
Title The project management challenges, benefits, risks and
limitations of adopting agile methodologies for a multiphase ERP
program

Authors Toomey, Eoghan

Publication date 2021-10-22

Original Citation Toomey, E. 2021. The project management challenges, benefits,
risks and limitations of adopting agile methodologies for a
multiphase ERP program. MComm Thesis, University College
Cork.

Type of publication Masters thesis (Research)

Rights © 2021, Eoghan Toomey. - https://creativecommons.org/licenses/
by-nc-nd/4.0/

Download date 2024-03-28 15:15:36

Item downloaded
from

https://hdl.handle.net/10468/12388

https://hdl.handle.net/10468/12388

BUSINESS INFORMATION SYSTEMS

The Project Management Challenges, Benefits, Risks and Limitations of
Adopting Agile Methodologies for a Multiphase ERP Program.

Eoghan Toomey B.B.S. (Accounting)

A Thesis Submitted for the Degree of Master of Commerce (MComm) of the National
University of Ireland.

Research Supervisors: Prof. Philip O’Reilly & Prof. David Sammon

2021

1

CHAPTER 1 Introduction …………………………………………………………………………………………………….. 3

1.1 Research Objectives ………. 6

CHAPTER 2. Literature ……... 10

2.1 ERP …………………………... 10

2.2 Challenges of ERP implementations ...……………. 12

2.3 ERP Project Management .. 13

2.4 ERP Implementation Failure ………………………………………………………………………………………………… 19

2.5 Software Development Methodologies …………….. 24

2.5.1 Plan-Driven Software Development Methodology……………………………............................... 26

2.5.2 Agile Software Development Methodologies.. 30

2.5.3 Waterfall vs. Agile: Which is the Right Development Methodology for an ERP? ……………… 41

2.5.4 Scaled Agile Framework® (SAFe)…………………... 46

2.5.5 Project Management Benefits, Risks, Challenges and Limitations of adopting
Agile-At-Scale Methodologies for an ERP Program.. 51

CHAPTER 3. Research Problem …………………………………………………….. 58

3.1 Research Methodology ……………………... 59

3.2 Participant Observer Research …………..………………………………………………………………………………. 67

CHAPTER 4. Findings ……… 72

4.1 The Project Management challenges of adopting Agile for a multiphase ERP Program…..…….. 74

4.2 The Project Management benefits and risks of adopting Agile for a multiphase ERP Program 80

4.3 The Project Management lessons learned of adopting Agile for a multiphase ERP Program… 86

4.4 Dell’s Agile-At-Scale IT Delivery Framework ………………………………………………………………………… 92

CHAPTER 5. Conclusions ………………………………………………………………………………………….………… 117

References ……… 122

2

Abstract

This research presents an insight into the project management challenges, benefits, risks
and limitations of adopting an Agile-At-Scale methodology for a multiphase ERP
(Enterprise Resource Planning) IT Programme.

As the researcher, my main motivation for undertaking this study was to gain a deeper
understanding of how Agile could be leveraged in an ERP Environment. In my work for Dell
Technologies, I have been at the forefront of Dell’s Global IT Transformation initiatives and
have been part of pilot programmes to adopt Agile and Agile-At-Scale across the IT function.
While working closely with specialist external IT Consultancy firms, I identified a
knowledge gap which raised research objectives relating to the project management
challenges, benefits, risks and limitations of adopting an Agile-At-Scale methodology for a
multiphase ERP programme. This study aims to address and further examine this knowledge
gap.

This study is aimed primarily at both IT and Business Project leaders engaged in large scale,
global, multiphase Transformational ERP Programmes.

The primary research method I adopted was that of participant observer. As a fully engaged
participant in Dell’s IT Transformation journey, my role provided me with the opportunity
to attend professional Agile training, participate in the piloting of Agile Transformation
Programs and be part of a Core Team whose role was to implement Agile. The Core Team’s
goal was to provide feedback to the Executive Leadership on the Agile adoption and contrast
Agile with the more traditional Waterfall methodologies being used over my twenty years
working on Global ERP Programs. To compliment the participant observer research method,
I also used case studies, surveys and interviews.

This thesis uniquely illustrates, through the lens of the Agile ERP Quadrant view
(Fig 2.18), a new understanding of the challenges, benefits, risks, limitations and lessons
learned of Adopting Agile for an ERP Program. (Fig 4.1), builds on the Agile ERP Quadrant
and denotes the positive, negative and neutral impacts by magnitude.

The study concludes that the adoption of Agile is not a one size fits all and highlights specific
areas associated with ERP Programs that require a more hybrid approach.

This research will provide a detailed study of Dell Technologies Agile-At-Scale journey and
will present an Agile Framework which can be adopted for a large-scale Global ERP
Implementation.

3

Chapter One: Introduction

1.0 Introduction to the Study

The purpose of this chapter is to introduce the Waterfall and Agile concepts in an ERP

environment. The research objectives are outlined along with the motivation for undertaking

the study and the role of the researcher. Finally, an in-depth breakdown of the research plan

by chapter is detailed.

When companies begin planning an ERP implementation, one of the first questions that

needs to be answered after determining which application you will use, is what approach you

will take to govern that ERP implementation. The two main approaches companies tend to

use to govern an ERP implementation fall under one of two categories: Waterfall

methodology and Agile development.

The Waterfall approach is so named because under this approach, each step is supposed to

flow seamlessly to the next, like water cascading over a waterfall. In reality, an ERP

implementation is a complex project that doesn’t always follow a linear progression. The

unexpected sometimes occurs, and requirements can change.

The Agile methodology has started to replace the Waterfall approach on many ERP

implementation projects. Like Waterfall, Agile development requires a great deal of

requirements gathering early in the project, and these requirements are used to guide the

project plan. However, what Agile projects do with this information and how the project is

managed through the development and deployment process is somewhat different. Rather

than completing all the work in a linear progression prior to testing, Agile divides the project

plan into short intervals called sprints. Testing occurs at the end of each sprint, and

adjustments are made accordingly, rather than spending a great deal of time doing

development for the entire project and only discovering and addressing issues late in the

lifecycle.

4

Enterprise Resource Planning (ERP) systems are complex, expensive and powerful software

systems that provide modules to support administrative areas in business management such

as marketing, manufacturing, sales, finances, distribution, planning, human resource

management, inventory management, project management and e-business. Because these

systems are off the-shelf solutions, they require consultants to tailor and implement them

based on the company’s requirements and business needs [1].

Implementing this type of systems is a strategic and expensive decision to make for any

company and despite that a lot of research have been conducted to fill the gap in the area of

providing solutions for these challenges, the failure rate in ERP projects is still quite high as

a recent report shows. During the last 4 years the average cost of ERP implementations has

been roughly $4.5 million with an average duration of 17.3 months. Of these projects,

approximately 55% exceeded their planned budgets, and 66% percent experienced schedule

overruns. Post implementation, 53% of organizations achieved less than 50% of the

measurable benefits they anticipated from new ERP software [2]

The reason behind the high number of failed ERP implementation projects is that this type

of projects has been facing many challenges. A recent case-study [3] showed that the issues

and challenges can be categorized into six major themes reengineering (organization and

infrastructures), top management commitment, funds, skilled manpower, implementation

time and data fill-in [3]. Many of these issues could be a result of lack of agility in ERP

implementation projects. An online survey conducted in 2010 on 45 firms that had

experience in ERP implementation, showed that 38% of the implementation project used a

pure big bang strategy [4].

The implementation process in big bang implementation strategy consists of separated

phases which should be performed strictly in order. This approach is quite similar to the

waterfall approach to systems development since it does not provide the option of going back

to a previous phase or stage. In addition to that, it is quite expensive to perform changes in

an ERP system. In contrast agile methodologies consist of iterative and incremental phases

that deliver smaller parts of functionality from a series of comparatively short development

cycles [5].

5

The lack of agility in ERP implementation projects might be one of the reasons behind the

high failure rate in these projects. A study by West (2011) [4] showed that many IT projects

are increasingly using Agile methodologies. Agile software development methods have

shown themselves to address several of the challenges that traditional systems development

projects have struggled with. About 39% of IT professionals said that they follow an Agile

method. Because of the benefits Agile methods are bringing to IT projects, their popularity

is growing among IT professionals. Thus, increasing the usage of Agile methodologies in

ERP implementation projects has a high potential to smooth many of the current ERP

challenges.

The ERP environment faces constant change and reassessment of organizational processes

and technology. The Project Management method used with ERP deployments must provide

adaptability and agility to support these evolutionary processes and technologies [6].

The use of Agile methods in the ERP domain provides:

• Increased participation by the stakeholders.

• Incremental and iterative delivery of business value.

• Maximum return on assets using a real options decision process.

6

1.1 Research Objective and Questions

This Thesis aims to investigate three areas.

• The Project Management challenges of adopting Agile Methodologies for a multiphase ERP

Program.

• The Project Management benefits and risks of adopting Agile Methodologies for a

multiphase ERP Program.

• The Project Management lessons learned of adopting Agile Methodologies for a multiphase

ERP Program.

1.1.1 Motivation to undertake this Study

As an IT Program Manager with 20 Years’ experience working on Transformational ERP

Programs across a number of sectors ranging from Telecoms to Software to High Tech

Manufacturing and Services, I have seen first-hand how the traditional Waterfall

Methodology of Project Management has evolved into a more Agile approach. Working for

Dell Technologies has afforded me the ability to be at the cutting edge of adopting and

piloting these new methodologies to an ERP environment.

1.1.2 Role of the Researcher

My role at Dell Technologies as a Senior Global Program Management Consultant

(PMP/CSM) exposes me to an ever changing and extremely fast paced transformational

environment. The recent merger with EMC/VMware, the largest technology merger in

history, has presented major opportunities and challenges from an IT Program Management

perspective as we work to bring the IT Systems of these major corporations together. My

role is to manage these large-scale Global Transformation ERP Programs with annual

budgets of $10m+ and Project teams of 300-500 people. In recent years, Dell Technologies

is transitioning to a more Agile approach to Project Management, I was part of the Pilot

Team for the adoption of Agile Methodologies, so I have an in-depth knowledge of the

lessons we have learned.

7

1.2 Outline of the Research Plan

The plan of research is as follows.

The purpose of Chapter Two is to provide a definition and investigation of ERP Programs.

It illustrates the challenges of implementing an ERP Program and the reasons for ERP

failures as well as the best practices to avoid such failures. Chapter Two will look specifically

at the Project Management of ERP Programs and looks at the associated Project Management

knowledge areas. This Chapter will reveal a detailed analysis of the Software Development

Methodologies and provides a comparison across Waterfall and the many evolving Agile

Methodologies, including the Scaled Agile Framework (SAFe). Chapter Two concludes with

the Project Management Benefits, Risks, Challenges and Limitations of adopting Agile-At-

Scale Methodologies for an ERP Program.

2.1 provides an introduction to the concept of ERP systems, the distinction between ERP

systems and other IT systems is very relevant to this thesis as the interdependencies across

ERP modules and interlocking systems plays a major part in the understanding of the benefits,

risks, challenges and limitations of adopting Agile-At-Scale Methodologies for an ERP

Program.

 2.2 illustrates the challenges and risks associated with ERP Implementations and reveals

that the high degree of complexity and change in ERP Programs requires an effective Project

Management Methodology.

2.3 describes the role of Project Management in ERP implementations and emphasizes its

impact across the Project Management knowledge areas. It concludes by revealing how it

greatly improves the odds of an ERP implementations success.

2.4 describes the most common reasons for ERP implementation failures and illustrates the

best practices for avoiding such failures.

2.5 goes into greater depth on the Software Development Methodologies, it compares and

contrasts Waterfall and the various Agile Methodologies and asks which is best suited to an

ERP Program. This Chapter concludes with a detailed breakdown of the benefits, risks,

challenges and limitations or adopting Agile-At-Scale for an ERP Program.

8

Chapter Three presents the Participant Observer Research in the form of a comprehensive

survey across Dell’s IT function. The survey reveals Dell’s Agile experiences, the areas

where Agile is working well and the areas that need improvement.

 3.2 presents the detailed findings of an extensive Dell IT survey, specifically on Dell’s Agile

adoption experiences. It describes the key highlights, opportunities and takeaways.

Chapter 3 concludes that while adopting Agile allows for better traceability and the ability

to deliver key requirement to the business partners, it requires significant investment in

training and business alignment and introduces challenges across Release Management,

Environment Management and Roadmap planning.

Chapter Four describes and interprets the findings of the Dell Survey and looks specifically

at Dell’s experience in a large multiphase ERP Program. It focuses on the research objectives

of the Project Management Benefits, Risks, Challenges and Limitations of adopting Agile-

At-Scale Methodologies for an ERP Program. Chapter four will illustrate the research

objectives by providing evidence based on Dell’s direct experiences and will set the

foundation for Chapter Five which will conclude on how best Agile-At-Scale can be adopted

in an ERP Program.

Chapter 4 breaks down the challenges, benefits, risks, limitations and lessons learned of

Adopting Agile for an ERP Program. It provides concrete examples of Dell’s experience

across these categories and ties back the findings to the company wide findings outlined in

Chapter 3. Chapter 4 concludes that the adoption of Agile is not a one size fits all and

highlights specific areas associated with ERP Programs that require a more hybrid approach.

Chapter 4 presents an in-depth analysis of Dell Technologies Agile Adoption and Dell’s

Agile-At-Scale IT Delivery Framework. The research illustrates the details behind the Scrum

Workflow and describes the Project Teams associated roles and responsibilities, the artefacts

and the Scrum/Sprint Planning procedures. It reveals the concept of the MBI (Minimum

Business Incremental Business Value) and how this is used to form and sequence the Product

backlog.

4.4 presents Dell’s Scrum Workflow and illustrates the flow from Program Vision, through

refining the business objectives, creating the Product backlog, release coordination, the

coordination of dependencies and the release plan. It explains how to establish the Sprint

backlog, define and accept Sprint goals and complete Sprint planning.

9

4.4 provides an example and framework for how MBI’s can be sequenced and the benefits

of such an approach.

4.4 demonstrates how Dell’s Agile-At-Scale IT Delivery Framework fits into the wider

overall IT delivery mechanism, it also illustrates all of the business and IT artifacts and

process flows.

10

Chapter 2. Literature Review

2.0 Introduction

The purpose of Chapter Two is to provide a definition and investigation of ERP Programs.

It illustrates the challenges of implementing an ERP Program and the reasons for ERP

failures as well as the best practices to avoid such failures. Chapter Two will look specifically

at the Project Management of ERP Programs and looks at the associated Project Management

knowledge areas. This Chapter will reveal a detailed analysis of the Software Development

Methodologies and provides a comparison across Waterfall and the many evolving Agile

Methodologies, including the Scaled Agile Framework (SAFe). Finally, Chapter Two

concludes with the Project Management Benefits, Risks, Challenges and Limitations of

adopting Agile-At-Scale Methodologies for an ERP Program.

2.1 ERP

Enterprise Resource Planning (ERP) is a software solution that integrates business functions

and data into a single system to be shared within a company. While ERP originated from

manufacturing and production planning systems used in the manufacturing industry, ERP

expanded its scope in the 1990’s to other "back-office" functions such as human resources,

finance and production planning (Swartz & Orgill, 2001; Nieuwenhuyse, Boeck, Lambrecht,

& Vandaele, 2011) [1]. Moreover, in recent years ERP has incorporated other business

extensions such as supply chain management and customer relationship management to

become more competitive (See Figure 2-1 below).

Fig 2-1. ERP Extension (Abbas, 2011)

11

The major goal of ERP is to increase operating efficiency by improving business processes

and decreasing costs (Nah, Lau, & Kuang 2001; Beheshti 2006) [2]. ERP allows different

departments with diverse needs to communicate with each other by sharing the same

information in a single system. ERP thus increases cooperation and interaction between all

business units in an organization on this basis (Harrison, 2004) [3].

Furthermore, ERP standardizes processes and data within an organization with best practices.

The company also streamlines data flow between different parts of a business by creating a

one-transaction system (Lieber, 1995). As Hitt, Wu, and Zhou (2002) [4] stated, “The

standardized and integrated ERP software environment provides a degree of interoperability

that was difficult and expensive to achieve with stand-alone, custom-built systems.”

Standardization and integration of processes and data allows a company to centralize

administrative activities, improves ability to deploy new information system functionality,

and reduces information system maintenance costs (Siau, 2004) [5].

As a result of its benefits, ERP has become the backbone of business intelligence for

organizations by giving managers an integrated view of business processes (Parr & Shanks,

2000; Nash, 2000) [6]. ERP is designed to adapt to new business demands easily. The

continuous technological advancement and the increasing complexity of ERP require

companies to regularly upgrade their systems. Most ERP vendors provide an opportunity to

update procedures and align with perceived best practices to meet changing business needs

more quickly (Harrison, 2004) [3].

A significant number of organizations have adopted ERP over the last two decades, and the

revenue of the ERP market has grown from $17.2 billion in 1998 (O’Leary, 2000) to $39.7

billion in 2011 (Dover, 2012) [7]. Overall, the ERP market size is predicted to reach $41.69B

by 2020 according to Allied Market Research. [15]

12

2.2 Challenges of ERP implementations
In spite of ERP’s significant growth from the late 1990s to the present day, there are a number

of challenges that companies may encounter when implementing ERP.

Dillard and Yuthas (2006) [8] stated that most multinational firms are using ERP and that

more small and midsize companies have begun to adopt ERP. Despite ERP’s promises to

benefit companies and a substantial capital investment, not all ERP implementations have

successful outcomes. ERP implementations commonly have delayed an estimated schedule

and overrun an initial budget (Ehie & Madsen, 2005; Helo, Anussornnitisarn & Phusavat,

2008) [9].

Furthermore, the literature indicates that ERP implementations have sometimes failed to

achieve the organization’s targets and desired outcomes. Much of the research reported that

the failure of ERP implementations was not caused by the ERP software itself, but rather by

a high degree of complexity from the massive changes ERP causes in organizations (Scott

& Vessey, 2000; Helo et al., 2008; Maditinos, Chatzoudes & Tsairidis, 2012). [10]

These failures can be explained by the fact that ERP implementation forced companies to
follow the principle of ‘best practices’ in most successful organizations and form appropriate
reference models. (Zornada & Velkavrh, 2005) According to Helo et al., (2008) [11], “the
major problems of ERP implementation are not technologically related issues such as
technological complexity, compatibility, standardization, etc. but mostly [about]
organization and human related issues like resistance to change, organizational culture,
incompatible business processes, project mismanagement, top management commitment,
etc.”. Huang et al, Chang, Li and Lin (2004) presented the top ten risk factors causing ERP
implementation failure.

Table 2.2. Top ten risk factors of ERP (Huang et al., 2004)

13

These risk factors illustrate various organizational considerations: organization fit, skill mix,
project management and control, software system design, user involvement and training, and
technology planning.

Since ERP implementation inevitably causes organizational changes, it requires the

engagement of senior management from across the organization who is able to resolve

conflicts. Without the commitment of senior management, ERP implementation has a high

risk of failure.

In other words, due to changes in business processes across an organization, there can be

resistance to adopting the ERP system. ERP connects and integrates all business functions

within the organization. Therefore, it is critical that management staff be committed, and

particularly that they equip employees who are using business functions influenced by ERP

with clear channels of communication. Lack of end-user training increases risks by creating

confusion and inaccuracy, thereby decreasing user satisfaction and the credibility of the

system.

2.3 ERP Project Management

Excellent project management is also needed for successful ERP implementation. (Sammon

2007) [16] Project teams should have clear guidelines to execute ERP implementation from

their project objectives and work plan to their resource allocation plan. Without good project

management, ERP implementation projects that are large in scale and must take place over

longer time periods may end in failure.

