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ABSTRACT 19 

The immune modulating properties of certain bifidobacterial strains, such as Bifidobacterium 20 

longum subsp. longum 35624™ (B. longum 35624), have been well described, although the 21 

strain-specific molecular characteristics associated with such immune regulatory activity are 22 

not well defined. It has previously been demonstrated that B. longum 35624 produces a cell 23 

surface exopolysaccharide and in this study we investigated the role played by this 24 

exopolysaccharide in influencing the host immune response. B. longum 35624 induced 25 

relatively low levels of cytokine secretion from human dendritic cells, whereas an isogenic 26 

exopolysaccharide-negative mutant derivative (termed sEPSneg) induced vastly more 27 

cytokines, including IL-17, which was reversed when exopolysaccharide production was 28 

restored in sEPSneg by genetic complementation. Administration of B. longum 35624 to the T 29 

cell transfer colitis model prevented disease symptoms, whereas sEPSneg did not protect 30 

against the development of colitis, with associated enhanced recruitment of IL-17+ 31 

lymphocytes to the gut. Moreover, intra-nasal administration of sEPSneg also resulted in 32 

enhanced recruitment of IL-17+ lymphocytes to the murine lung. These data demonstrate that 33 

the particular exopolysaccharide produced by B. longum 35624 plays an essential role in 34 

dampening pro-inflammatory host responses to the strain and that loss of exopolysaccharide 35 

production results in the induction of local TH17 responses. 36 

IMPORTANCE 37 

Particular gut commensals, such as B. longum 35624, are known to contribute positively to 38 

the development of mucosal immune cells, resulting in protection from inflammatory 39 

diseases. However, the molecular basis and mechanisms for these commensal-host 40 

interactions are poorly described. In this report, an exopolysaccharide was shown to be 41 
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decisive in influencing the immune response to the bacterium. We generated an isogenic 42 

mutant unable to produce exopolysaccharide, and observed that this mutation caused a 43 

dramatic change in the response of human immune cells in vitro. In addition, mouse models 44 

confirmed that lack of exopolysaccharide production induces inflammatory responses to the 45 

bacterium. These results implicate the surface-associated exopolysaccharide of the B. longum 46 

35624 cell envelope in the prevention of aberrant inflammatory responses. 47 

48 
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INTRODUCTION 49 

 The gut microbiota contributes significantly to host health via multiple mechanisms, 50 

including the digestion of foods, competitive exclusion of pathogens, enhancement of 51 

epithelial cell differentiation and promotion of mucosa-associated lymphoid tissue 52 

proliferation (1, 2). Furthermore, accumulating evidence suggests that the composition and 53 

metabolic activity of the gut microbiota has profound effects on proinflammatory activity and 54 

the induction of immune tolerance within mucosal tissue (3-5). Certain microbes induce 55 

regulatory responses, while others induce effector responses, resulting in the case of healthy 56 

individuals in a balanced homeostatic immunological state, which protects against infection 57 

and controls aberrant, tissue-damaging inflammatory responses (6). 58 

One bacterial strain, which is known to induce tolerogenic responses within the gut, is 59 

Bifidobacterium longum subsp. longum 35624TM (7). Induction of T regulatory (Treg) cells by 60 

the B. longum 35624 strain in mice is associated with protection against colitis, arthritis, 61 

allergic responses and pathogen-associated inflammation (8-12). Administration of this 62 

bacterium to humans increases Foxp3+ lymphocytes in peripheral blood, enhances IL-10 63 

secretion ex vivo, and reduces the level of circulating proinflammatory biomarkers in a wide 64 

range of patient groups (13, 14). A number of host mechanisms have been described, which 65 

contribute to the anti-inflammatory activity of this microbe, including Toll-like receptor 2 66 

(TLR-2) and Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-67 

integrin (DC-SIGN) recognition, and retinoic acid release by dendritic cells (13, 15-17). 68 

However, the bacterial strain-specific structural and/or metabolic factors that contribute to 69 

these protective immune responses have as yet remained elusive. 70 
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A number of different exopolysaccharides from gut microbes have been shown to 71 

induce immune-modulatory effects. Polysaccharide A (PSA) from Bacteroides fragilis 72 

mediates the conversion of naïve CD4+ T cells into Foxp3+ Treg cells that produce IL-10 73 

during commensal colonization. Functional Treg cells are also induced by PSA during 74 

intestinal inflammation, which requires TLR-2 signaling (18). Further studies have reported 75 

that PSA interacts directly with mouse plasmacytoid dendritic cells via TLR-2 and that PSA-76 

exposed plasmacytoid dendritic cells express molecules involved in protection against colitis 77 

and stimulate CD4+ T cells to secrete IL-10 (19). An exopolysaccharide from Bacillus subtilis 78 

prevents gut inflammation stimulated by Citrobacter rodentium, which is dependent on TLR-79 

4 and MyD88 signaling (20). Similarly, protection against C. rodentium infection by 80 

Bifidobacterium breve UCC2003 was dependent on the presence of its exopolysaccharide 81 

(21). Furthermore, it was described that an extracellular polymeric matrix, isolated from 82 

Faecalibacterium prausnitzii, displayed anti-inflammatory activity in the mouse dextran 83 

sodium sulphate colitis model (22).  84 

We recently described that the B. longum 35624 strain-specific EPS gene cluster, 85 

designated as eps624, is responsible for the production of a cell surface-associated 86 

exopolysaccharide, composed of a branched hexasaccharide repeating unit with two 87 

galactoses, two glucoses, galacturonic acid and the unusual sugar 6-deoxytalose (23). The 88 

overall aim of the current study was to determine if the exopolysaccharide produced by B. 89 

longum 35624 is related with the immunoregulatory effects of this microorganism. To address 90 

this aim, we investigated if an isogenic derivative of B. longum 35624, which does not 91 

produce exopolysaccharide, is able to exert similar immunological effects to its parent strain 92 

in vitro and in colitis and asthma mouse models. 93 
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 94 

MATERIALS AND METHODS 95 

Bacterial strains, plasmids and culture conditions. Bacterial strains and plasmids used in 96 

this study are detailed in Table 1. Bifidobacteria were routinely cultured in either de Man 97 

Rogosa and Sharpe medium (MRS; Oxoid Ltd., Basingstoke, Hampshire, United Kingdom) 98 

supplemented with 0.05 % cysteine-HCl or reinforced clostridial medium (RCM; Oxoid Ltd.). 99 

