while varying the
bottleneck link queue size, bottleneck link bandwidth, and
the client-server RTT. We configure the bottleneck link using
netem/tc [16]. In our experiments, we vary the bandwidth
between 6−30Mbps and the RTT delay between 20−160ms.
These values are typical for broadband connections in Europe
[17]. Our bottleneck link is configured with a single FIFO
queue.

Our HAS client is based on a well-known open-source
player, GPAC1. In addition to its default adaptation algorithm,
we implemented FESTIVE [5] and BBA-2 [7], both well-cited
examples of state-of-the-art algorithms from the literature.
GPAC’s simple default algorithm requests the representation
whose rate is just below the throughput of the last downloaded
segment. The BBA-2 algorithm [7] mainly selects the next
segment representation by mapping the buffer level to a target
segment size. It also incorporates a throughput-based decision
in its “startup” phase while taking into account future video
segment sizes. The FESTIVE algorithm [5] is a rate-based
algorithm that uses a harmonic estimator for the network
throughput. It employs three components, namely, randomized
chunk scheduling (avoiding ON/OFF issues), stateful bitrate
selection (cautious up-switching) and a delayed update ap-
proach (trade-off between switching and stability). For all
algorithms, we consider 12 seconds of initial buffering and
4 seconds of rebuffering, when stalls occur. We consider
different application buffer sizes including 60− 640 seconds.
Typical buffer sizes observed in the literature vary from 30
sec [5] to 240 sec [7]. While 60s buffer is a typical buffer size,
the 640s buffer is selected purely to allow us to observe the
impact of eliminating “ON-OFF” behaviour on the streaming
performance.

We use eight clips randomly selected from a publicly avail-
able HAS dataset [18]. The dataset includes video resolutions
up to 1980 x1280 with ten quality representation rates (kbps):
235, 380, 568, 760, 1065, 1777, 2387, 3046, 3906, 4361, as
used by popular streaming services [11]. The segment duration
for all clips is 4 seconds, which again is commonly used by
popular services. All the experiments last for the duration of
clips, which are 16 minute long, served from an APACHE
server.

Our web clients are based on Firefox that is driven by
Selenium, a web browser automation tool2. A User typically
opens a page, spends some time on it (dwell time) before
proceeding to the next page [19]. The dwell times depend
on the type of the content and attention span of the user
[19]. Dwell times are modelled with a Weibull distribution,
whose scale parameter λ depends on the type of content,
as justified and detailed in [20]. In over 80% of their data,
dwell times are in the range between 2 and 70 seconds.
Our web pages represent the top 250 most visited pages in
the following categories [20]: Science, Travel, Recreation,
Computers, Entertainment, Finance, Relationships, Education,

1https://gpac.wp.mines-telecom.fr/
2http://www.seleniumhq.org/

Society, and Vehicles. These categories were taken from [20],
for which the authors have provided parameters in order to
generate appropriate dwell times. The HTTTrack tool3 is used
for downloading the entire webpages and storing it on our
own web server. The median size for all webpages is 4058
kB, while 1st and 3rd Quartile are 939.5 and 13007 kB,
respectively. Our web user randomly selects a page, persists on
it for some random time which depends on the content [20],
and then proceeds to request the following page. If a page
loading time is greater than 15 seconds the user abandons the
page, selecting the next one from the list. Generated dwell
times are bounded between 2 and 70 seconds.

B. Key Performance Metrics

Our main HAS performance metrics include player instabil-
ity (θ) [1], [5], unfairness (φ) [5], bandwidth utilisation (ϑ),
average quality representation rate (χ) and stall performance
(ψ).

The player instability metric captures the frequency of
performing quality switches and is evaluated as [1], [5]:∑k−1

d=0 | bx,t−d − bx,t−d−1 | ·w(d)∑k
d=1 bx,t−d · w(d)

, (1)

where k is the last 20 seconds, bx,t is the bitrate for client x
at time t and w(d) = k − d is a weight function for adding
a linear penalty for recent switches. Clients performing more
quality switches have higher instability values.