Furthermore, the composition of team members plays a crucial role in ERP implementation.

ERP integrates diverse business functions across an organization into one single system,

necessitating a complex and integrated software package. If a project team does not clearly

understand the changes in its organizational structure, strategies, and processes from ERP

implementation, it will not be in a position to benefit from ERP’s competitive advantage. In

order to best implement ERP, project team members should be selected with a balance

between members with business experience within the organization and external experts with

specialties in ERP.

From the perspective of project management, the iron triangle Fig. 2.3 can illustrate how

important it is to balance the three corners of the triangle – scope, schedule and cost. (Lamers,

2002) [13]

14

Fig 2.3. The iron triangle of project management (Lamers, 2002)

However, in ERP implementations, both schedule and cost tend to be underestimated, while

scope is overestimated (Aiken, 2002). ERP changes the entire organizational environment

by reengineering the entire business process; thus, after implementation, it is not easy to

revise previous processes. Therefore, ERP implementations need accurate estimation,

preparation with a holistic view, and systematic management of the entire implementation

process.

2.3.1 Project Management Knowledge Areas for ERP Implementations

The Project Management Institute systematizes the body of knowledge of project management into

nine areas: scope management, human resource (HR) management, risk management,

communications management, procurement management and integration management in

addition to the three constituents mentioned in section 2.3 (Scope, Cost, Schedule). As a

project manager becomes more sophisticated in managing these areas, the processes used to

manage a project become more consistent and systematic that can contribute to a higher rate

of project success.

The different project management areas have presented difficulties to contemporary

management of IT projects. A large-scale project managed at different locations, in different

time zones, and by different users can create many difficulties. These are also applicable to

ERP implementations because an ERP system is typically large-scale, cuts across functional

boundaries, and often has heterogeneous stakeholders. This is especially so in a multinational

company where business units are on different continents. In these situations, decoupling the

large-scale software project into flexible and manageable modules can be a challenge, and

15

cross-functional coordination is one of the most important issues in ERP implementations.

Excellence in scope, time, cost, risk, and communication management is essential in meeting

this challenge.

Agile development techniques such as rapid application development can induce higher risks

and poorer quality than the traditional development method. Quality and risk management

of products and processes are crucial to the success of Agile development methods. For ERP

implementations in particular, in-house expertise is often lacking, and companies often turn

to external consultants in implementing the system, but the outsourcing of jobs does not

transfer the ultimate management responsibility for their successful completion. Poor

management of outsourcing responsibilities can increase risks and create integration

problems across products and processes.

The techniques of procurement and integration management can help IT managers succeed

in the outsourcing activity. In addition, an organization needs to avoid project management

problems such as “estimate to please” and establishment of subjective and immeasurable

objectives. Unrealistic cost estimates and lack of objective benchmarks can contribute to

escalating costs, and cost management is an important skill in the face of this challenge.

The importance of project management cannot be emphasized enough, particularly in the

development of large-scale software projects. Chen’s study [14] adopts the project

management areas of expertise to assess the project management practices of the ERP

implementation because these areas and practices are widely accepted throughout the project

management profession. In fact, these same areas have been codified in the

IEEE Standard 1490-(2003) [], which states that the areas and practices are generally

accepted, and “generally accepted means that the knowledge and practices described are

applicable to most projects most of the time, and that there is widespread consensus about

their value and usefulness” . Given that the first three project management areas (i.e., budget,

schedule, and quality) already have obvious implications for project success, Chen’s study

focuses on six other process-oriented project management knowledge areas: scope, HR, risk,

communications, procurement, and integration.

16

Fig 2.4 PMBOK nine knowledge areas. Chew C et al (2009).

For practitioners, it is important to recognize that stakeholders at the project, business unit,

and corporate levels often have divergent interests. IIED [17] An enterprise system can

impact these users in different ways and create conflicts among these stakeholders.

What Chen’s Study demonstrated is that it is critical to manage these impacts and conflicts

by incorporating project management practices in the implementation process (i.e.,

communications, scope, risk, HRs, procurement, and integration management).

In terms of communications, the first phase of Chen’s case study showed that the presence

of conflict and resentment created symptoms such as hostility, jealousy, poor communication,

frustration, and low morale. The lack of an open forum to involve users in the system

implementation process can create paralyses in effective communication, goals alignment,

trust, and poor system design between management and IS.

Thus, it is important for project managers to manage the communication process and create

a forum in which stakeholders can order priorities and discuss issues. Managing the conflict

between business and IS throughout a system development cycle is imperative to the

successful delivery of an IS project. User participation has been an effective mechanism to

lessen conflict, thereby improving system development outcomes.

In terms of scope management, many authors have cautioned that customization would likely

increase the cost and risks of ERP implementation and the difficulty for upgrades and

migration to future releases. However, some amount of customization will always be

necessary to meet specific business requirements, especially, in a multinational company

with different regional requirements. To capitalize on business opportunities, changing

system requirements is a viable option from a managerial perspective, but this represents a

great economic cost to any company that trades system functionalities for business agility.

https://www.pinterest.com/pin/464996730246345711/

17

The conflict between the need to meet business needs and the need to control system

complexity causes tension between management and IS professionals, and the pressure to

resolve the conflict creates a sense of obligation in the system implementer to change system

requirements to meet business needs. This, in turn, reinforces an unspoken commitment to

adopt the “change” option, even though there are viable alternatives

(e.g., maintenance, off-the-shelf package, or no change).

Creeping requirements can be especially destructive because of their implicit nature, which

can mean that their negative impacts are never fully and explicitly recognized, acknowledged,

or addressed. Any changes made to honour creeping requirements will be interpreted as a

reinforcement of an earlier promise or commitment—whether or not that is the intent of the

MIS department.

As a result, MIS can be kept from committing their limited resources to what matters most

to enterprise projects, such as reliability, functionality, and training. The chain effect of

disagreement and interference during the system requirements acquisition can affect project

outcomes.

Project managers can consider a two-pronged approach to manage scope. First, to avoid

entering a competing mode with management, a top-down policy on scope can be put into

practice (e.g., keeping 85% of business processes common). Second, to facilitate the

implementation of such a policy, a bottom-up process involving Super Users and functional

areas can be adopted (e.g., forming a prioritization committee). A prioritization committee

can serve as a successful scope management vehicle because it can lower the extent of user

resistance by involving users across different areas. Conflicts of interest are avoided by

improving the degree of transparency in the decision-making process. This case affirms the

importance the of scope management vehicle in the development of an enterprise system,

and scope planning and definition skills can minimize scope creep problems and channel-

limited resource to key issues.

Risk management is important to an IT project, especially one that spans the enterprise.

External (e.g., new business models and entrants) and internal (e.g., project size, duration,

structure, complexity, and outsourcing) aspects of task, process, or environment can increase

the likelihood of unfavourable project outcome, and these aspects represent risks to the

project.

Thus, project managers can consider measuring the risk of an ERP project as an important

part of risk management, and to the extent possible, a firm should adopt a formal method of

18

assessing risks. Once identified, different categories of risks can be managed with specific

action strategies, and different forms of risk control process can be adopted to tailor risk

management to specific contexts.

In managing HRs, it should be recognized that in-house employees tend to have a lower level

of readiness than vendors in implementing an enterprise system. The shortage of critical

skills and knowledge in most companies and high turnover rate of IT professionals pose

additional challenges. However, these HR issues do not have to be an inhibitor of a

successful implementation of an enterprise system. To facilitate knowledge transfer, a

company can pair in-house employees with vendors based on similarity in work values,

norms, and problem-solving approaches. The idea is to support ERP implementation with a

knowledge management mind-set that can facilitate the knowledge generation, transfer, and

absorption process between internal and external stakeholders.

In-house employees can solve problems more efficiently and effectively after acquiring

system-related skills and knowledge.

The complementary support of a knowledge management system can further the success rate

of ERP implementation.

In procurement management, managing partners should be the responsibility of the adopting

company, instead of that of the vendor. What this means is that project managers should

develop a list of performance metrics for vendors, work out how to measure them, and obtain

regular performance measurements. If there is a deviation from benchmark, project managers

should assume a hands-on role to track the issue and bring it to closure, instead of relying on

vendors themselves to address the issue. Overall, the adopting company needs to keep track

of the progress of the vendor–client relationship and take corrective actions if necessary, and

a well-managed partnership can incrementally transfer vendor’s knowledge and skills to in-

house employees. In addition, the cultural fit between clients and vendors is indispensable

for the long-term success of ERP project.

19

Finally, integration management is the mechanism that directs all stakeholders at the project,

business unit, and corporate levels toward the same direction. Firms contemplating ERP

deployments are recommended to have not only a prioritization committee, but also an

empowered prioritization committee that is authorized to make binding decisions and creates

concerted efforts in accomplishing business goals. Setting expectations at the onset of the

project would also be useful, i.e., SME’s would be expected to give up some of their local

processes in order to conform to the 85% policy. In addition, at the project level, it is

suggested that for some time after system deployment, those in-house employees who have

worked on development also work side by side with the helpdesk support staff. This way,

system knowledge can be transferred to the helpdesk and the eventual integration of the ERP

system into the organization can be facilitated.

The inclusion of project management skills can greatly improve the odds of ERP

implementation success. Both Chen’s [14] and Sammon’s (Sammon 2007) [16] studies

affirm this proposition by presenting evidence for progress from phase 1 to phase 2 where

the company leveraged six important project management areas—scope, HR, risk,

communications, procurement, and integration management. The importance of these

project management skills is often underestimated.

2.4 ERP Implementation Failures

ERP implementation failure occurs when the project does not meet one or more of its key

goals, which can include: Goeun Seo (2013). [5]

• On-time implementation

• On- or under-budget implementation costs

• Minimal disruption to business operations

• Improved organizational efficiency

• Reduced operating costs

• Increased sales or revenue

Software Advice [1] examined 22 high-profile ERP implementation projects from the past

decade that were dubbed “failures” by software consultants and industry publications. They

looked at the common factors behind the implementation failures in their sample, culled

20

from news reports, blog posts, Securities and Exchange Commission (SEC) filings and court

dockets.

One critical thing to understand is that ERP implementation rarely fails because of the

software itself. Indeed, only 18 percent of the failures we examined were due to buggy

software (and of those that were, many were a result of the organization’s own hefty

customizations).

Fig. 2.5 Most Common Reasons for ERP Implementation Failure

Poor change management—which includes inadequate training and executive planning—

was a driving factor in half of the implementation failures in our sample. Indeed, it’s not

enough to merely train employees to use the new system. It is also critical for managers to

understand and explain how adopting the system will impact staff’s core responsibilities—

while communicating the benefits the new software will bring.

21

In 36 percent of the failures examined by Software Advice,[1] the problem stemmed from the

organization’s functional requirements for the software not being met.

In such situations, the organization, its implementation consultants and the ERP vendor all

share the blame: Typically, it’s a combination of:

• The organization not doing its due diligence in researching the system

• The consultants not fully understanding their client’s needs, and

• The vendor over-hyping the system’s capabilities

Consider what happened when one manufacturing firm didn’t do its homework. Back in

2011, Group Manufacturing Services, a plastics and metal manufacturer, began

implementing a new ERP system.3 From the get-go, the implementation was a mess—

largely because the company took it on without the assistance of the vendor’s

implementation services.

During the implementation, the company realized that the system would not support a critical

function out of the box: According to PC World, the platform could not support the

manufacturing firm’s quoting system without a customization that could cost as much as

$24,000. This prompted the company to renege on its contract and file a lawsuit against the

vendor.

Ultimately, the court dismissed the case, and the company was back at square one—

presumably with lighter pockets. Had the company researched the system’s capabilities in

depth ahead of time, the whole situation might have been avoided.

Too often, an organization’s in-house IT team is not given a voice during the initial selection

and early planning phases of ERP software selection, despite having the most in-depth

knowledge in the company about the technical requirements for its IT infrastructure.

Implementing ERP must be viewed and undertaken as a new business endeavour and a team

mission, not just a software installation. Companies must involve all employees, and

unconditionally and completely sell them on the concept of ERP for it to be a success. A

successful implementation means involving, supervising, recognizing, and retaining those

who have worked or will work closely with the system. Without a team attitude and total

22

backing by everyone involved, an ERP implementation will end in less than an ideal situation.

Barker 2003 [6]

2.4.1Best Practices for Avoiding ERP Implementation Failure

To ensure a smooth implementation, here are some best practices to keep in mind: Somers

and Nelson (2001) [7]

Practice proper change management. It’s frustrating for employees to come into work one

day only to find that their workflows have been dramatically changed. Begin training

employees on the new system early and consider how the new system will often force them

to learn new processes or tools.

Further, make sure to always address any problems or concerns workers might have. In some

cases, it’s a good idea for upper management to “shadow” employees when they are

completing tasks that will be directly impacted by implementation, in order to better

understand how their workflows will change.

Don’t rush it. Implementations take time, and unrealistic time frames only create more

problems. Many factors can determine an implementation time frame—but in general, a

small to midsize company can expect the process to last anywhere from six months to two

years.

“Trust your implementation teams when they give you a time frame,” Lincoln says. “You

are paying for their expertise, so believe them. Trying to force a project to deliver within an

unrealistic time frame is a recipe for disaster.”

Engage and involve your IT team. There’s a reason why you’re in the executive suite while

your IT manager is in the server room: You’re best at running a business, and he’s best at

dealing with your company’s technology needs.

Unless you’re particularly knowledgeable about the technical intricacies involved with

implementing a new ERP system, respect the fact that your IT team are the experts, and defer

to their judgment when possible.

Take the time to listen to their concerns, and ensure they have the support and resources they

need from other departments to execute on the project. During the selection and

23

implementation process, solicit their feedback and make sure that there are no lingering

issues concerning data migration or training that could boil over halfway through the

implementation.

Know what you need and know what you’re buying. It’s critical to ensure that the vendor

you’re buying from can provide the functionality you need. While vendors generally have

the common sense to not deliberately mislead clients, critical technical requirements can fall

to the wayside during negotiations—especially if a firm’s decision-makers are not

independently confirming that the vendor will be able to provide all features and functions

necessary.

In addition to demonstrating potential new systems, decision-makers should seek outside,

third-party advice from current users and/or from consultants.

In section 2.4, we have looked at the most common reasons for ERP implementation failure

and the best practices for avoiding such failures. Section 2.5 will look at Software

Development Methodologies and how from a Project Management perspective, Agile can

mitigate or accentuate such challenges for an ERP Program.

24

2.5 Software Development Methodologies

Selecting an appropriate software development approach is as crucial to a project success as

applying project management best practices. In order to deliver better, faster and cheaper

software products, software practitioners and academics have suggested many approaches

such as Waterfall, Rational Unified Process and Agile. These three approaches are the most

frequently used approaches for software development [1] [2]. In particular, the Agile

approaches have become popular in the IT industry due to its ability to handle a high degree

of uncertainty in software development project. Rather than relying on the process, Agile

puts the emphasis on people and communication by following the light-but-sufficient rules

of project behaviour [3]. It has also been proven to provide high productivity and speed up

the development process beyond conventional development approach i.e. Waterfall [4].

The idea of Agile emerged from experienced practitioners who proposed the lightweight

approaches for software development. They published their common idea in 2001 in the

form of the Agile manifesto. The manifesto asserts that Agile software development should

focus on four core values [5]):

1. Individuals and interactions over processes and tools.

2. Working software over comprehensive documentation.

3. Customer collaboration over contract negotiation.

4. Responding to change over following a plan.

The Agile manifesto was introduced after various versions of Agile software development

were defined. Scrum and Dynamic System Development Method (DSDM) were among the

oldest Agile approaches created in the early-1990s. Extreme Programming (XP) was

introduced in the late 1990s and become the most popular approach of Agile software

development at that time [6] [7]. The Agile approach constitutes a set of practices for

software development that have been proved effective by experienced practitioners. For

example, XP is comprised of major practices such as planning game, pair programming,

refactoring, 40-hour week, and more [7]. Scrum requires certain project management

practices in various phases such as sprint planning meeting, sprint review meeting, and

creating/controlling the product backlog [8].

There is no single Agile development approach that ideally fits all project contexts without

adaptation due to the uniqueness of software project. Every project is different whether in its

25

subject area, development team or project size. Because of this, adapting Agile practices

according to project circumstances is a must. For example, a large development team cannot

be as agile as a small one. However, the team can exploit the use of the Agile approaches to

be light and effective, as long as they can creatively adjust the practices to the situation [3].

The Chaos reports published by The Standish Group from 1994-2009 [14] indicated that

many software development projects failed. In 2009, 24 % of projects were categorized as

“failed” which mean that the projects were cancelled prior to completion or delivery and

never used. 44 % of the projects were defined as” challenged” which indicated that the

projects were late, over budget and/or produced fewer functions and features than required.

Only 32 % of projects were reported as “successful projects”, which mean they were

delivered on time, on budget, and with required functions and features (see Figure 2.6) [14].

Although the actual numbers and the validity of the data are still debated among experts, this

figure is typically accepted as a description of the actual situation of software development

nowadays [15].

Fig 2.6 CHAOS report chart. Adapted from [14]

The cause of late, over budget and fewer functions/features delivered projects were not

explained explicitly. However, by a survey of 365 IT executive managers, several main

project success factors were discovered in this Chaos report, namely: user involvement,

26

executive management support, clear statement of requirements, proper planning, realistic

expectations, smaller project milestones and competent staff [16]. In the present, software

practitioners are still looking for better ways to minimize project failure. One of the most

important ways is to find better software development methodology which can lead to more

successful software development projects. There are two main categories of software

development methodologies, namely Plan-Driven Software Development Methodology and

Agile methodology. Both methodologies will be briefly described in the following section.

2.5.1 Plan-Driven Software Development Methodology

There had been many plan-driven software methodologies developed since the invention of

computer programming language. As indicated from their category name, these software

methodologies put emphasis on planning everything from the beginning to the end of a

project. These methodologies are well suited for well understood problems with well-defined

output from the beginning [11]. Several well-known plan-driven methodologies such as

Waterfall, Rational Unified Process (RUP), V-Model, and Spiral Model will be presented in

the following section, before going on to examine Agile methodologies in 2.5.2.

27

● Waterfall
The Waterfall methodology generally used to refer to common use of software development

practice, which has a figure like a waterfall (see Figure 2.7).The “waterfall” terminology

was never proposed by Royce although people often refer the model to his paper [17]. In this

consecutive model, each phase will be activated when its preceding phase has been

completed.

Fig 2.7 Waterfall methodology (adapted from [17]

28

● Rational Unified Process (RUP)
The Rational Unified Process (RUP) was developed by Rational Software Corporation in

2003. This methodology is categorized as an iterative enhancement model that is adaptable

to the organization and project specific context. RUP lifecycle consists of four phases, which

are [18]:

● Inception: determine the business case for the system and define the project scope

● Elaboration: analyse the problem domain, set up the architectural foundation, develop the

project plan and mitigate the key risk items.

● Construction: build the software components and features. Integrate them into the product

and test it thoroughly.

● Transition: deploy the system to the end user. Handle all issues by correcting problems,

developing new releases, and finishing postponed features.

Each phase can be broken down into several iterations which resulted in a release of an

executable product. The produced system will grow incrementally from iteration to iteration

and finally will become the final system.

There are six core process workflows, namely: business modelling, requirements, analysis

and design, implementation, test, and deployment. In addition, there are three core

supporting workflows, namely: configuration and change management, project management,

and environment [18].