Bifidobacterial cultures were incubated at 37 °C under anaerobic conditions in a Don Whitley 100 

anaerobic Chamber. Escherichia coli strains were cultured in Lysogeny broth (LB; Oxoid 101 

Ltd) at 37 °C with agitation. Where appropriate, growth media contained chloramphenicol 102 

(Cm; 10 μg ml-1 for E. coli and 5 μg ml-1 for B. longum 35624), erythromycin (Em; 100 μg 103 

ml-1 for E. coli), tetracycline (Tet; 10 μg ml-1 for E. coli and 10 μg ml-1 for B. longum 35624), 104 

ampicillin (Amp; 100 μg ml-1 for E. coli ) or kanamycin (Km; 50 μg ml-1 for E. coli). All 105 

antibiotics were obtained from Sigma Aldrich, Dorset, England). The commercially available 106 

B. longum 35624™ culture was provided by Alimentary Health limited (Cork, Ireland).  107 

DNA manipulations. Chromosomal DNA was isolated from bifidobacteria as 108 

previously described (24). Minipreparation of plasmid DNA from E. coli or B. longum 35624 109 

was achieved using the Qiaprep spin plasmid miniprep kit (Qiagen GmBH, Hilden, 110 

Germany). For B. longum 35624 an initial lysis step was incorporated into the plasmid 111 

isolation procedure, cells were resuspended in lysis buffer supplemented with lysozyme (30 112 

mg ml-1) and incubated at 37 °C for 30 min. Restriction enzymes and T4 DNA ligase were 113 

used according to the supplier’s instructions (Roche Diagnostics, Bell Lane, East Sussex, 114 

UK). Synthetic single stranded oligonucleotide primers used in this study were obtained from 115 

Eurofins (Ebersberg, Germany) and are detailed in Table 2. Standard PCRs were performed 116 
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using TaqPCR mastermix (Qiagen), while high fidelity PCR was achieved using PfuII 117 

polymerase (Agilent, Santa Clara, California). B. longum 35624 colony PCRs were performed 118 

according to standard procedures with the addition of an initial incubation step of 95 °C for 5 119 

minutes to perform cell lysis. PCR fragments were purified using the Qiagen PCR purification 120 

kit. Following electroporation of plasmid DNA into E.coli strain EC101, 121 

electrotransformation of B. longum 35624 or sEPSneg was performed essentially as described 122 

by Maze et al. (25) with the following modifications. An overnight culture of B. longum 123 

35624 was sub-cultured twice (first using a 2 % inoculum and then a 1 % inoculum) in MRS 124 

supplemented with 0.05 % cysteine-HCl and 0.2 M sucrose prior to inoculating (4%) 125 

modified Rogosa medium supplemented with 0.05 % cysteine-HCl, 1% (w/v) glucose and 0.2 126 

M sucrose. Bacteria were grown until the OD600 had reached 0.3-0.4, after which cells were 127 

harvested by centrifugation (6,500 rpm, 10 min, and 4 °C) and washed twice using 1 mM 128 

ammonium citrate buffer (pH 6.0) supplemented with 0.5 M sucrose. An additional 129 

centrifugation step (9,800 *g, 10 min, and 4 °C) was included to concentrate the competent 130 

cells. For electroporation 5 µl of plasmid DNA was mixed with 50 µl of competent cells, 131 

transferred into an electroporation cuvette with 0.2 cm inter-electrode distance and pulsed at 132 

2.5 kV, 25 µF and 200 Ω using a Gene Pulser II Electroporation System (Biorad, Hercules, 133 

California USA). For recovery, 800 µl of RCM supplemented with 0.05 % L-cysteine 134 

hydrochloride were added to bacteria and incubated anaerobically for 2.5 h at 37 °C. 135 

Transformations were plated on reinforced clostridial agar (RCA) plates supplemented with 136 

appropriate concentrations of relevant antibiotics and incubated 2-3 days anaerobically at 37 137 

°C. The correct orientation and integrity of all constructs was verified by PCR and subsequent 138 

DNA sequencing, which was performed at Eurofins (Ebersberg, Germany).  139 
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Construction of sEPSneg. An internal 583 bp fragments of the pgt624 gene was 140 

amplified by PCR using B. longum 35624 chromosomal DNA as a template and the 141 

oligonucleotide primers BI0342F_HindIII and BI0342R_XbaI. The PCR product generated 142 

was ligated to pORI19, an Ori+ RepA- integration plasmid (26), using the unique HindIII and 143 

XbaI restriction sites that were incorporated into the primers for the pgt fragment-144 

encompassing amplicon, and introduced into E. coli EC101 by electroporation. Recombinant 145 

E. coli EC101 derivatives containing pORI19 constructs were selected on LB agar containing 146 

Em, and supplemented with X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside) (40 147 

μg ml-1) and IPTG (isopropyl-β-D galactopyranoside) (1 mM). The expected genetic structure 148 

of the recombinant plasmid, designated pORI19-pgt, was confirmed by restriction mapping 149 

prior to subcloning of the Tet resistance antibiotic cassette, tet(W), from pAM5 (27) as a SacI 150 

fragment into the unique SacI site on pORI19-pgt. The expected structure of a single 151 

representative of the resulting plasmid, designated pORI19tet(W)_pgt, was confirmed by 152 

restriction analysis. The plasmid was introduced into E. coli EC101 harbouring pNZ-M.1185 153 

(this is a plasmid expressing a B. longum 35624-encoded methylase) by electroporation, and 154 

transformants were selected based on Em and Tet resistance. Methylation of the resulting 155 

plasmid complement of such transformants by the M.1185 (isoschizomer of M.EcoRII) was 156 

confirmed by their observed resistance to EcoRII restriction. Plasmid preparations of 157 

methylated pORI19tet(W)_pgt were introduced by electroporation into B. longum 35624 with 158 

subsequent selection on RCA plates supplemented with Tet. 159 

Construction of sEPScomp. For the construction of plasmid pBC1.2_pgt624 +BI0343, a 160 

DNA fragment encompassing pgt624 plus the downstream located gene with locus tag BI0343 161 

and the presumed promoter region was generated by PCR amplification from chromosomal 162 
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DNA of B. longum 35624 using PfuII polymerase and primer combinations BI0342FSalI and 163 

BI0343EcoRI, where SalI or EcoRI restriction sites were incorporated at the 5’ ends of the 164 

forward primer, and reverse primer, respectively. Amplicons were digested with SalI, and 165 

