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Abstract 

Ulva rigida (UR) and Palmaria palmata (PP) were included in farmed Atlantic 

salmon diets at levels of 0-15% for 19 and 16 weeks, respectively.  Quality and shelf-life 

parameters of salmon fillets stored in modified atmosphere packs (MAP) (60% N2 : 40% 

CO2) at 4ºC were compared to controls fed astaxanthin.  Salmon fillets were enhanced 

with a yellow/orange colour.  Proximate composition, pH and lipid oxidation were 

unaffected by dietary UR and PP.  Salmon fed 5% UR and 5-15% PP did not influence 

sensory descriptors (texture, odour, oxidation flavour and overall acceptability) of cooked 

salmon fillets.   

Pig diets were supplemented with commercial wet- and spray-dried macroalgal 

(Laminaria digitata) polysaccharide extracts containing laminarin (L, 500 mg/kg feed) 

and fucoidan (F, 420 mg/kg feed) (L/F-WS, L/F-SD) for 3 weeks and quality and shelf-

life parameters of fresh pork steaks (longissimus thoracis et lumborum) stored in MAP 

(80% O2 : 20% CO2) were examined.  Level (450 or 900 mg L and F/kg feed) and 

duration (3 or 6 weeks) of dietary L/F-WS and mechanisms of antioxidant activities in 

pork were investigated.  L/F-WS reduced (p < 0.05) lipid oxidation and lowered levels of 

saturated fatty acids in fresh pork after 3 weeks feeding. 

L/F-SD was added directly to mince pork (0.01 - 0.5%) and quality and shelf-life 

parameters of fresh pork patties stored in MAP (80% O2 : 20% CO2) were assessed. 

Direct addition of the L/F-SD increased levels of lipid oxidation and decreased surface 

redness (a* values) of fresh pork patties.  Lipid oxidation was reduced in cooked patties 

due to the formation of Maillard reaction products.  Cooked pork patties containing L/F-

SD were subjected to an in vitro digestion and a cellular transwell model to confirm 

bioaccessibility and uptake of antioxidant compounds.  In mechanistic studies, fucoidan 

demonstrated anti- and pro-oxidant activities on muscle lipids and oxymyoglobin, 

respectively. 
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TEAC - trolox equivalent antioxidant capacity 

TOSC - total oxidant scavenging capacity 

TPA - texture profile analysis 

TPC - total phenol content 

TRAP - total radical trapping antioxidant parameter 

TVC - total viable count 

UAE - ultrasound/sonication extraction  

UR - Ulva rigida 

WEPO
®

 - water extraction and particle formation on-line 

WHC - water holding capacity 



 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 
 

 

 

 
 

 

 
 

 

 
 

 

 
“Let food be thy medicine, let medicine be thy food” – Hippocrates  
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SECTION 1: SEAWEED CLASSIFICATION, COMPOSITION AND 

BIOACTIVITY 

1.1 Introduction  

The world’s ocean covers more than 70% of the earth’s surface with an 

environment containing numerous marine photosynthetic organisms.  Marine macroalgae, 

commonly known as seaweeds, are recognized for their richness in polysaccharides, 

proteins, minerals, vitamins and their low lipid content (1–3% algal dry weight) with high 

concentrations of certain long-chain polyunsaturated fatty acids (Bocanegra et al., 2009; 

Fleurence, 1999; Gómez-Ordóñez et al., 2010; Mabeau & Fleurence, 1993).  Owing to 

the harsh environments in which many types of seaweed exist, they produce a range of 

bioactive compounds as part of an effective defence system.  Various biological activities 

of compounds isolated from marine macroalgae include: antioxidant potential, anti-

inflammatory properties, antibacterial, anti-coagulant, anti-viral and apoptotic activities 

(Gómez-Ordóñez et al., 2014; Mohsen et al., 2007; O’Sullivan et al., 2010; Sinurat & 

Marraskuranto, 2013; Stengel et al., 2011).  Some of the most important biologically 

active compounds being investigated include: laminarin, fucoidan and polyphenols from 

brown seaweeds (Zhang et al., 2012).   

Among the most relevant compounds sourced from seaweeds, antioxidants are 

substances that have attracted major interest as of late (Zubia et al., 2009).  Antioxidants 

may have positive health benefits for humans as they protect the body against reactive 

oxygen species (ROS) which attack membrane lipids, proteins and DNA leading to many 

health disorders such as a cancer, stroke, diabetes mellitus and is suggested to be the 

mechanism behind aging (Ngo et al., 2011).  Furthermore deterioration of some foods is 

due to the oxidation of its constituents, e.g. lipids, proteins and minor compounds such as 

polyphenols (Lund et al., 2011).  Oxidation of these compounds can cause a decrease in 
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nutritional value as well as affecting the safety and appearance of food (Rupérez et al., 

2002).  The negative effects of oxidation may be mitigated by antioxidants (Chew et al., 

2008).  Therefore the use of synthetic antioxidants such as butylated hydroxyanisole 

(BHA), butylated hydroxytoluene (BHT) and propyl gallate (PG) are extensively used in 

commercial applications of processing to retard oxidation in foods (Ngo et al., 2011; 

Pangestuti & Kim, 2011). 

In the last few years, the number of publications on natural antioxidant 

compounds and oxidative stress has nearly quadrupled (Costa et al., 2010).  Seaweeds are 

still considered an underexploited plant resource despite their use for centuries especially 

by coastal communities (Heo et al., 2005).  Motivated by these observations, many 

researchers have focused in recent years on seaweed compounds, their bioactivities and 

potential applications as nutraceuticals and functional foods (Shahidi, 2009).  A limited 

number of marine-based functional food products exist covering narrow market niches 

such as minerals and vitamins from seaweed sources, seaweed protein powders and fibre 

complexes fortified with photochemical extractions from seaweed (Taylor, 2011).   

The addition of functional ingredients with biological activity into processed 

meats is the subject of much attention, presently (Abu-Ghannam & Cox, 2014).  Over the 

past few decades, meat products have come under scrutiny by consumers due to the 

association between consumption and the risk of some chronic diseases including heart 

disease, cancer, hypertension and obesity.  Meat based functional foods are seen as an 

opportunity to address consumer demand for healthier products (Jiménez-Colmenero et 

al., 2001).  The addition of bioactives sourced from seaweeds into meat based foods 

offers the opportunity to utilise seaweeds and enhance the value of meat for consumers.  

The incorporation of whole biomass or extracts into muscle based foods, as a high value 
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functional ingredient, could be used to provide colour, increase nutritional value, improve 

texture and increase resistance to oxidation (Vo & Kim, 2013). 

 

1.2 Global harvesting, collection and aquaculture production of seaweeds  

The marine macroalgae (seaweed) industry has an estimated total annual 

production value of about US$6 billion.  A wide variety of food products contribute about 

US$5 billion of the total figure (Kraan, 2012).  Commercial harvesting of seaweed occurs 

in about 35 countries globally, in waters ranging from cold to tropical (FAO, 2013).  

Virtually all brown seaweed, 63% and 68% of red and green seaweeds, respectively are 

from farmed sources, the majority of which is used for human consumption followed by 

the extraction of hydrocolloids such as agar and alginate (Marine Foresight Series, 2005).  

Many types of brown seaweeds such as Laminaria, Undaria and Hizikia are edible 

seaweeds mainly used as food, whereas Sargassum is primarily used as fertilizer.  Popular 

red seaweeds such as Phorpyra, Gelidium, Gracilaria and Kappaphycus/Eucheuma spp. 

are farmed to extract hydrocolloids such as agar and carrageenan (Venugopal, 2008).  

Seaweeds and seaweed extracts are used in many industries including: animal feed, 

aquaculture, cosmetics, fuels, wastewater treatment, food supplements and medicinal 

preparations (Guiry & Guiry, 2014).  

The production, marketing and consumption of seaweeds in food products has 

increased significantly, not only in Asian countries but also in many Western countries, 

including Ireland, creating a greater demand for seaweed production (Kraan, 2012).  In 

the last fifty years, demand for seaweed has outgrown supply from natural sources (FAO, 

2003).  Simultaneously, a significant reduction has occurred in seaweed production by 

traditional Asian producer countries due to environmental pollution, climate change and 

partial displacement by more profitable finfish and shellfish aquacultures.  This trend has 
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created the market for cultivated (farmed) seaweeds (Tierney et al., 2010).  Farm 

production of seaweeds has expanded since 1970s, with an average global increase of 

7.7% annually.  To date, more than 14.7 million tonnes of seaweed are commercially 

produced worldwide, 6% collected from wild stock, 94% from farmed sources.  As a 

result of these factors, efforts have been made in recent years to establish sustainable 

seaweed aquaculture in Europe and North America (Tierney et al., 2010).  An outline of 

major producers and consumers of seaweeds is presented in Table 1.1. 

 

Table 1.1.  Global suppliers and consumers of seaweed. 

Country  Supply and consumer facts 

Asia-Pacific
 

 Produce 80% world’s total supply and the largest consumer base.
a
 

   
China  Largest producer of edible seaweeds (5 million wet tonnes annually).

b
 

  Principle crop: kombu (Laminaria japonica).
 b
 

   
Republic of Korea  Principle crop: wakame (Undaria pinnatifida).

b
 

   
Japan  Largest consumer of edible seaweed (1.6 kg dry wt / person / year).

d
 

  Promotes seaweed as a nutritional foodstuffs.
d
 

  Principle crop: nori (Porphyra spp.).
b
 

   
Europe  Farming is not well established.

a
 

   
Ireland, Norway 

and France 

 Main producers in the EU.
a
 

   
Spain and Portugal  Small suppliers in the EU.

a
 

   
United Kingdom  Nearly non-existent supply.

a
 

aFAO (2013). 
bMarine Foresight series (2005). 
cBhattacharjee & Islam (2014). 
dCornish & Garbary (2010). 

 

Most seaweed harvested for human consumption grows in marine waters, while 

the majority of fresh water algae are too toxic as a food source.  In general, marine 

seaweeds are not toxic, however some contain acids that can irritate the digestive tract, or 

compounds with laxative and electrolyte-balancing effects (Jiménez-Escrig et al., 2012).  

Seaweeds readily take up and accumulate heavy metals and radioactive materials in areas 

of pollution and, as a result, may become contaminated and unfit for human consumption 
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(Werner et al., 2004).  A list of edible seaweeds harvested as food stuff and the associated 

common names are presented in Table 1.2.  

 

1.3 History of seaweed uses and applications 

Traditionally, seaweeds have been used world wide as food, fodder and fertilizer 

and as a source of drugs for medicinal applications since ancient times, particularly in 

Asian countries and coastal communities (Sánchez-Machado et al., 2004).  Seaweed 

aquaculture in Asia results from specific socio-economic aspects as well as cultural and 

historical traditions.  Natural conditions such as hydro-geography and the abundance of 

sites available for cultivation have contributed to this development (Werner et al., 2004).  

In recent years, local governments and commercial organisations in western countries, 

especially Ireland, France, Canada and the United States, are promoting seaweeds for use 

in restaurant and domestic purposes, with some success.  As people from China, Japan 

and Korea migrate around the world, the acceptance for seaweed is spreading into the 

surrounding populations (FAO, 2003).  A timeline of seaweed uses throughout history is 

presented in Table 1.3. 

To date, the food sector is still the most important field for application of farmed 

and wild seaweed species (Buchholz et al., 2012).  Presently, 221 species are utilised 

commercially, including 145 species for food and 110 species for phycocolloid 

production.  The top five cultivated seaweed species in the world are: Laminaria, 

Porphyra, Undaria, Eucheuma and Garcilari spp. (Venugopal, 2008).  The main uses of 

green, red and brown seaweed extracts and uses of other seaweed constituents are listed 

in Table 1.4. 
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Table 1.2.  Scientific and common names of edible seaweed species. 

Phylum/Class  Scientific name (genus/species)  Common name 

Chlorophyta
  Ulva rigida

c
  Sea Lettuce 

(green)  Ulva lactuca
b
  Sea Lettuce 

  Ulva spp.  

(U. compressa and U. intestinalis)
a
 

 Sea Lettuce / Sea grass 

  Codium spp. 

(C. fragile and C. tomentosum)
c
 

 Spongeweed / Velvet horn 

     
Rhodophyta  Palmaria palmata

b
  Dulse 

(red)  Porphyra spp. 

(P. dioica, P. linearis, P. 

Amplissima and P. umbilicalis)
a
 

 Nori 

  Porphyra spp.  

(P. laciniata and P. umbilicalis)
a
 

 Laver 

  Chondrus crispus
b
  Irish moss 

  Mastocarpus stellatus
b
  Carrageen moss / False Irish 

moss / Grape pip weed 

     
Phaeophyceae  (kelps / laminarians)   

(brown)  Laminaria digitata
c
   Oarweed / Kelp 

  Undaria pinnatifida
b
  Wakame 

  Laminaria hyperborea
a
  Tangle / Kelp / May weed 

  Saccharina latissima
a
  Sugar kelp 

  Saccharina japonica
a
  Kombu 

  Alaria esculenta
c
  Badderlocks / Irish Wakame 

     
  (wracks / fucoids)   

  Fucus spiralis
a
  Spiral wrack 

  Fucus vesiculosus
a
  Bladderwrack 

  Fucus serratus
c
  Toothed wrack / Serrated 

wrack 

  Ascophyllum nodosum
c
  Rockweed / Egg wrack 

  Pelvetia canaliculata
c
  Channelled wrack 

     
  (other)   

  Himanthalia elongata
c
  Thongweed / Sea spaghetti 

  Sargassum spp.  

(S. cinetum, S. vulgare, S. swartzii, 

S. Muticum and S. myriocysum)
a
 

 Sargassum / Japanese weed 

  Sargassum fusiforme
a
  Hijiki or Hiziki 

aGuiry & Guiry (2014). 
bRhatigan (2009). 
cMorrissey et al. (2001). 
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Table 1.3.  Uses of seaweeds throughout history. 

Time line  Uses of seaweed 

Fourth century  Included as part of the local diet in Japan.
a
  

   
Sixth century  Included as part of the local diet in China.

a
 

   
Nineteenth century  Used as soil fertilizer by coastal dwellers.

b
 

   
Thirtieth century  Considered of medicinal value in the Orient.

c
 

   
pre-Christian times  Used as sources of dying agents and anthelmintics in the Mediterranean.

d
 

   
Recent decades  Used as raw materials for many food products in Japan.

e
  

  Hydrocolloids extracted from seaweed used in pharmaceutical, cosmetic 

  and food industries in European and Western countries.
f
 

   
1970s  Research into use of seaweeds as an indirect source of fuel.

b
 

   
Recent years  Used as functional food ingredients in Western countries.

g
 

 

aVenugopal (2008). 
bFAO (2003). 
cChennubhotla et al. (2013). 
dGuiry & Guiry (2014). 
eJaspars & Folmer (2013). 
fJiménez-Escrig (2011). 
gGómez-Ordóñez et al. (2010).   

 

 

Table 1.4.  Main uses of green, red and brown seaweeds. 

Seaweed  Component  Main uses 

Green
a 

 Rare cell wall 

polysaccharides (ulvan) 

 Dietary fibre with prebiotic potential 

Red
b
  Hydrocolloids (agar and 

carrageenan) 

 Cosmetics, food preparations and 

biomedical and biotechnology research 

Brown
c
  Hydrocolloids (alginate)  Emulsifiers, anticoagulants, food 

products, cosmetics, luxury spa items, 

fertilisers, textiles and rubbers 

Other 

constituents
defg 

 Minerals  Food supplements 

  Pigments (general)  Natural dyes, antioxidants and vitamins 

  Chlorophyll  Food and pharmaceutical colourants 

  Phycobiliproteins  Dyes in food and cosmetics 

fluorescent probes 

  Carotenoids  Dietary sources to meet nutritional 

requirements 
aAle et al. (2012). 

bMorrissey et al. (2001).   
cFAO (2003). 
dVenugopal (2008). 
eSousa et al. (2008). 
fTierney et al. (2010). 
gFiedor & Burda (2014). 
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1.3.1 Colloids extracted from seaweeds 

Following utilisation of seaweeds as an edible foodstuff, the second largest use of 

harvested seaweed is colloid extraction.  Agar, carrageenan and alginates (seaweed 

polysaccharides), collectively referred to as phycocolloids, hydrocolloids or gums, 

function as food fibres, gelling and thickening agents which have led to a number of 

applications in food technology (Rupérez, 2002).  The major producer of seaweeds for the 

extraction of hydrocolloids is China, followed by Japan and Korea (Werner et al., 2004).  

The manufacturing of colloids is concentrated in a few developed nations: Denmark, 

France, Japan, Norway, Spain, the United Kingdom and the United States.  Colloid 

manufacture is slowly developing in a few seaweed producing countries in Asia (Marine 

Foresight series, 2005). 

Seaweed hydrocolloids are commercially used in a variety of foods including 

bakery, confectionery, dairy products and muscle foods providing thickening and texture 

to foods.  As thickeners, seaweed hydrocolloids are used in soups, gravies, salad 

dressings, sauces and toppings while as gelling agents, they are extensively used in 

products like jam, jelly, marmalade, restructured foods and low sugar/calorie gels (Saha 

& Bhattacharya, 2010).  Other uses in various industrial sectors include textile, medicine 

and biotechnology applications (Venugopal, 2008).     

To date, extensive research has explored the use of colloids from seaweeds in 

muscle based foods.  Several hydrocolloids including carrageenan are typically used to 

improve the mechanical properties of processed fish products such as surimi gels 

(Ramírez et al., 2011).  Addition of seaweed hydrocolloids into muscle foods has 

improved shelf-life and organoleptic properties of restructured meat products.  

Carrageenan and alginates have been used in meat for their water binding properties, 

influence on water holding capacity and functionality in muscle foods (Werner et al., 
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2004).  The texture of reformulated meat products can be altered and binding properties 

can be improved by the gel-forming properties of calcium alginate (Jiménez-Colmenero 

et al., 2001).   

 

1.4 Biodiversity and ecology of seaweeds 

Algae are divided into two groups: microalgae (microscopic and often unicellular) 

and macroalgae (multicellular organisms) (Usov & Zelinsky, 2013).  Macroalgae, known 

as seaweeds, are autotrophic, aerobic organisms that generally live attached to rock or 

other hard substrata in coastal areas.  A variety of abiotic and biotic factors determine the 

zonation and growth of different seaweed species.  Important abiotic factors include: light 

regime (intensity, spectral composition and day length), followed by temperature, 

salinity, nutrient availability, and available substrate and wave exposure.  Competition for 

substrate, grazing and epigrowth are considered the most important biotic factors 

(Hallerud, 2014).  Seaweeds can reproduce in a variety of ways (vegetative, asexual and 

sexual) and differ significantly to terrestrial plants.  For example, seaweeds do not 

possess flowers; therefore traditional methods of cross-pollination are not available to 

them (Werner et al., 2004).   

 

1.5 Classification of seaweeds 

Seaweed classification is based on the three different groups of light harvesting 

and photoprotective pigments: chlorophylls, phycobiliproteins and carotenoids.  All 

seaweeds contain the light-harvesting pigment chlorophyll a (Hallerud, 2014).  Seaweeds 

are commonly classified into three main groups: green (phylum Chlorophyta), dominated 

by chlorophyll a and b; red (phylum Rhodophyta), as a result of phycoerythrin and 
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phycocyanin; and brown (class Phaeophyceae), due to the presence of fucoxanthin (Rindi 

et al., 2012; Tierney et al., 2010). 

 

1.5.1 Green seaweed 

Chlorophyta are generally small, ranging from a few centimetres to a metre in 

length.  Green seaweeds contain a wide variety of morphologies, ranging from unicells 

and filaments to blades and fleshy thalloid forms (FAO, 2013).  Green seaweeds are less 

common in the ocean (salt waters) than red and brown seaweeds and often reside in areas 

with abundant light such as shallow water and tide pools forming symbiotic relationships 

with protozoa, sponges and coelenterates (Venugopal, 2011).   

 

1.5.2 Red seaweed 

Red seaweeds are similar in size to green seaweeds and range from red to purple 

and sometimes brownish red but are still classified as Rhodophyta because of their 

characteristics.  Most red seaweeds are found in salt waters from low tide marks to 

greater depths up to 100 metres beneath the surface of the sea (Bhakuni & Rawat, 2005).  

Red seaweeds reside in a variety of locations such as the cold waters of Nova Scotia and 

southern Chile, as well as more temperate waters like the coasts of Morocco, Portugal and 

in tropical waters like Indonesia and the Philippines (FAO, 2003).   

 

1.5.3 Brown seaweed 

Brown seaweeds are extremely variable in shape and range from 30-60 

centimetres to thick leather-like seaweed around 2-4 metres to giant kelp up to 20 metres 

in length (Venugopal, 2008).  Phaeophyceae have very flexible stems and are found 

primarily in marine shallow waters or on shoreline rocks (Morrissey et al., 2001).  Brown 
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seaweeds grow in both the Northern and Southern Hemispheres in cold waters, thriving 

best in waters up to about 20°C but can be found in warmer waters also (FAO, 2013).   

 

1.6 Composition of seaweeds 

Comprehensive reviews on seaweed composition have been reported by Chandini 

et al. (2008) and MacArtain et al. (2007).  In general, the composition of fresh seaweed is 

approximately 87% water and 13% dry matter (DM) (Bhattacharjee & Islam, 2014).  

Seaweeds are considered a low caloric food, composed of polysaccharides, lipids, protein, 

vitamins, minerals and pigments.   

 

1.6.1 Polysaccharides 

Structural components of seaweeds differ greatly to those of terrestrial plants (e.g. 

cellulose, hemi-cellulose and lignin) (Anastasakis et al., 2011).  Polysaccharides (4-76% 

DM) are a major constituent of seaweeds (Laurie-Eve Rioux et al., 2010).  Seaweed 

polysaccharides include: alginate, carrageenan, agar, laminarin, fucoidan, ulvan, floridean 

starch and cellulose.  Polysaccharides are characterised by sugar residues and the nature 

of the bond between them (Elleuch et al., 2011).  Seaweed polysaccharides are divided 

into three groups based on their role: structural polysaccharides, intercellular mucilage 

and storage polysaccharides (Kim, 2012).  A summary of polysaccharides present in 

green, red and brown seaweeds is presented in Table 1.5.   

 

1.6.1.1 Green seaweed polysaccharides  

Green seaweed contain cellulose like other vascular plants as the principle 

structural polysaccharide (Kim, 2012).  Ulvan (8-29% DM), the main sulphated  
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Table 1.5. Structural polysaccharides, storage polysaccharides and intercellular mucilage 

of green, red and brown seaweeds. 

Phylum/Class 
 Structural 

polysaccharide 
 

Storage 

polysaccharide 
 Intercellular mucilage 

Chlorophyta
  Cellulose

ab
  Amylose

ab
  Glucuronoxylorhamnans

a
 

(green)  Ulvan
bd

  Amylopectin
ab

  Glucuronoxylorhamnogalactans
a
 

  Glucuronan
b
    Xyloarabinogalactans

a
 

  Xylan
d
     

  Mannan
d
     

       
Rhodophyta  Cellulose

a
  Floridean 

starch
cb

 

 Agar
a
 

(red)  Agar
ad

    Carrageenan
b
 

  Carrageenan
b
     

       
Phaeophyceae  Cellulose

a
  Laminarin

bc
  Alginate

a
 

(brown)  Alginate
b
    Fucoidan

ac
 

      Laminarin
ac

 
aKim (2012). 
bChandini et al. (2008). 
cUsov et al. (2001). 
dPercival (1979). 

 

polysaccharide of green seaweeds, is water soluble and composed of xyloglucan, 

glucuronan and cellulose in a linear arrangement (Vera et al., 2011).  Ulvan is responsible 

for the maintenance of the osmolar stability and protection of the cell (Cardoso et al., 

2015).   

 

1.6.1.2 Red seaweed polysaccharides  

Floridean starch (up to 35% DM), which differs from the starch of terrestrial 

plants by the absence of linear amylose, is the main storage polysaccharide present in red 

seaweeds (Usov & Zelinsky, 2013).  Carrageenans (30-75% DM), agar (7-36% DM) and 

sulphated galactans are the main components of red seaweed cell walls (Vera et al., 

2011).  There are three major types of carrageenans based on their chemical composition 

and structure: kappa (κ), iota(ι) and lambda (λ) (Venugopal, 2008).  Agar consists of at 

least two polysaccharides: agarose and agaropectin (Cardoso et al., 2015).   
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1.6.1.3 Brown seaweed polysaccharides  

Brown seaweeds contain the largest amount of polysaccharides (over 50% DM), 

most of which are sulphated (Kim, 2012).  The main structural components of brown 

seaweeds are alginic acid, mannitol, laminarin and fucoidan (Rupérez & Saura-Calixto, 

2001).  Alginic acid (10-45% DM) is partially responsible for flexibility of the seaweed 

(Vera et al., 2011).  The main food reserves present in brown algae are laminarin (2–35% 

DM) and mannitol (5–25% DM).  Mannitol appears to be the primary product of 

photosynthesis and sometimes is found attached to laminarin chains (Devillé et al., 2004).  

Fucans or fucoidan (5–20% DM) are sulphated polysaccharides that protect seaweed from 

desiccation (Anastasakis et al., 2011).  A summary of the polysaccharides and sugars 

associated with green, red and brown seaweeds are presented in Table 1.6. 

 

1.6.2 Lipids 

Seaweed lipids consist of phospholipids (10-20% total lipid content), glycolipids  

(31-56% total lipid content) (glycosylglycerides) and non-polar glycerolipids (neutral 

lipids) (Kumari et al., 2013).  Sterol compositions vary amongst seaweeds with 

cholesterol and fucosterol being the dominant sterol of red and brown seaweeds, 

respectively.  The predominant sterol of green seaweeds varies amongst orders (i.e. 

isofucosterol the predominant sterol of the order Ulvales).  Although seaweed lipid 

content is low (usually 1-5% DM), it is a rich source of polyunsaturated fatty acid 

(PUFA) containing 18 (C18) and 20 (C20) carbons, which is of great interest to the food 

industry (Chandini et al., 2008).  In general, the PUFA content (10-70% of total fatty 

acids) of seaweeds is equal to or higher than terrestrial plants and naturally exists in a 

nutritionally ideal ω-6/ ω-3 (n-6/ n-3) free fatty acid ratio (Venugopal, 2008).   
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Table 1.6.  Polysaccharide composition of green, red and brown seaweeds. 

Phylum/Class  Polysaccharide  Main chain  Sugars 

Chlorophyta
  Cellulose

e
  linear β-(1,4)-D-glucan   

       
(green)  Ulvan

ac
  linear β-(1,4)-D-

xyloglucan, glucuronan 

and cellulose 

 rhamnose, xylose, 

glucose, uronic acid, 

glucuronic acid, 

iduronic acid 

       
Rhodophyta  Cellulose

e
  linear β-(1,4)-D-glucan    

       
(red)  Carrageenan

df
   linear α-(1,3)-D-

galactose and β-(1,4)-D-

3,6-anhydrogalactose 

 galactose, 3,6-

anhydrogalactose, 

glucose 

       
  Agar

dg
  linear α-(1,4)-D-

galactose and α-L-3,6-

anhydrogalactose  

 galactose, 3,6-

anhydrogalactose, 

glucuronic acid 

       
  Xylan

ah
  linear β-(1,4)-D-

xylopyranose 

interspersed by single β-

(1,3)-D-xylopyranose  

 mannose 

       
  Floridean 

starch
a
 

 α-(1,4)-D-glucopyranose 

with numerous α-(1,6)-

glucosidic branches 

  

       
Phaeophyceae  Cellulose

e
  linear β-(1,4)-D-glucan   

       
(brown)  Laminarin

afg
  linear β-(1,3)-D- 

glucopyranose 

 glucose and mannose 

       
  Fucoidan

acg
  sulphated α-(1,3)-L-

fucopyranose 

 fucose, galactose, 

xylose, glucuronic acid 

       
  Alginate

abc
  β-D-mannuronic and α-

L-guluronic acids with 

β-(1,4) linkages 

  

aUsov & Zelinsky (2013). 
bKim (2012). 
cCardoso et al. (2015). 
d
Renn (1997). 

eMišurcová et al. (2012). 
fGómez-Ordóñez, et al. (2010). 
gRupérez & Saura-Calixto (2001). 
hLahaye & Kaeffer (1997). 

 

Green seaweeds are rich in alpha linolenic acid (C18:3 (n-3)) and the presence of 

docosahexaenoic acid (DHA) is reported for species in Ulva (Tierney et al., 2010).  Red 

and brown seaweeds are rich in fatty acids with 20 carbon atoms such as eicosapentanoic 

acid (C20:5 (n-3)) (EPA) and arachidonic acid (C20:4 (n-6)) (Burtin, 2003).  Brown 
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seaweeds contain primarily C16, C18 and C20 fatty acids with 10-15% of the lipid 

content made up of palmitic acid (C16:0) (Kim, 2012).  Seaweeds are believed to be the 

only plant source of EPA and DHA (Rasmussen & Morrissey, 2007).   

 

1.6.3 Protein  

The protein content of seaweeds varies largely between species.  Several reviews 

on seaweed proteins and peptides have been published previously (Fleurence, 1999; 

Harnedy & FitzGerald, 2011).  Highest protein contents are reported for green and red 

seaweeds (averaging 10-30% DM) while brown seaweeds in general have lower protein 

contents (5-15% DM).  Ulva spp. (green seaweeds) protein levels range 15-20% DM.  In 

red seaweeds such as Palmaria palmata and Porphyra tenera, protein content can 

represent up to 35 and 47% DM, respectively, which is comparable to high protein 

vegetables like soybeans (35% DM) (Burtin, 2003).  Seaweed proteins are complex bio 

macromolecules that are likely to exist as large protein or protein/pigment complexes. 

Their functional properties, e.g., gelation and emulsifying capacity, are comparable with 

those of terrestrial plants (Phillips & Williams, 2011).   

The nutritional value of proteins depends on their essential amino acid 

composition and digestibility (Friedman, 1996).  Seaweed proteins contain all the 

essential amino acids at levels sufficient to meet dietary requirements of humans but vary 

between species (Dawczynski et al., 2007).  Alanine, aspartic and glutamic acid are the 

most abundant amino acids in seaweeds (Venugopal, 2008).  Aspartic and glutamic acids 

make up 26-32% of green seaweed amino acids, 22-44% of brown seaweed amino acids 

but less than 20% of red seaweed amino acids (Fleurence, 1999).  Taurine is particularly 

abundant in red and brown seaweeds (Jaspars & Folmer, 2013).  Tryptophan is the first 

limiting amino acid (levels are insufficient to meet nutritional requirements for human 
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health) in seaweeds.  Other amino acids present at low concentrations are leucine and 

isoleucine in red seaweeds and methionine, cysteine and lysine in brown seaweeds (Wong 

& Cheung, 2001). 

The digestibility of seaweed protein varies according to species, environmental 

factors and the presence of anti-nutritional factors such as polyphenols, polysaccharides 

and protease inhibitors (Galland-Irmouli et al., 1999).  According to some studies, the in 

vitro digestibility of seaweed protein relative to casein (100%) ranges from 56 to 67% in 

the presence of pancreatin.  Wong & Cheung (2000) compared the in vitro digestibility of 

protein concentrates from red (Hypnea charoides and Hypnea japonica) and green (Ulva 

lactuca) seaweeds. The values ranged from 85.7 to 88.9% relative to casein, with red 

seaweed protein isolates having a slightly higher digestibility.  Inclusion of the digestive 

enzyme, pronase, can increase the digestibility of seaweed protein to 78-95%, however 

the presence of polysaccharides and their interactions with proteins may reduce the 

accessibility of proteins to proteolysis (Fleurence, 1999).  Galland-Irmouli et al. (1999) 

reported that the low digestibility of seaweed protein was most likely due to the presence 

of xylan (the main water soluble polysaccharide in P. palmata) which inhibited 

proteolytic digestive enzymes from proteolysis during digestion.   

 

1.6.4 Vitamins 

Seaweeds are an excellent source of vitamins (A, Bl, B2, B3, B5, B9, C, D, E and 

K) and one of the few vegetable sources of vitamin B12 that is structurally similar to 

animal sources (Jaspars & Folmer, 2013; Kraan & Dominguez, 2013).  In general, green 

and red seaweed have higher contents of B vitamins than brown seaweed (Morgan et al., 

1980).  Vitamin C of green and brown seaweeds average between 500 to 3000 mg/kg DM 

while red seaweeds contains about 100 to 800 mg/kg (Burtin, 2003).  The highest levels 
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of vitamin C are reported from spring to early summer (Kim, 2012).  Most red and green 

seaweeds contain large amounts of vitamins Bl, B2 and B12 as well as significant 

quantities of provitamin A (Kraan & Dominguez, 2013).  Brown seaweeds contain the 

highest levels of vitamin E including alpha, beta and gamma tocopherol while green and 

red seaweeds only contain alpha tocopherol (Burtin, 2003). 

 

1.6.5 Minerals 

Seaweeds have exceptionally high ash contents, in some species, the mineral 

content can account for up to 36-50% DM (Burtin, 2003).  By comparison, the mineral 

content of land vegetation accounts for only 5-10% DM (Kim, 2012).  In general 

seaweeds are a rich source of iron, potassium, magnesium, calcium, sodium and 

phosphorous (Jaspars & Folmer, 2013).  Compared to terrestrial plants, seaweeds are 

particularly rich in iodine and selenium.  Additionally, seaweeds are one of the highest 

vegetable sources of calcium, with as much as 7% DM in some species and 25-34% DM 

in calcified seaweeds (Kraan & Dominguez, 2013).   

 

1.6.6 Pigments 

Photosynthetic pigments are used by seaweeds during photosynthesis to capture 

solar energy.  There are three major categories of photosynthetic pigments: chlorophylls, 

carotenoids and phycobiliproteins (Rasmussen & Morrissey, 2007).  According to their 

chemical structure, pigments are classified into the following major categories: closed 

tetrapyrroles (chlorophyll a and b), porphyrins (chlorophyll c), open tetrapyrrols 

(phycobilipigments) and polyisoprenoids with terminal cyclohexane rings (carotenoids – 

carotenes and xanthophylls).  The general photosynthetic pigments for green, red and 

brown seaweeds are presented in Table 1.7.   
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Table 1.7.  Colour pigments of green, red and brown seaweeds. 

Phylum/Class  Chlorophyll  Phycobiliproteins  Carotenes  Xanthophylls 

Chlorophyta
  a and b  n/a  α and β-carotene  Lutein 

(green)c        Zeaxanthin 

        Antheraxanthin 

Neoxanthin 

Violaxanthin 

         
Rhodophyta  a, b and d  phycoerythrin,   α and β-carotene  Lutein 

(red)bc    phycocyanin    Zeaxanthin 

    allophycocyanin     

         
Phaeophyceae  a and c  n/a  β-carotene  Lutein 

(brown)ac        Fucoxanthin 

        Violaxanthin 
aHaugan & Liaaen-Jensen (1994). 
bSchubert et al. (2006). 
c
Stengel et al. (2011). 

 

1.6.6.1 Chlorophylls 

Green pigments found in all seaweeds are lipid soluble chlorophylls which are 

structurally composed of two parts: a substituted porphyrin ring with a centrally bound 

magnesium atom and diterpene alcohol (phytol-long carbon chain).  Chlorophyll a found 

in all seaweeds is an essential component of photosynthesis.  Three other types of 

chlorophyll exist: b, c and d (Kraan & Dominguez, 2013).  The diversity of chlorophyll is 

significant due to the natural abundance of chlorophyll present in seaweed.  Several 

distinct derivatives of chlorophyll exist through processing and preparation of seaweed 

due to the fact chlorophyll is sensitive to extreme pH and temperature changes 

(Pangestuti & Kim, 2011).   

  

1.6.6.2 Phycobiliproteins 

Phycobiliproteins are water soluble protein-pigment complexes generally 

representing 1-10% DM of red seaweeds (Rasmussen & Morrissey, 2007).  

Phycobiliproteins are oligomeric proteins built up from chromophore-bearing 

polypeptides which are organised in supramolecular complexes called phycobilisomes 
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(Smit, 2004).  In red seaweeds, phycobiliproteins play an important role in utilising light 

in deeper waters during photosynthesis (Kraan & Dominguez, 2013).  The covalently 

bound prosthetic groups (open chain tetrapyrrole chromophores bearing A, B, C and D 

rings named phycobilins) determine the colour of the phycobiliproteins (Eriksen, 2008).  

The four colours are blue, red, yellow or purple due to phycocyanobilin, 

phycoerythrobilin, phycourobilin or phycobiliviolin, respectively (Sekar & 

Chandramohan, 2008).  The four main classes of phycobiliproteins in red seaweeds 

include: phycocyanin (blue), allophycocyanin (bluish-green), phycoerythrocyanin 

(orange) and phycoerythrin (purple) (Sidler, 2004).  Phycoerythrins are the most abundant 

phycobiliproteins found in red seaweed (Pangestuti & Kim, 2011). 

 

1.6.6.3 Carotenoids  

Carotenoids (terpenoids) are mostly polyunsaturated hydrocarbons containing 40 

carbon atoms and two terminal ring systems responsible for the red, orange and yellow 

colours found in seaweed (Tierney et al., 2010).  Carotenoids are considered accessory 

pigments and function both as light energy harvesters and as antioxidants to protect 

seaweeds from reactive oxygen species (ROS) formed by exposure to light and air 

(Rasmussen & Morrissey, 2007).  The most researched function of carotenoids is their 

provitamin A activity, especially that of β-carotene and to a lesser extent of lutein 

(Kiokias & Oreopoulou, 2006).   

Carotenoids are lipid soluble and are divided into two groups: carotenes 

(hydrocarbons) and xanthophylls (containing oxygen) (Pangestuti & Kim, 2011).  All 

seaweeds are able to synthesize lycopene, a precursor for the two different synthesis 

pathways of carotenoids (β,ε-carotene and β,β-carotene) (Schubert et al., 2006).  β-

carotene is a component of the photosynthetic reaction centre which protects the 
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organism from damage during excessive irradiances by preventing the formation of ROS 

(Khattar & Kaur, 2009).  Typically carotenes are more orange in colour than 

xanthophylls.   

Xanthophylls (yellow pigments) are oxidation products of carotenes and vary 

considerably according to light environment.  The diversification of xanthophylls 

increases by the inclusion of allene or acetylene groups (Schubert et al., 2006).  

Fucoxanthin (xanthophyll) is the major carotenoid present in brown seaweed and 

accounts for more than 10% of the estimated total amount of carotenoids in nature 

(Tierney et al., 2010).  When seaweeds are exposed to excess light conditions, the 

xanthophyll cycle (found in green and brown seaweeds and sometimes red seaweeds) is a 

mechanism used to protect against photo oxidative damage (Schubert et al., 2006).  

Essentially seaweeds synthesize antheraxanthin and zeaxanthin from existing 

violaxanthin by a rapid two step de-epoxidation process.  Zeaxanthin functions to protect 

the seaweed from oxidative damage while antheraxanthin and violaxanthin serve as light 

energy harvesters (Hallerud, 2014).  

 

1.6.7 Factors influencing seaweed composition  

The chemical composition of seaweeds varies considerably due to a number of 

factors including harvesting region, season and seaweed species.  Polysaccharide content 

varies greatly between seasons due to the higher rates of photosynthesis during brighter 

months leading to a build up of polysaccharides in seaweeds (Hallerud, 2014).  

Conversely, seaweeds contain a higher amount of protein in winter, while protein levels 

are lower during the summer months, influenced by environmental factors such as light, 

temperature and salinity (Kim, 2012).  The mineral content of seaweeds varies with 

species, growing region, season and environmental conditions.  Mineral levels reach 
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maximum concentrations in specimens habituated in areas where rivers drain into the sea 

from mineralized areas (Kim, 2012).   

Seaweeds possess an efficient antioxidant defence system as a result of living in a 

harsh environment (Chandini et al., 2008).  The defence system of seaweeds includes 

many forms of antioxidant compounds such as vitamins and pigments, which afford 

protection against direct sunlight in an aqueous environment, therefore seaweeds growing 

in the littoral zone or on the surface will have higher concentrations of these antioxidant 

compounds (Kraan & Dominguez, 2013).  In addition, pigment content can be influenced 

by polysaccharide composition.  High amounts of polysaccharides may lead to reduced 

levels of pigments (Hallerud, 2014).  Environmental changes such as the quality of light 

can also have a profound effect on the colour pigments present in the seaweed (Dawson, 

2007).   

 

1.7 Bioactive compounds in seaweeds  

Screening seaweeds for bioactive constituents for biomedical and pharmaceutical 

applications has been the focus of many studies for the last decade.  Bioactivity is the 

specific effect upon exposure to a substance and includes tissue uptake and the 

consequent physiological response (such as antioxidant or anti-inflammatory) (Carbonell-

Capella et al., 2014).  Seaweeds contain a tremendous diversity of bioactive compounds 

(polysaccharides, fatty acids, peptides, carotenoids, phenols, minerals, sulphur 

compounds, vitamins, etc.) with structures different to those found in terrestrial plants 

(Gupta & Abu-Ghannam, 2011a; Jiménez-Escrig et al., 2011).  Differences in chemical 

composition and biological activities of seaweeds due to natural variability have been 

reviewed by Stengel et al. (2011).  The proliferation period (winter to spring) has been 

suggested as the optimal harvest period of seaweeds to maximise the quantity of 
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biologically active components available (Kim, 2012).  This may be a result of cold stress 

which elevates levels of ROS in seaweeds during the winter months (Cornish & Garbary, 

2010).   

Seaweed extracts and purified fractions from seaweeds with antioxidant, 

antimicrobial, anti-tumor, anti-coagulant and antiviral activities have been extensively 

researched and reviewed (Gamal-Eldeen, 2009; Gupta & Abu-Ghannam, 2011b; 

Wijesekara et al., 2011).  Seaweeds represent one of the richest sources of natural 

antioxidants and antimicrobial substances amongst marine organisms as they have 

evolved to protect themselves against oxidative stress from ultra-violet radiation, 

desiccation and extreme temperature fluctuations at low tide (Percival, 1979).  

Antioxidant activity of seaweeds and seaweed extracts will be the main focus in terms of 

bioactivity for the remainder of this review.  Hydrophilic (polyphenols, phycobiliproteins 

and vitamins) and lipophilic (carotenoids and α-tocopherol) antioxidants isolated from 

seaweed have been extensively reviewed (Chandini et al., 2008; Eriksen, 2008; Kraan & 

Dominguez, 2013; Plaza et al., 2008; Prasanna et al., 2007; Sousa et al., 2008; Vadlapudi, 

2012; Yuan & Walsh, 2006).  Collectively, previously reported literature suggests that 

seaweed and seaweed constituents such as sulphated polysaccharides may prove to be a 

useful source of effective, non-toxic antioxidants for use in the food industry (Tierney et 

al., 2010).   

 

1.8 Methodologies for measurement of antioxidant bioactivity  

Antioxidants (endogenous enzymes and dietary antioxidants) protect the human 

body against reactive oxygen and nitrogen species (ROS and RNS) which can attack and 

cause damage to membrane lipids, proteins and DNA resulting in a variety of health 

disorders such as cancer and diabetes mellitus (Fiedor & Burda, 2014).  Antioxidants 
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have different modes of action to prevent damage caused by oxidative stress including: 

radical chain reaction inhibitors, metal chelators, oxidative enzyme inhibitors and 

antioxidant enzyme cofactors (Moure et al., 2001).  As a result of the different 

mechanisms of action exhibited by antioxidants, many methods to ascertain antioxidant 

capacity of compounds have been developed and utilised.  Methodologies differ from one 

another in terms of reaction mechanisms, oxidant and target/probe species, reaction 

conditions and expression of results (Karadag et al., 2009).  Assays have been developed 

to test the antioxidant potential of seaweed compounds in vitro and in vivo using chemical 

reaction assays, cell culture models and animal feeding trials. 

 

1.8.1 In vitro chemical reaction antioxidant assays 

Approximately 20 analytical methods exist to determine antioxidant capacity of 

seaweeds/seaweed extracts involving different reagents, reaction mixture composition 

and standards etc.  A comparison of results is often difficult owing to the array of 

methods employed under a variety of experimental conditions as well as differences in 

the physicochemical properties of oxidisable substrates (Karadag et al., 2009).  Chemical 

reaction based assays are excellent preliminary tools, however no single assay can be 

considered as the benchmark for the assessment of antioxidant capacity as each assay has 

limitations (Tierney et al., 2010). 

Commonly used in vitro antioxidant assays are divided into (1) hydrogen atom 

transfer (HAT) reaction-based assays and (2) the electron transfer (ET) reaction-based 

assays (Karadag et al., 2009).  HAT and ET reaction-based assay usually employ a 

substrate which undergoes a colour change upon reaction thereby allowing antioxidant 

activity to be measured spectrophotometrically (Huang et al., 2005).  HAT reaction-based 

assays measure the ability of an antioxidant to scavenge free radicals by donating a 
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hydrogen atom to form stable compounds and are more relevant to the radical chain 

breaking antioxidant capacity (Prior, 2004).  ET reaction-based methods detect the ability 

of a potential antioxidant to transfer one electron to reduce any compound which includes 

metals, carbonyls and radicals (Karadag et al., 2009). 

(1) AH + X•  XH + A• 

(2) M(III) + AH  AH• + M(II) 

The most commonly used ET reaction-based assays include: total phenol content 

(TPC), ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) 

free radical scavenging and the Trolox equivalent antioxidant capacity (TEAC).  HAT 

reaction-based assays employed in measuring antioxidant activity of seaweeds are oxygen 

radical absorbance capacity (ORAC), β-carotene bleaching assay (BCBA), total radical 

trapping antioxidant parameter (TRAP) and total oxidant scavenging capacity (TOSC) 

(Karadag et al., 2009; MacDonald-Wicks et al., 2006). Methodologies for determining in 

vitro antioxidant activity/capacity are well reviewed by MacDonald-Wicks et al. (2006).  

Balboa et al. (2013) has extensively reviewed the use of chemical reaction assays to 

determine the antioxidant activity of brown seaweeds. 

 

1.8.1.1 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay 

 For the purposes of this review the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free 

radical scavenging assay will be discussed further.  The DPPH free radical scavenging 

assay is one of the oldest methods used to assess antioxidant activity of seaweed extracts 

(Huang et al., 2005).  The DPPH radical is well known organic nitrogen radical which is 

deep purple in colour.  The purple chromogen radical is reduced by antioxidant/reducing 

compounds to a corresponding pale yellow hydrazine (Karadag et al., 2009).  Originally 

the reaction was monitored by electron paramagnetic resonance (ESR) spectroscopy and 
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relied on the signal intensity of the DPPH radical being inversely related to the 

concentration of the antioxidant and the reaction time.  More frequently, however, the 

reaction is monitored by a timed decoloration assay where the decrease in absorbance at 

515-528 nm produced by the addition of the antioxidant to the DPPH radical in methanol 

or ethanol is measured (MacDonald-Wicks et al., 2006).  The DPPH free radical 

scavenging activity may be expressed as either the % DPPH inhibition or as a half 

maximal effective concentration (EC50) (concentration required to obtain a 50% 

antioxidant effect) (Karadag et al., 2009). 

 There are some limitations of the DPPH free radical scavenging assay.  DPPH can 

only be dissolved in organic solvents which is an important factor when interpreting the 

role of hydrophilic antioxidants.  Furthermore the DPPH radical has little similarity to the 

highly reactive and transient peroxyl radicals formed during the breakdown of organic 

molecules (Karadag et al., 2009).  Additionally, antioxidants which react quickly with 

peroxyl radicals in vivo may react slowly or even be inert to the DPPH radical (Huang et 

al., 2005).  Another consideration for this assay is the reaction time with the DPPH 

radical.  The reaction kinetics between the DPPH radical and the antioxidant is not linear 

to the concentration of the DPPH radical, therefore expressing results as EC50 can be 

difficult.  The rate of reaction can be increased or decreased by basic and acidic 

impurities, respectively (MacDonald-Wicks et al., 2006).  Lastly, interpretation of the 

results can be complicated if the compounds with antioxidant activity have a spectra that 

overlap at 515 nm (Karadag et al., 2009). 

 DPPH free radical scavenging activity of seaweed extracts has been reported for a 

number of seaweed species (Machová & Bystrický, 2013; Mak et al., 2013). The ability 

of seaweed extracts to quench DPPH radicals is known to take place over a longer period 
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of time than rapid acting synthetic antioxidants such as butylated hydroxyanisole (BHA) 

(Abu-Ghannam & Cox, 2014; Yuan et al., 2005).   

 

1.8.2 In vivo antioxidant capacity assays 

Endogenous enzymes such as superoxide dismutase (SOD), glutathione peroxidise 

(GSHPx), catalase (CAT), glutathione (GSH) as well as dietary antioxidants like α-

tocopherol, α-carotene and ascorbic acid play a role in the antioxidant defence system 

(Ngo et al., 2011).  When host antioxidant defences are overwhelmed by the presence of 

excessive quantities of free radicals, oxidative stress occurs resulting in damage to 

various biological components (i.e. lipids, proteins and DNA) (Wood et al., 2006).  

Kohen and Nyska (2002) present a comprehensive review of oxidation in biological 

systems.  The variety of direct and indirect methods commonly used to measure in vivo 

antioxidant activity of living systems (i.e. animals and humans) is well reviewed by 

Wood et al. (2006). 

 

1.8.2.1 Direct markers of antioxidant activity 

Direct markers of antioxidant activity include measuring levels of dietary 

antioxidants as well as endogenous antioxidants.  A summary of direct markers of 

antioxidant activity reported by Wood et al. (2006) is presented in Table 1.8.  

Measurement of antioxidant levels is useful to confirm the uptake of a particular 

compound, however interpretation of such data is limited as a delicate balance exists 

between various compounds which make up the antioxidant defence system (Kohen & 

Nyska, 2002).  Generally dietary antioxidants are measured using analytical techniques 

such as high-performance liquid chromatography (HPLC) while endogenous antioxidants 

are analysed by a spectrophotometric assays (Wood et al., 2006) 
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Using various antioxidant/reducing assays such as ORAC, TRAP, FRAP and 

TEAC is a direct method to measure total antioxidant capacity (TAS) of blood 

plasma/serum.  Measuring blood plasma/serum TAS is particularly useful in evaluating 

the efficacy of extracts that are not well understood or characterised, for example plant 

extracts such as seaweeds (Kohen & Nyska, 2002; Wood et al., 2006).  

 

Table 1.8.  Direct markers of antioxidant activity
a
.
 

Antioxidant concentrations  Total antioxidant 

capacity Dietary
 

 Endogenous  

Vitamins E, C  GSH  ORAC 

Carotenoids  GSHPx  TRAP 

Flavonoids  SOD  FRAP 

  CAT  TEAC 
aWood et al. (2006). 

 

1.8.2.2 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assay 

 For the purposes of this review the 2,2′-azino-bis-3-ethylbenzthiazoline-6-

sulphonic acid (ABTS) decolorization assay will be discussed briefly.  ABTS assay is a 

method commonly employed to measure antioxidant capacity of both lipophilic and 

hydrophilic antioxidants using a spectrophotometer (Wood et al., 2006).  When ABTS, a 

peroxidase substrate, is oxidized by peroxyl radicals or other oxidants in the presence of 

H2O2 the metastable radical cation ABTS
*+

 is formed.  ABTS
*+

 is intensely blue/green 

coloured and can be monitored spectrophotometrically in the range of 600-750 nm 

(Karadag et al., 2009).  The antioxidant capacity is measured as the ability of test 

compounds to decrease the colour reacting directly with ABTS
*+

 radical and expressed 

relative to Trolox (Kohen & Nyska, 2002). 
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1.8.2.3 Indirect markers of antioxidant activity 

Measuring the peroxidation products which result due to oxidative stress is an 

indirect way to assess antioxidant capacity.  A summary of indirect markers of 

antioxidant activity reported by Wood et al. (2006) is presented in Table 1.9.  Lipid, 

protein and DNA damage of various cells and organs (i.e. muscles, brain, liver, heart, 

kidney and plasma) harvested from animals following the desired supplementation period 

can be assessed using various assays (Kohen & Nyska, 2002).    

Oxidative damage to lipids leads to the formation of numerous lipid peroxidation 

products such as F2-isoprostanes, 4-hydroxy-2-nonenal (4-HNE), malondialdehyde 

(MDA) and alkanes (ethane, pentane and isoprene) which can be measured as indices of 

oxidative stress (Kohen & Nyska, 2002).  Isoprostanes are commonly quantified using 

gas chromatography-mass spectrometry (GC-MS) and enzyme immunoassay (EIA).  4-

HNE is measured reliably using HPLC or enzyme-linked immunosorbent assay (ELISA) 

(Wood et al., 2006).  MDA concentrations are usually determined spectrophotometrically 

by the thiobarbituric acid-reactive substances (TBARS) assay (Del Rio et al., 2005).  

Lipid hydroperoxides are measured using HPLC, GC-MS or commercial colorimetric 

assays.  Hydrocarbons are generally measured in the exhaled breath using gas 

chromatography.  Measurement of autoantibodies directed against oxidative 

modifications of low density lipoprotein (LDL) is usually determined by ELISA (Wood 

et al., 2006). 

Oxidative damage to proteins can be measured by plasma protein carbonyl 

concentrations using atomic absorption spectroscopy, fluorescence spectroscopy or 

HPLC.  Assays used to measure oxidative damage to specific amino acid residues in 

proteins include GC-MS and HPLC (Kohen & Nyska, 2002).  The most commonly 
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measured product of DNA damage is 8-hydroxydeoxyguanosine (8-ohdG) using HPLC 

and ELISA kits (Wood et al., 2006). 

Measuring free radicals is another indirect marker of antioxidant status as free 

radicals are quenched in the presence of antioxidants.  Free radicals are measured using 

electron spin resonance spectroscopy (ESR), chemiluminescence and assays (colorimetric 

and flurometric) measuring the H2O2 radical (Kohen & Nyska, 2002; Wood et al., 2006).   

 

Table 1.9.  Indirect markers of antioxidant activity
a
. 

Markers of oxidative stress  
Free radical 

measurement 

Lipid damage  Protein damage  DNA damage  ESR 

8-isoprostane  Protein carbonyls  8-ohdG  Chemiluminescence 

TBARS/MDA  Nitrotyrosine    H2O2 

4-HNE       

Lipid hydroperoxides       

Hydrocarbons       

Antibioties against LDL       
aWood et al. (2006). 

 

1.8.2.4 Thiobarbituric acid-reactive substances (TBARS) assay 

 For the purposes of this review the thiobarbituric acid-reactive substances 

(TBARS) assay will be discussed briefly.  Malondialdehyde (MDA) is derivatised with 2-

thiobarbituric acid (TBA) to form the MDA-TBA adduct, which is most commonly 

quantified using a spectrophotometric assay (Wood et al., 2006). 
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SECTION 2: SEAWEED SPECIFICS 

For the purposes of this review Ulva rigida, Palmaria palmata and Laminaria digitata 

will be discussed further in sections 1.9-1.11.   