29

● V-Model
The V-Model is used as the standard methodology in German defence and federal

administration software development projects. The initial version of V-Model was

developed in 1986 and has been evolved into V-Model 92, V-Model 97 and V-Model

XT [19]. The V-Model 97 methodology can be seen in Figure 2.8. Verification steps are

performed to ensure that in each phase the developed deliverables satisfy the requirements.

In validation steps, this model relates each phase of development stage with its

corresponding testing phase to ensure the system correctness [20].

Fig 2.8 V-Model 97 methodology (adapted from [20]

● Spiral Model
Barry Boehm introduced the Spiral model in 1986.[21]. The model is intended for large and

complicated software development project. It combines waterfall, rapid prototyping,

iterative development, and risk-driven approach to guide the software development process.

The Spiral model consists of four cycle’s i.e.

● Determine the objectives, alternatives and constraints

● Evaluate the alternatives, identify and resolve risks

● Develop and test the software

● Plan the next iteration

30

It assumes that each cycle progresses through the same sequence of steps which allows for

selection of a process model or termination of the project based on the identified risk. If the

risk is relatively low, a waterfall approach could be chosen, otherwise incremental release of

software should be performed. Each cycle is completed by product stakeholder review [21].

2.5.2 Agile Software Development Methodologies

In contrast to the plan-driven methodology which emphasizes planning, Agile software

development methodology put emphasis on people, communication, adaptability to change,

and iterative and incremental development. There are many variants of Agile methodologies.

However, only four major Agile methodologies will be presented in this

Thesis, namely Extreme Programming, Scrum, Lean, Scaled Agile Framework®, or SAFe®.

None of these Agile methodologies as described by their originator is perfect for every

organization. Any methodology may be a good starting point, but software developers will

need to adapt the practices to fit the unique circumstances of their organization, individuals,

and industry [22].

● Extreme Programming (XP)
Extreme Programming or XP is one of initial Agile approaches that has been proposed after

the problem of long development cycle of traditional development models. The idea was

developed by Kent Beck and Ward Cunningham in the late 1990s [3]. The starting point of

the XP is doing the simplest things to get the job done. It uses the practices that have been

proved to be effective in software development. XP aims to address the specific needs of

software development performed by small teams facing vague and changing requirements,

which are hard to handle by conventional software development.

After several trials and adjustments of practices, XP was proposed as a discipline to help

people develop high quality software by following key values and practices [7]. The four

values are communication, simplicity, feedback and courage. These values are realized

through a set of individual 12 practices taken from Beck’s book as follows [7]:

31

1. Planning game

Planning the next releases features is performed by having developers estimate the effort

needed for the customer stories implementation. Then the customers decide about the scope

and release time. This emphasizes the close interaction between customers and developers.

2. Small releases

Release the software often to the customer with small incremental versions. New version of

products is released at least monthly or can be even daily.

3. Metaphor

The metaphor is a simple story shared between customers and developers of how the system

works.

4. Simple design

Design the simplest solution that is workable at that time and constantly evolves to add needed

flexibility. Useless complexity and unessential code should be removed.

5. Testing

Test driven development is the key which means the developers write unit tests before the

production code. The unit tests must run perfectly for development to continue and be kept

running at all times. Customers write the functional tests to test the stories.

6. Refactoring

Restructure the system without changing its behaviour by removing duplication complexity

from code, improving communication, simplifying, and adding flexibility.

7. Pair programming

Two programmers write all production code together at a single computer. One writes the code

and, at the same time, another reviews the code for correctness and clarity.

8. Collective ownership

Every developer owns the code. Therefore, they can change any part code in the system at any

time.

9. Continuous integration

Build and integrate the system several times a day whenever the task is completed.

10. 40-hour week

Work no more than 40 hours a week as a rule. Never work overtime for two consecutive weeks.

11. On-site customer

32

Include a real customer that can work with the development team and is available full-time to

help defines the system and answers questions.

12. Coding standards

Developers write all codes in accordance with rules.

Ideally, XP project starts with a short development phase, followed by a long period of

simultaneous improvement and maintenance, and lastly retirement when the project no longer

makes sense. XP project life cycle consists of five phases, prior to final release (Death Phase)

as shown in Figure 2.9

Fig 2.9 XP Phases [23]

33

Each XP Phase is described below according to Beck [7]:

1. Exploration Phase

This is the pre-production phase where the customer writes down the story cards containing

the features of the system they expected to have in the first release.

Concurrently, the programmers familiarize themselves with technology and tools planned to

be used in the development. The project teams explore the possibilities for the system

architecture by building prototypes of a system and testing them in a different way. This

phase is done when the customer is confident that he/she can write good enough story cards

to be implemented. On the other side, programmers are sure that they are acquainted with

the practices, technology, and can confidently estimate the effort required by the story. This

phase normally takes a few weeks to a few months.

2. Planning Phase

The story cards are prioritized, and the scope of the first small release is defined by the

customer with the agreement from the developers. The developers estimate efforts needed to

implement each story card and then the schedule is agreed upon.

The period of each release is normally around two months but can be up to six months for

the first release. The planning phase itself lasts a couple of days.

3. Iteration to Release Phase

There are several iterations before the first release and each of which takes one to four weeks

to implement. As a general rule, customer decides the stories to be implemented in the first

iteration that will build the architecture of the whole system.

Customer also selects each iteration stories. Customer creates functional tests, which will be

run at the end of iteration. When the last iteration is reached and finished, the system is

prepared for production.

34

4. Productionizing Phase

This phase entails extra testing of the system performance before releasing to the customer.

Change management is needed as new changes may be identified and decisions have to be

made. The requirements or ideas that are decided to be postponed will be documented for

later implementation during the maintenance phase.

5. Maintenance Phase

After releasing the system to the customer for use, the project must maintain the running

system and make sure it works fine while also working on new iterations.

This is what maintenance phase is about. In general, extra efforts are required to support

customers as well as incorporate new people into the team and change the team structure.

● Scrum
Scrum is a simple and adaptive framework used for managing software development project.

It helps in organizing the team and getting work done productively with higher quality [24].

Scrum was introduced by Jeff Sutherland at Easel Corporation in 1993 and then formalized

for the software industry by Ken Schwaber in 1995. The term “Scrum‟ was originally

derived from the Scrum formation in Rugby. This term was identified by

Takeuchi and Nonaka in their works when reviewing best business practices for building

new product in the Japanese automobile in 1986. It was used as the foundation of team

building [8] [24].

Even though Scrum was originally proposed for managing product development projects, it

has been used largely for software project management counted as an Agile software

development approach. By using Scrum, a team can deliver software to the customer faster.

More energy focus and transparency will be added to the project planning and

implementation. The following things can be achieved by Scrum implementation [24]:

● Individual objectives aligned with corporate objectives

● A culture driven by performance

● Shareholder value creation

● Stable and consistent communication of performance

The Scrum framework contains three roles, three artefacts and four ceremonies. It is designed

to deliver functional software in Sprints or about 30 days iterations [24] [25].

35

Scrum Roles
All management responsibilities in a project are divided among these three roles [8] [24]

[25]:

1. The Product Owner is responsible for exemplifying the interests of all stakeholders in

the project by defining the product features documented as the product requirements. He or

she is responsible for the profitability of the product (ROI) as well as creating release plan.

The list of requirements is called a Product Backlog which the Product Owner will use to

ensure that the functionality is produced as prioritized according to the market value.

However, the Product Owner can change features and its priority during each sprint and he

or she is the one who accepts or rejects work outcome.

2. The Scrum Master is a facilitator for Scrum project. He or she is responsible for the

project success by ensuring that the team is fully functional, productive and

Scrum process is followed correctly. Scrum Master also helps the Product

Owner selects the most valuable Product Backlog and helps the team to turn the backlog into

functionality. Besides, he or she supports close collaboration across all roles and functions

as well as protects them from external interference.

3. The Team is self-organizing and cross functional team which contains seven plus/minus

two members. They are responsible for developing the functionality of each iteration and

each project as a whole. They select the Sprint goal, specify work results and have the right

to do everything within the project to reach the Sprint goal. The team manages itself and its

works.

36

Scrum Artefacts
Scrum brings up three new artefacts, which are used throughout the Scrum process as

following [24] [25]:

1. Product Backlog

It is a list of the system requirements being developed by the development teams while its

content and prioritization are the responsibility of the product owner. In the project planning,

the product backlog is used as an initial estimation of the requirements. It exists as long as

the product exists and grows as the product grows. The Product backlog is constantly

changed to identify what can make the product valuable and competitive.

2. Sprint Backlog

Sprint backlog describes the work that a team selects from the product backlog to be

implemented in the Sprint. It is a real-time picture of the work that the team plans to

accomplish during the sprint. In general, the work is divided into individual tasks that will

take roughly four to sixteen hours to finish. The Sprint backlog can be changed only by

Product Owner.

3. Burn Down Chart

Burn down Chart is used as a tool to help the development team to successfully complete a

Sprint on time by delivering working and shippable software product.

It shows the remaining tasks to be done in the Sprint backlog.

37

Scrum Ceremonies

The Scrum framework contains four ceremonies, which are Sprint Planning, Sprint

Review, Daily Scrum Meeting, and Sprint Retrospective meeting [24] [25]. Following figure

describes these Scrum ceremonies in a Scrum process.

Fig 2.10 Scrum processes (adapted from [23].

All works are performed in a Sprint which is an iteration of 30 days. Each Sprint starts with

a Sprint planning meeting. This is the activity where the Product Owner works together with

the team on the tasks need to be done in the next Sprint. The tasks are prioritized and selected

from the Product Backlog.

Sprint Planning meetings are normally time-boxed and last about eight hours or less.

There are two parts: the first half, about four hours, are for the Product Owner to present the

Product Backlog with high priority to the team and the team queries about the detail and

intentions of the Product Backlog [25]. After that, the team selects Product Backlog that they

think they can implement and ship to the customer by the end of the Sprint. For the second

half of the Sprint Planning meeting, the team reforms the Sprint and creates a tentative plan

to start the Sprint. The tasks decided to be implemented as plan are put in a

Sprint Backlog and appear as the Sprint evolves [24].

38

The second ceremony that occurs every day is called a Daily Scrum meeting. It allows team

members to get together for about 15 minutes so that they can synchronize all the works and

schedule any future meetings if necessary [25]. At the Daily Scrum meeting, each member

answers three questions about the project: What have been done since the last Daily Scrum

meeting? What do you plan to do until the next Daily Scrum meeting? What obstacles do you

face on during your works?

The third ceremony is called a Sprint Review meeting. This time-boxed meeting lasting

about four-hours is for the team to present to the product owner and other stakeholders about

the functionalities developed during the Sprint [24] [25]. The purpose of this informal

meeting is to get people together so that they help the team decides what to do next. After

the Sprint review meeting, the Scrum Master conducts a Sprint Retrospective meeting [25].

This meeting is for the team to reflect and improve its development process to make it more

effective for the next Sprint

• Lean

Since the success of Lean concept in Toyota Production System which made Toyota produce

high-quality cars with the lowest cost and shortest time, principles of Lean were then brought

into other areas including Software Development domain. In particular, the attention got

significantly higher after a book on Lean Software Development by Mary and Tom

Poppendieck was published [30]. The key ideas behind Lean are to put all development

efforts on the value-adding activities from the customers‟ viewpoint and to

analyse and identify the waste in software process systematically and then remove it [11]

[30]. The seven principles of Lean are described in the following table [31] [32].

39

Table 2.11 Seven principles of Lean software development [31]

Lean software development is closely related to Agile software development approaches.

Lean itself is a mind-set, a way of thinking about how to deliver value to customer more

quickly by finding and eliminating waste (the impediments to quality and productivity)

[33]. Lean software development, which Poppendieck defined as Agile toolkit, is slightly

different from their equivalents in Agile software development, but they are parallel [30].

When applying Lean software development principle, it is quite common to select a

lightweight Agile software approach as a starting point and begin applying Lean from

there. Lean tools include Value Stream Mapping (VSM), Kaizen (continuous

40

improvement), Kanban (a signalling system used to signal the need for an item, typically

using things like index cards, coloured golf balls, or empty carts), etc. [33].

Summary comparison of main Agile software development approaches (XP, Scrum,

and Lean) can be found in the following figure.

Table 2.12 Summary comparison of main Agile software development approaches

41

2.5.3 Waterfall vs. Agile: Which is the Right Development Methodology
for an ERP Project?

One of the first decisions IT Project Managers face for their project implementations is

“Which development methodology should we use?” This is a topic that gets a lot of

discussion (and often heated debate). But, before deciding which is more appropriate, it is

essentially important to provide a little background on both. Lotz 2013] [40]

Fig 2.13 Waterfall model v. Agile

Waterfall
A classically linear and sequential approach to software design and systems development,

each waterfall stage is assigned to a separate team to ensure greater project and deadline

control, important for on-time project delivery. A linear approach means a stage by stage

approach for product building, e.g.

1. The project team first Analyses, then determining and prioritising business requirements

/ needs.

2. Next, in the Design phase business requirements are translated into IT solutions, and a

decision taken about which underlying technology i.e. COBOL, Java or Visual Basic, etc.

etc. is to be used.

3. Once processes are defined and online layouts built, code Implementation takes place.

4. The next stage of data conversion evolves into a fully Tested solution for

implementation and testing for evaluation by the end-user.

5. The last and final stage involves Evaluation and Maintenance, with the latter

ensuring everything runs smoothly.

42

However, in case a glitch should result, changing the software is not only a practical

impossibility, but means one has to go right back to the beginning and start developing new

code, all over again.

Agile
It is a low over-head method that emphasizes values and principles rather than

processes. Working in cycles i.e. a week, a month, etc., project priorities are re-evaluated

and at the end of each cycle.

Four principles that constitute Agile methods are: [40]

1. The reigning supreme of individuals and interactions over processes and tools.

2. Working software over comprehensive documentation.

3. Customer collaboration over contract negotiation.

4. Responding to change over plan follow-throughs.

To synopsise the difference between the two, one can say the classic waterfall method stands

for predictability, while Agile methodology spells adaptability.

Agile methods are good at reducing overheads, such as, rationale, justification,

documentation and meetings, keeping them as low as is possible. And, that is why Agile

methods benefit small teams with constantly changing requirements, rather more than larger

projects.

Agile, based on empirical rather than defined methods (Waterfall) is all about light

manoeuvrability and sufficiency for facilitating future development. By defined methods

what one means is that one plans first and then enforces these plans. However, Agile

methods involve planning what one wants and then adapting these plans to the results.

Extreme Programming (XP) is an excellent example of Agile methodology i.e.:

1. Communication between customers and other team members;

2. Simple, clean designs.

3. Feedback given on Day 1 of software testing.

4. Early delivery and implementation of suggested changes.

43

Fig 2.14 Development Methodologies

Agile methodology means cutting down the big picture into puzzle size bits, fitting them

together when the time is right e.g. design, coding and testing bits. So, while there are

reasons to support both the waterfall and agile methods, however, a closer look clarifies why

many software and web design firms make the more appropriate choice of employing Agile

methodology.

The following points enumerates the raison d’être for choosing Agile methodology over the

Waterfall method.

1. Once a stage is completed in the Waterfall method, there is no going back, since most

software designed and implemented under the waterfall method is hard to change according

to time and user needs. The problem can only be fixed by going back and designing an

entirely new system, a very costly and inefficient method. Whereas, Agile methods adapt to

change, as at the end of each stage, the logical programme, designed to cope and adapt to

new ideas from the outset, allows changes to be made easily. With Agile, changes can be

made if necessary without getting the entire programme rewritten. This approach not only

reduces overheads, it also helps in the upgrading of programmes.

44

2. Another Agile method advantage is one has a launchable product at the end of each tested

stage. This ensures bugs are caught and eliminated in the development cycle, and the

product is double tested again after the first bug elimination. This is not possible for

the Waterfall method, since the product is tested only at the very end, which means any

bugs found results in the entire programme having to be re-written.

3. Agile’s modular nature means employing better suited object-oriented designs and

programmes, which means one always has a working model for timely release even when it

does not always entirely match customer specifications. Whereas, there is only one main

release in the waterfall method and any problems or delays mean highly dissatisfied

customers.

4. Agile methods allow for specification changes as per end-user’s requirements, spelling

customer satisfaction. As already mentioned, this is not possible when the waterfall method

is employed, since any changes to be made means the project has to be started all over again.

5. However, both methods do allow for a sort of departmentalization e.g. in waterfall

departmentalization is done at each stage. As for Agile, each coding module can be

delegated to separate groups. This allows for several parts of the project to be done at the

same time, though departmentalization is more effectively used in Agile methodologies.

45

Table 2.15. Factors to consider when choosing which methodology to use.

46

2.5.4 Scaled Agile Framework® (SAFe)

The Scaled Agile Framework®, or SAFe®, [41] provides a recipe for adopting Agile at

enterprise scale.

As Scrum is to the Agile team, SAFe is to the Agile enterprise.

SAFe tackles the tough issues – architecture, integration, funding, governance and roles at

scale. It is field-tested and enterprise friendly.

SAFe is the brainchild of Dean Leffingwell

SAFe is based on Lean and Agile principles

There are three levels in SAFe:

* Team

* Program

* Portfolio

Fig 2.16 SAFe Portfolio Vision [41]

47

At the Team Level:

• Scrum with XP engineering practices are used.

• Define/Build/Test (DBT) teams deliver working, fully tested software every two

weeks. There are five to nine members of each team.

At the Program Level:

• SAFe defines an Agile Release Train (ART). As iteration is to team, train is to program.

• The ART (or train) is the primary vehicle for value delivery at the program level. It

delivers a value stream for the organization.

• SAFe is three letter acronym (TLA) heaven – DBT, ART, RTE, PSI, NFR, RMT and

I&A!

• Between 5 and 10 teams work together on a train. They synchronize their release

boundaries and their iteration boundaries.

• Every 10 weeks (5 iterations) a train delivers a Potentially Shippable Increment (PSI). A

demo and inspect and adapt sessions are held. Planning begins for the next PSI.

• PSIs provide a steady cadence for the development cycle. They are separate from the

concept of market releases, which can happen more or less frequently and on a different

schedule.

New program level roles are defined

* System Team

* Product Manager

* System Architect

* Release Train Engineer (RTE)

* UX and Shared Resources (e.g., security, DBA)

* Release Management Team

48

In IT/PMI environments the Program Manager or Senior Project Manager might fill one of

two roles. If they have deep domain expertise, they are likely to fill the Product Manager

role. If they have strong people management skills and understand the logistics of release,

they often become the Release Train Engineer.

SAFe defines a Scaled Agilist (SA) certification program for executives, managers,

architects and change agents responsible for leading SAFe implementations.

SAFe makes a distinction between content (what the system does) and design (how the

system does it). There is separate “authority” for content and design.

The Product Manager (Program Manager) has content authority at the program level. She

defines and prioritizes the program backlog.

SAFe defines an artifact hierarchy of Epics – Features – User Stories. The program backlog

is a prioritized list of features. Features can originate at the Program level, or they can derive

from Epics defined at the Portfolio level. Features decompose to User Stories which flow to

Team-level backlogs.

Features are prioritized based on Don Reinersten’s Weighted Shortest Job First (WSJF)

economic decision framework.

The System Architect has design authority at the program level. He collaborates day to day

with the teams, ensuring that Non-Functional Requirements (NFRs) are met. He works with

the enterprise architect at the portfolio level to ensure that there is sufficient architectural

runway to support upcoming user and business needs.

The UX Designer(s) provides UI design, UX guidelines and design elements for the

teams. In a similar manner, shared specialists provide services such as security, performance

and database administration across the teams.

The Release Train Engineer (RTE) is the Uber-ScrumMaster.