EcoRI, and ligated into similarly digested pBC1.2 prior to introduction into E. coli XL1blue 166 

by electroporation and subsequent selection of transformants on LB agar supplemented with 167 

Tet and Amp. The integrity of positive clones was confirmed by sequencing and one selected 168 

clone designated pBC1.2 pgt+BI0343 was introduced into sEPSneg by electroporation with 169 

subsequent selection of transformants on RCA supplemented with Tet and Cm. The resultant 170 

sEPSneg strain harboring pBC1.2 pgt+BI0343 was designated sEPScomp. 171 

Electron Microscopy. After culture in MRS medium, bacteria were gently rinsed in 172 

Piperazine-N,N-bis-2-ethane sulphonic acid (PIPES) buffer (0.1 M, pH 7.4) before being 173 

fixed in 2.5 % glutaraldehyde in PIPES buffer for 5 min. The samples were rinsed twice (2 174 

min each time) in PIPES buffer and post-fixed with 1 % osmium tetroxide in 0.1 M PIPES 175 

buffer (pH 6.8), for 60 min in the dark. The samples were rinsed three times in double 176 

distilled water (2 min each wash) before dehydration through an ethanol series (50, 70, 96, 177 

and 100 %) for 5 min each. All fixation and washing steps were carried out at room 178 

temperature. Following dehydration, the samples were critically point dried in a POLARON 179 

E3100 critical point drier (Agar Scientific, Stansted, UK), and coated with 10 nm of 180 

gold/palladium (80/20) using a Baltec MED 020 unit (Baltec, Buchs, Liechtenstein). Bacterial 181 

preparations were examined using a Hitachi S-4700 scanning electron microscope (SEM), 182 

operated in secondary electron detection mode (3 kV, 40 μA) and images captured with 183 

Quartz PCI (Quartz Imaging Corporation, Vancouver, Canada). 184 
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Exopolysaccharide isolation. The exopolysaccharide was isolated as previously 185 

described (23). Briefly, following harvesting of B. longum 35624 cells, which were grown on 186 

agar plates to minimize carryover of media components, an exopolysaccharide solution was 187 

generated by agitating the cells in PBS. The harvested exopolysaccharide solution was mixed 188 

with ethanol and the exopolysaccharide aggregated at the center of the surface of the ethanol 189 

solution, which facilitated harvesting of the exopolysaccharide without the need for 190 

centrifugation. The exopolysaccharide aggregations were taken with a spatula, resuspended in 191 

water and dialysed against water to remove contaminants and residual ethanol. The 192 

exopolysaccharide was applied 2 times on Bakerbond SPE C18 columns (Avantor, Deventer, 193 

The Netherlands) as indicated by the manufacturer using a HyperSep-96™ vacuum manifold 194 

(Thermo Scientific, Waltham, USA). The flow-through fraction was collected and filtered 195 

through 0.45 µm syringe filters. Quantification of total carbohydrate levels was performed as 196 

previously described (28) using a phenol-sulphuric acid method in microplate format. The 197 

absence of contaminating proteins was confirmed by measuring the total soluble protein 198 

content of the exopolysaccharide preparation using the BCA protein quantification kit 199 

(Thermo Scientific) according to manufacturer’s instructions. Bovine serum albumin was 200 

used for generation of standards. Lipopolysaccharide contamination was monitored using the 201 

pyrogene recombinant factor C assay (Lonza, Bettlach, Switzerland). 202 

In vitro immune assays. Human blood was purchased from the Swiss blood bank 203 

(Blutspendezentrum, Basel, Switzerland), which obtains the blood following appropriate 204 

screening and consenting of volunteers. Blood samples were anonymized and coded prior to 205 

leaving the blood bank. Research procedures on human blood were performed in accordance 206 

with Swiss law (ethical approval number KEK Nr. 19/08). All experiments with human 207 

blood-derived cells were conducted under biosafety level 2 conditions. Peripheral blood 208 
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mononuclear cells (PBMCs) were isolated from healthy donors using density gradient 209 

centrifugation. Human monocyte-derived dendritic cells (MDDCs) were differentiated with 210 

1000 IU ml-1 GM-CSF (Peprotech, London, UK) and 1000 IU ml-1 IL-4 (Novartis, Basel, 211 

Switzerland) from purified CD14+ cells using MACS separation (Miltenyi Biotec, Bergisch 212 

Gladbach, Germany). Bacterial strains for in vitro assays were cultured in MRS medium 213 

supplemented with 0.05 % L-cysteine for 48 hours under anaerobic conditions at 37°C. Cells 214 

were harvested and washed once with sterile PBS by centrifugation at 6,500 rpm for 10 215 

minutes. Bacterial cell number was determined by microscopy using a Petroff-Hausser 216 

chamber and bacteria were diluted as appropriate in PBS for incubation with human cells. 217 

PBMCs and MDDCs were stimulated for 24 h at 37°C, 5 % CO2 with bacterial strains at a 218 

concentration of 50 bacterial cells to 1 PBMC or MDDC. Human and bacterial cell co-219 

cultures were performed in complete RPMI-1640 (cRPMI) medium (Sigma, Buchs, 220 

Switzerland) supplemented with 10% fetal bovine serum (Sigma), penicillin (100 Units ml-1) 221 

and streptomycin (0.1 mg ml-1) (Sigma). Purified exopolysaccharide from B. longum 35624 222 

was also added (final concentration 100 μg/ml) to PBMC cultures (in duplicate) stimulated 223 

with sEPSneg. Cytokine concentrations were measured using the Bio-Plex Multiplex System 224 

(Biorad). For human dendritic cells staining, the following anitibodies were used: PE-Cy7 225 

anti-human CD274 (PD-L1), APC anti-human CD273 (PD-L2) and Pacific Blue anti-human 226 

CD11c (eBioscience, Vienna, Austria).  THP-1-BlueTM NF-κB monocyte cell line (Invivogen, 227 

San Diego, USA) was maintained and sub-cultured in cRPMI medium (Sigma) in presence of 228 

200µg/ml Zeocin (Invivogen). For the co-culture experiment with bacteria, 105 cells/well 229 

were seeded in a 96 well-plate in a total volume of 200 µl/well of cRPMI medium. The cells 230 

were stimulated over a range of different bacterial concentrations for 24 h and activation of 231 