 

1.9 Green seaweed (Ulva rigida) - Occurrence, habitat and structure 

 

 
        Ulva rigida 
            aGuiry & Guiry (2014). 

 

Ulva species (spp.), commonly known as sea lettuce, are opportunistic fast 

growing seaweeds with two growing peaks in autumn and spring (Robic et al., 2009).  

Typically Ulva spp. are found in saline and salty waters, however they can also grow in 

freshwater habitats (Silva et al., 2013).  Ulva spp. morphology resemble the typical shape 

of blade-shaped fronds, two cells thick with no tissue differentiation (Alves et al., 2013).  

Due to the morphological plasticity expressed by many members of the Family Ulvaceae, 

identification of Ulva spp. is difficult to classify and often research is executed using 

Ulva spp. rather than a specific species.  There are about 100 species of Ulva currently 

identified by AlgaeBase even though nearly 600 names have been used in the past (Guiry 

& Guiry, 2014).  Seven Ulva spp. exist on the shores of Ireland including: Ulva rigida, U. 

scandinavica, U. lactuca, U. gigantea, U. rotundata, U. califonica and Umbraulva 

olivascens.     



Literature Review 

______________________________________________________________________________________ 

- 32 - 

Cell wall polysaccharides (38-54%) include two major: ulvan and cellulose as 

well as two minor: xyloglucan and glucuronan.  Ulvan is a complex water soluble 

sulphated polysaccharide mainly composed of rhamnose, glucuronic acid, iduronic acid, 

xylose and sulphate (Lahaye & Robic, 2007).  The solubility of ulvan may be enhanced 

through increased temperature (Alves et al., 2013). 

 

1.9.1 Composition of Ulva rigida  

Sea lettuce composition includes a significant amount of nutrients essential for the 

human body (Taylor, 2011).  The compositional analysis of U. rigida is presented in 

Table 1.10.  U. rigida is rich in minerals, balanced amino acid profiles, ascorbic acid 

(vitamin C) and significant levels of arginine, aspartic and glutamic acids (Norris et al., 

1937; Ratana-arporn & Chirapart, 2006).  Aspartic and glutamic acids are reported to be 

responsible for the characteristic flavour and taste of U. rigida.  The sodium and 

potassium ratio of U. rigida is near to 1 (Taboada et al., 2010).   

 

1.9.1.1 Colour pigments  

Chlorophyll a (primary photosynthetic pigment) (13% DM) and chlorophyll b 

(accessory pigment) (7.5% DM) are found in U. rigida.  The major carotenoids (4.5% 

DM) in U. rigida include β-carotene and yellow xanthophylls (lutein and zeaxanthin) 

(Satpati & Pal, 2011).  The structures of the primary carotenoids found in U. rigida are 

presented in Figure 1.1.  Briefly, β-carotene is structurally composed of an unsaturated 

hydrocarbon containing 40 carbon atoms per molecule terminated by a hydrocarbon ring, 

on both ends of the molecule (Krinsky et al., 2004; Scheer, 2013; Shahidi & Brown, 

1998).  The molecular structure of xanthophylls is similar to carotenes with one or more 

functional groups with oxygen being present as hydroxyl groups.  Lutein and zeaxanthin  
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Table 1.10.  Compositional analysis of Ulva rigida. 

Macro/micronutrient  % 

Water
x
  78-80%

c
 

Protein
y
  15-25%

a
 

Lipid
y
  0.6-1%

 b
 

Carbohydrate
y
  42-46%

b
 

Ash
y
  13-22%

c
 

Vitamin A  4286
b
 

Vitamin C  100-200 ppm
b
 

Vitamin B3  98 ppm
b
 

Vitamin B12  6 ppm
b
 

Calcium  7300 ppm
b
 

Iodine  240 ppm
b
 

Iron  870-1370 ppm
b
 

Magnesium  2.8%
b
 

Manganese  347 ppm
b
 

Sodium  1.1%
b
 

Potassium  0.7%
b
 

xwet weight basis. 
 ydry weight basis. 
 aBurtin (2003). 
 bMorrissey et al. (2001). 
 cGuiry & Guiry (2014). 

 

 

 

 
Figure 1.1. β-carotene (carotene), lutein and zeaxanthin (xanthophylls) structures present 

in Ulva rigida.  
Source: Fiedor & Burda (2014). 
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are isomers and have identical chemical formulas with a 40 carbon long molecule and 11 

conjugated double bonds.  The only difference between the two xanthophylls is in the 

location of the double bond in one of the end rings.  Lutein has one β-ring and one ε-ring, 

zeaxanthin has two β-rings.  The position of the double bond in lutein forms a more 

chemically reactive allylic hydroxyl end group versus the extra conjugated double bond 

in zeaxanthin (Alves-Rodrigues & Shao, 2004; Breithaupt, 2007; Schubert et al., 2006).  

Zavodnik (1987) reported pronounced variation of pigments during the seasons with the 

highest level of chlorophylls and carotenoids during the initiation of growth (February to 

May).  The carotenoid content is strongly correlated to chlorophyll content.   

 

1.9.2 Bioactive compounds present in Ulva rigida  

A few studies have evaluated crude extracts from Ulva spp. and Ulva rigida for 

antioxidant activity.  The literature suggests the antioxidant activity of U. rigida is largely 

due to phenolic level; however other compounds present in U. rigida such as vitamin E, C 

and A are also linked to antioxidant activity (Yildiz et al., 2011).  Farasat et al. (2013) 

reported the in vitro antioxidant activity (DPPH) of Ulva spp. was significantly correlated 

to the phenolic and flavonoid level.  In vitro antioxidant activity of U. rigida, measured 

using DPPH assay, was reported highest in February and March compared to late summer 

and early autumn (August-October).  The decrease of antioxidant activity is attributed to 

an increase of water temperature (> 20°C) and subsequent decline in total phenolic 

content.  Lower temperature waters were positively correlated with an increase in 

antioxidant enzyme activity and photosynthetic capacity (Trigui et al., 2013). 
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1.9.2.1 Ulvan bioactivity  

Despite having a host of health promoting effects, not many members of the genus 

Ulva have been extensively investigated for their biological properties.  However the 

sulphated polysaccharide, ulvan, has attracted a lot of attention due to the different 

biological properties it possess as a result of the unusual chemical composition and 

structure.  The structure and functional properties of ulvan has been reviewed by Lahaye 

& Robic (2007).  In the recent years, ulvan has been investigated for use in the 

development of novel drugs and functional foods (Silva et al., 2013).  Ulvan is linked to 

anti-fungal, antiviral, anti-coagulant, antithrombotic and immunomodulatory activities 

(Costa et al., 2010; Leiro et al., 2007; Wijesekara et al., 2011).  Research demonstrates a 

strong correlation between degree of sulphation of ulvan and subsequent biological 

activities (Alves et al., 2013; Bocanegra et al., 2009).   

Antioxidant activity of ulvan has been reported through scavenging activity of 

superoxide and hydroxyl radicals, metal chelating activity and reducing power (Costa et 

al., 2010; El Baky et al., 2009).  The molecular weight of ulvan and its oligosaccharides, 

and sulphate content of ulvan and its derivatives influence antioxidant activity (Qi et al., 

2005a; Qi et al., 2006; Qi et al., 2005b).  The lowest molecular weight ulvan (28.2 kDa) 

demonstrated the strongest inhibitory effects on superoxide and hydroxyl radicals, as well 

as the strongest reducing power and metal chelating abilities.  Chemical modification of 

ulvans can also enhance antioxidant activity.  Qi et al. (2006) reported acetylated and 

benzoylated ulvans extracted from U. pertusa had enhanced in vitro antioxidant activity 

(scavenging activity, reducing power and chelating ability) compared to natural ulvan. 
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1.9.2.2 Pigment bioactivity  

The antioxidant activity of the pigment chlorophyll and chlorophyll derivatives, 

related to structural features has been extensively reviewed by Pangestuti & Kim (2011).  

Hoshina et al. (1998) demonstrated a clear structural relationship within porphyrins for 

inhibition of lipid hydroperoxide formation.  The presence and nature of the central metal 

as well as the porphyrin structure are considered important with respect to the antioxidant 

activity of chlorophyll derivatives.  In seaweeds, carotenoids play the role of accessory 

pigments and photo protectors of oxidative damage.  The same protective mechanisms of 

carotenoid pigments are recognised to play a major role in other tissues of living 

organisms, including humans (Sujak et al., 1999).  Many reviews on lutein and 

zeaxanthin exist (Alves-Rodrigues & Shao, 2004; Sajilata et al., 2008).  Lutein and 

zeaxanthin are the major carotenoids in the macular area of the human retina and are 

linked to eye health.  Lutein and zeaxanthin protect against oxidative damage of the lipid 

matrix in macular membranes (Sujak et al., 1999).  As a result, the carry-over of 

xanthophylls in the human food chain has been reported as advantageous for human 

health (Breithaupt, 2007). 

 

1.9.2.3 Antimicrobial bioactivity  

The antimicrobial activity of seaweeds is strongly linked to season as well as 

physical and biological factors like life cycle, herbivore pressure and light (Trigui et al., 

2013).  The literature suggests seaweeds defend themselves against bacterial fouling by 

the production of secondary metabolites which prevent the attachment or growth of 

bacterial colonizers (Cox et al., 2010).  Seaweed compounds with reported antibacterial 

activity include amino acids, terpenoids, phlorotannins, acrylic acid, phenolic 

compounds, steroids, halogenated ketones and alkanes, cyclic polysulphides and fatty 
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acids (Chandrasekaran et al., 2014; Mtolera & Semesi, 1996; Nagaraj & Osborne, 2014; 

Niang & Hung, 1984).  Limited information exists regarding the exact mechanism of 

antimicrobial action due to compounds extracted from seaweed.  In general, these 

substances can attack the bacterial cell walls and membranes resulting in an extensive 

release of intercellular substances and/or disrupt the uptake and transport of substances by 

bacteria.  Other modes of antimicrobial activity which have been attributed to seaweed 

compounds include reduction of protein and nucleic acid synthesis in the bacterial cell 

walls and the inhibition of bacterial cell respiration (Vatsos & Rebours, 2014). 

Efficiency of the extraction method of bioactive compounds from seaweed also 

influences antimicrobial activity (Tüney et al., 2006).  Commonly, water or organic 

solvents such as methanol, ethanol, acetone, ethyl ether, diethyl ether, ethyl acetate, 

chloroform, dichloromethane, benzyne, hexane, chloroform: methanol (2:1) and 

chloroform: ethanol (1:1, 2:1) are used to extract bioactive compounds from seaweeds 

(Bansemir et al., 2006).  Conflicting evidence exists on whether extraction of bioactive 

substances is more effective from dry or fresh seaweed.  Some studies reported that the 

test organisms were more sensitive to extracts of fresh seaweeds, while others show dried 

seaweed extracts exhibit broader and higher antibacterial activity  (Kolanjinathan, 2011; 

Manilal et al., 2009; Tüney et al., 2006).  The commonly employed in vitro antibacterial 

assays include: paper disc diffusion assay, absorbance measurements and growth studies 

(Qiao et al., 2010).   

Antibacterial activity has been reported for U. rigida extracts against Escheria 

coli and Pseudomonas aeruginosa, however activity varied monthly with the highest 

inhibitory activity recorded during spring and summer (Trigui et al., 2013).  Crude 

extracts (methanol 1:50 w/v) of U. rigida effectively inhibited the growth of S. aureus 

(Taskin et al., 2007).  Diethyl ether extracts of U. rigida from the coasts of Urla, Izmir 
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demonstrated high antimicrobial activity (10-15-mm halo) against Candida sp., E. 

faecalis, P. aeruginosa and E. coli using the agar diffusion technique.  Dried U. rigida 

extracts had significantly less antimicrobial activity compared to the fresh extract.  The 

decrease in bioactivity was attributed to the loss of active materials during the drying 

process (Tüney et al., 2006).   
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1.10 Red seaweed (Palmaria palmata) - Occurrence, habitat and structure 

 

 
    Palmaria palmata 
      aGuiry & Guiry (2014). 

 

Palmaria palmata, commonly known as dulse, dillisk, dilsk, and red dulse, is one 

of the more popular seaweed species for human consumption in the Western world 

(Rhatigan, 2009).  Dulse is relatively small and grows attached to rocks or stipes of 

Laminaria and ranges in colour from deep rose to reddish-purple.  The structure and 

composition of P. palmata cell wall polysaccharides has been extensively reviewed 

(Myers & Preston, 1959; Percival & Chanda, 1950).  Linear xylans composed of mixed β-

1,4 and β-1,3 linkages plus cellulose (2-7%) constitute most of P. palmata cell walls.  

Xylose is the major sugar with traces of mannose, galactose and glucose encompass sugar 

constituents of P. palmata (Myers & Preston, 1959).  The soluble fibres are reported to 

have low viscosity, but high fermentability by colonic bacteria.  The insoluble fibres of 

have equivalent hydration properties to those of land vegetables (Lahaye et al., 1993). 

 

1.10.1 Composition of Palmaria palmata 

The compositional analysis of P. palmata is presented in Table 1.11.  The protein 

content (8-35% DM) of P. palmata has been reported as the second highest of all 
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seaweeds (Wang et al., 2010b).  The most abundant amino acids are alanine, aspartic 

acid, glutamic acid and glycine.  The large content of free glutamic acid and aspartic acid 

gives dulse a strong umami flavour (Mouritsen et al., 2013).  P. palmata is far richer in 

potassium salts than in sodium salts compared to all other seaweeds with a K/Na ratio of 

approximately 4-5 (Morgan et al., 1980).  The vitamin and mineral composition as well as 

nutritional value of P. palmata has been well reviewed (Morgan et al., 1980; Mouritsen et 

al., 2013).  In comparison to terrestrial fruits and vegetables, P. palmata is a good source 

of iron, magnesium, calcium and iodine.  Vitamin E (α-tocopherol) and vitamin C levels 

of P. palmata is highest in late summer and autumn.  The carotene content varies 

throughout the year with no regular trend reported (Morgan et al., 1980). 

Table 1.11. Compositional analysis of Palmaria palmata. 

Macro/micronutrient  % 

Water
x
  79-88%

c
 

Protein
y
  12-21%

a
 

Lipid
y
  0.7-3%

b
 

Carbohydrate
y
  46-50%

b
 

Ash
y
  15-30%

c
 

Vitamin C  150-280 ppm
b
 

Beta-carotene  663 i.u.
b
 

Vitamin B1  7 ppm
b
 

Vitamin B2  2-5 ppm
b
 

Vitamin B3  2-19 ppm
b
 

Vitamin B6  9 ppm
b
 

Vitamin B12  6.6 ppb
b
 

Vitamin E  1.71 ppm
b
 

Calcium  2000-8000 ppm
b
 

Iodine  150-550 ppm
b
 

Iron  56-350 ppm
b
 

Magnesium  0.2-0.5%
b
 

Manganese  10-155 ppm
b
 

Sodium  0.8-3%
b
 

Zinc  3 ppm
b
 

xwet weight basis. 
 ydry weight basis. 
aBurtin (2003). 
bMorrissey et al. (2001). 
cGuiry & Guiry (2014). 
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1.10.1.1 Colour pigments   

Chlorophyll a and b are found in P. palmata (Dawson, 2007).  The 

phycobiliproteins of P. palmata include: R-phycocyanin (greenish blue), allophycocyanin 

(greenish blue), R-phycoerythrin (red) and β-phycoerythrin (red) (Prasanna et al., 2007).  

High light intensity and nitrogen deprivation are important factors in the loss of dark-red 

pigments (Morgan, et al., 1980).  P. palmata also contains α and β-carotene and high 

levels of lutein (xanthophyll) (Chu, 2012).  The structure of α-carotene found in P. 

palmata is presented in Figure 1.2, other structures of carotenoids are provided in section 

1.9.1.1 Colour pigments.  Briefly, α-carotene is structurally composed of an unsaturated 

hydrocarbon containing 40 carbon atoms per molecule terminated by a β-ionone ring at 

one end and an α-ionone ring at the other (Krinsky et al., 2004).  Although zeaxanthin is 

reported for most Rodophyceae, it is totally absent in P. palmata.  The carotenoid content 

is dependent on the postharvest treatment of the seaweed as well as light quality and 

intensity (Parjikolaei et al., 2013).  Reported ratios of α-carotene / β-carotene ranges from 

1.4 to 2.7 (Morgan et al., 1980). 

 

 

Figure 1.2. α-Carotene structure present in Palmaria palmata.  
Source: Fiedor & Burda (2014). 

 

1.10.2 Bioactive compounds present in Palmaria palmata  

P. palmata contains several classes of hydrophilic antioxidant components 

including ascorbic acid, glutathione and polyphenols (Yuan et al., 2005; Yuan & Walsh, 

2006).  The antioxidant activity of a 1-butanol soluble fraction derived from methanol 
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extract of P. palmata was assessed comprehensively by a variety of in vitro methods 

(deoxyribose, DPPH, ABTS, TBARS).  The P. palmata extract was active in scavenging 

OH radicals in the deoxyribose assay, as well as quenching the stable free radical DPPH 

and the ABTS radical cation.  Additionally the P. palmata extract inhibited lipid 

oxidation, in a dose dependent manner, in a linoleic acid emulsion system (Yuan et al., 

2005).  

  

1.10.2.1 Pigment bioactivity 

Phycobiliproteins are easily isolated and have significant antioxidant, anti-

inflammatory, hepatoprotective and free radical scavenging properties (Khattar & Kaur, 

2009; Yabuta et al., 2010).  Phycoerythrin has been reported to have hepatoprotective and 

antioxidant activities in rats (Soni et al., 2009).  The biological properties of phycocyanin 

includes antioxidant, anti-inflammatory, neuroprotective and hepatoprotective activities 

(Eriksen, 2008).  When in vitro antioxidant activity was assessed, phycocyanin was able 

to scavenge alkoxyl, hydroxyl and peroxyl radicals and inhibited microsomal lipid 

oxidation induced by Fe
+2

-ascorbic acid (Sekar & Chandramohan, 2008). 

 Carotenes are known to be reactive towards singlet oxygen and antioxidant 

activities β-carotene has been supported by a large body of research (Miller et al., 1996).  

The mechanisms of action of β-carotene include the ability to quench highly reactive 

singlet oxygen under certain conditions and also block free radical-mediated reactions 

(Bendich & Olson, 1989; Burton, 1989).  Edge et al. (1997) has reviewed the reactivity of 

carotenoids with singlet oxygen and the interaction of carotenoids with a range of free 

radicals.  In addition, many studies have confirmed a variety of health benefits including 

reducing the risk of human disorders (e.g. cancer) involving free radicals by preventing 

oxidative damage (Christaki et al., 2013).     
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1.10.2.2 Antimicrobial bioactivity 

In general, many species of red seaweeds demonstrate moderate in vitro 

antimicrobial activity against a number of gram positive and negative bacteria, however 

limited antimicrobial data exists for whole or extracts of P. palmata.  In most cases, in 

vitro antimicrobial activity has been established using simple assays such as disk 

diffusion or tube dilution method.  Additionally, no scientific literature exists 

demonstrating antibacterial activity of seaweed extracts in food products (Gupta & Abu-

Ghannam, 2011).   

Dichloromethane, methanol and water extracts of P. palmata were ineffective at 

inhibiting microbial growth of five fish pathogenic bacteria strains.  In the same study, 

extracts of other species of red seaweeds including: Asparagopsis armata, Ceramium 

rubrum, Drachiella minuta, Falkenbergia rufolanosa, Gracilaria cornea and Halopitys 

incurvus were most effective at inhibiting bacterial growth (agar diffusion assay), 

presumably due at least in part to lipophilic halogenated compounds extracted from the 

seaweeds (Bansemir et al., 2006).  In another study, methanol, acetone and ethanol 

extracts of P. palmata inhibited the growth of Listeria monocytogenes, Salmonella abony, 

Enterococcus faecalis and Pseudomonas aeruginosa.  The effectiveness of the extracts on 

certain bacteria was greatly influenced by the solvent of extraction.  Methanolic extracts 

had double the antimicrobial activity against L. monocytogenes than acetone and ethanol 

extracts, while the ethanol extract was most effective at inhibiting the growth of P. 

aeruginosa (Cox et al., 2010). 
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1.11 Brown seaweed (Laminaria digitata) - Occurrence, habitat and structure  

 

 
     Laminaria digitata 
       aGuiry & Guiry (2014). 

 

Kelps are the largest seaweeds and belong to the order Laminariales.  Laminaria 

digitata is commonly found in low waters around Ireland, North Europe and Eastern 

North America (Morrissey et al., 2001).  Kombu is the most common name for L. digitata 

species, however Kombu is often used as the common name for other kelps such as 

Saccharina japonica (MacArtain et al., 2007).  In clear water, L. digitata has been found 

at depths up to 10 m.  L. digitata thrives in fairly exposed areas as well as more sheltered 

areas with strong tidal currents, although it can be sensitive to low levels of salinities.  

Generally, L. digitata is found in waters with a salinity level above 20% (Morrissey et al., 

2001).  Golden brown in colour, L. digitata grows up to 2.5 m long and 60 cm wide.  The 

frond of L. digita is flat, large, rubbery and smooth with finger-like sections and a 

holdfast which is a cluster of thin, branching, root-like processes (Guiry & Guiry, 2014).  

The cell wall of L. digitata is composed of cellulose, alginate and sulphated fucans.  For 

the purposes of this review the structure of laminarin and fucoidan, reserve 

polysaccharides of L. digitata, will be discussed further. 
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1.11.1 Laminarin structure 

Laminarin, a relatively low molecular weight storage polysaccharide (5-20 kDa), 

is composed of β-(1,3)-linked glucose, containing large amounts of sugars and a low 

fraction of uronic acids (Devillé et al., 2004).  Higher quantities of laminarin are found in 

brown seaweeds during the winter months (Mišurcová et al., 2012).  Laminarin contains 

two types of polymeric chains, i.e, the G-chains where glucose is attached to the end of 

the chain and the M-chains with mannitol (a sugar alcohol derived from the six carbon 

sugar D-mannose) as the terminal reducing end.  Structural features of laminarin vary 

between seaweed species, including the degree of branching and degree of 

polymerization as well as the ratio of (1,3)- and (1,6)-glycosidic bonds (Anastasakis et al., 

2011).  The solubility of laminarin is influenced by the degree of branching, i.e. highly 

branched laminarin is soluble in cold water whereas lower levels of branching is only 

soluble in warm water (Rioux et al., 2007).  While laminarin is soluble in water it does 

not gel or form any viscous solution (Kraan, 2012).  Laminarin is resistant to hydrolysis 

in the upper gastrointestinal tract (GIT) due to forming complex structures stabilised by 

inter-chain hydrogen bonds and therefore is considered a dietary fibre (O’Sullivan et al., 

2010).  Subsequently laminarin is reported to be used by the endogenous intestinal 

microflora (Devillé et al., 2004; Gupta & Abu-Ghannam, 2011a).   

 

Figure 1.3.  Laminarin structure from L. digitata.  
Source: O’Sullivan et al. (2010). 
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1.11.2 Fucoidan structure 

Fucoidan was first isolated in 1913 and possesses a diverse range of biological 

activities (Ale et al., 2012).  Despite the vast amount of research on fucoidan, formally 

“fucoidin”, no consistent basic structure of fucoidan exists (Ale & Meyer, 2013; Li et al., 

2008).  The structure of fucoidan is considered extremely complex and heterogeneous in 

composition in comparison to related polymers found in marine invertebrates (Balboa et 

al., 2013).  The structure has been described to vary significantly between seaweed 

species and even within the same species (Anastasakis et al., 2011).  Determination of the 

exact chemical structure of seaweed polysaccharides is often a complex task often due to 

the sulphated constituents (Usov & Zelinsky, 2013).   

 

Figure 1.4.  Fucoidan structure from L. digitata.  
Source: Cumashi et al. (2007). 

 

Some studies have shown a correlation between the depth at which brown 

seaweed grow and the content of fucoidan (Berteau & Mulloy, 2003).  Various structural 

characteristics, such as linkage types, of fucoidan depend on species thus making it 
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difficult to define with precision (Kim, 2012).  The backbone of fucoidan extracted from 

the brown seaweed species of the order Laminariales have been reported to mainly 

consist of α(1, 3)-linked L-fucopyranose residues with sulphates at the C-2 position 

(Anastyuk et al., 2012).  The ratio of fucose to sulphate esters and the number of 

monosaccharides varies between species (Li et al., 2008).  In addition to fucose and 

sulphates, fucoidan extracted from Laminaria digitata is reported to contain xylose, 

mannose, glucose, galactose and uronic acid in minor amounts (Li et al., 2008).  A 

summary of the chemical composition of fucoidan extracted from L. digitata is presented 

in Table 1.12 (Cumashi et al., 2007).  The exact molecular mass of fucoidan is unknown 

as it depends on seaweed species, extraction method and environmental conditions, but an 

average of 20,000 Da has been reported in the literature (Li et al., 2008).   

 

Table 1.12. Composition of fucoidan extracted from Laminaria digitata (% w/w)
a
.
 

Fucose  Xylose  Mannose  Glucose  Galactose  Uronic acids 

30.1
 

 1.9  1.7  1.4  6.3  7.0 
aCumashi et al. (2007). 

 

Fucoidan is soluble in water and in acid solution (Rioux et al., 2007; Rupérez et 

al., 2002).  Extraction methods for fucoidan can be as simple as hot water or the more 

commonly applied acid extraction or a combined hot acidic extraction with ethanol 

precipitation (Ale & Meyer, 2013; Li et al., 2008).  Structural and compositional traits 

and subsequently the biological activities are significantly influenced by extraction 

parameters (Ale & Meyer, 2013).  Extraction methods for fucoidan from brown seaweeds 

and the relationship between extraction and structure have been reviewed previously by 

Ale et al. (2011).  Hahn et al. (2012) reviews other novel procedures for the extraction of 

fucoidan.  
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1.11.3 Composition of Laminaria digitata 

A compositional analysis of L. digitata is presented in Table 1.13.  Laminaria spp. 

contain high levels of carotenoids and vitamin E (Jaspars & Folmer, 2013).   The 

characteristic brown colour of L. digitata is due to fucoxanthin, one of the most abundant 

carotenoids in nature (Chandini et al., 2008).  Like all kelps, L. digitata is rich in iodine 

and an excellent source of calcium and magnesium (Morrissey et al., 2001). 

 

Table 1.13. Compositional analysis of Laminaria digitata. 

Macro/micronutrient  % 

Water
x
  73-94%

c
 

Protein
y
  8-14%

a
 

Lipid
y
  1%

b
 

Carbohydrate
y
  48%

d
 

Ash
y
  21-35%

c
 

Laminarin  0-18%
c
 

Mannitol  4-16%
c
 

Vitamin C  12-18 ppm
b
 

Vitamin B1  5 ppm
b
 

Vitamin B2  22 ppm
b
 

Vitamin B3  34 ppm
b
 

Vitamin B12  0.6-0.12 ppm
b
 

Calcium  12,400-13,200 ppm
b
 

Iodine  800-5,000 ppm
b
 

Iron  50-70 ppm
b
 

Magnesium  6,400-7,860 ppm
b
 

Manganese  1-16 ppm
b
 

Sodium  2-5.2%
b
 

xwet weight basis. 
ydry weight basis. 
aBurtin (2003). 
bMorrissey et al. (2001). 
cGuiry & Guiry (2014).  
dRhatigan (2009). 

 

1.11.4 Bioactive compounds present in Laminaria digitata 

In general, several studies have demonstrated that brown seaweed has higher 

antioxidant capacity than green and red seaweeds (Jiménez-Escrig et al., 2011; 

Prabhasankar et al., 2009).  Brown seaweeds are a source of many antioxidant 
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compounds such as phlorotannins (phloroglucinol, eckol), ascorbic acid, catechins 

(catechin, epigallocatechin, epigallocatechin gallate), tocopherols (α-, γ-, δ-tocopherols), 

laminarin, fucoidan and carotenoids (α- and β- carotene, fucoxanthin) (Holdt & Kraan, 

2011; Zubia et al., 2009).  The biological activity of brown seaweeds and their 

components has been extensively reviewed by Gupta & Abu-Ghannam (2011a).  A dose-

dependent in vitro antioxidant activity using a wide variety of assay (DPPH, FRAP, 

ABTS, reducing power, etc.) has been observed for crude extracts as well as 

polysaccharide fractions from brown seaweeds.  Extracts show a typical behaviour which 

reaches a plateau at a given concentration; however phenolic compounds reach maximum 

protection at significantly lower levels than polysaccharide compounds (Balboa et al., 

2013).   

 

1.11.4.1 Polyphenolic bioactivity 

Polyphenols or phenolic compounds of brown seaweeds include: phlorotannins 

(phloroglucinol, eckol), catechins (catechin, epigallocatechin, epigallocatechin gallate), 

tocopherols (α-, γ-, δ-tocopherols), ascorbic acid and carotenoids (α- and β- carotene, 

fucoxanthin) and are characterized structurally by the presence of several hydroxyl 

groups on aromatic rings (Tierney et al., 2010).  Polyphenols are secondary metabolites 

which protect cell constituents of seaweeds against oxidative damage.  Seaweed 

polyphenols, also called phlorotannins, differ from terrestrial plant polyphenols as they 

are derived from phloroglucinol units (1,3,5-trihydroxybenzine) (Jaspars & Folmer, 

2013).  Phlorotannins only occur in brown seaweeds with levels ranging from 5-15% 

DM.  Balboa et al. (2013) has reviewed the antioxidant properties of phenolic compounds 

from crude extracts isolated from brown seaweeds.  Seaweed phlorotannins are associated 
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with a wide range of biological activity, especially antioxidant activity, and constitute an 

extremely heterogeneous group of molecules (Burtin, 2003).   

 

1.11.4.2 Laminarin bioactivity 

Laminarin and some derivatives are attracting interest due to potential biological 

activities.  In general, the biological activities of laminarin are considered dependant on 

the molecular structure, including molar mass, degrees of polymerization, branching and 

length of branch (Choi et al., 2011).  Modification of the chemical structure of laminarin 

can result in enhanced biological activities, for example partial depolymerisation of 

laminarin sometimes leads to increased bioactivity (Usov & Zelinsky, 2013).  Devillé et 

al. (2004) studied the fate of laminarin after digestion and the potential role of laminarin 

as a dietary fibre.  Like other β-glucans, laminarin can serve as a prebiotic and modulate 

immune function (Devillé et al., 2007).  In addition, laminarin has also been reported to 

possess antitumor, antimicrobial, anticoagulant and antioxidant activities (Gupta & Abu-

Ghannam, 2011a).  Choi et al. (2011) reported that low molecular weight laminarin has 

enhanced biological activities including enhanced antioxidant activity.  Although 

antioxidant potential is reported for laminarin, Chattopadhyay et al. (2010) demonstrated 

that it is less potent than other antioxidant components present in brown seaweeds.   

 

1.11.4.3 Fucoidan (general) bioactivity  

Seaweeds are among the richest natural, non-animal sources of known and novel 

bioactive sulphated polysaccharides.  Low molecular weight fractions have been reported 

as more biologically active than crude extracts however no consensus has been reached 

regarding optimal molecular size (Anastyuk et al., 2012; Usov & Zelinsky, 2013).  

Fucoidan and fucose rich sulphated polysaccharides exhibit a range of biological 
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activities including immunomodulatory, antitumor, anti-inflammatory, antiviral, 

antithrombotic and anticoagulant effects (Ale et al., 2012; Li et al., 2008).  The most 

significant bioactivities (anti-tumor, immunomodulatory, anti-coagulant, antithrombotic) 

and their relationship to fucoidan structures has been reviewed previously (Ale et al., 

2011; Wijesinghe & Jeon, 2012).  A multitude of reviews for the biological activities of 

sulphate rich polysaccharides and their impact on health and disease also exist (Bhakuni 

& Rawat, 2005; Blunt et al., 2009; El Gamal, 2010; Fernandes et al., 2014; Folmer et al., 

2010; Mayer & Lehmann, 2001; Mohamed et al., 2012; Rindi et al., 2012; Venugopal, 

2008).   

 

1.11.4.4 Fucoidan (antioxidant) bioactivity 

Recently, the antioxidant activity of chemically anionic sulphated 

polysaccharides, has gained considerable attention.  Fucoidan demonstrated higher 

antioxidant potential than sulphated galactans such as carrageenan (de Souza et al., 2007).  

Various in vitro tests (DPPH, FRAP, NO, ABTS radical scavenging, lipid peroxide 

inhibition, superoxide radical and hydroxyl radical scavenging) have confirmed the 

antioxidant activity of fucoidan from a variety of brown seaweed species (Costa et al., 

2010; Kim et al., 2014; Rupérez et al., 2002; Wang et al., 2008; Wang et al., 2010a; Zhao 

et al., 2008).  Furthermore, sulphated polysaccharides from seaweeds are considered to be 

important free-radical scavengers and antioxidants for the prevention of oxidative damage 

(Ngo et al., 2011).  Much of the work to-date has been carried out on crude fucoidan 

preparations with a lack of characterisation of the extracts tested and limited information 

on the extraction procedures used, making the relationship between activity and 

composition difficult to ascertain (Li et al., 2008).   
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A relationship between the structure and antioxidant activities of sulphated 

seaweed polysaccharides is not clearly established; but the importance of monosaccharide 

composition, sulphate content, position of sulphate ester groups and molecular size has 

been reported previously (Chattopadhyay et al., 2010; Costa et al., 2010; Li et al., 2008).  

Sulphates linked to monosaccharides will influence biological activity as well as the 

functionality of the polysaccharide (Rioux et al., 2010).  Lower molecular weight and 

high sulphate content has been linked to stronger radical scavenging activities and 

reducing power than high molecular weight sulphated polysaccharides (Patel, 2012; Qu et 

al., 2014; Tierney et al., 2010).  Acid-soluble fractions containing fucans showed the 

highest antioxidant activities compared to those containing alginate and laminarin in 

Turbinaria conoides and Fucus vesiculosus seaweeds.  Additionally, the fraction 

containing the highest level of sulphates was significantly correlated to antioxidant 

activity either by reducing power or radical scavenging assay (Jiménez-Escrig et al., 

2014). 

Conversely, some research speculates that the antioxidant activity of fucoidan is 

not correlated to the content of substituent groups but rather to the impurities such as 

polyuronic acids, proteins and phenolic compounds present in seaweed extracts (Imbs et 

al., 2014; Mak et al., 2013).  Many studies indicate acidic extraction of seaweed produces 

a complex mixture of glucans, fucoidan and alginic acid (Zvyagintseva et al., 2005).  

Polyphenols often co-extracted with fucoidan are difficult to fully eliminate during 

purification processes due to covalent irreversible bonds.  Dragar & Fitton (2006) stated 

polyphenols may enhance fucoidan bioactivity.  Phenolic fractions achieve maximum 

protection of oxidisable substrates at lower levels than polysaccharide components from 

brown seaweeds.   
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Chemical modifications of fucoidan have resulted in higher antioxidant activity.  

Over sulphated, acetylated, benzoylated, phosphorylated and aminated derivatives of 

fucoidan exhibited higher antioxidant activities than fucoidan in a number of in vitro tests 

(superoxide, hydroxyl and DPPH free radical scavenging activity and reducing power).  

The differences in mechanism of action was linked to the different substituted groups 

(Wang et al., 2009a).  Phosphate and amino groups influenced the mechanism of the 

antioxidant activity of fucoidan derivatives (Wang et al., 2009b). 

A small number of in vivo studies demonstrate antioxidant activity of fucoidan.  

Fucoidan from L. japonica prevented an increase in lipid oxidation levels in serum, liver 

and spleen tissues of diabetic mice (Vo & Kim, 2013).  Fucoidan protected against 

cellular oxidative stress, in a concentration dependant manner, by inhibiting lipid 

oxidation of renal epithelial cells (So et al., 2014).  Similarly, fucoidan from L. japonica 

reduced oxidative stress in rats with adenine-induced chronic kidney disease by activation 

of antioxidant defences (Wang et al., 2008).  The increase in antioxidant status of both 

serum and cecum were reported in healthy rats fed a diet of Saccharina latissima due to 

the sulphated polysaccharides associated with the seaweed (Jiménez-Escrig et al., 2012).  

Additionally, crude extracts from L. digitata were effective at inhibiting lipid oxidation of 

sunflower oil (Le Tutour et al., 1998). 

 

1.11.4.5 Antimicrobial bioactivity 

Dubber and Harder (2008) investigated antibacterial effects of hexane and 

methanol extracts of the macroalgae L. digitata on twelve marine and seven prominent 

fish pathogenic bacteria using a highly sensitive growth inhibition assay.  Hexane extracts 

of L. digitata were effective at inhibiting growth of 10 out of 12 marine and 6 out of 7 

fish pathogenic bacteria.  The antimicrobial properties of several Irish edible brown 
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seaweeds using a microtitre method was determined and methanol extracts of L. digitata 

showed good antibacterial activities against Listeria monocytogenes, Salmonella abony, 

Enterococcus faecalis and Pseudomonas aeruginosa (Cox et al., 2010; Gupta et al., 

2010).  In another study, ethanol and acetone extracts of Icelandic L. digitata 

demonstrated low to moderate antibacterial activity against Staphylococcus aureus, L. 

monocytogenes, Escherichia coli, P. aeruginosa and Candida albicans (Qiao et al., 

2010).   

Antibacterial activities of brown seaweed extracts containing polysaccharides 

have been extensively studied by several researchers (Rajasulochana et al., 2009; 

Salvador et al., 2007; Seenivasan et al., 2010).  Antimicrobial activity of brown seaweed 

polysaccharides has been linked to the chemical structure and sulphate content.  However 

several species of brown seaweeds with high sulphate content showed differences in 

antimicrobial activity (Berteau & Mulloy, 2003; Chandrasekaran et al., 2014; Chauhan & 

Kasture, 2014; Mohsen et al., 2007).  In general, brown seaweed derived polysaccharides 

markedly inhibit Staphylococcus, Bacillus, Proteus and E. coli.  In particular, P. 

aeruginosa and Fusiform bacillus are most sensitive to brown seaweed polysaccharides 

(Lee et al., 2013; Li et al., 2010).  Limited antimicrobial studies exist on crude extracts 

containing fucoidan.  A crude fucoidan extracted from Sargassum polycystum showed 

antibacterial activity against Vibrio harveyi, S. aureus and E. coli at concentrations of 12, 

12 and 6 mg/ml, respectively (Chotigeat et al., 2004).  Crude fucoidan was evaluated for 

its antimicrobial activities against 11 common bacterial species present in the oral cavity.   

Fucoidan exhibited high antimicrobial activity against all tested bacteria with the 

strongest antimicrobial activity against anaerobic bacteria, P. gingivalis (Lee et al., 2013). 
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SECTION 3: SEAWEEDS AS FUNCTIONAL INGREDIENTS 

1.12 Functional foods 

The demand and popularity for functional foods, because of their associated 

health benefits, continue to grow in popularity yearly.  Functional foods, also known as 

nutraceuticals, are defined in a number of different ways by legislative bodies.  Goldberg 

(1994) outlined three primary criteria which a food must satisfy in order to achieve 

functional status, it must be: a food (not capsule, powder or tablet), consumed as a part of 

a daily diet, and once ingested, regulate specific processes such as enhancing biological 

defence mechanisms, preventing and treating specific disease, controlling physical and 

mental conditions, and delaying the ageing process.   

Functional foods were first developed in Japan in the 1980s.  In the late 1990s, 

Functional Foods Science in Europe (FUFOSE) was set up by a working group 

coordinated by the European Section of the International Life Science Institute, with 

European Commission support (Tierney et al., 2010).  The action of functional foods is 

based on the use of functional ingredients.  Health benefits of different food components 

have been recognised for some time now, but it is only more recently that their role in the 

treatment and prevention of various diseases, or impact on the ageing process has been 

established (Jiménez-Colmenero et al., 2001).  The functional components of different 

foods and their impact on health and disease is well reviewed by Abuajah et al. (2014). 

To date, the development of functional food products has been primarily 

associated with the dairy industry.  This is not particularly surprising given that milk is 

composed of many multifunctional components which have physiological functions 

beyond just nutrition.  Functional dairy products are some of the most recognised 

functional foods on supermarket shelves today, including: a wide variety of yogurts and 

spreads containing added bacterial cultures, plant sterols and stanols etc.  Additionally, 
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the beverages market has been a fast growing sector with many non-alcoholic functional 

drinks containing vitamins or other functional ingredients now in production (Hafting et 

al., 2012).     

 

1.12.1 Seaweed as functional antioxidant ingredient 

Some of the most important and frequently used functional ingredients used in 

foods include: probiotics, prebiotics, plant antioxidants and vitamins (Grajek et al., 2005).  

In the past number of years, the functional properties of many plant extracts have been 

investigated for their potential use as novel nutraceuticals as concerns increase regarding 

the safety and toxicity of synthetic antioxidants (O'Grady et al., 2008).  Natural 

antioxidants extracted from plants such as rosemary, sage, tea, soybean, citrus peel, 

sesame seed, olives, carob pod, and grapes can be used as alternatives to the synthetic 

antioxidants because of their equivalent or greater effect on the inhibition of lipid 

oxidation (Tang et al., 2001).  The Japanese Ministry for Health and Welfare has 

identified twelve broad groups of ingredients that they consider as having potential 

beneficial effects on human health: dietary fibre; oligosaccharides; sugar alcohols; amino 

acids, peptide and proteins; glycosides; alcohols; isoprenoids and vitamins; cholines; 

lactic acid bacteria; minerals; polyunsaturated fatty acids; and others.  Antioxidants fall 

into the last category which includes all others that are not listed in the first eleven 

(Goldberg, 1994).   

Interest in the use of seaweed as functional foods, especially in relation to the 

range of antioxidant components is highlighted by the publication of several patent 

applications as well as many literature studies (Chapman & Chapman, 1980; Nisizawa et 

al., 1987; Shahidi, 2009).  These include: a fucoidan antioxidant beverage, fucoidan 

containing antioxidant capsules and seaweed in food products like pasta and sausages 
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(López-López et al., 2009a, 2009b; Prabhasankar et al., 2009; Tierney et al., 2010).  The 

advantages of using seaweeds as a source of natural ingredients for functional foods 

include: ease of cultivation, rapid growth rate and the potential to control production of 

bioactive compounds through manipulating cultivation conditions (Plaza et al., 2008). 

 

1.13 Muscle foods as vehicles/carriers of functional ingredients  

As the acceptance of the functional food market grows, it permits food suppliers 

to consider other foodstuffs as potential sources for functional foods.  Primarily among 

these is muscle based foods (meat, poultry and fish) which are as popular, if not more 

popular, than dairy products in certain regions of the world, are no less rich in 

multifunctional components than dairy products and equally function to aid in the 

delivery of added nutraceuticals to consumers.  Some 36-40% of total calories in 

industrialised countries diets come from fat while nearly half of that is from meat intake 

(Byers et al., 1993; Sheard et al., 1998).  Like dairy products, meat contains vital nutrients 

for human health but unlike many other foods, meat is much less allergenic to consumers.  

Taking this into consideration, it makes sense to focus on the meat industry as a way to 

incorporate healthier foods into consumer’s diets.  Such products could potentially open 

up a new market for the meat industry.  The use of functional ingredients in meat and 

meat products has been well reviewed (Olmedilla-Alonso et al., 2013; Zhang et al., 

2010).  A summary of current strategies to produce functional meat products is presented 

in Table 1.14. 
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Table 1.14. Production of functional meat products
a
.
 

Production of functional 

meat products through 

dietary supplementation 

 

Addition of functional 

ingredients during 

processing 

 

Production of functional 

components during 

processing 

Conjugated linoleic acid  Vegetable proteins (soy, 

whey and wheat) 

 Curing (production of 

peptides and free amino 

acids) 

     
Vitamin E  Fibre  Fermentation (production of 

antibacterial compounds and 

probiotics) 

     
Omega-3 fatty acids  Herbs and spices 

(rosemary, green tea, 

clove, garlic, sage and 

oregano) 

 Enzyme hydrolysis of 

proteins (production of 

peptides) 

     
Selenium  Probiotics and lactic acid 

bacteria 

  

aZhang et al. (2010). 

 

1.13.1 Fish as carrier of functional ingredients 

Fisheries remain an important source of food, employment and revenue in many 

countries and communities (FAO, 2013b).  The image of fish to consumers is positive as 

it provides a healthy intake of quality protein, fat, vitamins and minerals.  International 

and national guidelines recommend at least two fatty fish dishes per week as part of a 

healthy diet.  Health benefits attributed to fish intake include improvement in 

cardiovascular health and arthritis symptoms, lower blood pressure and reduced risk of 

cancer (Kinsella, 1986).  As a result, fish and fish products are increasingly promoted as 

functional foods.  Additionally, fish and their by-products are an excellent source of 

bioactive compounds which are extracted and added to a range of other foods to enhance 

functionality in terms of human health (Gormley, 2013).  While inherently functional, 

fish are being considered as a suitable carrier of additional functional ingredients to 

further enhance health benefits for consumers and protect/enhance the stability of 

beneficial lipids (Gormley, 2006).  One aspect of improving the nutritional profile of fish 
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is by enriching fish products with dietary fibres, antioxidant dietary fibres or prebiotics 

(Diaz-Rubio et al., 2011; Sánchez-Alonso et al., 2008).   

 

1.13.2 Pork meat as carrier of functional ingredients 

 Due to consumer demand for healthier meat products, the meat industry has 

steadily worked to reduce the fat content of meat, especially in beef and pork products 

(Bryhni et al., 2002).  Improved breeding and husbandry practices have resulted in 30% 

less fat present in retail cuts of pork than during the 1970s.  The US pork industry has 

capitalised on this by marketing pork as a light and nutritious alternative to chicken.  As a 

result of marketing, the yearly consumption of pork in the US has remained stable at 

about 47.8 pounds per person per year since 1970 (Resurreccion, 2004).  Research, to 

date, indicates that consumers are now less likely to perceive pork negatively in terms of 

fat, calories and cholesterol.  Even though pork meat is high in valuable and essential 

nutrients such as protein, B vitamins, iron, zinc and oleic acid, some doubt remains about 

the nutritional benefits of pork compared to chicken (Verbeke et al., 1999).  The 

perception of “healthiness”, health benefits and risks are the most commonly 

acknowledged reasons for reducing meat consumption (Grunert et al., 2004).  With 

consumer’s perception of “healthiness”, there are plenty of opportunities to add 

functional ingredients to further enhance the health aspects of pork meat.  One aspect the 

meat industry has already focused on is through manipulating the fatty acid profile 

(increasing PUFA content at the expense of saturated fatty acids (SFA)) with dietary 

vegetable oils.  Another area to enhance the perception of pork is through manipulation of 

diet composition in order to improve the quality and eating characteristics such as 

leanness, taste, odour, tenderness and juiciness (Verbeke et al., 1999). 
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1.14 Seaweed processing and manufacture of functional ingredients 

Traditionally, seaweeds have been subjected to some form of processing due to 

their compositional and textural properties.  Seaweeds are sundried over a net or a 

tarpaulin on the ground, in order to render them palatable for human consumption and 

reduce water activity to minimise deterioration from chemical reactions and microbial 

activities before being used as food.  Before consumption, seaweeds can be rehydrated to 

restore a palatable texture.  Owing to the high level of unsaturated fatty acids, seaweeds 

deteriorate with in a few days of harvesting if they are not properly preserved (Paull & 

Chen, 2008).   

Long drying times and high temperatures have been linked to undesirable thermal 

degradation in vegetable products.  Similar effects would be anticipated in the drying of 

seaweeds.  Likewise, losses in bioactivity could be expected if time and temperature 

parameters are not adequately controlled and optimised (Abu-Ghannam & Cox, 2014).  

Processing of food and food ingredients, especially thermal treatment, often exerts a 

major effect on their constituents, including biological activity (Shahidi, 2009).  

Processing of various plant bioactives has demonstrated both positive and negative effects 

on the level of bioactivity.  Heat treatment of lycopene, the main carotenoid of tomatoes, 

enhances the bioavailability (Rao & Ali, 2007).  Similarly, roasting canola/rapeseed or 

sesame seeds enhances the stability of PUFAs due to the formation of Maillard reaction 

products (Jeong et al., 2004; Shahidi et al., 1997).  On the other hand, processing of 

soybeans to produce protein concentrates and isolates has resulted in a substantial 

decrease in isoflavone content (Jackson et al., 2002).  High temperature cooking and 

drying has been reported to cause a significant loss of vitamin C in brown seaweeds 

(Venugopal, 2011).  Conversely, Yoshiki et al. (2009) reported heat treatment over 100°C 
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enhanced DPPH activity of low molecular weight fractions of a water soluble Porphyra 

yezoensis extract.   

In a study which investigated optimal storage conditions of freshly harvested 

seaweed, Paull & Chen (2008) reported that red seaweed (Gracilaria spp.) submerged in 

seawater at 15 to 17°C in the dark extended postharvest life from 4 days to approximately 

30 days.  Alternatively, treating G. tikvahiae and G. parvispora with hot seawater at 38-

42°C for 5 min was beneficial in extending postharvest life from about 4 days to 5 and 8 

days, respectively.  Other treatments such as postharvest dip in artificial seawater 

supplemented with 1 or 10mM calcium, potassium, sodium, ammonium as the nitrate salt 

were ineffective at extending postharvest life.  Paull & Chen (2008) concluded that light 

and water temperature were two major factors in extending the shelf-life of seaweed post 

harvest. 

 To date, little information on the effects of drying or heating on nutritional 

composition or biological activity has been reported for seaweeds.  In a recent study, 

drying H. elongata for 24 hours, at four temperatures (25, 30, 35 and 40°C), resulted in a 

reduction in total phenolic content, regardless of the temperature used.  A higher loss of 

phenolic compounds was observed at lower temperatures, which was attributed to the 

changes in seaweed composition and content.  Dehydration also resulted in a loss of 

antioxidant activity.  DPPH radical scavenging activity was significantly lower in H. 

elongata dried at 25°C compared to 40°C (Abu-Ghannam & Cox, 2014).   

Limited studies suggest air drying can prevent seaweeds from further loss of 

bioactivity before additional processing.  After 40 minutes of thermal processing at 80°C 

or 100°C of fresh H. elongata, the total phenolic content was reduced by up to 85% (Cox 

et al., 2012; Cox et al., 2011).  However if the seaweed was subjected to a drying step 

prior to hydrothermal processing, losses were minimized.  Cox et al. (2012) reported 
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drying at 25°C for 12 hours followed by hydrothermal processing at 100°C reduced the 

required cooking time to achieve palatability to 25 minutes and only 9% of the total 

phenolic content was lost as compared to fresh seaweeds.  Similarly, semi-dried seaweeds 

(at 40°C for 2 hours) resulted in increased phytochemical content and enhanced DPPH 

free radical scavenging activity, compared to fresh seaweeds (Gupta et al., 2011b).   

 

1.14.1 Seaweed inclusion in fish pellets  

Compound fish feeds are formulated according to precise nutrient specifications 

to ensure product quality and nutrient balance for maximum growth effects, as well as 

easy and cost effective application (FAO, 2014).  Moist and dry pelleted feeds exist, 

although the use of dry pellets is more common as the product is more practical for feed 

manufacture’s due to shelf-life considerations.  A number of dry fish feeds based on fish 

meal are available commercially (Das et al., 1993).  Fish meal is often partially replaced 

with other ingredients (fish waste, vegetable material etc) in order to reduced feed costs 

(Soler-Vila et al., 2009).  During the last decade, the use of extruded pellet diets for fish 

has markedly increased due to the pellets having superior water stability, floating 

properties and higher energy yields (Ammar et al., 2008).   A schematic reproduction of 

the manufacture process of dry fish pellets containing added seaweed used in Chapters 2 

and 3 is presented in Figure 1.5.  Seaweed is first washed and dried before being added to 

the fish feed formulation which includes fish meal, fish oil, binding agents, vitamins and 

minerals.  Grinding of the mix is carried out before water is added to form a paste which 

is then forced through an extruder and cut to form pellets of the required length.  Finally 

the pellets are oven dried (Das et al., 1993).   
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Ulva rigida

(Green seaweed)

Step 1. wash / drying

Step 3. Add water and form a paste

Step 2. Add to mix:

fish meal

fish oil

binder

vitamins/minerals

Step 4. Extrude paste through press 

and cut pellets into uniform length

Palmaria palmata

(Red seaweed)

Chapter 3Chapter 2

Step 5. Oven drying

 
Figure 1.5. Manufacture of dry fish feed pellets containing seaweed. 

 

1.14.2 Techniques used for the manufacture of seaweed extracts  

Classical techniques have been traditionally employed to extract compounds with 

bioactivity from seaweed including: Soxhlet, liquid–liquid extraction (LLE), solid–liquid 

extraction (SLE) and other techniques based on the use of organic solvents.  Although 

such techniques are well established and routinely used, a number of draw backs exist in 

relation to time, labour, automation, high volumes of solvents, etc.  Such factors influence 

reproducibility, selectivity and provide low extraction yields (Herrero et al., 2013).  These 
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shortcomings can be overcome by the use of new more advanced extractions techniques.  

The most important advanced extraction techniques include supercritical fluid extraction 

(SFE), pressurized liquid extraction (PLE), ultrasound/sonication extraction (UAE), 

microwave-assisted extraction (MAE), accelerated solvent extraction (ASE
®
), water 

extraction and particle formation on-line (WEPO
®
), enzyme assisted extraction (EAE).  

These new techniques are faster, more selective and environmentally friendly as the use 

of toxic solvents is highly limited (Duan et al., 2006; Duarte et al., 2014).   

The extraction technique utilised depends on the solubility of the desired 

compound (López et al., 2011).  Furthermore, food grade solvents and enzymes are 

required for the preparation of antioxidant extracts which will be used as ingredients in 

food products (Duarte et al., 2014).  SFE is an ideal extraction method for food grade 

extracts of non-polar compounds, however it is associated with high costs and low 

extraction yields (Herrero et al., 2013).  Examples of different extraction techniques for 

different compounds from various seaweeds are presented in Table 1.15. 

 

1.14.2.1 Manufacture of polysaccharide rich extracts containing laminarin and 

fucoidan 

A variety of solvents and extraction methods are employed to extract water 

soluble polysaccharides (laminarin and fucoidan) from seaweeds.  Wet- and spray-dried 

seaweed extracts containing laminarin and fucoidan used in the present study (Chapters 

4-7) were manufactured by Bioatlantis (Tralee, Co. Kerry, Ireland).  The extracts were 

prepared from brown seaweed (Laminaria digitata) using an acid extraction technique, 

details of which are industry confidential.  A basic representation schematic of the 

extraction procedure and manufacture of the extracts is presented in Figure 1.6.  