The Release Management Team is a cross-functional team - with representation from

marketing, dev, quality, ops and deployment – that approves frequent releases of quality

solutions to customers.

http://agile102.blogspot.com/2013/01/weighted-shortest-job-first-bit-of-safe.html
http://agile102.blogspot.com/2013/01/weighted-shortest-job-first-bit-of-safe.html

49

At the Portfolio Level:
PPM has a central role in Strategy, Investment Funding, Program Management and

Governance.

Investment Themes drive budget allocations.

Themes are done as part of the budgeting process with a lifespan of 6-12 months.

Portfolio philosophy is centralized strategy with local execution.

Epics define large development initiatives that encapsulate the new development necessary

to realize the benefits of investment themes.

There are business epics (customer-facing) and architectural epics (technology solutions).

Business and architectural epics are managed in parallel Kanban systems.

Objective metrics support IT governance and continuous improvement.

Enterprise architecture is a first-class citizen. The concept of Intentional Architecture

provides a set of planned initiatives to enhance solution design, performance, security and

usability.

50

Table 2.17 SAFe patterns provide a transformation roadmap [41}

Adoption

Adoption focuses on identifying a value stream. A value stream is a sequence of activities

intended to produce a consistent set of deliverables of value to customers. Value streams are

realized via an Agile Release Train (ART).

SAFe poses questions to help identify value streams (ARTs):

* What program might adopt the new process the fastest?

* Which executives are ready for a transition?

* What are the geographical locations and how are the team members distributed?

* What programs are the most challenged, or represent the biggest opportunities?

When you identify a value stream, you go “All In” and “All at Once” for that train.

51

2.5.5 Project Management Benefits, Risks, Challenges and Limitations of
adopting Agile-At-Scale Methodologies for an ERP Program.

Fig 2.18 Benefits, Risks, Challenges, and Limitations of Agile in an ERP Program

52

Benefits

As outlined by Nah, F. F., Lau, J. L., & Kuang, J. (2001) [2}. Critical factors for successful

implementation of enterprise systems. Business Process Management Journal and Fergal

Carton, Frederic Adam and David Sammon Business Information Systems, University

College Cork, Cork, Ireland (2007) in “Project management: a case study of a successful

ERP implementation” [16]

• Revenue/Cost Control

The iterative nature of agile development means features are delivered incrementally,

enabling some benefits to be realised early as the product continues to develop. The scope

of the product and its features are variable, rather than the cost.

• Quality

A key principle of agile development is that testing is integrated throughout the lifecycle,

enabling regular inspection of the working product as it develops. This allows the product

owner to make adjustments if necessary and gives the product team early sight of any quality

issues.

• Visibility

Agile development principles encourage active ‘user’ involvement throughout the product’s

development and a very cooperative collaborative approach. This provides excellent

visibility for key stakeholders, both of the project’s progress and of the product itself, which

in turn helps to ensure that expectations are effectively managed.

• Risk Management

Small incremental releases made visible to the product owner and product team through its

development help to identify any issues early and make it easier to respond to change. The

clear visibility in agile development helps to ensure that any necessary decisions can be taken

at the earliest possible opportunity, while there’s still time to make a material difference to

the outcome

• Flexibility / Agility

In traditional development projects, we write a big spec up-front and then tell business

owners how expensive it is to change anything, particularly as the project goes on. In fear of

scope creep and a never-ending project, we resist changes and put people through a change

control committee to keep them to the essential minimum. Agile development principles are

different. In agile development, change is accepted. In fact, it’s expected. Because the one

53

thing that’s certain in life is change. Instead the timescale is fixed and requirements emerge

and evolve as the product is developed. Of course, for this to work, it’s imperative to have

an actively involved stakeholder who understands this concept and makes the necessary

trade-off decisions, trading existing scope for new.

• Business Engagement/Customer Satisfaction

The active involvement of a user representative and/or product owner, the high visibility of

the product and progress, and the flexibility to change when change is needed, create much

better business engagement and customer satisfaction. This is an important benefit that can

create much more positive and enduring working relationships.

• Right Product

The ability for agile development requirements to emerge and evolve, and the ability to

embrace change (with the appropriate trade-offs), the team build the right product. It’s all

too common in more traditional projects to deliver a “successful” project in IT terms and

find that the product is not what was expected, needed or hoped for. In agile development,

the emphasis is absolutely on building the right product.

Risks
As outlined by Huang, S., Chang, I., Li, S., & Lin, M. (2004).[12] in Assessing risk in ERP

projects: Identify and prioritize the factors. Industrial Management & Data Systems

• Lack of available business collaborators

Each team needs a single point of contact business representative (a.k.a. sponsor or customer).

Known as the “product owner” in Scrum, this person needs to frequently engage with the team and

have the authority to specify, prioritize, and accept the team’s work. Not properly fulfilling this role

will curtail the efficiency of your Agile initiative, even kill it.

• Incompatibility with existing governance policies

Quality gate sign-off policies. Documents such as project plans, requirements, and design documents

may not be amendable after formal sign-off from upper management (without formal change

requests). However, Agile won’t work if teams and their product owners are not empowered to make

changes to tasks, estimates, priority, and design.

54

• Exclusion of supervisors and line managers

When teams are empowered, supervisors sometimes lose job responsibilities. Yet too often

organizations make no provisions for addressing these changes in line manager function and status.

This can result in active and (less addressable) passive resistance to the Agile transformation from

an important and influential constituency.

• Individual performance management systems

The Agile value is commitment to the team, where all “win” or “lose” together. This is diametrically

opposed to "Individual" performance ranking meritocracy systems currently in place across

organisations

• Out of phase with upstream and downstream work streams

The Agile team is somewhere in the middle of a larger flow of work or value stream. It increases

frequency of inflow and outflow to every two weeks, maybe even less. If the cadence of work

upstream and downstream from the team does not also change, then delays and log jams can occur.

• Single team assignment

People who are simultaneously committed to more than one “Team” are unable to make meaningful

delivery commitments because of inevitable conflicting team imperatives. If members can’t make

meaningful commitments, Agile won’t work. This problem grows in magnitude as the program grows

in size and more teams are involved.

• Co-location

Collaboration thrives when teams are in intimate proximity. Maybe an exceptional team can

overcome this challenge, but not the many teams of a larger Agile transformation. Once teams get

established and members have effective working relationships, the team has a greater chance of

surviving if some members are dispersed. Also, an Agile program involving many teams

does not need to be completely co-located in order to be successful. What is vital is that small

groups of people intimately work together and develop the trust and mutual understanding

necessary for effective collaboration. It will be extremely difficult for small groups to

achieve this state if they are never afforded the opportunity to work in a shared, physical

space

55

Challenges

As outlined by Maditinos, D., Chatzoudes, D., & Tsairidis, C. (2012) [10] in their Factors

affecting ERP system implementation effectiveness. Journal of Enterprise Information

Management

• Velocity

Whether real or only perceived, the velocity challenge indicates that “the business” does not

believe that they are getting adequate throughput / value from the technology team.

• Reliability & Consistency

This challenge is typically shown through Agile teams that consistently over-commit and

miss their Sprint goals and deliverables

• Vision & Priority

An Agile team that lacks proper business or technical vision and priority is constantly

changing directions for each Sprint, or worse yet within a single Sprint

• Quality

Teams that have a quality challenge “finish” their sprints and deliverables, but accumulate a

significant amount of technical debt in the form of defects and poor design choices

• Coordination

A coordination challenge is present when individual teams are reasonably high-performing,

but there are miscommunications and inefficiencies between Scrum teams (e.g., missed

dependencies, tremendous overhead, integration issues, environment issues, etc.)

• Bandwidth

All teams are resource constrained in some form, but a team with only this challenge is

otherwise in great shape

56

Limitations

As outlined by Kelly Waters 17 March 2007 “All about Agile” [42]

• Requirements emerge and evolve throughout development

This creates the very meaning of agile – flexibility. Flexibility to change course as needed

and to ensure delivery of the right product. There are two big flip sides to this principle

though. One is the potential for scope creep, which can create the risk of ever-lasting projects.

The other is that there is much less predictability, at the start of the project and during, about

what the project is actually going to deliver. This can make it harder to define a business

case for the project, and harder to negotiate fixed price projects. Without the maturity of a

strong and clear vision, and the discipline of fixing timescales and trading scope, this is

potentially very dangerous.

• Agile requirements are barely sufficient

Requirements are clarified just in time for development and can be documented in much less

detail due to the timeliness of conversations. However, this can mean less information

available to new starters in the team about features and how they should work. It can also

create potential misunderstandings if the teamwork and communication aren’t at their best,

and difficulties for team members (especially testers) that are used to everything being

defined up front. The belief in agile is that it’s quicker to refactor the product along the way

than to try to define everything completely up front, which arguably is impossible.

• Testing is integrated throughout the lifecycle

This helps to ensure quality throughout the project without the need for a lengthy and

unpredictable test phase at the end of the project. However, it does imply that testers are

needed throughout the project and this effectively increases the cost of resources on the

project. This does have the effect of reducing some very significant risks, which have proven

through research to cause many projects to fail. The cost of a long and unpredictable test

phase can cause huge unexpected costs when a project over-runs. However, there is an

additional cost to the project to adopt continuous testing throughout.

57

• Frequent Delivery of Product and the need for sign-off

The users or product owner needs to be ready and available for prompt testing of the features

as they are delivered and throughout the entire duration of the project. This can be quite time-

consuming but helps drastically to ensure a quality product that meets user expectations.

• Sustainability on Developers

Common feedback is that agile development is rather intense for developers. The need to

really complete each feature 100% within each iteration, and the relentlessness of iterations,

can be mentally quite tiring so it’s important to find a sustainable pace for the team.

In summary the purpose of Chapter Two is to provide a definition and investigation of ERP

Programs. It illustrated the challenges of implementing an ERP Program and the reasons for

ERP failures as well as the best practices to avoid such failures.

Chapter Two looked specifically at the Project Management of ERP Programs and looks at

the associated Project Management knowledge areas. This Chapter revealed a detailed

analysis of the Software Development Methodologies and provided a comparison across

Waterfall and the many evolving Agile Methodologies. Chapter Two described the role of

Project Management in ERP implementations and emphasizes its impact across the Project

Management knowledge areas. It concludes by revealing how it greatly improves the odds

of an ERP implementations success. Chapter Two describes the most common reasons for

ERP implementation failures and illustrates the best practices for avoiding such failures.

Chapter Two goes into great depth on the Software Development Methodologies, it

compares Waterfall and the various Agile Methodologies and asks which is best suited to an

ERP Program. This Chapter concludes with a detailed breakdown of the benefits, risks,

challenges and limitations or adopting Agile-At-Scale for an ERP Program.

58

Chapter 3. Research Problem

3.0 Introduction

The purpose of this Chapter is to present the Participant Observer Research in the form of a

comprehensive survey across Dell’s IT function. The survey reveals Dell’s Agile

experiences, the areas where Agile is working well and the areas that need improvement.

This Thesis aims to investigate three areas.

• The Project Management challenges of adopting Agile Methodologies for a multiphase ERP

Program.

• The Project Management benefits and risks of adopting Agile Methodologies for a

multiphase ERP Program.

• The Project Management limitations and lessons learned of adopting Agile Methodologies

for a multiphase ERP Program.

One of the challenges encountered by ERP Projects trying to move to an Agile methodology

is how does an Agile team deal with interlocks, especially when those interlocks are using

the Waterfall methodology and want their requirements and commitments a year plus in

advance? What will make the Agile team seamlessly interlock with its Waterfall counterparts?

My experience of working on an Agile ERP Program that had 100+ interlocks, almost all of

them following the Waterfall methodology, is that you cannot be 100% agile. Our Agile

Product Owners (POs) focused on the current sprint and perhaps a few sprints out. However,

we were sent much farther out in terms of requirement development to engage with the

business and the interlock teams. We had a situation where we were documenting

requirements a year and a half in advance of when they would likely be delivered! “That’s

not Agile” you may say. And you’re right. It’s a blend of methodologies. This Hybrid Agile

approach resulted in many risks and challenges but also provided many benefits. As part of

this Thesis, I intend outlining these.

We have now been challenged to adopt an Agile-At-Scale approach for our latest Phase of

this multiphase ERP Program. This adds a whole new dimension as Agile-At-Scale requires

interlock teams coming together to produce MBI’s (Minimum Business Increments), the

59

minimum amount of incremental business value that can be built, deployed, and consumed

by our business partners. From a Project Management perspective, this adds a whole new

layer of challenges and risks as to how the Agile-At-Scale teams can be managed and how

the end-to-end scope delivery will be managed across numerous interlock teams. This Thesis

will outline how to address these challenges, risks and what benefits can be gained from

Agile-At-Scale in an ERP Program.

3.1 Research Methodology

3.1.1 Qualitative research involves the use of qualitative data, such as interviews,

documents, and participant observation, to understand and explain social phenomena.

Qualitative researchers can be found in many disciplines and fields, using a variety of

approaches, methods and techniques.

In Information Systems, there has been a general shift in IS research away from technological

to managerial and organizational issues, hence an increasing interest in the application of

qualitative research methods

Research methods can be classified in various ways, however one of the most common

distinctions is between qualitative and quantitative research methods.

Quantitative research methods were originally developed in the natural sciences to study

natural phenomena. Examples of quantitative methods now well accepted in the social

sciences include survey methods, laboratory experiments, formal methods (e.g.

econometrics) and numerical methods such as mathematical modelling.

Qualitative research methods were developed in the social sciences to enable researchers

to study social and cultural phenomena. Examples of qualitative methods are action research,

case study research and ethnography. Qualitative data sources include observation and

participant observation (fieldwork), interviews and questionnaires, documents and texts, and

the researcher’s impressions and reactions.

Qualitative research methods are designed to help researchers understand people and the

social and cultural contexts within which they live. Kaplan and Maxwell (1994) [1] argue

that the goal of understanding a phenomenon from the point of view of the participants and

its particular social and institutional context is largely lost when textual data are quantified.

http://www.ucalgary.ca/%7Enewsted/surveys.html
http://www.ucalgary.ca/%7Enewsted/surveys.html
http://www.misq.org/skin/frontend/default/misq/MISQD_isworld/general.htm#Kaplan,%20B.%20and%20Maxwell,%20J.A.
http://www.misq.org/skin/frontend/default/misq/MISQD_isworld/general.htm#Kaplan,%20B.%20and%20Maxwell,%20J.A.

60

Fig 3.1 Underlying Philosophical assumptions

Qualitative research can be positivist, interpretive, or critical (see Figure 3.1). It follows from

this that the choice of a specific qualitative research method (such as the case study method)

is independent of the underlying philosophical position adopted. For example, case study

research can be positivist (Yin, 1994) [2], interpretive Walsham, (1993) [8], or critical,

just as action research can be positivist Clark, (1972) [3], interpretive Elden and Chisholm,

(1993) [4] or critical Carr and Kemmis, (1986) [5].. These three philosophical perspectives

are discussed below.

Positivist Research

Positivists generally assume that reality is objectively given and can be described by

measurable properties which are independent of the observer (researcher) and his or her

instruments. Positivist studies generally attempt to test theory, in an attempt to increase the

predictive understanding of phenomena. In line with this Orlikowski and Baroudi (1991,

p.5)[6] classified IS research as positivist if there was evidence of formal propositions,

quantifiable measures of variables, hypothesis testing, and the drawing of inferences about

a phenomenon from the sample to a stated population.

http://www.misq.org/skin/frontend/default/misq/MISQD_isworld/interp.htm#Orlikowski,%20W.J.%20&%20Baroudi,%20J.J.
http://www.misq.org/skin/frontend/default/misq/MISQD_isworld/interp.htm#Orlikowski,%20W.J.%20&%20Baroudi,%20J.J.
http://www.misq.org/skin/frontend/default/misq/MISQD_isworld/interp.htm#Orlikowski,%20W.J.%20&%20Baroudi,%20J.J.

61

Interpretive Research

Interpretive researchers start out with the assumption that access to reality (given or socially

constructed) is only through social constructions such as language, consciousness and shared

meanings. The philosophical base of interpretive research is hermeneutics and

phenomenology Boland, (1985) [7]. Interpretive studies generally attempt to understand

phenomena through the meanings that people assign to them and interpretive methods of

research in IS are "aimed at producing an understanding of the context of the information

system, and the process whereby the information system influences and is influenced by the

context" Walsham (1993), p. 4-5).[8] Interpretive research does not predefine dependent and

independent variables, but focuses on the full complexity of human sense making as the

situation emerges Kaplan and Maxwell, (1994) [1].

Critical Research

Critical researchers assume that social reality is historically constituted and that it is

produced and reproduced by people. Although people can consciously act to change their

social and economic circumstances, critical researchers recognize that their ability to do so

is constrained by various forms of social, cultural and political domination. The main task

of critical research is seen as being one of social critique, whereby the restrictive and

alienating conditions of the status quo are brought to light. Critical research focuses on the

oppositions, conflicts and contradictions in contemporary society, and seeks to be

emancipatory i.e. it should help to eliminate the causes of alienation and domination.

http://www.misq.org/skin/frontend/default/misq/MISQD_isworld/interp.htm#Boland,%20R.%20%22Phenomenology:
http://www.misq.org/skin/frontend/default/misq/MISQD_isworld/interp.htm#Boland,%20R.%20%22Phenomenology:
http://www.misq.org/skin/frontend/default/misq/MISQD_isworld/interp.htm#Walsham,%20G.%20Interpreting
http://www.misq.org/skin/frontend/default/misq/MISQD_isworld/interp.htm#Kaplan,%20B.%20and%20Maxwell,%20J.A.
http://www.misq.org/skin/frontend/default/misq/MISQD_isworld/interp.htm#Kaplan,%20B.%20and%20Maxwell,%20J.A.

62

3.1.2 Research Method is a strategy of inquiry which moves from the underlying

philosophical assumptions to research design and data collection. The choice of research

method influences the way in which the researcher collects data. Specific research methods

also imply different skills, assumptions and research practices. For the purpose of this study,

I adopted the following research methods that will be discussed here,

• Participant Observer

• Survey

• Case Study Research

• Interviews

3.1.2.1 Participant Observer Participant Observation is where the researcher

immerses himself / herself in the subject being studied. It is argued that this technique allows

the researcher to gain a deeper insight into the subject than he / she would otherwise be

allowed with other data collection methods Blum, (1952) [9]. This method is particularly

relevant to research topics which involve interpersonal group process.

According to Michael Quinn Patton (1986) [10] there are three possible roles for a participant

observer

• Full participant observation

• Partial participant observation

• Onlooker: observation as outsider.

Also, according to Quinn Patton (1986) [10] there are three ways to portray the role of

participant observer to other members of the study

• Overt Observations – subjects know that Observations are being made and who the

observer is.

• Observer role is known to some but not to others.

• Covert observation – subjects do not know the Observations are being made or that there

is an observer.

For the purposes of this study, the researcher portrayed the role of participant observer

through overt observation.

63

Participant observation involves the researcher's involvement in a variety of activities over

an extended period. In the researcher’s case, over twenty years working as an IT professional,

specializing in ERP Implementations. This experience enabled the researcher to observe the

evolution of IT methodologies and to participate in a wide spectrum of IT roles which

facilitates a better understanding of those methodologies and their associated benefits, risks,

limitations, challenges.

This qualitative research method is a widely used methodology in many disciplines. Its aim

is to gain a close and intimate familiarity with a given group of individuals (such as a

religious, occupational, sub cultural group, or a particular community) and their practices

through an intensive involvement with people in their cultural environment, usually over an

extended period of time. The method originated in the field research of social anthropologists,

especially Bronisław Malinowski [11] and his students in Britain, the students of Franz Boas

in the United States, and in the later urban research of the Chicago School of Sociology.