NF-κB/AP-1 pathway was evaluated by Quanti-BlueTMassay according to the manufacturer’s 232 
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instructions. In addition, MDDCs were stimulated with different bacterial strains and NF-κB 233 

phosphorylation measured over a time course. MDDCs were lysed using Bio-Plex Pro cell 234 

signaling reagent kit (Biorad) and cell lysates were stored at -80°C until analysis. Protein 235 

concentration was determined using Bio-Rad’s DCTM protein assay and equal amounts of 236 

protein were used to measure NF-κB p65 (Ser536) in the Bio-Plex Pro™ Magnetic Cell 237 

Signaling Assay (Biorad). Results are expressed as MFI (mean fluorescence intensity). 238 

T cell transfer colitis model. C.B-17 severe combined immunodeficient (SCID and 239 

BALB/c female mice (8-12 weeks of age) were obtained from Charles River (Sulzfeld, 240 

Germany) and maintained under specific pathogen free conditions. The animals were housed 241 

at the AO Research Institute, Davos, Switzerland, in individually ventilated cages for the 242 

duration of the study, and all experimental procedures were carried out in accordance with 243 

Swiss law (Permit number: 2013_32). Colitogenic CD4+CD25-CD45RBhi cells were isolated 244 

from BALB/c donor mouse spleens using the MACS Miltenyi system (depletion of 245 

CD4+CD25+ cells followed by positive selection of CD45RB FITC-labeled cells). At day 0, 246 

colitis was induced by intraperitoneal transfer of 4 x 105 cells per C.B-17 SCID mouse (8 247 

mice per group). Bacterial cells were prepared as described above and counted using 248 

microscopy (Petroff-Hausser chamber) prior to dilution in sterile PBS.  1 x 109 B. longum 249 

35624 cells, or its isogenic derivatives, were administered to each mouse by intragastric 250 

gavage (total volume of 200 µl). Bacteria were gavaged from the beginning of the study (day 251 

0) and continued to be gavaged every second day until animals were euthanized at the end of 252 

the study. Sixteen days after study initiation, disease severity scores were recorded, while 253 

animal weights were monitored every day. Disease severity scores included feces condition ( 254 

1 - wet; 2 - diarrhea; 3 - bloody diarrhea or rectal prolapse), activity (1 - isolated, abnormal 255 
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position; 2 - huddled, hypoactive or hyperactive; 3 – unconscious), coordination of movement 256 

(1 - slightly uncoordinated; 2 – very uncoordinated; 3 – paralysis) and fur quality (1 – reduced 257 

grooming;  2 – disheveled; 3 - hair loss). Gut transit was determined by quantifying fecal B. 258 

longum 35624 levels by PCR. B. longum 35624 specific primers were designed using Primer3 259 

software (http://simgene.com/Primer3). The primers, designated 2420t (Forward: CAG TGG 260 

GGT GCG ACT ACA; Reverse: GCG CGA ACC AGA AGA TGT) generated a 494 bp 261 

amplicon. Bacterial DNA from fecal samples was extracted using QIAamp DNA Stool Mini 262 

Kit (Qiagen). DNA was quantified using Nanodrop (Thermo Scientific) and 100 ng of total 263 

DNA was assayed using SYBR Green PCR Master Mix (Biorad). The  thermal  cycling  264 

conditions  consisted of an initial denaturation step of 15 min at 95˚C, followed by 30 cycles 265 

of denaturation at 94˚C for 45 sec, annealing for 45 sec at 56˚C, and extension at 72˚C for 45 266 

sec.  B. longum 35624 DNA concentrations were quantified using the absolute quantitation 267 

protocol of the ABI 7900 Fast real-Time PCR system (Applied Biosystem, CA, USA). In a 268 

parallel experiment, BALB/c healthy mice (6 mice per group) were gavaged with B. longum 269 

35624 or its isogenic derivative for 3 weeks, as described above for the colitis study.  270 

 Following euthanasia on day 26, mesenteric lymph nodes were isolated in order to 271 

obtain single cell suspensions. Lymph nodes were mechanically disrupted using a syringe 272 

plunger to grind the nodes on a nylon cell strainer (70 µm). The strainer was washed with 273 

PBS and the single cell suspensions were centrifuged at 300 g for 10 minutes. Cell pellets 274 

were resuspended in 1 ml of cRPMI medium (Sigma) and cells were counted using a Scepter 275 

Cell Counter (Millipore, Billerica, MA, USA). Cells were diluted to a final density of 276 

1x106cells ml-1 in cRPMI and cells were dispensed in propylene tubes to perform FACS 277 

staining. Lamina propria mononuclear cells were isolated as described previously (29) 278 

following removal of epithelial cells and collagenase VIII/DNaseI (Roche) digestion of the 279 
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tissue. At the end of the process, cells were counted using the Scepter Cell Counter 280 

(Millipore) and diluted to a final concentration of 1x106 cells ml-1 in cRPMI in propylene 281 

FACS staining tubes. 282 

OVA respiratory allergy model. Female BALB/c mice (8-12 weeks of age) were 283 

obtained from Charles River and were maintained under specific pathogen free conditions at 284 

the AO Research Institute, Davos, Switzerland, in individually ventilated cages for the 285 

duration of the study. All experimental procedures were carried out in accordance with Swiss 286 

law (Permit number: 2013_20). 8 mice per group were used in this model. Three 287 

intraperitoneal immunizations with 50 µg of ovalbumin (OVA, Grade V>98%, Sigma) 288 

emulsified in Imject™ Alum Adjuvant (Life Technologies, Carlsbad, California, USA) were 289 

performed on days 0, 14 and 21, followed by OVA aerosol challenges on days 26, 27 and 28. 290 

On days 19, 25 and 27, mice received B. longum 35624 or sEPSneg intra-nasally (~1x109 291 

bacteria per dose in a total volume of 50 µl of PBS). Bacterial cells were prepared as 292 

described above. Control animals received three intraperitoneal injections with Alum adjuvant 293 

(without OVA) on days 0, 14 and 21, followed by OVA aerosol challenges on days 26, 27 and 294 

28. Control animals also received 50 µl of PBS intra-nasally on days 19, 25 and 27. All mice 295 

were sacrificed at day 29 for isolation of lung tissue and flow cytometric staining. Lung-296 

derived single cell suspensions were obtained using a combination of enzymatic digestion 297 

(lung dissociation kit, Miltenyi) and mechanical dissociation with a gentleMACS Dissociator 298 

(Miltenyi), according to the manufacturer’s protocol. Lung cells were plated at 1x106 cells/ml 299 

in complete RPMI (Sigma) and stimulated ex vivo with 50 µg/ml OVA grade VI (Sigma) or 300 

with 500 ng/ml LPS (Sigma) for 48 hours and cytokine secretion quantified by the Bio-Plex 301 