The unfairness metric captures the interaction between
streaming clients that are sharing the link and is estimated
as
√
1− J , where J is Jain fairness index [5]. Smaller values

indicate that clients fairly share the link.
The bandwidth utilisation metric captures the total amount

of bandwidth that all video clients are using. Even if they
have equal shares of available bandwidth, there is a chance
that they do not utilise the bandwidth efficiently. The average
bandwidth utilisation represents the percentage of bandwidth
used over the session lifetime and is estimated as the ratio
of the transmitted data to the maximum amount of data that
could have been transmitted during the session activity.

Stall performance is one of the most important factors
that can influence the Quality of Experience [21]. A stall
is experienced when the client is forced to pause the video
because it has insufficient data in its buffer. We capture stall
performance using a three-element tuple (s1, s2, s3), where
s1, s2, s3 respectively represent the percentage of clients ex-
periencing at least one stall, total numbers of stalls and total
stall duration.

For the web clients, we capture two key performance met-
rics: page-loading time (PLT) and the fraction of abandoned
pages.

The results shown represent the average of five runs, with
95% confidence intervals. In every run, each client randomly
requests a video clip from the server and starts at most 4
seconds (randomly selected) after the previous client.

3https://www.httrack.com/



IV. VIDEO TRAFFIC EXPERIMENTS

In this section, we investigate the performance when only
video clients share the bottleneck link queue. We vary different
parameters including the queue size, the link capacity, the RTT,
and number of clients.

A. Impact of Queue Size

We consider six video clients competing for a 6Mbps link
with a 40ms RTT. We vary the size of the network queue from
1xBDP to 30xBDP. The 30xBDP is selected purely to allow
us to observe the case where there would be no packet loss.

1) Bandwidth Utilisation: Fig. 2a shows bandwidth utili-
sation versus the queue size for GPAC default, BBA-2 and
FESTIVE with 60sec and 640sec client buffers. With the
1xBDP queue size (rule-of-thumb [10]) the link utilization is
70% on average. The impact of removing “OFF” periods (640s
application buffer) has a marginal positive effect on bandwidth
utilisation. For queue sizes ranging from 2xBDP to 20xBDP,
the bandwidth hovers around 85%. In the extreme case of
30xBDP, clients achieve the highest bandwidth utilisation of
around 92%.

2) Instability: Fig. 2b plots the instability metric versus the
queue size for different algorithms and buffer sizes. Increasing
the queue size has an insignificant impact on the instability of
FESTIVE except for the extra large queue size (30xBDP). This
implies FESTIVE would be more stable when the network
does not drop packets. We also noticed that the client buffer
duration marginally affects FESTIVE’s switching behaviour.
The queue size has a slight impact on the switching behaviour
of BBA-2. On the contrary, a larger application buffer signifi-
cantly improves BBA-2 switching behaviour. We believe that
with larger buffer sizes, BBA-2 has a larger cushion region and
hence performs fewer switches. When the application buffer
is small, then the cushion region for each nominal rate is also
small, forcing the algorithm to switch too often. To illustrate,
in the case of the 60 second buffer, clients are making on
average 200 switches per clip. The clients request a new rate
approximately every couple of segments, making them very
unstable. Hence, it may be unfair to draw conclusions on BBA-
2 performance with small or medium buffer sizes.

3) Fairness: Fig. 2c plots the unfairness metric versus
queue size for different algorithms and buffer sizes. We
observe that all tested algorithms achieve the smallest un-
fairness metric with extra large queue size. At the rule-of-
thumb size, the streaming algorithms show a higher level of
unfairness in comparison to slightly larger queue sizes (2-
6xBDP). Generally, FESTIVE is most fair. BBA-2 shows a
high sensitivity to the buffer size. For the large client buffer
BBA-2 shows a reduction in unfairness value by 50%.

