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Abstract: A panel of geochemical techniques is used here to investigate the taphonomy of fossil 28 

feathers preserved in association with the skeleton of the Jurassic theropod Anchiornis huxleyi. Extant 29 

feathers were analysed in parallel to test whether the soft tissues morphologically preserved in the fossil 30 

also exhibit a high degree of chemical preservation. Scanning electron microscopy (SEM) and energy 31 

dispersive spectroscopy (EDS) indicate that clays and iron oxide pseudomorphs occur in the surrounding 32 

sediment and also reveal the preservation of melanosome-like microbodies in the fossil. Carbon gradient 33 

along a depth profile and co-occurrence of carbon and sulphur are shown in the fossil by elastic 34 

backscattering (EBS) and particle-induced X-ray emission (PIXE), which are promising techniques for 35 

the elemental analysis of fossil soft tissues. The molecular composition of modern and fossil soft tissues 36 

was assessed from micro-attenuated total reflectance fourier transform infrared spectroscopy (micro-37 

ATR FTIR), solid-state 13C nuclear magnetic resonance (CP-MAS 13C NMR) and pyrolysis gas 38 

chromatography mass spectrometry in the presence of TMAH (TMAH-Py-GC-MS). Results indicate 39 

that the proteinaceous material that comprises the modern feathers is not present in the fossil feathers. 40 

The fossil feathers and the embedding sediment exhibit a highly aliphatic character. However, 41 

substantial differences exist between these samples, revealing that the organic matter of the fossil 42 

feathers is, at least partially, derived from original constituents of the feathers. Our results suggest that, 43 

despite the morphological preservation of Anchiornis feathers, original proteins, i.e. keratin, were 44 

probably not preserved in the 160-myr-old feathers. 45 

Key words: Anchiornis, fossil feathers, taphonomy, soft tissue preservation, dinosaur. 46 

 47 
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INTRODUCTION 49 

Preservation of soft parts (non-mineralized tissues) in fossil animals is relatively rare when considering 50 

the whole geological record. Soft parts of organisms are usually lost during the diverse degradation 51 

processes occurring during fossilization. Their constitutive labile organic compounds are usually too 52 

fragile to be preserved, compared to the ‘hard’ (biomineralized) parts, which are generally better 53 

preserved. However, some important fossil-bearing sites yield not only exquisitely preserved skeletons 54 

but also remains of soft tissues, such as skin, scales, hair or feathers (e.g. Allison & Briggs 1993; Zhu et 55 

al. 2005; Pan et al. 2013). Feathers, the epidermal appendages that form the external covering of modern 56 

birds, have been discovered preserved in close association with fossils of theropod dinosaurs in 57 

Konservat-Lagerstätten (localities that are characterized by the unusual quality of the fossils) from the 58 

Upper Jurassic and Lower Cretaceous of China (Xu et al. 1999, 2009, 2012; Hu et al. 2009; Godefroit et 59 

al. 2013; Chu et al. 2016) and Germany (Rauhut et al. 2012). During the last twenty years, Liaoning 60 

Province, in north-eastern China, has yielded well-preserved vertebrate fossils with soft parts (e.g. 61 

Benton et al. 2008; Kellner et al. 2010; Li et al. 2012). The most striking discoveries were exquisitely 62 

well-preserved feathered theropod dinosaurs, evidencing their relationship with modern birds. Since the 63 

discovery of the Early Cretaceous Sinosauropteryx prima (Ji & Ji 1996), many other feathered 64 

specimens have been found (Hu et al. 2009; Li et al. 2012; Xu et al. 2012, 2015). In the same way, the 65 

discovery of one of the most primitive birds, Archaeopteryx lithographica, associated with well-66 

preserved feathers, constitutes a gigantic step in the comprehension of bird and feather evolution 67 

(Christiansen & Bonde 2004). Interestingly, elongate filaments interpreted as primitive feathers were 68 

observed in ornithischian, i.e. non-theropod, dinosaurs (Mayr et al. 2002; Zheng et al. 2009). Recently, 69 

both ‘feather-like’ structures and scales were discovered together with remains of the middle Jurassic 70 
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neornithischian Kulindadromeus zabaikalicus collected from volcanoclastic deposits in Siberia 71 

(Godefroit et al. 2014, 2020; Cincotta et al. 2019). Recently, a small theropod dinosaur, the 72 

scansoriopterygid Ambopteryx longibrachium (Wang et al. 2019) from the Upper Jurassic of China, was 73 

described with membranous wings instead of feathered ones. This wing configuration was probably lost 74 

during evolution in favour of the feathered wing configuration that occurs in modern birds. 75 

In a recent study, Zhao et al. (2020) observed the structure of experimentally matured feathers and 76 

reported the fusion of barbules in the matured feathers. This result has implications in terms of feather 77 

taphonomy and evolution, for the absence of barbules in fossil feathers could be, according to the 78 

authors, due to their fusion during diagenesis rather than their true absence in the specimen. The addition 79 

of chemical analyses to this study would have probably allowed a better understanding of how 80 

maturation affects the preservation of biomolecules in feathers. 81 

Fossil feathers show a wide range of preservation degrees (e.g. Schweitzer 2011; Xing et al. 2016). The 82 

study of these diversely preserved structures is crucial for a better understanding of the taphonomic 83 

processes leading to their preservation. In most cases, feathers and other types of preserved soft-tissues 84 

were deposited in calm, low-energy environments (Kellner & de Almeida Campos 2002). They are 85 

found in diverse environmental settings such as shallow-marine (Barthel 1964; Heimhofer & Martill 86 

2007; Martill & Heimhofer 2007), lacustrine (e.g. Harms 2002; Zhou et al. 20ara10; Sullivan et al. 87 

2014), or terrestrial (Manning et al. 2013). Different modes of preservation occur for ancient soft 88 

tissues: carbonaceous films (e.g. Li et al. 2010; Lindgren et al. 2015), phosphate (Allison & Briggs 89 

1993; Briggs et al. 1993), pyrite (Briggs et al. 1991; Leng & Yang 2003; Farrell et al. 2013), clay 90 
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minerals (Gabbott et al. 2001; Martin et al. 2004), aluminosilicates (Butterfield et al. 2007) or a 91 

combination of these (Wilby et al. 1996).  92 

Feathers are epidermal appendages mainly composed of keratin (Lucas & Stettenheim 1972), which is 93 

present as two secondary structures, alpha-helixes and beta-sheets, corresponding to alpha- and beta-94 

keratin, respectively (Fraser & MacRae 2012). Alpha-keratin plays a hydrophobic role in avoiding water 95 

loss, whereas beta-keratin increases skin hardness (Gregg & Rogers 1986; Fraser & Parry 1996). 96 

According to Lucas & Stettenheim (1972), the amino acid content of keratin in modern bird feathers is 97 

rather homogenous in identical parts of a feather (e.g. in rachis of feathers belonging to the same 98 

species), although it varies from one species to another. Nonetheless, feather keratin always comprises 99 

high amounts of serine, glycine, proline, and lower quantities of valine, leucine, alanine and cysteine 100 

(O'Donnell & Inglis 1974; Arai et al. 1983, 1986; Gregg & Rogers 1986; Murphy et al. 1990; Staroń et 101 

al. 2011; Saravanan & Dhurai 2012).  102 

The potential of keratin to resist diagenetic processes is still poorly known. Saitta et al. (2017) 103 

performed decay and maturation experiments of various keratinous structures, which suggested that 104 

feather keratin would not survive diagenesis. Although the ultrastructure of feather keratin, i.e. fibrils, 105 

can be preserved (Lindgren et al. 2015), there is no direct evidence for the preservation of its 106 

proteinaceous compounds. Several immunohistological studies have suggested that keratin could be 107 

preserved (Schweitzer et al. 1999; Moyer et al. 2016; Pan et al. 2016), although this method remains 108 

highly controversial. By contrast, melanin (the natural pigment present in a variety of soft tissues 109 

including hair, skin and feathers) is considered to be more resistant to degradation and fossilization 110 

processes. Melanin has been unequivocally identified in various types of fossil tissues, such as fish eyes 111 



6 

 