Multiplex System (Biorad). 302 
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Flow cytometry. All flow cytometry analyses were performed on the Gallios Flow 303 

Cytometer (Beckman Coulter, Brea, USA). Mesenteric lymph node or lung single cell 304 

suspensions were stimulated with PMA and ionomycin at 50 ng ml-1 and 500 ng ml-1, 305 

respectively, for 4 hours in presence of Brefeldin A (eBioscience). Viability dye eFluor780 306 

(eBioscience) and the following surface staining antibodies were used: PE-Cy7 anti-mouse 307 

CD3 and Pacific Blue anti-mouse CD4 (Biolegend, San Diego, California USA). Cells were 308 

stained for intracellular cytokines using PE anti-mouse IL-10, Alexa Fluor488 anti-mouse/rat 309 

IL-17A and PerCP-Cy5.5 anti-mouse IFN-γ after fixation and permeabilization (Intracellular 310 

Fixation & Permeabilization Buffer Set, eBioscience). Lamina propria cells were in addition 311 

stained for the gut homing molecule CCR9 using Alexa Fluor647 anti-mouse CD199 (CCR9) 312 

from Biolegend. 313 

Statistical analysis. Unless otherwise indicated, data are presented as box-and-314 

whisker plots with the median value and max/min values illustrated. In experiments with 315 

technical replicates, the mean was calculated from the technical replicates for each donor and 316 

only the mean value was used for the statistical analysis. The Mann–Whitney U test was used 317 

for the nonparametric statistical analysis of differences between two groups. For analysis of 318 

more than two groups, statistical significance was determined using the Kruskal–Wallis test 319 

and Dunn’s multiple comparison test.  A two-way ANOVA was used to compare groups over 320 

time. A p-value less than 0.05 was considered statistically significant.  321 

 322 

RESULTS 323 

Generation of an isogenic exopolysaccharide-negative derivative of B. longum 35624, 324 

designated sEPSneg, by insertion mutagenesis. In order to determine the role, if any, of the 325 
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exopolysaccharide in the reported immunomodulatory activities of the B. longum 35624 326 

strain, we set out to generate an isogenic derivative of this strain that was unable to produce 327 

this cell surface-associated glycan exopolymer. For this purpose, we employed a mutagenesis 328 

strategy that was based on previously described methods (30). The particular mutagenesis 329 

strategy employed for B. longum 35624 involved the heterologous expression of a B. longum 330 

35624-encoded DNA methylase in E. coli strain EC101 so as to methylate any plasmid DNA 331 

in this latter cloning host. When such methylated plasmid DNA is subsequently introduced 332 

into B. longum 35624, it will be protected from digestion by the native restriction-333 

modification systems encoded by the latter strain and will therefore allow homology-guided, 334 

site-directed mutagenesis as has been described previously (30). Employing this strategy, we 335 

created an insertion mutation in the first gene of the eps624 cluster, i.e. pgt624, encoding the 336 

predicted priming glycosyl transferase (pGT), resulting in an isogenic derivative of B. longum 337 

35624, which was designated sEPSneg.  338 

In order to assess if the sEPSneg mutant had, as would be expected, lost its ability to 339 

produce exopolysaccharide we performed electron microscopy analysis, which indeed 340 

revealed that the ‘stringy’ sEPS layer present on the parent strain B. longum 35624 is absent 341 

on EPSneg, thus confirming its exopolysaccharide-deficient phenotype (Fig. 1). Furthermore, 342 

and in contrast to the parent strain B. longum 35624, the EPSneg strain exhibits a so-called 343 

dropping phenotype when grown in liquid medium (i.e. the EPSneg strain was found to 344 

sediment during growth in liquid medium, but the B. longum 35624 strain remained in 345 

suspension). A similar phenotype was observed for exopolysaccharide-negative variants of B. 346 

breve UCC2003 and Bifidobacterium animalis subs. lactis (21, 31), thereby substantiating the 347 

loss of exopolysaccharide production. To ensure that the observed phenotype is directly 348 

linked to the inactivation of pgt624, the adjacent and co-transcribed genes pgt624 and BI0343 349 
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were cloned together with the presumed promoter sequence in plasmid pBC1.2, after which 350 

the resultant construct was introduced in the sEPSneg strain. The resulting strain, designated 351 

sEPScomp, was shown to produce exopolysaccharide (Fig. 1). A similar complementation 352 

approach was previously described (32, 33). The sEPSneg and sEPScomp mutants grew more 353 

slowly compared to the parent strain B. longum 35624, likely due to the presence of 354 

antibiotics in their culture media, but by 38 hours of culture all bacteria were at similar 355 

numbers and had reached stationary phase (Supplementary Fig. S1). 356 

In vitro responses to B. longum 35624, sEPSneg and sEPScomp. The wild-type strain 357 

B. longum 35624 and its derivatives sEPSneg or sEPScomp were co-incubated with human 358 

PBMCs for 24 hours, followed by analysis of cytokine secretion in cell-free supernatants. As 359 

compared with B. longum 35624, the sEPSneg strain was shown to induce higher levels of IL-360 

12p70, IFN-γ and IL-17 secretion, with comparable induction of IL-10 (Fig. 2A). The 361 

sEPScomp strain induced similar levels of cytokine secretion as B. longum 35624, confirming 362 

that enhanced pro-inflammatory cytokine secretion is specifically associated with the lack of 363 

exopolysaccharide production. The addition of isolated exopolysaccharide to the co-cultures 364 

significantly reduced IL-12p70 and IFN-γ secretion in response to the sEPSneg strain, but did 365 

not alter IL-17 or IL-10 responses to the sEPSneg  strain (Fig. 2B).  366 

Similarly to PBMCs, human MDDCs were co-incubated with B. longum 35624 or 367 

sEPSneg strains, and cytokine secretion was measured after a 24 hour exposure. Secreted IL-368 