4) Average Representation Rate: Fig. 2d shows the average
representation rate across different queue and buffer lengths.
All three algorithms request lower representation rates on aver-
age for the 1xBDP case. In the middle region (2-20xBDP), al-
gorithms show improvement, requesting on average 900kbps.
When the queue is large enough to eliminate the packet-loss
component at the bottleneck link, algorithms request higher

TABLE II
STALL PERFORMANCE ACROSS DIFFERENT QUEUE LENGTHS AND CLIENT

BUFFER DURATIONS

Algorithm Low Middle High
Default 60s (3,1,1) (5,31,38) (100,645,1348)

FESTIVE 60s (0,0,0) (0,0,0) (13,20,28)
BBA-2 60s (3,1,46) (0,0,0) (0,0,0)

Default 640s (3,7,44) (4,41,39) (100,642,1239)
FESTIVE 640s (0,0,0) (0,0,0) (0,0,0)

BBA-2 640s (0,0,0) (0,0,0) (0,0,0)

representation rates (averaging 1Mbps). The client buffer
impacts the average representation rate significantly, resulting
in higher rates when the client buffer duration is 60 seconds
and vice versa. This holds for all the algorithms. We believe
these results have roots in the algorithm design. When using a
large application buffer, clients access the network all the time,
causing it to estimate lower throughput, while in the case of
a smaller buffer, clients request segments at different times
(randomized scheduling component of the FESTIVE) which
leads to the estimation of a larger throughput values. BBA-
2 with a large buffer has slower up-switches because of the
larger cushion regions, which forces a client to download more
segments with lower quality before it can switch to higher
representation rates.

5) Stall Performance: Table II shows stall performance
for all three algorithms with two values for the client buffer
duration. Queue lengths between 2-20xBDP (Middle) are
merged and results shown represent the sum across all values
for each particular queue length. Configurations 1xBDP and
30xBDP are shown as Low and High, respectively. When the
queue length is big enough to accommodate all the outstanding
packets in the network, queueing delay negatively impacts the
stalls if the client algorithm is rate-based as in FESTIVE and
GPAC default. When the clients use a large buffer, FESTIVE
manages to stream all clips without a single stall. In the case
of BBA-2, small buffer and queue length can lead to one client
experiencing a relatively long stall.

Table III summarizes the key performance metrics for FES-
TIVE and BBA-2 for different queue sizes for RTT 40ms. In
this table, a small queue size corresponds to the 1xBDP case,
while the large queue size corresponds to the no-loss network
(30xBDP), and medium metrics are averaged for queue sizes
2-20xBDP. Each cell is coloured with one of the colours green,
yellow, and red, representing good, average and bad relative
performance, respectively.

Our key observations can be summarized as follows:
Observation 1: the queue size has limited impact on

instability and unfairness performance metrics for medium and
large queue lengths;

Observation 2: the rule-of-thumb queue size leads to a rela-
tively lower bandwidth utilisation and lower average streaming
rates, and has no performance merit for other metrics;

Observation 3: the best performance is attained when both
network queue and application buffer are large in size;

Observation 4: the performance degradation of low RTT
(Section IV-D) can be avoided by using a queue size larger
than 1xBDP.
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(b) FESTIVE
TABLE III

SUMMARY RESULTS (BW. UTILISATION - ϑ AVG. INSTABILITY - θ
AVG. UNFAIRNESS - φ AVG. RATE - χ STALL PERF. - ψ) ACROSS

DIFFERENT QUEUE SIZE REGIONS (LOW: 1XBDP, MID:
(2-20XBDP), HIGH: 30XBDP) AND 40MS RTT

Based on these results, the rule-of-thumb 1xBDP queue size
does not seem to be a good choice for HAS clients sharing
a bottleneck. Additionally, the increase in average rate and
bandwidth utilisation when using extra large queue sizes is
not significant in comparison to medium queue sizes. Hence,
we argue that a medium queue size strikes a sweet operating
point for video clients with homogeneous RTT times.