Participant observation requires the researcher to be a subjective participant in the sense that

they use knowledge gained through personal involvement with the research subjects to

interact with and gain further access to the group. This component supplies a dimension of

information that is lacking in survey data.

Participant observation research also requires the researcher to aim to be an objective

observer and record everything that he or she has seen, not letting feelings and emotions

influence their observations and findings.

The strengths of participant observation include the depth of knowledge that it allows the

researcher to obtain, and the perspective of knowledge of social problems and phenomena

generated from the level of the everyday lives of those experiencing them. Many consider

this an egalitarian research method because it centres the experiences, perspectives, and

knowledge of those studied.

64

3.1.2.2 Survey

As a member of Dell Technologies IT Project Management Office (PMO), I have been part

of a pilot team set up to promote the adoption of Agile. Six months into the pilot, we

conducted an Agile Survey in August 2016 to discover what is working well and what areas

need more focus.

The Survey was sent to ~4000 legacy Dell IT team members, was open for 2 weeks and was

anonymous.

There were 369 responses. Outlined below are the response distribution by role and by

location.

Full details of the survey’s findings are presented and analyzed in section 3.2 – Participant

Observer Research.

3.1.2.3 Case Study Research

Data collection and analysis techniques of a quantitative (concerned with words and meaning)

and qualitative (concerning numbers and measures) can be used in case study research Yin,

(1994) [2]. Case studies typically make use of both quantitative and qualitative data

collection and analysis methods Darke et al., (1998) [13]. As quantitative methods are not as

well established as their qualitative counterparts, the volume and variety of data collected

may result in data analysis being difficult and time consuming. This section will discuss data

collection and data analysis in more detail.

65

Data Collection

There are three main principles of data collection Yin, (1994) [2]:

1. Use multiple sources of evidence

This can help to reduce any researcher biases in any collection and analysis of data Miles &

Huberman, (1984) [12]. If there are multiple sources of information, providing multiple

measures of the same phenomenon, the case study findings are strengthened considerably

Darke et al., (1998) [13]. If a researcher can triangulate converging findings from different

sources the construct validity is increased considerably Eisenhardt, (19890 [14]; Yin, (19940

[2]; Maimbo & Pervan, (2005) [15].

2. Create a case study database Darke et al., (1998) [13]

This should be a database separate from the final reports to be written and should contain

Yin, (1994) [2]:

• Case study notes

• Case study documents

• Tabular materials

• Narratives

It is important to use a case study database to allow cross referencing and citation of relevant

evidence Darke et al., (1998) [13]. This is especially beneficial when pursuing qualitative

data collection methods as the case study database may provide for some statistical

information based on the qualitative data collected.

3. Maintain a chain of evidence Darke et al., (1998) [13]

The case study protocol should be used to maintain the link between the initial case study

questions and the case study procedure Yin, (1994) [2]. Maintaining a chain of evidence

allows for checking against the database at a later date.

Data collection should be facilitated by allowing the participants to familiarize themselves

with the research instrument in advance Maimbo & Pervan, (2005) [15]. This should result

in the participants being more comfortable with the process which arguably provides higher

66

quality data. Analysis of data can be made easier if data collection is overlapped as it gives

the researcher more flexibility Miles & Huberman, (19840 [12]; Eisenhardt, (1989) [14];

Yin, (1994) [2].

Case studies typically have a number of different data collection methods Eisenhardt, (1989)

[14].

• Participant Observations (assuming a role in the situation & getting an inside view of the

events) (Eisenhardt, (19890 [14]; Marshall and Rossman,(1999) [17];Yin,(2003) [2]

• Documentation (letters, agendas, progress reports) Eisenhardt, (1989);[14] Marshall and

Rossman,(19990 [17]; Yin, (2003) [2]; Maimbo and Pervan,(2005) [15], Archiva

(Records (Service records, organizational charts, budgets etc.) Yin, (2003) [2]

• Interviews (typically open-ended, but also focused, structured & surveys are possible)

Eisenhardt, (1989) 14]; Marshall and Rossman, (1999) [17]; Yin, (2003) [2]; Maimbo

and Pervan, (2005) [15]

• Questionnaires Eisenhardt, (1989) [14]; Maimbo and Pervan, (2005) [15]

• Direct Observations (formal or casual; useful to have multiple observers) Eisenhardt,

(1989) [14]; Marshall and Rossman, (1999) [17]; Yin, (2003) [2]

• Physical Artefacts Yin, (2003) [2]

It is argued that the increased number and variety of data collection techniques available to

the researcher is a direct consequence of the increased number and complexity of research

methodologies Faulkner, (1982) [18].

67

3.1.2.4 Interviews

Within this research study, the interviews conducted were either face to face or over the

phone. Some of the Dell Technologies interviewees were in the United States so these

interviews were conducted face to face when the researcher was on site and over the phone

at all other times.

Interviews are essential sources of information for case study research Yin, (1994) [2] and

because of their interactive nature, can be a key data collection method for the interpretivist

researcher Walsham, (1995) [8]. Interviewing is one of the most popular data collection

techniques among qualitative researchers Bodgan and Biklen, (1982) [16]; Marshall and

Rossman, (1989) [17]. One possible reason for this is that interviewing maximises the

possibility of encountering unexpected data Becker and Geer, (1982) [19] while at the same

time capturing the contextual complexity Benbasat et al., (1987) [20]. Interviewing is

described as a fundamental technique associated with qualitative research Marshall and

Rossman, (1989) [17]

3.2 Participant Observer Research

• In August 2016, Dell IT conducted an Agile Survey to discover what is working well

and what areas need more focus.

• The Survey was sent to ~4000 legacy Dell IT team members, was open for 2 weeks, and

was anonymous.

• There were 369 responses. Outlined below are the response distribution by role and by

location.

• Through the survey, 42 new SDLC “requests for help” engagements are being addressed.

68

Fig 3.2 Respondents Roles

Fig 3.3 Respondents Location

Key Takeaways

The investment in training and coaching is paying off, this is evident in the Sprint statistics
with a higher % of User Stories “Ready for Dev” at the start of the Sprint.

Resources (i.e., the SDLC site, Agile Mentors, Chatter, etc.) are readily available when
questions arise about Agile within legacy Dell IT.

There is still work to be done to ensure team members and business partners see the benefits
of our Agile transformation.

69

The majority said they have received sufficient training to perform their roles, but some
expressed the need for more training on specific topics

Highlights:

Team members understand how to perform their roles (79%)

People know where to go to find information on the Agile methodologies (77%)

Opportunities:

Some team members don’t feel that the Agile Transformation has improved how they work

(38%)

The full benefit of Agile is not being realized by our business partners (34%) or by IT (32%)

Additional training may be needed (31%)

Table 3.4. Response to qn. 1 – 6

From those using Agile Scrum

Highlights:

• Sprint Planning (81%) and Testing (77%) are being performed well or very well.

Opportunities:

• Some teams are struggling to establish velocity (42%)

• Tracking burn ups/down for a release is inconsistent (42%)

• Teams aren’t consistently conducting Sprint Retrospectives (41%)

70

Table 3.5 Response to Agile scrum questions

To gage the adoption of the Agile At Scale concepts:

35% of the respondents are using the Agile at Scale concepts.

Those using Agile at Scale report the following benefits:

• Better traceability

• Flexibility to respond to changing business needs and priorities

• Using consistent terminology: DoD, MBI

• Well managed alignment with interlocks

• Hard dates are respected and delivered when possible

• Able to deliver key requirements to the Business

71

Area for improvement as identified from 215 distinct comments.

• Culture

– Command and Control-style management still exists

– Too many meetings

• Methodology

– Not all projects are a good fit for Agile

– We are not agile. We are “water-scrum-fall”

• Business Agile alignment

– Our business partners still think and work in a waterfall manner

– Lack of business partner engagement

• Roadmap Planning & Funding Processes

– These processes are still project-based and hinder Agile delivery

• Training & Coaching

– We are not mature enough to not have Agile coaches; Mentors are often too busy to help

– More training is needed: Product Owners, General Scrum practices

• Release Management

– Release management processes are not aligned with Agile delivery

• Environment Management

– Environment availability is hindering Agile delivery

• Roles & Responsibilities

– Role of the BSA, Development Lead, Architect in Agile are not well defined

– Combining the TPM with Scrum Master is not working

Chapter Three presents the Participant Observer Research in the form of a comprehensive

survey across Dell’s IT function. The survey reveals Dell’s Agile experiences, the areas

where Agile is working well and the areas that need improvement. It presents the detailed

findings of an extensive Dell IT survey, specifically on Dell’s Agile adoption experiences.

It describes the key highlights, opportunities and takeaways.

Chapter 3 concludes that while adopting Agile allows for better traceability and the ability

to deliver key requirement to the business partners, it requires significant investment in

training and business alignment and introduces challenges across Release Management,

Environment Management and Roadmap planning.

72

Chapter 4. Findings

4.0 Introduction

The purpose of this Chapter is to describe and interprets the findings of the Dell Survey and

looks specifically at Dell’s experience in a large multiphase ERP Program. It focuses on the

research objectives of the Project Management Benefits, Risks, Challenges and Limitations

of adopting Agile-At-Scale Methodologies for an ERP Program. Chapter four will illustrate

the research objectives by providing evidence based on Dell’s direct experiences and will set

the foundation for Chapter Five which will conclude on how best Agile-At-Scale can be

adopted in an ERP Program.

Chapter 4 breaks down the challenges, benefits, risks, limitations and lessons learned of

Adopting Agile for an ERP Program. It also provides concrete examples of Dell’s experience

across these categories and ties back the findings to the company wide findings outlined at

the end of Chapter 4.

Chapter 4 presents an in-depth analysis of Dell Technologies Agile Adoption and Dell’s

Agile-At-Scale IT Delivery Framework. The research illustrates the details behind the Scrum

Workflow and describes the Project Teams associated roles and responsibilities, the artefacts

and the Scrum/Sprint Planning procedures. It reveals the concept of the MBI (Minimum

Business Incremental Business Value) and how this is used to form and sequence the Product

backlog

This Chapter aims to investigate three areas

• The Project Management challenges of adopting Agile Methodologies for a multiphase

ERP Program.

• The Project Management benefits and risks of adopting Agile Methodologies for a

multiphase ERP Program.

• The Project Management limitations and lessons learned of adopting Agile

Methodologies for a multiphase ERP Program.

73

Fig 4.1 Agile ERP Quadrant – Red denotes a negative impact, green positive and amber
neutral.

Based on the findings from Chapters Three and Four, and my experience as a participant

observer across multiple ERP global implementations,

I have compiled the Agile ERP Quadrant.

The Agile ERP Quadrant illustrates the four key areas undertaken for this research exercise,

the challenges, benefits, risks and limitations of adopting Agile in a large multiphase ERP

Program.

Red denotes a negative impact on the Program, green a positive impact and amber neutral.

The size of the bubble signifies the magnitude of the impact, the large the bubble, the higher

the impact.

Sections 4.1, 4.2, 4.3 will go into the details behind each of these categories.

74

4.1 The Project Management challenges of adopting Agile Methodologies

for a multiphase ERP Program.
In this section I will identify the key challenges across the following categories

• Time and Cost

• Support Structures

• Selling the concept of Agile

• Velocity

• Reliability and Consistency

• Quality

• Coordination

• Bandwidth

Time and Cost

Based on Dell’s experience, moving from a Waterfall Methodology to being Agile and

maturing to Agile-At-Scale requires a very significant investment in training and coaching.

Supporting the entire IT organization to facilitate them in becoming trained and certified in

Scrum techniques is a major undertaking. Dell have invested heavily in this endeavor and

this is evident in the extremely high percentage of people who responded very positively

when asked

“I know how to perform my role using Agile” (79%)

“I have received sufficient training to enable me to do my job using Agile Methodologies”

(69%)

“I know where to obtain information about Agile Methodologies” (77%)

When you consider the typical cost of becoming a Certified Agile Scrum Master (CSM) is

over $1000 and given the fact that Dell IT has 6000+ employees, it is a major financial

investment rolling Agile training and certification out to the entire Dell IT function. In 2016,

Dell merged with EMC, as part of that deal, Dell took ownership of Pivotal. Dell are now

beginning to adopt the Pivotal Cloud Foundry (PCF) approach to digital transformation, pair

programming is fundamental to the PCF Agile Development process. Pivotal certification

can take up to six weeks to complete so rolling it out to an entire IT organisation, on the scale

of Dell, is not financially viable.

75

Support Structures

In order for the transition from Waterfall to Agile to be effective, as seen in Dell, the

organization needs to invest in support structures. Dedicated expert resources need to be

made available as Mentors and their role is to provide continuous development and training

across all teams. Detailed educational material needs to be maintained on the SDLC sites

and regular updates are required across the social media platforms, such as Chatter, etc.

Dell have initiated the “Dell Digital Way” to support Dell’s Transformation journey from

Waterfall to Agile and ultimately to using Pivotal technology Agile PCF, Pivotal

Methodology (Pair Programming). This is a dedicated support and training team which

focuses on three core components across Dell IT, people, process and technology. When we

think about people, it is about balanced teams (autonomous, collaborative groups with a

variety of cross-disciplinary IT skills). Process is shifting from Project delivery to being

much more Product focused. Enabling fast delivery and continuous value. Technology,

modernizing Dell’s full stack, harnessing PCF or Cloud Foundry. Pivotal will become even

more pervasive in Dell’s future.

Fig 4.2 Dell Digital Way

76

Selling the Concept of Agile

There is a lot of work and communication required to ensure IT team members and business

partners see the benefits of the Agile PCF (Pivotal) transformation. As Dell is very much at

the early stages of its Agile PCF (Pivotal) journey, constant communication and clear goals

are required to reinforce the push for adoption, success stories, as well as areas for

improvement.

As illustrated below, Dell’s Agile PCF (Pivotal) transformation is on a multi-year journey

which has seen it go from 5% of its Development teams adopting the Pivotal Labs

methodology of Agile paired programming to aiming to have 70% by 2021.

Fig 4.3 Pivotal Transformation

 Velocity

Whether real or only perceived, the velocity challenge indicates that “the business” does not

believe that they are getting adequate throughput / value from the technology team.

This is certainly a challenging concept at Dell and this can be seen by the very low proportion

of responds who agreed that

“The team has an established and predictable velocity in alignment with the definition of

done (DoD)” (58%)

Dell are addressing the perception gap between what the business expect V’s what IT deliver

by including the business partners at critical points during the process.

77

Fig 4.4 Critical Business Engagement Points

Reliability & Consistency

This challenge is typically shown through Agile teams that consistently over-commit and

miss their Sprint goals and deliverables. This is particularly challenging in a multiphase ERP

Program where different Business Units are at different phases in the Development and test

cycles. Spikes in sprints result in missed deadlines and that has a knock on impact on the

next business unit’s deployment dates and release windows.

This was very evident during Dell’s Transformation ERP Program for North America and

Canada.

The Front Office Order Entry applications did not have adequate resources to support

focusing on two major regions concurrently, the Back Office Order Management, Fulfilment

and Finance applications were staffed to support both regions but were not able to progress

without the upstream interlocks.

Quality

Teams that have a quality challenge “finish” their sprints and deliverables but accumulate a

significant amount of technical debt in the form of defects and poor design choices. Under

the Waterfall Methodology this lack of quality is evident as at testing gate exit review, with

Agile this can be right up to Production launch.

78

Dell is addressing this lack of quality by adopting Behaviour Driven Development (BDD).

BDD is a common language and framework for capturing requirements and successfully

managing and changing system and process behaviour.

BDD is an extension of TDD (Test Driven Development) where:

• Tests are written in plain descriptive english – ‘Gherkin’ Given – When - Then

• Tests are explained as behavior of application and are user focused

• BDD frameworks such as Cucumber (java), SpecFlow (.net) or Jbehave (java) can

convert BDD into functional test code. It acts as a “bridge” between Business &

Technical Language

Fig 4.5 Behavior Driven development

Coordination

A coordination challenge is present when individual teams are reasonably high-performing,

but there are miscommunications and inefficiencies between Scrum teams (e.g., missed

dependencies, tremendous overhead, integration issues, environment issues, etc.)

This has been very apparent in Dell’s multiphase ERP Program, there are 300+ Developers

across 35+ Feature Teams, representing 80+ Interlock dependencies. The coordination

required has been one of the key challenges we have encountered.

79

Bandwidth

When dealing with a Multiphase ERP Program, “fire fights” in the upcoming launch tends

to suck in all available resources and this has a direct impact on the next business unit and

its velocity and progress.

Key Takeaways 4.1 - The Project Management challenges of adopting Agile Methodologies

for a multiphase ERP Program clearly require very significant investment in training, a well-

resourced Support and Communications Project Management Office and clearly defined

achievable goals. This requires a transformational culture change across both the IT and

Business Teams.

80

4.2 The Project Management benefits and risks of adopting Agile
Methodologies for a multiphase ERP Program.

In this section I will identify the key benefits and risks across the following categories

• Quality

• Visibility

• Risk management

• Flexibility/Agility

• Lack of available business collaborators

• Incompatibility with existing governance policies

• Individual performance management systems

• Out of phase with upstream and downstream work streams

• Single team assignment

• Co-location

4.2.1 Benefits

Quality

A key principle of Agile development is that testing is integrated throughout the lifecycle,

enabling regular inspection of the working product as it develops. This allows the product

owner to make adjustments if necessary and gives the product team early sight of any quality

issues.

From my experience of working as IT Program Manager on large scale ERP Programs for

18 years, this principle failed when interlock dependencies became apparent. Feature Teams

can address code quality issues, but it is not until end to end testing has been completed that

the true quality can be assessed. In my experience, Agile leads to a significant increase in

defects being detected late in the test cycle, during end to end test.

As discussed in section 4.1, Behaviour Driven Development (BDD) is a positive initiative

which can increase collaboration across the IT Project Team, the business users and test

teams.

81

Fig 4.6 BDD Development Process

Visibility

Agile development principles encourage active ‘user’ involvement throughout the product’s

development and a very cooperative collaborative approach. This provides excellent

visibility for key stakeholders, both of the project’s progress and of the product itself, which

in turn helps to ensure that expectations are effectively managed. This was achieved by

holding bi-weekly scrum review calls and is certainly a benefit from the Business Partners

perspective. See survey results below.

“Sprint Review Meeting: The team demo’s completed story points at the end of each sprint”

(67%)

Under the Waterfall Methodology, the Business Partners will have very limited exposure to

the IT teams during the Development and early Development and Integration test phases.

With Agile the by-weekly meetings drive collaboration and an early understanding of what

is going to be delivered.

82

Risk Management

Small incremental releases made visible to the product owner and product team through its

development help to identify any issues early and make it easier to respond to change. The

clear visibility in Agile development helps to ensure that any necessary decisions can be

taken at the earliest possible opportunity, while there’s still time to make a material

difference to the outcome.

In a fast paced, ever evolving Technology Company like Dell, there is a huge appetite to be

able to break deliverables down to a minimum (see Minimum Business Increment in section

3). Where this becomes a challenge is when an ERP Program does not allow for delivery of

small increments due to the interdependencies on 100+ interlocking applications and the

need to deliver core modules simultaneously.

Flexibility / Agility

In traditional development projects, we write a large spec up-front and then tell business

owners how expensive it is to change anything, particularly as the project goes on. In fear of

scope creep and a never-ending project, we resist changes and put people through a change

control committee to keep them to the essential minimum. Agile development principles are

different. In agile development, change is accepted. In fact, it’s expected. Because the one

thing that’s certain in life is change. Instead the timescale is fixed and requirements emerge

and evolve as the product is developed. Of course, for this to work, it’s imperative to have

an actively involved stakeholder who understands this concept and makes the necessary

trade-off decisions, trading existing scope for new.