17, IL-6 and TNF-α levels, but not IL-10, were all shown to be significantly higher for the 369 

sEPSneg-stimulated MDDCs, compared to B. longum 35624 -stimulated MDDCs (Fig. 3A). In 370 

contrast, no differences were found in the B. longum 35624 or sEPSneg –induced expression of 371 

the MDDC inhibitory molecules programmed death-ligand 1 (PD-L1) and PD-L2, which bind 372 
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to PD-1 on activated lymphocytes and play an important role in down-regulating the immune 373 

system (Fig. 3B).  374 

Activation of the transcription factor NF-κB is critical for the induction of 375 

inflammatory genes, including cytokines. Thus, we measured NF-κB activation in the 376 

monocyte cell line THP-1, containing a SEAP reporter for NF-κB and AP-1 activation. The 377 

sEPSneg strain was shown to induce higher levels of NF-κB/AP-1 activation, compared to B. 378 

longum 35624-stimulated THP-1 cells (Fig. 3C). To confirm this result, NF-κB 379 

phosphorylation was measured in MDDCs over time, following exposure to bacteria. Both B. 380 

longum 35624 and sEPSneg strains induced similar levels of NF-κB phosphorylation at early 381 

time points (Fig. 3D). However, sustained high levels of phosphorylated NF-κB were 382 

observed at later time points for the sEPSneg-stimulated MDDCs, which were not observed for 383 

B. longum 35624-stimulated cells. 384 

Taken together, these results suggest a role for this exopolysacharide in preventing in 385 

vitro inflammatory responses to B. longum 35624. 386 

The sEPSneg strain does not protect against colitis development. Colitis was 387 

induced in SCID mice by adoptively transferring CD4+CD25-CD45RBhi lymphocytes. Mice 388 

were administered B. longum 35624, sEPSneg or sEPScomp daily by oral gavage. As previously 389 

described, B. longum 35624 treatment prevented weight loss and disease symptoms in this 390 

model (34). However, mice treated with the sEPSneg strain exhibited significant weight loss 391 

and severe disease symptoms, while restoration of EPS production in the sEPScomp strain 392 

promoted a similar response as to B. longum 35624 (Fig. 4A). Following euthanasia, the 393 

colon:body weight ratio was significantly higher in animals administered the sEPSneg strain, 394 
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while macroscopically the colons of these mice appeared severely inflamed with visible 395 

necrotic regions, which was not observed when animals had been administered B. longum 396 

35624 (Fig. 4B). Within the mesenteric lymph nodes, there were significantly more IL-17+ 397 

lymphocytes in animals administered the sEPSneg, with a trend towards increased numbers of 398 

IFN-γ+ lymphocytes, which was not statistically significant (Fig. 4C). No significant 399 

difference in IL-10+ lymphocytes was observed. No differences in the gastrointestinal transit 400 

of B. longum 35624 or the sEPSneg derivative was observed (Supplementary Fig. S2). 401 

The administration of the sEPSneg strain to healthy immunocompetent animals did not result 402 

in gastrointestinal inflammation, indicating that the sEPSneg mutant did not induce colitis in 403 

healthy animals. However, administration of sEPSneg did provoke a trend in an increased 404 

percentage of IL-17+ and IFN-γ+ lymphocytes, associated with an increase in CCR9+ T cells, 405 

within the lamina propria of healthy animals, although these differences did not reach 406 

statistical significance (Supplementary Fig. S3). These data suggest that an inflamed micro-407 

environment, such as that present in the SCID model, is required for sEPSneg to exert its TH17-408 

enhancing effects. 409 

sEPSneg exacerbates IL-17 responses within the lung. In order to further assess the 410 

ability of sEPSneg to promote IL-17 responses in vivo, we utilized the ovalbumin (OVA) 411 

sensitization and respiratory challenge model, as we and others previously evidenced potent 412 

TH17 responses within the lungs of challenged animals (35). Either the B. longum 35624 or its 413 

isogenic derivative sEPSneg were administered intra-nasally to examine the influence of these 414 

strains on IL-17 responses within the lung. OVA sensitization and challenge resulted in an 415 

increased percentage of IL-17+ lymphocytes within lung tissue, compared to control animals 416 

(Fig. 5A). Exposure to the B. longum 35624 strain did not influence the percentage of IL-17+ 417 
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lymphocytes within the lung, however, exposure to sEPSneg significantly increased the 418 

percentage of IL-17+ lymphocytes (Fig. 5A). Single cell suspensions were generated from the 419 

lungs of all animals challenged as indicated above, and these lung cells were re-stimulated ex 420 

vivo with OVA or LPS to assess IL-17 secretion. OVA sensitized and challenged animals 421 

displayed increased ex vivo secretion of IL-17 to both OVA and LPS stimulation, compared to 422 

non-sensitized animals, suggesting that innate TLR-4 responses to LPS and allergen-specific 423 

lymphocyte responses to OVA are increased in the inflamed lungs of allergic animals (Fig. 424 

5A). The in vivo exposure to B. longum 35624 did not alter the ex vivo secretion of IL-17 by 425 

lung cells stimulated with either LPS or OVA. However, if animals had been exposed to 426 

sEPSneg in vivo previously, the isolated lung cells secreted significantly more IL-17 ex vivo in 427 

response to both TLR-4 stimulation with LPS and allergen restimulation with OVA (Fig. 5A). 428 

Thus, ex vivo secretion of IL-17 and the percentage of IL-17+ cells within lung tissue correlate 429 

with the highest levels for both assay systems being observed for sEPSneg-treated animals.  430 

OVA sensitization and challenge resulted in an increased percentage of IFN-γ+ 431 

lymphocytes within lung tissue, compared to control animals (Fig. 5A). Exposure to the B. 432 

longum 35624 strain prevented the increase in the percentage of IFN-γ+ lymphocytes within 433 

the lung, which was not observed following exposure to the sEPSneg strain (Fig. 5B). Re-434 

stimulation of lung single cell suspensions ex vivo with OVA or LPS did not result in 435 

significant levels of IFN-γ being secreted and no statistically significant differences were 436 

observed between the groups (Fig. 5B).  437 

OVA sensitization and challenge resulted in an increased percentage of IL-10+ 438 

lymphocytes within lung tissue and exposure to B. longum 35624 or the sEPSneg strains 439 

further increased the percentage of IL-10+ lymphocytes within the lung (Fig. 5C). Re-440 
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stimulation ex vivo was also associated with increased secretion of IL-10 following in vivo 441 

exposure to B. longum 35624 or the sEPSneg strains (Fig. 5C). 442 

These findings suggest that the absence of the exopolysaccharide on B. longum 35624 443 

promotes TH17 responses in the inflamed lung, similar to the effects described above for the 444 

inflamed gut. 445 

 446 

DISCUSSION 447 

In order to avoid immune-mediated destruction of mucosal tissues, the host can activate 448 

regulatory mechanisms that can block proinflammatory responses to commensal microbes 449 

present on mucosal surfaces. Bifidobacteria comprise a significant proportion of the gut 450 

microbiota and many strains are currently used as probiotics. However, the precise 451 

mechanisms by which such bifidobacteria interact with host immune cells are not fully 452 

understood. In this report we describe that the presence of a cell surface-associated 453 

exopolysaccharide produced by B. longum 35624 modulates cytokine secretion and NF-κB 454 

activation in vitro, while in murine models exposure to a B. longum 35624 derivative unable 455 

to synthesize exopolysaccharide promotes TH17 responses both within the gut and the lung. 456 