Generally, polysaccharides are extracted from milled dried seaweeds by selective solvents 
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Table 1.15. Extraction techniques employed to isolate seaweed compounds. 

Extraction 

technique 

 
Seaweed  

Compound 

isolated 
 Reference 

Supercritical fluid 

extraction (SFE)
 

 Undaria pinnatifida  fucoxanthin 

polyphenols 

 Roh et al. (2008). 

       
SFE  Scenedesmus 

obliquus 

 chlorophyll  Choi et al. (1987). 

       
Ultrasound/sonication 

extraction (UAE) 

 Porphyra yezoensis  phycobiliprotein  Zhu et al. (2008). 

       
UAE  Porphyra species  Mycosporine-like 

amino acids 

(MAAs) 

 Tartarotti & 

Sommaruga 

(2002). 

       
UAE  Palmaria palmata  MAAs  Yuan et al. 

(2009). 

       
Microwave-assisted 

extraction (MAE) 

 Fucus vesiculosus  fucoidan  Rodriguez-Jasso 

et al. (2013). 

       
Enzymatic and 

solvent extraction 

 Sargassum 

filipendula 

 fucoidan  Costa et al. 

(2011). 

       
Solvent extraction, 

Silica column, 

Chromatography, 

Sephadex 

chromatography and 

HPLC 

 S. siliquastrum  Fucoxanthin  Heo & Jeon 

(2009) 

 

 

such as ethanol, CaCl2 and HCl to isolate desired compounds.  Ethanol is frequently used 

to extract pigments and protein.  CaCl2 is then applied to precipitate alginates as well as 

extract laminarin and fucoidan.  Fucoidan is often extracted by the use of HCl (Gamal-

Eldeen et al., 2009; Ponce et al., 2003; Rioux et al., 2007; Zvyagintseva et al., 1999).  The 

resulting wet-extract containing laminarin and fucoidan (L/F-WS) (Chapter 4-5) was 

spray-dried to form a spray-dried seaweed extract containing laminarin and fucoidan 

(L/F-SD) (Chapters 4, 6-7). 
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Wet extract (L/F-WS) 

containing: laminarin, 

fucoidan, mannitol, protein 

and minerals

Laminaria digitata

(Brown seaweed)

Step 1. drying / milling

Step 3. spray drying

Chapter 4-5

Spray dried extract (L/F-SD) 

containing: laminarin, fucoidan, 

mannitol, protein 

and minerals

Chapters 4, 6-7

Step 2. acid extraction

ethanol - extract protein/pigments

CaCl2 - precipitate alginates and 

extract laminarin and fucoidan

HCl - extract fucoidan

 
Figure 1.6. Extraction and manufacture schematic of a wet (WS) and spray-dried (SD) 

seaweed extract containing laminarin and fucoidan (L/F) isolated from Laminaria 

digitata. 

 

1.15 Modes of incorporating seaweed / seaweed extracts as functional ingredients in 

muscle foods 

Currently there are two main strategies used to manufacture meat products using 

functional ingredients: dietary supplementation or direct addition to meat during 

processing (Jiménez-Colmenero et al., 2001).  The effect of functional ingredients added 

to animal diets may vary depending on the type of animal species and processing.  Some 

functional ingredients are added to animal feeds in order to serve as a route to pass 

compounds into the circulatory system which are subsequently distributed and retained in 

muscle tissues (Toldrá & Reig, 2011).  Dietary composition and feeding levels 

significantly impacts the ratio of fat to lean in pig and cattle carcasses (Hay & Preston, 

1994).  It is necessary to have the correct dietary fatty acid profiles for monogastric 
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animals such as pigs and poultry to produce a meat product with less saturated fat (Byers 

et al., 1993).   

 

1.16 Supplementation of seaweed into animal diets 

The use of seaweeds in animal feed comprised 1% of the global value of the 

seaweed industry in 2004 (Chojnacka et al., 2012).  In Europe, the use of seaweeds in 

animal feed dates back to as early as Roman times.  In Iceland, France and Norway, 

domestic animal diets were supplemented with seaweed to enhance nutritional value of 

the feed (FAO, 2003).  The use of seaweeds as feed supplements has been reviewed by 

(Holdt & Kraan, 2011).  Numerous experiments have demonstrated the nutritional 

benefits of seaweed supplementation in the diets of pigs, cows, sheep, chickens and other 

domestic animals, as well as in many aquatic organisms.  Ruminant animals have been 

found to be the most suitable target for dietary seaweed inclusion as they are able to 

digest unprocessed seaweed cell walls (Kovač et al., 2013).   

A number of in vivo studies exist with seaweeds added to the diets of farmed 

animals for nutritional purposes which focus on affects on growth performance and the 

health of the animal (van den Burg et al., 2013).  The inclusion of seaweed extracts in 

animal feed has resulted in a variety of benefits including overall health improvement of 

feedstock, enhanced immune systems, favourable changes in gut microflora and increased 

milk production (Devillé et al., 2007; Leonard et al., 2011).  In addition, many seaweed 

extracts have significantly enhanced the growth and immune systems of fish (Carter & 

Hauler, 2000; Chaiyapechara et al., 2003; Valente et al., 2006).  Furthermore, the addition 

of antioxidant compounds to animal feed can protect against oxidative damage in living 

systems by scavenging oxygen radicals and also for increasing the stability of foods by 

preventing lipid oxidation in muscle post slaughter (Moure et al., 2001).   
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1.16.1 Supplementation of seaweed into fish diets 

Fish aquaculture is a growth industry worldwide (Werner et al., 2004).  As the 

demand for affordable fresh fish increases, so does the demand for fish feed.  Fish meal 

(the main protein source) is an essential constituent of fish feed and is a substantial cost in 

fish farming, therefore producers are searching for alternative protein sources from plants 

(Holdt & Kraan, 2011).  The use of seaweeds as an additive to fish diets and the effects 

on growth, performance and fish health has been reviewed (Hasan & Chakrabarti, 2009; 

Mustafa & Nakagawa, 1995).   

For most fish species, 10-15% of the dietary protein can be met through the use of 

seaweeds without compromising the growth or feed efficacy of the fish.  The use of 

seaweed as an additive to fish feed demonstrated positive results such as an increase in 

growth, improvement in physiological activity, improved stress response and disease 

resistance (Hasan & Chakrabarti, 2009).  The use of Porphyra, Ascophyllum and Ulva 

spp. in fish meal exhibited the most pronounced effects on cultured sea bream growth 

performance.  Results suggested that the use of seaweed as feed additive is an effective 

source of nutrients for fish (Holdt & Kraan, 2011; Mustafa & Nakagawa, 1995; Mustafa 

et al., 1995).   The inclusion of ~3% or greater of Macrocystis pyrifera meal resulted in an 

increase of polyunsaturated fatty acids in the muscle in rainbow trout juveniles and 

subsequently a higher quality fillet (Dantagnan et al., 2009). 

 

1.16.1.1 Supplementation of carotenoids into Atlantic salmon diets 

After nutrition, an important aspect of salmon feed to consider is the addition of 

carotenoids.  Carotenoids are responsible for the attractive red, yellow and orange colours 

of fish.  Next to freshness, the pigmentation of Atlantic salmon (Salmo salar) flesh is 

regarded as the most important quality criterion (Decker et al., 2000).  Fish cannot 
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synthesise carotenoids, therefore final flesh colour is influenced by dietary intake.  The 

pigments primarily responsible for salmonids (trout, salmon and others) colour are 

astaxanthin and canthaxanthin (Simpson et al., 2012).  In the flesh of wild salmonids 

(salmon and trout), astaxanthin accounts for more than 90% of the total carotenoid 

content.  Currently, commercial salmon diets contain either or both of the synthetic 

pigments available, astaxanthin and canthaxanthin.  At equal flesh concentrations, 

astaxanthin results in a redder hue than canthaxanthin in salmon flesh (Buttle et al., 

2001).  In addition to colouring the fillet, carotenoids serve many biological functions for 

salmonids related to growth, reproduction and tissue health which is attributed to the 

compounds strong antioxidant properties (Anderson, 2001). 

Fish metabolism of carotenoids is based solely on structural considerations which 

can include cleavage (both polyene chain and ionone ring) and chain shortening, 

hydroxylation/oxidation and dehydration (of xanthophylls) (Krinsky et al., 2004).  Fish 

are able to metabolise carotenoids but this varies significantly between species and is 

dependent on the type of carotenoid available.  Carotenoids are distributed unevenly in 

various tissues with higher concentration in liver and adipose tissue than in muscles 

(Decker et al., 2000).  Factors influencing the absorption and deposition of carotenoids in 

Atlantic salmon are reviewed by Torrissen et al. (1989).   Briefly the quantity available, 

carotenoid structure and the ability of salmon to metabolise or biotransform available 

carotenoids all have an impact on absorption and deposition of dietary carotenoids by the 

fish.  Likewise factors such as fish size, sex, species and diet composition can impact 

subsequent deposition of carotenoids in muscles and tissues (Buttle et al., 2001; Hamre et 

al., 2004).   

Atlantic salmon are generally poorer depositors of carotenoids and often the 

retention levels are lower compared to other fish species (Buttle et al., 2001; Chimsung et 
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al., 2012).  Low absorption, catabolism in the liver, and high excretion are all major 

factors for the low retention of astaxanthin and canthaxanthin (Chimsung et al., 2012).  

Some aquatic species (i.e. Penaeus japonicus and Portunus triuberculatus) are able to 

transform ingested carotenoids such as β-carotene and zeaxanthin into astaxanthin; 

however Atlantic salmon are not able to perform such transformations (Shahidi & Brown, 

1998; Torrissen et al., 1989).  In fact, the opposite reduction has been confirmed in 

Atlantic salmon where dietary astaxanthin was reduced to zeaxanthin (Schiedt, 1985).   

Synthetic pigments traditionally used in salmon feed continue to be utilized with 

success, however pigment alternatives should be considered with the increase in 

consumer preference for natural food additives.  Some literature suggests the use of 

seaweed carotenoids in fish diets can influence flesh colour particularly in salmonid 

species.  For example, the inclusion of Porphyra dioica in rainbow trout diets, effectively 

enhanced fillet colour as a result of yellow xanthophylls (zeaxanthin and lutein) (Soler-

Vila et al., 2009).  The use of natural colourants is of considerable interest to the organic 

salmon farming industry (Holdt & Kraan, 2011).   

 

1.16.2 Supplementation of seaweed into porcine diets 

In comparison to ruminants, pigs are considered monogastric animals and have a 

simple stomach where only slight microbial modifications of available nutrients take 

place before digestion and absorption occurs (Decker et al., 2000).  As a result, seaweeds 

are not as commonly used in porcine diets as in cattle feed, however some research exist 

on the inclusion of low levels (<2%) to enhance pig health and pig meat quality (FAO, 

2013).  Supplementation of seaweed polysaccharides into porcine diets has proved 

beneficial in improving gut health and performance in pigs (Lynch et al., 2010a; 

O'Doherty et al., 2010).   
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Porcine dietary supplementation studies demonstrate that brown seaweed 

polysaccharides such as laminarin and fucoidan are resistant to digestion in the upper 

gastrointestinal tract, but stimulate the population growth of beneficial microbes in the 

intestine and subsequently improve the gut environment by enhancing the production of 

short chain fatty acids (Devillé et al., 2007; Lynch et al., 2010a, 2010b; Reilly et al., 

2008; Scheppach, 1994; Smith et al., 2011).  In weaning piglets, seaweed extracts provide 

a dietary means to improve gut health and subsequently reduce pathogen carriage in 

finishing pigs (Devillé et al., 2007; Dierick et al., 2010; Lynch et al., 2010b; Smith et al., 

2011).  Several studies have focused on the inclusion of laminarin and fucoidan, 

independently or in combination, on post weaning piglet performance and gut microflora.  

Porcine diets supplemented with the seaweed polysaccharides demonstrated an increased 

daily gain and gain to feed ratio.  Laminarin and fucoidan significantly reduced E. coli 

populations and subsequently enhanced gut health of the pigs (McDonnell et al., 2010; 

O'Doherty et al., 2010). 

 

1.17 Direct addition of seaweed / seaweed extracts in food systems 

Seaweed and seaweed extracts directly added to food can increase the nutritional 

profile and serve as a functional ingredient by improving numerous technological 

properties (water holding capacity, water swelling capacity, water-solubility, fat binding 

capacity and viscosity).  Additionally, the incorporation of dietary fibre with antioxidant 

compounds directly into food may enhance oxidative stability of the food during 

production and storage (Elleuch et al., 2011).  Low levels (0.2-1.0%) of soluble fibres are 

commonly used for their functional properties while insoluble fibres are mainly used for 

their nutritional benefits.  Mabeau & Fleurence (1993) have reported on various 
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biochemical and nutritional aspects of dietary fibre from seaweed sources used in food 

products.   

 

1.17.1 Influence on quality and shelf-life parameters   

Several quality and shelf-life parameters including colour, lipid oxidation, 

microbiological analysis, sensorial properties and texture can be influenced by the 

addition of ingredients such as seaweed extracts.  Microbial growth, colour change and 

oxidative rancidity are the major problems which reduce the shelf-life of meat and meat 

products (Shan et al., 2009).  Therefore, quality parameters are routinely monitored in 

shelf-life studies investigating the addition of bioactive ingredients. 

 

1.17.1.1 Colour 

 The purchase of meat is more strongly influenced by colour than any other quality 

factor owing to the fact that consumers use discoloration as an indicator of freshness and 

quality (Mancini & Hunt, 2005).  The concentration and chemical state of heme iron 

pigments, which are susceptible to oxidation, largely determines meat colour (Faustman 

& Cassens, 1990).  Myoglobin which contains heme iron, can exist in one of three forms: 

deoxymyoglobin (purplish-red), oxymyoglobin (cherry-red), or metmyoglobin (brown) in 

intact muscle (Cruz et al., 2014).  Myoglobin and lipid oxidation have been reported to 

occur in a concurrent manner in muscle foods, with each process having the ability to 

influence the other (Chaijan, 2008).  Mancini and Hunt (2005) have extensively reviewed 

the various factors which influence meat colour and colour stability.   
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1.17.1.2 Lipid oxidation 

Lipid oxidation is a key deteriorative process in muscle foods (O'Grady & Kerry, 

2009).  The rate and extent of lipid oxidation in muscle foods is influenced by pre and 

post-slaughter factors including stress, diet, carcass temperature and post-mortem pH 

decline (Morrissey et al., 1998).  Many review articles exist on the subject of lipid 

oxidation in muscle foods (Chaijan, 2008; Decker & Xu, 1998; Faustman & Cassens, 

1990; Ladikos & Lougovois, 1990).  Much research into ways of minimising or delaying 

lipid oxidation has been carried out, including the use of supplements in animal diets 

(Jiménez-Colmenero, et al., 2001).  The meat industry has successfully used synthetic 

antioxidants to retard the rate of lipid oxidation in muscle foods (Coronado et al., 2002).  

The effect of antioxidants on the oxidation of foods depends on concentration, their 

polarity and the presence of other antioxidants (Choe & Min, 2009). 

 

1.17.1.3 Microbiological analysis 

 Antimicrobials are often employed in meat products to extend shelf-life and 

control pathogens.  Listeria monocytogenes, Staphylococcus aureus and Salmonella 

enterica are common foodborne pathogenic bacteria frequently isolated in meat products.  

The spoilage and poisoning of food due to the growth of these and other bacteria can 

result in meat unfit for human consumption (Holley et al., 2004).  Increased bacterial 

growth is also known to negatively affect the colour of meat.  For centuries, dietary herbs 

and spices have been used successfully as natural food additives to extend shelf-life by 

reducing or eliminating survival of these and other pathogenic bacteria (Shan et al., 

2009).   
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1.17.1.4 Sensory analysis 

 Sensorial properties can be greatly influenced by the addition of functional 

ingredients due to the characteristically strong odours and flavours they impart.  The 

flavour profile generally determines consumer acceptability of the meat.  Odour and taste 

are the main contributors to flavour (Melton, 1990).  Meat flavour can be influenced by 

feed source and genetics of the animal.  The major precursors of meat flavour can be 

divided into two categories: water-soluble components and lipids.  The main water-

soluble flavour precursors are suggested to be free sugars, sugar phosphates, nucleotide 

bound sugars, free amino acids, peptides, nucleotides and other nitrogenous components 

(Shahidi et al., 1986).  The characteristic flavour of meat develops from reactions 

occurring during heating, principally the Maillard reaction and the degradation of lipids.  

Both type of reactions produce a wide range of products, including a large number of 

volatile compounds found in cooked meat (Mottram, 1998).   

 

1.17.1.5 Texture  

Texture is one of the most important sensory attributes of meat, after appearance 

and flavour.  Commonly, instrumental texture assessment on meat is performed using a 

texturometer device which allows tissue resistance both to shearing and to compression to 

be measured.  Texture includes a complex variety of measurable characteristics including: 

hardness (toughness), springiness, cohesiveness, gumminess and chewiness (juiciness) 

(de Huidobro et al., 2005).  Textural and stabilizing properties of seaweed extracts in food 

products are strongly related to the hydration properties of the polysaccharides.  

Hydration properties are measured by four parameters: water holding capacity, water 

binding capacity, swelling and solubility.  Water holding capacity and water binding 

capacity parameters are only relevant for insoluble fibres (Rupérez & Saura-Calixto, 



Literature Review 

______________________________________________________________________________________ 

- 75 - 

2001).  A positive correlation between water retention and swelling capacity has 

previously been observed in seaweeds.  In general, brown seaweeds have higher swelling 

and water retention capacity than red seaweeds (Rupérez & Saura-Calixto, 2001). 

 

1.17.2 Functionality of seaweed / seaweed extracts in muscle based food systems  

Previously, dietary fibres from seaweed have been investigated in the formulation 

of different meat products with the aim to improve texture, increase cooking yields and 

reduce formulation costs (Cofrades et al., 2008).  Many researchers have demonstrated 

that low-fat meat products with added dietary fibre, from seaweeds, have improved 

textural properties (Cofrades et al., 2008; Fernández-Martín et al., 2009; López-López et 

al., 2009a).  For example Choi (2012) added Laminaria japonica powder to reduced-fat 

pork patties, without any detrimental effects on meat quality, as perceived by the 

consumer.  The reduced-fat pork patties containing the Laminaria japonica powder also 

had improved quality characteristics that were similar to the control patties containing 

twice the fat content.  Seaweed fibre has been used as a means to overcome the 

technological problems associated with low-salt meat products.  The use of seaweed has 

improved fat and water binding properties of low-salt meat products (Cofrades et al., 

2011).  Table 1.16 contains a summary of the impact of seaweeds / extracts on quality 

parameters of processed meat products. 

 

1.18 Stability of seaweed / seaweed extracts in meat products: influence of 

processing 

For the successful use of seaweed and/or seaweed extracts in cooked meat 

products, it is important to understand their molecular properties, interactions with food 

ingredients as well as the influence of processing conditions.  The stability of seaweed  
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Table 1.16. The use of seaweed/seaweed extract in muscle based foods/systems. 

Model system  
Seaweed/seaweed 

extract 
 Highlights  Reference 

Pork meat 

batter/emulsion 

 

 Himanthalia 

elongata (3.4%) 

 -improved emulsion stability 

-prevented thermal denaturation 

of a considerable protein 

fraction 

 Fernández-

Martín et al. 

(2009). 

       
Low-salt and 

low-fat beef 

patties 

 

 Undaria 

pinnatifida (3%) 

 -lowered moisture contents 

-less thawing and cooking 

losses 

-did not negatively affect the 

sensory properties 

 López-López et 

al. (2010). 

       
Low-fat 

frankfurters 

 Himanthalia 

elongata (5%) 

 -improved water and fat 

binding properties 

-increased the hardness and 

chewiness 

-reduced the springiness and 

cohesiveness 

-special flavour of seaweed 

resulted in less acceptable 

products 

 López-López et 

al. (2009b). 

       
Reduced/low-

fat, low-salt 

frankfurters 

 Himanthalia 

elongata (3.3%) 

 -increased cooking loss and 

reduced emulsion stability 

-formation of a more 

heterogeneous structure 

-no significant difference on 

texture sensory but lower 

overall acceptability because of 

an seaweed-like off-flavour 

 Jiménez-

Colmenero et al. 

(2010). 

       
Low-salt 

frankfurters 

 Himanthalia 

elongata (5%) 

 -improved lipid profile of 

frankfurters 

-frankfurters were Ca-rich, low-

sodium with better Na/K ratios 

and added fibre 

 López-López et 

al. (2009c). 

       
Low-salt 

restructured 

poultry 

 Himanthalia 

elongata (3%) 

 -increase in purge loss but 

reduced cooking loss 

-texture values with seaweed 

were the same as the control 

-increased TVC due to the 

seaweed 

-decreased the lightness and 

redness and increased the 

yellowness 

 Cofrades et al. 

(2011). 
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Table 1.16 (continued). The use of seaweed/seaweed extract in muscle based 

foods/systems 

Model system  
Seaweed/seaweed 

extract 
 Highlights  Reference 

Reduced-fat 

pork patties 

 Laminaria 

japonica (1, 3 and 

5%) 

 -higher moisture, ash, 

carbohydrate content, 

yellowness and springiness 

-enhanced overall acceptability 

at 1 and 3% addition 

-improved quality 

characteristics to acceptable 

levels 

 Choi et al. 

(2012). 

       
Low-salt pork 

meat emulsion 

model systems 

 Himanthalia 

elongata (5.6%) 

Undaria 

pinnatifida (5.6%) 

Porphyra 

umbilicalis (5.6%) 

 

 -increased n-3 polyunsaturated 

fatty acids and decreased n-6/n-

3 PUFA ratio 

-increased the antioxidant 

capacity due to soluble 

polyphenolic compounds 

 López-López et 

al. (2009a). 

       
Low-salt 

gel/emulsion 

pork meat 

systems 

 

 Himanthalia 

elongata (2.5 and 

5%) 

Undaria 

pinnatifida (2.5 

and 5%) 

Porphyra 

umbilicalis (2.5 

and 5%) 

 

 -improved (P < 0.05) water- 

and fat-binding properties 

-increased hardness and 

chewiness, lowered values for 

springiness and cohesiveness  

-reduced a* values of 

gel/emulsion system 

 Cofrades et al. 

(2008). 

 

polysaccharides during processing is an important consideration as many carbohydrates 

are susceptible to changes during heat treatment at 100°C or higher (Venugopal, 2011).  

Cooked meat is susceptible to oxidation and influenced by a larger number of factors than 

fresh meat due to thermal processing.   

The potential for non-enzymatic browning reactions (Maillard reactions) to occur 

between reducing sugars present at the end of seaweed polysaccharide chains and free 

amino groups, peptides or proteins in meat products during processing and storage is also 

present.  These reactions are dependent on temperature and readily happen with 

intermediate water activity (Venugopal, 2011).  Nicoli et al. (1999) reported that the 
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overall antioxidant capacity of certain foods may be enhanced due to improvement in the 

antioxidant properties of naturally occurring antioxidants and the formation of Maillard 

reaction products (MRPs).  MRPs have been linked to beneficial properties such as 

antimutagenic, antimicrobial and antioxidative activities.  In foods, MRPs have had 

antioxidant effects on honey and tomato purees (Anese et al., 2010; Antony et al., 2000).  

The addition of honey to turkey breast prior to heating had an antioxidant effect on the 

meat which was attributed to MRPs formed during heating (Antony et al., 2000).  Radical 

scavenging activity of dried Petalonia binghamiae extracts was increased after being 

heated for 1 hour at 121°C.  The content of brown pigments after heating was increased 

approximately 2.5 fold and was attributed to the generation of MRPs during heating 

which subsequently enhanced the radical scavenging activity of the extract (Kuda et al., 

2006) 

Many antioxidants can be sensitive to heat treatments, however limited studies 

exist which investigate the effect of heat on antioxidant compounds from seaweeds in 

food systems.  In one study, cooked pasta with dried seaweed (Undaria pinnatifida) at 4 

levels (5-30%) resulted in lower levels of phenolic compounds and reduced DPPH 

activity compared to the uncooked pasta.  However antioxidant activity of the cooked 

seaweed pasta was significantly higher than the control, suggesting some antioxidant 

compounds were present in the pasta after thermal processing.  Additionally the reduction 

of fucoxanthin and fucosterol in the pasta was less than 10%, indicating thermal stability 

of antioxidant compounds in a gluten based maxtrix (Prabhasankar et al., 2009).  

Similarly, thermal stability at 100°C of hydrogen peroxide scavenging activity of brown 

seaweed (S. horneri and E. cava) extracts has been reported (Heo et al., 2005).  
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1.18.1 Bioaccessibility and bioavailability of bioactive ingredients  

To adequately assess the beneficial effects of seaweed compounds with 

antioxidant activity - bioaccessibility, bioavailability and bioactivity post digestion need 

to be established.  Determining bioaccessibility and bioavailability can be difficult to 

conduct and monitor in human studies (in vivo), therefore in vitro models are often 

applied such as digestion models and human epithelial cell cultures (Grajek et al., 2005). 

Bioaccessibility is defined as the fraction of the compound transferred from the 

food matrix during digestion and thus made accessible for intestinal absorption 

(Carbonell-Capella et al., 2014).  The bioavailability of a compound is dependent on 

stability post cooking and the stability through the gastrointestinal tract (GIT), absorption 

through the intestinal walls into the blood stream and subsequent availability for use in 

metabolic functions (Rafiquzzaman et al., 2013).  Bioactivity refers to the phenomena 

that occur after the component has reached the systemic circulation, is transported to 

relevant tissues, interacts with biomolecules, is metabolised and all the cascade of 

physiological effects it generates.  Bioactivity can be assessed in vitro or in vivo, however 

caution must be exercised in using very specific methodologies for in vitro studies in 

order for results to correlate with in vivo studies.  Likewise, in vivo studies should be 

carried out whenever possible to validate in vitro methods (Cardoso et al., 2015).   

 With concerns regarding metallic contamination of seaweeds and toxicity levels 

of minerals, a limited number of in vitro digestion studies have investigated the 

bioavailability of arsenic, cadmium, mercury, lead and iodine in seaweeds (Cardoso et al., 

2015; Gonzalez et al., 2011).  To date, however, no studies exist analysing the bioactivity 

of seaweed compounds incorporated in muscle based foods, post digestion.   
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1.18.2 Functional properties of seaweed polysaccharides as dietary fibre 

The use of seaweeds as dietary fibre is discussed briefly.  Seaweed 

polysaccharides are considered a source of dietary fibre with prebiotic potential and other 

functionalities owing to the fact a large amount of seaweed polysaccharides cannot be 

digested completely by the human digestive system (Kim, 2012).  Dietary fibre is a 

complex material consisting of plant cell walls, structurally complex and chemically 

diverse polysaccharides and other associated substances (Venugopal, 2008).  The 

diversity of structure and composition of dietary fibres makes it difficult to elucidate their 

mechanisms of action (Thebaudin et al., 1997).  Dietary fibre (25–75% DM) of seaweeds 

differs chemically and physicochemically from the fibre of terrestrial plants and may 

offer other physiological effects (Rupérez & Saura-Calixto, 2001).  The structure as well 

as the physiochemical and biological properties of seaweed dietary fibre has been 

reviewed previously (Lahaye & Kaeffer, 1997; Mišurcová et al., 2012).  A summary of 

seaweed dietary fibres is presented in Table 1.17. 

 

Table 1.17. Dietary fibres from seaweed sources. 

Fibre type  Seaweed constituentsab  Activity during digestionc 

Soluble fibre 

(50-85%)
 

 agars, alginic acid, 

fucoidan, laminarin and 

porphyran 

 Slowing down digestion and absorption 

of nutrients by increasing viscosity 

through the gastrointestinal tract but do 

not markedly change colonic function. 

     
Insoluble fibre 

(12-40%) 

 cellulose, lignins, 

mannans and xylans 

 Decrease intestinal retention time and 

increase stool weight. 
aO’Sullivan et al. (2010). 
bRupérez & Saura-Calixto (2001). 
cThebaudin et al. (1997). 

 

Dietary fibres may act as fermentative substrates which modify the activity of gut 

microflora and result in modification or reduction in the production of mutagens.  The 

consumption of seaweed polysaccharides as a dietary fibre source has been linked to the 

growth and protection of beneficial intestinal microflora, thereby improving the overall 
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health of the intestines of humans and animals alike (Gupta & Abu-Ghannam, 2011b).  

O’Sullivan et al. (2010) reviews the potential for seaweed polysaccharides to be used as 

prebiotics in human and animal health applications with a discussion of both in vitro and 

in vivo studies.  A systematic review of immunomodulatory activities of dietary 

polysaccharides is presented by Ramberg et al. (2010). 

Dietary fibre is not a single compound but a combination of chemical substances 

with varied composition and structure (Grajek et al., 2005).  Dietary fibre can act as a 

carrier of antioxidants some of which are resistant to gastric degradation and released 

from the fibre matrix in the colon (Saura-Calixto, 2010).  Phytochemicals having 

antioxidant activity associated with dietary fibre include polyphenols, carotenoids, 

sterols, lignans, terpenoids and sulphated polysaccharides.  These so-called co-travellers 

of dietary fibre reach the intestinal tract as nondigestible food and may offer additional 

benefit to the host (Jiménez-Escrig et al., 2012).  Seaweed soluble fibres are a source of 

important antioxidant compounds including sulphated polysaccharides (Elleuch et al., 

2011; Venugopal, 2008).  Functional and nutritional properties associated with dietary 

fibre include the antioxidant activity of these associated compounds which can act as free 

radical scavengers through the entire digestive tract and in colonic tissues (Esposito et al., 

2005).  The role of dietary fibre as an antioxidant carrier is well reviewed by Saura-

Calixto (2010).   

 

1.18.3 Transepithelial transport and cellular uptake of bioactivity 

 Digestion simulation is considered the first step in the evaluation of 

bioaccessibility and intestinal absorption and the metabolic transformation particularly in 

the hepatic tissues also needs to be considered.  Digested samples can be transferred to an 

in vitro cell culture model (O’Callaghan & O’Brien, 2010).  Typically, cultures of human 
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colorectal cancer epithelial cell lines (Caco-2) and a transwell assay are utilised to mimic 

the intestinal lining barrier.  Caco-2 cells are grown on a porous polyethylene 

terephthalate membrane in a 12 well format to form monolayers of polarized cells 

possessing function similar to intestinal enterocytes (Yee, 1997).  Likewise, Caco-2 cells 

have the capacity to carry out metabolic transformations (Cardoso et al., 2015).  This 

model has been previously used to examine the transport and cellular uptake of a number 

of plant extracts (i.e. rosemary, sage and Echinacea) and isolated compounds (i.e. 

carotenoids and α-tocopherol) (O’Callaghan & O’Brien, 2010).  Previously reported 

studies indicate a strong correlation between in vitro Caco-2 cellular uptake and transport 

of a variety of compounds and in vivo human absorption (Yee, 1997).    

 

1.19 Seaweed industry in Ireland  

Ireland is an island with a 7,000 kilometre coastline in the fertile waters of the 

Gulf Stream full of marine organisms including an abundance of seaweed species.  

Industrial potential including high-value applications of sustainable resources of seaweed 

has not been fully realised (Sea Change, 2006).  Utilising the abundance of seaweed off 

the coasts of Ireland is now the focus of a major study in functional foods research.  Irish 

seaweeds, like other seaweeds distributed about the globe, are an ideal source of 

ingredients for use in functional foods.   

The Irish seaweed industry consists of approximately 18 small to medium sized 

enterprises at a small number of licensed sites for harvesting from Co. Donegal to Co. 

Waterford.  Approximately 700 people are employed in either a full-time, part-time or 

seasonal basis, mostly in remote rural areas of the west coast primarily within the 

Gaeltacht (Sea Change, 2006).  Biopolymers and agriculture/horticulture are the two most 

economically important sectors for Ireland’s seaweed industry (Guiry, 2014).  Traditional 
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hand harvesting of Ascophyllum nodosum for alginate extraction and 

agriculture/horticulture applications sustains the industry, especially along the west coast 

of Ireland (Werner et al., 2004).  In the last fifteen years, a few companies have initiated 

production and commercialization of higher value products from Irish seaweeds 

(Morrissey et al., 2001).  According to Sea Change Strategy (2006), the Irish seaweed 

production and processing sector will be worth €30 million per annum by 2020.   

 

                     

Irish food products with added seaweed – Cannelloni with salmon and seaweed, 

Brown bread with seaweed, Cheddar cheese with seaweed 

 

Over 500 species (80 green, 271 red and 147 brown) of seaweed grow in Irish 

waters (Guiry & Guiry, 2014).  About 16 seaweed species are commercially utilised in 

Ireland, however A. nodosum, and two species of red calcified coralline seaweed, referred 

to as Maërl (Phymatolithon calcareum and Lithothamnion corallioides) dominate most of 

Ireland’s production (Werner et al., 2004).  Other species of seaweeds harvested in 

smaller quantities in Ireland for use as food include dulse, carrageen moss and various 

kelps and wracks.  The human food and cosmetic sector consists mainly of smaller 

business’s which employ on average 5 people or less, with very little automation in 

harvesting, drying or processing (Sea Change, 2006).  A list of Irish suppliers of seaweed 

and / or products that contain seaweed ingredients is compiled in Table 1.18.  
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Table 1.18.  Irish suppliers of seaweed and / or products that contain seaweed ingredients 

Supplier  Sector 

Arramara Teo
a
  Seaweed meal 

   
AlgAran

a
  Seaweed meal, edible seaweed, cosmetics 

   
Irish Seaweed processors

a
  Edible seaweed 

   
Kinsale Gourmet

a
  Edible seaweed 

   
Spanish Point Sea Vegetables

a
  Edible seaweed 

   
LoTide Fine Foods

b
  Edible seaweed 

   
Roaringwater Bay Seaweed co-op

b
  Edible seaweed 

   
Blath na Mara

b
  Edible seaweed, cosmetics 

   
Rí na Mara

a
  Cosmetics 

   
SeaVite

a
  Cosmetics 

   
Voya

a
  Cosmetics 

   
Carabay Seaweed Health Products

b
  Cosmetics 

   
Brandon Products

a
  Liquid seaweed products 

   
Sea Nymph

a
  Liquid seaweed products 

   
Oilean Glas

a
  Liquid seaweed products 

   
Marrigot

b
  Functional marine materials 

   
BioAtlantis

b
  Agriculture, feed supplements, human nutraceuticals 

   
Ocean Harvest Ireland

a
  Agriculture, aquaculture feeds, feed supplements 

   
Cybercolloids

b
  Hydrocolloid applications in food and non-food products 

aGuiry & Guiry (2014). 
bRhatigan (2009). 
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1.20 Conclusion 

 This review endeavours to present the state-of-the-art in terms of the use of 

macroalgae (seaweed) and macroalgal polysaccharides as functional ingredients in 

muscle foods.  The composition of macroalgae is extensively reviewed and bioactivity 

present in each species highlighted (Ulva rigida, Palmaria palmata and Laminaria 

digitata).  The potential of muscle foods (fish and pork meat) as suitable vehicles/carries 

of functional ingredients is also investigated.   
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1.21 Thesis Objectives 

The ultimate aim of this thesis was to evaluate the use of macroalgae and commercial 

macroalgal polysaccharides, rich in compounds with natural biological activity, in muscle 

based foods.   

 

The studies in this thesis were undertaken with the following objectives: 

 To evaluate the effects of different levels (0-15%) of macroalgae (Ulva rigida and 

Palmaria palmata) in farmed Atlantic salmon (Salmo salar) diets on shelf-life and 

sensory parameters of the salmon fillets.   

 To examine porcine dietary supplementation of commercially sourced wet and 

spray-dried macroalgal extracts containing polysaccharides (laminarin and 

fucoidan), from brown seaweed (Laminaria digitata), on the quality and shelf-life 

of fresh pork steaks.   

 To investigate the effects of dietary laminarin and fucoidan levels, form and 

duration of feeding on the quality and shelf-life of fresh pork.   

 To evaluate the efficacy of the spray-dried extract containing laminarin and 

fucoidan added directly to pork meat on quality and shelf-life parameters of fresh 

and cooked pork patties.   

 To determine the bioaccessibility of macroalgae-derived bioactive components in 

cooked pork meat using an in vitro digestion procedure coupled with Caco-2 cell 

model.  
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ABSTRACT 

Supplementation of salmon (Salmo salar) diets with Ulva rigida (UR) (0, 5, 10 

and 15% UR) or synthetic astaxanthin (positive control, PC) for 19 weeks pre-slaughter 

on quality indices of fresh (raw) salmon fillets was examined.  Susceptibility of salmon 

fillets/homogenates to oxidative stress conditions (cooking/iron-ascorbate induced 

oxidation) was also measured.  In salmon fillets stored in modified atmosphere packs 

(60% N2 : 40% CO2) (MAP) for up to 15 days at 4ºC, U. rigida increased surface ‘-a*’ 

greenness and ‘b*’ yellowness values in a dose-dependent manner resulting in a final 

yellow/orange flesh colour.  Proximate composition, pH and lipid oxidation (fresh, 

cooked and fillet homogenates) were unaffected by dietary addition of U. rigida.  On day 

12, 5% UR psychrotrophic bacterial growth was lower than controls. Feeding salmon 5% 

UR did not influence ‘eating quality’ sensory descriptors (texture, odour, oxidation 

flavour and overall acceptability) in cooked salmon fillets compared to 0% UR.  Higher 

levels of dietary U. rigida (10 and 15% UR) were negatively correlated with colour and 

overall acceptability descriptors.  Results indicated that dietary U. rigida, at a level of 

5%, may prove to be a functional ingredient in salmon feed to enhance salmon fillet 

quality.   
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2.1 INTRODUCTION  

Macroalgae grow in abundance in coastal areas around the world and are 

classified into green (Chlorophyta), red (Rhodophyta), and brown (Phaeophyceae) 

seaweeds based on their chemical composition (Gupta and Abu-Ghannam, 2011a).  Green 

seaweed, belonging to the genus Ulva generally grow in shallow waters and tide pools 

and are exclusively found in marine waters (Loughnane et al., 2008).  Many species of 

Ulva (sea lettuce) are similar and difficult to differentiate with only seven species 

reported in Ireland and Britain: Ulva rigida, U. lactuca, U. scandinavica, U. olivascens, 

U. gigantea, U. rotundata, and U. californica (Hasan and Chakrabarti, 2009; Loughnane 

et al., 2008).  Ulva spp. are a natural source of many bioactive compounds such as 

polysaccharides including ulvan (the main water soluble storage polysaccharide), protein, 

essential fatty acids, vitamins, minerals, carotenoids, polyphenols, etc. (Fleurence, 1999).   

The use of nutrient rich seaweed as a natural alternative to fish meal has been 

investigated previously.  A move towards partial substitution of fish meal by plant 

proteins is widely accepted within the aquaculture industry in an effort to reduce 

production costs (Lahaye and Robic, 2007).  Early fish growth studies confirm the 

inclusion of 10-20% algae or seaweed meal is an acceptable fishmeal replacer in many 

fish diets without compromising fish growth or digestive efficiency (Hasan and 

Chakrabarti, 2009).  Many species of Ulva (Ulva rigida, U. oxysperma, U. lactuca, U. 

fasciata, U. reticulata, U. pertusa) have been examined as ingredients (inclusion at 3-

15%) in diets of fish including red sea bream (Pagrus major), Japanese flounder 

(Paralichthys olivaceus), yellowtail (Seriola quinqueradiata), nibbler (Girella punctata), 

European sea bass (Dicentrarchus labrax) and Nile tilapia (Oreochromis niloticus) 

resulting in enhanced growth rates, protein assimilation, immune function and lipid 

metabolism (Marinho et al., 2013; Mustafa et al., 1995; Nakagawa and Montgomery, 
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2007; Valente et al., 2006).  Atlantic salmon (Salmo salar) diets containing Ulva spp. 

have been linked to improved resistance of fish to stress and disease (Mustafa and 

Nakagawa 1995; Satoh et al., 1987).   

Due to the biological activities of seaweed constituents, dietary addition of Ulva 

spp. to farmed Atlantic salmon feed may result in a health promoting functional feed 

which surpasses basic nutritional requirements (Tacchi et al., 2011).  Vitamins and 

minerals from Ulva spp. such as vitamins B12, C and E, calcium, magnesium, iron and 

manganese are sufficient for Atlantic salmon nutrition (Burton et al., 2009; Chandini et 

al., 2008).  The addition of antioxidants (water soluble vitamin C (ascorbic acid) and lipid 

soluble vitamin E (α-tocopherol)) to Atlantic salmon diets is important in early stage fish 

development and has been reviewed previously (Hardie et al., 1991; Waagbø, 1994).  

Salmon lack the ability to synthesize carotenoids and wild salmon feed on carotenoid 

containing crustaceans resulting in a pink flesh colouration.  Therefore, farmed salmon 

diets are supplemented with pigments (astaxanthin (red) and canthaxanthin (orange)) in 

order to pigment the flesh at considerable economic expense (10 to 15% of total feed 

costs) (Torrissen et al., 1989).  Ulva spp. contains a range of colour pigments (chlorophyll 

a and b, β-carotene, lutein, violaxanthin, antheraxanthin, zeaxanthin and neoxanthin) 

which may be a source of natural pigments for fish feed (Lobban and Wynne, 1981; 

Tacchi et al., 2011).  Zavodnik (1987) reported the carotenoid content of U. rigida varied 

during the growing period (January to June) and was greatly influenced by local 

environmental factors and the season of harvest. 

In addition to health and nutritional benefits, bioactive compounds in green 

seaweeds are a potential resource of many functional ingredients that may enhance fillet 

quality.  Studies to assess the antioxidant activity of ulvan and its oligosaccharides have 

reported that they possess reducing power, free radical scavenging and metal chelating 
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activities usually due to the presence of sulphated groups (Alves et al., 2013; Chiellini 

and Morelli, 2011; Lahaye and Robic, 2007).  Vitamins and vitamin precursors in green 

seaweeds, including α-tocopherols, niacin, thiamine and ascorbic acid may also 

demonstrate antioxidant activity (Chandini et al., 2008).  Ulva lactuca has been reported 

to possess antioxidant and antibacterial activity due to carotenoids, chlorophyll derived 

and phenolic compounds (El Baky et al., 2009).   

The nutritional value of seaweed included in salmon feed is generally evaluated 

by growth and survival of the fish, however the efficacy of seaweed to enhance fillet 

quality, shelf-life and consumer acceptability is frequently not determined.  Therefore, 

Atlantic salmon diets enriched with green seaweed as a source of bioactive compounds to 

enhance salmon fillet quality merits investigation.  The objective of this study was to 

examine the effect of including Ulva rigida (0-15%) in farmed salmon diets on the 

quality indices (composition, muscle pH, colour, lipid oxidation, microbiology and 

sensory properties) of salmon fillets.  Susceptibility of salmon fillet homogenates to iron-

ascorbate induced lipid oxidation was also investigated. 



Inclusion of Ulva rigida in Atlantic salmon diets 

______________________________________________________________________________________ 

 - 92 - 

2.2 MATERIALS AND METHODS 

2.2.1 Reagents  

All chemicals used were ‘AnalaR’ grade and were obtained from Sigma-aldrich 

Chemie GmbH, Steinheim, Germany; Oxoid Ltd., Basingstoke, Hampshire, England; 

Merck KGaA, Darmstadt, Germany.  U. rigida was harvested during May to July 2011 

from the coasts of Harbour View Bay, Cork, Ireland.  

 

2.2.2 Salmon and diets 

After harvesting, U. rigida was subsequently washed and dried (at 40°C using a 

dehumidifying oven) before addition to the salmon diet formulations.  Diets were 

prepared at the feed formulation laboratory in Carna Research Station, Ryan Institute, 

National University of Ireland, Galway.  All diets were formulated to be iso-nitrogenous 

(40%), iso-lipidic (25%) and iso-caloric (26 MJ kg
-1

).  The composition of the 

experimental diets is outlined in Table 2.1. 

Table 2.1. Composition of the experimental diets with inclusion of Ulva rigida (g kg
-1

, 

unless otherwise indicated).    

 PC 0% UR 5% UR 10% UR 15% UR 

Fish meal
a
 407.4 407.4 390.8 374.1 357.5 

Fish oil
a
 200.0 200.0 201.4 202.8 204.1 

Ulva rigida - - 50.0 100.0 150.0 

Corn starch
b
 187.3 187.6 152.8 118.1 83.4 

Lysamine
c
 90.0 90.0 90.0 90.0 90.0 

Glutalys
c
 90.0 90.0 90.0 90.0 90.0 

Mineral & vitamin 

premix
d
 

20.0 
20.0 20.0 20.0 20.0 

Lucantin Pink
e
 0.30 - - - - 

Barox Plus
f
 5.00 5.00 5.00 5.00 5.00 

aUnited fish products Ltd., Donegal, Ireland. 
bLaboratory grade, Sigma –Aldrich Company Ltd., Poole, UK. 
cPurified feed ingredients, Roquette, France. 
dPremier nutrition products Ltd., Staffordshire, UK. (Manufacturers 

analysis: Ca 11.50%, Ash 78.71%, Na 8.86%, Vitamin A 1.0μg/kg, 

Vitamin D3 0.10%, Vitamin E 7.0 g/kg, Cu 250 mg/kg, Mg 15.6 g/kg 

and P 6.4 g/kg). 
eBASF, Ludwigshafen, Germany. 
fKemin Europa N.V., Herentals, Belgium. 
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Atlantic salmon (Salmo salar) smolts were obtained from a commercial company 

based at Lough Fee, Connemara, Ireland.  After a 10 week acclimation period, a 19-week 

completely randomised experimental feed trial was carried out at the Carna Research 

Station.  Salmon (n = 35, average fish weight ~ 174.6g) were randomly assigned to one of 

fifteen tanks (three tanks per treatment) and fed one of five experimental diets.  The 

positive control group (PC) were fed a basal diet plus synthetic astaxanthin (0.3g/kg feed) 

(Table 2.1).  The remaining four groups were fed the basal diet plus U. rigida (UR) at 0 

(0% UR), 5 (5% UR), 10 (10% UR) and 15% (15% UR) inclusion levels.  The salmon 

were hand-fed on five occasions over the course of each day and housed in 1000 L tanks 

fed by a filtered flow-through seawater supply (ambient temperature regime).  At the end 

of the feeding trial, salmon (average fish weight ~ 521.50 g), were euthanised with a 

sharp blow to the head followed by the pithing of the brain and were gutted.  Fresh (raw) 

salmon fillets were transported on ice at 4ºC to the School of Food and Nutritional 

Sciences at University College Cork, Ireland.   

 

2.2.3 Proximate analysis of fresh salmon fillets 

The proximate composition of fresh salmon fillets was reported on a wet weight 

basis.  Protein (nitrogen x 6.25) was determined by the Kjeldahl method of the 

Association of Official Analytical Chemists (AOAC, 1995).  The moisture and fat content 

were measured using the SMART Trac rapid moisture/fat analyser (CEM Corporation, 

NC, USA).  The ash content was determined using a muffle furnace (AOAC 1995).  

Compositional analysis results were expressed as percentage values, %. 
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2.2.4 Salmon processing and packaging 

Fresh salmon fillets (~100 g) (PC, 0, 5, 10 and 15% UR) were placed in low 

oxygen permeable (<1cm
3
/m

2
/24 hr at STP) polystyrene/ethylvinylalcohol/polyethylene 

trays.  Trays were covered with a low oxygen permeable (3 cm
3
/m

2
/24 hr at STP) 

laminated barrier film with a polyolefin heat-sealable layer.  Using modified atmosphere 

packaging technology, the trays were flushed with 60% N2 : 40% CO2 using a vacuum-

sealing unit (VS 100, Gustav Müller and Co. KG, Bad Homburg, Germany) equipped 

with a gas mixer (Witt-Gasetechnik GmbH and Co. KG, Witten, Germany) and heat-

sealed.  Fresh salmon fillets were stored for up to 15 days under fluorescent lighting 

conditions (approximately 660 lux) at 4°C.  The gas atmosphere (% O2 and % CO2) in the 

modified atmosphere packs (MAP) was checked using a CheckMate 9900 (PBI-

DanSensor, Denmark).  Immediately after gas flushing, MAP contained 57.86 ± 0.11% 

N2 and 42.00 ± 0.14% CO2.  The average gas composition in MAP at the end of the 15 

day storage period was 57.49 ± 0.49% N2 and 42.51 ± 0.42% CO2.  Percent nitrogen was 

calculated by difference of % O2 and % CO2. 

In a cooked fish study, salmon fillets from all treatments  (PC, 0, 5, 10 and 15% 

UR) were placed on aluminium foil lined trays and cooked at 180°C for 12 min in a fan-

assisted convection oven (Zanussi Professional, Model 10 GN1/1, Conegliano, Italy) until 

an internal temperature of 72°C was reached.  Cooked fillets were placed in trays over-

wrapped with oxygen permeable film and stored aerobically for up to 5 days at 4°C.   

 

2.2.5 Measurement of pH 

Fresh salmon fillet samples (10 g) were homogenised for 1 min at 24,000 rpm in 

90 ml distilled water using an Ultra Turrax T25 homogeniser (Janke and Kunkel, IKA-

Labortechnik, GmbH and Co., Staufen, Germany) and the pH was measured at 20°C 
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using a pH meter (Seven Easy portable, Mettler-Toledo GmbH, Schweizenbach, 

Switzerland).  The pH of salmon fillets was recorded on days 1, 3, 7, 12 and 15 of 

storage. 

 

2.2.6 Colour measurement 

The surface colour was measured using a Konica Minolta CR-400 Chroma-Meter 

(Minolta Camera Co., Osaka, Japan).  The Chroma-Meter consisted of a measuring head 

(CR-400), with an 8 mm diameter measuring area, a 2° standard observer, and a data 

processor (DP-400).  The Chroma-Meter was calibrated on the CIE LAB colour space 

system using a white tile (Dc:L = 97.79, a = -0.11, b = 2.69).  The ‘L*’ value represents 

lightness and ‘a*’ and ‘b*’ values represent redness and yellowness, respectively.  Colour 

measurements of fresh salmon fillets were recorded on days 1, 3, 7, 12 and 15. 

 

2.2.7 Measurement of lipid oxidation 

Lipid oxidation was measured using the 2-thiobarbituric acid assay as described 

by Siu and Draper (1978).  Chopped salmon fillet samples (5 g) were homogenised for 2 

min in 25 ml distilled water using an Ultra Turrax T25 homogeniser (Janke and Kunkel, 

IKA-Labortechnik, GmbH and Co., Staufen, Germany).  Trichloroacetic acid (10%) was 

added (25 ml) and the mixture was shaken vigorously and filtered through Whatman No. 

1 filter paper.  In screw capped test tubes, 4 ml of clear filtrate was added to 1 ml of 0.06 

M 2-thiobarbituric acid (TBA).  The tubes were placed in a water bath and held at 80°C 

for 90 min.  The absorbance of the filtrate was measured spectrophotometrically (Cary 

300 Bio, UV-Vis spectrophotometer, Varian Instruments, CA, USA) at 532 nm against a 

blank containing all reagents (2 ml distilled water, 2 ml 10% TCA and 1 ml of 0.06 M 

TBA reagent).  The malondialdehyde content of the sample was calculated using an 
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extinction coefficient of 1.56 x 10
5
 M

-1
 cm

-1
.  Results were expressed as 2-thiobarbituric 

acid-reactive substances (TBARS) in mg malondialdehyde (MDA)/kg salmon.  Lipid 

oxidation in fresh salmon fillets was measured on days 1, 3, 7, 12 and 15 of storage and 

on days 0, 1, 3 and 5 in cooked salmon fillets.   

 

2.2.7.1 Preparation of salmon fillet homogenates 

Fresh salmon fillet homogenates (25%) were prepared by homogenising 25 g 

tissue in 75 ml 0.12M KCl 5 mM histidine (pH 5.5) using an Ultra Turrax T25 

homogeniser at 24,000 rpm for 3 min.  Stock solutions of ferric chloride (FeCl3) (4500 

μM) and sodium ascorbate (4500 μM) were freshly prepared each day in distilled water.  

0.3 ml of both were added to 29.4 ml homogenate thus diluting both 1/100 (i.e. 0.3 ml of 

each in a total volume of 30 ml) to achieve final concentrations of 45 μM for both FeCl3 

and sodium ascorbate.  Lipid oxidation in salmon fillet homogenate incubates (30 ml) 

was initiated with equimolar ferric chloride (FeCl3) : sodium ascorbate (45 μM).   

Homogenates without FeCl3 and ascorbic acid were run simultaneously as controls.  Lipid 

oxidation in fresh salmon homogenates was measured immediately (time 0) and after 1, 4 

and 24 hrs storage at 4°C.   

 

2.2.7.2 Measurement of lipid oxidation in salmon fillet homogenates 

A modification of the 2-thiobarbituric acid (TBA) assay of Siu and Draper (1978) 

was used to measure lipid oxidation in fresh salmon fillet homogenates.  Homogenate 

samples (4 ml) were added to 4 ml 10% trichloroacetic acid (TCA). The samples were 

mixed using a vortex mixer and the precipitate formed was removed by filtering through 

Whatman No. 1 filter paper.  In a screw cap test tube, 4 ml of clear supernatant was added 

to 1 ml 0.06 M 2-thobarbituric acid (TBA).  The tubes were incubated at 80°C for 90 min 
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and the absorbance of the resulting coloured complex was measured using a 

spectrophotometer at 532 nm against a blank containing all reagents and distilled water 

instead of the filtrate.  The malondialdehyde content was calculated using an extinction 

coefficient of 1.56 x 10
5
 M

-1
 cm

-1
.  Results were expressed as TBA reactive substances 

(TBARS) in mg malondialdehyde (MDA)/kg salmon.   

 

2.2.8 Microbiological analysis 

Fresh salmon fillet samples (10 g) were transferred into stomacher bags, diluted 

with 90 ml of maximum recovery diluent and stomached for 3 min (Steward Stomacher 

400 Lab Blender, London, UK) resulting in a 10
−1

 dilution used for analysis.  Serial 

dilutions were prepared and 0.1 ml aliquots from each dilution were plated onto standard 

plate count agar (PCA) (Oxoid Ltd.).  The plates were incubated at 30°C for 48 hr and at 

4°C for 10 days to determine mesophilic and psychrotrophic counts, respectively.  

Microbiological analysis of fresh salmon fillets was carried out on days 1, 3, 7, 12 and 15 

of storage.  Results were expressed as log10CFU (colony forming units)/g salmon. 