(Lindgren et al. 2012), bird feathers (Colleary et al. 2015), non-avian dinosaur feathers (Lindgren et al. 112 

2015), mammal hair (Colleary et al. 2015) and frog skin (McNamara et al. 2016). 113 

Here, we investigate the ultrastructure and chemical composition of fossil feathers of a theropod 114 

dinosaur, Anchiornis huxleyi (YFGP-T5199), collected from Upper Jurassic deposits of the Tiaojishan 115 

Formation (Liaoning Province, China). Previous study of the same specimen focused on the 116 

identification of pigment remains (eumelanin), and evidenced the preservation of melanosomes in the 117 

feathers (Lindgren et al. 2015). We report new and complementary geochemical information about the 118 

preservation of macromolecular compounds in the fossil feathers using a range of analytical tools. The 119 

surrounding sediment and modern feathers were analysed in parallel to ascribe pristine constituents.  120 

Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) were used to 121 

identify and characterize the elemental composition of preserved pigment organelles and the 122 

sedimentary matrix. X-ray diffraction (XRD) was used to analyse the mineralogical composition of the 123 

samples in an attempt to understand the role of sediment mineralogy in the preservation of soft tissues. 124 

Ion beam analysis (IBA), is recognized as a promising archaeometric tool (Jeynes & Colaux 2016) and 125 

has recently been successfully applied to human bone analyses (Beck 2014). In this work, particle-126 

induced X-ray emission (PIXE) and elastic backscattering spectrometry (EBS) were used for the first 127 

time on fossil soft tissues to get insights into the heavy (PIXE) and light (EBS) in-depth elemental 128 

composition of the samples. This approach is innovative in the study of organic materials. Organic 129 

geochemistry techniques, micro-attenuated total reflectance fourier transform infrared spectroscopy 130 

(micro-ATR FTIR), 13C-Nuclear Magnetic Resonance (NMR), Pyrolysis gas chromatography-mass 131 

spectrometry in the presence of TMAH (TMAH-Py-GC-MS), were applied to characterize the functional 132 
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groups and other biomolecular components present in the studied samples. To our knowledge, the 133 

detailed chemical characterization by 13C NMR and Py-GC-MS of fossil feathers from a non-avian 134 

dinosaur has not been done elsewhere. 135 

 136 

MATERIAL AND METHODS 137 

 138 

Specimen information 139 

The studied specimen, Anchiornis huxleyi (YFGP- T5199) (Fig.1), is a basal Avialan (the description of 140 

the specimen is available in Lindgren et al. 2015, SI, pp. 18–23) that was collected from the Tiaojishan 141 

Formation in the Yaolugou locality (Liaoning Province, China), and belongs to the Yizhou Fossil and 142 

Geology Park in Liaoning. The Tiaojishan Formation consists of hundreds of meters of alternating 143 

sedimentary and volcanic beds (Yuan et al. 2005; Yang et al. 2006; Liu et al. 2012). Absolute dating on 144 

a laterally equivalent formation, the Lanqi Formation, indicates an age ranging between 165.0 ± 1.2 and 145 

153.0 ± 2.0 Ma (Zhang et al. 2008; Chang et al. 2009), which spans the Callovian-Kimmeridgian 146 

interval (Middle–Late Jurassic; Gradstein et al. 2012). YFGP- T5199 is embedded in thinly laminated 147 

carbonate sediments, corresponding to alternation of very thin marl and thicker clay laminae. These 148 

sediments were deposited in the context of a lake affected by episodic volcanic eruptions (Nan et al. 149 

2012). Recent U–Pb radiochronological analyses on zircons from the Jianchang locality indicate that the 150 

Yanliao Biota, that includes Anchiornis as well as pterosaurs and eutherian mammals, is Oxfordian in 151 

age (Chu et al. 2016). The plumage of the specimen studied herein is morphologically preserved as dark 152 

brown residues around the skeleton, especially around the tail and the forelimbs, and on the skull. 153 
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Sample description 154 

The studied samples consist of fossil feather fragments dissected from the posterior end of the tail (Fig. 155 

1, the dark area in the white box, top right) of YFGP- T5199, as well as fragments of the host sediment 156 

(Fig. 1, the light area in the white box). To test for possible chemical contamination of the fossil feathers 157 

by sediment, the sediment samples were analysed using the same methodology as for the fossil feathers. 158 

Two types of sediment samples were studied: (1) ‘host’ sediment directly in contact with the feathers 159 

from the tail (light area in white box on Fig. 1); and (2) ‘remote’ sediment located > 100 mm from the 160 

fossil on the same slab (yellow box bottom left on Fig. 1).  161 

Sample preparation 162 

Two modern brown wing feathers of Buteo buteo (buzzard, Aves: Accipitriformes; RBINS collection 163 

number: A4011A01; Cincotta et al. 2020, fig. S1) were analysed for comparative purposes. Different 164 

parts of the feathers, rachis and barbs, were analysed with IBA. The modern feathers come from a 165 

specimen that died naturally and was stored at –18°C at the Royal Belgian Institute of Natural Sciences 166 

prior to analysis.  167 

Two types of sample were collected on the fossil specimen: millimetre-sized samples for SEM and EDS, 168 

as well as centimetre-sized samples for the other analytical approaches. We took a total of 12 millimetre-169 

sized samples (Fig. 1) from different regions of the body of YFGP-T5199 with a sterile scalpel. The 170 

samples were mounted on double-sided carbon tape and sputter-coated with gold (BAL-TEC SCD 050). 171 

Centimetre-sized fragments of approximately 5 mm² and 2 mm thick, from fossil feathers (white box in 172 

Fig. 1) and sediment (yellow box in Fig. 1) were dissected with a sterile scalpel. Samples were cleaned 173 

with distilled water without any additional preparation prior to analysis.  174 
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Several points were analysed with IBA and micro-ATR FTIR on two centimetre-sized fragments 175 

containing both fossil feathers and their ‘host’ sediment, and one fragment of ‘remote’ sediment 176 

(Cincotta et al. 2020, figs. S1B, S2). Other centimetric samples from the same region were collected for 177 

13C NMR and Py-GC-MS (white and yellow boxes on Fig. 1). These samples were crushed and lipids 178 

were extracted in order to: (1) eliminate potential contaminants related to sample manipulation; and (2) 179 

concentrate macromolecular organic matter which mainly corresponds to proteins in modern feathers. 180 

Samples were ground to a fine homogeneous powder in an agate mortar. Lipid extraction involved three 181 

successive ultrasonications (10 min) in 15 ml of dichloromethane/methanol (2:1, v/v), at room 182 

temperature and centrifugation at 1921 g (10 min). The supernatant was removed and the pellet was 183 

dried under nitrogen and stored in the dark at 5°C prior to analysis.  184 

Analytical methods 185 

Samples were imaged under low vacuum with an environmental QUANTA 200 (FEI) scanning electron 186 

microscope (at an acceleration voltage ranging from 20 to 30 kV and working distances of 8 – 15 mm). 187 

Subsequent semi-quantitative EDS analyses (single point and mapping) were performed using either an 188 

environmental QUANTA 200 (acceleration voltage of 30 kV and working distance of 10 mm) or a field-189 

emission JEOL 7500F (acceleration voltage of 15 kV and a working distance of 8 mm). 190 

XRD analyses were carried out on both bulk rock and clay mineral with a Philips diffractometer using 191 

Cu Kα radiation. A tube voltage of 40 kV and a tube current of 30 mA were used. The goniometer 192 

scanned from 3° to 70° (2θ) for the bulk rock and from 3° to 30° (2θ) for clay minerals. The clay 193 

minerals (<2 µm fraction) were isolated by successive centrifuging after decarbonatation of the crushed 194 

rock with 1N HCl. The preparation was mounted on glass slides and treated according to the three 195 
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following protocols: (1) natural (air-dried); (2) ethylene-glycol solvation; and (3) heated at 490°C for 2 196 

h. Clay minerals were identified according to the position of the (001), or (0001), series of basal 197 

reflections on the X-ray diffractograms. 198 

EBS and PIXE measurements were performed using a 3 MeV proton (1H) beam from the Tandetron 199 

linear accelerator ALTAÏS (University of Namur). PIXE is highly sensitive to Na to U elements whereas 200 