The challenge with this benefit in a multiphase ERP Program is that there is still a “Big Bang”

deployment required across many of the applications and modules, this greatly limits the

trade-off decisions. What I have seen in Dell’s experience is that trade-offs result in deferred

scope which need to be addressed in future releases, this has led to the Program running 18

months beyond what was envisioned.

83

4.2.2 Risks

Lack of available business collaborators

Each team needs a single point of contact business representative (a.k.a. sponsor or

customer). known as the “product owner” in Scrum. This person needs to frequently engage

with the team and have the authority to specify, prioritize, and accept the team’s work.

The PO can often become a bottleneck in a multiphase ERP Program as they are focused on

the next release and this leads to delays for the next Business Unit. Raising a “Spike” in the

backlog to address this is the most effective approach but in times of severe resource

constraints this is not always possible.

Incompatibility with existing governance policies

Quality gate sign-off policies. Documents such as project plans, requirements, and design

documents may not be amendable after formal sign-off from upper management (without

formal change requests). However, Agile won’t work if teams and their product owners are

not empowered to make changes to tasks, estimates, priority, and design.

Agile takes away the rigidity brought about by the strict sign-off policies in a Waterfall world,

but the danger with Agile is that you lose controls, governance and audit artifacts.

Without the rigid gate exit reviews associated with Waterfall, you lose the review

mechanisms that forced the requirements to be detailed, the architectural documentation to

be peer reviewed and the software requirements to be approved before moving into the

Development effort. In a Program where the changes are to an established platform and the

size of the effort and interlock dependencies are minimal, this is acceptable, that is not the

case for large scale ERP Programs.

Individual performance management systems

The Agile value is commitment to the team, where all “win” or “lose” together. This is

diametrically opposed to "Individual" performance ranking meritocracy systems currently in

place across organisations.

Out of phase with upstream and downstream work streams

The Agile team is somewhere in the middle of a larger flow of work or value stream. It

increases frequency of inflow and outflow to every two weeks, maybe even less. If the

cadence of work upstream and downstream from the team does not also change, then delays

and log jams can occur.

At Dell this has been one of the most challenging elements of adopting Agile in an ERP

environment, trying to align 80+ Interlocking Applications and understanding the

84

dependencies from a development, test and deployment perspective adds major risk to the

Program.

Single team assignment

People who are simultaneously committed to more than one “Team” are unable to make

meaningful delivery commitments because of inevitable conflicting team imperatives. If

members can’t make meaningful commitments, Agile won’t work. This problem grows in

magnitude as the program grows in size and more teams are involved.

Ring fencing resources is difficult to achieve as key resources are regularly pulled into urgent

support or “firefighting” scenarios.

Co-location

Collaboration thrives when teams are in intimate proximity. Maybe an exceptional team can

overcome this challenge, but not the many teams of a larger Agile transformation. Once

teams get established and members have effective working relationships, the team has a

greater chance of surviving if some members are dispersed. Also, an Agile program

involving many teams does not need to be completely co-located in order to be successful.

What is vital is that small groups of people intimately work together and develop the trust

and mutual understanding necessary for effective collaboration. It will be extremely difficult

for small groups to achieve this state if they are never afforded the opportunity to work in a

shared, physical space.

When you are dealing with IT teams of greater than 300 people, as we do in Dell’s ERP

Programs. Co-location is not entirely possible. Dell invests in having teams co-locate during

End to End Test cycles and deployment windows but have all teams Co-located at all times

is not feasible.

Pair Programming is an Agile (Pivotal) concept Dell are now piloting, it requires two

Developers to share a computer with the aim of helping each other achieve a daily task. This

requires co-location and is causing major challenges to Development Managers who may

have multiple resources spread across different locations.

85

Key Takeaways 4.2 - The Project Management benefits and risks of adopting Agile

Methodologies for a multiphase ERP Program illustrate the clear benefits gained by the

collaboration between the IT Project Team, Business Users and Testers. The Agile approach

provides for much needed visibility for the business partners and the small incremental

releases lead to a far higher level of risk management. The flexibility provided by Agile is a

clear benefit however, this is not always achievable in a large ERP Program due to

interdependencies across interlocks.

Agile can create risks caused by resource constraints and loss of controls, governance and

audit artifacts. Interlock alignment is a very significant risk along with the Co-location

feasibility.

86

4.3 The Project Management limitations and lessons learned of adopting
Agile Methodologies for a multiphase ERP Program.

In this section I will identify the key limitations and lessons learned across the following

categories

• Requirements emerge and evolve throughout development

• Agile requirements are barely sufficient

• Testing is integrated throughout the lifecycle

• Frequent Delivery of Product, the need for sign-off and the Sustainability on Developers

4.3.1 Limitations
Requirements emerge and evolve throughout development

This creates the very meaning of Agile – flexibility. Flexibility to change course as needed

and to ensure delivery of the right product. There are two big flip sides to this principle

though. One is the potential for “scope creep”, which can create the risk of ever-lasting

projects. The other is that there is much less predictability, at the start of the project and

during, about what the project is going to deliver. This can make it harder to define a business

case for the project, and harder to negotiate fixed price projects. Without the maturity of a

strong and clear vision, and the discipline of fixing timescales and trading scope, this is

potentially very dangerous.

In the course of Dell’s multiphase ERP Program, the lack of predictability has resulted in a

vast increase in Change Requests and tests defects, this has led to deployment delays and

scope being moved into the next Release window which in turn is putting future software

releases at risk.

87

Agile requirements are barely sufficient

Requirements are clarified just in time for development and can be documented in much less

detail due to the timeliness of conversations. However, this can mean less information

available to new starters in the team about features and how they should work. It can also

create potential misunderstandings if the teamwork and communication aren’t at their best,

and difficulties for team members (especially testers) that are used to everything being

defined up front. The belief in Agile is that it’s quicker to refactor the product along the way

than to try to define everything completely up front, which arguably is impossible.

We have had cases during Dell’s ERP Program whereby interlocking teams have created

their entire solution based on the assumption that an upstream system would adopt a certain

approach. Under Agile, it was not apparent that this assumption was incorrect until after the

downstream system had completed their Development and testing effort. It only became

apparent during full end to end testing and the impact was a change request to completely

redesign the solution for a number of applications. In a Waterfall approach, this would have

been found in the design phase, long before any Development had been completed.

Testing is integrated throughout the lifecycle

This helps to ensure quality throughout the project without the need for a lengthy and

unpredictable test phase at the end of the project. However, it does imply that testers are

needed throughout the project and this effectively increases the cost of resources on the

project. This does have the effect of reducing some very significant risks. That have been

proven through research to cause many projects to fail. The cost of a long and unpredictable

test phase can cause huge unexpected costs when a project over-runs. However, there is an

additional cost to the project to adopt continuous testing throughout.

During the Dell ERP Program, I have seen a three-fold increase in the cost of testing under

the Agile approach, continuous testing and a significant increase in co-location has been the

main driver of this increase.

88

Frequent Delivery of Product, the need for sign-off and the Sustainability on

Developers

The users or product owner needs to be ready and available for prompt testing of the features

as they are delivered and throughout the entire duration of the project. This can be quite time-

consuming but helps drastically to ensure a quality product that meets user expectations.

Common feedback is that agile development is rather intense for developers. The need to

really complete each feature 100% within each iteration, and the relentlessness of iterations,

can be mentally quite tiring so it’s important to find a sustainable pace for the team.

Under Dell’s Waterfall methodology, projects typically went through peaks and troughs,

with teams expected to go the extra mile at the end of a phase exit to achieve the milestones

in order to meet the deadline. Under the Agile approach the pressure on teams is relentless,

there is zero downtime. The demand for weekend work and long hours is completely

unsustainable and the result is a major increase in staff turnover.

Key takeaways 4.3 – While the flexibility that Agile provides can be a major benefit, it also

leads to limitations caused by the lack of a strong and clear vision, and the discipline of

fixing timescales and trading scope. This is further accentuated by the level of detail provided

up front in the requirements. The adoption of the Behaviour Driven Development (BDD)

process is undoubtedly a positive approach to reducing defects and results in finding issues

earlier in the development lifecycle, however, this comes at a cost as significant extra

resources and engagement are required by the test teams. Finally, the sustainability of

continuous delivery on Developers is a major concern, the Pivotal Agile model is attempting

to address this by time boxing the Development effort to a strict 9am-5pm.

89

4.3.2 Lessons Learned

One Size does not fit all

Dell have an established and mature Agile team in their Dell Commerce Services

organization, these team are responsible for Dell’s online and offline Sales and Order Entry

applications. These applications are established platforms which lend themselves to an Agile

approach. They can be regularly updated with new functionality without impacting their

Business Partners.

With an ERP rollout to a green field Business Unit, in Dell’s case there are 80+ Applications

which are interdependent on each other. The nature of an ERP Program is that it’s an “All

or nothing” approach, we cannot deliver the General Ledger module without the sub-ledgers,

such as Accounts Receivable (AR) and we cannot deliver AR without the Order Entry

module or the related Collections, Payments modules etc. In effect this has forced Dell to

take a hybrid Agile approach whereby we are Agile through the Development cycle and

revert to Waterfall during the end to end testing and user acceptance testing cycles. This has

resulted in a major increase in Change Requests (CR) and Defects. The increase in defects

is due to the lack of review in the early design phase of the Program which was previously

forced on teams as part of the Waterfall Design Phase Exit review. Under Agile this no longer

happens, so the result is that teams only get a full view of the interlocking team’s solution

during end to end testing, hence the large number of CR’s and defects. Agile recommends a

weekly Scrum of Scrums meeting to mitigate this situation, the intention is that all

interlocking teams come together to discuss dependencies and clarify solutions. Given the

nature of Agile’s continuously evolving backlogs and Sprint plans, this is not a catch all

approach.

Business Alignment and Engagement

One of the main benefits of taking an Agile approach is that the Business Partners will be

able to see the functionality earlier, this has been the case at Dell and the feedback from the

Business Partners is that they appreciate the opportunity to see demonstrations of

functionality every two weeks as part of the Sprint cycle, this allows them to find issues early

90

and is a clear selling point. Where frustration grows is in an ERP environment, none of this

functionality can be switched on in a live Production environment until everything is ready

to be switched on in one “Big Bang”. In effect this can mean that the functionality reviewed

9 months earlier is now only coming to fruition. For the Business Partners, this is what they

experienced under the Waterfall methodology.

Agile requires the Business Partners to be significantly more invested in the Project than

they would have been in a Waterfall approach. They are expected to be part of Sprint reviews

every two weeks through the entire Program. This is a major overhead as the majority of

Business Partners have “day jobs” which will always need to take priority, in the case of an

Accountant at month end.

Funding Model

Dell’s annual budget process is based on a Waterfall approach which has clearly defined

Projects with agreed scope, schedules and resources. True Agile does not align to this budget

approach as delivery is supposed to be continuous and the backlog decremented as time and

budget allows, this is not feasible for an ERP Program.

The increased cost of testing and the impact on Development resources requires a cost

benefit analysis. A tripling of the cost of testing and significant increase in Development

resource turnover would bring into question the true “value” of adopting an Agile approach

in an ERP environment.

Release and Environment Management

Dell’s Release management processes are not aligned with Agile delivery, this causes major

challenges with regard to code management and the planning of releases windows. This

impacts the Development teams who find themselves having to continuously move

environments and disable code so as not to impact other Programs co-existing in the same

environment. This has an obvious impact on test quality and adds major risk to release

management.

91

In summary, the research questions outlined in this Chapter described and interpreted the

findings of the Dell Survey and looked specifically at Dell’s experience in a large multiphase

ERP Program. It focused on the research objectives of the Project Management Benefits,

Risks, Challenges and Limitations of adopting Agile-At-Scale Methodologies for an ERP

Program and illustrated that through the lens of the Agile ERP Quadrant.

It provided concrete examples of Dell’s experience across these categories and tied back the

findings to the company wide findings outlined in Chapter 3. This section of Chapter 4

concluded that the adoption of Agile is not a one size fits all and highlights specific areas

associated with ERP Programs that require a more hybrid approach. Section 4.4 will go into

detail on Dell’s Agile Adoption.

92

4.4 Dell’s Agile Adoption

Following on from a successful adoption of Agile in Dell’s Commerce Services function,

Dell now wants to widen the adoption of Agile and Agile-At-Scale to the wider Dell IT

community. Dell’s Commerce Services function were early adopters of Agile and had over

two years of a head start on other functions. The benefits of monthly code delivery were one

of the key drivers in Dell’s wider IT community following suit.

The goal is to enable IT to deliver business value faster and more efficiently by removing

Delays. The approach is to

• Demo and get feedback faster

• Removing waste and friction from our process

The Plan of approach is to

• Break business programs down into “Minimum Business Increments”

• Decomposing MBI’s into Features and Stories and planning ~3 months of work across

all feature teams with deliverables for that MBI

• Getting visibility to the status of the work within an MBI

• Increasing the frequency of demonstration and integration of completed work across

the MBI.

Fig 4.7 Agile at Scale – 3 Tier structure and new Events.

93

DellPrint Transform Program:

DellPrint is an investment by Dell Technologies to replace the old tools and ways of working

with a new approach which will enable Dell to lead as an end-to-end technology solutions

provider. “DellPrint” refers to the new transformational blueprint which spans 100+ IT

Applications, with a goal to create simple, global, and consistent ways of working.

Key issues for Dell:

Disconnected scrum teams across applications – Prior to Dell’s DellPrint Agile journey, IT

Development Teams were very much siloed, they had a deep knowledge of their specific

application but had a limited knowledge of other applications in their function and very little

knowledge of applications outside their function.

Lack of clarity of requirements – There was a culture of providing very high level,

ambiguous requirements in the planning stage of a project and these were not revisited until

the user acceptance testing phase, this resulted in a high number of change requests being

uncovered very late in the development cycle.

Late discovery of issues – the waterfall methodology resulted in the majority of code defects

being discovered at the latter end of the testing phase, this was often too late in the cycle and

resulted in functionality needing to be deferred to a future date to all for resolution.

What are Dell IT doing differently?

• Decomposing DellPrint Programs into smaller increments – an MBI

• Sequencing MBI’s, completing development of functionality and demonstrating along

the way to get feedback faster

• Integrated Dev backlog across applications covering next 3 months - Decomposing top

MBI’s to detailed features & stories

• Integrated demonstrations every 6 weeks (every 3rd sprint) to show dev progress, obtain

feedback and reduce time & issues in final SIT/UAT

• All Dell IT work in one place in one TFS (Team Foundation Server)

94

Business Participation Required

• Participation in decomposing each program into meaningful demonstrate-able

functionality

• Participation in sequencing the functionality so IT works on the biggest “bang for the

buck” first

• Defining the detailed acceptance criteria for features to be developed in the next 3 months

• Participate in demonstrations, provide feedback – ideally the same people that would be

in UAT.

95

4.4.1 Scrum Workflow

This diagram outlines the Scrum and Agile Workflow. In this section I will provide an in-

depth analysis of the activities and artefacts associated with this globally recognised Scrum

framework as defined by the scrum alliance, the scrum governing body.

Section 4.4.1 outlines the process and procedures contained in the scrum framework.

• Product Planning

• MBI Grooming

• Sprint Planning

• Product Deployment

Section 4.4.2 provides the details behind each of the activities and artefacts

Section 4.4.3 outlines Dell’s Agile-At-Scale IT Delivery Framework and how Dell adopted

the scrum framework as laid out in sections 4.4.1 and 4.4.2.

96

Fig 4.8 Scrum Workflow

4.4.2 Review and Confirm the Program Vision

The Product Owner is responsible for the success of the product and its Return On

Investment (ROI), and should therefore make sure the Program Vision Document is

understood and sets the direction to guide the whole Scrum Team.

The Program Vision Document (PVD) should be completed as part of the project funding

process. In case the project has been initiated without a PVD, the Product Owner should take

all the project Initiation documentation (e.g., BRD, MRD, Project Charter) as input to

produce a PVD.

As Ken Schwaber [25] puts it: “The minimum plan necessary to start a Scrum project

consists of a vision and a Product Backlog. The vision describes why the project is being

undertaken and what the desired end state is.” Schwaber (2004), p. 68) [25]

Sometimes the Product Owner may not be fully knowledgeable for all the business aspects

that pertain to a product. In that case, it is expected that other business stakeholders should

provide inputs to support the Product Owner in order to build a consistent Program Vision.

Fig 4.9 Program Vision

97

4.4.2.1 Refine Business Objectives

The Product Owner is responsible to refine the business objectives stated on the Program

Vision Document. Objectives must be transparent to everyone and are typically in the form

of Minimum Business Increments (MBIs) in the product backlog. The Scrum Team works

together to refine the objectives, but the Product Owner is the focal point for managing

objectives.

Objectives have the following characteristics:

• Objectives need refinement. Objectives can't be written at one time. Thus, user story

writing workshops and product backlog refinement events take place.

• Objectives need to be broken down. Epics are split into stories. Stories are split into

tasks. The product backlog is split into a series of sprint backlogs. The sprint backlog is

the output of sprint planning.

• Objectives need be verified. The product increment is the implementation of the sprint

goal and the Definition of Done. All of these are verified in the Sprint Review.

Create Product Backlog

Fig 4.10 Create Product Backlog

98

Once the Product Owner has collected the business objectives, he or she then compiles these

business objectives into a formal structure known as the Product Backlog. The Product

Owner will ensure that the Product backlog lists all presently known features, functions,

requirements, enhancements, and fixes that will drive the changes to be made to the product.

A good Product Backlog items should have the following attributes:

• ID - A unique identifier

• Description - A description of the need feature or function needed

• Category - A method of grouping similar backlog items (e.g., feature,

documentation, knowledge acquisition, user training material, etc.)

• Priority - An indication of the importance of the item relative to other items

• Size Estimate - described in Story Points to indicate relative sizing.

• Value - An indicator of business value.

• Acceptance Criteria (AC): what is necessary for the Product Owner to accept the item

as completed. Consider the following example:

o User Story example: As a Frequent Rewards Customer,” I want to get a discount when

purchasing a product, so that I can be rewarded for spending a lot of money.”

o Acceptance Criteria: For the above story, the acceptance criteria could be to demo that:

I receive a 5% discount if my rewards credit is greater than 50 points over the past year;

I do not receive a discount if my rewards credit is less than 50 points over the past year;

I receive 10% discount if my rewards points are greater than 100 over the past year.

Other important elements of the Product Backlog are the Definition of Ready (DoR) and

the Definition of Done (DoD):

• The DoR means what information the Development Team needs in order to be able to

start working on the item. Example: Stories are created in TFS, dependencies on

external systems determined, acceptance criteria defined.

• The DoD represents what the Development Team must execute in order to call the item

as completed. Example: Software is promoted to the SIT environment, automated tests

created, SIT test passed.

99

4.4.2.2 Project Management and Release Coordination

The purpose of the Project Management and Release Coordination activity is:

• Identify the release scope and goals

• Plan the Compliance tasks required for the release

• Plan the schedule of the release, and determine the number of Sprints required

• Plan the test strategy for the release

• Ensure communication when there are interdependencies between Scrum Teams

• Plan for Implementation related activities

A release usually consists of functionality being developed over multiple Sprints. Therefore,

it is necessary to plan the scope of the release, the number and the duration of Sprints

followed by the Product Deployment activity.