 

2.2.9 Sensory evaluation 

Sensory analysis (‘visual’ and ‘eating quality’) of fresh and cooked salmon fillets 

stored in 60% N2 : 40% CO2 was performed in duplicate by 26 naïve assessors on days 1 

and 7 of storage following the method of O’Sullivan et al., (2003).  On day 12, the 

bacterial count was deemed unsafe to continue further sensory evaluation.  ‘Visual’ 

sensory analysis descriptors examined were: pinkness, whiteness, drip, purchasing appeal, 

and overall acceptability.  ‘Eating quality’ sensory analysis descriptors examined were: 

colour, texture, odour, oxidation flavour and overall acceptability.  Assessors were asked 
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to indicate their degree of liking on a 10 cm line scale ranging from 0 (extremely dislike) 

to 10 (extremely like).   

Salmon fillets were cooked for sensory analysis in a Zanussi oven at 180ºC for 12 

min until an internal meat temperature of 72ºC was reached.  Following cooking, fillets 

were cooled and the fish was removed from the skin and salmon portions were identified 

with random three-digit codes.  Sample presentation order was randomised to prevent any 

flavour carryover effects (Macfie et al., 1989).  Sensory analysis was undertaken in the 

panel booths at the university sensory laboratory in accordance with the ISO (2007) 

International Standard Guidelines.  Assessors were also provided with water and crackers 

to cleanse their palate between samples.  Results for sensory analysis scores were 

measured in centimetres (cm).  Results were presented as significance of regression 

coefficients.   

 

2.2.10 Statistical analysis 

All analyses were performed in duplicate.  Mean sample values (n = 3) for each of 

the five treatment groups (PC, 0, 5, 10 and 15% UR) were subjected to statistical analysis.  

A full repeated measures two-way analysis of variance (ANOVA) was conducted to 

investigate the effects of dietary U. rigida level, time and their interactions.  Dietary U. 

rigida level represented the ‘between-subjects’ factor and the effect of time was measured 

using the ‘within-subjects’ factor.  Tukey’s test was used to adjust for multiple 

comparisons between treatment means.  The analysis was carried out using SPSS 18.0 for 

Windows (SPSS, Chicago, IL, USA) software package. 

 ‘Visual’ and ‘eating quality’ sensory data was analysed with ANOVA-Partial 

Least Squares Regression (APLSR) to process the mean data accumulated from the 26 

test subjects in duplicate. The X-matrix was designated as 0/1 for treatment and days with 
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the Y-matrix designated as sensory and instrumental variables. The optimal number of 

components in the ASLSR models presented was determined to be 6 principal 

components. In these models assessor and session level effects were removed using level 

correction. The validated model explained variance was 13.93% and 11.61% and the 

calibrated variance was 17.53% and 15.31% on days 1 and 7 respectively. To derive 

significance indications for the relationships determined in the quantitative APLSR, 

regression coefficients were analyzed by jack-knifing which is based on cross-validation 

and stability plots (Martens and Martens 1999, 2001). All analyses were performed using 

the Unscrambler Software, version 9.8 (CAMO ASA, Trondheim, Norway). 
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2.3 RESULTS AND DISCUSSION 

2.3.1 Proximate analysis and pH of salmon fillets 

The protein content of fresh (raw) salmon fillets fed with iso-nitrogenous diets 

ranged from ~20 to 21% for all dietary treatments (Table 2.2).  Results are in agreement 

with previously reported protein values (~21%) for farmed Atlantic salmon fillets 

(Aksnes et al., 1986).  Fat levels were unaffected by U. rigida supplementation and 

ranged from ~3 to 4%.  Similarly, Valente et al., (2006) reported that the lipid content of 

European sea bass (Dicentrarchus labrax) was not affected by dietary addition of U. 

rigida (0-10%).  Moisture and ash levels ranged from ~73 to 75% and ~0.9 to 1.3%, 

respectively, with no significant differences between dietary treatments.  Dietary 

supplementation of Ulva spp. (50:50 U. rigida and U. lactuca) at 0-20% did not influence 

moisture and ash levels in Nile tilapia (Oreochromis niloticus) (Marinho et al., 2013).  In 

general, the supplementation of Ulva in fish diets does not influence the resulting 

proximate composition of the fish fillets (Marinho et al., 2013; Valente et al., 2006).  In 

the present study, the composition of salmon fillets from salmon fed U. rigida is 

equivalent to those fed the positive control (PC) diet.  Therefore, U. rigida is a potentially 

acceptable replacement ingredient for fish meal in Atlantic salmon feed. 

 

Table 2.2.  Effect of dietary Ulva rigida (UR) on the proximate composition of 

fresh salmon fillets.  

Treatment % on wet weight basis 

  Protein  Moisture  Fat  Ash 

PC 20.25 ± 1.04
a 

 74.89 ± 2.09
a
  3.92 ± 0.19

a
  0.94 ± 0.19

a
 

0% UR 20.51 ± 0.49
a
  74.71 ± 0.70

a
  3.89 ± 0.11

a
  0.90 ± 0.11

a
 

5% UR 20.55 ± 0.43
a
  73.71 ± 1.24

a
  4.42 ± 1.56

a
  1.32 ± 0.08

a
 

10% UR 21.14 ± 0.98
a
  73.93 ± 0.93

a
  3.65 ± 1.93

a
  1.29 ± 0.09

a
 

15% UR 20.48 ± 0.81
a
  75.04 ± 0.60

a
  3.47 ± 0.52

a
  1.01 ± 0.43

a
 

aWithin each composition type, mean values (± standard deviation) in the same column are not 

significantly different, p > 0.05.   



Inclusion of Ulva rigida in Atlantic salmon diets 

______________________________________________________________________________________ 

 - 101 - 

The pH of the fresh salmon fillets ranged from ~6.14 to 6.25 over the 15 day 

storage period and was unaffected by the addition of dietary U. rigida.  The pH values 

reported are comparable to previously reported values (6.1 – 6.4) for farmed Atlantic 

salmon during storage (Aksnes et al., 1986). 

  

2.3.2 Colour stability of fresh salmon fillets 

The surface lightness ‘L*’ values significantly increased (p < 0.05) in fresh 

salmon fillets from day 1 to 15 (Table 2.3).  Lightness values of the PC and 15% UR 

groups were significantly lower (p < 0.05) compared to 0% UR on day 12 of storage.  The 

lower lightness ‘L*’ values of PC fillets was attributed to the concurrent increase in a 

pink flesh pigment concentration provided by deposition of synthetic carotenoid 

(astaxanthin) in the fish muscle.  Similarly, deposition of colour pigments from U. rigida 

in the salmon muscle is most likely responsible for the significantly lower lightness 

values in 15% UR fillets.  This is in agreement with previously reported findings where 

dietary astaxanthin or canthaxanthin (50 mg/kg feed) increased carotenoid content and 

simultaneously decreased lightness of Atlantic salmon fillets (Skrede and Storebakken, 

1986). 

Trends indicated an increase in surface redness ‘a*’ values of PC salmon fillets 

over time, however results were not statistically significant (p > 0.05) (Table 2.3).  

Synthetic astaxanthin deposited in the PC salmon muscle resulted in a final red/pink fillet 

colour.  Dietary U. rigida (0-15% UR), increased the surface ‘-a*’ greenness of salmon 

fillets as a function of U. rigida concentration which indicated deposition of U. rigida 

colour pigments such as chlorophyll and xanthophylls (lutein and zeaxanthin) in the 

muscle.  Similarly, astaxanthin esters provided red coloration to red sea bream 

(Chrysophrys major) while other carotenoids such as β-carotene, zeaxanthin, lutein 
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Table 2.3.  Effect of dietary Ulva rigida (UR) on the surface lightness (‘L*’ value), redness (‘a*’ value) and yellowness (‘b*’ value) 

values of fresh salmon fillets stored in modified atmosphere packs (60% N2 : 40% CO2) for up to 15 days at 4°C.   

Treatment   Storage time at 4°C, days 

 Parameter  1  3  7  12  15 

PC Lightness  47.40 ± 2.01
aA

  48.08 ± 1.89
aAB

  51.89 ± 1.65
Aabc

  53.51 ± 2.03
aBC

  56.99 ± 2.62
aC

 

0% UR L*  51.52 ± 2.26
aA

  51.18 ± 1.58
aA

  56.29 ± 1.29
aB

  60.90 ± 1.07
bC

  60.13 ± 0.51
aBC

 

5% UR   51.00 ± 2.93
aAB

  50.65 ± 2.48
aA

  52.82 ± 4.05
aAB

  58.01 ± 1.54
abBC

  59.89 ± 1.02
aC

 

10% UR   50.34 ± 0.48
aA

  49.72 ± 1.76
aA

  52.99 ± 1.41
aAB

  56.29 ± 2.60
abB

  57.26 ± 2.65
aB

 

15% UR   47.23 ± 3.66
aA

  47.58 ± 0.73
aA

  52.54 ± 2.42
aAB

  53.95 ± 3.18
Aab

  57.16 ± 2.35
aB

 

            

PC Redness    3.19 ± 0.29
aA

    3.68 ± 0.90
aA

    5.53 ± 1.39
aA

    4.40 ± 0.63
aA

    5.17 ± 1.28
aA

 

0% UR +a*  -0.90 ± 1.15
bA

  -1.85 ± 0.22
bA

  -1.88 ± 0.58
bA

  -1.47 ± 0.56
beA

  -1.67 ± 0.10
bA

 

5% UR Greenness  -3.17 ± 0.75
cA

  -2.86 ± 0.95
bA

  -2.29 ± 0.59
bA

  -3.30 ± 0.91
bdA

  -3.35 ± 0.38
bcA

 

10% UR -a*  -3.64 ± 0.68
cA

  -3.46 ± 1.97
bA

  -3.21 ± 0.78
bA

  -3.47 ± 1.25
cdeA

  -3.89 ± 1.17
cA

 

15% UR   -4.00 ± 0.72
cA

  -3.80 ± 0.65
bA

  -3.26 ± 0.11
bA

  -3.79 ± 0.51
cdA

  -4.04 ± 0.21
cA

 

            

PC Yellowness  11.70 ± 1.05
aAB

  11.53 ± 1.75
aA

  15.02 ± 0.90
aAB

  13.75 ± 0.49
aAB

  15.23 ± 1.99
aB

 

0% UR b*    4.18 ± 2.50
bA

    4.29 ± 0.60
bA

    5.26 ± 1.49
bA

    6.07 ± 0.45
bA

    6.37 ± 1.07
bA

 

5% UR   14.83 ± 2.16
acA

  13.30 ± 2.24
aA

  13.05 ± 2.41
aA

  13.55 ± 0.78
aA

  17.75 ± 2.20
aA

 

10% UR   20.58 ± 4.31
cdA

  19.04 ± 2.13
cA

  20.69 ± 1.76
cA

  21.69 ± 4.30
cA

  23.15 ± 2.94
cA

 

15% UR   22.54 ± 3.08
dA

  19.16 ± 1.78
cA

  22.79 ± 2.82
cA

  21.89 ± 1.36
cA

  23.13 ± 1.21
cA

 
abcdWithin each parameter and storage day, mean values (± standard deviation) in the same column bearing different superscripts are significantly 

different, p < 0.05.   
ABCWithin each treatment, mean values (± standard deviation) in the same row bearing different superscripts are significantly different, p < 0.05.   
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and canthaxanthin did not enhance surface redness values of the fillets (Nakazoe et al., 

1984). 

Chlorophyll a (primary photosynthetic) and chlorophyll b (accessory pigment) 

give U. rigida its characteristic green colour.  U. rigida contains a range of carotenoids 

which include yellow xanthophylls such as lutein and zeaxanthin.  Lutein and lutein 

esters may appear greenish-yellow at low levels or orange-red at higher concentrations 

(Piccaglia et al., 1998).  Torrissen et al., (1989) reported salmon lack the ability to 

convert yellow xanthophylls to canthaxanthin or astaxanthin before deposition in the 

muscle which would result in orange/red pigmentation of the fillet.  In the present study, 

deposition of chlorophyll pigments may have contributed to the final greenness colour 

observed in the salmon fillets, while xanthophyll levels (unconverted) may have been too 

low to enhance surface redness values. 

Trends indicated that the surface yellowness values of fillets (0-15% UR) 

increased over time however results were not statistically significant (p > 0.05).  

Yellowness (5-15% UR) values were significantly (p < 0.05) higher than 0% UR on each 

storage day (Table 2.3).  The increase in surface yellowness was attributed to deposition 

of xanthophylls (lutein and zeaxanthin) from U. rigida.  On all days the yellowness of PC 

and 5% UR were similar.  Similarly, Soler-Vila et al., (2009) reported stronger orange 

flesh tones in rainbow trout (Oncorhynchus mykiss) due to the deposition of lutein and 

zeaxanthin from dietary addition of a red seaweed (Porphyra dioica).  Previously 

reported instrumental ‘b*’ values correspond to increased deposition of yellow 

xanthophylls in red porgy (Pagrus pagrus) and Channel catfish (Ictalurus punctatus) 

(Kalinowski et al., 2005; Li et al., 2007).  Yellowness values for 10 and 15% UR were 

not significantly different on all days indicating deposition of carotenoids in the salmon 

muscle was limited by Atlantic salmon digestion and metabolism of dietary U. rigida.   



Inclusion of Ulva rigida in Atlantic salmon diets 

______________________________________________________________________________________ 

 - 104 - 

The capacity of salmon to deposit dietary carotenoids in the muscle develops as the fish 

grow and is most efficient when fish are about 1kg in size (Shahidi and Brown, 1998).  

The average weight of the salmon at the end of the present feeding study (~ 521.50 g) was 

less than 1kg therefore; deposition of carotenoids may have been limited by fish maturity.  

Carotenoid pigmentation in salmon flesh is affected by dietary pigment source, 

level and duration of feeding as well as the degree of carotenoid esterification and 

structure (Torrissen et al., 1989).  Some fish species, such as koi and various crustaceans 

(Penaeus japonicus and P. monodon), possess the enzymatic mechanisms required to 

convert yellow carotenoids into other forms such as red astaxanthin (Lorenz and 

Cysewski, 2000).  Poor deposition of dietary carotenoids in muscle tissues of Atlantic 

salmon compared to related fish such as rainbow trout and coho salmon is well 

documented.  Approximately 10-15% of dietary astaxanthin is taken up from the intestine 

and deposited in its unesterified form in Atlantic salmon muscle (Bjerkeng et al., 1999).  

In the present study, Atlantic salmon were unable to modify the structural properties of 

yellow dietary carotenoids before deposition in the muscle thus pigments from U. rigida 

were ineffective at providing red coloration to Atlantic salmon fillets.  However, due to 

final yellow/orange flesh colour of salmon fillets, lower levels (5%) of U. rigida may be 

considered as a potential natural alternative yellow/orange pigment source to replace or 

reduce artificial orange colour sources (i.e. canthaxanthin) currently used in farmed 

salmon feed.   

 

2.3.3 Lipid oxidation in fresh and cooked salmon fillets and fresh salmon fillet 

homogenates 

In fresh salmon fillets in MAP, levels of lipid oxidation were low with mean 

values ranging from 0.07-0.14 mg MDA/kg salmon (Table 2.4).  The gaseous 
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Table 2.4.  Effect of dietary Ulva rigida (UR) on lipid oxidation (TBARS*) in fresh salmon fillets stored in 

modified atmosphere packs (60% N2 : 40% CO2) for up to 15 days at 4°C.  

Treatment  Storage time at 4°C, days 

  1  3  7  12  15 

PC  0.076 ± 0.01
aA

  0.096 ± 0.02
aA

  0.081 ± 0.03
aA

  0.100 ± 0.02
aA

  0.096 ± 0.01
aA

 

0% UR  0.091 ± 0.02
aA

  0.108 ± 0.02
aA

  0.074 ± 0.00
aA

  0.119 ± 0.04
aA

  0.105 ± 0.02
aA

 

5% UR  0.080 ± 0.02
aA

  0.120 ± 0.02
aA

  0.078 ± 0.02
aA

  0.103 ± 0.03
aA

  0.103 ± 0.03
aA

 

10% UR  0.066 ± 0.01
aA

  0.099 ± 0.00
aAB

  0.072 ± 0.02
aA

  0.100 ± 0.00
aAB

  0.137 ± 0.04
aB

 

15% UR  0.070 ± 0.02
aA

  0.103 ± 0.04
aA

  0.082 ± 0.02
aA

  0.099 ± 0.01
aA

  0.121 ± 0.01
aA

 
aWithin each storage day, mean values (± standard deviation) in the same column are not significantly different, p > 0.05.   

                             ABCWithin each treatment, mean values (± standard deviation) in the same row bearing different superscripts are  

                      significantly different, p < 0.05.   

*TBARS, mg malondialdehyde (MDA)/kg salmon. 
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environment within the MAP (60% N2 : 40% O2) and the physical condition of the 

salmon fillets (intact) may have influenced the low levels of lipid oxidation.  Similarly,  

low lipid oxidation values (< 0.75 mg MDA/kg) were reported for salmon fillets stored in 

MAP (60% CO2 : 40% N2) at 3°C (Sivertsvik et al., 1999).  Lipid oxidation significantly 

(p < 0.05) increased over the 5 day storage period in cooked salmon fillets (Figure 2.1) 

and levels of lipid oxidation were higher than in fresh salmon fillets with mean values 

ranging from 0.06-1.95 mg MDA/kg salmon.  The addition of U. rigida in salmon diets 

did not significantly enhance lipid stability in fresh or cooked salmon fillets. 

Higher ‘-a*’ (greenness) and ‘b*’ (yellowness) values, due to the addition of U. 

rigida to salmon diets indicated deposition of colour pigments in muscle tissue.  Lutein 

and zeaxanthin (xanthophylls in Ulva spp.) are potent antioxidants in in vitro liposomal 

membrane models (Sujak et al., 1999).  Additionally, the antioxidant activity of extracts 

from Ulva spp. (Ulva clathrata, U. prolifera and Enteromorpha prolifera) has been 

reported using a number of in vitro antioxidant assays (DPPH, ABTS, hydroxyl radical 

scavenging, reducing activity, transition metal ion chelation) (Cho et al., 2011; Farasat et 

al., 2013a, b).  Antioxidant activity of polysaccharides extracted from Ulva spp. is 

strongly linked to its degree of sulphation, molecular weight, chemical composition and 

chain conformation (Alves et al., 2013).  In the present study, despite the antioxidant 

potential of U. rigida no increase in lipid stability of the salmon fillet of UR treatments 

(0-15%) was observed. 

Raw salmon fillet homogenates were subjected to iron (FeCl3) ascorbate-induced 

lipid oxidation in order to more closely examine the antioxidant potential of U. rigida 

compounds deposited in salmon muscle tissue.  Following FeCl3 and ascorbic acid 

addition, lipid oxidation significantly (p < 0.05) increased in all tissue homogenates over 

the 24 hr storage period.  No significant differences were observed between PC and all 
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Figure 2.1.  Effect of dietary Ulva rigida (UR) on lipid oxidation (TBARS) in cooked 

salmon fillets stored aerobically for up to 5 days at 4°C.  
a
Within each storage day, mean 

values (± standard deviation) are not significantly different, p > 0.05.  
 ABC

Within each 

treatment, mean values (± standard deviation) bearing different superscripts are 

significantly different, p < 0.05.  (    ), PC; (    ), 0% UR; (    ), 5% UR;  

(    ), 10% UR; (    ), 15% UR. 
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Figure 2.2.  Effect of dietary Ulva rigida (UR) on lipid oxidation (TBARS) in salmon 

fillet homogenates containing equimolar FeCl3/ascorbate (45 M) and stored for 24 hours 

at 4°C.  
a
Within each storage time, mean values (± standard deviation) are not 

significantly different, p > 0.05. 
ABCD

Within each treatment, mean values (± standard 

deviation) bearing different superscripts are significantly different, p < 0.05. 

(    ), PC; (    ), 0% UR; (    ), 5% UR; (    ), 10% UR; (    ), 15% UR. 
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UR treatments (0-15%) with mean values ranging from 0.09-2.09 mg MDA/kg salmon 

(Figure 2.2).  Hamre et al. (2004) reported dietary vitamin E was the only agent that 

actively protected Atlantic salmon fillets against lipid oxidation, while other dietary 

antioxidants such as vitamin C and astaxanthin (10 and 50 mg/kg feed) had no effect on 

lipid stability.  Torstensen et al. (2001) reported no effects of astaxanthin, vitamin C or 

vitamin E as antioxidants in Atlantic salmon fillets.  In contrast, other fish species such as 

red porgy (Pagrus pagrus) fed synthetic or natural astaxanthin (25 or 50 mg/kg feed) 

resulted in lower levels of lipid oxidation in the skin of the fish due to deposition of 

esterified astaxanthin.  Terjera et al. (2007) concluded the deposition of different forms of 

carotenoids between fish species (i.e. porgy vs salmon) is attributed to differences in 

lipolytic enzyme selectivity towards fatty acids and the rate of hydrolysis may serve to 

explain differences in substrate efficiency and subsequent uptake rates from the 

gastrointestinal tract of the fish.  Previously reported studies, indicated carotenoids may 

be used as potential antioxidants in salmon species.  However, fish species and products 

(i.e. salmon vs. rainbow trout steaks), degree of processing and level of carotenoids 

present in muscle tissues determine if lipid stability can be enhanced (Decker et al., 

2000).   

In each test system examined (fresh fillets stored in MAP, cooked fillets stored 

aerobically, and fresh fillet homogenates subjected to iron-ascorbate induced oxidation) 

levels of lipid oxidation in salmon fillets were unaffected by dietary U. rigida.  Atlantic 

salmon possess effective antioxidant defence systems due in part to the large quantities of 

polyunsaturated fatty acids in muscle tissues and dietary vitamin E is the key antioxidant 

for protection of salmon fillets during storage.  Furthermore, Atlantic salmon reared 

under normal conditions only respond to increased oxidative stress when other 

antioxidant defence systems such as glutathione peroxidise and vitamin E are limited 



Inclusion of Ulva rigida in Atlantic salmon diets 

______________________________________________________________________________________ 

 - 110 - 

(Torstensen et al., 2001).  Martínez-Álvarez et al., (2005) reported younger fish 

demonstrated higher levels of catalase (CAT) and super oxide dismutase (SOD) 

antioxidant enzymes along with lower levels of lipid oxidation in liver tissues compared 

to older fish.  In the present study, in addition to dietary U. rigida, salmon from each 

treatment were fed supplementary vitamin A and E (Table 2.1) and slaughtered after 29 

weeks.  Therefore, the antioxidant potential of U. rigida constituents to further enhance 

the lipid stability of the salmon fillet may have been negated by a stable antioxidant 

defence system and the age of the salmon.  Retention of pigments including carotenoids 

from U. rigida in fish muscle did not offer an increase in lipid stability to the salmon 

fillets under the conditions tested potentially due to various factors such as the level and 

chemical composition of U. rigida constituents deposited in the salmon fillets, as well as 

age and antioxidant defence systems of the fish. 

 

2.3.4 Microbiology of fresh salmon fillets 

Mesophilic and psychrotrophic total viable counts (TVC) significantly (p < 0.05) 

increased during storage in MAP fresh salmon fillets, and ranged from ~ 0.7 to 7.4 log10 

cfu/g and ~ 0.9 to 6.6 log10 cfu/g, respectively (Table 2.5).  Similarly, Rasmussen et al. 

(2002) reported initial colony counts from 2 to 5 log10 cfu/g on day 0 and end of shelf-life 

determined as colony counts > 7 log10 cfu/g for fresh salmon fillets stored at 4°C.  Trends 

indicated lower mesophilic and psychrotrophic TVC for 5% UR on all days compared to 

the control, however results were not statistically significant (p > 0.05).  On day 12, 5% 

UR psychrotrophic TVC were lower than all treatments (p < 0.05).   

Limited studies on Ulva spp. antimicrobial activity exist, however investigation of 

green seaweed extracts demonstrated antimicrobial activity is linked to numerous 

compounds including phenols, fatty acids, indoles, acetogenins, and terpenes 
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Table 2.5.  Effect of dietary Ulva rigida (UR) on the microbial status* (mesophilic and psychrotrophic) of fresh salmon 

fillets stored in modified atmosphere packs (60% N2 : 40% CO2) for up to 15 days at 4°C.   

Treatment   Storage time at 4°C, days 

 Temp  1  3  7  12  15 

PC 30°C  1.13 ± 0.98
aA

  1.80 ± 0.17
aA

  5.72 ± 0.16
aB

  5.71 ± 1.28
aB

  7.27 ± 0.66
aB

 

0% UR (mesophilic  1.23 ± 1.08
aA

  2.12 ± 0.10
aA

  5.80 ± 0.08
aB

  6.32 ± 0.46
aBC

  7.37 ± 0.26
aC

 

5% UR count)  0.67 ± 1.15
aA

  2.00 ± 0.30
aA

  4.67 ± 0.40
aB

  5.63 ± 0.85
aB

  6.26 ± 0.35
aB

 

10% UR   1.13 ± 0.98
aA

  1.96 ± 0.45
aA

  5.57 ± 0.23
aB

  5.64 ± 0.66
aB

  6.48 ± 0.33
aB

 

15% UR   1.23 ± 1.08
aA

  1.96 ± 0.24
aA

  5.67 ± 0.05
aB

  5.74 ± 1.25
aB

  5.77 ± 0.61
aB

 

            

PC 4°C  2.70 ± 0.00
aA

  3.12 ± 0.10
aA

  5.07 ± 0.51
aB

  5.45 ± 0.10
aB

  6.14 ± 0.75
aB

 

0% UR (psychrotrophic  3.13 ± 0.23
aA

  3.33 ± 0.84
aA

  4.64 ± 0.50
aB

  5.26 ± 0.30
aB

  6.56 ± 0.24
aC

 

5% UR count)  1.00 ± 1.73
aA

  1.96 ± 1.71
aAB

  3.96 ± 0.24
aABC

  4.54 ± 0.40
bBC

  5.90 ± 0.79
aC

 

10% UR   1.00 ± 1.73
aA

  3.22 ± 0.24
aAB

  4.28 ± 1.27
aBC

  5.70 ± 0.20
aBC

  6.36 ± 0.48
aC

 

15% UR   0.90 ± 1.56
aA

  2.80 ± 0.17
aAB

  4.32 ± 0.33
aBC

  5.27 ± 0.18
aC

  5.73 ± 0.29
aC

 
abWithin each parameter and storage day, mean values (± standard deviation) in the same column bearing different superscripts are significantly 

different, p < 0.05.   
             ABCWithin each treatment, mean values (± standard deviation) in the same row bearing different superscripts are significantly  

          different, p < 0.05.   

*log10CFU (colony forming units)/g salmon 
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(Parsaeimehr & Chen, 2013).  Season of harvest, geographical location, purity, 

concentration, solvent use and extraction method can influence the antimicrobial activity 

of seaweed extracts (Hornsey & Hide 1976).  El Baky et al., (2009) reported the 

antibacterial activity of crude extracts of U. lactuca against 6 bacterial strains.  

Antibacterial activity of an U. rigida extract was reported as the most effective at 

inhibition of Staphylococcus aureus compared to other brown and red seaweed extracts 

(Taskin et al., 2007).  In a previously reported study, a Chondrus crispus extract 

enhanced the growth of the food spoilage and food pathogenic bacteria up to 66.08% due 

the presence of certain sugars and proteins in the seaweed which supported bacterial 

growth (Cox et al., 2010).  In the present study, the lack of significant antimicrobial 

activity in the higher levels of inclusion may have been due to the presence of other 

compounds in the seaweed as reported by Cox et al. (2010).  Dietary U. rigida at low 

levels (5%) resulted in salmon fillets with enhanced microbial stability.  Further research 

is necessary to isolate compounds from U. rigida with antimicrobial activity to enhance 

the shelf-life of salmon fillets. 

 

2.3.5 Sensory evaluation of fresh and cooked salmon fillets 

In ‘visual’ sensory analysis, fillets from fresh salmon fed astaxanthin (PC) were 

very highly significantly positively correlated to pinkness, purchasing appeal and overall 

acceptability (p < 0.001) on days 1 and 7 of storage (Table 2.6).  On days 1 and 7 of 

storage, salmon fed 10 and 15% UR were significantly negatively correlated with 

pinkness, purchasing appeal and overall acceptability.  The observations of the panellists 

was in agreement with instrumental ‘a*’ redness values, where PC had the largest ‘a*’ 

values compared to all UR treatments.  Purchasing appeal and overall acceptability of 0 
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Table 2.6.  Significance of regression coefficients (ANOVA values) of sensory analysis scores for fresh and cooked salmon fillets as derived by 

jack-knife uncertainty testing. 

Parameter Storage time, days / Treatment 

 PC  0% UR  5% UR  10% UR  15% UR 

Visual Sensory 

Analysis 
1  7  1  7  1  7  1  7  1  7 

Pinkness  0.00***   0.00***  -0.00***  -0.05*  -0.008**  -0.09  -0.01*  -0.008**  -0.008**  -0.00*** 

Whiteness -0.00***  -0.00***   0.00***   0.00***   0.007**   0.04*   0.00***   0.006**   0.00***   0.003** 

Drip  0.20   0.32  -0.00***  -0.11  -0.05  -0.20  -0.05  -0.36  -0.06  -0.56 

Purchasing appeal  0.00***   0.00***  -0.25  -0.71  -0.67  -0.55  -0.001**  -0.002**  -0.00***  -0.002** 

Overall acceptability  0.00***   0.00***  -0.09  -0.32  -0.85  -0.80  -0.001**  -0.001**  -0.00***  -0.001** 

Eating Quality 

Sensory Analysis 
                   

Colour  0.00***   0.00***  -0.27  -0.76  -0.48  -0.43  -0.00***  -0.003**  -0.00***  -0.00*** 

Texture  0.48  -0.61  -0.21   0.83  -0.51   0.99  -0.05   0.60  -0.10   0.56 

Odour -0.47  -0.10   0.77   0.64   0.64   0.80   0.86   0.09   0.83   0.08 

Oxidation flavour -0.27  -0.16   0.99   0.87   0.66   0.49   0.37   0.25   0.39   0.16 

Overall acceptability  0.002**   0.003**  -0.16  -0.61  -0.94  -0.30  -0.001  -0.16  -0.002**  -0.06 

Significance of regression coefficients; * = p < 0.05; ** = p < 0.01; *** = p < 0.001. 
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and 5% UR fillets were similar indicating sensory panellists were unable to distinguish 

between fillets with 0 and 5% U. rigida.  Proximate composition indicated moisture (~74 

to 75%) was similar across all treatments (Table 2.2) and dietary U. rigida did not 

influence drip loss on days 1 and 7 of storage.  Sivertsvik et al. (1999) reported drip loss 

was low (~ 0.3%) in salmon stored in MAP (60% CO2 : 40% N2).   

In ‘eating quality’ sensory analysis, PC was very highly significantly positively 

correlated to colour of cooked salmon fillets while 10 and 15% UR was very highly  

significantly negatively correlated to fillet colour (p < 0.001) on both analysis days.  After 

cooking, salmon fillets containing UR appeared whiter than the fresh salmon fillets (5-

15% UR).  Based on the colour of the cooked salmon fillets, sensory panellists were able 

to distinguish between the positive control and salmon fed U. rigida.  Texture, odour and 

oxidation flavour in cooked salmon fillets were not significantly influenced by dietary 

UR.  The ability of panellists to detect no oxidation/off flavours in the salmon fillets is in 

agreement with low levels of lipid oxidation (TBARS) reported (Table 2.4).  On days 1 

and 7, salmon fed PC were significantly positively correlated (p < 0.01) to overall 

acceptability (Table 2.6).  On day 1, 15% UR was significantly negatively correlated to 

overall acceptability (p < 0.01).  In a previously reported study, based on colour of the 

fillet, sensory panellists discriminated between rainbow trout (Oncorhynchus mykiss) fed 

a mixture of plant protein sources (corn gluten meal, wheat gluten, extruded peas and 

rapeseed meal) and the control.  Consequently, other organoleptic descriptors (such as 

hardness, sweetness and odour) were negatively influenced (Lu et al., 2003).  In the 

present study, no significant difference between 0 and 5% UR and overall acceptability 

was observed, indicating similar preferences by naïve assessors despite their ability to 

distinguish between fillets based on colour.  Therefore, U. rigida may be incorporated in 
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the salmon feed at low levels (5%) with out negatively impacting on texture, odour, 

oxidation flavours or overall acceptability sensory descriptors. 
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2.4 CONCLUSIONS 

Quality parameters of salmon fillets were not influenced by dietary 

supplementation of UR due to various factors including the form or concentration of 

seaweed constituents deposited in the muscle as well as the age, digestion and metabolic 

factors associated with Atlantic salmon.  5% UR enhanced the microbial status of salmon 

fillets compared to the controls on day 12.  Research is necessary to investigate if purified 

or refined U. rigida extracts can further enhance antimicrobial activity and/or increase 

lipid stability.  Proximate composition of salmon fillets (5-15% UR) was comparable to 

salmon fed synthetic astaxanthin (PC).  Lipid stability and sensory properties of 5% UR 

were similar to the control (0% UR).  Therefore U. rigida at lower levels (5%) may be 

considered as an ingredient for farmed Atlantic salmon feed without negatively impacting 

fillet quality parameters (proximate composition, lipid stability and sensorial properties).  

Due to deposition of U. rigida pigments (such as lutein and zeaxanthin) salmon fillet 

surface colour was enhanced with a yellow/orange colour.  Optimal dietary inclusion 

level of U. rigida in Atlantic salmon feed was at 5% where surface yellowness ‘b*’ 

values of fillets was equivalent to fish fed synthetic astaxanthin.  Consumers associate 

salmon fillets with a typical red/pink colour.  Further studies are necessary to investigate 

the use of red seaweed species with different pigments and carotenoid profiles to 

potentially colour salmon fillets similar to wild salmon species.   
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ABSTRACT 

The use of Palmaria palmata (PP) as a natural ingredient in farmed Atlantic 

salmon diets was investigated.  The effect of salmon diet supplementation with P. 

palmata (0, 5, 10 and 15%) or synthetic astaxanthin (positive control, PC) for 16 weeks 

pre-slaughter on quality indices of fresh salmon fillets was examined.  Susceptibility of 

salmon fillets/homogenates to oxidative stress conditions was also measured.  In salmon 

fillets stored in modified atmosphere packs (60% N2 : 40% CO2) for up to 15 days at 4ºC, 

P. palmata increased surface ‘-a*’ greenness and ‘b*’ yellowness values in a dose-

dependent manner resulting in a final yellow/orange flesh colour.  In general, the dietary 

addition of P. palmata had no effect on pH, lipid oxidation (fresh, cooked and fillet 

homogenates) and microbiological status.  ‘Eating quality’ sensory descriptors (texture, 

odour and oxidation flavour) in cooked salmon fillets were not influenced by dietary P. 

palmata.  Salmon fed 5% PP were very highly significantly positively correlated (p < 

0.001) to ‘eating quality’ overall acceptability.  Dietary P. palmata was ineffective at 

providing red coloration in salmon fillets however pigment deposition enhanced fillets 

with a yellow/orange colour.  Carotenoids from P. palmata may prove to be a natural 

pigment alternative to canthaxanthin in salmon feeds.  
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3.1 INTRODUCTION 

 The current worldwide production of farmed Atlantic salmon (Salmo salar) has 

increased substantially to over 1,000,000 tonnes with the increased demand for highly 

nutritious fresh salmon and salmon related products in Japan, the European Union and 

North America (FAO, 2013).  Wild salmon feed on other fish and small crustaceans such 

as krill containing carotenoid pigments which are responsible for the red-pink salmon 

colour consumers associate with acceptable salmon fillet quality (Breithaupt, 2007).  

Since salmon cannot synthesise carotenoids, farmed salmon diets are mostly 

supplemented with synthetic sources of carotenoids (mainly astaxanthin and to a lesser 

extent canthaxanthin) in order to pigment farmed salmon flesh similar to wild salmon 

(Johnston et al., 2006).   

In nature, astaxanthin (red) exists as three optical isomers (3R,3’R; 3S,3’S and 

3R,3’S), with varying ratios depending on the source.  The 3R,3’R is considered most 

bioavailable and all three isomers are present in different ratios in wild salmon.  Synthetic 

astaxanthin (usually an isomer ratio of 1 : 2 : 1) is absorbed, transported and deposited in 

salmon flesh similar to natural forms of astaxanthin (Krinsky et al., 2004).  Canthaxanthin 

(orange) is not found in wild Atlantic salmon, but is a minor carotenoid in Pacific salmon 

species and is used in some farmed salmon feeds in conjunction with astaxanthin (EC 

Directive 70/524, 2002). 

The colour of salmon is regarded as one of the most important quality criterion 

after freshness (EC Directive 70/524, 2002).  Pigmentation from dietary carotenoids 

(yellow, orange and red) can range from pale faintly pigmented flesh, to strong red tones 

and is considered a vital aspect of commercial feed formulation and fish management.  In 

addition to flesh pigmentation, carotenoids have been linked to proper growth and 

survival as well as the possible protection of tissues from oxidative damage (Tacon, 
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1981).  Synthetic pigments traditionally used in salmon feed continue to be utilized with 

success, however pigments from natural sources should be considered with the increase in 

consumer preference for natural food additives (Dufossé et al., 2005). 

Historically, farmed salmon were fed a diet composed of fish meal (sole protein 

source) and fish oil (major dietary lipid source).  In order to increase sustainability and 

decrease production costs in aquaculture, substitution of fish meal with alternative protein 

sources such as soybean, corn gluten and wheat has been investigated previously.  Today, 

many alternative plant protein sources have been successfully incorporated into fish feeds 

(Bjerkeng et al., 1997; Torstensen et al., 2008).  However, to date, limited research has 

been conducted examining the nutritional value of seaweed (macroalgae) as a potential 

protein substitute for fish meal replacement.  Several sources of biological astaxanthin 

have been utilised to address consumer demand for natural pigmentation of fish including 

yeast (Phaffia rhodozyma), krill (Euphausia superba) or crab wastes, and green micro 

algae (Haematococcus pluvialis) (Breithaupt, 2007).   

The average protein content of the red seaweed (Rhodophyta) Palmaria palmata 

(~35%) is comparable to high-protein vegetables such as soybeans, and as such, may be 

used as an alternative protein source for fish feeds (Mouritsen et al., 2013).  Ten amino 

acids, essential for salmon growth and protein structure, all are present in P. palmata 

(Heen et al., 1993; Morgan et al., 1980).  P. palmata also contains a variety of fat soluble 

carotenoids including high levels of lutein (yellow), α and β-carotene (reddish yellow) as 

well as chlorophyll a/b (mid green to olive green) (Chu, 2012; Dawson, 2007).  

Carotenoids are isoprenoid molecules which aid in the absorption of sunlight and protect 

cells from oxidative stress by quenching singlet oxygen (Krinsky et al., 2004).  The 

carotenoid content of P. palmata varies seasonally and depends on postharvest treatment 

and is generally present in higher levels compared to other seaweed species (Morgan et 
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al., 1980).  Red seaweeds differ in structure and photosynthetic pigments to green and 

brown seaweeds with the red colour attributed to the presence of water soluble light-

harvesting pigments known as phycobiliproteins, found in chloroplasts, which mask the 

other fat-soluble pigments.  There are three major classes of phycobiliproteins; 

phycoerythrin (red), phycocyanin (blue) and allophycocyanin (green-blue) (Sidler, 2004).   

Individually, colour pigments (carotenoids, xanthophylls, chlorophyll and 

phycobiliproteins) found in P. palmata demonstrated potent antioxidant activity in a 

number of test systems including in vitro antioxidant assays (DPPH, ABTS) and the 

inhibition of conjugated dienes and TBARS products in a linoleic acid emulsion 

(Pangestuti & Kim, 2011; Yuan et al., 2005).  Pigments have also been reported to 

possess a range of health promoting properties.  Carotenoids and chlorophyll derivatives 

have exhibited anticancer properties, while phycobiliproteins have been linked to 

significant anti-inflammatory, hepatoprotective and free radical scavenging properties 

(Bendich & Olson, 1989; Khattar & Kaur, 2009; Pangestuti & Kim, 2011; Wijesinghe & 

Jeon, 2012). 

Seaweeds may offer potential for use as a fish meal replacer (protein source), in 

addition to a source of natural pigments and bioactive compounds in fish diets.  Therefore 

the use of seaweed in salmon diets may satisfy an increased consumer demand for 

natural, health-promoting products and merits investigation.  The objective of the study 

was to examine the effect of including P. palmata (0-15%) in farmed salmon diets, on 

quality, shelf-life parameters and sensory properties of salmon fillets.  
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3.2 MATERIALS AND METHODS 

3.2.1 Reagents 

All chemicals used were ‘AnalaR’ grade and were obtained from Sigma-aldrich 

Chemie GmbH, Steinheim, Germany; Oxoid Ltd., Basingstoke, Hampshire, England; 

Merck KGaA, Darmstadt, Germany.  Palmaria palmata was harvested from the coasts of 

Galway bay, Ireland.  

 

3.2.2 Salmon and diets 

After harvesting, P. palmata was subsequently washed and dried before addition 

to the salmon diet formulations.  Diets were prepared at the feed formulation laboratory in 

Carna Research Station, Ryan Institute, National University of Ireland, Galway.  All diets 

were formulated to be iso-nitrogenous (40%), iso-lipidic (25%) and iso-caloric (26 MJ kg
-

1
).  The composition of the experimental diets is outlined in Table 3.1. 

 

Table 3.1.  Composition of the experimental salmon diets with inclusion of Palmaria 

palmata (g kg
-1

, unless otherwise indicated) (adapted from Wan et al. 2014).   

 PC 0% PP 5% PP 10% PP 15% PP 

Fish meal
a
 407.4 407.4 390.8 374.1 357.5 

Fish oil
a
 200.0 200.0 201.4 202.8 204.1 

Palmaria palmata - - 50.0 100.0 150.0 

Corn starch
b
 187.3 187.6 152.8 118.1 83.4 

Lysamine
c
 90.0 90.0 90.0 90.0 90.0 

Glutalys
c
 90.0 90.0 90.0 90.0 90.0 

Mineral & vitamin 

premix
d
 

20.0 
20.0 20.0 20.0 20.0 

Lucantin Pink
e
 0.30 - - - - 

Barox Plus
f
 5.00 5.00 5.00 5.00 5.00 

aUnited fish products Ltd., Donegal, Ireland. 
bLaboratory grade, Sigma –Aldrich Company Ltd., Poole, UK. 
cPurified feed ingredients, Roquette, France. 
dPremier nutrition products Ltd., Rugeley, UK. (Manufacturers 

analysis: Ca-12.09%, Ash-78.708%, Na-8.858%, Vitamin A-

1.0μg/kg, Vitamin D3 0.10%, Vitamin-E 7.0 g/kg, Cu-250 mg, Mg 

15.6 g/kg and P 5.2 g/kg). 
eBASF, Ludwigshafen, Germany. 
fKemin Europa N.V., Herentals, Belgium. 
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Atlantic salmon smolts (Salmo salar) were obtained from a commercial company 

based at Lough Fee, Connemara, Ireland.  After an 8 week acclimation period, a 16-week 

completely randomised experimental feed trial was carried out at the Carna Research 

Station.  Salmon (n = 33, average fish weight ~ 170.4g) were randomly assigned to one of 

fifteen tanks (three tanks per treatment) which consisted of five different experimental 

formulated diets.  The positive control group (PC) were fed a basal diet plus synthetic 

astaxanthin (0.3 g/kg feed) (Table 3.1).  The remaining four groups were fed the basal 

diet plus P. palmata (PP) at 0 (0% PP), 5 (5% PP), 10 (10% PP) and 15% (15% PP) 

inclusion levels.  The salmon were hand-fed on five occasions over the course of each 

day and housed in 1000 L tanks fed by a filtered flow-through seawater supply (ambient 

temperature regime).  At the end of the feeding trial, salmon (average fish weight ~ 

419.90 g), were euthanised with a sharp blow to the head followed by the pithing of the 

brain and were gutted.  Fresh (raw) salmon fillets were transported on ice at 4ºC to the 

School of Food and Nutritional Sciences at University College Cork, Ireland.  Further 

experimental site details, feeding trial conditions and the growth of the fish are reported 

in Wan et al. 2014.   

 

3.2.3 Proximate analysis of fresh salmon fillets 

The proximate composition of fresh salmon fillets was reported on a wet weight 

basis.  Protein (nitrogen x 6.25) was determined by the Kjeldahl method of the 

Association of Official Analytical Chemists (AOAC, 1995).  The moisture and fat content 

were measured using the SMART Trac rapid moisture/fat analyser (CEM Corporation, 

NC, USA).  The ash content was determined using a muffle furnace (AOAC, 1923).  

Compositional analysis results were expressed as % on wet weight basis. 

 



Inclusion of Palmaria palmata in Atlantic salmon diets 

______________________________________________________________________________________  

 - 124 - 

3.2.4 Salmon processing and packaging 

Fresh salmon fillets (~100 g) (PC, 0, 5, 10 and 15% PP) were placed in low 

oxygen permeable (<1cm
3
/m

2
/24 hr at STP) polystyrene/ethylvinylalcohol/polyethylene 

trays.  Trays were covered with a low oxygen permeable (3 cm
3
/m

2
/24 hr at STP) 

laminated barrier film with a polyolefin heat-sealable layer.  Using modified atmosphere 

packaging technology, the trays were flushed with 60% N2 : 40% CO2 using a vacuum-

sealing unit (VS 100, Gustav Müller and Co. KG, Bad Homburg, Germany) equipped 

with a gas mixer (Witt-Gasetechnik GmbH and Co. KG, Witten, Germany) and heat-

sealed.  Fresh salmon fillets were stored for up to 15 days under fluorescent lighting 

conditions (approximately 660 lx) at 4°C.  The gas atmosphere (% O2 and % CO2) in the 

modified atmosphere packs (MAP) was checked using a CheckMate 9900 (PBI-

DanSensor, Denmark).  Immediately after gas flushing, MAP contained 56.91 ± 0.53% 

N2 and 42.95 ± 0.42% CO2.  The average gas composition in MAP at the end of the 15 

day storage period was 60.40 ± 1.66% N2 and 39.60 ± 1.66% CO2.  Percent nitrogen was 

calculated by difference of % O2 and % CO2. 

In a cooked fish study, salmon fillets from all treatments  (PC, 0, 5, 10 and 15% 

PP) were placed on aluminium foil lined trays and cooked at 180°C for 12 min in a fan-

assisted convection oven (Zanussi Professional, Model 10 GN1/1, Conegliano, Italy) until 

an internal temperature of 72°C was reached.  Cooked fillets were placed in trays over-

wrapped with oxygen permeable film and stored aerobically for up to 5 days at 4°C.   

 

3.2.5 Measurement of salmon fillet quality and shelf-life parameters 

Salmon fillet pH, colour (CIE ‘L*’ lightness, ‘a*’ redness and ‘b*’ yellowness 

values), lipid oxidation (2-thiobarbituric acid reactive substances (TBARS)), 

microbiological analysis (mesophilic and psychrotrophic total viable counts) and sensory 
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evaluation (‘visual’ and ‘eating quality’) were measured at intervals during storage as 

described in Chapter 2 (sections 2.2.5-2.2.9).  The pH, colour measurements, lipid 

oxidation and microbiological analysis of fresh salmon fillets were recorded on days 1, 3, 

7, 12 and 15 of storage.  In cooked salmon fillets stored aerobically, lipid oxidation was 

measured on days 0, 1, 3 and 5 of storage.  Sensory analysis (‘visual’ and ‘eating quality’) 

of fresh salmon fillets stored in 60% N2 : 40% CO2 was performed in duplicate by 26 

naïve assessors on days 1 and 7 of storage.  ‘Visual’ sensory analysis descriptors of fresh 

salmon fillets were pinkness, whiteness, drip, purchasing appeal and overall acceptability.  

‘Eating quality’ sensory analysis descriptors of cooked salmon fillets (180°C for 12 min 

in a fan-assisted convection oven) were colour, texture, odour, oxidation flavour and 

overall acceptability.   

 

3.2.6 Statistical analysis 

All analyses were performed in duplicate.  Mean sample values (n = 3) for each of 

the five treatment groups (PC, 0, 5, 10 and 15% PP) were subjected to statistical analysis.  

A full repeated measures two-way analysis of variance (ANOVA) was conducted to 

investigate the effects of dietary P. palmata level, time and their interactions.  Dietary P. 

palmata level represented the ‘between-subjects’ factor and the effect of time was 

measured using the ‘within-subjects’ factor.  Tukey’s test was used to adjust for multiple 

comparisons between treatment means.  The analysis was carried out using SPSS 18.0 for 

Windows (SPSS, Chicago, IL, USA) software package. 

 ‘Visual’ and ‘eating quality’ sensory data was analysed with ANOVA-Partial 

Least Squares Regression (APLSR) to process the mean data accumulated from the 26 

test subjects in duplicate. The X-matrix was designated as 0/1 for treatment and days with 

the Y-matrix designated as sensory and instrumental variables. The optimal number of 



Inclusion of Palmaria palmata in Atlantic salmon diets 

______________________________________________________________________________________  

 - 126 - 

components in the ASLSR models presented was determined to be 6 principal 

components. In these models assessor and session level effects were removed using level 

correction. The validated model explained variance was -0.51% and 6.27% and the 

calibrated variance was 2.38% and 8.97% on days 1 and 7 respectively. To derive 

significance indications for the relationships determined in the quantitative APLSR, 

regression coefficients were analyzed by jack-knifing which is based on cross-validation 

and stability plots (Martens & Martens 1999, 2001).  All analyses were performed using 

the Unscrambler Software, version 9.8 (CAMO ASA, Trondheim, Norway). 
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3.3 RESULTS AND DISCUSSION 

3.3.1 Proximate analysis and pH of salmon fillets 

The protein contents of fresh (raw) salmon fillets fed with iso-nitrogenous diets 

ranged from ~20 to 22% for all dietary treatments (Table 3.2).  Similarly, Bjerkeng et al. 

(1997) reported a protein content of ~18% for Atlantic salmon fillets from fish fed fish 

meal or soybean as a fish meal replacer.  Levels of fat ranged from ~2 to 3% with no 

significant differences between dietary treatments.  In a similar study, the lipid content of 

Oncorhynchus mykiss (rainbow trout) fillets was not affected by dietary addition of 

Porphyra dioica (red algae) at levels ranging from 0-15% (Soler-Vila et al. 2009).  

Moisture and ash levels were unaffected by P. palmata supplementation with levels 

ranging from ~74 to 76% and ~1.2 to 1.4%, respectively.  Several studies have reported 

no effect on salmon fillet proximate composition when plant based meals are used as 

alternative protein and lipid sources compared to traditional feed (fish meal and oil) 

(Bjerkeng et al., 1997; Rasmussen, 2007).  In the present study, the proximate analysis of 

salmon fillets from salmon fed P. palmata is comparable to those fed the positive control 

(PC) diet.  Therefore, P. palmata may be used as a potential replacement functional 

ingredient for fish meal in Atlantic salmon feed without detrimentally affecting the 

proximate composition of salmon fillets.     

 

Table 3.2.  Effect of dietary Palmaria palmata (PP) on the proximate composition of 

fresh salmon fillets.  

Treatment % on wet weight basis 

  Protein  Moisture  Fat  Ash 

PC 21.13 ± 0.82
a
  75.45 ± 1.56

a
  2.13 ± 0.89

a
  1.29 ± 0.12

a
 

0% PP 21.01 ± 0.61
a
  75.49 ± 1.40

a
  2.27 ± 1.02

a
  1.23 ± 0.19

a
 

5% PP 22.00 ± 0.59
a
  73.74 ± 1.90

a
  2.85 ± 1.45

a
  1.40 ± 0.22

a
 

10% PP 22.45 ± 1.26
a
  74.40 ± 1.77

a
  1.83 ± 0.74

a
  1.32 ± 0.12

a
 

15% PP 20.52 ± 0.66
a
  74.89 ± 2.14

a
  3.32 ± 1.71

a
  1.27 ± 0.12

a
 

aWithin each composition type, mean values (± standard deviation) in the same column are not 

significantly different, p > 0.05.   
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The pH of the fresh salmon fillets ranged from ~6.27 to 6.33 over the 15 day 

storage period and was unaffected by the addition of dietary P. palmata.  Similarly, Einen 

et al. (2002) reported fillet pH stability (6.3) over storage time for up to 100 hours of 

Atlantic salmon (Salmo salar).  

  

3.3.2 Colour stability of fresh salmon fillets 

Lightness values of the PC group were significantly lower (p < 0.05) compared to 

15% PP on day 1 and to 0 and 10% PP on day 7 of storage (Table 3.3).  The lower 

lightness ‘L*’ values of PC fillets was attributed to the concurrent increase in flesh 

pigment concentration provided by deposition of synthetic astaxanthin in the fish muscle.  

Similarly, Buttle et al. (2001) reported a similar pattern of decreased lightness in fresh 

salmon fillets from Atlantic salmon fed astaxanthin, canthaxanthin or an 

astaxanthin/canthaxanthin mix (0.06 g/kg feed). 

Trends indicated an increase in surface redness ‘a*’ values of PC salmon fillets 

over time, however results were not statistically significant (p > 0.05) (Table 3.3).  The 

increased surface redness due to synthetic astaxanthin deposited in the PC salmon fillets 

resulted in a red/pink colour.  In the salmon fed P. palmata (0-15% PP), the surface ‘-a*’ 

greenness of salmon fillets increased as a function of P. palmata concentration.   The 

increase in surface greenness as a function of dietary P. palmata indicated deposition of 

pigments which were ineffective at providing red coloration.  Similarly, Chatzifotis et al. 

(2005) reported the inefficacy of the red carotenoid lycopene, contained in tomatoes, in 

providing red coloration in red porgy (Pagrus pagrus).  P. palmata contains other 

pigments available for absorption and deposition in the fish muscle such as chlorophyll 

a/b (green) and phycobiliproteins which include R-phycocyanin (greenish blue), 

allophycocyanin  
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Table 3.3.  Effect of dietary Palmaria palmata (PP) on the surface lightness (‘L*’ value), redness (‘a*’ value) and yellowness (‘b*’ 

value) values of fresh salmon fillets stored in modified atmosphere packs (60% N2 : 40% CO2) for up to 15 days at 4°C.   