EBS signals are enhanced for light elements (e.g. C, N and O) due to strong non-Rutherford cross-201 

sections. These two integrative methods, together, can identify almost all elements of the periodic table. 202 

The beam spot size was reduced to 0.5 mm in diameter to minimize topographic effects. Backscattered 203 

particles were detected using two detectors mounted at scattering angles of 170° and 165°, whereas the 204 

emitted X-rays were collected with an Ultra-LEGe (ultra low energy germanium) detector mounted at 205 

135°. Angles are given relative to the incident beam direction. A selective filter (6 µm of Al) was 206 

mounted in front of the Ultra-LEGe detector to lower the strong Si signal and therefore enhance the 207 

rather weak S signal observed in the fossil feathers. The modern brown feathers were analysed at two 208 

different locations (barb and rachis; Cincotta et al. 2020, figs. S1, S2). Two locations were analysed in 209 

the fossil feathers. The ‘host’ sediment was analysed at three different locations (at 1.7, 3.2, and 4.8 mm 210 

away from the fossil) and the ‘remote’ sediment at one location (Cincotta et al. 2020, fig. S2). All the 211 

samples were analysed using the same experimental settings. A certified reference material (BCR-126A 212 

lead glass from NIST) was analysed to: (1) calibrate the detectors (both EBS and PIXE); and (2) 213 

estimate the accuracy of the PIXE measurements. The EBS spectra were analysed with DataFurnace 214 

software (Jeynes et al. 2003) together with the cross-sections generated by SigmaCalc (Gurbich 2016) to 215 

derive the depth profiles of the major elements (for C, see Cincotta et al. 2020, fig. S4). The integral of 216 

C, O and Si depth profiles (integration limits set to 0–25 000 TFU1, or 0–3 µm considering a density of 217 
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2.65 g/cm³ for the sediment) yields the C, O and Si equivalent thicknesses given in TFU (details on the 218 

global uncertainty calculations can be found in Cincotta et al. 2020, table S1). The PIXE spectra were 219 

manipulated with GUPIX software (Campbell et al. 2010). The matrix composition to be used in GUPIX 220 

was determined by integrating the depth profiles of the main components observed by EBS (i.e. C, O 221 

and Si) on a given interval (0–100 000 TFU).  222 

Micro-ATR FTIR was performed on modern and fossil feathers using a Bruker Vertex 70 FTIR 223 

spectrometer (University of Hasselt, Belgium) equipped with a Hyperion 2000 microscope and MCT 224 

detector. The infrared spectra were collected in the mid-IR range, from 4000 to 600 cm-1, and 32 scans 225 

were acquired in attenuated total reflectance (ATR) mode (Ge –ATR crystal) with a resolution of 4 cm–1. 226 

FTIR spectroscopy was used on a modern buzzard feather (dark regions), one sample of fossil feather 227 

from the tail of A. huxleyi and the surrounding sediment, to identify the presence or absence of 228 

functional groups in their molecular composition.  229 

13C NMR is a spectroscopic method that documents the chemical environment of carbon in organic 230 

compounds. Solid state 13C NMR spectra of the lipid-free samples were obtained at 125 MHz (Bruker 231 

Avance 500 spectrometer) using a 4 mm zirconium rotor, with a cross-polarization (CP) sequence and 232 

magic angle spinning (MAS) at 14 kHz. CP-MAS 13C NMR spectra were acquired with contact time of 233 

1 ms and recycle time of 1s (fossil and sediment) or 3s (modern feathers). The use of a single contact 234 

time does not allow precise quantification of the identified chemical functional groups. Each spectrum 235 

was the result of 6 000 (modern samples) to 400 000 (sediments) scans.  236 

Curie point Py-GC-MS gives insight into the molecular composition of organic macromolecular 237 

materials through their thermal degradation into molecular building blocks that can be separated by gas 238 
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chromatography (GC) and further identified by mass spectrometry (MS). Tetramethylammonium 239 

hydroxide (TMAH) was used to enhance the thermal breakdown of macromolecules and induce in situ 240 

methylation of pyrolysis products, which, in turn, enhance their detection and identification in GC-MS. 241 

The samples were mixed with an excess of TMAH (25 wt % in methanol) in a 1:1 (wt/wt) ratio before 242 

loading in ferromagnetic tubes with Curie temperature of 650°C.  Masses of 2 mg were used for the 243 

modern samples, 6 mg for the fossil feathers, and 16 mg for the sediment. Curie point pyrolysis was 244 

carried out with a Pilodist Curie flash pyrolyser. Samples were heated at their Curie temperature for 10 s 245 

under a He flow of 1 ml/min. The instrument was coupled directly to a GC-MS system. The pyrolysis 246 

products were separated using a Trace Thermo gas chromatograph equipped with a Rxi5SilMS column 247 

(30 m  0.25 mm i.d., 0.5 µm film thickness). Helium was used as carrier gas at constant pressure of 15 248 

psi. The injector temperature was 280°C in spitless mode. The oven temperature was maintained at 50°C 249 

for 10 min and was progressively increased to 310°C at 2°C/min. Coupled to the gas chromatograph was 250 

a DSQ Thermo mass spectrometer with a heated interface (310◦C), electron energy of 70 eV and ion 251 

source at 220◦C, scanning from m/z 35 to 800 at 2 scans/s. Compounds were assigned on the basis of 252 

their mass spectra, comparison with the NIST library mass spectra, published mass spectra (Gallois et al. 253 

2007; Templier et al. 2013) and GC retention times. The molecular structure of all compounds present in 254 

substantial amount was investigated without any ion selection that could have biased interpretations. 255 

Institutional abbreviation.  NIST, National Institute of Standards & Technology, US Department of 256 

Commerce; RBINS, Royal Belgian Institute of Natural Sciences, Brussels, Belgium; YFGP, Yizhou 257 

Fossil & Geology Park, China. 258 

                     259 
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RESULTS  260 

 261 

SEM/EDS and XRD 262 

SEM of the fossil feathers revealed that they are embedded in a sedimentary matrix containing mainly 263 

quartz, carbonates, and phyllosilicates. The latter are organized in thin platelets oriented parallel to each 264 

other (Fig. 2A, B). A feather sample from the right wing of Anchiornis (sample 1 on Fig. 1) showed 265 

abundant rounded crystals that are present only beneath the surface. They occur mainly as framboids 266 

(Fig. 2C), but also as individual microcrystallites (Fig. 2D) and, in some cases, are associated with 267 

voids. Framboids are spheroidal or ovoid, 6–9 µm in diameter and contain dozens of euhedral crystals, 268 

750 nm in diameter. In contrast, individual cubic crystals are much smaller (about 500 nm³) and contain 269 

micro-crystallites (Fig. 2D). EDS analyses indicate that the sediment is composed of Fe, Si, O, Al, C, Ca 270 

(and Mn, K, Mg), probably indicating the presence of quartz, calcite, and various phyllosilicates. XRD 271 

analyses confirmed the presence of these minerals in the sediment (Fig. 3A). In addition, the XRD 272 

spectrum of the < 2 μm phase shows that expansive material, such as interstratified illite/smectite, is 273 

present in the sediment (Fig. 3B). Due to their characteristic framboidal shape and elemental 274 

composition, the crystal clusters observed beneath the fossil feather surface are attributed to diagenetic 275 

iron oxides or hydroxides. Indeed, although the framboidal habit is common for iron sulphides, the lack 276 

of S here shows they are rather iron oxide pseudomorphs probably resulting from the in situ weathering 277 

of pyrite framboids (Nordstrom 1982; Kaye et al. 2008; Wang et al. 2012; Blanco et al. 2013). These 278 

structures are associated with thin clay overgrowths (arrow in Fig. 2C, E), indicating that the iron oxides 279 

(or the preceding pyrites) precipitated first. Tiny stellate minerals were also observed and identified as 280 
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probable iron oxides by X-ray spectroscopy (Fig. 2F). The presence of calcium carbonates, feldspars 281 

(Fig. 2G) and quartz (Fig. 2H) in the sedimentary matrix was confirmed by X-ray spectroscopy.  282 