FESTIVE and BBA-2, represent two philosophies for rate
picking approaches: rate-based and buffer-based. Although the
scope of the paper is not driven by any conclusion regarding
what type of the algorithm is better, we found that using
a smaller buffer for BBA-2 leads to stability and fairness
problems. This is due to shrinking the cushion region in
the buffer. Hence, we expect that using a default 240sec [7]
would be ideal for buffer-based strategies. That said, using a
large buffer leads to inefficient use of resources if the user
prematurely abandons the session.

In the rest of the paper, we drop the evaluation of the GPAC
default algorithm because most of HAS players estimate an
average value for throughput samples rather than using raw
throughput values for driving their decisions. In addition, we
configure BBA-2 with a 240sec application buffer.

B. Impact of Link Capacity

In this section we explore how the performance of HAS
clients would vary for different bottleneck link capacity con-
figurations. We vary the bottleneck link capacity (6−30Mbps)
and investigate the impact on key performance metrics. Due to
space constraints, we provide a summary of key conclusions.

Firstly, using different bottleneck link capacities confirms
our previous findings. For all link capacity values and algo-
rithm type combinations, clients underutilise resources when
the network queue length equals 1xBDP, using only on average
70% of the link capacity.

The unfairness metric value does not change significantly
(less than 10% on average) across different network queue
lengths for any particular link capacity value. For our recom-
mended queue length of 2xBDP, the unfairness metric drops
by 80% and 60%, for FESTIVE and BBA-2 respectively, when
capacity increases from 6 to 30Mbps. This change is intuitive
as all clients stream with the highest rate. Additionally, insta-
bility drops by 90% and 50%, as the capacity changes from
6Mbps to 30Mbps for FESTIVE and BBA-2, respectively. This
happens because the client performs fewer switches as the gap
between subsequent quality-rates improves, for the rates higher
than 1Mbps.

Our results also show that increasing the network queue size
above 1xBDP results in quality improvement, which is more
pronounced as the capacity increases. For the 30Mbps case,
quality improves 40% and 45% for BBA-2 and FESTIVE,
respectively.

C. Impact of Changing the Number of Clients

In this section, we investigate the impact of changing the
queue size and number of clients on the performance of
HAS. We run experiments with default settings, as shown
in TABLE I, only changing the number of clients from 2
to 8 for the network queue lengths equal to 1 and 2xBDP.
Let Vi represent a scenario in which i HAS clients share the
bottleneck link. TABLE IVa and TABLE IVb show four key
performance metrics for FESTIVE and BBA-2, respectively,
for different Vi scenarios with network queue sizes of 1x and
2xBDP. In all scenarios, using a larger queue size enables
increasing network utilisation and achievable quality rate. For
FESTIVE, the average quality rate increases as the number
of clients increases. Similarly, bandwidth utilisation increases
by 17% and 12% for 1xBDP and 2xBDP, respectively, as the
number of clients increases from 2 to 8. This confirms results
from [4], where authors also show that FESTIVE utilisation
increases with the number of clients. The instability metric
doubles for both cases. Unfairness values increase two and
three times for 1xBDP and 2xBDP case, respectively. These
results are also consistent with results from [6] regarding
unfairness and instability trends, where bandwidth overesti-



TABLE IV
KEY PERFROMANCE METRICS ACROSS DIFFERENT NUMBER OF CLIENTS

1xBDP 2xBDP
# V2 V4 V6 V8 V2 V4 V6 V8
θ 0.06 0.09 0.1 0.12 0.053 0.13 0.1 0.11
φ 0.07 0.08 0.12 0.14 0.05 0.14 0.12 0.14
ϑ 57 63 69 74 72 75 82 84
χ 1802 1003 751 625 2246 1206 905 709

(a) FESTIVE

1xBDP 2xBDP
# V2 V4 V6 V8 V2 V4 V6 V8
θ 0.02 0.05 0.06 0.08 0.02 0.04 0.05 0.07
φ 0.09 0.27 0.28 0.26 0.07 0.21 0.27 0.25
ϑ 68 68 69 74 84 84 84 84
χ 1995 1097 780 638 2425 1336 910 711

(b) BBA-2

mation and bitrate levels were pointed out as the possible
root causes. We also believe that by increasing the number of
TCP connections, the requirement for a 1xBDP network queue
lessens, causing higher bandwidth utilisation. As showed in
[14], a large number of TCP connections do not require a
1xBDP network queue.