Treatment   Storage time at 4°C, days 

 Parameter  1  3  7  12  15 

PC Lightness  41.29 ± 2.06
aA

  44.72 ± 1.81
aAB

  45.09 ± 2.13
bAB

  48.21 ± 1.76
aB

  48.75 ± 3.86
aB

 

0% PP L*  44.73 ± 2.35
abA

  45.54 ± 2.05
aAB

  50.42 ± 1.23
aBC

  51.03 ± 2.05
aC

  49.67 ± 2.05
aABC

 

5% PP   46.78 ± 2.11
abA

  45.82 ± 0.50
aA

  49.78 ± 3.01
abA

  50.56 ± 0.90
aA

  49.88 ± 2.09
aA

 

10% PP   46.85 ± 2.79
abA

  47.44 ± 3.30
aA

  50.49 ± 0.97
aA

  49.59 ± 1.36
aA

  50.02 ± 3.00
aA

 

15% PP   48.24 ± 1.40
bAB

  45.72 ± 1.00
aA

  49.28 ± 0.25
abBC

  49.21 ± 0.62
aBC

  52.10 ± 1.73
aC

 

            

PC Redness    5.63 ± 1.47
bA

    6.69 ± 1.61
bA

    6.38 ± 1.79
bA

    6.08 ± 0.84
bA

    8.29 ± 1.32
bA

 

0% PP +a*  -0.61 ± 0.41
aA

  -0.53 ± 0.43
aA

  -0.63 ± 0.27
aA

  -1.07 ± 0.15
aA

  -0.48 ± 1.02
aA

 

5% PP Greenness  -1.21 ± 0.26
aA

  -1.07 ± 0.68
aA

  -0.55 ± 0.82
aA

  -1.11 ± 1.24
aA

  -1.01 ± 0.15
aA

 

10% PP -a*  -1.54 ± 0.28
aA

  -0.54 ± 1.01
aA

  -0.71 ± 0.40
aA

  -1.22 ± 0.64
aA

  -2.29 ± 0.09
aA

 

15% PP   -1.35 ± 0.59
aA

  -1.49 ± 0.18
aA

  -1.27 ± 0.95
aA

  -1.49 ± 0.89
aA

  -2.11 ± 0.36
aA

 

            

PC Yellowness  10.84 ± 0.92
bA

  11.50 ± 2.00
bA

  11.10 ± 0.76
bA

  12.81 ± 0.73
bA

  12.81 ± 1.47
bA

 

0% PP b*    2.52 ± 0.38
aA

    2.58 ± 0.47
aAB

    4.16 ± 1.83
aAB

    4.05 ± 0.65
aAB

    4.98 ± 0.16
aB

 

5% PP     3.88 ± 0.46
aA

    5.05 ± 0.31
acA

    6.12 ± 1.57
acA

    6.14 ± 1.43
acA

    5.59 ± 0.37
aA

 

10% PP     6.54 ± 0.41
cA

    7.47 ± 0.15
cdA

    8.60 ± 0.95
bcA

    8.00 ± 1.69
cA

    7.92 ± 1.73
acA

 

15% PP     8.98 ± 1.32
bA

     8.58 ± 0.58
dA

   10.43 ± 0.37
bA

     8.96 ± 1.54
cA

   11.01 ± 2.40
bcA

 
abWithin each parameter and storage day, mean values (± standard deviation) in the same column bearing different superscripts are significantly  

different, p < 0.05.   
ABCWithin each treatment, mean values (± standard deviation) in the same row bearing different superscripts are significantly different, p < 0.05.   
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(greenish blue), R-phycoerythrin (red) and β-phycoerythrin (red) (Prasanna et al., 2007).  

In the present study, chlorophyll, R-phycocyanin and allophycocyanin, all of which 

exhibit green colour and may have contributed to the final greenness colour observed in 

the salmon fillets. 

General trends indicated that the surface yellowness ‘b*’ values of fillets (0-15% 

PP) increased over time however results were not statistically significant (p > 0.05) 

(Table 3.3).  Yellowness (10 and 15% PP) values were significantly (p < 0.05) higher 

than 0% PP on each storage day (Table 3.3).  On days 1, 7 and 15 the yellowness of PC 

and 15% PP were similar.  In a previously reported study, Rainbow trout fed diets 

containing P. dioica (0-15%) with no added astaxanthin, exhibited stronger orange flesh 

tones in fillets as a function of the red algae concentration.  It was concluded that red 

algae contain fat soluble yellow xanthophylls, especially lutein and zeaxanthin which 

contributed to the final flesh coloration (Soler-Vila et al., 2009).  Olsen & Baker (2006) 

reported the absorption and deposition of lutein, structurally similar to astaxanthin, in 

Atlantic salmon muscle.  In the present study, the increased surface yellowness is most 

likely due to deposition of fat soluble carotenoids, mainly lutein, from P. palmata. 

Several factors influence carotenoid deposition in the fish muscle, including 

quantity available, carotenoid structure and the ability of salmon to metabolise or 

biotransform available carotenoids.  The final carotenoid structure and level of deposition 

will determine the final colour of the fillet (Breithaupt, 2007).  In the present study, the 

carotenoid profile (lutein, α and β-carotene) of P. palmata was not sufficient to increase 

surface redness of the salmon fillets, however the carotenoids did enhance surface 

yellowness.  In recent years, fish feed ingredients include many plant sources like maize 

gluten with significant amounts of yellow pigments from carotenoids such as lutein and 

zeaxanthin (Chimsung, 2012).  Similarly, canthaxanthin, sometimes used in farmed 
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salmon feed, imparts an orange colour in salmon flesh, therefore is used in conjunction 

with astaxanthin to achieve desired final red/pink pigmentation (Buttle, 2001).  Due to 

final yellow/orange flesh colour of salmon fillets, in the present study, the carotenoids 

from P. palmata may be considered as a potential natural pigment alternative to the use of 

canthaxanthin in farmed salmon feed.   

 

3.3.3 Lipid oxidation in fresh and cooked salmon fillets and fresh salmon fillet 

homogenates 

Overall the levels of lipid oxidation in fresh salmon fillets in MAP were low with 

mean values ranging from 0.07-0.11 mg MDA kg
-1

 salmon (Table 3.4).  The low levels of 

lipid oxidation may be attributed to physical condition of the salmon fillets (intact) and 

the gaseous environment within the MAP (60% N2 : 40% CO2).  Randell et al. (1999) 

also reported low lipid oxidation values ( < 1 mg MDA kg
-1

) for salmon fillets stored in 

MAP (60% CO2 : 40% N2 or 40% CO2 : 60% N2) at 2°C.  Processes which change the 

physical structure of muscle foods such as grinding or mincing and cooking accelerate 

lipid oxidation reactions.  In cooked salmon fillets, lipid oxidation significantly (p < 0.05) 

increased over the 5 day storage period (Figure 3.1) and levels of lipid oxidation were 

higher than in fresh salmon fillets with mean values ranging from 0.33-1.29 mg MDA  

kg
-1

 salmon.  The addition of P. palmata in salmon diets did not significantly influence 

lipid oxidation in fresh or cooked salmon fillets.   

The increase in ‘-a*’ (greenness) and ‘b*’ (yellowness) colour measurements with 

increasing dietary P. palmata concentration indicated deposition of colour pigments in 

the muscle.  The antioxidant potential in vitro of both fat and water soluble compounds 

(lutein, β-carotene, phycobiliproteins and chlorophyll) of P. palmata is well documented 

(Munir et al., 2013).  Additionally, the antioxidant activity of extracts from P. palmata  
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Table 3.4.  Effect of dietary Palmaria palmata (PP) on lipid oxidation (TBARS) in fresh salmon fillets stored in modified 

atmosphere packs (60% N2 : 40% CO2) for up to 15 days at 4°C.  

Treatment  Storage time at 4°C, days 

  1  3  7  12  15 

PC  0.103 ± 0.02aA  0.073 ± 0.01aAB  0.098 ± 0.00aAB  0.071 ± 0.01aB  0.101 ± 0.01aA 

0% PP  0.089 ± 0.01aAB  0.077 ± 0.01aAB  0.101 ± 0.01aA  0.057 ± 0.02aB  0.102 ± 0.00aA 

5% PP  0.084 ± 0.02aAB  0.065 ± 0.01aA  0.105 ± 0.01aB  0.070 ± 0.02aAB  0.069 ± 0.01aAB 

10% PP  0.088 ± 0.02aA  0.062 ± 0.00aA  0.092 ± 0.01aA  0.066 ± 0.02aA  0.090 ± 0.00aA 

15% PP  0.081 ± 0.02aA  0.065 ± 0.01aA  0.089 ± 0.01aA  0.084 ± 0.01aA  0.093 ± 0.01aA 
aWithin each storage day, mean values (± standard deviation) in the same column are not significantly different, p > 0.05.   

             ABWithin each treatment, mean values (± standard deviation) in the same row bearing different superscripts are significantly  

          different, p < 0.05.   

*TBARS, mg malondialdehyde (MDA)/kg salmon. 
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Figure 3.1.  Effect of dietary Palmaria palmata (PP) on lipid oxidation (TBARS) in cooked salmon fillets  

stored aerobically for up to 5 days at 4°C.  
a
Within each storage day, mean values (± standard deviation) are 

not significantly different, p > 0.05. 
ABC

Within each treatment, mean values (± standard deviation) bearing 

different superscripts are significantly different, p < 0.05.  (    ), PC; (    ), 0% PP; (    ), 5% PP;  

(    ), 10% PP; (    ), 15% PP. 
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has been reported using a number of in vitro antioxidant assays (deoxyribose assay, 

DPPH, ABTS, TBARS, reducing activity, transition metal ion chelation) (Yuan et al., 

2005).  Previous studies indicated that dietary antioxidants such as α-tocopherol fed to 

Atlantic Halibut enhanced lipid stability in fish muscle where significantly lower levels of 

lipid oxidation was reported in fish fillets (Ruff et al., 2002).  Despite the antioxidant 

potential of P. palmata no increase in lipid stability of the salmon fillet was observed in 

the present study.   

To further examine the antioxidant potential of compounds from P. palmata 

deposited in the fish muscle, raw salmon fillet homogenates were subjected to iron 

(FeCl3) ascorbate-induced lipid oxidation.  Following FeCl3 and ascorbic acid addition, 

lipid oxidation significantly (p < 0.05) increased in all tissue homogenates over the 24 hr 

storage period.  No significant differences were observed between PC and all PP 

treatments (0-15%) with mean values ranging from 0.21-1.77 mg MDA kg
-1

 salmon 

(Figure 3.2).  Similarly, astaxanthin deposited in farmed Atlantic salmon fillets 

demonstrated no significant antioxidant activity under standardised conditions of 

accelerated oxidation.  Although no effects of astaxanthin as an antioxidant in fish muscle 

was measured, it was concluded that retention of the carotenoid may offer other 

beneficial biological effects such as enhanced immune response, inhibition of mutagensis 

and reduction of photo-induced nuclear damage in cells and tissues (Bendich & Olson, 

1989; Ruff et al., 2002). 

Under conditions employed in the present study (fresh fillets stored in MAP, 

cooked fillets stored aerobically, and fresh fillet homogenates subjected to iron-ascorbate 

induced oxidation) levels of lipid oxidation in salmon fillets were unaffected by dietary P. 

palmata.  However, in vitro antioxidant activity of P. palmata has been reported using  



- 1
3
5
 - 

  

 

 

0.0

0.5

1.0

1.5

2.0

2.5

0 1 4 24

T
B

A
R

S
, 
m

g
 M

D
A

 k
g

-1
sa

lm
o

n
 t

is
su

e

Time, hours

A

a

A

a A

a
A

a

A

a

B

a
AB

a
B

a
B

a

B

a

C

a
C

a C

a

C

a

C

a

D

a
D

a D

a
D

a

D

a

 
 

Figure 3.2.  Effect of dietary Palmaria palmata (PP) on lipid oxidation (TBARS) in salmon fillet homogenates 

containing equimolar FeCl3/ascorbate (45 M) and stored for 24 hours at 4°C.  
a
Within each storage time, mean 

values (± standard deviation) are not significantly different, p > 0.05. 
ABCD

Within each treatment, mean values 

(± standard deviation) bearing different superscripts are significantly different, p < 0.05.  (    ), PC; (    ), 0% PP; 

(    ), 5% PP; (    ), 10% PP; (    ), 15% PP. 
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extracts with purified bioactive components and at concentrations greater than those 

tested in the present study.  The antioxidant activity of carotenoids and the other 

compounds, in vivo, depends on numerous factors, such as form, concentration, cellular 

distribution and interaction with other components present in muscle tissue (Krinsky, 

2004).  In the present study, the lack of antioxidant activity of pigments in salmon fillets 

may have been due to form or concentration of components deposited in the muscle.  

Although retention of pigments from P. palmata did not offer an increase in lipid 

stability to the salmon fillets under the conditions tested, carotenoids are still necessary 

for salmon growth and development (Tacon, 1981).  Natural pigments retained in salmon 

fillets, may offer added benefit to consumers.  Lutein, for example, has been linked to 

maintenance of normal visual function in the human eye macula (Christaki et al., 2013).  

Further studies would need to examine the bioavailability of colour pigments deposited in 

the fish muscle.  

 

3.3.4 Microbiology of fresh salmon fillets 

Mesophilic and psychrotrophic total viable counts (TVC) significantly (p < 0.05) 

increased during storage in MAP in fresh salmon fillets, and ranged from ~1.9 to 9.1 log10 

cfu g
-1

 and ~2.3 to ~9.0 log10 cfu g
-1

, respectively (Table 3.5).  Mesophilic counts 

obtained were similar to previously reported values for fresh salmon fillets stored at 4°C 

under normal conditions where initial colony counts ranged from 2 to 5 log10 cfu g
-1

 on 

day 0 and end of shelf-life determined as colony counts > 7 log10 cfu g
-1

 (Rasmussen et 

al., 2002).  In the present study, on day 12 mesophilic and psychrotrophic counts of all 

salmon fillets were ~ 8 log10 cfu g
-1

, and considered unsafe for human consumption.  The 

TVC for 5% PP, 10% PP and 15% PP were similar (p > 0.05) for all treatments, on each 

storage day, compared to 0% PP and PC indicating that dietary P. palmata did not result  
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Table 3.5.  Effect of dietary Palmaria palmata (PP) on the microbial status* (mesophilic and psychrotrophic) of fresh  

salmon fillets stored in modified atmosphere packs (60% N2 : 40% CO2) for up to 15 days at 4°C.   

Treatment   Storage time at 4°C, days 

 Temp  1  3  7  12  15 

PC 30°C  1.93 ± 0.40
aA

  2.69 ± 0.64
aA

  6.83 ± 0.98
aB

  8.39 ± 0.62
aC

  9.27 ± 0.59
aC

 

0% PP (mesophilic  2.03 ± 0.35
aA

  1.66 ± 1.52
aA

  5.41 ± 1.00
aB

  8.38 ± 0.33
aC

  9.01 ± 1.39
aC

 

5% PP count)  2.35 ± 0.37
aA

  2.63 ± 0.49
aA

  5.98 ± 1.22
aB

  7.74 ± 1.19
aBC

  8.87 ± 0.66
aC

 

10% PP   1.78 ± 1.56
aA

  2.81 ± 0.36
aA

  5.67 ± 0.76
aB

  7.37 ± 1.07
aBC

  9.38 ± 0.27
aC

 

15% PP   1.43 ± 1.25
aA

  1.49 ± 1.29
aA

  6.55 ± 0.92
aB

  8.40 ± 0.46
aBC

  9.14 ± 0.22
aC

 

            

PC 4°C  1.96 ± 1.71
aA

  3.59 ± 1.01
aA

  6.57 ± 0.75
aB

  8.61 ± 0.54
aB

  8.89 ± 0.56
aB

 

0% PP (psychrotrophic  1.90 ± 1.65
aA

  3.26 ± 0.73
aAB

  5.35 ± 0.96
aB

  8.55 ± 0.28
aC

  9.44 ± 1.30
aC

 

5% PP count)  1.13 ± 1.96
aA

  2.37 ± 2.12
aAB

  5.86 ± 0.90
aBC

  7.54 ± 1.34
aC

  8.69 ± 0.91
aC

 

10% PP   3.43 ± 0.43
aA

  2.28 ± 2.10
aA

  5.56 ± 0.88
aBC

  7.70 ± 0.70
aCD

  8.89 ± 0.12
aD

 

15% PP   3.18 ± 0.31
aA

  2.48 ± 2.15
aA

  6.60 ± 1.03
aB

  8.59 ± 0.48
aB

  9.18 ± 0.22
aB

 
                     aWithin each parameter and storage day, mean values (± standard deviation) in the same column are not significantly different, p > 0.05.   

      ABCDWithin each treatment, mean values (± standard deviation) in the same row bearing different superscripts are significantly different, p < 0.05.   

               *log10CFU (colony forming units)/g salmon. 
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in salmon fillets with enhanced antimicrobial stability. 

Previously reported studies, indicate that the antimicrobial activity of seaweeds is 

dependant on concentration, solvent use and extraction method, as well as the sensitivity 

of the methods used to determine antimicrobial activity (Cox et al., 2010; Dubber & 

Harder 2008).  Cox et al. (2010) reported methanolic extracts of P. palmata to be 

moderately effective against Listeria monocytogenes (62.09%) and weak activity against 

Enterococcus faecalis, Pseudomonas aeruginosa and Salmonella abony (39.28, 19.22 and 

2.21%, respectively) using the microtitre method.  Ethanolic extracts of P. palmata 

increased inhibition of bacteria to 100 and 93.89% against E. faecalis and P. aeruginosa, 

respectively.  However, no inhibition of 5 fish pathogenic bacteria strains was found 

using P. palmata extracts in the standard agar plate diffusion assay (Bansemir et al., 

2006).  In vitro studies demonstrated antimicrobial activity through the use refined or 

purified P. palmata extracts, however, to date, no scientific literature exists demonstrating 

antibacterial activity of seaweed or seaweed extracts in food products.  In the present 

study, the lack of antimicrobial activity in the salmon fillets may have been due to purity 

or level (5-15%) of P. palmata incorporated in the salmon feed.  

 

3.3.5 Sensory evaluation of fresh and cooked salmon fillets 

In ‘visual’ sensory analysis, fillets from fresh salmon fed astaxanthin (PC) were 

very highly significantly positively correlated to pinkness, purchasing appeal and overall 

acceptability (p < 0.001) on days 1 and 7 of storage (Table 3.6).  On days 1 and 7 of 

storage, salmon fed at all levels (0, 5, 10 and 15%) were significantly negatively 

correlated with pinkness, purchasing appeal and overall acceptability.  The observations 

of the panellists was in agreement with instrumental ‘a*’ redness values, where PC had 

the largest ‘a*’ values compared to all PP treatments.  Proximate composition indicated  
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Table 3.6.  Significance of regression coefficients (ANOVA values) of sensory analysis scores for fresh and cooked salmon fillets as derived by jack-

knife uncertainty testing.      

Parameter  Storage time, days / Treatment 

  PC  0% PP  5% PP  10% PP  15% PP 

Visual 

Sensory 

Analysis 

 

1  7  1  7  1  7  1  7  1  7 

Pinkness   0.00***  -0.02*  -0.10   0.00***  -0.00***  -0.00***  -0.05*  -0.003**  -0.02*  -0.00*** 

Whiteness  -0.00***   0.02*   0.10  -0.00***   0.00***   0.00***   0.04*   0.003**   0.01*   0.00*** 

Drip  -0.28   0.37  -0.55   0.53   0.28  -0.53   0.32  -0.56   0.29  -0.52 

Purchasing 

appeal 

 
 0.00***  -0.04*  -0.10   0.00***  -0.00***  -0.00***  -0.06  -0.003**  -0.03*  -0.00*** 

Overall 

acceptability 

 
 0.00***  -0.03*  -0.10   0.00***  -0.00***  -0.00***  -0.05*  -0.003**  -0.02*  -0.00*** 

Eating Quality 

Sensory 

Analysis 

 

                   

Colour   0.00***   0.05*  -0.11   -0.00***  -0.00***  -0.00***  -0.07  -0.003**  -0.03*  -0.00*** 

Texture   0.35  -0.39  -0.35   0.18  -0.36  -0.20  -0.40  -0.21  -0.34  -0.16 

Odour  -0.68   0.70  -0.39   0.40   0.68  -0.43   0.69  -0.40   0.69  -0.42 

Oxidation 

flavour 

 
-0.24   0.33   0.39  -0.33   0.24   0.35   0.31   0.36   0.28   0.32 

Overall 

acceptability 

 
 0.00***  -0.06  -0.13   0.00***   0.00***   0.00***  -0.08  -0.02*  -0.03*   0.00*** 

Significance of regression coefficients; * = p < 0.05; ** = p < 0.01; *** = p < 0.001. 
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moisture (~74 to 76 g 100 g
-1

) was similar across all treatments (Table 3.2) and dietary  

P. palmata did not influence drip loss on days 1 and 7 of storage.  Randell et al. (1999) 

reported drip loss was low (~ 1.5%) in salmon stored in MAP (60% N2 : 40% CO2).   

In ‘eating quality’ sensory analysis, PC was very highly significantly positively 

correlated to colour of cooked salmon fillets while 5% PP was very highly significantly 

negatively correlated to fillet colour (p < 0.001) on both analysis days.  After cooking, 

salmon fillets containing PP appeared whiter than the fresh salmon fillets (5-15% PP).  

Sensory panellists were able to distinguish between the control and salmon fed PP based 

on the colour of the cooked salmon fillets.  Texture, odour and oxidation flavour in 

cooked salmon fillets were not significantly influenced by dietary PP.  The ability of 

panellists to detect no oxidation/off flavours in the salmon fillets is in agreement with low 

levels of lipid oxidation (TBAR) results.  On days 1 and 7, salmon fed 5% PP were very 

highly significantly positively correlated (p < 0.001) to overall acceptability (Table 3.6).  

In a previously reported study, red tilapia (Oreochromis niloticus) fed Spirulina platensis 

as the sole source of fish feed did not impact on the taste and smell parameters of the 

cooked fish fillets (Lu et al., 2003).  In the present study, salmon fed low levels of PP 

(5%) increased overall acceptability, compared to PC, by sensory panellists despite their 

ability to distinguish between fillets based on colour.  Therefore, P. palmata incorporated 

in the salmon feed at low levels (5%) may offer enhancement in overall acceptability with 

out negatively impacting on texture, odour or oxidation flavours. 



Inclusion of Palmaria palmata in Atlantic salmon diets 

______________________________________________________________________________________   

 - 141 - 

3.4 CONCLUSIONS 

Salmon fillet surface colour was enhanced with a yellow/orange colour due to 

deposition of P. palmata pigments.  Due to consumers growing preference of additives 

from natural sources, P. palmata may prove to be a natural pigment alternative when 

incorporated into salmon feed and have application in the development of novel 

functional salmon products.  Further research is necessary to investigate if more refined 

P. palmata extracts increase lipid stability.  P. palmata enhanced overall ‘eating quality’ 

acceptability of salmon fillets with comparable product quality (texture, odour and 

oxidation flavour) and proximate composition to Atlantic salmon (S. salar) fed synthetic 

astaxanthin.  Therefore P. palmata may be considered as a replacement functional 

ingredient for farmed Atlantic salmon feed.  Further studies will need to examine the use 

of P. palmata with other carotenoid sources to adequately reach final red/pink flesh levels 

acceptable to consumers.  
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ABSTRACT 

A seaweed extract containing laminarin (L) and fucoidan (F) (L/F) was 

manufactured from brown seaweed (Laminaria digitata) in spray-dried (L/F-SD) and wet 

(L/F-WS) forms.  The effect of supplementation of pig diets with L/F-SD and L/F-WS (L, 

500 mg/kg feed; F, 420 mg/kg feed) for 21 days pre-slaughter, on quality indices of fresh 

(longissimus thoracis et lumborum (LTL)) steaks was examined.  Susceptibility of 

porcine liver, heart, kidney and lung tissue homogenates to iron-induced (1 mM FeSO4) 

lipid oxidation was also investigated.  Dietary supplementation with L/F did not increase 

plasma total antioxidant status (TAS).  In LTL steaks stored in modified atmosphere 

packs (80% O2 : 20% CO2) (MAP) for up to 15 days at 4ºC, muscle pH, surface colour 

(CIE ‘L*’ lightness, ‘a*’ redness and ‘b*’ yellowness values), lipid oxidation and 

microbiology (psychrotrophic and mesophilic counts, log CFU/g pork) were unaffected 

by dietary L/F.  A statistically significant reduction in lipid oxidation (p < 0.05) was 

observed in LTL steaks from 75% of pigs (n = 6) fed L/F-WS compared to controls.  

Iron-induced lipid oxidation increased in liver, heart, kidney and lung tissue homogenates 

over the 24 hr storage period and dietary L/F did not significantly reduced lipid oxidation 

in organ tissue homogenates.     
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4.1 INTRODUCTION 

Meat and meat products are considered to be a vital component of a healthy diet 

and important sources of protein, vitamins, minerals and trace elements.  In recent years, 

consumer confidence in meat has been undermined by a number of health concerns 

related to meat consumption, for example, saturated fat and cholesterol and the associated 

risk of heart disease, cancer and obesity.  Increased consumer demand for healthier meat 

and meat products, with reduced fat levels, cholesterol, sodium chloride, nitrite, enhanced 

fatty acid profile and containing health promoting/enhancing ingredients has led to the 

development of functional meat and meat products (Toldrá & Reig, 2011).  The mode of 

action of functional foods is based on the use of functional ingredients which exert a 

range of bioactive properties such as antioxidant, anti-inflammatory, anti-cancer and anti-

diabetic activities.  As concerns regarding the safety and toxicity of synthetic antioxidants 

grow, the functional properties of many plant extracts have been investigated for their 

potential use as novel functional ingredients/nutraceuticals.   

A number of strategies exist, whereby antioxidants may be incorporated into meat 

and meat products in order to facilitate the development of functional meats with 

enhanced health-promoting properties (Khan et al., 2011).  Strategies include the 

supplementation of animal diets with antioxidant compounds or the direct addition of 

antioxidants to processed meat products.  Previous research has focused on dietary 

supplementation studies, for example, vitamin E (α-tocopheryl acetate), significantly 

improved the lipid stability of fresh pork (Asghar et al., 1991; Lanari et al., 1995; 

Monahan et al., 1994).  Similarly, antioxidant plant extracts such as tea catechins reduced 

lipid oxidation in poultry muscle (Tang et al., 2001).  Dietary supplementation of oregano 

oleoresins into porcine diets also reduced lipid oxidation in minced pork (Janz et al., 

2007).   
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Direct addition of plant extracts also reduces lipid oxidation in muscle foods.  

Carob fruit extracts were found to exhibit antioxidant activity in cooked pork muscle 

homogenates when added at levels which previously demonstrated bioactivity (reduction 

in total and LDL cholesterol) in hypercholesterolemic human subjects (Bastida et al., 

2009).  Lipid oxidation was reduced in pork meat homogenates as a result of the addition 

cloudberry, beetroot and willow herb (Rey et al., 2005).  Addition of tea catechins, 

rosemary and sage also reduced levels of lipid oxidation in fresh pork patties (McCarthy 

et al., 2001).   

Macroalgae (seaweed) are a potential source of natural antioxidants.  Although the 

nutrient content of seaweed vary with species, geographical location, season and 

temperature, most contain significant quantities of carbohydrates (polysaccharides, 

dietary fibre), protein (essential amino acids), lipids (phospholipids), vitamins (ascorbic 

acid, beta carotene) and minerals (calcium, iron, potassium) (Gupta & Abu-Ghannam, 

2011b).  Brown seaweeds contain polyphenolic antioxidant compounds such as 

phlorotannins (phloroglucinol, eckol), catechins (catechin, epigallocatechin, 

epigallocatechin gallate), tocopherols (α-, γ-, δ-tocopherols), ascorbic acid and 

carotenoids (α- and β- carotene, fucoxanthin) (Zubia et al., 2009).  The vast range of 

compounds present increases potential use of seaweed and/or extracts in the development 

of functional foods.   

Brown seaweeds are rich in polysaccharides (soluble dietary fibre), the most 

abundant of which are laminarin, fucoidan and alginic acid.  The chemical structure of 

laminarin (β-glucan) consists mainly of a linear β-(1,3)-linked glucose backbone with 

some random β-(1,6)-linked glucose side chains depending on the variety of seaweed 

used for extraction (O'Doherty et al., 2010).  Structurally, fucoidan (fucan) is a sulphated 

polysaccharide containing L-fucose (Costa et al., 2010).  Seaweed polysaccharides, 
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including laminarin and fucoidan are reported to possess antioxidant (Heo et al., 2005), 

antitumour, antiviral, and antibacterial activities (Costa et al., 2010; O'Doherty et al., 

2010; Zubia et al., 2009).  

Scientific studies on the potential for incorporating health promoting bioactive 

compounds derived from seaweed into muscle foods, via supplementation of animal diets, 

are limited.  In addition to deposition of bioactive compounds in muscle tissues of meat 

producing animals, dietary bioactive compounds also demonstrate potential to improve 

animal health and welfare.  Supplementation of pig diets with laminarin and fucoidan 

(isolated from Laminaria digitata) has previously been shown to improve growth 

performance and gut health in pigs (O'Doherty et al., 2010).   

The objective of this study was to assess the effect of dietary supplementation of 

porcine diets with a seaweed extract containing laminarin and fucoidan (L/F), isolated 

from Laminaria digitata, on the plasma antioxidant status, muscle pH, colour, lipid 

oxidation and microbiology of fresh longissimus thoracis et lumborum (LTL) steaks 

stored in modified atmosphere packs (MAP) at 4ºC.  The influence of dietary L/F on iron-

induced lipid oxidation in porcine liver, heart, kidney and lung tissue homogenates was 

also examined.   
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4.2 MATERIALS AND METHODS 

4.2.1 Reagents 

All chemicals used were ‘AnalaR’ grade obtained from Sigma-Aldrich Ireland 

Ltd., Arklow, Co. Wicklow, Ireland, Oxoid Ltd., Basingstoke, Hampshire, England and 

Merck KGaA, Darmstadt, Germany.  The total antioxidant status (TAS) Randox-Trolox 

kit was obtained from Randox Laboratories Ltd., Co. Antrim, UK.  A seaweed extract 

(L/F), containing laminarin (L) and fucoidan (F) was manufactured by Bioatlantis, Tralee, 

Co. Kerry, Ireland.  The extract isolated from brown seaweed (Laminaria digitata), 

harvested in Ireland, was prepared using an acid extraction technique, details of which are 

confidential.   

 

4.2.2 Animals and diets 

Twenty four pigs (large white x landrace cross consisting of 12 males and 12 

females) (average live weight ~ 14.51 kg, age: 7 weeks) were randomly assigned to one 

of three treatments (n = 8) and fed ad libitum for 21 days pre-slaughter following a 

completely randomised experimental design.  The control group (Control) were fed a 

basal diet (Table 4.1).  The second group were fed the basal diet plus a spray-dried 

seaweed extract containing laminarin and fucoidan (L/F-SD) at an inclusion rate of 5.37 

kg/tonne of feed.  The third group were fed the basal diet plus a wet formulation of the 

seaweed extract containing laminarin and fucoidan (L/F-WS) at an inclusion rate of 26.3 

kg/tonne of feed.  Inclusion rates are based on the laminarin and fucoidan content of the 

spray-dried (L/F-SD) and wet (L/F-WS) seaweed extracts.  Therefore both treatment 

groups received diets containing L, 500 mg/kg feed and F, 420 mg/kg feed.   

The composition of the experimental diet and the seaweed extracts containing L/F 

are outlined in Tables 4.1 and 4.2, respectively.  Dry matter, crude protein, neutral  
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Table 4.1.  Composition and chemical analysis of the 

experimental diet (g/kg, unless otherwise indicated).   

Composition Basal Diet
a 

 Wheat 660.40  

 Soya-bean meal 260.00 

 Soya oil   24.80 

 Minerals and Vitamins
b
   23.00  

 Lysine HCL     3.40  

 L-Threonine     1.30 

 DL-Methionine     0.80  

  

Analysed Composition  

 Dry Matter  887.70 

 Crude protein (N*6.25) 186.60 

 Neutral Detergent Fibre 115.30 

 Ash   46.50 

 Gross Energy (MJ/kg)   17.30 

 Calcium
†
     6.90  

 Phosphorus
†
     4.35 

 Lysine
†
   10.00  

 Methionine and cysteine
†
     6.00  

 Threonine
†
     6.50  

 Tryptophan
†
     1.80 

aControl group - basal diet; L/F-SD - basal diet supplemented with 

5.37 kg/tonne of spray-dried seaweed extract containing L/F and 20.9 

kg water; L/F-WS - basal diet supplemented with 26.3 kg/tonne of 

wet seaweed extract containing L/F.   
bVitamin and mineral inclusion (per kg diet): 3 mg retinol, 0.05mg 

cholecalciferol, 40 mg -tocopherol, 25 mg copper as copper ІІ 
sulphate, 100 mg iron as iron ІІ sulphate, 100 mg zinc as zinc oxide, 

0.3 mg selenium as sodium selenite, 25 mg manganese as manganese 

oxide and 0.2 mg iodine as calcium iodate on a calcium sulphate/ 

calcium carbonate carrier.   
†Calculated from tabulated nutritional composition (Sauvant, Perez, 

& Tran, 2004).   

 

detergent fibre, ash and gross energy analysis of the experimental diet was carried out as 

described by Leonard et al. (2011).  The laminarin content (%) of the spray-dried (L/F-

SD) and wet (L/F-WS) seaweed extracts was measured using a commercial assay kit 

(Megazyme International Ireland, Bray, Co. Wicklow, Ireland).  Fucoidan levels (%) in 

L/F-SD and L/F-WS were determined as described by Usov et al. (2001).   

The animals were housed individually (1.68 m × 1.22 m slatted pens) at Lyons 

Research Farm, University College Dublin, Newcastle, Co. Dublin, Ireland and fed ad 

libitum from hopper style feeders.  Water was supplied ad libitum from individual nipple 
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drinkers.  The average daily feed intake was 1.8 kg/day for the control and L/F-WS 

groups, and 1.9 kg/day for the L/F-SD group (SEM 0.09).  The ambient environmental 

temperature within the houses was thermostatically controlled and maintained at 22°C.  

The pigs were slaughtered at the end of the feeding period via euthanol injection 

(pentobarbitone sodium patent blue) (injection rate: 1 ml/1.4 kg live weight) by veterinary 

personnel.  A blood sample for plasma analysis was taken immediately following 

injection.  The mean slaughter weight was 29.7 kg.  The liver and kidneys were removed 

and frozen in a blast freezer.  Carcasses and organs were transported at 4ºC to the School 

of Food and Nutritional Sciences at University College Cork, Ireland where they were 

hung at 2ºC for 24 hrs.  Liver and kidney tissues were placed in vacuum pack bags 

(composed of polyamide and a polyethylene sealing layer), vacuum packed and stored at 

-18ºC for four months prior to analysis.  Blood samples were centrifuged to separate the 

plasma fractions and stored at -20ºC prior to analysis.   

 

Table 4.2.  Composition of the seaweed extracts containing laminarin and fucoidan.   

 L/F-SD L/F-WS 

% Total Solids 94.03 18.5 

% Ash
a
   68.6 13.4 

% Protein   0.64 0.12 

% Laminarin     9.3   1.9 

% Fucoidan     7.8   1.6 

% Mannitol     8.3 1.62 

Inclusion rate (per tonne feed)   5.37 Kg 26.3 Kg 
aThe ash content of the seaweed extract was 15 g/kg DM Ca, 10 g/kg DM Na, 10 g/kg DM K, 10 g/kg 
DM S, 250 mg/kg DM  iodine, 250 mg/kg DM Fe, 20 mg/kg DM Cu and 50 mg/kg DM Zn.   

 

4.2.3 Plasma total antioxidant status 

Blood samples (10 ml) were collected by jugular veni-puncture using vacutainers 

containing lithium/heparin as anti-coagulant (Becton Dickinson, Rutherford, NJ, USA) 

from all animals immediately after slaughter.  The blood was centrifuged (Beckman J2-
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21, Beckman Instruments Inc., CA, USA) at 4720g for 20 min at 4ºC.  The plasma layer 

was removed from the red blood cell layer and stored at -18 ºC for subsequent analysis.   

The total antioxidant status (TAS) of porcine blood plasma was measured 

according to the manufacturers’ instructions.  Plasma (20 μl) was added to 1 ml 

chromogen (metmyoglobin/ABTS
®
) and mixed thoroughly.  Tubes were placed in a 

water bath at 37°C for 10 min.  An initial absorbance reading of the coloured complex 

was recorded after 10 min using a spectrophotometer (Cary 300 Bio, UV-Vis 

spectrophotometer, Varian Instruments, CA, USA) at 600 nm against a blank containing 

all reagents and double de-ionised water.  Tubes were returned to the water bath and 200 

μl of substrate (hydrogen peroxide in stabilised form) was added.  A second absorbance 

measurement of the colour complex was recorded 3 min following substrate addition.  

The antioxidant activity was calculated using the following equation: 

mmol/l = Factor x (ΔA Blank – ΔA Sample) 

Factor = (2.04 mmol/l) /(ΔA blank – ΔA standard) 

Total antioxidant status (TAS) was expressed as mmol of trolox equivalent antioxidant 

capacity (TEAC)/L plasma.   

 

4.2.4 Pork processing and packaging 

Following storage at 2ºC for 24 hrs, longissimus thoracis et lumborum was 

excised from each carcass, vacuum packed and stored at 2ºC for 24 hrs.  The heart and 

lungs were removed from each carcass, vacuum packed and stored at -18ºC with the 

previously blast-frozen liver and kidney tissues.   

Longissimus thoracis et lumborum (LTL) were cut into steaks (~ 1inch thickness, 

~ 45 g portion), placed in low oxygen permeable (<1cm
3
/m

2
/24 h at STP) 

polystyrene/ethylvinylalcohol (EVOH)/polyethylene (PE) trays.  Trays were covered 
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using a low oxygen permeable (3 cm
3
/m

2
/24 h at STP) laminated barrier film with a 

polyolefin heat sealable layer and flushed with 80% O2 : 20% CO2 (modified atmosphere 

packs, MAP) using a vacuum-sealing unit (VS 100, Gustav Müller & Co. KG, Homburg, 

Germany) equipped with a gas mixer (Witt-Gasetechnik GmbH & Co. KG, Witten, 

Germany) and heat-sealed.  LTL steaks in MAP were stored for up to 15 days under 

fluorescent lighting (660 lux) at 4ºC.  The gas atmosphere in the MAP was checked using 

a CheckMate 9900 (PBI-DanSensor, Denmark).  Immediately after gas flushing, MAP 

contained 70.18 ± 0.33% O2 and 23.14 ± 0.31% CO2.  The average gas composition in 

MAP at the end of the 14 day storage period was 68.43 ± 1.02% O2 and 23.88% ± 0.59% 

CO2.   

 

4.2.5 Measurement of pH 

Pork samples (10 g) were homogenised for 1 min at 24,000 rpm in 90 ml distilled 

water using an Ultra Turrax T25 homogeniser (Janke and Kunkel, IKA-Labortechnik, 

GmbH and Co., Staufen, Germany).  The pH of the pork homogenates was measured at 

20°C using a pH meter (Seven Easy portable, Mettler-Toledo GmbH, Schweizenbach, 

Switzerland).  The pH of LTL steaks was recorded on days 1, 4, 7, 11 and 14 of storage.   

 

4.2.6 Colour measurement 

The surface colour was measured using a Minolta CR-300 Chroma Meter 

(Minolta Camera, Co., Osaka, Japan).  The Chroma Meter consisted of a measuring head 

(CR-300), with an 8 mm diameter measuring area, a 2° standard observer, and a data 

processor (DP-301).  The chroma meter was calibrated on the CIE LAB colour space 

system using a white tile (Dc:L = 97.79, a = -0.11, b = 2.69).  The ‘L*’ value represents 
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lightness and ‘a*’ and ‘b*’ values represent redness and yellowness, respectively.  Colour 

measurements of LTL steaks were recorded on days 1, 4, 7, 11 and 14 of storage.   

 

4.2.7 Measurement of lipid oxidation 

Lipid oxidation was measured using the 2-thiobarbituric acid assay of Siu and 

Draper (1978).  Chopped pork samples (5 g) were homogenised for 2 min in 25 ml 

distilled water using an Ultra Turrax tissue homogeniser.  Trichloroacetic acid (10%) was 

added (25 ml) and the mixture was shaken vigorously and filtered through Whatman No. 

1 filter paper.  In screw capped test tubes, 4 ml of clear filtrate was added to 1 ml of 0.06 

M 2-thiobarbituric acid (TBA).  The tubes were placed in a water bath and held at 80°C 

for 90 min.  The absorbance of the filtrate was measured spectrophotometrically (Cary 

300 Bio, UV-Vis spectrophotometer, Varian Instruments, CA, USA) at 532 nm against a 

blank containing all reagents (2 ml distilled water, 2 ml 10% TCA and 1 ml of 0.06 M 

TBA reagent).  The malondialdehyde content of the sample was calculated using an 

extinction coefficient of 1.56 x 10
5
 M

-1
 cm

-1
.  Results were expressed as 2-thiobarbituric 

acid-reactive substances (TBARS) in mg malondialdehyde (MDA)/kg pork.  Lipid 

oxidation in LTL steaks was measured on days 1, 4, 7, 11 and 14 of storage.   

 

4.2.8 Microbiological analysis 

Pork (10 g) was transferred into stomacher bags, diluted with 90ml of maximum 

recovery diluent and stomached for 3 min (Steward Stomacher 400 Lab Blender, London, 

UK) resulting in a 10
−1

 dilution used for analysis.  Serial dilutions were prepared and 0.1 

ml aliquots from each dilution were plated onto standard plate count agar (PCA) (Oxoid 

Ltd.).  The plates were incubated at 30°C for 48 hrs and at 4°C for 10 days to determine 

mesophilic and psychrotrophic counts, respectively.  Microbiological analysis of LTL 
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steaks was carried out on days 1, 5, 8, 12 and 15 of storage.  Results were expressed as 

log10CFU (colony forming units)/g pork.   

 

4.2.9 Preparation of liver, heart, kidney and lung tissue homogenates 

Liver, heart, kidney and lung tissue homogenates (25%) were prepared by 

homogenising 20 g tissue in 60 ml 0.12M KCl 5 mM histidine (pH 5.5) using an Ultra 

Turrax T25 homogeniser at 24,000 rpm for 3 min.  A stock solution (30 ml) containing 

30mM FeSO4 was prepared in distilled water. Stock solution (1 ml) was added to 29 ml 

of tissue homogenate resulting in a final FeSO4 concentration of 1 mM FeSO4.  Lipid 

oxidation in 30 ml tissue homogenate samples, held in 150 ml beakers at 4°C, was 

initiated by the addition of 1 mM FeSO4.  Homogenates without FeSO4 were run 

simultaneously as controls.  Lipid oxidation was measured immediately (time 0) and after 

24 hrs storage at 4°C.   

 

4.2.9.1 Measurement of lipid oxidation in organ tissue homogenates 

A modification of the 2-thiobarbituric acid (TBA) assay of Siu and Draper (1978) 

was used to measure lipid oxidation in liver, heart, kidney and lung tissue homogenates.  

Homogenate samples (4 ml) were added to 4 ml 10% trichloroacetic acid (TCA). The 

samples were mixed using a vortex mixer and the precipitate formed was removed by 

filtering through Whatman No. 1 filter paper.  In a screw cap test tube, 4 ml of clear 

supernatant was added to 1 ml 0.06 M 2-thobarbituric acid (TBA).  The tubes were 

incubated at 80°C for 90 min and the absorbance of the resulting coloured complex was 

measured using a spectrophotometer at 532 nm against a blank containing all reagents 

and distilled water instead of the filtrate.  Tubes containing supernatant from filtered liver 

homogenates and 10% TCA, incubated with TBA reagent, were centrifuged at 1000g, 
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prior to absorbance measurements to pellet a precipitate formed during the heating step.  

The malondialdehyde content was calculated using an extinction coefficient of 1.56 x 10
5
 

M
-1

 cm
-1

.  Results were expressed as TBA reactive substances (TBARS) in mg 

malondialdehyde (MDA)/kg organ tissue.   

 

4.2.10 Statistical analysis 

All analyses were performed in duplicate.  Mean sample values (n = 8) for each of 

the three treatment groups (Control, L/F-SD and L/F-WS) were subjected to statistical 

analysis.  A full repeated measures ANOVA was conducted to investigate the effects of 

dietary L/F form (spray-dried (L/F-SD) and wet (L/F-WS) forms), time and their 

interactions.  Dietary L/F form represented the ‘between-subjects’ factor and the effect of 

time was measured using the ‘within-subjects’ factor.  Tukey’s test was used to adjust for 

multiple comparisons between treatment means.  The analysis was carried out using the 

SPSS 18.0 for Windows (SPSS, Chicago, IL, USA) software package.   
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4.3 RESULTS AND DISCUSSION  

4.3.1 Plasma total antioxidant status and muscle pH 

In previously reported studies, antioxidant compounds have been detected in the 

plasma of animals and humans following ingestion.  Detection of antioxidant compounds 

in blood plasma is a useful indicator of the fate of supplemental extracts and suggests that 

compounds or their metabolites are readily bio-available for potential uptake into muscle 

tissues.  The consumption of foods rich in phenolic antioxidants (strawberries, spinach or 

red wine) has been found to significantly increase the antioxidant status of plasma in 

humans (ORAC, TEAC and FRAP assays) (Cao et al., 1998).  In rat plasma elevated tea 

catechin concentrations have been reported following oral administration of a single dose 

(500 mg/kg body weight) (Nakagawa & Miyazawa, 1997).  Antioxidants such as vitamin 

E (α-tocopherol) have been detected in porcine plasma with levels increasing 2.5-fold 

after approximately 7 days of supplementation (200 mg/kg feed) (Morrissey et al., 1996).   

In the present study, the total antioxidant status (TAS) of porcine plasma was 

determined in order to assess the effectiveness of dietary supplementation with L/F.  The 

average TAS was 0.55, 0.67 and 0.60 mmol TEAC/L plasma for the control group, L/F-

SD and L/F-WS, respectively.  Porcine plasma TAS was not significantly affected by L/F 

supplementation compared to the control group.  Gladine et al. (2007a) reported no 

increase in plasma TAS in rats fed plant extracts (rosemary, grape, citrus and marigold, 

0.5 g/kg diet for three weeks), however a significant reduction in plasma lipid oxidation 

(malondialdehyde (MDA)) was observed.  While laminarin and fucoidan have strong 

antioxidant capacities in vitro (Heo et al., 2005; Wang et al., 2010a), to date limited 

research exists to support the contention that consumption of polysaccharides augments 

plasma antioxidant levels in vivo.  Gladine et al. (2007a) reported no correlation between 

in vitro and in vivo antioxidant capacity of plant extracts rich in polyphenols and further 
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suggested that bioavailability efficiency and TAS are more a general indicator of plasma 

oxidative stability rather than specifically reflecting lipid susceptibility to oxidation.   

The reason for the lack of an effect of dietary L/F on the TAS of porcine plasma is 

unclear.  In a previously reported study which examined the absorption of dextran 

sulphate (branched glucan) (MW about 8000), administered orally in a short-term (single 

dose, 4 g/day for 5 days) and long term (1 g, 4 times/day for 29 to 335 days) study, 

dextran sulphate was detected in high concentrations in endothelial cells and at low levels 

in plasma as early as 2.4 min after administration.  It was concluded that dextran sulphate 

was extensively absorbed and rapidly incorporated into the endothelium therefore plasma 

levels were negligible (Hiebert et al., 1999).  By contrast, a single dose (0.1 ml/10 g of 

body weight) of α-D-glucans from fungi (Tricholoma matsutake) administered to mice, 

resulted in detection of α-D-glucans in mice plasma 16 hrs following oral administration.  

Maximum α-D-glucans levels were detected by 24 hrs, after which, levels declined up to 

48 hrs (Hoshi et al., 2008).  Previous literature reported that distribution of glucans in the 

body is affected by various factors, such as molecular weight, particle size, fine structure, 

charge, association, and susceptibility to enzymatic hydrolysis (Hiebert et al., 1999).  In 

the present study, pigs were fed up to 3 hrs prior to slaughter, therefore rapid absorption 

of L/F metabolites by the GI tract may account for the lack of an effect of dietary L/F on 

the total antioxidant status (TAS) of porcine plasma.   

The pH of fresh LTL muscle ranged from 5.90 to 5.19 over the 15 day storage 

period and was unaffected by L/F supplementation of porcine diets.  pH values reported 

are comparable to previously reported values (5.8-5.4) for post-mortem muscle 

(Faustman & Cassens, 1990).   
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4.3.2 Colour stability of fresh LTL muscle 

The surface lightness ‘L*’ significantly (p < 0.05) increased in fresh LTL muscle 

over the 14 day storage period.  Surface ‘a*’ redness values significantly (p < 0.05) 

decreased as a function of storage time (Table 4.3).  Each colour parameter was not 

affected by L/F supplementation.  Many studies have provided evidence that pigment 

(oxymyoglobin) oxidation and lipid oxidation are closely interrelated where an increase 

in one results in a similar increase in the other.  This is potentially due to decreased 

dissolved oxygen levels or radicals produced as a result of the lipid oxidation process 

(O'Grady et al., 2001).  Levels of lipid oxidation were relatively low over the 14 day 

storage period.  Therefore protection against pigment oxidation due to L/F 

supplementation, mediated through a reduction in lipid oxidation, was not evident in the 

present study.   

While some previously reported studies indicate that colour stability of pork 

muscles may be improved when antioxidants are incorporated into animal diets, others 

demonstrate no effect of dietary antioxidants on fresh pork colour stability.  For example, 

in pigs fed vitamin E (α-tocopheryl acetate), some studies report positive benefits of 

feeding vitamin E on pork colour stability, while others report no beneficial effects on 

fresh pork colour (Asghar et al., 1991; Houben et al., 1998; Lanari et al., 1995; Monahan 

et al., 1994).  Similar to results reported in the present study, oat-based diets containing β-

glucans (1.6, 2.1, 3.3 or 4.1%) did not influence the colour stability of porcine 

longissimus muscle (Fortin et al., 2003) while other plant extracts (Melissa, Origanum 

and salvia) (10 ml/pig for 10 days) improved muscle colour stability when incorporated 

into porcine diets (Lahucky et al., 2010).  In the studies reported, variations in the 

efficacy of dietary antioxidants on the colour stability of pork meat may also be attributed 

to differences in factors such as storage temperature and packaging treatment.  
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Table 4.3.  Effect of dietary laminarin/fucoidan (L/F) on the surface lightness (‘L*’ value), redness (‘a*’ value) and 

yellowness (‘b*’ value) values of fresh longissimus thoracis et lumborum (LTL) stored in modified atmosphere packs 

(80% O2 : 20% CO2) for up to 14 days at 4°C.   

Treatment   Storage time at 4°C, days 

 Parameter  1  4  7  11  14 

Control Lightness  58.20 ± 0.70aA  60.74 ± 1.13aAB  61.47 ± 1.35aAB  62.15 ± 1.42aAB  63.63 ± 1.68aB 

L/F-SD L*  59.04 ± 1.98aA  60.63 ± 1.23aAB  62.12 ± 1.42aAB  62.06 ± 1.55aAB  63.39 ± 1.55aB 

L/F-WS   58.09 ± 1.53
aA

  59.69 ± 1.42
aAB

  60.63 ± 0.92
aABC

  61.73 ± 1.09
aBC

  63.17 ± 1.54
aC

 

            

Control Redness    9.00 ± 0.90aA    8.95 ± 0.88aAB    8.65 ± 1.11aAB    7.42 ± 0.78aBC    5.96 ± 1.15aC 

L/F-SD a*  10.35 ± 1.06aA    8.88 ± 0.81aAB    8.26 ± 1.18aAB    7.16 ± 0.95aBC    5.72 ± 0.81aC 

L/F-WS   10.06 ± 1.09aA    9.34 ± 0.82aAB    8.07 ± 0.77aBC    7.90 ± 0.63aBC    6.44 ± 0.93aC 

            

Control Yellowness    7.35 ± 0.80aAB    8.02 ± 0.61aA    8.02 ± 0.72aA    8.03 ± 0.81aA    9.36 ± 0.80aB 

L/F-SD b*    8.24 ± 0.87aA    8.35 ± 0.63aA    8.52 ± 0.69aA    8.46 ± 0.73aA    8.77 ± 0.85aA 

L/F-WS     8.21 ± 0.64aA    8.35 ± 0.59aA    7.59 ± 0.56aA    8.21 ± 0.61aA    8.40 ± 0.48aA 
aWithin each parameter and storage day, mean values (± standard deviation) in the same column are not significantly different, p > 0.05.  

              ABCWithin each treatment, mean values (± standard deviation) in the same row bearing different superscripts are significantly different, p < 0.05.   
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Interactions between polysaccharides and proteins have previously been reported in the 

scientific literature however, knowledge of the role of these interactions in relation to 

functionality in complex multiphasic systems is limited (Doublier et al., 2000).  The lack 

of an effect of dietary L/F on the colour stability of pork (a* redness values) indicates no 

interaction between polysaccharides (L/F) and proteins (oxymyoglobin) in the present 

study.  In addition, following ingestion and absorption, polysaccharides are potentially 

bio-transformed into different forms.   

 

4.3.3 Lipid oxidation in fresh LTL muscle 

Lipid oxidation significantly (p < 0.05) increased in all groups over the 14 day 

storage period.  Overall, the levels of lipid oxidation were low with mean values ranging 

from 0.12-1.70 mg MDA/kg pork.  Lowest levels of oxidation were observed in LTL 

steaks from pigs fed the wet supplement (L/F-WS), although results were not statistically 

significant (p > 0.05) (Table 4.4).  Although not significant, trends for lipid oxidation 

followed the order: C > LF-SD > L/F-WS.  The spray-drying process during the 

manufacture of L/F-SD may have negatively affected and lowered the antioxidant 

capacity of the L/F supplement.  While trends show a positive effect on limiting lipid 

oxidation in both the L/F supplemented diets, a statistically significant effect on levels of 

lipid oxidation was observed in the L/F-WS group when 75% of pigs (n = 6) were 

compared to the control group (p < 0.05) (data not shown).  Therefore, it was concluded 

that antioxidant components of laminarin and fucoidan were deposited in porcine muscle 

(LTL) following the inclusion of L/F in animal diets. 

Many in vitro antioxidant assays (DPPH, FRAP, TEAC, NO, ABTS radical 

scavenging) have demonstrated antioxidant potential of numerous seaweed 

polysaccharides (Ngo et al., 2011) including sulphated polysaccharides and β-glucans  
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Table 4.4.  Effect of dietary laminarin/fucoidan (L/F) on lipid oxidation (TBARS*) in fresh 

longissimus thoracis et lumborum (LTL) stored in modified atmosphere packs (80% O2 : 20% 

CO2) for up to 14 days at 4°C.   