Elongate microbodies, 650–950 μm, and their associated imprints were observed in three samples (6, 9, 283 

and 12 on Fig. 1) collected from the anterior and posterior parts of the dinosaur tail (Fig. 4). Microbody 284 

imprints are abundant, tightly packed together and randomly oriented (Fig. 4A, B). They probably 285 

represent traces of melanosomes. Similar microbodies interpreted as melanosomes have previously been 286 

observed in feathers from the crest of this specimen (YFGP-T5199; Lindgren et al. 2015). Here, isolated 287 

elongate structures were observed (Fig. 4C). These fossil organelles are preserved within the thin clay-288 

rich sediment.  289 

Ion Beam Analysis: EBS and PIXE 290 

The great virtue of EBS is to be capable of yielding the elemental depth profiles non-destructively from 291 

the outermost microns of the sample with good sensitivity and depth resolution (Jeynes & Colaux 2016). 292 

A typical EBS spectrum obtained from the fossil feathers is shown in Cincotta et al. (2020, fig. S3) 293 

together with its best fit. The experimental spectrum was inverted to recover the elemental depth profiles 294 

(examples are shown for carbon in Cincotta et al. 2020, fig. S4). Integration of these elemental depth 295 

profiles allows derivation of the concentration of each element at a given depth. Figure 5A clearly shows 296 

that the C enrichment in the near surface region (c. 60%) decreases at increasing distance from the fossil 297 

feathers, reaching a minimum in the ‘remote’ sediment (c. 14%). Sample concentrations of O and Si 298 

(although less obvious) follow an opposite trend. The N content in the modern buzzard feathers is c. 20–299 

26%. The very low content of N in the fossil (c. 5%) and even less (under the limit of detection) in the 300 

remote sediment (Cincotta et al. 2020, fig. S3) precluded its depth profiling.  301 
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In contrast, EBS analysis of modern buzzard feathers shows homogeneous concentrations with depth 302 

(Cincotta et al. 2020, fig. S5). In the buzzard feathers, C content is about 60 at.%, while N and O are 303 

both around 20 at.% for the rachis and around 25 and 15 at.% respectively for the barbs. Typical PIXE 304 

spectra acquired from the fossil feathers, ‘host’ sediment and ‘remote’ sediment are shown in Figure 5B. 305 

The samples differ in the amounts of several elements present (Cincotta et al. 2020, tables S1, S2). Of 306 

particular interest is the S content: there are elevated concentrations of S in the fossil feathers (average 307 

1842 ± 208.5 ppm), less in the ‘host’ sediment (1162 ± 143 ppm), and much lower concentrations in the 308 

‘remote’ sediment (98 ± 35 ppm). The concentration of S in the fossil feathers is roughly 20 times lower 309 

(c. 0.2 wt.%) than in the modern bird feathers (c. 3.7–4.3 wt.%). The co-occurrence between S and C is 310 

also highlighted (Table 1). Both concentrations decrease with depth within the fossil feathers whereas 311 

the reverse situation is observed for Si and O. 312 

 13C NMR 313 

The 13C NMR spectrum of buzzard feathers (Fig. 6A) shows a complex signal in the aliphatic region, 314 

with well-resolved peaks between 10 and 65 ppm and a narrow peak at 173 ppm, due to carboxyl 315 

carbons, i.e. carboxylic groups and esters, and amides. Two additional, less intense, signals can be seen 316 

at 129 ppm and 158 ppm in the unsaturated/aromatic carbon region. In comparison to the spectrum of 317 

modern feathers, the 13C NMR spectra of the fossil feathers and their surrounding sediment show much 318 

simpler patterns (Fig. 6B, C). The spectra are similar to each other and both are dominated by a broad 319 

peak in the aliphatic region, maximizing at 30 ppm and thus indicative of long alkyl chains. Two 320 

additional broad signals contribute to the spectra. The first one occurs as a broad shoulder between 68 321 

and 80 ppm, in the O-alkyl C and N-alkyl C range, and the second one is a broad peak at 129 ppm, 322 

attributed to aromatic carbons.  323 
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Micro-ATR FTIR spectroscopy 324 

The micro-ATR FTIR spectra of the theropod feathers, the embedding sediment and the modern buzzard 325 

feather (dark regions) are shown in Figure 7. 326 

The spectrum of the dark region of a modern buzzard feather shows characteristic bands of secondary 327 

amides (as in proteins and polypeptides) at 1628 cm–1 (C=O stretch of Amide I), 1531 cm–1 (C–N 328 

stretch, Amide II) and 1239 cm–1 (N–H in plane bending coupled with C–N stretch, Amide III). Broad 329 

bands around 3274 and 3125 cm–1 can be attributed to the N–H stretching of secondary amides. The 330 

bands at 2961, 2922 and 2852 cm–1 are assigned to the C–H stretching of methylene and methyl groups. 331 

These two spectra are very similar and no significant differences could be found between IR response of 332 

the dark and white regions of the same feather.  333 

The spectrum of the fossil feathers has a different pattern but some similarities with the modern buzzard 334 

feather appear. The distinct bands at 2920 and 2851 cm–1 can also be attributed to C–H stretching of 335 

methylene and methyl groups.  These associated bands are also present in the IR spectrum of the 336 

surrounding matrix but with different relative intensities. A broad region around 3300 cm–1 is present, 337 

although much less marked, and is indicative for O–H stretching as found in carboxylic groups and 338 

alcohols.  In the spectra of the fossil feathers, a broad band at about 1560 cm–1 can be attributed to 339 

carboxylate. This band is not present in IR spectrum of the sediment. Another broad band around 1412 340 

cm–1 is found in the spectrum of the fossil feathers and might be related to the presence of CaCO3 341 

overlapping with C–H bending vibrations at 1460 and 1380 cm–1 (Andersen & Brečevic 1991; Krӧner et 342 

al. 2010; Kiros et al. 2013) . This is also confirmed by the presence of weak bands at 873 and 718 cm–1. 343 

The IR spectrum of the sediment shows a similar, but less defined, absorption band between 1415 and 344 
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1463 cm–1. The IR spectrum of the fossil feathers and its surrounding matrix both show a narrow band at 345 

1260 cm–1 that could be attributed to the Si–CH3 vibrations. Both spectra show an intense broad band at 346 

1013 cm–1 together with the weaker bands at 873 and 797 cm–1 related to the sedimentary matrix (clay 347 

minerals, quartz, silicates, Si–O stretching). The IR spectrum of the sedimentary matrix shows an 348 

additional band at 720 cm–1 that is also present, although very weak, in the fossil, indicating long-chain 349 

alkyl groups (CH2 rocking vibrations). All the peaks mentioned above are absent in the IR spectra of the 350 

modern feather. 351 

TMAH Py-GC-MS 352 

Pyrochromatograms were obtained for the three following samples: the modern and fossil feathers, and 353 

the ‘host’ sediment. In agreement with previous studies on bird feathers (Brebu & Spiridon 2011; Saitta 354 

et al. 2017), the pyrochromatogram of the modern feathers is dominated by cyclic molecules containing 355 

N, along with methylbenzene 1, methylbutane nitriles 2, 3 and cyclohexanedione 11 derivatives (Fig. 356 

8A). Detailed interpretation of mass spectral fragmentation patterns allowed identification of the major 357 

pyrolysis products (Table 2) and further assignment to possible source. Molecular structures are given in 358 

Appendix 1, with methyl groups added by TMAH indicated in bold. Products 6, 8, 10 result from direct 359 

methylation of alanine, valine and proline, thus pointing to a proteinaceous origin for the feathers. This 360 

is further supported by the occurrence in substantial amounts of alkylnitriles 2, 3 resulting from 361 

dehydration of amides involving isoleucine and leucine, respectively, and of methoxybenzenes 7, 9 362 

released through homolysis of the side chain of tyrosine (Ratcliff et al. 1974). Methylbenzene 1, pyrrole 363 