For BBA-2 in the 1xBDP case, the utilisation increases by
8% as the number of clients increases from 2 to 8. Note, that
BBA-2 achieves higher utilisation than FESTIVE for scenarios
with a few clients (2,4). When 2xBDP is used for network
queue size, the impact of the number of clients on utilisation
is not observed. For both cases, instability increases linearly
with the number of clients. In the case with only two clients,
BBA-2 achieves low unfairness (0.09 and 0.07 for 1xBDP
and 2xBDP, respectively). This value increases three times as
the number of clients increases from 2 to 4, for both cases.
As the number of clients increases, the impact of unfairness
is marginal for 1xBDP. The unfairness value peaks when 6
clients share resources, resulting in a 30% increase from the 4
clients case. One of the reason is spacing between subsequent
rates, where with 6 clients the gap is around 300kbps (clients
mostly choose between 765 and 1065kbps), which together
with segment size variation, prompts clients to pick a higher
rate. Because of the cushion space in application buffer, which
smooths delivery rates, these changes will not occur frequently,
but will force other clients to select a lower rate. With 4 clients
they are mostly selecting between 1065 and 1777 kbps on
average. As the distance between adjacent rates increases, the
impact of bandwidth estimation variation is less significant,
which forces clients to pick a higher rate more conservatively.
As a consequence, the unfairness metric decreases.

D. Impact of homogeneous RTT

In this section, we investigate the impact of varying RTT
on the performance of FESTIVE and BBA-2. As previoulsy
mentioned, it is important to note that low RTT for video
streaming is expected to be more common with the current
trend of bringing the content distribution network closer to
the edge of access networks.

We tested different RTT values including 20ms, 40ms,
80ms, and 160ms. For every RTT value, we investigated

TABLE V
AVERAGE UNFAIRNESS ACROSS DIFFERENT NETWORK QUEUE
LENGTHS (PRODUCTS OF BDP) FOR HETEROGENEOUS RTTS

Algorithm
Queue Length 2x 4x 6x 8x 10x 12x

BBA-2 0.60 0.43 0.37 0.34 0.30 0.30
FESTIVE 0.53 0.29 0.21 0.17 0.16 0.15

2xBDP 4xBDP 6xBDP 8xBDP 10xBDP 12xBDP0
50

0
10

00
15

00
20

00
Av

er
ag

e 
Qu

ali
ty 

Re
pr

es
en

ta
tio

n 
Ra

te

Queue Length

Client_1
Client_2
Client_3
Client_4
Client_5
Client_6

(a) FESTIVE

2xBDP 4xBDP 6xBDP 8xBDP 10xBDP 12xBDP0
50

0
10

00
15

00
20

00
Av

er
ag

e 
Qu

ali
ty 

Re
pr

es
en

ta
tio

n 
Ra

te

Queue Length

Client_1
Client_2
Client_3
Client_4
Client_5
Client_6

(b) BBA-2

Fig. 3. Average Quality Representation Rates for each client across different
network queue lengths for heterogeneous RTTs

the impact of varying the bottleneck queue size from 1xBDP
to 10xBDP. We only present our key findings due to space
limitations. For large RTTs (80ms and 160ms), BBA-2 and
FESTIVE show insignificant changes in bandwidth utilisation,
unfairness, and instability in comparison to the 40ms RTT
case. A slight drop in the average representation rate is
observed as the RTT increases. Additionally, a noticeable
drop in stalls is observed for 80ms case and no stalls are
encountered in the 160ms RTT case.