Treatment  Storage time at 4°C, days 

  1  4  7  11  14 

Control  0.19 ± 0.04aA  0.24 ± 0.15aA  0.30 ± 0.12aA  0.78 ± 0.51aA  1.70 ± 1.02aB 

L/F-SD  0.16 ± 0.03aA  0.19 ± 0.05aA  0.28 ± 0.12aAB  0.94 ± 0.92aBC  1.21 ± 0.70aC 

L/F-WS  0.13 ± 0.02aA  0.12 ± 0.03aA  0.19 ± 0.04aAB  0.48 ± 0.16aB  0.91 ± 0.45aC 
aWithin each storage day, mean values (± standard deviation) in the same column are not significantly different, p > 

0.05.   
ABCWithin each treatment, mean values (± standard deviation) in the same row bearing different superscripts are 

significantly different, p < 0.05.   

*TBARS, mg malondialdehyde (MDA)/kg pork. 

 

from a variety of seaweeds (Turbinaria conoides, Laminaria japonica, Sargassum 

fulvellum, Dictyota mertensii) (Costa et al., 2010; Ngo et al., 2011; Paiva et al., 2011; 

Wang et al., 2010a).  Limited research exists linking the antioxidant activity of seaweed 

extracts in vitro with in vivo studies in human or animal subjects (in particular pigs). 

Seaweeds have long been used as soil fertilisers and in animal feeds for many 

years but historically much of the information has been subjective (Fike et al., 2001).  A 

previous study which examined the effects of a seaweed (Ascophyllum nodosum)-based 

proprietary product on tall fescue (bunch grasses), reported that grass fertilised with the 

seaweed product improved antioxidant activity in grasses and subsequently increased the 

antioxidant activity of ruminant animals grazed on the treated grasses by increasing 

serum vitamin A and whole-blood selenium levels (Fike et al., 2001).  In the present 

study, direct supplementation of L/F had an impact on lowering levels of lipid oxidation 

in porcine muscle, however results were not statistically significant (p > 0.05).   

 

4.3.4 Lipid oxidation in porcine liver, heart, kidney and lung tissue homogenates 

The uptake and distribution of dietary antioxidant compounds such as vitamin E 

has been measured in various porcine tissues (Morrissey et al., 1996).  Due to the 

chemical nature and complexity of the L/F seaweed extracts utilised in the present study, 
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the LTL muscle and tissues examined were not assayed directly for laminarin and 

fucoidan present in the seaweed extract.  In order to determine whether antioxidant 

compounds present in the L/F extract were distributed throughout porcine tissues, other 

than the LTL muscle, liver, heart, kidney and lung tissue homogenates were subjected to 

iron (FeSO4)-induced lipid oxidation.  Following FeSO4 addition, lipid oxidation 

increased in all tissue homogenates over the 24 hr storage period.  Trends indicate lower 

levels of lipid oxidation in liver tissue homogenates, as a result of dietary L/F, however 

due to variation in results were not statistically significant (Table 4.5).  In heart, kidney 

and lung tissue homogenates, significant decreases in levels of lipid oxidation were not 

detected.    

Table 4.5.  Effect of dietary laminarin/fucoidan (L/F) on iron-induced lipid oxidation 

(TBARS*) in organ (liver, heart, kidney and lung) tissue homogenates after 24 hours 

storage at 4ºC.   

Treatment  Storage for 24 hours at 4ºC 

  liver  heart  kidney  lung 

Control  3.20 ± 1.43
a  3.26 ± 0.26

a
  3.06 ± 1.01

a
  2.99 ± 0.93

a
 

L/F-SD  1.99 ± 1.54
a
  3.34 ± 0.27

a
  2.26 ± 1.09

a
  2.27 ± 1.82

a
 

L/F-WS  1.46 ± 1.36
a
  3.28 ± 0.27

a
  2.59 ± 0.52

a
  2.96 ± 1.30

a
 

aWithin each organ type, mean values (± standard deviation) in the same column are not significantly 

different, p > 0.05.   
*TBARS, mg malondialdehyde (MDA)/kg organ tissue. 

 

 

In a previously reported dietary study, where rats were fed plant extracts 

(rosemary, grape, citrus and marigold, 0.5 g/kg diet for three wks) with bio-efficiency in 

the liver, it was concluded that supplementation for 3 wks was not sufficient to 

significantly modify the intensity of lipid oxidation in extra-hepatic tissues (longissimus 

thoracis and heart muscles) (Gladine et al., 2007b).  In a related study, dietary laminarin 

extracted from brown algae, fed for 25 days (5% during 4 days followed by 10% during 

21 days) was found to modulate intra-hepatic immune cells in rats thus protecting the 

liver from damage (Neyrinck et al., 2007).  Such findings indicate deposition of laminarin 
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in liver tissues following oral ingestion.  Similarly, Airanthi et al. (2011) reported that 

mice, fed brown seaweed extracts (Undaria pinnatifida, Sargassum horneri, and 

Cystoseira hakodatensis) (0.5% and 2%) for four weeks, had significantly lower levels of 

lipid hydroperoxides in liver tissue homogenates compared to controls.  Supplementation 

of rat diets with seaweed powder (Eucheuma cottonii) (5% and 10% for 35 days) 

increased the activity of superoxide dismutase (antioxidant enzyme) in liver tissues of 

hypocholesterolemic rats (Wresdiyati et al., 2009).   

 

4.3.5 Microbiology of fresh LTL muscle 

The mesophilic plate counts ranged from 4.32-4.58 log cfu/g on day 1 and 

increased to a maximum of 7.41 log cfu/g on day 15 of storage (Table 4.6).  Psychotropic 

plate counts ranged from 3.24-3.42 log cfu/g on day 1 and increased to levels ranging 

from 7.94-8.20 log cfu/g on day 15 (Table 4.6).  Mesophilic counts obtained are similar to 

previously reported values for fresh pork (Houben et al., 1998).  Previously reported 

benefits of L/F include antimicrobial activity in test systems such as growth inhibition 

assays and the agar plate diffusion test, however results from the present study indicate 

that L/F dietary supplementation did not exert antimicrobial activity in fresh pork muscle.   

 Several in vitro antimicrobial assays demonstrate antimicrobial activities of 

various types of seaweed including extracts from Ceramium rubrum, Mastocarpus 

stellatus and Laminaria digitata.  An extract from Laminara digitata (31 mg dry 

weight/ml) demonstrated strong antibacterial activity and inhibited almost all test bacteria 

(12 marine and 7 prominent fish pathogenic bacteria).  In addition, Laminaria digitata 

resulted in both bacteriostatic and bacteriolytic (the destruction of bacteria by lysis) 

modes of action (Dubber & Harder, 2008).  While antimicrobial activity of seaweed 

extracts has been reported using in vitro assays, to date, the scientific literature contains
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Table 4.6.  Effect of dietary laminarin/fucoidan (L/F) on the microbial status* (mesophilic and psychrotrophic) of fresh 

longissimus thoracis et lumborum (LTL) stored in modified atmosphere packs (80% O2 : 20% CO2) at for up to 15 days 

at 4°C.   

Treatment   Storage time at 4°C, days 

 Temp  1  5  8  12  15 

Control 30°C  4.32 ± 0.20
aA

  4.72 ± 0.36
aA

  6.52 ± 0.48
aB

  6.99 ± 0.38
aBC

  7.37 ± 0.05
aC

 

L/F-SD (mesophilic  4.49 ± 0.18
aA

  4.95 ± 0.14
aA

  6.50 ± 0.57
aB

  6.95 ± 0.56
aB

  7.27 ± 0.50
aB

 

L/F-WS count)  4.58 ± 0.10
aA

  4.93 ± 0.36
aA

  6.32 ± 0.38
aB

  7.47 ± 0.14
aC

  7.41 ± 0.35
aC

 

            

Control 4°C  3.24 ± 0.48
aA

  5.68 ± 0.81
aB

  7.23 ± 0.19
aC

  7.88 ± 0.32
aCD

  8.15 ± 0.25
aD

 

L/F-SD (psychrotrophic  3.34 ± 0.11
aA

  5.51 ± 0.59
aB

  7.05 ± 0.21
aC

  7.99 ± 0.36
aD

  8.20 ± 0.23
aD

 

L/F-WS count)  3.42 ± 0.32
aA

  5.69 ± 0.37
aB

  7.29 ± 0.14
aC

  8.06 ± 0.19
aD

  7.94 ± 0.26
aD

 
aWithin each storage temperature and day, mean values (± standard deviation) in the same column are not significantly different, p > 0.05.  
ABCDWithin each treatment, mean values (± standard deviation) in the same row bearing different superscripts are significantly  

different, p < 0.05.   

*log10CFU (colony forming units)/g pork. 
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no studies demonstrating antibacterial activity of seaweed extracts in food products 

(Gupta & Abu-Ghannam, 2011b). 
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4.4 CONCLUSIONS 

Addition of L/F to porcine diets did not affect the surface colour of pork meat.  No 

significant antioxidant or antimicrobial effect of dietary L/F on pork meat was observed 

under the experimental conditions employed in the present study.  Due to concerns 

regarding toxicity of synthetic antioxidants, L/F may prove to be a natural antioxidant 

alternative when incorporated into animal feed.  Further research is necessary to examine 

the effects of dietary laminarin and fucoidan levels, form and duration of feeding on the 

quality and shelf-life of fresh pork. 
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ABSTRACT 

The effect of level (450 or 900 mg laminarin (L) and fucoidan (F) /kg feed) and 

duration (3 or 6 weeks) of feeding a seaweed (Laminaria digitata) extract containing L/F 

on the quality of pork (longissimus thoracis et lumborum (LTL)) stored in modified 

atmosphere packs and on organ lipid stability was examined.  Mechanisms of L/F 

antioxidant activity in LTL were evaluated.  Plasma total antioxidant status, LTL pH, 

colour, microbiology and ‘eating quality’ sensory analysis were unaffected by dietary 

L/F.  ‘Visual’ sensory descriptors (purchasing appeal and overall visual acceptability) 

were enhanced (p < 0.05) in L/F450 - 3 LTL.  Lipid oxidation was lower (p < 0.05) in 

L/F450 - 3 and L/F900 - 3 LTL (on day 11 and 14 of storage).  In cooked minced pork, lipid 

oxidation was not significantly reduced by dietary L/F.  Saturated fatty acids were lower 

(p < 0.05) in L/F900 - 6 LTL.  Results indicated L/F in pig diets for 3 weeks enhanced lipid 

stability of pork meat.   
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5.1 INTRODUCTION 

The use of antioxidants in the meat industry is an effective way to minimize or 

prevent lipid oxidation, retard the formation of toxic oxidation products, maintain 

nutritional quality and prolong shelf-life (Gupta & Abu-Ghannam, 2011b).  The addition 

of antioxidants to meat and meat products can be achieved by supplementing animal diets 

with specific compounds for a defined duration pre-slaughter.  The level and duration of 

dietary antioxidant compounds necessary to enhance meat quality parameters is 

dependent on factors such as chemical structure and purity of the antioxidant, animal 

species, breed and other physiological factors.  Previous strategies have investigated 

various levels and durations of feeding antioxidant compounds such as α-tocopheryl 

acetate (vitamin E), β-carotene, ascorbic acid, tea catechins, chitosan and plant extracts to 

pigs for the determination of an optimum level and duration combination required to 

enhance pork meat quality (Decker et al., 2000). 

Supplementation of α-tocopheryl acetate in porcine diets has proven effective in 

enhancing the oxidative stability of longissimus dorsi muscle which increased as a 

function of dietary level (20 and 200 mg/kg feed) and duration (0, 35, 126 days) of 

supplementation, in post mortem muscle (Morrissey et al., 1996).   Similarly, dietary 

green tea catechins (200 mg/kg) lowered levels of lipid oxidation in longissimus thoracis 

et lumborum (LTL) pork steaks (Mason et al., 2005).  Lahucky et al. (2010) reported that 

dietary supplementation of oregano extract (30 and 60 ml/day) in pig diets increased lipid 

stability in longissimus thoracis muscle as a function of level, however the same dose 

response was not observed with dietary supplementation of Melissa  (20 and 100 ml/day). 

The potential of dietary antioxidants to influence other quality parameters such as 

the colour stability of pork meat varies considerably (Jensen et al., 1998).  Buckley et al. 

(1995) reported an increase in ‘a*’ redness values of LTL muscle from pigs fed a high 
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level of α-tocopheryl acetate (200 mg/kg feed) compared to pigs fed a basal level of 10 

mg α-tocopheryl acetate /kg of feed.  Conversely, Jensen et al. (1997) reported no 

influence on the colour stability of LTL pork steaks when pigs were fed increasing levels 

of α-tocopheryl acetate (100, 200 and 700 mg/kg feed).  Similarly, Mason et al. (2005) 

reported green tea catechins (200 mg/kg) did not enhance the colour stability of LTL pork 

steaks.  However, supplementation with ascorbic acid (0, 100, 250 or 500 mg/L) in pig 

diets enhanced the ‘a*’ redness values of LTL muscle at the highest level (500 mg/L) 

(Pion et al., 2004).    

Due to their complex structure, seaweed polysaccharides have diverse biological 

properties (Thomes et al., 2010).  Bioactive compounds identified in seaweed extracts 

have demonstrated a capacity to neutralize superoxide and hydroxyl radicals (Bocanegra 

et al., 2009).  Brown seaweed polysaccharides including laminarin (β-glucan) and 

fucoidan (a sulphated polysaccharide) exhibit bioactivities such as anti-adhesive, 

anticoagulant, anti-inflammatory, antioxidant and antitumoral properties (Eluvakkal et al., 

2010).  Antioxidant activity of laminarin and fucoidan depends on several structural 

parameters, such as the type of sugar and glycosidic branching, molecular weight and the 

degree and position of sulphation (Jiménez-Escrig et al., 2012).  Laminarin contains two 

types of polymeric chains, one where glucose is attached to the end of the chain (G-chain) 

and the other has mannitol as the terminal reducing end (M-chain) (Choi et al., 2011).  

Fucoidan extracted from Laminaria digitata is reported to contain fucose and sulphates as 

well as xylose, mannose, glucose, galactose and uronic acid in minor amounts (Li et al.,  

2008).  Understanding the mechanism (inhibit/scavenge reactive species, 

prevent/terminate free-radical generating reactions or chelate/sequester metals) through 

which compounds exert their antioxidant activity can help determine the mode of 
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action/efficacy of antioxidant compounds in muscle, following digestion (Decker, et al., 

2000).  

Consumer concerns over the safety and toxicity of synthetic antioxidants in meat 

products has lead to increased research into the use of natural antioxidant compounds.  

The perceived healthiness and structure of seaweed make it an ideal source of bioactive 

compounds with antioxidant activities which may replace synthetic antioxidants in meat 

products.  In Chapter 4, the brown seaweed extract, containing laminarin and fucoidan, 

decreased lipid oxidation in fresh pork LTL.  Pigs from the same study displayed 

improved gut health due to laminarin and fucoidan from the dietary seaweed extract 

(Murphy et al., 2013).  However, further investigation is necessary to determine the level 

and duration of feeding dietary seaweed extracts containing laminarin and fucoidan in 

order to optimise fresh pork quality and shelf-life.  

 The objective of this study was to examine the effects of supplementation of 

porcine diets with a polysaccharide (laminarin (L) and fucoidan (F)) (L/F) based seaweed 

extract at two levels (450 or 900 mg/kg feed) and durations (3 or 6 wks) of feeding, on 

the quality, shelf-life parameters and sensory properties of fresh longissimus thoracis et 

lumborum (LTL) steaks.  The influence of dietary L/F on iron-induced lipid oxidation in 

porcine liver, heart, kidney and lung tissue homogenates was assessed.  The mechanism 

of action of dietary L/F on the stability of lipids in pork meat was also investigated.  
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5.2 MATERIALS AND METHODS 

5.2.1 Reagents 

All chemicals used were ‘AnalaR’ grade obtained from Sigma-Aldrich Ireland 

Ltd., Arklow, Co. Wicklow, Ireland, Oxoid Ltd., Basingstoke, Hampshire, England, 

Fisher Scientific, Dublin, Ireland and Merck KGaA, Darmstadt, Germany.  The total 

antioxidant status (TAS) Randox-Trolox kit was obtained from Randox Laboratories Ltd., 

Co. Antrim, UK.  A wet formulation seaweed extract (L/F), containing laminarin (L) and 

fucoidan (F) was manufactured by Bioatlantis, Tralee, Co. Kerry, Ireland.  The extract 

isolated from brown seaweed (Laminaria digitata), harvested in Ireland, was prepared 

using an acid extraction technique, details of which are industrially-confidential.  The 

composition of L/F is outlined in Table 5.1.  The ash content was supplied by the 

manufacturer. 

 

Table 5.1.  Composition of the seaweed extract containing 

laminarin (L) and fucoidan (F) (L/F).   

 L/F extract 

% Total Solids 38.9 

% Ash
a
 28.1 

% Protein   0.25 

% Laminarin   4.0 

% Fucoidan   3.2 

% Mannitol   3.3 

Inclusion rate (per tonne feed) (L/F450)   6.25 Kg 

Inclusion rate (per tonne feed) (L/F900) 12.5 Kg 
aThe ash content of the seaweed extract was 15 g/kg DM Ca, 10 g/kg DM 

Na, 10 g/kg DM K, 10 g/kg DM S, 250 mg/kg DM  iodine, 250 mg/kg DM 

Fe, 20 mg/kg DM Cu and 50 mg/kg DM Zn.   

 

5.2.2 Animals and diets 

Thirty pigs (Large White x Landrace crosses consisting of 15 males and 15 

females) (average live weight ~ 82 kg, age: 16 weeks) were randomly assigned to one of 

five dietary treatments (n = 6) and fed ad libitum a basal diet plus the L/F extract for 3 or 



Level and duration effects of laminarin and fucoidan in porcine diets 

______________________________________________________________________________________ 

 - 172 - 

6 weeks pre-slaughter, following a completely randomised experimental design.  The 

control group were fed the basal diet for the duration of the experiment.  The composition 

and analysis of the basal diet is reported in Chapter 4.  The seaweed extract in the feed 

formulation was added to result in total L and F concentrations of 450 or 900 mg/kg feed.  

Average daily feed intake, average daily gain, feed conversion ratio and details of the 

dietary treatments of each group are outlined in Table 5.2.   

 

Table 5.2.  Average daily feed intake (ADF) (kg/day), Average daily gain (ADG) (kg/day), 

Feed conversion ratio (FCR), level (mg/kg feed) and duration (weeks) of dietary L/F. 

 ADF
x
 ADG

y
 FCR

z
 L level F level Total L/F level Duration 

Control
w
 2.13  0.810 2.62 -- -- -- 6  

L/F450 - 3  2.20  0.805 2.68 250 200 450  3  

L/F450 - 6 2.18  0.812 2.68 250 200 450 6  

L/F900 - 3  2.15  0.820 2.62 500 400 900 3  

L/F900 - 6 2.13  0.810 2.63 500 400 900  6  
wControl group fed basal diet only 
xSEM 0.05 
ySEM 0.03 
zSEM 0.07 

 

The animals were housed individually (1.68 m × 1.22 m slatted pens) at Lyons 

Research Farm, University College Dublin, Newcastle, Co. Dublin, Ireland and fed ad 

libitum from hopper-style feeders.  Water was supplied ad libitum from individual nipple 

drinkers.  The ambient environmental temperature within the houses was thermostatically 

controlled and maintained at 22°C.  Blood samples for plasma analysis were taken prior 

to transportation to the abattoir (Rosderra Irish Meats Group, Edenderry, Co. 

Offaly, Ireland).   Pigs were stunned using gas and humanely slaughtered, 3 hr after 

feeding, following animal welfare regulations.  The mean slaughter weight was 115.81 

kg.  The liver, heart, kidney and lungs were removed from each animal, placed in 

laminate vacuum pack bags (composed of polyamide/polyethylene layers), vacuum 

packed and stored at -18ºC for one month prior to analysis.  Blood samples were 

centrifuged (Beckman J2-21, Beckman Instruments Inc., CA, USA) at 4720g for 20 min 
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at 4ºC, and plasma fractions were removed and stored at -20ºC prior to analysis.  

Carcasses were hung at 2ºC for 24 hr at Rosderra Irish Meats Group then transported at 

4ºC to the School of Food and Nutritional Sciences at University College Cork, Ireland 

and stored at 2ºC for a further 24 hr before removal of muscles for analysis. 

 

5.2.3 Plasma total antioxidant status 

The total antioxidant status (TAS) of porcine blood plasma was measured as 

described in Chapter 4 (section 4.2.3) and the results were expressed as mmol of trolox 

equivalent antioxidant capacity (TEAC)/L plasma. 

 

5.2.4 Pork processing and packaging 

Longissimus thoracis et lumborum (LTL) muscles were excised from each 

carcass, vacuum packed and stored at 2ºC for 24 hr.  LTL were cut into steaks (~ 2.5cm in 

thickness, ~ 45 g portion), placed in low oxygen permeable (<1cm
3
/m

2
/24 h at STP) 

polystyrene/ethylvinylalcohol (EVOH)/polyethylene (PE) trays.  Trays were covered 

using a low oxygen permeable (3 cm
3
/m

2
/24 h at STP) laminated barrier film with a 

polyolefin heat-sealable layer.  Trays were flushed with 80% O2 : 20% CO2 (modified 

atmosphere packs, MAP) using a vacuum-sealing unit (VS 100, Gustav Müller & Co. 

KG, Homburg, Germany) equipped with a gas mixer (Witt-Gasetechnik GmbH & Co. 

KG, Witten, Germany) and heat-sealed.  LTL steaks in MAP were stored for up to 14 

days under fluorescent lighting (660 lux) at 4ºC.  The gas atmosphere (% O2 and % CO2) 

in the MAP was checked using a CheckMate 9900 (PBI-DanSensor, Denmark).  

Immediately after gas flushing, MAP contained 75.07 ± 0.43% O2 and 25.62 ± 0.29% 

CO2.  The average gas composition in MAP at the end of the 14 day storage period was 

73.01 ± 0.88% O2 and 26.83 ± 0.87% CO2.   
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In the cooked pork study,  LTL muscles from all treatments were trimmed of 

visible fat and connective tissue and minced twice through a plate with 4 mm holes 

(Model P114L, Talsa, Valencia, Spain), formed into patties (100 g portions) using a meat 

former (Ministeak burger maker, O.L Smith Co. Ltd., Italy), placed on aluminium foil 

lined trays and cooked at 180°C for 20 min in a fan-assisted convection oven (Zanussi 

Professional, Model 10 GN1/1, Conegliano, Italy) until an internal temperature of 72°C 

was reached.  Cooked patties were placed either in trays and either flushed with 70% N2: 

30% CO2 (MAP) and stored for up to 14 days as described previously, or over-wrapped 

with oxygen permeable low-density polyethylene film and stored aerobically for up to 3 

days at 4°C (approximately 660 lx).  Immediately after gas flushing, MAP contained 

67.55 ± 0.93% N2 and 32.25 ± 0.72% CO2.  The average gas composition in MAP at the 

end of the 14-day storage period was 67.89 ± 0.16% N2 and 30.98 ± 0.06% CO2.  Percent 

nitrogen was calculated by difference of % O2 and % CO2 (CheckMate 9900 (PBI-

DanSensor, Denmark)). 

 

5.2.5 Measurement of pork quality and shelf-life parameters 

Pork pH, colour (CIE ‘L*’ lightness, ‘a*’ redness and ‘b*’ yellowness values), 

lipid oxidation (2-thiobarbituric acid reactive substances (TBARS)), microbiological 

analysis (mesophilic and psychrotrophic total viable counts), and sensory evaluation 

(‘visual’ and ‘eating quality’) were measured at intervals during storage as described in 

Chapter 4 (sections 4.2.5-4.2.9).  The pH, colour measurements and lipid oxidation in 

fresh LTL steaks and cooked minced pork patties were recorded on days 1, 4, 7, 11 and 

14 of storage.  In cooked minced pork patties stored aerobically, lipid oxidation was 

measured on days 0, 1, 2 and 3 of storage.  Microbiological analysis of fresh LTL steaks 

was carried out on days 1, 5, 8 and 13 of storage.  Sensory analysis (‘visual’ and ‘eating 
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quality’) of fresh LTL steaks stored in 80% O2 : 20% CO2 was performed in duplicate by 

52 naïve assessors on days 1 and 7 of storage.  ‘Visual’ sensory analysis descriptors of 

fresh LTL steaks were pinkness, whiteness, drip, package quality, purchasing appeal, and 

overall acceptability.  ‘Eating quality’ sensory analysis descriptors of cooked LTL steaks 

(180°C for 20 min in a fan-assisted convection oven) were appearance, tenderness, 

oxidation flavour, liking of flavour and overall acceptability.   

 

5.2.6 The mechanism of action of L/F on lipid stability in pork meat 

5.2.6.1 Fatty acid analysis 

Lipids were extracted from pork samples with chloroform : methanol (2:1 v/v) 

according to the method by Folch et al. (1957).  Fatty acid methyl esters (FAMEs) were 

prepared by first using 10 ml 0.5N NaOH in methanol for 10 min at 90
°
C followed by 10 

ml 14% BF3 in methanol for 10 min at 90
°
C (Park & Goins, 1994).  FAMEs were 

recovered with hexane.  Prior to gas chromatography (GC) analysis, samples were dried 

over anhydrous sodium sulphate (0.5g) for 1 hr and stored at -20
°
C.  FAMEs were 

separated using GC (Varian 3800, Varian, Walnut Creek, CA, USA) fitted with a flame 

ionization detector, using a Chrompack CP Sil 88 column (Chrompack, Middleton, The 

Netherlands, 100 m  0.25 mm i.d., 0.20 μm film thickness) and helium as the carrier gas. 

The column oven was programmed to be held initially at 80
°
C for 8 min and increased 

8.5
°
C/min to a final column temperature of 200

°
C. The injection volume used was 0.6 μl, 

with automatic sample injection on a SPI 1093 splitless on-column temperature 

programmable injector. Peaks were integrated using the Varian Star Chromatography 

Workstation software (version 6.0) and peaks were identified by comparison of retention 

times with pure FAME standards (Nu-Chek Prep, Elysian, MN, USA). The percentage of 
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individual fatty acids was calculated according to the peak areas relative to the total area 

(total fatty acids were set at 100%).  Results were expressed as g/100g FAME. 

 

5.2.6.2 In vitro antioxidant activity of L/F in pork meat 

Pork homogenates (10% w/v) were prepared as described by Qwele, et al. (2013) 

for measurement of in vitro antioxidant activity.  Briefly, LTL steaks (10 g) were 

homogenised in 0.05 M phosphate buffer (90 ml), pH 7, using an Ultra Turrax T25 

homogeniser.  Trolox C (1000 μg/ml), EDTA (1000 μg/ml) were added to 10% pork 

homogenates as positive controls for the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free 

radical scavenging and the ferrous ion chelating activity (FICA) assays.  A spray-dried 

seaweed extract containing 9.3% L and 7.8% F, comparable to the wet extract used in the 

animal diets, was added to 10% pork homogentates (1000 and 3000 μg/ml) as a positive 

seaweed polysaccharide control for both DPPH and FICA assays.  Homogenates were 

centrifuged at 7,800g for 10 min at 4°C.  The supernatants obtained were used for the 

estimation of the DPPH free radical scavenging and FICA activities of L/F in pork meat.  

 

5.2.6.2.1 Determination of DPPH radical scavenging activity 

DPPH radical-scavenging activity of LTL steaks was measured as described by 

Qwele, et al., (2013) with slight modifications.  DPPH (0.2 mM, 3 ml) in methanol was 

added to 0.3 ml supernatant and 2.7 ml distilled water.  The mixture was vortexed and left 

to stand at room temperature (20–22°C) in the dark and the precipitate formed was 

removed by filtering through Whatman No. 1 filter paper.  The assay control contained 

0.3 ml buffer (0.05 M phosphate), 2.7 ml distilled water and 3 ml of DPPH solution.  

Absorbances were measured against a methanol blank after 20 hr at 517 nm (Cary 300 

Bio, UV-Vis spectrophotometer, Varian Instruments, CA, USA).  Trolox C (1000 μg/ml) 
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and L/F (1000 and 3000 μg/ml) were used as positive controls.  The DPPH radical 

scavenging activity expressed as percent of the control was calculated as follows:  

% inhibition of DPPH = [1− (absorbance of sample / absorbance of control)] x 100 

 

5.2.6.2.2 Determination of ferrous ion chelating activity (FICA) 

The FICA of L/F in pork meat was measured using the iron-ferrozine complex 

method (Yen & Wu, 1999) with slight modifications.  FeCl2 (2 mM, 0.1 ml) in distilled 

water was added to 0.5 ml supernatant and 4.2 ml distilled water.  The reaction was 

initiated with the addition of 0.2 ml of 5 mM ferrozine in distilled water, the mixture was 

vortexed and left to stand at room temperature (20–22°C) for 1 hr in the dark.  The assay 

control contained 0.5 ml buffer (0.05 M phosphate), 4.2 ml distilled water, 0.1 ml of 

FeCl2 and 0.2 ml of ferrozine solution.  At 1 hr the absorbance of the solution was 

measured at 562 nm against a water blank using a spectrophotometer (Cary 300 Bio).  

EDTA (1000 μg/ml) and L/F (1000 and 3000 μg/ml) were used as positive controls.  The 

FICA was calculated as follows:  

% chelating activity = [1− (absorbance of sample / absorbance of control)] x 100 

 

5.2.7 Statistical analysis 

All analyses were performed in duplicate.  Mean sample values (n = 6) for each of 

the five treatment groups (Control, L/F450 - 3, L/F450 - 6, L/F900 - 3 and L/F900 - 6) were 

subjected to statistical analysis.  A full repeated measures two-way analysis of variance 

(ANOVA) was conducted to investigate the effects of dietary L/F level (450 or 900), 

duration (3 wk or 6 wk) and level*duration interactions.  No significance differences 

were observed between level*duration interactions.  Level and duration represented the 

‘between-subjects’ factor and the effect of time was measured using the ‘within-subjects’ 
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factor.  Tukey’s test was used to adjust for multiple comparisons between treatment 

means.  The analysis was performed using the SPSS 18.0 for Windows (SPSS, Chicago, 

IL, USA) software package.   

‘Visual’ and ‘eating quality’ sensory data was analysed with ANOVA-Partial 

Least Squares Regression (APLSR) to process the mean data accumulated from the 52 

test subjects. The X-matrix was designated as 0/1 for treatment and days with the Y-

matrix designated as sensory and instrumental variables. The optimal number of 

components in the ASLSR models presented was determined to be 6 principal 

components. In these models assessor and session level effects were removed using level 

correction. The validated model explained variance was 13.8% on day 1 and 18.0% on 

day 7 and the calibrated variance was 17.5% on day 2 and 21.4% on day 7. To derive 

significance indications for the relationships determined in the quantitative APLSR, 

regression coefficients were analyzed by jack-knifing which is based on cross-validation 

and stability plots (Martens & Martens, 1999, 2001).  All analyses were performed using 

the Unscrambler Software, version 9.8 (CAMO ASA, Trondheim, Norway). 
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5.3 RESULTS AND DISCUSSION  

5.3.1 Plasma total antioxidant status  

The TAS of porcine plasma was 1.03, 1.01, 0.91, 1.04 and 0.99 mmol TEAC/L 

plasma for the control, L/F450 - 3, L/F450 - 6, L/F900 - 3  and L/F900 - 6, groups respectively.  

Results indicated that level of L/F dietary addition or duration of feeding did not 

influence (p > 0.05) the TAS of porcine plasma.  Similar findings were reported in 

Chapter 4 where porcine plasma TAS was not affected by L/F supplementation at a level 

and duration similar to L/F900 - 3.  Similarly, dried Ascophyllum nodosum (2.5, 5.0 or 

10.0 g / kg) did not affect a range of markers for plasma oxidative status, including MDA, 

after inclusion in pigs diets for 28 days (Michiels et al., 2011).  In the present study, pigs 

were fed 3 hours pre-slaughter and lack of an effect of L/F on porcine plasma TAS may 

have been due to the rapid absorption during digestion. 

 

5.3.2 Colour stability and muscle pH of fresh LTL muscle 

The surface lightness ‘L*’ increased (p < 0.05) in fresh LTL muscle over the 14-

day storage period.  Trends indicated surface yellowness ‘b*’ values increased (p > 0.05) 

over time, however results were not statistically significant.  The ‘a*’ redness values of 

LTL muscle decreased (p < 0.05) as a function of storage time and was not influenced by 

level or duration of feeding dietary L/F (Table 5.3).  Similar trends in the colour stability 

of pork meat were reported in Chapter 4.  In addition, Park et al. (2005) demonstrated that 

supplementation of pig diets with a polysaccharide iron complex (chitosan-alginate-Fe(II) 

(3 ml per day)) had no effect on LTL pork steak colour parameters.   

Muscle pH of fresh pork ranged from 5.61 to 5.15 over the 15-day storage period 

and was unaffected by level and duration of feeding dietary L/F.  The pH values reported  
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Table 5.3.  Effect of dietary laminarin/fucoidan (L/F) on the surface lightness (‘L*’ value), redness (‘a*’ value) and 

yellowness (‘b*’ value) values of fresh longissimus thoracis et lumborum (LTL) stored in modified atmosphere packs (80% 

O2 : 20% CO2) for up to 14 days at 4°C.   

Treatment Parameter  Storage time at 4°C, days 

   1  4  7  11  14 

Control Lightness  54.99 ± 2.83
aA  55.02 ± 2.32

aA
  55.74 ± 2.14

aAB
  56.38 ± 2.07

aAB
  59.01 ± 2.06

aB
 

L/F450 - 3  L*  54.42 ± 4.09
aA

  54.73 ± 5.01
aA

  57.14 ± 3.96
aA

  57.59 ± 4.40
aA

  59.11 ± 3.53
aA

 

L/F450 - 6   53.21 ± 2.47
aA

  54.23 ± 2.59
aAB

  56.17 ± 2.09
aABC

  57.60 ± 1.28
aBC

  58.85 ± 1.60
aC

 

L/F900 - 3    52.94 ± 2.77
aA

  54.50 ± 2.41
aAB

  55.62 ± 1.55
aAB

  56.01 ± 0.93
AB

  56.82 ± 1.45
aC

 

L/F900 - 6   54.54 ± 2.30
aA

  56.11 ± 1.68
aAB

  58.17 ± 3.35
aAB

  56.85 ± 2.46
aAB

  58.99 ± 1.80
aC

 

            

Control Redness  6.75 ± 1.12
aA

  6.45 ± 0.41
aA

  5.53 ± 0.57
aAB

  4.13 ± 0.72
aBC 

  3.73 ± 1.51
aC

 

L/F450 - 3  a*  6.80 ± 0.62
aA

  6.64 ± 0.55
aA

  5.18 ± 0.53
aB

  5.14 ± 0.78
aB

  4.18 ± 1.10
aB

 

L/F450 - 6   6.19 ± 1.01
aA

  5.79 ± 0.53
aAB

  5.34 ± 1.04
aAB

  4.77 ± 0.72
aBC

  3.49 ± 0.76
aC

 

L/F900 - 3    5.97 ± 0.74
aA

  5.20 ± 0.76
aA

  4.97 ± 0.65
aAB

  3.92 ± 0.56
aC

  3.89 ± 0.43
aC

 

L/F900 - 6   6.39 ± 1.21
aA

  5.49 ± 1.39
aAB

  4.79 ± 1.20
aABC

  4.00 ± 0.93
aBC

  3.29 ± 1.27
aC

 

            

Control Yellowness  7.99 ± 0.88
aA

  8.09 ± 0.44
aA

  7.84 ± 0.51
aA

  7.42 ± 0.46
aA

  8.67 ± 1.55
aA

 

L/F450 - 3  b*  8.26 ± 0.96
aA

  8.35 ± 1.11
aA

  8.34 ± 1.04
aA

  8.85 ± 1.03
aA

  9.04 ± 1.43
aA

 

L/F450 - 6   7.46 ± 0.81
aA

  7.29 ± 0.39
aA

  7.81 ± 0.57
aA

  8.29 ± 0.82
aA

  7.95 ± 1.20
aA

 

L/F900 - 3    7.26 ± 0.58
aA

  7.22 ± 0.42
aA

  7.60 ± 0.70
aA

  7.35 ± 0.35
aA

  7.73 ± 0.46
aA

 

L/F900 - 6   7.48 ± 0.75
aA

  7.51 ± 0.83
aA

  7.89 ± 1.29
aA

  7.39 ± 0.98
aA

  7.99 ± 1.06
aA

 
aWithin each parameter and storage day, mean values (± standard deviation) in the same column are not significantly different, p > 0.05.   

                                 ABCWithin each treatment, mean values (± standard deviation) in the same row bearing different superscripts are significantly different, p < 0.05.   
 

L
ev

el an
d

 d
u

ratio
n
 effects o

f lam
in

arin
 an

d
 fu

co
id

an
 in

 p
o

rcin
e d

iets 

_
_

_
_

_
_

_
_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_
_

_
_
_

_
_
_
_
_
_

_
_

_
_
_

_
_
_

_
_
_

_
_
_

_
_
_

_
_

_
_

_
_

_
_
_

_ 



Level and duration effects of laminarin and fucoidan in porcine diets 

______________________________________________________________________________________ 

- 181 - 

were comparable to previously reported values (5.90-5.19) for post-mortem pork muscle 

from pigs fed L/F in Chapter 4.  The relationship between muscle pH and pork colour (L* 

and a*) has been established where pH-induced effects on muscle proteins directly 

correlated with changes in the pink colour of pork, as observed in pale soft exudative 

(PSE) and dark firm dry pork meat (DFD) (Brewer et al., 2001).  In the present study, no 

effect was exerted by level or duration of feeding L/F on muscle pH or the colour stability 

of fresh pork LTL steaks. 

 

5.3.3 Lipid oxidation in fresh LTL muscle and cooked minced pork 

Lipid oxidation significantly (p < 0.05) increased in meat from all dietary groups 

as a function of storage time (Table 5.4).  However, the levels of lipid oxidation were 

generally low with mean values ranging from 0.16-0.93 mg MDA/kg pork.  Trends for 

lipid oxidation followed the order: C = L/F450 - 6 = L/F900 - 6 > L/F450 - 3 = L/F900 - 3.  On day 

11 and 14 of storage in MAP, levels of lipid oxidation in L/F450 - 3 and L/F900 - 3 were 

significantly (p < 0.05) lower compared to the control.  In Chapter 4, protection against 

lipid oxidation was reported in LTL steaks potentially due to deposition of antioxidant 

components in L/F in pork muscle following dietary supplementation at a level similar to 

L/F900 - 3.   

Recent studies have shown that dietary L/F modulated gastrointestinal physiology, 

improved digestion and increased absorptive functions of the pig intestine (Heim et al., 

2014).  The degree of digestibility of the seaweed polysaccharides increased with feeding 

duration, which subsequently increased nutrient digestibility (O'Doherty et al., 2010).  In 

the present study, L/F450 - 3 and L/F900 - 3 was sufficient to increase lipid stability in LTL 

steaks.  Uptake and increased utilisation of the polysaccharides by gut microbes may be  
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Table 5.4.  Effect of dietary laminarin/fucoidan (L/F) on lipid oxidation (TBARS*) in fresh longissimus thoracis et 

lumborum (LTL) and cooked pork patties stored in modified atmosphere packs (MAP) and aerobically for up to 14 days and 

3 days, respectively, at 4°C.   

Treatment Packaging  Storage time at 4°C, days 

   1  4  7  11  14 

Control MAP
1
 Fresh 0.16 ± 0.01

aA
  0.17 ± 0.03

aA
  0.20 ± 0.04

aA
  0.60 ± 0.26

aB  0.93 ± 0.33
aC

 

L/F450 - 3    0.16 ± 0.02
aA

  0.19 ± 0.04
aAB

  0.17 ± 0.06
aA

  0.32 ± 0.08
bBC  0.40 ± 0.16

bC
 

L/F450 - 6   0.16 ± 0.02
aA

  0.17 ± 0.03
aA

  0.17 ± 0.04
aA

  0.45 ± 0.21
abAB

  0.65 ± 0.51
abB

 

L/F900 - 3    0.16 ± 0.02
aA

  0.16 ± 0.02
aA

  0.16 ± 0.02
aA

  0.31 ± 0.10
bB

  0.37 ± 0.13
bB

 

L/F900 - 6  0.16 ± 0.01
aA

  0.16 ± 0.03
aA

  0.18 ± 0.03
aA

  0.35 ± 0.09
abAB

  0.52 ± 0.26
abB

 

           

Control MAP
2
 Cooked 1.78 ± 0.42

aA  2.91 ± 0.60
aB  2.90 ± 0.55

aB
  3.07 ± 0.60

aB
  2.89 ± 0.45

aB
 

L/F450 - 3   1.76 ± 0.49
aA

  2.66 ± 0.62
aA

  2.39 ± 0.48
aA

  2.63 ± 0.68
aA

  2.54 ± 0.57
aA

 

L/F450 - 6  2.03 ± 0.36
aA

  3.05 ± 1.17
aA

  3.12 ± 0.71
aA

  2.96 ± 0.47
aA

  3.02 ± 0.59
aA

 

L/F900 - 3   1.71 ± 0.18
aA

  2.28 ± 0.19
aB

  2.47 ± 0.29
aB

  2.65 ± 0.45
aB

  2.55 ± 0.36
aB

 

L/F900 - 6  2.11 ± 0.50
aA

  3.04 ± 0.94
aAB

  3.08 ± 0.57
aAB

  3.35 ± 0.81
aB

  2.65 ± 0.48
aAB

 

           

  0  1  2  3   

Control Aerobic Cooked 1.21 ± 0.34
aA

  2.03 ± 0.54
aAB

  2.59 ± 0.53
aBC

  3.39 ± 0.88
aC

   

L/F450 - 3   1.26 ± 0.18
aA

  1.85 ± 0.58
aA

  2.32 ± 0.77
aAB

  2.94 ± 1.02
aC

   

L/F450 - 6  1.08 ± 0.29
aA

  2.34 ± 0.51
aB

  3.13 ± 0.74
aBC

  3.75 ± 0.76
aC

   

L/F900 - 3   1.09 ± 0.14
aA

  1.81 ± 0.22
aB

  2.40 ± 0.42
aC

  3.11 ± 0.54
aD

   

L/F900 - 6  1.40 ± 0.19
aA

  2.51 ± 0.54
aB

  2.92 ± 0.34
aBC

  3.48 ± 0.35
aC

   
1(80% O2 : 20% CO2), 

2(70% N2 : 30% CO2).  *TBARS, mg malondialdehyde (MDA)/kg pork. 
abWithin each parameter and storage day, mean values (± standard deviation) in the same column bearing different superscripts are significantly 

different, p < 0.05.   
                               ABCDWithin each treatment, mean values (± standard deviation) in the same row bearing different superscripts are significantly different, p < 0.05.   
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responsible for the differences observed in lipid stability of L/F450 - 6 and L/F900 - 6 

compared to feeding L/F for 3 weeks.   

In cooked pork patties stored in MAP, trends indicated that lipid oxidation 

increased in all treatments over the 14-day storage period, however results were only 

statistically significant (p < 0.05) for the control and L/F900 - 3.  In cooked pork patties 

stored aerobically, lipid oxidation increased significantly (p < 0.05) in all treatments over 

the 14-day storage period (Table 5.4).  Lowest levels of lipid oxidation for cooked pork 

patties stored aerobically and in MAP were observed in L/F450 - 3 and L/F900 - 3 and results 

were not significantly different from the controls.  Lipid oxidation levels were greater 

than those observed for raw LTL muscle due to the pro-oxidative nature of the mincing 

and cooking processes.  In cooked patties stored in MAP, lipid oxidation was lower than 

in patties stored aerobically due to the low oxygen levels present in MAP.  In the present 

study, although not statistically significant, trends showed that dietary L/F 

supplementation for 3 weeks resulted in slightly lower levels of lipid oxidation compared 

to the controls for cooked patties stored in both packaging conditions.  The behaviour of 

dietary seaweed polysaccharides during cooking requires further investigation.   

 

5.3.4 Lipid oxidation in porcine liver, heart, kidney and lung tissue homogenates 

Liver, heart, kidney and lung tissue homogenates were subjected to iron (FeSO4)-

induced lipid oxidation to estimate the distribution of L/F extract in porcine organ tissues.  

Following FeSO4 addition, lipid oxidation increased in all tissue homogenates over the 24 

hr storage period (Table 5.5).    In Chapter 4, slightly lower levels of lipid oxidation were 

observed in porcine liver tissue homogenates after dietary supplementation of a spray-

dried seaweed extract similar to L/F900 - 3.  In the present study, similar decreases in levels 

of lipid oxidation of liver tissues after L/F supplementation were not detected.  Lynch et 
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al. (2010) suggested that pig maturity influenced the digestion, breakdown and 

subsequent availability of fermentable polysaccharides entering the large intestine.  Pigs 

used in this chapter (115.81 kg) were larger in size than pigs (29.7 kg) investigated in 

Chapter 4.  The differences in lipid stability of organ tissues observed between the two 

studies may be attributed to maturity of the pigs at the time of slaughter.   

Table 5.5.  Effect of dietary laminarin/fucoidan (L/F) on iron-induced lipid oxidation 

(TBARS) in organ (liver, heart, kidney and lung) tissue homogenates after 24 hours storage 

at 4ºC.   

Treatment  Storage for 24 hours at 4ºC 

  liver  heart  kidney  lung 

Control  2.91 ± 0.76
a
  1.42 ± 0.88

a
  2.68 ± 0.82

a
  1.26 ± 0.55

a
 

L/F450 - 3   2.93 ± 0.81
a 
  1.21 ± 0.70

a
  2.52 ± 0.46

a
  1.21 ± 0.71

a
 

L/F450 - 6  3.21 ± 0.85
a
  1.76 ± 0.81

a
  2.72 ± 0.55

a
  1.55 ± 0.77

a
 

L/F900 - 3   3.10 ± 0.67
a
  1.52 ± 0.31

a
  1.72 ± 0.90

a
  1.20 ± 0.65

a
 

L/F900 - 6  2.98 ± 0.39
a
  1.17 ± 0.35

a
  1.59 ± 0.65

a
  0.86 ± 0.14

a
 

aWithin each organ type, mean values (± standard deviation) in the same column are not significantly different, 

p > 0.05.   

*TBARS, mg malondialdehyde (MDA)/kg organ tissue. 

 

Several studies have shown that dietary seaweed extracts, containing laminarin 

and fucoidan individually, can accumulate and positively influence stress markers in 

animal liver, heart, kidney and lung tissues (Thomes, et al., 2010).  In rat lung tissue, 

deposition of antioxidant components from dietary laminarin (200 or 400 mg/kg body 

weight) was found to significantly reduce malondialdehyde (MDA) levels (Cheng et al., 

2011). In the present study, the maximum level and duration (L/F900 - 6) was the most 

effective (not significantly) of all treatments examined at reducing iron-induced oxidation 

of porcine kidney and lung tissue homogenates compared to the control.  The digestion of 

soluble dietary fibre has been linked to changes in microbiota which consequently 

influences absorption rate of minerals and other nutrients (Scholz-Ahrens et al., 2001).  

The digestion and utilisation of dietary L/F by the porcine gut to support immunological 

health may have influenced the bioavailability and subsequent deposition of L/F and 

minerals from the extract in the organ tissues.  Increased availability of iron and copper, 
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known initiators of lipid oxidation, from the seaweed extract may have counterbalanced 

the antioxidant potential of dietary L/F. 

 

5.3.5 Microbiology of fresh LTL muscle 

The mesophilic plate counts of fresh LTL muscle ranged from ~2.7 to ~3.2 log 

cfu/g on day 1 and increased to a maximum of ~7.0 log cfu/g on day 13 of storage (Table 

5.6).   Psychrotrophic plate counts ranged from ~4.0 to ~5.0 log cfu/g on day 1 and 

increased to levels ranging from ~9.9 to ~10.5 log cfu/g on day 13 (Table 5.6).  

Mesophilic and psychrotrophic counts are in agreement with previously reported values 

from Chapter 4.  Results from the present study indicated dietary L/F, regardless of level 

or duration of feeding, did not exert antimicrobial activity in fresh LTL steaks.   

The biological activity of sulphated polysaccharides can vary between species and 

has been linked to the molecular weight and sulphated content as well as the position of 

sulphate groups (Li, et al., 2008).  Antimicrobial properties of seaweed extracts are 

influenced by extraction solvents, form and concentration of compounds present, and 

activity has been reported in extracts prepared from a range of seaweed species (Bansemir 

et al., 2006; Cox et al., 2013).  Crude extracts containing sulphated polysaccharides from 

Gracilaria ornata exhibited no antimicrobial activity against seven bacteria (B. subtilis, 

S. aureus, E. aerogens, E. coli, P. aeruginosa, S. choleraesuis and S. typhi) (plate 

diffusion method).  Amorim et al. (2012) postulated the absence of antimicrobial activity 

of sulphated polysaccharides may be due to the inability to interact with the cell wall of 

bacteria as a result of charge and the repulsion of the sulphated groups.  In the present 

study, the lack of antimicrobial activity in the LTL steaks may be attributed to the form 

and concentration of compounds deposited in the muscle. 
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Table 5.6.  Effect of dietary laminarin/fucoidan (L/F) on the microbial status* (mesophilic and psychrotrophic 

TVC) of fresh longissimus thoracis et lumborum (LTL) stored in modified atmosphere packs (80% O2 : 20% 

CO2) at for up to 13 days at 4°C.   

Treatment   Storage time at 4°C, days 

 Temp  1  5  8  13 

Control 30°C  2.84 ± 0.27
aA  3.78 ± 0.01

aB
  4.83 ± 0.22

aC
  6.58 ± 0.39

aCD
 

L/F450 - 3  mesophilic  2.77 ± 0.20
aA

  4.03 ± 0.05
aAB

  5.14 ± 0.49
aB

  5.46 ± 0.92
aC

 

L/F450 - 6 count  3.16 ± 0.08
aA

  3.76 ± 0.19
aA

  6.14 ± 0.73
aB

  6.83 ± 0.84
aC

 

L/F900 - 3    2.66 ± 0.26
aA

  3.78 ± 0.02
aA

  5.20 ± 0.41
aB

  7.01 ± 0.53
aB

 

L/F900 - 6   2.70 ± 0.30
aA

  3.65 ± 0.25
aAB

  4.73 ± 0.55
aB

  6.49 ± 0.55
aB

 

          

Control 4°C  4.42 ± 0.40
aA

  4.80 ± 0.43
aAB

  6.49 ± 0.83
aB

    9.90 ± 0.73
aC

 

L/F450 - 3  psychrotrophic  4.68 ± 0.77
aA

  4.92 ± 0.74
aA

  6.54 ± 0.31
aB

  10.17 ± 0.20
aC

 

L/F450 - 6 count  4.95 ± 0.28
aA

  5.69 ± 0.29
aB

  7.24 ± 0.43
aC

  10.50 ± 0.07
aD

 

L/F900 - 3    4.00 ± 0.42
aA

  5.18 ± 0.21
aA

  6.37 ± 0.37
aB

  10.49 ± 0.02
aC

 

L/F900 - 6   4.12 ± 0.18
aA

  4.65 ± 0.30
aAB

  6.77 ± 0.09
aB

  10.29 ± 0.04
aC

 
aWithin each storage temperature and day, mean values (± standard deviation) in the same column are not significantly  

different, p > 0.05.   
           ABCDWithin each treatment, mean values (± standard deviation) in the same row bearing different superscripts are significantly  

       different, p < 0.05.   

       *log10CFU (colony forming units)/g pork. 
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5.3.6 Sensory evaluation of fresh and cooked LTL muscle 

In ‘visual’ sensory analysis of LTL steaks (Table 5.7), no significant trends were 

observed for ‘pinkness’ or ‘whiteness’ with the exception of L/F450 - 3 which was 

significantly (p < 0.05) positively correlated to appearing more (pink) on day 1.  

Instrumental ‘a*’ redness values support such findings indicating that colour was 

unaffected by level and duration of feeding dietary L/F.  On day 1, L/F900 - 3 was very 

highly significantly (p < 0.001) positively correlated to having a high drip loss while 

L/F900 - 6 was highly significantly (p < 0.01) negatively correlated to having no drip loss.  

On day 7, the control was very highly significantly (p < 0.001) positively correlated to 

having high drip loss while L/F450 - 3 was very highly significantly (p < 0.001) negatively 

correlated to a lack of drip loss.  Although not significant, L/F450 - 6, L/F900 - 3, L/F900 - 6 

were also negatively correlated to having a lack of drip loss on day 7, which may indicate 

that deposition of components of  the L/F extract led to an increase in stability in the 

protein matrix leading to reduced drip during storage.   On day 7, L/F450 - 3 was 

significantly (p < 0.05) positively correlated to purchasing appeal and overall visual 

acceptability while the control was significantly (p < 0.05) negatively correlated to 

purchasing appeal and overall visual acceptability.  Therefore, the ‘visual’ sensory 

properties of L/F450 - 3 pork patties were enhanced by dietary L/F supplementation 

according to the sensory panellists. 

No significant trends were observed for ‘eating quality’ sensory analysis including 

appearance, texture, and overall acceptability of the cooked LTL muscle (Table 5.7).  In a 

previously reported study, the addition of dried Himanthalia elongata (5%) to low-fat 

frankfurters resulted in less acceptable products, due mainly to the flavour of the seaweed 

(López-López et al., 2010).  In the present study, ‘eating quality’ sensory analysis was  



- 1
8
8
 - 

 

 

L
ev

el an
d

 d
u

ratio
n
 effects o

f lam
in

arin
 an

d
 fu

co
id

an
 in

 p
o
rcin

e d
iets 

_
_

_
_

_
_

_
_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_
_
_

_
_
_
_

_
_
_

_
_
_

_
_
_
_

_
_
_
_
_
_

_
_
_
_
_

_
_
_

_
_
_

_
_

_
_ 

Table 5.7.  Significance of regression coefficients (ANOVA values) for fresh longissimus thoracis et lumborum (LTL) as derived by jack-knife 

uncertainty testing. 