4 and ethylbenzene 5 are rather ubiquitous pyrolysis products in sedimentary organic matter. However, 364 

they can also be released upon pyrolysis of phenylalanine and serine (Gallois et al. 2007). Mass spectral 365 
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fragmentation pattern (base peak at m/z 82) suggests an origin from the side chain of histidine for 366 

compound 16. Similarly, compound 17 probably corresponds to a valine derivative as its mass spectrum 367 

is characterized by the loss of 42 amu (i.e. valine side chain). Dimethylcyclohexanedione 11 was 368 

reported as pyrolysis product of glycine (Moldoveanu 2009). Glycine is also present as its 369 

diketopiperazine 15 resulting from combined dehydration and cyclisation (Simmonds et al. 1972). The 370 

same mechanism involving two different amino acids (isoleucine-glycine) leads to another 371 

diketopiperazine 18 (Hendricker & Voorhees 1996). The formation of more complex diketopiperazines 372 

was proposed by Templier et al. (2013) from tripeptide units. A similar mechanism can be invoked for 373 

the formation of compound 19 from valine, as well as compounds 20 and 21 from serine and leucine 374 

(Table 2; Cincotta et al. 2020, fig. S6). Imidazolidinedione 12 probably results from the internal 375 

cyclization of tripeptide comprising an alanine unit as reported by Templier et al. (2013; Cincotta et al. 376 

2020, fig. S6). The formation of imidazolidinone 13 can be related to the decomposition of bicyclic 377 

amidine derived from valine as suggested by Basiuk & Navarro-González (1997; Cincotta et al. 2020, 378 

fig. S6). Another decomposition pathway of bicyclic amidine is probably responsible for the formation 379 

of imidazolidinone 14 from valine and possibly glycine (Templier et al. 2013). As far as we know, this 380 

is the first identification of such complex molecules (diketopiperazines from tripeptide and 381 

imidazolidinone from bicyclic amidine) in the pyrolysate of a natural sample.  382 

By comparison, pyrochromatograms of the fossil feathers and their ‘host’ sediment are simpler. They are 383 

dominated by n-alkane/n-alkene doublets (Fig. 8B, C), resulting from the homolytic cleavage of long 384 

alkyl chains. In the fossil feathers, these doublets comprise from 8 to 30 carbon atoms, and exhibit a 385 

smooth distribution except an intense C18 doublet. An additional series of fatty acid methyl esters with 386 

alkyl chain ranging from C8 to C30 and maximizing at C16 is also identified (Table 2). It results from the 387 
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release upon pyrolysis of a series of fatty acids that are methylated thanks to TMAH. In addition to these 388 

series, a methoxybenzene substituted by two methyl groups or an ethyl group 22 is detected in minor 389 

amounts, at the beginning of the pyrochromatogram. A trimethylbenzene and a methylated derivative of 390 

methoxyaniline 23 also contribute to this part of the pyrochromatogram. However, the most prominent 391 

pyrolysis product 24 corresponds to the C18 alcohol methylated through TMAH pyrolysis. 392 

The pyrochromatogram of the “host” sediment shares several similarities with that of the fossil feathers. 393 

Indeed, it is dominated by series of alkane/alkene doublets and fatty acid methyl esters. Although the 394 

distribution of the fatty acid methyl esters is similar in both samples, that of the doublets differs. Indeed, 395 

whereas their range (C8–C30) is similar, the maximum of the series appears at C15 in the sediment, 396 

instead of a marked predominance of the C18 in the fossil (Table 2). Moreover, when comparing the 397 

minor compounds eluting at the beginning of the pyrochromatogram, compounds 22 and 23 are common 398 

in both samples, whereas a higher number of alkylbenzene homologues occurs in the sediment. Finally, 399 

the contribution of octadecanol 24 is much lower in the sediment pyrolysate. 400 

 401 

DISCUSSION 402 

Ultrastructure 403 

Microbodies and elongate moulds are observed in feather samples collected at three different locations 404 

on Anchiornis tail. The elongate shape, parallel orientation and location of the microbodies within the 405 

feathers strongly suggest that they correspond to eumelanosomes. These pigment organelles are 406 

associated to brown, grey and black hues in modern bird feathers. The preservation of melanosomes, and 407 
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especially eumelanosomes, in dinosaur feathers is not uncommon. Such microscopic melanin-bearing 408 

structures have been described in other theropod dinosaurs, basal birds and isolated feathers (Li et al. 409 

2010, 2012; Zhang et al. 2010; Carney et al. 2012; Colleary et al. 2015; Pan et al. 2016; Hu et al. 2018). 410 

The chemical composition of these microbodies has been assessed in a previous study, confirming a 411 

melanosome origin (Lindgren et al. 2015).  412 

Recent taphonomic experiments in abiotic conditions suggest that the preservation of mouldic 413 

melanosomes requires interaction with an oxidant prior to maturation, and that the preservation of 414 

melanosomes is probably less frequent than the preservation of keratinous structures in fossil feathers 415 

(Slater et al. 2020). Interestingly, Anchiornis feathers contain both melanosomes and moulds. The nature 416 

of the former experiments does however not reflect the depositional and fossilization conditions of 417 

Anchiornis. 418 

 419 

Depth profiling, light and heavy element composition 420 

The C and N concentrations determined by EBS led to N/C ratios of 0.33–0.42 in modern buzzard 421 

feathers, and of 0.08 for the fossil, suggesting a marked relative decrease in N. The C concentration 422 

gradient observed by EBS in the fossil feathers of A. huxleyi strongly suggests that they are preserved as 423 

carbonaceous layers located at the uppermost part of the sample (i.e. 0–3 µm depth, given a rock density 424 

of 2.65 g/cm³) and suggests that fossil organic matter could have impregnated the sediment only in a 425 

nearby area. 426 

The PIXE spectra show elevated concentrations of S in the fossil feathers and, to a lesser extent, in the 427 

‘host’ sediment, together with very low concentrations in the ‘remote’ sediment. This suggests that S is 428 
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associated with the soft tissues. The fossil feathers are therefore preserved as a S-rich carbonaceous film. 429 

Substantial quantities of S are present in the modern buzzard feathers (43 070 ± 4236 ppm in the brown 430 

barbs and 37 142 ± 3652 ppm in the rachis, Table 1). This is not surprising due to the presence of S-431 

containing biomacromolecules, such as the pigment phaeomelanin and proteins containing cysteine or 432 

methionine (i.e. keratins) in bird feathers (Harrap & Woods 1964; Bortolotti 2010; Murphy et al. 1990; 433 

Cesarini 1996; Riley 1997; Saravanan & Dhurai 2012). Important studies on the chemical composition 434 

of feathers have shown that S is a major element of bird feathers (Harrap & Woods 1964, 1967; King & 435 

Murphy 1987; Murphy et al. 1990; Edwards et al. 2016). Some authors could even discriminate between 436 

organic S originating from keratin and phaeomelanin based on its speciation (Edwards et al. 2016). 437 

Previous in situ chemical analysis (time-of-flight secondary ion mass spectrometry; TOF-SIMS) of the 438 

melanosomes from the present fossil revealed their enrichment in S with respect to the surrounding 439 

sediment, but it could not determine whether it reflects the occurrence of phaeomelanin or diagenetic 440 

incorporation of S in eumelanin (Lindgren et al. 2015). It has been suggested that divalent elements (Cu, 441 

Ca, Zn) formed chelates with melanin in a Cretaceous early bird (Wogelius et al. 2011). Such a 442 

complexation may have played a role in S preservation in fossil soft tissues. Alternatively, the presence 443 

of S in the fossil feathers can be attributed to natural sulphurization of the organic matter, that is the 444 

abiogenic intra-molecular incorporation of sulphur from the depositional environment during early 445 

diagenesis. The incorporation of S into organic matter was interpreted as a way to enhance the 446 

preservation potential of certain labile substances through cross-linking (Sinninghe-Damsté & De 447 

Leeuw 1990; Sinninghe-Damsté et al. 1989, 1988; McNamara et al. 2016). Indeed, organic matter has 448 

the ability to form complexes with inorganic elements, including S, which was traced in fossil soft 449 

tissues (Wogelius et al. 2011).  450 
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Functional groups in the organic matter 451 

On the whole, the 13C NMR and IR spectra of buzzard feathers (Figs 6A, 7A) are comparable to that of 452 

several keratinous materials, such as feather keratin (Kricheldorf & Müller 1984; Barone et al. 2005; 453 