Bifidobacterial cell surface-associated exopolysaccharides have previously been 457 

proposed to (i) mediate some of their health-promoting benefits, (ii) contribute to their 458 

tolerance of the harsh conditions within the gut, and (iii) to influence composition of the gut 459 

microbiome through their use as a fermentable substrate by other microbes (36-39). In 460 

general, bacterial exopolysaccharide consists of repeating mono- or oligosaccharide subunits 461 

connected by varying glycosidic linkages, which are structurally very diverse, and which may 462 
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contribute to strain-specific traits due to the expected structural and therefore functional 463 

diversity of such molecules. Of note, pathogen-associated exopolysaccharides have long been 464 

known to be critical in host–microbe interactions, where they facilitate adherence and 465 

colonization within the human host, with additional immunomodulatory effects (40, 41). 466 

Exopolysaccharides can also mediate the beneficial immune effects associated with certain 467 

commensal microbes. As already mentioned, a strong modulator of intestinal immune 468 

responses is PSA from B. fragilis, which is well described to influence lymphocyte 469 

polarization and PSA suppresses IL-17 production by intestinal immune cells (42-44). In line 470 

with data presented in this manuscript, exopolysaccharide gene knockout mutants of 471 

Lactobacillus casei Shirota induced significantly more pro-inflammatory cytokine secretion 472 

from a mouse macrophage cell line, compared to wild-type cells (45). In addition, the 473 

cytokine response of PBMCs to two isogenic strains of B. animalis subsp. lactis that differ 474 

only in their exopolysaccharide-producing phenotype suggest that the mucoid strain could 475 

have higher anti-inflammatory activity (31). The data presented in this manuscript are in 476 

agreement with these previous reports and further supports the concept that 477 

exopolysaccharides from bifidobacteria may elicit immune-modulatory activities. 478 

Interestingly, the induction of PD-L1 and PD-L2 on dendritic cells was similar for the 479 

wild type B. longum 35624 strain and its isogenic derivative sEPSneg. Similarly, the induction 480 

of IL-10 was not negatively impacted by the loss of exopolysaccharide from the bacterium. 481 

This suggests that not all immune-regulatory effects induced by B. longum 35624 are 482 

mediated solely by exopolysaccharide. The bifidobacterial cell wall is a complex arrangement 483 

of macromolecules, consisting of a thick peptidoglycan layer that surrounds the cytoplasmic 484 

membrane, which is decorated with other glycopolymers, such as (lipo)teichoic acids, 485 

polysaccharides and proteins, all of which may influence the immune response (46, 47) A few 486 
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examples include the cell wall-associated proteins p40 and p75 from L. casei ssp. rhamnosus 487 

GG, the S-layer protein from L. acidophilus, or the STp peptide from L. plantarum (48-50) .  488 

TH17 cells are a subset of CD4+ T helper cells that mediate protective immunity to 489 

extracellular bacterial and fungal pathogens, predominantly at epithelial surfaces (51). 490 

Polarization of naïve T cells into TH17 cells occurs following T-cell antigen receptor 491 

recognition of an MHC class II-bound peptide in the presence of cytokines including TGF-β1, 492 

IL-6 or IL-1β (52, 53). While TH17 cells are required for protective immunity, these cells 493 

massively infiltrate the inflamed intestine of inflammatory bowel disease patients, where they 494 

produce IL-17 and other cytokines, triggering and amplifying the inflammatory process (54). 495 

Our data suggests that the B. longum 35624 strain-associated exopolysaccharide prevents the 496 

induction of a TH17 response to this bacterium. Multiple mechanisms may be involved in this 497 

process. For example the exaggerated induction of cytokines, including IL-6, from dendritic 498 

cells may support TH17 lymphocyte polarization and development. Support for this 499 

hypothesis can be seen when we restimulate OVA-specific T cells with OVA and we observe 500 

increased secretion of IL-17 when the lungs were previously exposed to sEPSneg. These OVA-501 

specific T cells are not reacting to bifidobacteria-associated antigens, but more IL-17 is 502 

secreted upon OVA challenge suggesting that it is the cytokine microenvironment, provided 503 

by innate cells such as dendritic cells, that is supporting excessive TH17 development. The 504 

observation that addition of purified exopolysaccharide to sEPSneg-stimulated PBMCs 505 

suppresses the exaggerated IL-12p70 and IFN-γ secretion, but not IL-17 secretion, also 506 

suggests that multiple mechanisms may be involved. Future studies will determine if it is the 507 

exopolysaccharide itself that can directly inhibit TH17 responses by binding to host receptors, 508 
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or if the exopolysaccharide is simply masking TH17-promoting molecules on the surface of 509 

this bacterium. 510 

In conclusion, we have identified a novel immunoregulatory activity associated with 511 

the presence of a exopolysaccharide in the human commensal B. longum 35624 strain. Our 512 

findings suggest that this exopolysaccharide is required to prevent a potent tissue-damaging 513 

TH17 response to a commensal bacterium. Accordingly, our data on the B. longum 35624-514 

associated exopolysaccharide corroborates, and expands, the published concept that 515 

exopolysaccharides produced by certain lactic acid bacteria and bifidobacteria may elicit 516 

immune-modulatory activities (55), which are important for appropriate host-microbe 517 

communication. 518 
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FIGURE LEGENDS 712 

Figure 1. B. longum 35624 electron microscopy 713 

Representative scanning electron microscopy (SEM) images for the B. longum 35624 parent 714 

strain (A, upper panel) and its isogenic derivatives, sEPSneg mutant (B, middle panel) and 715 

sEPScomp mutant (C, bottom panel) are illustrated. Arrows indicate the ‘stringy’ layer of 716 

extracellular polysaccharide visible on the B. longum 35624 parent strain and sEPScomp strain . 717 