Parameter  Storage time, days / Treatment  

  Control  L/F450 - 3  L/F450 – 6  L/F900 - 3  L/F900 - 6 

Visual Sensory 

Analysis 

 
1  7  1  7  1  7  1  7  1  7 

Pinkness   0.61  -0.40   0.01*   0.45   0.80   0.93  -0.31   0.48  -0.47   0.55 

Whiteness  -0.64  -0.99  -0.07   0.99  -0.81   0.99   0.39   0.99   0.52   0.99 

Drip   0.27   0.00***   0.23  -0.00***   0.72  -0.93   0.00***  -0.23  -0.01**  -0.57 

Packaging quality  -0.67   0.99  -0.66  -0.99  -0.78  -0.99   0.65  -0.99   0.64  -0.99 

Purchasing appeal  -0.69  -0.03*  -0.79   0.05*  -0.56   0.93   0.75   0.29   0.73   0.56 

Overall acceptability  -0.41  -0.03*  -0.68   0.05*  -0.51   0.93   0.59   0.27   0.51   0.56 

Eating Quality 

Sensory Analysis 

 
                   

Appearance   0.81  -0.54   0.70   0.55   0.87   0.93  -0.75   0.61  -0.78   0.56 

Tenderness  -0.09   0.55  -0.56  -0.55  -0.63  -0.93   0.35  -0.61   0.20  -0.72 

Oxidation flavour  -0.41  -0.93  -0.31   0.93  -0.74   0.95   0.18   0.92   0.23   0.93 

Liking of flavour   0.83  -0.94   0.74   0.94   0.88   0.96  -0.78   0.94  -0.80   0.94 

Overall acceptability   0.81   0.50   0.68  -0.52   0.87  -0.93  -0.75  -0.50  -0.77  -0.71 
  Significance of regression coefficients; * = p < 0.05; ** = p < 0.01; *** = p < 0.001. 
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unaffected by level and duration of feeding of dietary L/F.  Dietary supplementation 

where the L/F extract is subjected to porcine digestive and metabolic processes, may 

serve to eliminate possible negative organoleptic detection of flavourants by consumers.  

This indicates that seaweed extracts may be incorporated into porcine tissues via the 

animal’s diet without damaging consumer preferences for pork meat. 

 

5.3.7 Determination of L/F mechanism of action on lipid stability in pork muscle 

The mechanism of antioxidant activity of L/F in pork meat may be attributed to 

one or a number of chemical reactions or pathways such as immunomodulatory activity in 

the gut, influence on the fatty acid composition as well as antioxidant activity (radical 

scavenging and ferrous ion chelating) in the muscle. 

5.3.7.1 Improvement of porcine gut health  

When used as feed additives in pig diets, components of the L/F extract have the 

potential to enhance porcine gut health by improving the immune system and altering the 

intestinal microbiota before being absorbed and deposited in the muscle (Gahan et al.,  

2009).  The immune function is specially linked to the release of reactive oxygen species 

(ROS), the excess of which must be eliminated by endogenous antioxidant defences.  

ROS which are not counteracted by the antioxidant defences of the cell can become a 

source of damage to DNA, lipids and proteins in the animal.  Molecular damage resulting 

from oxidative stress can lead to significant damage to cell structures and even moderate 

oxidation can trigger cell death (De la Fuente, 2002).  Immunomodulatory activities of 

L/F, have been reported, in mammals through modification of macrophage activity 

resulting in increased immune function (Castro et al., 2004; Li, et al., 2008).  It is 

postulated that the lipid antioxidant activity of L/F in pork meat may be mediated through 

enhanced immune function as a result of dietary polysaccharide supplementation. 
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5.3.7.2 Changes in fatty acid composition of pork muscle  

Lynch et al. (2010) reported that dietary supplementation of L/F influenced short 

chain fatty acid (SCFA) production in pigs.  Polysaccharides such as L/F undergo 

fermentation in the cecum and large intestine by the anaerobic cecal and colonic 

microbiota resulting in multiple groups of metabolites of which, SCFA are the major 

group.  The most abundant SCFA are acetate, propionate and butyrate (den Besten et al., 

2013b).  SCFA can be transported from the intestinal lumen into the blood and taken up 

by organs where they act as substrates or signal molecules (Wong et al., 2006).  SCFA, in 

particular acetate, have been linked to the synthesis of cholesterol and long chain fatty 

acids as well as being a substrate for glutamine and glutamate synthesis (den Besten et al., 

2013a).  Therefore the potential exists for dietary L/F to influence the FA profile of pork 

meat.   

The fatty acid composition of pork meat for all dietary treatments is presented in 

Table 5.8.  Susceptibility to lipid oxidation in pork meat is largely determined by the level 

of unsaturated fatty acids and pro-oxidants present in the muscle (Decker, et al., 2000).  

The fatty acid composition of the control is comparable to previously reported values for 

fresh pork meat (Wood et al., 2004).  L/F900 - 3 was lower (p < 0.05) in stearic acid; L/F900 

- 6 was lower (p < 0.05) in stearic and arachidic acid relative to the control, resulting in a 

decreased (p < 0.05) total level of saturated (∑SFA) fatty acids in L/F900 - 6.  Trends 

indicated that all pigs fed dietary L/F had lower levels of saturated (∑SFA) fatty acids, 

however results were not statistically significant.  In pork meat, stearic acid content has 

been linked to fat hardness due to the saturated nature of this fatty acid.  However, in the 

present study, the tenderness sensory descriptor of cooked LTL muscle was unaffected by 

stearic acid level.  Trends also suggested that higher levels of polyunsaturated (∑PUFA)  
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Table 5.8. Effect of dietary laminarin/fucoidan (L/F) on fatty acid composition in fresh longissimus thoracis et lumborum (LTL).  

  Treatment 

  Control  L/F450 - 3  L/F450 – 6  L/F900 - 3  L/F900 - 6 

Lauric C12:0    0.12 ± 0.08
a
    0.12 ± 0.05

a
    0.13 ± 0.05

a
    0.11 ± 0.03

a
    0.12 ± 0.06

a
 

Myristic C14:0     0.83 ± 0.20
a
    0.84 ± 0.30

a
    0.85 ± 0.18

a
    0.87 ± 0.13

a
    0.89 ± 0.13

a
 

Palmitic C16:0   22.18 ± 0.73
a
  21.95 ± 1.51

a
  22.09 ± 0.63

a
  21.91 ± 0.47

a
  21.56 ± 0.97

a
 

Stearic C18:0   13.84 ± 1.29
a 

 12.97 ± 0.76
ac

  13.21 ± 0.38
ad

  12.59 ± 0.40
bcd

  11.65 ± 0.45
b
 

Arachidic C20:0     0.26 ± 0.05
a
    0.22 ± 0.04

ab
    0.23 ± 0.03

ab
    0.22 ± 0.01

ab
    0.17 ± 0.09

b
 

ΣSFA  37.24 ± 2.08
a
  36.10 ± 1.65

ab
  36.51 ± 1.02

ab
  35.69 ± 0.73

ab
  34.39 ± 1.25

b
 

           
t-Palmitoleic C16:1 trans    0.28 ± 0.02

a
    0.28 ± 0.06

a
    0.29 ± 0.04

a
    0.30 ± 0.03

a
    0.27 ± 0.04

a
 

Palmitoleic C16:1 cis     1.71 ± 0.43
a
    1.80 ± 0.73

a
    1.83 ± 0.27

a
    2.04 ± 0.44

a
    2.25 ± 0.42

a
 

Elaidic C18:1 trans     0.37 ± 0.10
a
    0.37 ± 0.18

a
    0.38 ± 0.13

a
    0.38 ± 0.10

a
    0.30 ± 0.09

a
 

Oleic C18:1 (n-9)  31.11 ± 5.35
a
  27.35 ± 6.63

a
  28.92 ± 3.54

a
  29.36 ± 3.76

a
  32.40 ± 4.86

a
 

Vaccenic C18:1 (n-7)     2.98 ± 0.66
a
    3.00 ± 0.55

a
    3.50 ± 0.17

a
    3.29 ± 0.25

a
    3.58 ± 0.22

a
 

ΣMUFA  36.46 ± 5.76
a
  32.77 ± 7.48

a
  34.92 ± 3.68

a
  35.37 ± 3.90

a
  38.81 ± 5.19

a
 

               
Linoleic C18:2 (n-6)  14.85 ± 3.85

a
  17.73 ± 4.00

a
  15.67 ± 2.14

a
  16.43 ± 2.41

a
  16.28 ± 3.61

a
 

γ-Linolenic C18:3 (n-6)     0.05 ± 0.04
a
    0.11 ± 0.04

a
    0.09 ± 0.05

a
    0.07 ± 0.04

a
    0.06 ± 0.03

a
 

α-Linolenic C18:3 (n-3)     0.77 ± 0.16
a
    0.86 ± 0.11

a
    0.83 ± 0.19

a
    0.92 ± 0.20

a
    0.86 ± 0.15

a
 

Dihomo-γ-linolenic C20:3 (n-6)    0.25 ± 0.06
a
    0.35 ± 0.13

a
    0.32 ± 0.07

a
    0.28 ± 0.07

a
    0.28 ± 0.07

a
 

Arachidonic C20:4 (n-6)     2.56 ± 1.11
a
    3.39 ± 1.56

a
    3.16 ± 1.02

a
    2.85 ± 0.88

a
    2.67 ± 1.02

a
 

Eicosapentaenoic C20:5 (n-3)    0.17 ± 0.13
a
    0.19 ± 0.10

a
    0.18 ± 0.06

a
    0.17 ± 0.06

a
    0.13 ± 0.09

a
 

Docosatetraenoic C22:4 (n-6)     0.34 ± 0.15
a
    0.46 ± 0.23

a
    0.41 ± 0.10

a
    0.40 ± 0.16

a
    0.35 ± 0.12

a
 

Docosapentaenoic C22:5 (n-3)    0.39 ± 0.17
a
    0.57 ± 0.26

a
    0.54 ± 0.17

a
    0.47 ± 0.15

a
    0.45 ± 0.17

a
 

Docosahexaenoic C22:6 (n-3)    0.07 ± 0.03
a
    0.12 ± 0.07

a
    0.07 ± 0.09

a
    0.08 ± 0.05

a
    0.08 ± 0.06

a
 

ΣPUFA  19.44 ± 5.29
a
  23.77 ± 6.19

a
  21.28 ± 3.42

a
  21.67 ± 3.31

a
  21.17 ± 4.93

a
 

           
P:S ratio

#
    0.43 ± 0.13

a
    0.52 ± 0.13

a
    0.46 ± 0.07

a
    0.49 ± 0.07

a
    0.50 ± 0.12

a
 

18:2n-6:18:3n-3
 
  19.89 ± 6.49

a
  21.36 ± 7.26

a
  20.12 ± 7.57

a
  18.56 ± 4.53

a
  19.24 ± 4.47

a
 

Σn-6:Σn-3  13.48 ± 1.31
a
  13.49 ± 1.63

a
  12.64 ± 1.68

a
  12.86 ± 1.43

a
  13.52 ± 1.69

a
 

#P:S ratio = (C18:2n-6 + C18:3n-3) / (C12:0 + C14:0 + C16:0 + C18:0).  
ab

Within each fatty acid, mean values (± standard deviation) in the same row bearing different superscripts are significantly different, p < 0.05.   
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fatty acids and higher polyunsaturated:saturated (P:S) ratios in meat from all dietary 

seaweed treatments relative to the control, however results were not statistically 

significant.  L/F900 – 6 displayed enhanced lipid stability in addition to significantly lower 

(p < 0.05) saturated fatty acids suggesting dietary addition of L/F beneficially influenced 

the fatty acid profile of LTL muscle without detrimental effects on lipid stability.  This 

shift in the ratio of P:S may benefit consumers seeking meat with reduced saturated fat 

levels.  

 

5.3.7.3 Free radical scavenging activity of L/F extract in pork muscle 

The DPPH free radical scavenging activity of laminarin, fucoidan and a variety of 

brown seaweeds (i.e. Fucus vesiculosus, Laminaria japonica, Sargassum plagiophyllum, 

Sargassum vulgare) has been reported previously (Choi, et al., 2011; Dore et al., 2013; 

Suresh et al., 2012; Vo & Kim, 2013).  Free radical scavenging activity and protection 

against ROS is a potential mechanism of action of dietary L/F deposited in the muscle 

tissue.  The free radical scavenging activity of fresh pork from the dietary treatments 

(L/F450 - 3; L/F450 - 6; L/F900 - 3; L/F900 - 6) ranged from 38.92 to 43.45% and was similar to 

the control (39.49%) (Figure 5.1).  A spray-dried seaweed extract containing L/F and 

Trolox were directly added to pork meat (positive controls) to determine in vitro radical 

scavenging activity.  Direct addition of L/F (1000 and 3000 μg/ml) and Trolox (1000 

μg/ml) to pork meat resulted 57.2%, 63.3% and 83.2% free radical scavenging activity, 

respectively.  The antioxidant activity of fucoidan has been related to the sulphate 

content, position, molecular weight and sugar composition (Sinurat & Marraskuranto, 

2013).  In the present study, the seaweed extract exhibited free-radical scavenging 

activity in vitro, however, scavenging activity was not detected in pork meat following 
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Figure 5.1. Effect of dietary laminarin/fucoidan (L/F) on DPPH free radical scavenging in fresh longissimus thoracis et lumborum 

(LTL) muscle.  
abc

Within each dataset (assay controls/dietary treatment), mean values (± standard deviation error bars) bearing different 

superscripts are significantly different, p < 0.05.  (    ), Direct addition to meat homogenates; (    ), Dietary treatments.  
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dietary supplementation with L/F.  The lack of free-radical scavenging activity is 

potentially due to biotransformation of L/F during ingestion and absorption by the 

porcine gut before deposition in the muscle resulting in compounds un-reactive with the 

DPPH radical.   

 

5.3.7.4 Ferrous ion chelating activity of L/F extract in pork muscle  

Transition metals present in muscle foods such as iron are known to initiate and 

accelerate lipid oxidation in food systems.  Low to moderate ferrous ion chelating 

activities of brown seaweeds (Sargassum filipendula and Laminaria japonica) have been  

previously reported, and activity was attributed to the presence of sulphated 

polysaccharides (Costa et al., 2011; Wang et al., 2008).  Analysis of the L/F extract (rich 

in sulphated polysaccharides) (1000 and 3000 μg/ml) utilised in the present study, 

indicated no FICA whereas EDTA (positive control) resulted in 90.95% FICA.  Iron 

chelating activity is dependent on the complex structural characteristics of seaweed 

polysaccharides (Mak et al., 2013).  The L/F extract may undergo structural modification 

(biotransformation) during porcine digestion and potentially exhibit antioxidant activity 

mediated through ferrous ion chelating activity in pork meat.  FICA of pork meat 

fractions from each dietary treatment ranged from 17.65 -25.10% (similar to the control) 

(Figure 5.2). Results indicated that dietary L/F did not influence FICA in LTL muscle and 

antioxidant activity of L/F is most likely due to a combination of the proposed 

mechanisms discussed. 
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Figure 5.2. Effect of dietary laminarin/fucoidan (L/F) on ferrous ion chelating activity (FICA) in fresh longissimus thoracis et 

lumborum (LTL) muscle.  
ab

Within each dataset (assay controls/dietary treatment), mean values (± standard deviation error 

bars) bearing different superscripts are significantly different, p < 0.05.  (    ), Direct addition to meat homogenates; (    ), 

Dietary treatments. 
n/a

 No activity. 
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5.4 CONCLUSIONS 

Dietary supplementation of L/F at 3 weeks, irrespective of level, resulted in lower 

levels of lipid oxidation due to deposition of marine-derived bioactive antioxidant 

components in LTL muscle.  Antioxidant response factor, dependant on duration of 

supplementation, was most likely attributed to a number of mechanisms.  Dietary L/F 

reduced total level of saturated (∑SFA) fatty acids in L/F900 - 6 and significantly lowered 

lipid oxidation in LTL muscle (on day 11 and 14 of storage) in L/F450 - 3 and L/F900 – 3.  

Due to complexity of the extract and porcine metabolic pathways, it is unclear if free 

radical scavenging abilities of the extract were responsible for the antioxidant activity 

observed in LTL muscle.  Meat quality enhancing effects of seaweed polysaccharides 

may be mediated through health promoting effects of gut-associated immunity.  The 

improved fatty acid profile with enhanced lipid stability of pork meat without impact on 

tenderness, flavour or other sensory properties suggests dietary supplementation of 

seaweed extracts containing laminarin and fucoidan could result in an enhanced pork 

meat product.   
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ABSTRACT 

A spray-dried seaweed extract containing laminarin (L, 9.3%) and fucoidan (F, 

7.8%) (L/F extract) from brown seaweed (Laminaria digitata) was added directly to 

minced pork (longissimus thoracis et lumborum) (LTL) at levels of 0.01%, 0.1% and 

0.5% (w/w).  Fresh and cooked minced pork patties were stored in modified atmosphere 

packs containing 80% O2 : 20% CO2 and 70% N2 : 30% CO2, respectively, for up to 14 

days at 4ºC.  The L/F extract (0.5%) exerted a lipid pro-oxidant activity in fresh patties on 

each measurement day.  The L/F extract (0.5%) significantly decreased (p < 0.05) lipid 

oxidation in cooked patties on days 1, 4 and 14 of storage.  The L/F extract had no effect 

on the microbiological status, pH, water holding capacity (WHC) or cook loss of patties.  

Sensory panellists were unable to distinguish between pork patties containing 0.01% L/F 

and the control.  Further research will focus on the use of refined purified seaweed 

extracts in functional meat products.   
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6.1 INTRODUCTION  

The use of seaweed (macroalgae) or seaweed extracts as food additives is growing 

in popularity due to the vast range of functional properties they impart in food products.  

Seaweeds contain high proportions of polysaccharides, proteins, minerals, vitamins and a 

low lipid content (Gómez-Ordóñez et al., 2010).  Seaweed polysaccharides are a potential 

source of soluble and insoluble dietary fibre.  Soluble seaweed polysaccharides exhibit 

higher water holding capacity than cellulosic (insoluble) fibres.  Soluble dietary fibres 

demonstrate the ability to increase viscosity, form gels and/or act as emulsifiers and are 

also characterised by a capacity to reduce both glycemic response and plasma cholesterol 

in humans (Elleuch et al., 2011; Venugopal, 2008).   

The cell walls of brown seaweed (Phaeophyta) contain polysaccharide 

compounds such as laminarin and fucoidan (soluble fibres).  Laminarin, a β-polymer of 

glucose, is the main storage polysaccharide in algae.  Fucoidan, a sulphated 

heteropolysaccharide, is composed primarily of L-fucose and protects seaweed from 

desiccation (Bocanegra et al., 2009, Anastasakis et al., 2011).  Seaweed polysaccharides, 

including laminarin and fucoidan are reported to possess antioxidant (Choi et al., 2011), 

anti-tumour, anticoagulant, antiviral, and antibacterial activities (Costa et al., 2010; Wang 

et al., 2007).   

The development of functional meats with enhanced physiochemical and health-

promoting properties may be achieved by adding seaweeds or seaweed extracts 

containing bioactive components into meat and meat products.  Bioactive compounds 

may be incorporated by supplementation of animal diets or by direct addition during meat 

processing (Khan et al., 2011).  In Chapters 4 and 5, supplementation of pig diets with 

brown seaweed (Laminaria digitata) extracts containing laminarin and fucoidan enhanced 

the oxidative stability of fresh pork meat.  Similarly, Diaz-Rubio et al. (2011) reported 
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that the direct addition of dietary fibre from Fucus vesiculosus inhibited lipid oxidation in 

fish mince muscle. 

Recent scientific studies have also examined the functionality of macroalgae 

(powdered/dried Himanthalia elongata, Undaria pinnatifida, Porphyra umbilicalis, and 

Laminaria japonica) in processed meat products, such as beef or pork burgers/patties, 

frankfurters, restructured poultry steaks, and pork meat emulsion systems (Choi et al., 

2012; Cofrades et al., 2011; López-López et al., 2009c; López-López et al., 2010).  

Pigments present in seaweed can influence meat product colour depending on the 

seaweed/extract type and concentration added (Choi et al., 2012; Jiménez-Colmenero et 

al., 2010; López-López et al., 2009c).  Acidic seaweed components such as fucoidan and 

alginic acid decreased the pH of meat products containing powdered seaweeds (Choi et 

al., 2012; Cofrades et al., 2008).  The antioxidant capacity (FRAP) of pork meat emulsion 

systems increased due to the high phenolic content of powdered seaweed added (López-

López et al., 2009a). Algal oils have been used to enhance the lipid profile of frankfurters 

(López-López et al., 2009c).  Soluble and insoluble dietary fibre from macroalgae 

increased cooking yields, improve texture, fat/water binding and emulsion stability and 

decreased costs in meat product formulations (Fernández-Martín et al., 2009, Jiménez-

Colmenero et al., 2010).  Seaweeds contain a high concentration of minerals and 

therefore may also have potential for use as salt replacers in processed meat products 

(Cofrades et al., 2011).   

Studies on the addition of seaweed polysaccharides to meat products are limited 

and merit investigation.  The objective of this study was to examine the effect of the 

direct addition of a spray-dried seaweed (Laminaria digitata) extract containing laminarin 

and fucoidan (L/F) on the quality and shelf-life of minced pork (longissimus thoracis et 

lumborum (LTL)) stored in modified atmosphere packs.  Quality parameters examined 
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include colour, lipid oxidation (fresh and cooked), microbiology, pH, water holding 

capacity (WHC), texture profile analysis (TPA), cook loss, and sensory properties during 

refrigerated storage at 4ºC.   
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6.2 MATERIALS AND METHODS 

6.2.1 Reagents  

All chemicals used were ‘AnalaR’ grade obtained from Sigma-Aldrich Ireland 

Ltd., Arklow, Co. Wicklow, Ireland, Oxoid Ltd., Basingstoke, Hampshire, England and 

Merck KGaA, Darmstadt, Germany.  Fresh pork muscle (longissimus thoracis et 

lumborum) (LTL) was supplied by Ballyburden Meat Processors, Ballincollig, Co. Cork, 

Ireland.  A spray-dried seaweed extract, containing laminarin (L) and fucoidan (F) (L/F 

extract) was manufactured by Bioatlantis, Tralee, Co. Kerry, Ireland.  The L/F extract 

was prepared from brown seaweed (Laminaria digitata), using an acid extraction 

technique, the details of which are confidential.  The composition of the L/F extract was 

94.03% total solids, 68.6% ash, 0.64% protein, 9.3% laminarin, 7.8% fucoidan, and 8.3% 

mannitol.  The ash component of the L/F extract was composed of 15 g/kg DM Ca, 10 

g/kg DM Na, 10 g/kg DM K, 10 g/kg DM S, 250 mg/kg DM  iodine, 250 mg/kg DM Fe, 

20 mg/kg DM Cu and 50 mg/kg DM Zn.  Tea catechins (TC) (81.43%) extracted from 

green tea was supplied by New Kinglong Natural Products Co. Ltd, Hunan, China.   

 

6.2.2 Salt determination 

 The salt content of the L/F extract was measured using the mercuric nitrate 

titration method of Dubsky and Trtilek as described by Roberts (1936).  The L/F extract 

(5 g) was dissolved in 40 ml of distilled water.  Samples were filtered through Whatman 

No. 1 filter paper with glass wool into a 100 ml volumetric flask and made up to volume 

with distilled water.  Filtrate (25 ml) plus 15 ml of 0.01N HNO3 and 1 ml of 

diphenylcarbazone indicator was titrated against 0.023N Hg(NO3)2 standardised with 25 

ml of 0.25% NaCl.  A purple colour denoted the titration end-point.  The salt percentage 

was calculated using the following equation: 
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%Salt = ml Hg(NO3)2 / 5 

The salt content of the extract was 1% ± 0.1%.  In the minced pork studies, a salt control 

(ST) was used to determine the effect of the salt contained in the L/F extract on the 

quality parameters examined.  The addition of salt (50 mg/kg) to fresh minced pork (ST) 

was equivalent to the salt content of 0.5% L/F pork treatment. 

 

6.2.3 Pork processing and packaging 

 Longissimus thoracis et lumborum (LTL) muscles were trimmed of visible fat and 

connective tissue and minced twice through a plate with 4 mm holes (Model P114L, 

Talsa, Valencia, Spain).  Following mincing, fresh pork was assigned to one of six 

treatments: untreated pork (Control); 0.005% salt (salt control) (ST); 0.1% tea catechin 

(positive lipid oxidation control) (TC); pork plus increasing amounts of the L/F extract: 

0.01% L/F, 0.1% L/F and 0.5% L/F.  ST, TC and L/F were dissolved in water, 

immediately added to raw minced pork (5% v/w) and mixed vigorously. 

 Minced pork from each treatment was formed into patties (100 g portions) using a 

meat former (Ministeak burger maker, O.L Smith Co. Ltd., Italy), placed in low oxygen 

permeable (<1cm
3
/m

2
/24 hr at STP) polystyrene/ethylvinylalcohol/polyethylene trays and 

covered using a low oxygen permeable (3 cm
3
/m

2
/24 hr at STP) laminated barrier film 

with a polyolefin heat-sealable layer.  Using modified atmosphere packaging (MAP) 

technology, the trays were flushed with 80% O2 : 20% CO2 using a vacuum-sealing unit 

(VS 100, Gustav Müller and Co. KG, Bad Homburg, Germany) equipped with a gas 

mixer (Witt-Gasetechnik GmbH and Co. KG, Witten, Germany) and heat-sealed.   

In the cooked pork study, minced pork patties (0.5% L/F) were placed on 

aluminium foil lined trays and cooked at 180°C for 20 min in a fan-assisted convection 

oven (Zanussi Professional, Model 10 GN1/1, Conegliano, Italy) until an internal 
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temperature of 72°C was reached.  Cooked patties were placed in MAP trays and flushed 

with 70% N2 : 30% CO2 and packaged as described previously.  Fresh and cooked pork 

patties were stored for up to 14 days under fluorescent lighting conditions (approximately 

660 lx) at 4°C.  The gas atmosphere (% O2 and % CO2) in the MAP was checked using a 

CheckMate 9900 (PBI-DanSensor, Denmark).  The % N2 was calculated by difference.  

Immediately after gas flushing, fresh pork MAP trays contained 77.15 ± 0.37% O2 and 

22.73 ± 0.33% CO2 and the gas composition after 14 days was 67.75 ± 3.82% O2 and 

30.00 ± 3.87% CO2.  In cooked pork MAP trays the gas composition was 67.46 ± 0.82% 

N2 and 32.13 ± 0.49% CO2 directly after gas flushing and 68.79 ± 0.14% N2 and 31.10% 

± 0.08% CO2 after 14 days of storage.   

 

6.2.4 Measurement of pork quality and shelf-life parameters 

Pork pH, colour (CIE ‘L*’ lightness, ‘a*’ redness and ‘b*’ yellowness values), 

lipid oxidation (2-thiobarbituric acid reactive substances (TBARS)), and microbiological 

analysis (mesophilic and psychrotrophic total viable counts) were measured at intervals 

during storage as described in Chapter 4 (sections 4.2.5-4.2.8).  The pH, colour 

measurements and lipid oxidation of fresh minced pork patties were recorded on days 1, 

4, 7, 11 and 14 of storage.  In cooked minced pork patties stored in MAP, lipid oxidation 

was measured on days 1, 4, 7, 11 and 14 of storage.  Microbiological analysis of fresh 

minced pork patties was carried out on days 1, 5, 8 and 12 of storage.   

 

6.2.5 Water holding capacity 

 Water holding capacity (WHC) was measured as described by Lianji & Chen 

(1989).  Approximately 10 g of fresh minced pork was weighed into glass jars, covered 

with aluminium foil and heated in a water bath for 10 min at 90°C.  After heating, 
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samples were carefully removed from each jar using forceps, wrapped in cheesecloth, and 

placed in 30 ml centrifuge tubes lined with cotton wool at the base of each tube.  The 

samples were centrifuged (Beckman J2-21, Beckman Instruments Inc., CA, USA) at 

13,440 g for 10 min at 4°C.  Following centrifugation, the cheesecloth was removed and 

samples were reweighed.  Measurements of the moisture content (M) of pork samples 

were carried out on the Smart Trac5 rapid moisture/fat analyser (CEM Corporation).  The 

percentage WHC was calculated using the following equation: 

% WHC = [1 – [(B – A) / (B x M)]] x 100 

Where B denotes the weight of sample before heating; A, the weight of sample after 

heating and centrifuging; and M the % moisture of the sample (CEM).  WHC was 

measured on days 2 and 7 of storage. 

 

6.2.6 Texture profile analysis 

Texture profile analysis (TPA) was carried out on cooked pork patties based on a 

method described by Bourne (1978).  Cooked patties (20mm x 20mm x 20mm) were 

axially compressed to 50% of their original height in a two-cycle compression test with 

an aluminium cylinder probe of 2 cm diameter using a texture analyser (TA.XT2i Texture 

Analyser, Stable Micro Systems, UK).  Force time deformation curves were obtained 

using a 5 kN load cell applied at a cross speed of 50 mm/min.  Attributes were calculated 

as follows: hardness (N), peak force required for first compression; springiness (mm), 

distance sample recovers after first compression; adhesiveness (N), the negative force 

area for the first bite representing the work necessary to pull the compressing plunger 

away from the sample; cohesiveness (dimensionless), ratio of positive force area during 

the second compression; gumminess (N), the product of hardness and cohesiveness; 
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chewiness (N x mm), the product of gumminess and springiness.  TPA was carried out on 

days 2 and 7 comparable with sensory analysis measurement days. 

 

6.2.7 Cook loss 

The weight of minced pork patties was recorded before and after cooking.  Patties 

were cooled for 1 hr before re-weighing.  Cook loss was measured on days 2 and 7 of 

storage and calculated using the following equation:  

% cook loss = [(raw weight – cooked weight) / raw weight] x 100 

 

6.2.8 Sensory evaluation 

Sensory analysis (‘visual’ and ‘eating quality’) of fresh pork patties stored in 80% 

O2 : 20% CO2 was performed by 52 naïve assessors on days 2 and 7 of storage following 

the method of O’Sullivan et al. (2003).  On day 8, the bacterial count of the fresh pork 

patties (> 6 log10 cfu/g) was considered too high for further sensory evaluation.  ‘Visual’ 

sensory analysis descriptors were redness, brownness, drip, package quality, purchasing 

appeal, and overall acceptability.  ‘Eating quality’ sensory analysis descriptors were 

appearance, tenderness, oxidation flavour, liking of flavour and overall acceptability.  

Assessors were asked to indicate their degree of liking on a 10 cm line scale ranging from 

0 (extremely dislike) to 10 (extremely like).   

Pork patties were cooked for sensory analysis in a Zanussi oven at 180ºC for 20 

min until an internal meat temperature of 72ºC was reached.  Following cooking, patties 

were cooled and cut into 2 cm x 2 cm cubes and identified with random three-digit codes.  

Sample presentation order was randomised to prevent any flavour carryover 

effects (MacFie et al., 1989).  Prior to serving to panellists, pork samples were re-heated 

in a microwave for 10 sec to release the meat odour and flavour.  Sensory analysis was 
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undertaken in the panel booths at the University sensory laboratory in accordance with 

the ISO (2007) International Standard guidelines.  Assessors were also provided with 

water and crackers to cleanse their palate between samples.  Results for sensory analysis 

scores were measured in centimetres (cm) and scores were statistically analysed using 

ANOVA-partial least squares regression (APLSR).  Results were presented as 

significance of regression coefficients, analysed by jack-knife testing.   

 

6.2.9 Statistical analysis 

All analyses were performed in duplicate and three independent experimental 

trials were carried out.  A full repeated measures ANOVA was conducted to investigate 

the effects of L/F concentration, time and their interactions.  L/F concentration 

represented the ‘between-subjects’ factor and the effect of time was measured using the 

‘within-subjects’ factor.  Tukey’s test was used to adjust for multiple comparisons 

between treatment means.  The analysis was carried out using SPSS 18.0 for Windows 

(SPSS, Chicago, IL, USA) software package. 

 ‘Visual’ and ‘eating quality’ sensory data was analysed with ANOVA-Partial 

Least Squares Regression (APLSR) to process the mean data accumulated from the 52 

test subjects. The X-matrix was designated as 0/1 for treatment and days with the Y-

matrix designated as sensory and instrumental variables. The optimal number of 

components in the ASLSR models presented was determined to be 6 principal 

components. In these models assessor and session level effects were removed using level 

correction. The validated model explained variance was -0.51% on day 2 and 6.27% on 

day 7 and the calibrated variance was 2.38% on day 2 and 8.97% on day 7. To derive 

significance indications for the relationships determined in the quantitative APLSR, 

regression coefficients were analyzed by jack-knifing which is based on cross-validation 
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and stability plots (Martens & Martens, 1999, 2001).  All analyses were performed using 

the Unscrambler Software, version 9.8 (CAMO ASA, Trondheim, Norway). 
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6.3 RESULTS AND DISCUSSION 

6.3.1 Colour stability of fresh minced pork 

Trends indicated that the ‘L*’ lightness values increased in fresh pork patties 

(0.01% L/F, 0.1% L/F, and 0.5% L/F) over the 14 day storage period and patties were 

unaffected by L/F extract concentration, however results were only statistically 

significant (p < 0.05) for 0.5% L/F (Table 6.1).  In a similar study, the addition of 

powdered L. japonica (1%, 3,% and 5%) decreased the lightness values of uncooked 

reduced fat pork patties due to the brown and yellow pigments such as chlorophylls, 

phycophine, and xanthophylls present in the extract (Choi et al., 2012).   

The ‘a*’ redness values of pork patties significantly (p < 0.05) decreased as a 

function of storage time.  The L/F extract (0.1% L/F, and 0.5% L/F) reduced the surface 

redness (‘a*’ values) of pork patties on days 7, 11 and 14 of storage as a function of L/F 

concentration, however results were not statistically significant (p > 0.05) (Table 6.1).  

Similarly Cofrades et al. (2008) reported that the addition of dried Himanthalia elongata, 

Undaria pinnatifida and Porphyra umbilicalis (2.5% and 5%) reduced the ‘a*’ redness 

values of a pork meat gel/emulsion in a concentration dependent manner.   

Previous studies have linked oxymyoglobin oxidation and discoloration in meat to 

lipid oxidation, with an increase in one resulting in a similar increase in the other due to a 

number of proposed mechanisms (O'Grady et al., 2001).  At the highest level of L/F 

addition (0.5%), levels of lipid oxidation in pork patties were higher than the control on 

days 4, 7, 11 and 14 of storage (Table 6.2).  Increased levels of lipid oxidation may 

subsequently promote oxymyoglobin oxidation which may explain the observed 

decreased surface redness values of pork patties in the present study. 

In addition, decreased surface redness may be attributed to interactions between 

pork meat constituents and the added seaweed extract.  Previous studies have indicated  
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Table 6.1. Effect of L/F extract addition on surface lightness (‘L*’ value), redness (‘a*’ value) and yellowness (‘b*’ value) 

values of fresh pork patties stored in modified atmosphere packs (80% O2 : 20% CO2) for up to 14 days at 4°C.  

Treatment   Storage time at 4°C, days 

 Parameter  1  4  7  11  14 

Control Lightness  56.77 ± 2.25
aA

  58.30 ± 3.12
aA

  58.86 ± 1.58
aA

  60.12 ± 1.49
aA

  60.36 ± 2.19
aA

 

0.01% L/F L*  56.76 ± 2.19
aA

  58.20 ± 3.05
aA

  60.20 ± 0.99
aA

  61.10 ± 0.89
aA

  60.81 ± 2.17
aA

 

0.1% L/F   56.66 ± 3.32
aA

  57.10 ± 3.83
aA

  59.15 ± 1.75
aA

  61.09 ± 1.11
aA

  60.88 ± 1.44
aA

 

0.5% L/F   55.28 ± 2.31
aA

  56.24 ± 3.11
aA

  59.94 ± 1.28
aAB

  62.19 ± 0.58
aB

  62.35 ± 1.45
aB

 

ST
*
   56.19 ± 1.80

aA
  56.15 ± 1.51

aA
  57.88 ± 1.09

aAB
  60.73 ± 2.50

aAB
  61.94 ± 2.69

aB
 

            

Control Redness    8.78 ± 0.48
aA

    6.87 ± 0.53
aAB

    4.89 ± 2.00
aBC

    3.29 ± 1.76
aBC

    2.40 ± 1.34
aC

 

0.01% L/F a*    8.68 ± 0.53
aA

    6.74 ± 0.51
aAB

    4.72 ± 1.99
aBC

    3.26 ± 1.86
aBC

    2.14 ± 1.05
aC

 

0.1% L/F     8.54 ± 0.54
aA

    6.86 ± 0.75
aA

    3.80 ± 1.92
aB

    1.56 ± 0.78
aBC

    0.94 ± 0.67
aC

 

0.5% L/F     7.79 ± 0.52
aA

    6.15 ± 0.77
aA

    2.47 ± 1.89
aB

    0.41 ± 0.72
aB

   -0.03 ± 0.72
aB

 

ST     8.92 ± 0.31
aA

    7.33 ± 1.03
aAB

    5.21 ± 2.65
aBC

    1.85 ± 0.91
aCD

    0.33 ± 0.68
aD

 

            

Control Yellowness    9.83 ± 0.34
aA

    9.24 ± 0.20
aA

    9.00 ± 0.16
aA

    8.97 ± 0.48
aA

    8.86 ± 1.02
aA

 

0.01% L/F b*    9.71 ± 0.33
aA

    9.24 ± 0.29
 aA

    9.26 ± 0.34
aA

    9.22 ± 0.41
aA

    8.85 ± 0.66
aA

 

0.1% L/F     9.82 ± 0.07
aA

    9.37 ± 0.29
 aA

    9.08 ± 0.25
aA

    9.11 ± 0.67
aA

    9.27 ± 0.53
aA

 

0.5% L/F     9.99 ± 0.27
aA

    9.81 ± 0.03
 aA

  10.06 ± 0.51
aA

  10.21 ± 1.02
aA

  10.21 ± 0.40
aA

 

ST     9.85 ± 0.29
aA

    9.36 ± 0.37
 aA

    9.13 ± 0.67
aA

    9.76 ± 0.66
aA

    9.99 ± 0.39
aA

 
aWithin each parameter and storage day, mean values (± standard deviation) in the same column are not significantly  

different, p > 0.05.   
ABCWithin each treatment, mean values (± standard deviation) in the same row bearing different superscripts are significantly different, p < 0.05.   
*Salt control (ST), 0.005% salt.   
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that polysaccharides can interact with proteins and it is generally accepted that 

electrostatic interactions occur between the anionic groups of a polysaccharide (seaweed 

polyanionic alginates) and the positively charged groups present in proteins (Imeson et 

al., 1977).  Sulphated polysaccharides are capable of forming soluble complexes with 

globular proteins at pH values above the protein isoelectric point (Hill et al., 1998).  

Imeson (1977) determined that the presence of the anionic polysaccharides altered the 

spectrum from that typical of metmyoglobin to one with a decreased absorption in the 

Soret (~400 nm) region; in the presence of pectate and alginate the Soret absorption also 

occurs at lower wavelengths.  Therefore the dose-dependant decrease in ‘a*’ redness 

values, of pork patties may be partially attributed to interactions between polysaccharides 

(L/F) present in the extract and oxymyoglobin in pork meat. 

In Chapters 4 and 5, the spray-dried L/F extract, identical to that used in this 

chapter, did not affect the ‘a*’ redness values when incorporated into fresh pork via 

animal’s diet.  Therefore the manner (dietary supplementation versus direct addition) by 

which seaweed extracts are added to meat appears to influence the mode of action of the 

bioactive components present.   

Trends indicated that the ‘b*’ yellowness values of fresh pork patties containing 

up to 0.1% L/F decreased over the 14 day storage period, however results were not 

statistically (p > 0.05) significant (Table 6.1).  The addition of 0.5% L/F to fresh pork 

patties resulted in increased ‘b*’ yellowness values over time, however results were not 

statistically (p > 0.05) significant.  Similarly, Cofrades et al. (2008) reported that dried H. 

elongata and Undaria pinnatifida (2.5% and 5%) increased ‘b*’ yellowness values in 

pork emulsion systems.  In addition to chlorophyll, brown seaweeds contain phycophine, 

a brown pigment, and xanthophyll, a yellow pigment, which provides the seaweeds with a 

variety of shades in the yellow-dark chestnut range, including yellowish greens which can 
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mask the green of chlorophyll (Cofrades et al., 2008).  The change in the yellowness 

values of the pork patties in the present study may be attributed to the addition of natural 

colour pigments present in the L/F extract.    

 

6.3.2 Lipid oxidation in fresh and cooked minced pork 

In general, levels of lipid oxidation in fresh pork patties followed the order: 0.5% 

L/F > ST > 0.1% L/F > Control > 0.01% L/F > TC (Table 6.2).  No statistical difference 

was observed between L/F extract treatments (0.01% L/F and 0.1% L/F) and controls 

(control and TC) on any of the storage days.  Levels of lipid oxidation were lowest in TC-

containing pork patties, however results were not statistically significant (p > 0.05).  

Previous studies have demonstrated the potent antioxidant activity of TC in muscle foods 

(Tang et al., 2001).  In pork patties containing 0.5% L/F, the extract exerted a lipid pro-

oxidant activity on each measurement day (p < 0.05).  Although results were not 

statistically significant (p > 0.05), a pro-oxidant effect was also observed in pork patties 

containing salt (ST) at levels equivalent to 50 mg/kg, indicating that Na present in 0.5% 

L/F may be responsible for catalysis of lipid oxidation in fresh pork patties.  Numerous 

studies have demonstrated the pro-oxidant properties of salt in muscle foods (Tang et. al, 

2001).  In fresh meat, salt can promote the formation of hypervalent ferrylmyoglobin (or 

activated metmyoglobin), an initiator of lipid oxidation (Rhee & Ziprin, 2001).   

The L/F extract also contained minerals such as iron (250 mg/kg DM) and copper 

(20 mg/kg DM) which are known to promote lipid oxidation in meat products (Bandy et 

al., 2001; Decker & Xu, 1998; Rhee & Ziprin, 2001).  Transition metals, in particular 

iron, initiate lipid oxidation either directly or indirectly by facilitating the generation of 

other initiating factors.  Metals may also play a role in the propagation of lipid oxidation 

by catalysing the breakdown of lipid hydroperoxides and iron is considered a major 



- 2
1
3
 - 

 

 

Table 6.2. Effect of L/F extract addition on lipid oxidation (TBARS*) of fresh and cooked pork patties stored in 80% O2 : 20% 

CO2, and 70% N2 : 30% CO2, respectively, for up to 14 days at 4°C. 

Treatment    Storage time at 4°C, days 

  Parameter  1  4  7  11  14 

Control  Fresh  0.062 ± 0.02
aA 

 0.134 ± 0.02
aA

  0.119 ± 0.05
abcA

  0.372 ± 0.23
abcA

  0.374 ± 0.12
abcA

 

TC
†    0.043 ± 0.02

aA
  0.117 ± 0.04

aA
  0.038 ± 0.02

bA
  0.097 ± 0.06

bA
  0.129 ± 0.05

bA
 

0.01% L/F    0.059 ± 0.01
aA

  0.139 ± 0.01
aA

  0.129 ± 0.07
abcA

  0.341 ± 0.23
abcA

  0.358 ± 0.13
abcA

 

0.1% L/F 
  

 0.062 ± 0.02
aA

  0.155 ± 0.04
aAB

  0.207 ± 0.14
abcAB

  
0.467 ± 

0.30
abcAB

 
 0.582 ± 0.21

abcB
 

0.5% L/F    0.159 ± 0.04
bA

  0.285 ± 0.08
bA

  0.726 ± 0.47
cA

  1.327 ± 0.72
cA

  1.380 ± 0.77
abcA

 

ST
¥
    0.090 ± 0.02

aA
  0.116 ± 0.04

aA
  0.282 ± 0.09

abcAB
  1.195 ± 0.64

cAB
  1.509 ± 0.93

cB
 

             

Control  Cooked  1.662 ± 0.07
aA

  1.868 ± 0.29
aB

  1.994 ± 0.36
aB

  2.257 ± 0.06
aC

  2.795 ± 0.01
aD

 

0.5% L/F    1.095 ± 0.30
bA

  1.261 ± 0.16
bAB

  1.757 ± 0.55
aABC

  2.187 ± 0.48
aBC

  2.273 ± 0.13
bC

 
abWithin each parameter and storage day, mean values (± standard deviation) in the same column bearing different superscripts are significantly different, 

p < 0.05.   
ABCDWithin each treatment, mean values (± standard deviation) in the same row bearing different superscripts are significantly different, p < 0.05.   
†Tea catechins (TC) (positive lipid oxidation control), 0.1%.  ¥Salt control (ST), 0.005% salt. *TBARS, mg malondialdehyde (MDA)/kg pork. 
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catalyst of oxidative rancidity in meat (Ruiz et al., 2000).  Therefore, minerals present in  

the L/F extract may also be responsible for the catalysis of lipid oxidation in fresh pork 

patties.   

In Chapters 4 and 5, the supplementation of porcine diets with a spray-dried L/F 

extract, identical to that used in the present study, decreased lipid oxidation in fresh pork  

LTL muscle.  It was concluded that antioxidant components of laminarin and fucoidan 

were deposited in LTL muscle thereby enhancing lipid stability of pork meat.  Dietary 

supplementation of L/F extract may serve to eliminate the effects of pro-oxidant 

components contained in the extract presumably due to porcine digestive and metabolic 

processes.   

In contrast to the results reported in the present study, the addition of powdered H. 

elongata, U. pinnatifida and P. umbilicalis (2.5% and 5%) increased antioxidant activity 

in low-salt pork meat emulsion model systems.  Antioxidant activity, determined using in 

vitro antioxidant assays (FRAP and TEAC), was attributed to polyphenolic compounds 

present in the seaweeds (López-López et al., 2009a).   

In cooked pork patties, lipid oxidation significantly (p < 0.05) increased as a 

function of storage time.  Pork patties containing L/F extract (0.5%) had significantly 

lower levels of lipid oxidation (p < 0.05) compared to the control on days 1, 4 and 14 of 

storage (Table 6.2).  In a recent in vitro study, heat treatment (85°C, 15 minutes) was 

reported to significantly improve the total flavonoid, tannin and sugar contents in addition 

to the antioxidant activities (DPPH, metal ion chelating ability, H2O2 scavenging, and 

FRAP) of three edible Irish brown seaweeds (Laminaria saccharina, L. digitata and H. 

elongata) (Rajauria et al., 2010).  The spray-dried L/F extract examined in the present 

study is composed of polysaccharides which contain glucose.  During cooking, reducing 

sugars such as glucose undergo non-enzymatic browning reactions such as the Maillard 
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reaction (Manzocco et al., 2000).  The Maillard reaction has been associated with the 

formation of brown melanoidins (Maillard reaction products) with strong antioxidant 

capacity (Yilmaz & Toledo, 2005).  The antioxidant activity of the L/F extract increased 

during cooking as demonstrated by the significant decrease in lipid oxidation of cooked 

pork patties, which may be attributed to Maillard reaction products formed during the 

cooking process which were not present in the fresh pork patties.  Future studies are 

necessary to analyse the generation of Maillard reaction products during the cooking 

process.   

 

6.3.3 Microbiology of fresh minced pork 

In fresh pork patties, mesophilic and psychrotrophic total viable counts (TVC) 

increased during storage ranging from ~3.6 to 9.2 log10 cfu/g and ~5.0 to 9.8, respectively 

(Table 6.3).  The TVC for 0.01% L/F, 0.1% L/F and 0.5% L/F were similar (p > 0.05) for 

all treatments, on each storage day, compared to controls indicating that L/F did not exert 

any antimicrobial activity in fresh pork patties.  Similar findings were reported in 

Chapters 4 and 5 where supplementation of the L/F extract in porcine diets exhibited no 

effect on microbiological counts in fresh LTL muscle.   

Results from the present study are in contrast to previously reported studies where 

antimicrobial activity of L. digitata was assessed using in vitro test systems such as the 

growth inhibition assay and agar plate diffusion test (Dubber & Harder, 2008).  In related 

studies, dried U. pinnatifida (3%) and dried H. elongata (5%) added to beef patties and 

pork frankfurters, respectively, initially resulted in increased levels of microbial growth 

compared to controls, presumably due to the product formulations rather than the 

seaweed (i.e. lower salt concentrations).  However trends were not statistically significant 
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and no antimicrobial properties of the seaweed were detected over time (López-López et 

al., 2009b; López-López et al., 2010).  While many in vitro studies on the bioactive 

Table 6.3. Effect of L/F extract addition on microbial status* (mesophilic and psychrotrophic) 

of fresh pork patties stored in modified atmosphere packs (80% O2 : 20% CO2) for up to 12 

days at 4°C. 

Treatment   Storage time at 4°C, days 

 Temp  1  5  8  12 

Control 30°C  5.19 ± 0.08
aA

  6.79 ± 0.37
aB

  8.79 ± 0.59
aC

  9.01 ± 0.46
aC

 

0.01% L/F 
(mesophilic  5.02 ± 0.28

aA
  6.84 ± 0.45

aB
  8.90 ± 0.61

aC
  9.01 ± 0.62

aC
 

0.1% L/F 
count)  5.01 ± 0.24

aA
  6.84 ± 0.23

aB
  8.82 ± 0.62

aC
  8.89 ± 0.74

aC
 

0.5% L/F   5.16 ± 0.06
aA

  6.85 ± 0.22
aB

  8.86 ± 0.69
aC

  9.22 ± 0.58
aC

 

          

Control 4°C  6.30 ± 0.34
aA

  8.17 ± 0.44
aB

  9.32 ± 0.12
aC

  9.46 ± 0.26
aC

 

0.01% L/F 
(psychrotrophic  6.26 ± 0.20

aA
  8.16 ± 0.55

aB
  9.26 ± 0.32

aC
  9.31 ± 0.27

aC
 

0.1% L/F 
count)  6.37 ± 0.27

aA
  8.19 ± 0.64

aB
  9.48 ± 0.18

aC
  9.23 ± 0.39

aC
 

0.5% L/F   6.37 ± 0.26
aA

  8.33 ± 0.57
aB

  9.63 ± 0.19
aC

  9.75 ± 0.09
aC

 
aWithin each parameter and storage day, mean values (± standard deviation) in the same column are not 
significantly different, p > 0.05.   
ABCWithin each treatment, mean values (± standard deviation) in the same row bearing different superscripts are 

significantly different, p < 0.05.   

*log10CFU (colony forming units)/g pork. 

 

compounds present in several seaweeds have demonstrated antimicrobial activity against 

a number of gram positive and negative bacteria, no scientific literature exists 

demonstrating antibacterial activity of seaweed extracts in food products (Gupta & Abu-

Ghannam, 2011).   

 

6.3.4 pH, water holding capacity and cook loss of fresh minced pork 

The pH of fresh pork patties decreased from ~5.7 to 5.6 over the 14 day storage 

period and was unaffected by the addition of the L/F extract.  This pH range is 

comparable to values reported previously (5.8-5.4) for post-mortem muscle (Faustman & 

Cassens, 1990).  Choi et al., (2012) reported a significant decrease (p < 0.05) in the pH of 

reduced-fat pork patties when powdered L. japonica (1%, 3,% and 5%) was added due to 

the presence of acid components such as alginic acid (pH: 2.3-2.8) in the seaweed extract.   



Addition of laminarin and fucoidan to pork patties 

______________________________________________________________________________________ 

 - 217 - 

The addition of L/F to fresh pork patties had no significant effect on the water 

holding capacity (WHC) values which ranged from 32.3-37.8% and 31.5-34.6% on days 

2 and 7 of storage, respectively (Table 6.4).  Fleury and Lahaye (1991) demonstrated that 

the physicochemical properties of seaweeds are determined by the chemical structure of 

the constituent polysaccharides present in the algae.  Previous studies on physicochemical 

properties of seaweeds report a positive correlation between water retention and swelling 

capacity (Rupérez & Saura-Calixto, 2001).  Therefore meat products with added seaweed  

Table 6.4. Effect of L/F extract addition on cook loss and water holding capacity (WHC) of 

fresh pork patties stored in modified atmosphere packs (80% O2 : 20% CO2) at 4°C. 

Treatment  Storage time at 4°C, days 

  Cook Loss  WHC 

  2  7  2  7 

Control  31.99 ± 0.93
a
  32.20 ± 0.94

a
  35.09 ± 1.72

a
  33.50 ± 3.37

a
 

0.01% L/F  32.29 ± 1.23
a
  32.57 ± 0.58

a
  37.79 ± 1.62

a
  33.87 ± 2.83

a
 

0.1% L/F  32.05 ± 0.31
a
  31.95 ± 1.53

a
   36.55 ± 1.82

a
  32.08 ± 1.67

a
 

0.5% L/F  31.36 ± 1.53
a
  29.26 ± 1.31

a
  37.26 ± 1.40

a
  34.63 ± 3.60

a
 

ST
*  30.61 ± 0.77

a
  29.01 ± 4.00

a
  32.27 ± 4.10

a 
 31.53 ± 4.72

a
 

aWithin each parameter and storage day, mean values (± standard deviation) in the same column are not 

significantly different, p > 0.05.  *Salt control (ST), 0.005% salt.   

 

or seaweed extracts, may have improved water and fat binding properties (López-López 

et al., 2009b).   

Cook loss was unaffected by the addition of the L/F extract and ranged from 30.6-

32.3% and 29.0-32.6% on days 2 and 7 of storage, respectively (Table 6.4).  In a previous 

study, the cook loss of reduced-fat pork patties containing powdered L. japonica (1%, 

3,% and 5%) was significantly lower than that of the control.  Reduced cook loss was 

attributed to dietary fibres such as alginate and laminarin, which have high water holding 

and binding capacities (Choi et al., 2012).  The functional properties of agar, alginates 

and carrageenans in food products have been well documented in the scientific literature.  

Scientific reports on laminarin and fucoidan focus primarily on biological activity 

(Elleuch et al., 2011; Thebaudin et al., 1997; Venugopal et al., 2008).  The lack of effect  
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Table 6.5. Effect of L/F extract addition on texture profile analysis (TPA) of fresh pork patties stored in modified 

atmosphere packs (80% O2 : 20% CO2) at 4°C. 

Treatment             

  Day  Hardness  Springiness  Cohesiveness  Gumminess  Chewiness 

Control  2  36.56 ± 17.30
a
  0.86 ± 0.02

a
  0.55 ± 0.02

a
  20.12 ± 9.30

a
  17.12 ± 7.54

a
 

0.01% L/F    38.68 ± 08.80
a
  0.85 ± 0.02

a
  0.55 ± 0.01

a
  21.37 ± 4.81

a
  18.14 ± 3.72

a
 

0.1% L/F    52.34 ± 16.00
a
  0.86 ± 0.02

a
  0.55 ± 0.01

a
  28.55 ± 8.31

a
  24.54 ± 6.61

a
 

0.5% L/F    44.20 ± 17.03
a
  0.84 ± 0.04

a
  0.56 ± 0.02

a
  24.33 ± 8.90

a
  20.26 ± 7.12

a
 

             

Control  7  27.04 ± 06.62
a
  0.87 ± 0.02

a
  0.56 ± 0.02

a
  15.02 ± 4.03

a
  13.12 ± 3.84

a
 

0.01% L/F    24.21 ± 06.67
a
  0.87 ± 0.04

a
  0.56 ± 0.01

a
  13.51 ± 3.48

a
  11.62 ± 2.66

a
 

0.1% L/F    31.76 ± 10.50
a
  0.85 ± 0.04

a
  0.55 ± 0.02

a
  17.65 ± 5.94

a
  15.15 ± 5.32

a
 

0.5% L/F    25.33 ± 02.03
a
  0.87 ± 0.03

a
  0.55 ± 0.02

a
  14.06 ± 1.21

a
  12.20 ± 1.16

a
 

aWithin each parameter and storage day, mean values (± standard deviation) in the same column are not significantly different, p > 0.05.   
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of the L/F extract in the present study may be due to the low concentration at which the 

extract was added to the fresh pork patties. 