Wang & Cao 2012, Sharma et al. 2018), wool keratin (Yoshimizu & Ando 1990; Wojciechowska et al. 454 

2004) or gecko setae keratin (Jain et al. 2015). Indeed, the peak at 173 ppm should mainly correspond to 455 

the signal of secondary amide (O=C–NH) groups involved in the peptidic bonds.  This is confirmed by 456 

the presence of characteristic bands of secondary amides in the IR spectrum of the brown feathers (Fig. 457 

7A). This includes a broad band around 3277 cm–1 attributed to the N–H stretching band of amides, a 458 

narrow band at 1628 cm–1 related to the C=O stretch of Amide I, a band at 1518 cm–1 attributed to 459 

Amide II and a band at 1237 cm–1 related to Amide III (Bendit 1966; Yu et al. 2004; Wang & Cao 2012; 460 

Giraldo et al. 2013; Tesfaye et al. 2017). 461 

Carbon atoms bearing both COOH and NH2 groups (termed Cα) in the amino acids (except glycine) 462 

resonate between 50 and 60 ppm in 13C NMR. They account for the peaks at 52.9 and 60.2 ppm in the 463 

broad aliphatic signal, whereas the signal at 42.6 ppm is assigned to the Cα of glycine. The other peaks 464 

are mainly associated with the amino acid side chains, that at 30.8 ppm being assigned to Cβ along with 465 

C in long alkyl chains, and those at 19.8 and 25.7 ppm to Cγ and Cδ. The three bands located in the 466 

2961–2850 cm–1 range in the IR spectra confirms the presence of aliphatic moieties in the modern 467 

feathers, although their precise assignment to dedicated compounds is uncertain. In the 13C NMR 468 

spectrum, the 129 ppm peak is typical for aromatic carbons, including those from phenylalanine and 469 

tyrosine (Yoshimizu & Ando 1990; Jain et al. 2015). Finally, the peak at 158 ppm can be ascribed to the 470 

O–alkyl C of tyrosine and/or the C of the guanidino group (N–C=N) of arginine (Yoshimizu & Ando 471 
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1990; Jain et al. 2015). This spectrum is in agreement with previous reports indicating that keratin is a 472 

major constituent of feathers (Lucas & Stettenheim 1972). The 13C NMR and IR spectra of the modern 473 

feathers also shares some similarities with various types of melanins (Ito and Nicol 1974; Duff et al. 474 

1988; Adhyaru et al. 2003;  Centeno & Shamir 2008). 475 

The much simpler 13C NMR spectra of the fossil feathers and their surrounding sediment are dominated 476 

by long alkyl chains with a low contribution of aromatic carbons. This is also consistent with the IR 477 

spectra (Fig. 7B), mainly showing contributions of aliphatics and silicate and carbonate minerals. When 478 

compared to the 13C spectrum of the modern feathers, the aliphatic signal in the fossil is poorly resolved; 479 

the aromatic peak is broad and no resonance signal could be detected in the carboxylic region. These 480 

features indicate that the proteinaceous contribution identified in the buzzard feathers is no longer 481 

present in the fossil sample. The comparison between the FTIR spectrum of the modern feather and that 482 

of the fossil feathers (Fig.7A) shows that the characteristic bands of amides are absent in the IR 483 

spectrum of the fossil feathers. However, a more precise comparison can be achieved at the molecular 484 

level thanks to pyrolysis in the presence of TMAH coupled with GC-MS. 485 

Molecular building blocks of organic matter  486 

TMAH Py-GC-MS analysis of modern feathers thus highlights the presence of glycine, serine, leucine, 487 

alanine, valine and proline moieties in buzzard feather keratin, in agreement with previous studies on 488 

feather keratin (Fig. 8A; O'Donnell & Inglis 1974; Arai et al. 1983, 1986; Murphy et al. 1990; Staroń et 489 

al. 2011; Saravanan & Dhurai 2012). Additionally, pyrolysis products derived from isoleucine, 490 

phenylalanine and tyrosine occurred in substantial amounts although they are often considered as minor 491 

constituents of feather keratin. However, homolysis of the side chain of phenylalanine and tyrosine 492 
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favours high yields in TMAH pyrolysis (Gallois et al. 2007). Despite its acknowledged high abundance 493 

in feather keratin, cysteine is absent in the pyrochromatogram of buzzard feathers, probably because it 494 

mainly releases H2S upon pyrolysis (Moldoveanu 2009), not detected in the presently used analytical 495 

conditions. Alternatively, some of the identified products (methylbenzene 1, methyl, methoxybenzene 9) 496 

as well as glycine derivatives may originate from melanin, although they are poorly diagnostic 497 

compounds (Stępień et al. 2009). However, the melanin signal was reported to be overwhelmed by 498 

protein-derived products upon pyrolysis of bulk feathers (Barden et al. 2011).  499 

The pyrochromatograms of the fossil feathers and their ‘host’ sediment are comparable as they are both 500 

dominated by series of alkane/alkene doublets and fatty acid methyl esters as well as minor compounds 501 

eluting at the beginning of the pyrochromatogram. The latter include a methoxybenzene substituted by 502 

two methyl groups or an ethyl group 22 which originates from lignin or polysaccharides such as 503 

cellulose, depending on its substitution pattern (Seitz & Ram 2000; Choi et al. 2013). Despite these 504 

similarities, differences are observed, including the much weaker abundance of octadecanol 24 in the 505 

sediment pyrolysate. These differences clearly show that even though some imprint from the sediment 506 

may have contributed to the fossil feather pyrolysate, at least some features are typical for the fossil 507 

feathers. They notably include the C18 doublet and octadecanol 24. The predominance of the 508 

alkane/alkene doublets in the pyrolysate is in agreement with the strong aliphatic signal observed in 509 

NMR and FTIR (bands at 2690, 2920 and 2851 cm–1) (Figs 6, 7). A similar highly aliphatic character 510 

has been reported in Eocene bird feathers (O’Reilly et al. 2017) but also in soft tissues from other fossil 511 

organisms, such as in cuticles from Carboniferous arthropods (Baas et al. 1995; Stankiewicz et al. 512 

1998), skin from a Cretaceous mummified hadrosaur (Manning et al. 2009) and Cretaceous fish scales 513 
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(Gupta et al. 2008). C1 to C3 alkylbenzenes were also identified in pyrolysates of Oligocene weevil and 514 

tadpole, and associated matrix (Gupta et al. 2007; Barden et al. 2015). 515 

The aliphatic series dominating the pyrolysate of the fossil feathers reflect either selective preservation 516 

of macromolecular aliphatic matter pre-existing in the extant organism (Tegelaar et al. 1989) or in situ 517 

polymerization of aliphatic lipids (Stankiewicz et al. 2000; Gupta et al. 2007). No such aliphatic series 518 

could be detected in the pyrolysate of modern feathers, probably precluding the first hypothesis. In 519 

contrast, several aliphatic series were identified in the lipid extract of the modern feathers (n-alkanes, n-520 

acids, n-alcohols; data not shown). Indeed, modern bird feathers are coated by lipids as protection 521 

against adverse environmental factors. Such lipids, secreted by the uropygial gland, were shown to be 522 

preserved through geopolymerisation in an Eocene bird (O’Reilly et al. 2017). A similar 523 

geopolymerisation can be put forward to account for the occurrence of aliphatic moieties of the present 524 

fossil feathers. Endogenous lipids may be transformed into more stable geopolymers, composed of 525 

alkane/alkene doublets, and can therefore be ‘preserved’ and traced in vertebrate fossils (O’Reilly et al. 526 

2017). 527 

The absence of signals typical for proteinaceous material in the NMR and IR spectra and 528 

pyrochromatogram of the fossil feathers is noteworthy. It is further by the weak N/C ratio in the fossil 529 

when compared with modern feathers. The lack of proteinaceous components consistent with keratin 530 

was previously suggested on the same fossil based on TOF-SIMS and IR analyses (Lindgren et al. 531 

2015). In agreement with the commonly accepted lability of proteins, this feature suggests their 532 

extensive degradation in our specimen upon diagenesis. Recent taphonomy experiments on extant 533 

feathers demonstrated substantial degradation of keratin upon microbial and thermal decay (Saitta et al. 534 
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2017). Moreover, it must be noted that diagenetic degradation of proteinaceous moieties was previously 535 

put forward for Eocene birds (O’Reilly et al. 2017; Saitta et al. 2017) and Palaeozoic annelid fossils 536 