4.4.2.3 Define Release Scope and Coordinate Dependencies

Conduct Release Planning Meeting:

Release scoping is an approach used to realize the benefits of incrementally delivering

business requirements. The first step is conducting the initial Release Planning

Meeting. This meeting is facilitated by Product Owner for the team.

Everyone who is impacted by the release needs to be in the Release Planning Meeting. They

are needed to help develop the plan, identify dependencies, and forecast the release. If people

are missing, information will be missing.

• Use the Release & Sprint Planning Agendas to assist with Release Planning.

• The Release Plan Template may be used to document all the necessary release

information.

• For reference on how to slice the scope in Minimum Business Increments, see MBI

section below.

• Notice that the Release Scope is not a static document. It will be alive during the all

project lifecycle, and the scope will be updated as result of changes in the Product

Backlog.

100

During this meeting, the Product Owner and Scrum Team:

Presents/Reviews the prioritized user stories to be delivered in the current release and

indicates which stories to go into which Sprints based on Business value priority, size of

product backlog items, risk and dependencies.

Considers Infrastructure Needs for the Release: For the high-priority user stories that are

most likely to be part of the upcoming Release, consider what infrastructure or design

considerations will be created or impacted.

The following topics should also be covered in the meeting:

1. The Release scope and time-box

2. The Release Definition of Ready and Definition of Done

3. The Start and End dates for the release

4. The number and duration of Sprints

5. Sprint Definition of Ready and Definition of Done

6. The members of the Scrum Team and the Delivery Resources that may be needed

7. Concern, risks and issues

8. Code Lock Security scans and Penetration testing requests. The metrics that will be

collected and tracked for each Sprint and for the release

Coordinate Dependencies:

Impediments affecting one Scrum team might have an impact on other Scrum teams.

Coordination between Product Owners and Technical Program Managers is needed to

solve such impediments. It may be necessary to adopt changes in scope (or in scope

priorities) in order to work around impediments.

 In order to coordinate the work (and the removal of cross dependencies) a good practice is

to establish a Scrum of Scrums process.

101

Define Team Norms:

Given the members of the Scrum Team are defined as part of the Release Planning Meeting,

it is a good practice to hold a meeting with the specific purpose of establishing the Team

Norms. For guidance on how to create an initial set of Team Norms.

Create Release Plan:

Based on the results of the Release Planning Meeting, the initial Release Plan is created and

shared with the team.

For projects that utilize highly coupled code structures that prevent end-to-end testing to be

completed during the Sprints, a Hardening Sprint can be incorporated in the Release Plan.

The Hardening Sprint should have the following characteristics:

• It has the same length as any regular Sprint in the project

• The Hardening Sprint Goal should be always to complete the end-to-end testing for the

respective release

• The Hardening Sprint Backlog includes only end-to-end testing, and the fix of defects

found during this test

Notice that IT teams should avoid the need of a Hardening Sprint by decoupling the source

code as much as possible, therefore minimizing the impact of possible interlocks. The

Hardening Sprint should be used only as an alternative when the project fails in eliminating

those interdependencies.

Note: Performance Testing is also completed as part of Hardening Sprint if not completed

in respective Sprints. The Performance testing team and the Scrum team decide if

Performance testing is to be conducted during the sprint or during the Hardening Sprint

depending on the Business needs.

102

Create Implementation and Back-out Instructions:

Implementation and Back-out Instructions is a technical document that provides the details

of the sequence of events that will need to be executed during the launch. Due

to its technical content, it is usually elaborate by the Development Team members.

4.4.2.4 Sprint Planning

The purpose of the Sprint Planning activity is to:

• Determine the Sprint Goal.

• Establish the Sprint Backlog, as a mean to achieve the Sprint Goal

• Forecast the Sprint Backlog

Conduct Sprint Planning Meeting

The Technical Program Manager ensures that every Sprint starts with a Sprint Planning

meeting. The objective of this meeting is to determine what can be delivered in the upcoming

Sprint and how the work will be achieved. The Sprint Planning Meeting must include the

Product Owner and the Development Team.

Propose the Sprint Scope

The Product Owner discusses the objective that the Sprint should achieve based on

prioritization, or value to the business. The PO should also consider compliance constraints

and non-functional requirements. The Development Team then discusses each of these

items to ensure clarity on the items and the interdependencies between them.

For every backlog item being proposed for Sprint Backlog, the Product Owner must also

provide a clear statement of the Acceptance Criteria for that item. This criterion will be

used later, during the Sprint Review for the Product Owner to assess the completion of

that backlog item.

103

The Development Team forecasts the functionality that will be developed during the

Sprint.

The Development Team decides how it will build this functionality into a “Done” product

Increment during the Sprint.

Establish the Sprint Backlog

Generally, all high-order Product Backlog items would already have an estimated effort,

usually measured by points-based results from the Product Planning and Product Backlog

Refinement activities.

If any of the Product Backlog items proposed do not have an estimated effort, the

Development Team may estimate it at this time.

Below are some other items that must be considered while establishing the Sprint Backlog:

(a) Capacity of the team: When the Development Team forecasts how much work they can

complete in the sprint they should consider any known impacts to their capacity over the

timebox of the upcoming sprint - such as holidays and vacations, or members joining/leaving

the team.

(b) Velocity of the team: Team Velocity concept is based on the assumption that the amount

of work a team will do in the coming sprint is roughly equal to what they’ve done in prior

sprints. A team's velocity is determined by historical average amount of Story Points that the

team is able to complete per Sprint. This implies that, if you are planning a team's first Sprint,

you won't have historical data, and will not be able to use Velocity as a factor to calibrate

your Sprint Planning.

104

(c) Compliance with policies and Standards: The Development Team must comply with

Dell Policies and Standards as IT solutions are designed, and should consider how these

constraints should be reflected in the backlog items proposed for the Sprint:

o Global Information Lifecycle Management Policy

o Global IT Records Keeping Guidance Policy

o Secure Application Development Standard

o Use of Approved Technology Standard

(d) Any Impediments or dependencies on other teams or resources: If there are

impediments that will prevent the Development team from completing any of the proposed

Product Backlog items, the Development Team will generally not commit to include these

in the Sprint, unless there is an expectation that Technical Program Manager has committed

to removing the impediments to allow reasonable time to complete them within the Sprint.

Based on the proposed scope, the Development Team performs analysis to determine the

feasibility of the Increment represented by the proposed Sprint Backlog as well as determine

how it will build this functionality into a “Done” product Increment during the Sprint. Work

may be of varying size, or estimated effort. However, enough work is planned during Sprint

Planning for the Development Team members to forecast what they believe they can do in

the upcoming Sprint.

Define the Sprint Goal

The Sprint Goal is an objective set for the Sprint that can be met through the implementation

of items in the Product Backlog. It provides guidance to the Development Team on why it is

building the Increment. The Sprint Goal gives the Development Team some flexibility

regarding the functionality implemented within the Sprint. The Sprint Goal should focus the

Development Team to work together rather than on separate initiatives.

The Sprint Goal is used to help focus the Scrum Team on the objectives of the sprint, the

higher purpose of why the sprint is necessary. If at a later stage, the work turns out to be

different than the Development Team expected, they collaborate with the Product Owner to

negotiate the scope of Sprint Backlog within the Sprint.

105

Examples of Sprint Goals

• To deliver a functioning webpage that highlights all of the offerings for a particular line

of business.

• To deliver a physician search feature on a webpage

• To update a mobile application to allow users to check account balance

Accept Sprint Goal and Sprint Backlog?

The entire Scrum Team collaborates on understanding the work included in the Sprint

Backlog. The number of items selected from the Product Backlog for the Sprint is solely up

to the Development Team. Only the Development Team can assess what it can accomplish

over the upcoming Sprint.

By the end of the Sprint Planning, the Development Team should commit to the Sprint

Backlog and be able to explain to the Product Owner and Technical Program Manager how

it intends to work as a self-organizing team to accomplish the Sprint Goal and create the

anticipated Increment.

Complete Sprint Planning

Work planned for the first days of the Sprint by the Development Team is decomposed by

the end of this meeting, often to units of one day or less. The Development team may break

the backlog items into tasks. Task estimates in hours will help balance the work effort among

the team, as well as to help gauge the remaining effort during the Sprint Cycle.

Product Deployment

The purpose of Product Deployment Activity is:

• Conduct End-to-End testing (if it could not be completed during the Sprint)

• Deploy the product to the production environment

• Conduct User Training (as necessary)

106

4.4.2.5 Conduct End-to-End Testing

Once it has been determined that product is ready for deployment, the product increment may

be subject of End-to-End testing as part of the product release process.

• Test Cases and Defects should be created and managed in Team Foundation Server

(TFS).

• See the "Test Case Work Item" and "Defect Work Item" training material

Deploy Product Increment to Production

During the deployment of the Product Increment to production, it must be ensured that the

code is deployed to the appropriate environment and that post-install testing occurs to

validate a successful deployment, in accordance with Release Management guidelines.

The following steps are to be executed:

Conduct Go/No Go Meeting (if needed) - A formal Go/No Go meeting can be conducted to

ensure IT and business management agree that the implementation can proceed as planned.

The Technical Program Manager facilitates the meeting. The Product Owner must attend,

and other Scrum Team and Business Stakeholders should attend as the team determines is

appropriate.

Perform Launch Sequence of Events - The "Installation Instructions", as documented in

the Implementation and Back-out Instructions, are executed by the designated implementers.

These steps contained the detailed instructions for deploying the system to production

environment. The launch is coordinated by the Technical Program Manager or a designee.

Perform Post-Install Testing - The designated IT team members and business team

members perform the documented steps to validate the business operations using the new or

enhanced system. These steps are intended to discover any unanticipated side effects caused

by deploying the new system components into production. They are documented as the

“Deployment Validation” steps in the Implementation and Back-out Instructions document.

107

Complete or Back Out Deployment - Based on the results of the deployment, the

designated personnel execute either the “Supplemental Tasks” to finish out the deployment

or the “Rollback Instructions” to restore the environment to pre-implementation stage. These

instructions are documented in the Implementation and Back-out Instructions.

Create and Conduct User Training

The Product Owner is responsible to ensure User Training Material is created and training

is conducted, if necessary.

108

4.4.3 Dell’s Agile-At-Scale IT Delivery Framework

In this section, we look at the business artifact, the Program Vision Document (PVD)
and the associated IT Minimum Business Increment (MBI)

Fig 4.11 Dell’s Agile-At-Scale IT Delivery Framework

109

Defining an MBI

• In the context of a large funded program, it is the minimum amount of incremental

business value that can be built, deployed, and consumed and that makes sense from a

business perspective. The business and IT together are responsible for defining MBIs.

• A Product Manager in IT ‘owns’ the definition and delivery of the MBI. Ideally, there

will also be a single point of accountability in the business.

• A funded program should be broken up into several MBIs. An MBI should be as small

as possible (minimum) and it should be less than 3 months of work.

Sequencing the MBI’s

• The MBIs within a program will then be sequenced using both the MBI relative value

and relative size to deliver the ‘biggest-bang-for-the-buck’ business value first.

• MBI’s will be finished and delivered to the business along the timeline for the completion

of the entire program. Completed MBI’s will be the milestones of projects, not waterfall

milestones.

• All feature teams, regardless of application, segment, organization, share the same

sequence/priority. The backlog for the most important MBI is more important than the

next MBI.

Linking Backlog and Deployments

• All Features required to deliver an MBI will be linked to that MBI in TFS (Team

Foundation Server) via parent/child links.

• Even if the business decides not to deploy an individual MBI into production, IT will

still take an MBI all the way through the Dev and Test process and get the functionality

ready to deploy.

Fig 4.12 Funded Program

110

Benefits of using MBIs

• Better alignment with the business: By breaking up a program into MBI’s with the

business present and creating an integrated backlog with the business present, we have

more opportunity for the development teams and engineers in IT to interact with the

business and clarify requirements.

• Smaller batch sizes enabling Faster time to Value: Break large programs into smaller

chunks, sequence them, and deliver them incrementally.

– By delivering projects incrementally, we can deliver the first minimum business

increment sooner and the business can start to use that to deliver value to the company.

– Interlock problems solved (or minimized): TPMs can now track the work of interlocks

altogether with your program scope.

– Increased visibility: Full visibility in TFS2, from MBIs burn up charts down to Feature

team & sprint level views, all in TFS2

• Eliminate waste by finding defects faster: earlier end to end integration allows for defects

to be discovered faster. The shorter the time between creating and discovering a defect,

the less ‘defect interest’ has to be paid.

• No more manual reporting: An IT Analytics tool provides standardized MBI reports

when your backlog is properly configured.

111

The PVD

The Program Vision Document describes the Program Vision, the expected business value, and the

key Business Goals and Objectives that should be deliver. The information documented will be used

to size, prioritize, and fund IT work. The document contains 5 major sections:

• The Background and Current State, brief historical information about the business problems that

need to be solved or the opportunity that is being addressed.

• The Program Vision, a short statement used to simply describe the product being developed.

• The Program Scope described in terms of Business Goals and Gaps (aka MBIs).

• Additional Requirements to describe data, volume and usage needs.

• Program Management Details, describing known risks, issues, assumptions, constraints, etc.

MBI Template

Fig 4.13 MBI

112

Fig 4.14 MBI Description

113

Example of an MBI

Fig 4.15 Example of an MBI

Sequencing MBIs – WSJF approach

Development teams can be most effective when focused on a very small set of items:

– Cycle time is better

– Multitasking is decreased

– Dependencies are fewer.

Simply prioritizing work as High, Medium, and Low would not accomplish this goal. The

result of sequencing MBIs should be an ordering such that it’s always clear which MBI is to

be developed next.

Sequencing of MBIs is performed within Programs. Since Programs themselves are

prioritized, the ordering of work across the organization should always be clear.

114

The Weighted Shortest Job First (WSJF) approach is recommended for sequencing MBIs.

Here is the formula for calculating WSJF:

Using the Fibonacci sequence of values (1, 2, 3, 5, 8, 13, and 21), you should rate each

parameter for each MBI against the other MBIs:

– For Business Value, consider:

– Business Impact: What is the revenue impact? Is there a potential penalty or negative

impact if it is delayed? Do users prefer this MBI over others?

–

– Time Criticality: How would the Business Value decay over time? Is there a fixed

deadline? Are there dependencies from downstream programs?

– Risk Reduction-Opportunity Enablement Value (RR-OE): Will the MBI open up new

business opportunities? What else does this MBI do for the business?

– For Job Size, consider: How big is the MBI? How long will it take to develop the MBI?

The MBI with the highest WSJF should be worked on first.

Sequencing MBIs – WSJF approach: An Example

Consider putting the information in a spreadsheet.

See this Example:

The MBI with the highest WSJF is the highest priority and should be worked on first.

In the example, MBI D would have the worked on first.

MBI
Business
Value

Job
Size

 WSJF

MBI A 5 3 1.7

MBI B 1 3 0.3

MBI C 13 8 1.6

MBI D 21 5 4.2

Table 4.16

WSJF =
Business Value

Job Size

115

Changepoint (Dell’s Project Portfolio Management Tool) and TFS (Requirement’s
Management Tool)

Fig 4.17 Dell’s Toolset

Relating MBIs to other Work Items in TFS

Fig 4.18 Scope Hierarchy

116

Fig 4.19 Linking MBI’s to Themes/EPICS

In summary Chapter Four, section 4.4 Dell’s Agile Adoption presents an in-depth analysis of

Dell Technologies Agile Adoption and Dell’s Agile-At-Scale IT Delivery Framework. The

research illustrates the details behind the Scrum Workflow and describes the Project Teams

associated roles and responsibilities, the artefacts and the Scrum/Sprint Planning procedures.

It reveals the concept of the MBI (Minimum Business Incremental Business Value) and how

this is used to form and sequence the Product backlog.

117

Chapter 5 Conclusions

5.0 Introduction

The purpose of this chapter is to outline the conclusions relating to the research objective of

this thesis, to present the Project Management Benefits, Risks, Challenges and Limitations

of adopting Agile Methodologies for an ERP Program.

This thesis’s contribution to research and practice uniquely illustrates, through the lens of

the Agile ERP Quadrant view (Fig 2.18), a new understanding of the challenges, benefits,

risks, limitations and lessons learned of Adopting Agile for an ERP Program. (Fig 4.1) builds

on the Agile ERP Quadrant and denotes the positive, negative and neutral impacts by

magnitude.

This research is limited by the lack of detailed case studies outlining the adoption of Agile

for a large scale, multiphase ERP Program.

118

5.1 Conclusions

The Literature Review provides a definition and investigation of ERP Programs. It illustrates

the challenges of implementing an ERP Program and the reasons for ERP failures as well as

the best practices to avoid such failures. It looks specifically at the Project Management of

ERP Programs and looks at the associated Project Management knowledge areas. It reveals

a detailed analysis of the Software Development Methodologies and provides a comparison

across Waterfall and the many evolving Agile Methodologies, including the Scaled Agile

Framework (SAFe).

The Literature Review provides an introduction to the concept of ERP systems, the

distinction between ERP systems and other IT systems is very relevant to this thesis as the

interdependencies across ERP modules and interlocking systems plays a major part in the

understanding of the benefits, risks, challenges and limitations of adopting Agile-At-Scale

Methodologies for an ERP Program.

The Literature Review illustrates the challenges and risks associated with ERP

Implementations and reveals that the high degree of complexity and change in ERP Programs

requires an effective Project Management Methodology. It describes the role of Project

Management in ERP implementations and emphasizes its impact across the Project

Management knowledge areas. It concludes by revealing how it greatly improves the odds

of an ERP implementations success. It goes into depth on the Software Development

Methodologies, it compares and contrasts Waterfall and the various Agile Methodologies

and asks which is best suited to an ERP Program. The Literary Review concludes with a

detailed breakdown of the benefits, risks, challenges and limitations or adopting Agile-At-

Scale for an ERP Program.

Chapter Three presents the Participant Observer Research in the form of a comprehensive

survey across Dell’s IT function. The survey reveals Dell’s Agile experiences, the areas

where Agile is working well and the areas that need improvement. It presents the detailed

findings of an extensive Dell IT survey, specifically on Dell’s Agile adoption experiences.

It describes the key highlights, opportunities and takeaways.

119

Chapter Three concludes that while adopting Agile allows for better traceability and the

ability to deliver key requirement to the business partners, it requires significant investment

in training and business alignment and introduces challenges across Release Management,

Environment Management and Roadmap planning.

Chapter Four describes and interprets the findings of the Dell Survey and looks specifically

at Dell’s experience in a large multiphase ERP Program. It focuses on the research objectives

of the Project Management Benefits, Risks, Challenges and Limitations of adopting Agile-

At-Scale Methodologies for an ERP Program and illustrates that through the lens of the

Agile ERP Quadrant.

Chapter Four breaks down the challenges, benefits, risks, limitations and lessons learned of

Adopting Agile for an ERP Program. It provides concrete examples of Dell’s experience

across these categories and ties back the findings to the company wide findings outlined in

Chapter Three. Chapter Four concludes that the adoption of Agile is not a one size fits all

and highlights specific areas associated with ERP Programs that require a more hybrid

approach.

Chapter Four presents an in-depth analysis of Dell Technologies Agile Adoption and Dell’s

Agile-At-Scale IT Delivery Framework. The research illustrates the details behind the Scrum

Workflow and describes the Project Teams associated roles and responsibilities, the artefacts

and the Scrum/Sprint Planning procedures. It reveals the concept of the MBI (Minimum

Business Incremental Business Value) and how this is used to form and sequence the Product

backlog.