The 20ms RTT case shows a noticeable impact on both fair-
ness and stall performance. More specifically, 30% FESTIVE
clients encounter at least one stall for the 1xBDP case. Ad-
ditionally, the unfairness increased by 30% in comparison to
the 40ms case. Similarly, BBA-2 clients encounter a 30% and
13% increase in unfairness and number of stalls, respectively.
For larger queue sizes higher than 1xBDP, FESTIVE and
BBA-2 clients show very close performance metrics similar
to corresponding queue sizes for the 40ms case.

Our results indicate that the streaming performance degra-
dation could be avoided in the case with low RTT, by properly
dimensioning the bottleneck queue size.

E. Impact of heterogeneous RTTs

In practice, clients may not have homogeneous RTT values.
For example, with CDN nodes close to the access network
there will be lower RTT values for customers of the corre-
sponding video service when compared to other services that
are using further away servers. Thus we tested BBA-2 and
FESTIVE with 240 and 60 sec client buffers respectively, and
for six clients, competing for resources, with their RTT values
set to: 20,40,60,80,100,120ms. Experiments were repeated
with different network queue lengths. All network queue
lengths are estimated based on the RTT of the first client
(20ms). Hence, 4xBDP for the first client is 2xBDP queue
for the second client, which has 40ms RTT.

When the network queue length is set according to 2xBDP,
TABLE V, unfairness has the highest value. This means that
the quality rate varies significantly across clients, as depicted
in Fig. 3 for both FESTIVE and BBA-2. As the network queue
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Fig. 4. Web performance metrics for FESTIVE and BBA-2 vs. network queue
size

length increases, clients share resources more fairly. When the
network queue equals 12xBDP, unfairness drops significantly,
by 70% for BBA-2 and FESTIVE. For the range from 8 to
12xBDP, unfairness drops by around 10% on average, for both
algorithms.

When clients use FESTIVE, Fig. 3a, the client with 20ms
RTT streams at 2Mbps which is 6x higher than the sixth client,
who can only manage to use the two lowest rates. With BBA-
2 this is even more evident, where the first client manages
to stream at 2.2Mbps, 7x higher than the sixth client. When
the network queue length equals 12xBDP, the first client’s
quality rate drops by 60% and 50% for BBA-2 and FESTIVE,
respectively. For both algorithms, all clients stream at close to
the average quality rate. Starting from 8xBDP, the difference in
rates is 19% and 10% for BBA-2 and FESTIVE, respectively.

As our results show, clients with the smallest RTTs have
preferential access to network resources dominating all other
clients with higher RTTs. Content providers can take advan-
tage of storing their content closer to the end-user, in order
to achieve a better performance. 7xBDP represents average
network queue length when all RTTs are taken into account.
We argue that dimensioning the network queue length with
average RTT value will help improve the system fairness.

V. MIXED TRAFFIC EXPERIMENTS

The bottleneck link may be shared among different types
of traffic, including video, and interactive, delay-sensitive
applications. Hence, our next set of experiments considers a
mixture of HAS and web clients sharing the bottleneck link.
With six clients sharing the link, we consider scenarios with n,
where n ∈ 1..6, web clients and 6−n HAS clients. In the rest
of the paper, we use Mn to refer to sharing scenario with n
web clients. We again used the default simulation parameters
shown in TABLE I.