(Dutta et al. 2010). However, even if no proteinaceous compounds were detected in Anchiornis feathers, 537 

one cannot exclude the possibility of finding similar biomolecules in other fossils in the future. 538 

Although PIXE analyses showed that C and S are closely associated in the fossil feathers, no 539 

organosulphur compound could be detected in the pyrolysate. Altogether, the lack of organosulphur 540 

compounds (such as thiophenes) in the fossil feather pyrolysates and the lack of C=S/C–S species in 541 

their IR spectrum strongly suggest a lack of organic-S species in this sample. In contrast, S incorporation 542 

was evidenced through FTIR and TMAH-Py-GC-MS in melanosomes of Miocene frogs, thus 543 

demonstrating involvement of natural sulphurization in the preservation of the fossil organic matter 544 

(McNamara et al. 2016). The lack of organosulphur compounds in Anchiornis pyrolysate should thus 545 

reflect diagenetic conditions that prevented such natural sulphurization of organic matter. In the 546 

sedimentary environment, the sulphurization of organic matter to form organosulphur compounds 547 

requires the presence of reactive organic matter and inorganic sulphides (i.e. anoxic conditions), with 548 

sufficient, but not excessive, reactive iron. If reactive iron exceeds a certain quantity, iron sulphides 549 

(pyrite) would precipitate instead (Canfield 1989; Werne et al. 2000). Here, our results suggest that the 550 

concentration of S and Fe in the environment was high enough to form iron sulphides (i.e. pyrite 551 

framboids and microcrystallites). The occurrence of iron oxides or hydroxides as framboid crystals 552 

(SEM and EDX characterization) suggests that S may have been preferentially used for the formation of 553 

iron sulphides (such as pyrite) during early diagenesis (Sinninghe-Damsté & De Leeuw 1990). During 554 

later diagenesis, pyrite framboids were probably in situ weathered into the iron oxides and hydroxides 555 

observed beneath the carbonaceous surface of feathers, thus releasing S that may have been further 556 
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associated with organic compounds, e.g. through the formation of chelate with melanin (Wogelius et al. 557 

2011). Such associations may have favoured/enhanced organic matter preservation and are consistent 558 

with the interrelation between S and C highlighted by PIXE analyses.  559 

Recently, a mechanism of nitrogen preservation based on lipoxidation and glycoxidation of protein was 560 

proposed in biomineralized tissues of diverse Mesozoic and Cenozoic vertebrates, fossilized in oxidative 561 

settings (Wiemann et al. 2018). Such a process, which can be catalysed by transition metal such as iron, 562 

may have led to the preservation of the small amount of nitrogen in YFGP-T5199. However, the present 563 

study deals with soft tissues and not biomineralized one. Additionally, so far this preservation 564 

mechanism could only be evidenced in oxidizing environment (Wiemann et al. 2018). The occurrence of 565 

iron oxide framboids in the studied Anchiornis fossil probably resulting from pyrite weathering, rather 566 

attests for the reducing conditions of fossilization, thus making the involvement of this preservation 567 

pathway unlikely (i.e. lipoxidation). 568 

Further experimental studies on modern feathers and comparisons with the fossil record are required to 569 

explain why keratin is not preserved in Anchiornis feathers although melanin has been detected and 570 

melanosomes and moulds have been observed.  571 

 572 

CONCLUSIONS 573 

 574 

The methods used in this study provide new and complementary information on how the plumage of 575 

Anchiornis huxleyi (YFGP-T5199) is preserved. SEM and EDS reveal that fossil feathers are preserved 576 

in a fine-grained material constituted of K-rich phyllosilicates, illite and interstratified illite/smectite. 577 
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PIXE analyses show that both light (C, N, O) and heavy (S, Na, Ca, etc.) elements are present in the 578 

fossil samples, even at very low concentrations. The presence of iron oxide pseudomorphs after pyrite 579 

likely indicates a reduced depositional environment for Anchiornis. Carbon is the dominant element in 580 

the fossil feathers, which are also enriched in sulphur with respect to the ‘host’ sediment. EBS mapping 581 

of the interior of the samples revealed a decrease in carbon concentration with depth. Our analysis 582 

therefore shows that the fossil feathers are preserved in the uppermost part of the sample, as a thin (c. 3 583 

µm-thick) S-bearing carbonaceous layer. High-resolution imaging of the feather microstructure revealed 584 

the presence of elongated microbodies (650–950 nm), probably corresponding to eumelanosomes. 585 

Molecular characterization of the organic matter in the ‘host’ sediment, fossil feathers and modern 586 

feathers by 13C-NMR, micro-ATR FTIR and Py-GC-MS shows that the fossil does not display the 587 

complex amino-acid signature typical for keratin, the main constituent of modern feathers. Although the 588 

organic matter of the fossil feathers and their ‘host’ sediment are both dominated by aliphatic moieties, 589 

they exhibit substantial differences (distribution pattern of series, occurrence of components specific to 590 

the feathers) suggesting that the organic matter of the fossil feathers is derived, at least partially, from 591 

original constituents of the feathers.  592 

Altogether, these results show that the fossil feathers can be described as compression fossils, as 593 

described in Schweitzer (2011, p. 192). The finely grained (clay-rich) host sediment contributed to the 594 

morphological preservation of Anchiornis soft tissues. As stressed by Schweitzer (2011, p. 192), the 595 

very fine grain size of the sediments might have prevented the degradation of soft tissues by microbes, 596 

and subsequent loss of degraded organic matter in the environment before and during diagenesis. 597 

However, the lack of protein-derived moieties in the fossil organic matter shows that the latter has been 598 

significantly altered during diagenesis. The excellent morphological preservation of the fossil soft tissue 599 
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is not associated here with a high preservation level of organic matter. Hence, the fossil feathers have 600 

likely undergone a complex diagenetic history including several steps affecting differentially their 601 

morphology and chemistry. In situ polymerization of lipids into more stable aliphatic compounds during 602 

early diagenesis was likely the main process responsible for organic matter preservation in the fossil 603 

feathers. Additionally, sulphur was probably involved in several steps of the fossil preservation although 604 

no natural sulphurization took place.  605 

Our results are therefore unique by combining different analytical techniques on Jurassic fossil feathers. 606 

This integrative multidisciplinary study appears as a powerful approach to decipher morphological, 607 

mineralogical, structural and chemical features of fossil soft tissues and their fossilization processes. 608 

This study provides new insights into the taphonomy of labile compounds, suggesting that keratin, 609 

unlike the pigment melanin, is not present in the feathers of Anchiornis huxleyi (YFGP-T5199). Further 610 

analyses of fossil feathers of different ages and depositional settings are required to better understand the 611 

preservation potential of melanin and keratin. 612 

Finally, we used here for the first time on a Jurassic fossil Ion Beam Analysis (IBA), a non-destructive 613 

analytical technique providing an in-depth profiling of C to U elements. Further developments of this 614 

technique to palaeontological samples might help at identifying the precise location of fossil soft tissues 615 

within the sediment and then characterizing metal elements that are directly associated with the 616 

fossilized tissues. 617 
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APPENDIX 1 1021 

Molecular structures of compounds identified in the modern bird feathers; numbers correspond to those 1022 

appearing in Table 2 and Figure 8.  1023 
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FIG. 1. Anchiornis huxleyi (YFGP-T5199). Photograph of the Jurassic feathered theropod with location 1043 

of sampled areas. The white box (upper right) indicates locations of fossil feather and ‘host’ sediment 1044 

sampling, while the yellow box (lower left) indicates location of  ‘remote’ sediment sampling, for NMR, 1045 
Py-GC-MS, and IBA analyses. White dots are samples used for SEM imaging and EDS. Scale bar 1046 
represents 5 cm. Photograph by Thierry Hubin (RBINS). Colour online. 1047 
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FIG. 2. Scanning electron microscopy (SEM) images of minerals observed in the plumage of 1049 