In summary, this research presents the Project Management challenges and causes of failure

for ERP Programs. It provides an in-depth analysis of the Software Development

Methodologies and provides a detailed study of Dell Technologies Agile-At-Scale journey

and outlines Dell’s Agile Framework which can be adopted for a large-scale Global ERP

Implementation

This thesis concludes that Agile-At-Scale methodologies for an ERP Program has many

benefits, particularly around business partner alignment and engagement. It also provides for

much needed flexibility to change course as needed and to ensure delivery of a quality

product.

120

Agile adoption also has significant challenges and risks. Moving from a Waterfall

Methodology to being Agile and maturing to Agile-At-Scale requires a very significant

investment and alignment across release, environment management as well as funding

models.

What is clear from the research is that adopting Agile-At-Scale for an ERP Program is a

journey. As the Dell case study demonstrates, evolving from a Waterfall methodology for

ERP to a full scale Agile-At-Scale approach needs to be tackled firstly in a hybrid Agile

approach. Whereby, like Dell, the organization are Agile through the Development cycle and

revert to Waterfall during the end to end testing and user acceptance testing cycles. As the

organization evolves the next step is to become more Agile in the testing cycles. However,

the key challenge remains, given the nature of ERP Programs, it’s an “all or nothing”

deployment approach, so in the case of a green field ERP deployment, the Agile concept of

continuous delivery to a Production (live) environment cannot be realized.

Based on my research findings, I would recommend Agile techniques for custom

development projects with fixed scope and fluid cost or schedule, but not in its truest form

for a standard ERP implementation because ERP projects generally require a distinct and

collective development and deployment of product features that need to be delivered

simultaneously to achieve the business objectives. Agile may be useful for delivering

incremental custom code but usually doesn’t allow for the necessary planning, baselining,

and managing of scope, cost, and schedule that is required of a typical ERP project. A hybrid

Agile approach through the development and testing cycles clearly has many benefits.

Looking to the future of Project Management beyond Waterfall and Agile, Dell Technologies

acquired Pivotal in recent years. The Pivotal Cloud Foundry (PCF) is fast becoming the

proven solution for companies seeking software-led, digital transformation. Pivotal Labs

provide software development consultancy and it is revolutionizing IT Development and by

association IT Project Management. Pivotal want software engineering to become the value-

engine of the organization. Pivotal’s aim is for the end-to-end product development process to

be a core competency of the organization, driven by empowered, autonomous and self-

organizing agile teams and guided by principles of user-centric design, lean start-up

methodologies, and lean engineering practices. Their mission is to “transform the way the

121

world builds software”. Dell is currently at the early stage of adopting this approach in what

is referred to as the “Path to Pivotal”

On a personal level, the evolution from Waterfall to Agile and now to Pivotal highlights the

changing roles within IT Project Management and further muddies the waters between IT

Product Managers and IT Project Managers. The traditional IT Project Manager’s role was

focusing primarily on the execution side. They take the product vision from the Product

Manager, develop a project timeline around it, and plan the work for the development team

to hit important goals and deadlines. Or, to put it simply, their responsibility is to successfully

bring a project to completion within the agreed budget, time, and quality.

A Product Manager’s role is strategic, much like a CEO but for the product. They’re the ones

who set and own the overall product direction, staying with it until the product is removed

from the market. It is their responsibility to understand the user needs, translate them into a

design or MVP (Minimum Viable Product), and lead a development team to build the product

and meet those needs. Product Managers deal with the What? And Why? Project Managers

to How? and When?

This changing roles within IT Project Management and cross over with the role of the IT

Product Manager is a clear opportunity for further research.

From my experience, Agile is not only the present but the future of IT Project Management

and while it is may not be fully conducive to an ERP environment, ERP Systems are quickly

evolving to becoming more cloud based which will allow for the Agile model to be a better

fit.

122

References

1. Introduction

[1] Liaquat, H., Jon, D. P., & Rashid, A. M. (2002). Enterprise Resource Planning: Global
Opportunities & Challenges. ISBN: 193070836x Idea Group Publishing.

[2] Panorama Consulting Solutions (2016). Panorama’s 2016 ERP report | panorama
consulting solutions. Available at: http://panorama-consulting.com/resource-center/2016-
erp-report/ (Accessed: 14 September 2016).

[3] Nordin, N., & Adegoke, O. (2015). Learning from ERP implementation: A case study of
issues and challenges in technology management. Jurnal Teknologi, 74(1).

[4] Neal, H. (2010). ERP implementation strategies – A guide to ERP implementation
methodology. Available at: http://blog.softwareadvice.com/articles/manufacturing/erp-
implementation-strategies-1031101/ (Accessed: 14 September 2016).

[5] Fetouh, A. A., el Abbassy, A., & Moawad, R. (2011). Applying Agile Approach in ERP
Implementation. IJCSNS, 11(8), 173.

[6] Earl, Michael, Jeffery Sampler, and James Short, (1995) “Strategies for Reengineering:
Different
ways of Initiating and Implementing Business Process Change,” Centre for Research in
Information
Management, London Business School,

123

2.1 ERP

[1] Swartz, D., & Orgill, K. (2001). Higher education ERP: Lessons learned. Educause
Quarterly, 24(2), 20-27.

[2] Nah, F. F., Lau, J. L., & Kuang, J. (2001). Critical factors for successful implementation
of enterprise systems. Business Process Management Journal, 7(3), 285-296.
[] Beheshti, H. M. (2006). What managers should know about ERP/ERP II. Management
Research News, 29(4), 184-193

[3] Harrison, J. L. (2004). Motivations for enterprise resource planning (ERP) system
implementation in public versus private sector organizations. (Ed.D., University of Central
Florida). ProQuest Dissertations and Theses, . (305080817).

[4] Lieber, R. B. (1995). Here comes SAP. Fortune, no.October, 2, 122-124.

[5] Siau, K. (2004). Enterprise resource planning (ERP) implementation methodologies.
Journal of Database Management, 15(1), i-vi.

[6] Parr, A., & Shanks, G. (2000). A taxonomy of ERP implementation approaches. System
Sciences, 2000. Proceedings of the 33rd Annual Hawaii International Conference on, 10 pp.
vol. 1.
Nash, K. S. (2000). Companies don’t learn from previous IT snafus. Computerworld, 16(21),
32-33.

[7] Dover, C. (2012). Worldwide enterprise resource management applications 2012–2016
forecast and 2011 vendor shares . (MARKET ANALYSIS No. 238476, Volume: 1).IDC.

[15] https://www.alliedmarketresearch.com/ERP-market

[16] Carton F, Adam F and Sammon D. (2007) “Project management: a case study of a
successful ERP implementation”
Business Information Systems, University College Cork, Cork, Ireland

[17] “Stakeholder Power Analysis” – IIED – International Institute for Environment and
Development

2.2 Challenges of ERP implementations

[8] Dillard, J. F., & Yuthas, K. (2006). Enterprise resource planning systems and
communicative action. Critical Perspectives on Accounting, 17(2), 202-223.

[9] Ehie, I. C., & Madsen, M. (2005). Identifying critical issues in enterprise resource
planning (ERP) implementation. Computers in Industry, 56(6), 545-557. ;
Helo, P., Anussornnitisarn, P., & Phusavat, K. (2008). Expectation and reality in ERP
implementation: Consultant and solution provider perspective. Industrial Management &
Data Systems, 108(8), 1045-1059.

https://www.alliedmarketresearch.com/ERP-market

124

[10] Scott, J. E., & Vessey, I. (2000). Implementing enterprise resource planning systems:
The role of learning from failure. Information Systems Frontiers, 2(2), 213-232.:
Helo, P., Anussornnitisarn, P., & Phusavat, K. (2008). Expectation and reality in ERP
implementation: Consultant and solution provider perspective. Industrial Management &
Data Systems, 108(8), 1045-1059.
Maditinos, D., Chatzoudes, D., & Tsairidis, C. (2012). Factors affecting ERP system
implementation effectiveness. Journal of Enterprise Information Management, 25(1), 60-78.

[11] Zornada, L., & Velkavrh, T. B. (2005). Implementing ERP systems in higher education
institutions. Information Technology Interfaces, 2005. 27th International Conference on,
307-313.

[12] Huang, S., Chang, I., Li, S., & Lin, M. (2004). Assessing risk in ERP projects: Identify
and prioritize the factors. Industrial Management & Data Systems, 104(8), 681-688.

[13] Lamers, M. (2002). Do you manage a project, or what? A reply to “Do you manage
work, deliverables or resources”,< i> international journal of project Management</i>, april
2000. International Journal of Project Management, 20(4), 325-329.

2.3 Project Management of ERP Implementations

[14] Charlie C. Chen, Chuck C. H. Law, and Samuel C. Yang,(FEBRUARY 2009)
Managing ERP Implementation Failure: A Project Management Perspective
IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 56, NO. 1,

2.4 ERP Failures

[1]. http://www.softwareadvice.com/erp/software-pricing/

[2]. http://blogs.wsj.com/cio/2013/12/11/avons-failed-sap-implementation-reflects-rise-of-
usability/

[3].http://www.pcworld.com/article/253507/epicor_customer_lawsuit_may_show_danger_
of_ going_solo_on_erp_software_project.html

[4.]https://www.reddit.com/r/talesfromtechsupport/comments/30mmog/new_erp_system_
fast_cheap_good_pick_none_of_three/

[5] Goeun S. (2013) “Challenges in Implementing Enterprise Resource Planning (ERP)
System in Large Organizations:
Similarities and Differences Between Corporate and University Environment” –

[6] Barker T and Frolick M. N.(2003). ERP IMPLEMENTATION FAILURE: A CASE
STUDY” Information Systems Management

[7] Somers T M and Nelson K (2001) “The Impact of Critical Success Factors across the
Stages of ERP Implementations”

https://www.reddit.com/r/talesfromtechsupport/comments/30mmog/new_erp_system_%20fast_cheap_good_pick_none_of_three/
https://www.reddit.com/r/talesfromtechsupport/comments/30mmog/new_erp_system_%20fast_cheap_good_pick_none_of_three/
https://www.reddit.com/r/talesfromtechsupport/comments/30mmog/new_erp_system_%20fast_cheap_good_pick_none_of_three/

125

2.5 Software Development Methodologies

[1] Ramel D, “Survey: Agile Not Catching Waterfall Just Yet.” [Online].
Available:http://adtmag.com/articles/2010/11/08/agile-not-overtakingwaterfall.

[2] Jacobson, I “Software Development a la Mode.” [Online]. Available:
http://blog.ivarjacobson.com/software -development -a-la-mode/.

[3] Highsmith J and Cockburn A, (2000.).Agile Software Development. The Agile
Software Development Series,

[4] Rally Software, (2009).The Agile Impact Report: Proven Performance Metrics from
the Agile Enterprise.

[5] “Agile Manifesto.” [Online]. Available: http://agilemanifesto.org/.

[6] Dybå T and Dingsøyr T, (2008) “Empirical Studies of Agile Software Development:
A Systematic Review,” Information and Software Technology, vol. 50, no. 9-
10, pp. 833-859,.

[7] Beck K, (1999). Extreme Programming Explained: Embrace Change. Addison-
Wesley, Reading, MA,

[8] Schwaber K. and Beedle M, (2002) Agile Software Development with Scrum.
Prentice-Hall, Upper Saddle River, NJ,.

[9] Merriam-Webster, “Merriam-Webster Online.” [Online]. Available:
http://www.merriam-webster.com/dictionary/.

[10] Schatzki T.R. (2001)., The Practice Turn in Contemporary Theory. Routledge Taylor
and Francis Group,

[11] Petersen K (2010)., “Implementing Lean and Agile Software Development in
Industry,” PhD Dissertation, Blekinge Institute of Technology,

[12] Dieste O, Lopez M, and Ramos F, (2008) “Formalizing a Systematic Review
Updating Process,” in Software Engineering Research, Management and
Applications, , pp. 143-150.

[13] Business Dictionary, “Business Dictionary.” [Online]. Available:
http://www.businessdictionary.com/defin (ition/process.html

[14] Dominguez, J 2009 “The CHAOS Report (2009) on IT Project Failure.” Available:
http://www.pmhut.com/the-chaos-report-2009-on-it-project-failure.

[15] Aranda,J “Standish, the CHAOS report, and science.” [Online]. Available:
http://catenary.wordpress.com/2008/09/24/standish-the-chaos-report-andscience/

http://agilemanifesto.org/
http://agilemanifesto.org/
http://www.merriam-webster.com/dictionary/
http://www.merriam-webster.com/dictionary/
http://www.businessdictionary.com/defin%20(ition/process.html
http://www.businessdictionary.com/defin%20(ition/process.html
http://www.pmhut.com/the-chaos-report-2009-on-it-project-failure
http://www.pmhut.com/the-chaos-report-2009-on-it-project-failure

126

[16] Standish Group, “The Standish Group Report CHAOS.” [Online]. Available:
http://www.projectsmart.co.uk/docs/chaos-report.pdf.
[17] Royce W, (1970) “Managing the Development of Large Software Systems: Concepts
and Techniques,” Proceedings IEEE WESCOM,.

[18] Rational Software Corporation (1998), “Rational Unified Process: Best Practices for
Software Development Teams.”.

[19] IABG, “Das V-Modell.” [Online]. Available: http://v-modell.iabg.de/.

[20] Boggs R. A , (2004). “The SDLC and Six Sigma: An Essay on Which is Which and
Why,” Issues in Information Systems, vol. 5, no. 1,

[21] Boehm B.W., (1988) “A Spiral Model of Software Development and Enhancement,”
Computer, vol. 21, no. 5, pp. 61-72,.

[22] Cohn M, (201) .Succeeding with Agile: Software Development Using Scrum.
Addison-Wesley,

[23] Abrahamsson P Salo O, Ronkainen J, and Warsta J (2002)., Agile Software
Development Method: Review and Analysis. VTT Electronics,

[24] Sutherland J and Schwaber K, (2007) “The Scrum Papers: Nuts, Bolts, and Origins
of an Agile Process.” PatientKeeper, Inc,.

[25] .(2004) Agile Project Management with Scrum. Microsoft Press,.

[26] Stapleton J, (1997) .DSDM Dynamic Systems Development Method: The Method in
Practice. Addison-Wesley,

[27] DSDM Consortium, “DSDM Atern; the Agile Project Delivery Framework.”
[Online]. Available: http://www.dsdm.org.

[28] Palmer S R and Felsing M , (2002) A Practical Guide to Feature-Driven
Development. Prentice Hall,.

[29] Cockburn A, (2001) .Crystal Clear: A Human-Powered Software Development
Methodology for Small Teams. Addison-Wesley,

[30] Poppendieck M ,and Poppendieck T (2003)., Lean Software Development: An Agile
Toolkit. Addison-Wesley Professional,

[31] Poppendieck M, (2007). “Lean Software Development,” in ICSE COMPANION ’07:
Companion to the Proceedings of the 29th International Conference on
Software Engineering,

[32] Petersen K,(2010) “Is Lean Agile and Agile Lean? A Comparison Between Two
Software Development Paradigms,” :Modern Software

http://v-modell.iabg.de/
http://v-modell.iabg.de/
http://www.dsdm.org/
http://www.dsdm.org/

127

Engineering Concepts and Practices: Advanced Approaches; Ali Dogru and
Veli Bicer (Eds.), IGI Global,.

[33] Hibbs C, Jewett S, and Sullivan M (2009)., Art of Lean Software Development.
O Reilly Media, Inc.,

[34] Jalali S and Wohlin C. (2010) “Agile Practices in Global Software Engineering - A
Systematic Map,” in 5th IEEE International Conference on Global Software
Engineering, , pp. 45-54.

[35] Little T, Greene F, Phillips T Pilger R, and Poldervaart R (2004), “Adaptive
Agility,” in Agile Development Conference (ADC ’04), , pp. 63-70.

[36] Esfahani H and Yu, E (2010) “A Repository of Agile Method Fragments,” in New
Modeling Concepts for Today’s Software Processes, vol. 6195, J. Münch, Y.
Yang, and W. Schäfer, Eds. Springer Berlin / Heidelberg, , pp. 163-174.

[37] Qumer A and Henderson-Sellers B, (2008). “A Framework to Support the
Evaluation, Adoption and Improvement of Agile Methods in Practice,”
Journal of Systems and Software, vol. 81, no. 11, pp. 1899-1919,

[38] Shashank S.P.and Darse D.H.P, (2011). “Finding Common Denominators for Agile
Practices: A Systematic Literature Review,” Master Thesis, Blekinge Institute
of Technology,

 [39] Couper M.P., (2000) N “Web Surveys: A Review of Issues and Approaches,” The
Public Opinion Quarterly, vol. 64, no. 4, pp. 464-494,.

[40] Lotz M July 5, (2013) http://www.seguetech.com/waterfall-vs-agile-methodology/

“Waterfall vs. Agile: Which is the Right Development Methodology for an ERP Project?”

[41] Leffingwell D, SAFe Creator, and CEO, Scaled Agile Inc.
http://www.scaledagileframework.com/

[42] Waters K.(17 March 2007) | http://www.allaboutagile.com10 Key Principles of Agile
Development

http://www.allaboutagile.com/category/10-key-principles-of-agile/
http://www.allaboutagile.com/category/10-key-principles-of-agile/
http://www.allaboutagile.com/category/10-key-principles-of-agile/

128

3.1 Research Methodology

[1] Kaplan and Maxwell (1994) “Combining quantitative and qualitative methods in
information systems research”, MIS Quarterly, 12(4), pp. 571-586

[2] Yin, 1994), “Case Study Research, Design and Methods”, Sage Publications, Beverly
Hills, California.

[3] Clark, 1972,

[4] Elden and Chisholm, 1993

[5] Carr and Kemmis, 1986.

[6] Orlikowski and Baroudi (1991, p.5) “Studying information technology in organizations:
research approaches and assumptions”, Information Systems Research, 2(1), pp. 1-28

[7] Boland, 1985

[8] Walsham 1993, p. 4-5

[9] Blum, 1952 “Getting individuals to give information to the outsider”, Journal of Social
Issues, 8, pp. 35-42

[10] Quinn Patton Michael (1986)

[11] Bronisław Malinowski

[12] Miles & Huberman, 1984

[13] Darke et al., 1998

[14] Isenhardt, 1989; “Building theories from case study research”, Academy of
Management Review, 14, pp.532-550

[15] Maimbo & Pervan, 2005

[16] Bodgan and Biklen, 1982

[17] Marshall and Rosman 1999

[18] Faulkner 1982

[19] Becker and geer 1982

[20] Benbasat et al 1987

http://www.misq.org/skin/frontend/default/misq/MISQD_isworld/general.htm#Kaplan,%20B.%20and%20Maxwell,%20J.A.
http://www.misq.org/skin/frontend/default/misq/MISQD_isworld/interp.htm#Orlikowski,%20W.J.%20&%20Baroudi,%20J.J.
http://www.misq.org/skin/frontend/default/misq/MISQD_isworld/interp.htm#Orlikowski,%20W.J.%20&%20Baroudi,%20J.J.
http://www.misq.org/skin/frontend/default/misq/MISQD_isworld/interp.htm#Boland,%20R.%20%22Phenomenology:
http://www.misq.org/skin/frontend/default/misq/MISQD_isworld/interp.htm#Walsham,%20G.%20Interpreting
http://www.misq.org/skin/frontend/default/misq/MISQD_isworld/interp.htm#Walsham,%20G.%20Interpreting

	My role at Dell Technologies as a Senior Global Program Management Consultant (PMP/CSM) exposes me to an ever changing and extremely fast paced transformational environment. The recent merger with EMC/VMware, the largest technology merger in history, ...
	Positivist Research
	Interpretive Research
	Critical Research