Scale bars are indicated at the bottom right of each panel. 718 

 719 

Figure 2. PBMC cytokine response to bacterial strains 720 

(A) PBMCs from 6 healthy donors were stimulated with B. longum 35624 or its isogenic 721 

derivatives sEPSneg or sEPScomp (50 bacteria:1 PBMC) for 24 hours and cytokine secretion 722 

into the culture supernatant was quantified. Data are presented as box-and-whisker plots with 723 

the median value and max/min values illustrated. Statistical significance was determined 724 

using the Kruskal–Wallis test and Dunn’s multiple comparison test (*p<0.05). (B) Effect of 725 

adding isolated exopolysaccharide on sEPSneg strain-induced PBMC secretion of IL-12p70, 726 

IFN-gamma, IL-17 and IL-10. Each line connects the data from the same donor. The Mann–727 

Whitney U test was used for the statistical analysis (*p<0.05 versus the sEPSneg strain alone). 728 

 729 

Figure 3. MDDC response to bacterial strains 730 

MDDCs were generated from 4 healthy donors and were stimulated with B. longum 35624 or 731 

its isogenic derivative sEPSneg (50 bacteria:1 MDDC) for 24 hours. Cytokine secretion into 732 
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the culture supernatant (A) and cell surface expression of the inhibitory molecules PD-L1 or 733 

PD-L2 (B) were quantified. Data are presented as box-and-whisker plots with the median 734 

value and max/min values illustrated. The Mann–Whitney U test was used for the statistical 735 

analysis (*p<0.05 B. longum 35624 versus the sEPSneg strain). (C) THP-1 NF-κB activation 736 

following exposure to increasing concentrations of B. longum 35624 or its isogenic derivative 737 

sEPSneg (n=4 experimental replicates). (D) Activation of NF-κB in MDDCs exposed to B. 738 

longum 35624 or its isogenic derivative sEPSneg  (n=3, 50 bacteria:1 MDDC) . Statistical 739 

significance was determined using two-way ANOVA (*p<0.05 B. longum 35624 versus the 740 

sEPSneg strain). 741 

 742 

Figure 4. sEPSneg is not protective in a T cell transfer colitis model 743 

Following receipt of CD4+CD25-CD45RBhi T cells, C.B-17 SCID mice were orally 744 

administered B. longum 35624 (n=8), sEPScomp (n=8) or sEPSneg (n=8) strains. (A)  Weight 745 

loss and disease activity were monitored over time. Statistical significance was determined 746 

using two-way ANOVA (*p<0.05). (B) Following euthanasia, the colon:body weight ratio 747 

was determined. A representative picture of colons from B. longum 35624 or sEPSneg –treated 748 

animals is provided. (C) The percentage of IL-17+, IFN-γ+ and IL-10+ lymphocytes from 749 

mesenteric lymph nodes are illustrated (n=8 per group). Data are presented as box-and-750 

whisker plots with the median value and max/min values illustrated. Statistical significance 751 

was determined using the Kruskal–Wallis test and Dunn’s multiple comparison test (*p<0.05 752 

sEPSneg strain versus the other strains). 753 

 754 
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Figure 5. sEPSneg promotes TH17 responses in the lung 755 

Non-sensitized animals received an OVA aerosol challenge and were intranasally 756 

administered  PBS (Control, n=8). Sensitized animals received an OVA aerosol challenge and 757 

were intranasally administered  PBS (OVA, n=8), or intranasally administered  B. longum 758 

35624  (OVA & 35624, n=8), or intranasally administered  sEPSneg (OVA & sEPSneg, n=8). 759 

(A) The percentage of IL-17+ CD3+CD4+ T lymphocytes, isolated from lung tissue, and 760 

secretion of IL-17 from isolated lung cells re-stimulated ex vivo with OVA or LPS. Similarly, 761 

IFN-γ+ and IL-10+ CD3+CD4+ T lymphocytes and ex vivo IFN-γ and IL-10 secretion were 762 

quantified using identical methods, (B) and (C) respectively. Data are presented as box-and-763 

whisker plots with the median value and max/min values illustrated. Statistical significance 764 

was determined using the Kruskal–Wallis test and Dunn’s multiple comparison test (*p<0.05 765 

compared to the OVA group).766 
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 Table 1. Bacterial strains and plasmids used in this study. 767 

Strain or plasmid Relevant characteristics Reference or source 

Strains   

E. coli EC101 Cloning host, repA-, Kmr Law et al., 1995 (26) 

E. coli XL1blue Cloning host, , Tetr Stratagene 

E. coli EC101 pNZ-M.1185 E. coli EC101 harbouring pNZ-M.1185 This study 

B. longum 35624 Parent strain Alimentary Health 

sEPSneg B. longum 35624 harbouring insertion mutation in 
priming glycosyl transferase encoding gene, pgt624 

This study 

sEPScomp sEPSneg harbouring pBC1.2_pgt624+BI0343 This study 

Plasmids   

pNZEm Gene expression vector, Emr Margolles et al., 2006 (56) 

pORI19 Emr, repA-, ori+, cloning vector Law et al., 1995 (25) 

pORI19tet(w)_pgt pORI19 harbouring internal fragment of BI0342 
(pgt) and tetW gene 

This study 

pBC1.2 E. coli –Bifidobacterial shuttle vector Álvarez-Martín et al., 2007 
(27) 

pBC1.2_pgt624+BI0343 pBC1.2 harbouring the cotranscribed genes 
pgt624+BI0343 under the control of their native 
promoter 

This study 

pNZ-M.1185 BI1185 (M.1185, isoschizomer of M.EcoRII) 
cloned with its own promoter in pNZEM 

This study 

 768 

769 
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Table 2. Oligonucleotide primers used in this study are described. 770 

Purpose Primer Sequencea 

Cloning of M.1185 in 

pNZEm 

BI1185F_PstI GACTGCAGGCCCACTAGGTAACCAAACG 

BI1185R_SpeI GCGCACTAGTCTAGAGCAAAGCCAGTATAG 

   

Cloning of internal 583 bp 

fragment of pgt in pORI19 

BI0342F_HindIII GATAAGCTTGCGTCGGCAACTCAACTACC 

BI0342R_XbaI GATTCTAGACGTCGGCGTTCACTACCATC 

 

Cloning of pgt624+BI0343 

in pBC1.2 

 

BI0342FSalI 

 

GACGTCGACACTCCACTCTCGCTGATCG 

BI0343EcoRI GGCGAATTCTAATCAACCAAGGGGGTCTG 

   

  

a Restriction sites incorporated into oligonucleotide primer sequences are indicated in bold 771 
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