Anchiornis huxleyi. A–B, thin platelets of phyllosilicates observed in sample 7 (see fig. 1 for location). 1050 

C, pyrite framboids (sample 1). D, pyrite crystallites (sample 1). E, clayed pores containing small star-1051 
shaped iron-oxide crystals (sample 8). F, star-shaped iron oxides (sample 1). G, feldspar crystal 1052 
surrounded by clay sheets (sample 5). H, quartz crystals embedded in a clayed matrix (sample 9). 1053 
Arrowheads indicate the aforementioned minerals. Abbreviations: Fd, feldspar; Phy, phyllosilicate; Py, 1054 
pyrite; Qz, quartz. Scale bars represent: 5 μm (A, D, G, H); 3 μm (B); 10 μm (C); 2 μm (E, F). 1055 

  1056 
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FIG. 3. X-ray powder diffraction patterns of the ‘host’ sediment. A, spectrum of the bulk rock; ca, 1057 

calcite; qz, quartz. B, the fraction <2 μm, with spectra of natural (N), glycolated (G), and heated (H) 1058 

sample; the expansive illite/smectite interstratifications can be observed in the spectrum of the 1059 
glycolated (G) material through shifts in the position of the peaks. Colour online.  1060 
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FIG. 4. SEM images of the ultrastructure of Anchiornis plumage. A–B, elongated microbodies (arrows) 1061 

observed in sample 6 (see Fig. 1 for location). C, elongated microbodies (arrows) observed in sample 9. 1062 

D, imprints observed in samples 6. All scale bars represent 2 μm. 1063 
 1064 

  1065 



 

55 

 

FIG. 5. Results of elastic backscattering spectrometry (EBS) and particle-induced x-ray emission 1066 

(PIXE) analyses on the fossil feathers, the‘host’ sediment and the ‘remote’ sediment. A, global content 1067 

of C, O and Si obtained by EBS, in integrating the C, O and Si depth profiles over the 0–25 000 TFU 1068 
interval; error bars give an estimate of the uncertainties considering the counting statistics as well as the 1069 
cross-section and stopping power uncertainties; analysis was performed in duplicate on the same area of 1070 
the fossil feather (Fossil #1, Fossil #2), three points of analysis were taken at three different locations in 1071 
the ‘host’ sediment (at 1.7, 3.2 and 4.8 mm from the fossil), and one in the remote sediment. 1072 

B, PIXE spectra obtained for one point of analysis in the fossil feather (red), the ‘host’ sediment (black), 1073 
and the remote sediment (blue); the spectra are normalized to the Al signal (which comes mainly from 1074 
the selective filter) to allow for a direct comparison.  1075 
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FIG. 6. Cross polarization/magic angle spinning 13C nuclear magnetic resonance (CP-MAS 13C NMR) 1076 

spectra of: A, the modern bird feather; B, the fossil feathers; C, the ‘host’ sediment. Major chemical 1077 

functions are indicated on each peak. 1078 
  1079 

  1080 
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FIG. 7. IR spectra showing the comparison of: A, a modern buzzard feather with Anchiornis feathers; B, 1081 

Anchiornis feathers with the sedimentary matrix (‘remote’ sediment). See the text for peak assignment. 1082 

The spectra are normalized to 100% transmittance. Colour online.  1083 
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FIG. 8. Chromatograms of the products formed during the pyrolysis of: A, modern buzzard feathers; B, 1084 

fossil feathers; C, remote sediment. Peak identifications are given in Table 2. Cn, carbon chain, with n 1085 

indicating the length of the chain. 1086 
  1087 
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Table 1. PIXE derived concentration data for S and C in the fossil and 

modern feathers, and “host” sediment.  

 
[S] 

(ppm) 

[C ]  

(ppm) 

Fossil Feather #1 1739 80,385 

Fossil Feather #2 1946 82,171 

+1.7 mm* 1162 72,012 

+3.2 mm* 801 49,213 

+4.8 mm* 893 41,835 

Remote sediment 98 20,331 

Rachis 37,142 547,174 

Barbs 43,070 314,962 

*distance of the analysed spot from the feather/sediment boundary. 1088 
See Cincotta et al. (2020, table 1) for details on the global uncertainty calculations, Fig. 1 and Cincotta et al. (2020, fig. S2) 1089 
for the location of the analyses. 1090 
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 1093 

Pea

k 

Retention 

time 

(min) 

Major characteristic 

ionsa (m/z) 

Mole- 

cular 

ion 

Compound Possible 

originb 

Modern 

feather 

Fossil 

featherc 

Embedding 

sedimentc 

1 6.7 91; 92; 39; 65 92 Methylbenzene   (Phe) X X X 

2 6.9 55, 54, 42 83 2-methylbutanenitrile Ileu X   

3 7,1 43, 41, 39, 68 83 3-methylbutanenitrile Leu X   

4 8.0 67; 41; 39; 40 67 1H-Pyrrole (Ser) X   

5 12.1 91; 55; 106; 65 106 Ethylbenzene  (Phe) X   

6 14.8 72; 42; 56; 131 131 N,N- Dimethylalanine methylester Ala X   

7 17.0 108; 78; 65; 39 108 Methoxybenzene  Tyr X   

8 19.5 86; 102; 42; 55 145 N-Methyl-valine Methyl Ester Val X   

9 25.0 122; 77; 107; 91 122 1-Methoxy-4-methylbenzene   Tyr X   

10 26.5 84; 42; 100; 58 143 N-Methyl-proline Methyl Ester Pro X   

11 31.2 56; 140; 42; 112; 83 140 2,5-Dimethylcyclohexane-1,4-Dione Gly X   

12 39.7 42; 127; 142; 56 142 1,3,5-Trimethylimidazolidine-2,4-Dione Ala? X   

13 44.8 56; 126; 139; 41 182 1-Isobutyl-4-isopropylimidazolinone Val X   

14 47.2 128; 42; 71; 113 170 5-Isopropyl-1,2,3-trimethylimidazolidinone Val-(Gly) X   

15 53.6 128; 42; 57; 71 128 1-Methylpiperazine-2,5-dione Gly X   

16 58.6 82; 167; 182; 110 182 ? His? X   

17 60.5 152; 41; 55; 137; 179 194 ? Val? X   

18 62.9 142; 113; 42; 71 198 1-Methyl-3-(1-methylpropyl)piperazine-2,5-dione  Ileu-Gly X   

19 67.1 142; 113; 42; 98; 212 ? N-(1-oxo-2-amino-3-methyl-butyl)piperazine-2,5-dione derivative  Val X   

20 75.5 139; 70; 42; 168 210 N-Methyl-3-methylidene-6-(3-methylbutyl)piperazine-2,5-dione Ser-Leu X   

21 79.2 168; 139; 70; 42 210 Isomer of compound 20 Ser-Leu X   

22 23.7 136, 121, 122, 91 136 1-Methoxy-2,3-dimethylbenzene or 1-Ethyl-2-methoxybenzene Lignin or cellulose  X X 

23 38.1 136, 122, 137 137 Methoxy-methylaniline ?  X X 

24 86.3 45; 57; 97; 224; 252 284 1-Methoxyoctadecane ?  X X 

   ●  43; 57; 71; 85  n-alkanes Aliphatic chains  C8-C30 (C18, C11) C8-C29 (C15) 

○  55; 43; 69; 83, 97  n-alk-1-enes Aliphatic chains  C8-C26 (C11, C18) C8-C29 (C11, C18) 

Δ  87; 74; 43; 55  Fatty acid methyl esters Aliphatic chains  C8-C30  (C16) C8-C30  (C16) 

  91, 105  Alkyl benzenes ?  C3 C3-C5 (C5) 

Table 2. Main products released from pyrolysis of modern feathers, fossil feathers and embedding sediment in the presence of TMAH.  1094 
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aMS fragments are in order of decreasing abundance, with base peak underlined. 1095 
bCompounds in brackets indicate possible origin that is not univocal; Ala, alanine; Gly, glycine; His, histidine; Ileu, isoleucine; Leu, 1096 
leucine; Phe, phenylalanine; Pro, proline; Ser, serine; Tyr, tyrosine; Val, valine; ? tentative origin. 1097 
cCrange (Cmax, Csubmax). 1098 
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