First, we considered M6 scenario;i.e. six web clients sharing
the link. We found that increasing the queue size, reduces
the PLT and the percentage of abandoned sessions to 10/11
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Fig. 5. HAS performance metrics with web traffic vs. network queue different
Y-aes ranges

and 1/3, respectively, as the network queue increases from 1x
to 2xBDP. We believe this is because small network queues
drop packets more frequently, causing TCP to retransmit lost
packets. This adds to the overall delay, causing the user to
abandon more web sites. Note that our user abandons the
webpage if it doesn’t load in 15 sec [20]. This result indicates
that larger buffers could also benefit web clients sharing a
bottleneck link. Next, we focus on mixed video and browsing
traffic scenarios, i.e., M1 - M5. Fig. 4 and Fig. 5 show the key
performance metrics for web and HAS clients, respectively,
versus the network queue size for M1 −M5 scenarios. For
web clients, we found that the percentage of abandoned pages
decreases as the queue size increases and when the number
of video client decreases as shown in Fig. 4b and Fig. 4d.
However, Fig. 4a and Fig. 4c suggest that the web PLT is
scenario-dependent. E.g., for the M2 scenario with 1xBDP,
PLT values drop for FESTIVE and BBA-2. Looking at the
video client’s rates, we notice that four video clients have simi-
lar rates as for M1 scenario, which has five video clients beside
one web client. Because of the gap between 1 and 1.7Mbps
rate, four clients don’t have enough resources to compete for
the next higher rate. As a result, the network queue is less
occupied with video traffic, allowing web clients to download
resources quickly. Fig. 5a and 5b show that the average video
rate of HAS clients increases with the number of web clients as
fewer HAS clients would be competing for the link. However,
the perceived average quality rate noticeably decreases as the
number of web clients increases in comparison to correspond-
ing V6−n scenarios. Fig. 5c- 5f illustrate that the unfairness



and instability are scenario-dependent as web clients may
change these metrics positively or negatively in comparison
to V6−n scenarios. We believe that such scenario dependency
is due to the interaction between the link capacity, number
of clients, and available video encoding rate. To illustrate,
fairness and instability changes differently across different Mn

scenarios in comparison to V6−n scenarios. In the M3 and V3
scenarios with 1xBDP for FESTIVE, median quality rate is
1Mbps. In M3 case, unfairness metric drops because 700kbps
generated by web clients (237 kbps per client), fills the gap
between 1065 and 1777kbps. This forces all the video clients
to stream at the 1Mbps. Without the web traffic, case V3, two
clients select higher rates, 1777 and 2335kbps, forcing third
client to use 1Mbps. This increases unfairness and instability,
which seems counter-intuitive. However, FESTIVE’s probe
component forces clients to periodically select a higher rate,
as a function of rate. For lower rates, the algorithm will try
next higher rate more often. This explains why instability
increases by 10%. For the 2xBDP case, the same pattern can
be observed, but because the larger network queue increases
available throughput, aforementioned interpretations shift to
scenarios M2 and V4, respectively. BBA-2 relies on buffer
levels to make a decision. When video clients operate in a
region around 1Mbps, the amount of web traffic helps to
decrease both instability and unfairness. This is a consequence
of slower buffer filling, which essentially causes clients to be
more stable and fair. When the number of web clients increase,
variability in perceived throughput increases and video clients
switch more often, increasing the unfairness metric.

VI. CONCLUSION

Selecting optimal network queue length can have a signifi-
cant impact on HTTP Adaptive video Streaming in scenarios
where multiple such HAS clients share a bottleneck. In this
realistic context, we studied the effect of network queue size.
Our experimental study shows that the recommended “rule-of-
thumb” for queue size can lead to underutilisation of network
resources, where clients use only 70% of available bandwidth.
We demonstrated that setting the buffer size to 2xBDP would
increase both system utilisation and average video quality rate
by 15% on average. Additionally, we show that increasing
the buffer size can also help to improve the system fairness
when the video clients have different heterogeneous RTTs. For
mixed traffic scenarios where video and web traffic share a
bottleneck, we also show that increasing the queue size would
reduce the percentage of abandoned web pages but its impact
on page loading times is scenario-dependent and would vary
depending on bitrate distribution, video adaptation algorithm
and offered web traffic load.

Future work includes testing different scheduling mecha-
nism and TCP variants and quantifying their impact on HAS
performance.
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