 

6.3.5 Texture profile analysis of fresh minced pork 

General trends indicated that hardness increased with the addition of L/F in a 

dose-dependent manner on day 2 of storage compared to the controls, however results 

were not statistically (p > 0.05) significant (Table 6.5).  In general, the addition of various 

types of fibre (soy, wheat, cereal or fruit) increased hardness of cooked meat emulsions 

(Fernández-Ginés et al., 2005).  The hardness of gel/emulsion pork meat systems and 

frankfurters increased due to the addition of dried H. elongata, U. pinnatifida, and P. 

umbilicalis (2.5 and 5%), and H. elongata (5.6%), respectively (Cofrades et al., 2008; 

López-López et al., 2009a).  The L/F extract did not have a significant effect on 

springiness, cohesiveness, gumminess or chewiness on either assessment day, relative to 

the controls (Table 6.5).   

The proportion, composition (soluble and insoluble fractions) and characteristics 

(including particle size) of dietary fibre greatly influence physicochemical properties 

exerted in meat products (Gómez-Ordóñez et al., 2010).  The texture of pork products 

may be enhanced by seaweed extracts depending on the amount and type of dietary fibre 

present in the extract.  Conflicting studies demonstrated no beneficial effects of dietary 

fibre on pork texture (Cofrades et al., 2008; López-López et al., 2010).  The thickening 

and gelling properties and the water-retention ability of soluble fibres contribute to the 

stabilization of the structure of foods (dispersions, emulsions and foams) by modifying 

rheological properties of the continuous phase.  Insoluble fibres can also influence food 

texture due to their water-retention ability and swelling properties (Thebaudin et al., 

1997).  The direct addition of the L/F extract (composed of 17.1% soluble fibres) at low 
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levels did not significantly affect the textural parameters of the fresh pork patties in the 

present study which may be due to the very low level and type of soluble fibres added to 

the fresh pork patties.   

 

6.3.6 Sensory evaluation of fresh and cooked minced pork 

In ‘visual’ sensory analysis of minced pork patties (Table 6.6), the control and 

0.01% L/F were highly significantly (p < 0.01) positively correlated to redness while 

0.5% L/F was very highly significantly (p < 0.001) positively correlated to brownness on 

day 7 of storage.  This is in agreement with instrumental ‘a*’ redness values, where a 

negative effect was exerted by L/F at the higher concentrations.  Similarly, powdered L. 

japonica (1%, 3,% and 5%) was found to significantly (p < 0.05) decrease the colour 

score of reduced-fat pork patties due to the dark brown colour of the seaweed powder 

(Choi et al., 2012).  On day 7, 0.01% L/F and the control were highly significantly (p < 

0.01) positively correlated to purchasing appeal and overall acceptability while 0.5% L/F 

was very highly significantly (p < 0.001) negatively correlated to purchasing appeal and 

overall acceptability.  Therefore, the ‘visual’ sensory properties of pork patties were 

negatively affected by the addition of 0.5% L/F extract, but at the lower level (0.01% 

L/F), were still acceptable to sensory panellists. 

No significant trends were observed for ‘eating quality’ sensory analysis with the 

exception of tenderness, which was significantly (p < 0.05) negatively correlated with 

0.5% L/F on day 7 of storage (Table 6.6).  However, no significant effect on the TPA 

from the L/F extract was observed.  This indicated that the L/F extract can be 

incorporated at low levels (0.01% - 0.1%) without detrimentally affecting the texture.  No 

significant correlations were observed for overall acceptability and trends indicated 

positive directional correlations for control, 0.01% L/F and 0.1% L/F.  In a previously 
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Table 6.6. Significance of regression coefficients (ANOVA values) for minced pork patties as derived by jack-knife uncertainty testing.       

Parameter  Storage time, days / Treatment 

  Control  0.01% L/F  0.1% L/F  0.5% L/F 

Visual Sensory Analysis  2  7  2  7  2  7  2  7 

Redness  -0.47   0.000***   0.28   0.003**   0.42  -0.06  -0.004**  -0.000*** 

Brownness  -0.51  -0.000***  -0.34  -0.002**  -0.45   0.06   0.08   0.000*** 

Drip   0.96  -0.24   0.97  -0.24   0.96   0.35  -0.96   0.21 

Packaging quality  -0.76   0.05*  -0.78   0.05*  -0.77  -0.18   0.76  -0.03* 

Purchasing appeal   0.57   0.000***   0.22   0.003**   0.28  -0.09  -0.02*  -0.000*** 

Overall acceptability   0.57   0.000***   0.25   0.002**   0.27  -0.08  -0.03*  -0.000*** 

Eating Quality Sensory 

Analysis 

 
               

Appearance  -0.82   0.49  -0.81   0.50  -0.81  -0.55   0.81  -0.47 

Tenderness  -0.46   0.10  -0.72   0.09  -0.77  -0.30   0.68  -0.04* 

Oxidation flavour  -0.55   0.15  -0.34   0.14  -0.39  -0.25   0.13  -0.14 

Liking of flavour   0.80  -0.97   0.71  -0.97   0.60   0.97  -0.71   0.97 

Overall acceptability   0.75   0.57   0.60   0.58   0.36  -0.63  -0.59  -0.56 
        Significance of regression coefficients; * = p < 0.05; ** = p < 0.01; *** = p < 0.001. 
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reported study, the addition of dried U. pinnatifida (3.3%) did not negatively affect the 

sensory properties of low-salt and low-fat beef patties in comparison with the control 

(López-López et al., 2010).  Choi et al., (2012) reported the addition of powdered L. 

japonica (1%, 3% and 5%) to reduced-fat pork patties demonstrated significantly (p < 

0.05) higher overall acceptability scores indicating foods containing seaweed had better 

sensory scores when compared to the controls. In the present study, sensory panellists 

were unable to distinguish between the control and pork patties containing low levels of 

the L/F extract. 
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6.4 CONCLUSIONS 

Addition of a seaweed extract containing polysaccharides (soluble dietary fibres) 

did not enhance quality parameters of the fresh minced pork patties.  The L/F extract at a 

level of 0.5% exerted a pro-oxidant effect on lipid oxidation over time attributed to the 

pro-oxidant components (sodium, copper and iron) present in the extract.  Decreased lipid 

oxidation observed in cooked pork patties containing the L/F extract (0.5%) on days 1, 4 

and 14, provided evidence that heating can enhance the antioxidant capacity of seaweed 

extracts in muscle foods and improve quality parameters possibly due to the formation of 

brown melanoidins (Maillard reaction products) with antioxidant functionality.  The L/F 

extract at a level of 0.01% can be incorporated without adversely affecting the colour, 

lipid oxidation, texture or sensorial acceptance of pork patties.  Further research is 

necessary to examine the effects of more refined or purified laminarin and fucoidan 

extracts in meat products. 
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ABSTRACT 

The anti-oxidative potential of laminarin (L), fucoidan (F) and an L/F seaweed 

extract was measured using the DPPH free radical scavenging assay, in 25% pork 

(longissimus thoracis et lumborum (LTL)) homogenates (TBARS) (3 and 6 mg/ml) and 

in horse heart oxymyoglobin (OxyMb) (0.1 and 1 mg/ml).  The DPPH activity of fresh 

and cooked minced LTL containing L (100 mg/g; L100), F100 and L/F100, 300, and 

bioaccessibility post in vitro digestion (L/F300), was assessed.  Theoretical cellular uptake 

of antioxidant compounds was measured in a transwell Caco-2 cell model.  Laminarin 

displayed no activity and fucoidan reduced lipid oxidation but catalysed OxyMb 

oxidation.  Fucoidan activity was lowered by cooking while the L/F extract displayed 

moderate thermal stability.  A decrease in DPPH antioxidant activity of 44.15% and 

36.63%, after 4 and 20 h respectively, indicated theoretical uptake of L/F antioxidant 

compounds.  Results highlight the potential use of seaweed extracts as functional 

ingredients in pork.   
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7.1 INTRODUCTION  

Seaweed polysaccharides (laminarin and fucoidan) isolated from the cell walls of 

brown seaweed (Laminaria digitata) possess immunomodulatory, anti-inflammatory, 

antiviral, antitumor, antithrombotic, anticoagulant and antioxidant bioactivities (Holdt & 

Kraan, 2011; Ngo et al., 2011).  Structurally, laminarin is composed of β-(1,3)-linked 

glucose containing large amounts of sugars and a low fraction of uronic acids.  Two types 

of polymeric chains are present in laminarin, G-chains with glucose at the end and M-

chains with mannitol as the terminal reducing end (Devillé et al., 2004).  The antioxidant 

activity of laminarin has been linked to molecular structure, degree and length of 

branching and the monosaccharide constituents (Choi et al., 2011).  The structure of 

fucoidan consists mainly of α(1, 3)-linked L-fucopyranose residues with sulphates at the 

C-2 position (Anastyuk et al., 2012).  Distinct conclusions regarding chemical structures 

of fucoidans are often difficult to formulate due to structural heterogeneity and lack of 

regularity in fucoidan molecules (Ustyuzhanina et al. 2014).  Sulphate content, degree of 

sulphation and molecular weight are often attributed as factors influencing the antioxidant 

activity of fucoidan (Mak et al., 2013).   

A wide range of analytical techniques (e.g. HPLC, ATR-FTIR and NMR 

spectroscopy) may be used to characterise and quantify structurally complex 

polysaccharides, such as laminarin and fucoidan, present in seaweeds (Kadam et al., 

2014).  Such techniques can involve detailed and time consuming extraction, preparation 

and sample clean-up procedures, depending on the parent seaweed material or the matrix 

in which the compounds of interest (polysaccharides) are contained (Gómez-Ordóñez et 

al., 2014).  In vitro antioxidant assays (e.g. FRAP, ABTS, ORAC and DPPH free radical 

scavenging activities) are frequently used to assess the antioxidant activity and potency of 

plant extracts (Koleva et al., 2002).  The DPPH assay (based on a quick electron transfer 
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reaction, followed by a slower hydrogen transfer reaction) is a simple, rapid, sensitive and 

reproducible index of antioxidant activity (MacDonald-Wicks et al., 2006).  DPPH free 

radical scavenging activity of seaweed extracts, including laminarin and fucoidan, has 

been reported for a number of seaweed species (Machová & Bystrický, 2013; Mak et al., 

2013). 

The addition of antioxidant compounds to muscle foods (via the animals’ diet or 

direct addition) in order to enhance meat quality and shelf-life has attracted much 

research attention in recent years.  Previous research indicated that functional ingredients, 

such as laminarin and fucoidan, have beneficial effects pre- (animal health) (O'Doherty et 

al., 2010) and post-slaughter (meat quality) (Chapters 4 and 5).  In Chapters 4 and 5, the 

addition of seaweed extracts, containing laminarin and fucoidan, to pig diets, resulted in 

lower levels of lipid oxidation in fresh pork steaks.  However, direct addition of the same 

seaweed extract, promoted lipid oxidation and decreased the surface redness of fresh pork 

patties in Chapter 6.  Catalysis of lipid oxidation was linked to the presence of salt and 

minerals in the seaweed extract.  Increased discolouration (oxymyoglobin oxidation) was 

attributed to the effect of oxidising lipids and potential interactions between seaweed 

polysaccharides and oxymyoglobin.  The anti- and pro-oxidative activity of laminarin and 

fucoidan on lipid and oxymyoglobin oxidation processes will be further examined in the 

present study.  

The chemical structure of plant cell wall polysaccharides (e.g. cellulose, pectin 

substances, inulin and gums) and other associated non-carbohydrate components (i.e. 

resistant protein) can be sensitive to chemical, mechanical, thermal and enzymatic 

processing (Elleuch et al., 2011).  Therefore the consequence of cooking on the potential 

bioactivity of laminarin and fucoidan in a meat matrix should be considered when 

formulating a functional meat product (Rawson et al., 2011).  Cooking may sometimes 
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improve the antioxidant activity of plant based materials due to the formation of other 

antioxidant components such as Maillard reaction products (MRPs) (Gazzani et al., 

1998).  MRPs have been reported to possess antiradical activity including inhibition of 

the DPPH, oxygen peroxyl and hydroxyl radicals as well as copper and Fe
2+

 chelators 

(Gawlik-Dziki et al., 2009).  In Chapter 6, a reduction in lipid oxidation of cooked 

minced pork patties containing laminarin and fucoidan which was attributed partially to 

the cooking process and the formation of MRPs which were not present in the fresh pork 

patties.   

The digestion process may influence the bioactivity and bioaccessibility of 

laminarin and fucoidan.  Bioaccessibility is defined as the fraction of a compound 

transferred from the food matrix during digestion, and thus made accessible for intestinal 

absorption and cellular uptake (Carbonell-Capella et al., 2014).  In vitro digestion models 

provide a useful alternative to animal and human models and simulate the digestion 

process of the human gastrointestinal tract (GIT).  Cell culture models, in particular the 

Caco-2 cell culture model, have been widely utilised as part of in vitro digestion models 

as a predictive tool for the absorption of bioactive compounds from foods (Hur et al., 

2011). 

Studies on the anti-oxidative potential of seaweed polysaccharides in meat 

products are limited and merit investigation.  Furthermore, the literature lacks information 

regarding the bioaccessibility of seaweed polysaccharides in meat products after cooking 

and post digestion.  The initial objective of this study was to profile the antioxidant 

activity of laminarin (L), fucoidan (F) and a seaweed extract containing L and F, using 

the DPPH free radical scavenging assay.  The antioxidative potential of L, F and L/F was 

further examined in fresh pork longissimus thoracis et lumborum (LTL) homogenates and 

in commercial horse heart oxymyoglobin.  The DPPH radical scavenging and thermal 
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stability of L, F and L/F in cooked pork patties was assessed.  Finally cooked pork patties 

were subjected to an in vitro digestion procedure to determine the effects of digestion on 

the antioxidant potential of L, F and L/F and L/F digestates were examined in a transwell 

Caco-2 cell model to assess theoretical cellular uptake of antioxidant components of L/F.   
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7.2 MATERIALS AND METHODS 

7.2.1 Reagents 

All chemicals used were ‘AnalaR’ grade obtained from Sigma-Aldrich Ireland 

Ltd., Arklow, Co. Wicklow, Ireland and Merck KGaA, Darmstadt, Germany.  Tissue 

culture plastics were supplied by Sarstedt, Wexford, Ireland and the Caco-2 cells were 

from the European Collection of Animal Cell Cultures, Wiltshire, UK.  Fresh pork meat 

(longissimus thoracis et lumborum (LTL)) was supplied by Ballyburden Meat Processors, 

Ballincollig, Co. Cork, Ireland.  Laminarin (L) (MW = 13 kDa) and fucoidan (F) (MW = 

57 kDa) standards from Sigma-Aldrich were isolated from Laminaria digitata and Fucus 

vesiculosus, respectively.  A spray-dried seaweed extract (L/F), containing laminarin and 

fucoidan was manufactured by Bioatlantis, Tralee, Co. Kerry, Ireland.  The extract 

isolated from brown seaweed (Laminaria digitata) was prepared using an acid extraction 

technique, details of which are industrially-confidential.  The extract composition is 

reported in Chapter 4. 

 

7.2.2 Measurement of the DPPH free radical scavenging activities of seaweed 

polysaccharides (L, F and L/F) 

The 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity of L, 

F and L/F was measured using the method of Qwele et al. (2013) with slight 

modifications.  DPPH (0.2 mM, 3 ml) in methanol was added to 3 ml of L (1 and 10 

mg/ml; L1 and L10), F (1 mg/ml; F1) and L/F (1 and 3 mg/ml; L/F1 and L/F3).  Trolox C (1 

mg/ml; Trolox), was used as a positive control.  Tubes were mixed and incubated for up 

to 20 h at room temperature (~20°C) in the dark.  The assay control contained 3 ml 

distilled water and 3 ml of DPPH solution.  Absorbance measurements were recorded 

spectrophotometrically (Cary 300 Bio, UV-Vis spectrophotometer, Varian Instruments, 
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Palo Alto, CA, USA) against a distilled water blank after 1, 4 and 20 h at 517 nm.  The 

DPPH free radical scavenging activity, expressed as a percentage of the assay control was 

calculated as follows: 

% inhibition of DPPH = [1− (absorbance of sample / absorbance of assay control)] x 100 

 

7.2.3 The effect of seaweed polysaccharides on lipid oxidation in pork muscle 

homogenates 

Pork homogenates (25% w/v) were prepared by homogenising LTL (70 g) in 

buffer (210 ml) (0.12 M KCL 5 mM histidine, pH 5.5) on ice using an Ultra-turrax T25 

homogeniser.  L, F and L/F were solubilised in distilled water and added to LTL 

homogenates at final concentrations of 3 and 6 mg/ml (L3, L6, F3, F6, L/F3 and L/F6) 

homogenate.  Lipid oxidation in muscle homogenate samples (20 g) held at 4°C was 

initiated by the addition of 45 μM FeCl3/sodium ascorbate (1:1).  Muscle homogenates 

with and without FeCl3/sodium ascorbate and without antioxidants (L, F and L/F) were 

run simultaneously as controls with each experiment. Lipid oxidation measurements were 

measured after 4 h in samples held at 4°C. 

 

7.2.3.1 Measurement of lipid oxidation in pork muscle homogenates 

A modification of the 2-thiobarbituric acid (TBA) assay of Siu & Draper (1978) 

was used to measure lipid oxidation in pork muscle (LTL) homogenates.  Homogenate 

samples (4 ml) were added to 4 ml 10% trichloroacetic acid (TCA) and centrifuged 

(Beckman J2-21, Beckman Instruments Inc., Brea, CA, USA) at 6160g for 15 min at 4°C.  

Following centrifugation, the supernatant was filtered through Whatman No. 1 filter 

paper.  In a screw cap test tube, the clear filtrate (4 ml) was added to 0.06 M TBA reagent 

(1 ml) and incubated at 80°C for 90 min.  The absorbance of the resulting coloured 
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complex was measured using a spectrophotometer (Cary 300 Bio) at 532 nm against a 

blank containing buffer (2 ml, 0.12 M KCL 5 mM histidine, pH 5.5), 10% TCA (2 ml) 

and 0.06 M TBA reagent (1 ml).  Results were expressed directly as absorbance values at 

532 nm. 

 

7.2.4 The effect of seaweed polysaccharides on oxymyoglobin oxidation 

7.2.4.1 Preparation of commercial oxymyoglobin 

  Commercial horse heart oxymyoglobin (OxyMb) was prepared according to a 

modification of the method of Brown & Mebine (1969).  Metmyoglobin (MetMb) (0.06 

g) was dissolved in ice-cold distilled water (2 ml) to a concentration of 30 mg/ml and 

reduced to OxyMb by the addition of sodium dithionite at 1 mg/ml.  To remove excess 

dithionite, OxyMb solution (2 ml) was applied to a glass column (2 cm i.d x 25 cm) 

containing 10 g of mixed bed ion exchange resin (Amberlite MB-1A) and eluted from the 

column with approximately 20 ml cold distilled water.  The OxyMb solution was passed 

through the column three times to reduce the conductivity to that of distilled water and 

was adjusted to a final volume of 50 ml with double strength buffer (300 mM KH2PO4-

KOH, pH 5.5).  The concentration of OxyMb in the final solution was calculated from its 

absorbance value at 525 nm divided by a millimolar extinction coefficient of 7.6 mM
-

1
cm

-1
 (Krzywicki, 1982).  

 

7.2.4.2 Effect of seaweed polysaccharides on oxymyoglobin oxidation 

 Incubates (7 ml) containing OxyMb (~1 mg/ml) and L, F and L/F at two levels 

(0.1 and 1 mg/ml; L0.1, L1, F0.1, F1, L/F0.1 and L/F1) in 150mM KH2PO4-KOH, pH 5.5, 

were prepared.  Distilled water was used to prepare seaweed polysaccharide solutions (20 

mg/ml).  Additions to each OxyMb incubate were at a final concentration of 5% (v/v).  
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Incubates were held at 4C and OxyMb oxidation was measured on days 0, 4 and 8 of 

storage.   

Following centrifugation at 6160g for 10 min at 4°C, the absorbance spectra of the 

incubates (2 ml) containing commercial OxyMb were measured on a spectrophotometer 

(Cary 300 Bio) and spectral scans were recorded from 750 to 500 nm.  The relative 

proportion of OxyMb (% of total myoglobin) was calculated using absorbance 

measurements at selected wavelengths (525, 545, 565, 572 and 730 nm (turbidity)) and 

the following equation:  

OxyMb, % = (0.882R1 – 1.267R2 + 0.809R3 – 0.361) x 100 

where R1, R2 and R3 are the absorbance ratios A
572

/A
525

, A
565

/A
525

 and A
545

/A
525

, 

respectively (Krzywicki, 1982).   

 

7.2.5 Effect of cooking on DPPH free radical scavenging activity of seaweed 

polysaccharides in pork meat 

Fresh minced LTL was assigned to one of five treatments: untreated pork 

(Control), L (100 mg/g pork; L100), F (100 mg/g; F100), L/F (100 mg/g; L/F100) and L/F 

(300 mg/g; L/F300).  The levels of L, F and L/F added to fresh minced LTL were based on 

the DPPH free radical scavenging activities of the seaweed polysaccharides determined in 

section 7.2.2.  L, F and L/F were dissolved in water, immediately added to fresh minced 

LTL (5% v/w) and mixed vigorously.  Minced LTL (1 g portion) from each treatment 

was retained for measurement of DPPH free radical scavenging activity of fresh minced 

LTL prior to cooking.  The remaining fresh LTL (5 g portions) of each treatment were 

placed on aluminium foil lined trays and cooked at 180°C for 5 min 30 sec in a fan-

assisted convection oven (Zanussi Professional, Model 10 GN1/1, Conegliano, Italy) until 

an internal temperature of 72°C was reached.   
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Fresh and cooked minced LTL (1 g) were homogenised in 0.05 M phosphate 

buffer (9 ml), pH 7, using an Ultra Turrax T25 homogeniser and homogenates were 

centrifuged (Beckman J2-21, Beckman Instruments Inc., CA, USA) at 7,800g for 10 min 

at 4°C. The supernatant fraction obtained (fresh/cooked minced LTL) was used for the 

measurement of the DPPH free radical scavenging activity (Qwele et al., 2013).  DPPH 

(0.2 mM, 3 ml) prepared in methanol was added to 0.3 ml supernatant and 2.7 ml distilled 

water.  The mixture was vortexed and left to stand at room temperature (~20°C) in the 

dark.  The assay control contained 0.3 ml phosphate buffer and 2.7 ml distilled water and 

3 ml of DPPH solution.  The absorbance of the solution was measured against a distilled 

water blank after 1, 4 and 20 h at 517 nm.  The scavenging activity of the pork meat 

against the DPPH radical before and after cooking was expressed as a percentage of the 

assay control and calculated as:  

% inhibition of DPPH = [1− (absorbance of sample / absorbance of assay control)] x 100 

 

7.2.6 Effect of in vitro digestion on the DPPH free radical scavenging activity of 

seaweed polysaccharides in cooked pork meat 

The in vitro digestion procedure was adapted from that previously described by 

Daly et al. (2010).  All experimental work was carried out in UV-light free conditions to 

reduce the possible photo-decomposition of L, F and L/F present in the cooked minced 

LTL.  Briefly, cooked minced LTL (1 g) from each treatment were weighed into 100 ml 

plastic tubes and homogenized using an Ultra Turrax T25 homogeniser at 24,000 rpm for 

10 sec in 8 ml Hanks Balance Salts Solution (HBSS) containing BHT.  HBSS (5 ml) was 

slowly pipetted down the homogeniser to rinse remaining residue into the plastic tubes.  

The homogenates were transferred into amber bottles (rinsed twice using 5 ml HBSS).  In 

order to mimic the gastric phase of digestion, pepsin (1 ml) (0.04 g/ml in 0.1 N HCl) and 
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HBSS (2 ml) was added and the pH was adjusted to 2 using 1 M HCl. Oxygen was 

displaced by blowing nitrogen over the samples for 5 sec.  Samples were then incubated 

at 37°C for 1 h in an orbital shaking (95 rpm) water bath (Grant OLS200, Keison 

Products; Essex, UK).   

After gastric digestion, the pH was increased to 5.3 using sodium carbonate (0.9 

M NaHCO3) followed by the addition of 200 μl bile salts (1.2 mg/ml glycodeoxycholate, 

0.8 mg/ml taurocholate and 1.2 mg/ml taurodeoxycholate) and 100 μl pancreatin (0.08 

g/ml HBSS).  Subsequently, the pH was increased to 7.4 using NaOH, oxygen was 

displaced by nitrogen and samples were incubated at 37°C in the orbital shaking water 

bath for a further 2 h.  Following intestinal digestion, the digested minced LTL 

(digestates) from each treatment were centrifuged (Beckman J2-21) at 7,800 g for 10 min 

at 4°C.  Undigested minced LTL samples were diluted using HBSS to the same final 

volume as the digestates and subsequently centrifuged at 7,800 g for 10 min at 4°C.   

The supernatant (aqueous fractions) of the undigested minced LTL and digestate 

samples were frozen at -80°C until required for measurement of DPPH free radical 

scavenging activity (described in section 7.2.5).  The assay control contained 0.3 ml 

HBSS buffer and 2.7 ml distilled water and 3 ml of DPPH solution.  The absorbance of 

the solution was measured against a distilled water blank after 1, 4 and 20 h at 517 nm.  

The scavenging activity of the pork meat against DPPH radical post digestion was 

corrected for the meat control and expressed as:  

% inhibition of DPPH = [(1− (Absample / Abac)) x 100] - [(1− (Abmeatcontrol / Abac)) x 100] 

Where Absample = absorbance of sample; Abac = absorbance of assay control; Abmeatcontrol = 

absorbance of meat control.  
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7.2.7 Uptake and transport of the aqueous fraction of digested minced LTL 

Caco-2 cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM), 

containing 10% (v/v) foetal bovine serum (FBS) and 1% (v/v) non-essential amino acids.  

Cells were grown at 37°C /5% CO2 in a humidified incubator and were cultured with 

0.5% Penicillin-Streptomycin (5,000 U/ml).  Cultures of Caco-2 cells were used between 

passages 46-51. To establish the Caco-2 intestinal model, the cells were seeded at a 

density of 6 x 10
4
 cells cm

-2
 on a transwell plate (12-well plate, 22 mm diameter, 0.4 µm 

pore size membrane). Media was changed every 2-3 days and experiments were 

performed when monolayers were 17-20 days post-confluency.  The aqueous fraction of 

the digestates (control and L/F300) (125 µl) were diluted to a final volume of 500 µl with 

serum free media and added to the top chamber of the transwell plate.  Serum free media 

(1 ml) was added to the basolateral chamber and the cells were incubated for 4 and 20 h.  

Preliminary work showed that the aqueous fraction of the digestates was not toxic to the 

cells (data not shown).  The transepithelial electrical resistance (Millicell-ERS, Millipore, 

Cork, Ireland) was measured before and after the addition of the aqueous fraction of the 

digestates to ensure the monolayer remained intact.  The media from the basolateral 

chamber was then harvested for the measurement of the DPPH free radical scavenging 

activity (see section 7.2.5) after transepithelial transport and cellular uptake. 

The assay control contained 0.3 ml serum free media and 2.7 ml distilled water 

and 3 ml of DPPH solution.  The absorbance of the solution was measured against a 

distilled water blank after 4 h at 517 nm.  The difference between the DPPH free radical 

scavenging activities of L/F300 and the control, expressed as a percentage of the control, 

was calculated for the aqueous fraction of the digestate (AF) and the transwell basolateral 

chamber media (TW) as follows: 
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% theoretical transepithelial transport and cellular uptake = [(AFL/F300 - AFmeatcontrol) / 

AFmeatcontrol) x 100] - [(TWL/F300 - TWmeatcontrol) / TWmeatcontrol) x 100] 

Where AFL/F300 = absorbance of aqueous fraction of the digestate L/F300; AFmeatcontrol = 

absorbance of aqueous fraction of the digestate meat control; TWL/F300 = absorbance of 

transwell basolateral chamber media following cellular uptake of L/F300; TWmeatcontrol = 

absorbance of transwell basolateral chamber media following cellular uptake of the meat 

control.  The difference in activity between AF and TW was attributed to uptake of 

antioxidant compounds by the Caco-2 cells.   

 

7.2.8 Statistical analysis 

 Each experiment was carried out three individual times.  All analyses were 

performed in duplicate.  DPPH free radical scavenging of L, F and L/F, lipid oxidation 

and oxymyoglobin oxidation means were analysed by one-way ANOVA.  Means were 

considered significantly different at (p < 0.05) using Tukey’s post hoc test.  Following 

cooking, digestion and cellular uptake, mean sample values (n = 3) were subjected to a 

full repeated measures two-way analysis of variance (ANOVA) to investigate the effects 

of L, F and L/F addition, time and their interactions.  L, F and L/F represented the 

‘between-subjects’ factor and the effect of time was measured using the ‘within-subjects’ 

factor.  Tukey’s test was used to adjust for multiple comparisons between treatment 

means.  All analysis was carried out using the SPSS 18.0 for Windows (SPSS, Chicago, 

IL, USA) software package.   
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7.3. RESULTS AND DISCUSSION  

7.3.1 Free radical scavenging activity of seaweed polysaccharides (L, F and L/F) 

In general, the DPPH free radical scavenging activity of seaweed polysaccharides 

increased over 20 h and followed the order: Trolox > F1 > L/F3 > L/F1 > L10 ≈ L1 (Table 

7.1).  DPPH free radical scavenging activity of L/F increased as a function of 

concentration.  The DPPH free radical scavenging activities reported for L1 and L10 were 

comparable to previously reported values (1.4-5.3%) for laminarin extracted from 

Laminaria digitata at concentrations ranging from 0.125 to 1.0 mg/ml (Machová & 

Bystrický, 2013).  The DPPH free radical scavenging activity of F1 (66.13%) after 1 h in 

the present study was similar to the inhibition of the DPPH radical (55.22%) after 30 

minutes by fucoidan (1 mg/ml) from Sigma reported by Mak et al. (2013). 

 

Table 7.1.  Free radical scavenging activity (DPPH) of L, F and L/F for up to 

20 h at ~ 20°C. 

Incubate  time, hours 

  1  4  20 

L1*    1.09 ± 0.92
ab

    1.39 ± 0.96
ab

    1.64 ± 1.30
ab

 

L10    1.55 ± 1.21
b
    2.72 ± 1.77

b
    3.16 ± 2.72

b
 

       
F1  66.13 ± 0.32

c
  76.48 ± 0.30

c
  90.68 ± 0.55

c
 

       
L/F1  35.43 ± 2.04

d
  47.35 ± 1.79

d
  69.51 ± 1.37

d
 

L/F3  56.18 ± 1.01
e
  68.40 ± 0.89

e
  78.41 ± 0.21

e
 

       
Trolox  95.89 ± 0.08

f
  95.92 ± 0.14

f
  95.76 ± 0.48

f
 

*Subscripts 1, 3 and 10 denote concentrations in mg/ml. 
abcdefWithin each storage time, mean values (± standard deviation) in the same column bearing 

different superscripts are significantly different, p < 0.05. 

 

Limited research suggests that carbohydrate polymers such as β-glucans 

(laminarin) possess free radical scavenging activity, however the addition of high levels of 

β-glucans is often necessary before radical scavenging activity is observed (Mirjana et al., 

2013; Tsiapali et al., 2001).  At concentrations of 20-200 mg/ml (higher than those used in 

the present study) a 1,3 β-D-glucan enriched extract from cereal grains demonstrated 25-
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80% inhibition of the DPPH radical (Mirjana et al., 2013).  The mechanism of antioxidant 

action of β-D-glucans against free radicals is still not well understood, but a number of 

theories exist (Giese et al., 2014).  Tsiapali et al. (2001) reported enhanced antioxidant 

activity of laminarin polymers over monomeric units due to greater ease of abstraction of 

anomeric hydrogen from one of the internal monosaccharide units rather than from the 

reducing end.  In the present study, laminarin exhibited weak radical scavenging activity 

which may be due to the level examined.   

For some antioxidants, such as Trolox, the reaction with DPPH is rapid while 

other compounds may react more slowly (Huang et al., 2005).  The ability of seaweed 

extracts to quench free radicals is known to take place over longer periods of time 

compared to rapid acting synthetic antioxidants such as butylated hydroxyanisole (BHA) 

(Abu-Ghannam & Cox, 2014; Yuan et al., 2005).  Slower reacting compounds are 

hypothesised to have a more complex reaction mechanism involving one or more 

secondary reactions in quenching the DPPH radical (Koleva et al., 2002).  In the present 

study, after 20 h, the DPPH free radical scavenging activity of F1 was equivalent 

(although statistically lower) to the positive control (Trolox), and significantly (p < 0.05) 

higher than both L1 and L10.  Therefore the ability of an antioxidant to reduce and quench 

free radicals over a longer period of time may have benefits for extending the shelf-life of 

processed foods (Yuan et al., 2005).   

 

7.3.2 Effect of seaweed polysaccharides on lipid oxidation in pork muscle model 

systems 

In vitro antioxidant assays (e.g. the DPPH assay) highlight the potential 

antioxidant activities of compounds but may not accurately predict activity in complex 

test systems such as muscle foods.  To further investigate antioxidant activities of L, F 
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and L/F, pork meat homogenates were subjected to iron/ascorbate (FeCl3/sodium 

ascorbate)-induced lipid oxidation.  Compared to the control, after 4 h at 4°C, lipid 

oxidation significantly increased (p < 0.05) in the pork meat homogenates with the 

addition of pro-oxidants (Figure 7.1).  No difference was observed for L3 and L6 

compared to the control.  Similarly no inhibition of lipid oxidation by laminarin, at levels 

comparable to those in the present study (3 mg/ml), was observed in a linoleic acid 

emulsion system (Giese et al., 2014).  F3 and F6 significantly decreased (p < 0.05) levels 

of lipid oxidation in pork meat homogenates.  Trends indicated that levels of lipid 

oxidation in L/F3 and L/F6 were lower than the control (with pro-oxidants) although 

results were not statistically significant.  In Chapter 6, salt and minerals, present in the 

L/F extract, may have promoted lipid oxidation in fresh pork patties.  Minerals and salt 

present in L/F3 and L/F6 may have counteracted the antioxidant activity of other 

constituents in the extract, thus impeding ability to significantly enhance lipid stability in 

the pork meat homogentates (Figure 7.1). 

Structurally laminarin does not contain sulphate groups, which reportedly 

increases the antioxidant activity of fucoidan (Zhou et al., 2014).  Sulphate groups can 

enhance the steric hindrance between polymer chains in polysaccharides leading to a 

more ordered and expanded conformation thus improving homogeneity in aqueous 

solution (Yan et al., 2012).  Lower molecular weight polysaccharides are often linked to 

increased free radical scavenging ability, presumably due to a non-compact structure 

which may allow more available sulphate and hydroxyl groups react with free radials 

(Gómez-Ordóñez et al., 2014).  However, this was not observed for L in the present study 

indicating that even at low molecular weight, the structure in the presence of pork meat 

was unable to inhibit lipid oxidation, similar to the lack of DPPH free radical scavenging 

activity observed in section 7.3.1 (Table 7.1).   
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Figure 7.1.  Lipid oxidation in 25% longissimus thoracis et lumborum (LTL) pork 

muscle homogenates following the addition of L, F or L/F and storage for up to 4 h at 

4C.  
*
 Subscripts 3 and 6 denote concentrations in mg/ml.  

abcd
Mean values (± standard 

deviation error bars) bearing different superscripts are significantly different, p < 0.05.   

 

 

In general, it is accepted that natural antioxidants scavenge free oxygen-centered 

radicals via two major mechanisms, hydrogen atom transfer (HAT) reactions and electron 

transfer (ET) reactions.  Yan et al. (2012) suggested the HAT reaction is more likely to 

occur in neutral polysaccharides, such as laminarin, while the ET is the probable 

mechanism in acidic polysaccharides, like fucoidan where the negative charge of the 

sulphate groups plays a large part in the radical scavenging activity.  In the present study, 

fucoidan is most likely responsible for the antioxidant activity observed by the L/F extract 

in the pork meat homogenates presumably due to ET reactions between the sulphate 

groups and the free radicals in the pork meat homogenates. 
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7.3.3 Effect of seaweed polysaccharides on oxymyoglobin oxidation  

Oxymyoglobin oxidation (represented by a reduction in OxyMb, %) increased 

during storage for up to 8 days at 4°C (Table 7.2).  L0.1 and L1 had no influence on 

OxyMb oxidation, however F0.1 and F1 significantly (p < 0.05) enhanced OxyMb 

oxidation compared to the control in a dose dependant manner.  Similarly, a significant 

increase (p < 0.05) in OxyMb oxidation was observed for L/F0.1 and L/F1.  The presence 

of metmyoglobin is characterised by an increased absorption at ~628 nm (Schenkman et 

al., 1997) which is evident in the spectral scan for OxyMb alone and OxyMb + F1 (Figure 

7.2).  At the wavelengths examined, no spectral shift in the presence of F1 was observed. 

 

Table 7.2.  Oxymyoglobin (OxyMb) oxidation (represented by a reduction in 

OxyMb) following the addition of L, F or L/F and storage for up to 8 days at 4C.   

Incubate  time, days 

  0  4  8 

Control  76.53 ± 2.28
a
  59.92 ± 2.30

a
  54.46 ± 2.02

a
 

       
L0.1  76.57 ± 2.31

a
  59.68 ± 2.14

ab
  54.00 ± 2.50

a
 

L1  76.59 ± 2.73
a
  58.11 ± 3.12

abc
  52.51 ± 2.75

a
 

       
F0.1  74.73 ± 2.54

ac
  53.44 ± 2.44

bd
  45.42 ± 2.56

b
 

F1  67.55 ± 2.50
b
  32.95 ± 2.00

e
  21.71 ± 1.34

c
 

       
L/F0.1  74.93 ± 2.06

ad
  52.91 ± 2.44

cd
  44.95 ± 2.82

b
 

L/F1  69.03 ± 2.78
bcd

  39.01 ± 1.90
e
  28.78 ± 2.25

d
 

*Subscripts 0.1 and 1 denote concentrations in mg/ml. 
abcdeWithin each storage time, mean values (± standard deviation) in the same column bearing 

different superscripts are significantly different, p < 0.05.   

 

 

The exact mechanism by which fucoidan promotes OxyMb oxidation is unclear.  

The ability of fucoidan to bind to proteins such as antithrombin (a glycoprotein) and 

bovine serum albumin (a globular protein) has previously been linked to molecular 

weight as well as the sulphation patterns of the polysaccharide (Kim & Shin, 2015; 

Mulloy, 2005; Varenne et al., 2003).  Generally, interactions between anionic 

polysaccharides and positively charged OxyMb have been reported to be electrostatic in  
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Figure 7.2.  Absorbance spectra of oxymyoglobin (OxyMb) alone and 

following the addition of F1 (*Subscript 1 denotes concentration in mg/ml) and 

storage for up to 8 d at 4C. 

 

nature due to opposing charges (Imeson et al., 1977).  Similarly, Satoh & Shikama (1981) 

demonstrated that oxidation of OxyMb was initiated via nucleophilic attack at the iron 

(II) centre of OxyMb by a water molecule with strong proton assistance from the distal 

histidine, or a hydroxide anion (OH
−
). These reactions can cause irreversible 

displacement of bound dioxygen from OxyMb resulting in the formation of ferric 

metmyoglobin and generation of the superoxide anion. In the present study, the anionic 

sulphate groups of fucoidan potentially enhanced the oxidation of OxyMb through the 

nucleophilic displacement mechanism described above. 

* 
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7.3.4 Effect of cooking on the DPPH free radical scavenging activity of seaweed 

polysaccharides in pork meat 

Statistical analysis indicated that the DPPH free radical scavenging of L, F and 

L/F in the presence of fresh minced LTL (F100 > L/F300 ≈ L/F100 ≈ L100) followed a similar 

pattern to the DPPH free radical scavenging activities of the seaweed polysaccharides 

reported in section 7.3.1.  L100 DPPH free radical scavenging was similar to the control 

before and after cooking (Figure 7.3).  The DPPH free radical scavenging activity of F100 

significantly (p < 0.05) decreased after cooking.  Thermal processing is known to modify 

the physicochemical properties of plant cell wall polysaccharides (Elleuch et al., 2011).  

The DPPH free radical scavenging activities of fresh and cooked L/F100 and L/F300 were 

similar indicating moderate thermal stability of the L/F extract.  Similarly, in Chapter 5, 

low to moderate thermal stability of L/F in cooked minced pork patties from pigs fed the 

L/F extract for 3 weeks pre-slaughter was observed.   

L/F300 significantly (p < 0.05) enhanced the DPPH free radical scavenging activity 

of cooked minced LTL compared to the control (Figure 7.3).  Similarly, Prabhasankar et 

al. (2009) reported an increase in DPPH free radical scavenging activity of cooked pasta 

with the addition of a brown seaweed (Undaria pinnatifida) to uncooked pasta.  The 

formation of Maillard reaction products (MRP) and other novel antioxidant compounds 

such as mycosporine-like amino acids during heat treatment of seaweed extracts has been 

reported (Kuda et al., 2006; Rajauria et al., 2010; Yoshiki et al., 2009).  Additionally, 

MRP have proven effective inhibitors of lipid oxidation in cooked minced pork patties 

(Bedinghaus & Ockerman, 1995).  In the present study, MRP formed during heating of 

L/F300 most likely enhanced the DPPH free radical scavenging of cooked minced LTL.   
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Figure 7.3.  Free radical scavenging activity (DPPH) of L, F or L/F in fresh and cooked 

minced longissimus thoracis et lumborum (LTL) pork muscle stored for 20 h at ~20°C.  
*
Subscripts 100 and 300 denote concentrations in mg/g.  

ab
Within each treatment, mean 

values (± standard deviation error bars) bearing different superscripts are significantly 

different, p < 0.05. Comparing 
wx

 fresh and 
yz

 cooked LTL pork muscle treatments to 

their respective controls, mean values bearing different superscripts are significantly 

different, p < 0.05. (    ), fresh; (    ), cooked. 

 

7.3.5 DPPH free radical scavenging activity of seaweed polysaccharides in pork meat 

following in vitro digestion 

During the digestion procedure, cooked minced LTL from each treatment was 

subjected to pH changes and enzymatic reactions which resulted in increased (~30-44%) 

DPPH free radical scavenging activities in digestates compared to undigested aqueous 

fractions (data not shown).  The DPPH free radical scavenging activity of the control post 

digestion increased from 14.4% to 44.8% and was attributed to the presence of 

compounds such as peptides released from the pork meat during the in vitro digestion 

procedure.  Escudero et al. (2010) reported 51 different peptides were released from pork 

meat (longissimus dorsi) following in vitro digestion.  Additionally, peptides obtained 

from animal sources such as porcine myofibrillar proteins have demonstrated DPPH free 
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radical scavenging activity (Chen et al., 1998; Saiga et al., 2003; Sarmadi & Ismail, 

2010).  Data from each treatment (L100, F100, L/F100 and L/F300) were adjusted for the meat 

control to estimate the antioxidant activity due to the seaweed polysaccharides post 

digestion (Figure 7.4).   
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Figure 7.4.  Free radical scavenging activity (DPPH) of L, F or L/F in digested cooked 

minced longissimus thoracis et lumborum (LTL) pork muscle stored for 20 h at ~20°C 

and adjusted for the control.  
*
Subscripts 100 and 300 denote concentrations in mg/g.  

abc
Mean values (± standard deviation error bars) bearing different superscripts are 

significantly different, p < 0.05.   

 

The DPPH free radical scavenging activity of digested L100 and L/F100 were 

similar (Figure 7.4).  Laminarin is resistant to digestion in the upper GIT including acidic 

and enzymatic hydrolysis (O’Sullivan et al., 2010).  Salyers et al. (1977) established two 

different types of enzymes (laminarases and β-glucosidases) were essential to fully 

degrade laminarin and were only synthesised after 4-6 h of incubation in the presence of 

the inducer.  In the present study, the lack of suitable enzymes to break down laminarin in 
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the in vitro digestion model used may explain the lack of enhanced antioxidant activity 

post digestion. 

F100 and L/F300 significantly (p < 0.05) enhanced the DPPH free radical 

scavenging activity of cooked minced LTL post digestion.  A few fucan-degrading 

enzymes have been obtained from marine bacteria and molluscs, however complete 

enzymatic breakdown has not been reported.  The presence of sulphate groups attached to 

fucoidan has been postulated as a reason for resistance to enzymatic breakdown during 

digestion.  The retention of the sulphate groups during digestion results in high ionic 

exchange capacities such as the binding of bile salts and scavenging of free radicals 

throughout the GIT before potential absorption (Michel & Macfarlane, 1996).  The 

enhanced DPPH radical scavenging activity of F100 and L/F300 in cooked minced LTL, in 

the present study, may be due to the retention of the sulphate groups throughout the in 

vitro digestion procedure.   

The DPPH free radical scavenging activity of digested L/F300 was significantly (p 

< 0.05) greater than F100.  Fucoidan may be partially responsible for the scavenging 

activity of the extract.  The synergistic effect between components in the L/F extract, 

such as protein and mannitol, could have contributed to the observed enhanced free 

radical scavenging activity in cooked minced LTL post digestion.  Antioxidant activity 

post-digestion of bioactive peptides extracted from seaweeds has been reported 

previously (Kim et al., 2007).  Mannitol is frequently considered as a reference for 

carbohydrate-type antioxidants due to its established scavenging abilities (Tsiapali et al., 

2001).   Additionally, MRPs formed during cooking may have enhanced the DPPH free 

radical scavenging activity of L/F300 post digestion. 
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7.3.6 Bioaccessibility of seaweed polysaccharides in pork meat after incubation with 

Caco-2 cells 

The aqueous fraction of the control and L/F300 digestates was incubated with 

Caco-2 cells for 4 and 20 h to determine the bioaccessibility of L/F post-digestion.  The 

DPPH free radical scavenging activity of L/F300, post digestion, was 56.49% higher than 

the meat control.  Following incubation of the control and L/F300 digestates with Caco-2 

cells for 4 and 20 h, the DPPH free radical scavenging activity of L/F300 was 12.34% and 

19.85% higher than the meat control, respectively.  The reduction in the DPPH free 

radical scavenging activity indicated theoretical uptake of some compounds with 

antioxidant activity.  Therefore theoretical cellular uptake of seaweed polysaccharides 

was 44.15% and 36.63% (DPPH free radical scavenging activity) after incubation with 

Caco-2 cells at 4 and 20 h, respectively.  Similarly, Soler-Rivas et al. (2009) reported a 

decrease in ABTS free radical activity after digested grilled mushrooms were incubated 

with Caco-2 cells indicating absorption of antioxidant compounds.  Previously reported 

studies indicated that seaweed polysaccharides can be, to some extent, absorbed into the 

blood stream post digestion; however metabolism of these components after absorption 

has not been established (Holdt & Kraan, 2011).  Antioxidant compounds from L/F300 not 

absorbed through the intestinal wall would potentially be able available to scavenge free 

radicals or be fermented by colonic bacteria and contribute to the overall antioxidant 

defence system of the GIT (Holdt & Kraan, 2011; Palafox-Carlos et al., 2011).  Further 

research is necessary to determine the fate of antioxidant compounds after absorption. 
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7.4. CONCLUSIONS 

Due to the presence of sulphate groups and anionic charge, fucoidan is a more 

potent free radical scavenging antioxidant than laminarin.  Furthermore fucoidan is at 

least, in part, responsible for the antioxidant activity observed by the L/F extract in 

previous studies.  Fucoidan may be a potential natural antioxidant to enhance lipid 

stability in meat products.  The antioxidant potential of fucoidan and the L/F extract is 

strongly influenced by the cooking and digestion processes.  The L/F extract 

demonstrated superior antioxidant activity compared to fucoidan in minced LTL, after 

cooking and post digestion.  The antioxidant compounds of the L/F extract were partially 

absorbed by Caco-2 cells confirming their bioaccessibility post digestion.  Results 

demonstrate the potential for extracts containing fucoidan to enhance antioxidant activity 

of functional cooked meat products as well as contribute to human antioxidant defence 

systems. 
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The functional food market continues to grow in response to consumer demands 

for ‘healthy’ foods.  Macroalgae contain a range of compounds with biological activity 

making them an ideal source of functional ingredients.  Utilising the abundant supply of 

Irish macroalgae for functional food ingredients is currently the focus of a major research 

initiative in Ireland.  Additionally, muscle foods are a potential carrier for functional 

ingredients, which would serve to improve and enhance the ‘healthy’ image of meat 

benefitting both producers and consumers alike.  The objective of this thesis was to 

incorporate Irish macroalgae / macroalgal extracts rich in bioactive compounds, into 

muscle-based foods to investigate their potential as functional ingredients and 

subsequently develop functional meat products.  The two main methods of incorporating 

ingredients with functionality into muscle foods included supplementation of fish/pig 

diets pre-slaughter and direct addition to pork meat during processing.   

Initial studies examined whole macroalgae (Ulva rigida and Palmaria palmata) 

supplemented into fish diets.  Commercially prepared macroalgal polysaccharide extracts 

(containing laminarin and fucoidan (wet- and spray-dried forms)) were added into pig 

diets at a number of levels and durations of feeding.  In order to evaluate the efficacy of 

mode of incorporation (dietary versus direct addition), the spray-dried macroalgal extract 

was also added directly to minced pork meat.  In addition to potential benefits on pork 

quality and shelf-life parameters, the functionality of polysaccharide extracts in cooked 

pork was further examined in terms of bioaccessibility, cellular uptake and transport 

using an in vitro digestion procedure and a Caco-2 cell (transwell) model.  Mechanistic 

studies were also used to examine the antioxidant and pro-oxidant activities of laminarin 

and fucoidan alone and in combination. 

In Chapters 2 and 3, two macroalgal species harvested from the shores of Ireland 

were selected: Ulva rigida (green) and Palmaria palmata (red) and included in Atlantic 



General discussion 

______________________________________________________________________________________ 

 - 252 - 

salmon diets.  The inclusion of macroalgae in fish diets to enhance fish growth and health 

parameters has been established for a variety of fish species; however the effect on fillet 

quality is not well investigated.  Atlantic salmon diets are traditionally supplemented with 

synthetic carotenoids ((astaxanthin (red) and canthaxanthin (orange)) to produce the 

typical red/pink colour consumer’s associate with fresh salmon.  Both macroalgal species 

were selected as they are rich in carotenoids which may be a potential source of natural 

pigments for salmon fillets.  Additionally, Palmaria palmata was selected due to the 

phycobiliproteins it contains which impart the characteristic red colour to the algae.  

Atlantic salmon fillets stored in modified atmosphere packs (60% N2 : 40% CO2) (MAP) 

for up to 15 days at 4ºC were analysed (proximate composition, pH, colour, lipid 

oxidation, microbiological analysis and sensorial analysis) to determine the effect of 

dietary macroalgae on fillet quality and shelf-life parameters.     

Several factors influence the ability of salmon to deposit carotenoids in the 

muscle, including quantity available and carotenoid structure.  In both dietary trials 

(Chapters 2 and 3), the salmon fillets were enhanced with a yellow/orange colour due to 

the deposition of carotenoids.    Carotenoids (lutein and zeaxanthin) are essential for 

human eye health and the presence of carotenoids in salmon fillets could be 

promoted/marketed as a functional fish product.  Unexpectedly, Atlantic salmon fed Ulva 

rigida resulted in a more intense yellow/orange fillet colour than salmon fed Palmaria 

palmata.  This was likely due to the fact that water soluble phycobiliproteins (red) from 

Palmaria palmata are less likely to be deposited in fish muscle tissue compared to lipid 

soluble pigments.  In addition, Atlantic salmon are poor depositors of pigments, from 

synthetic or natural sources, in comparison to other fish species and lack the ability to 

biotransform carotenoids into other structural forms which may confer appropriate 

coloration to salmon fillets.  Other quality parameters examined were not negatively 
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influenced by dietary supplementation, indicating that macroalgae can be used as a 

natural ingredient source in Atlantic salmon feed.  Furthermore, macroalgae may be used 

in Atlantic salmon diets to reduce the use of artificial orange colour sources (i.e. 

canthaxanthin) currently used in aquaculture practices.  The use of more purified or 

refined macroalgal extracts in the salmon feed to increase deposition of biologically 

active compounds in salmon fillets may be required to further enhance other quality 

parameters such as lipid stability.   

Commercial macroalgal extracts contain one or more compounds/components 

present in seaweed, in a concentrated form.  Macroalgal polysaccharide extracts 

containing laminarin and fucoidan, from Laminaria digitata, were recently shown to 

possess benefits in terms of porcine gut health (O'Doherty et al., 2010).  The first trial 

(Chapter 4) examined two forms: wet- and spray-dried macroalgal polysaccharide 

extracts (containing laminarin and fucoidan) (laminarin, 500 mg/kg feed; fucoidan, 420 

mg/kg feed).  Porcine diets were supplemented for 21 days pre-slaughter.  The effects of 

dietary supplementation on quality and shelf-life parameters (pH, colour, lipid oxidation, 

microbiological analysis) of fresh longissimus thoracis et lumborum (LTL) steaks stored 

in MAP (80% O2 : 20% CO2) for up to 15 days at 4ºC was examined. 

Although results were not statistically significant (p > 0.05), decreased levels of 

lipid oxidation in the LTL muscle were observed indicating deposition of antioxidant 

components from the wet- and spray-dried extracts in pork muscle.  The wet-extract was 

more effective than the spray-dried macroalgal extract possibly due to the impact of the 

temperature used during industrial spray drying of the wet extract.  Liver, heart, kidney 

and lung tissue homogenates were subjected to iron (FeSO4)-induced lipid oxidation to 

determine if antioxidant compounds from the macroalgal extract were distributed 

elsewhere in the animal.  Although not significant, lower levels of lipid oxidation were 
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observed in the liver tissue homogenates indicating deposition of antioxidant compounds 

in specific organ tissues. 

Level (450 or 900 mg laminarin and fucoidan/kg feed) and duration (3 or 6 

weeks) of feeding the wet macroalgal polysaccharide (L/F-WS) extract on the quality and 

shelf-life of fresh pork was subsequently assessed in Chapter 5.  Supplementation of both 

levels of the L/F-WS extract for 3 weeks was more effective than 6 weeks at decreasing 

lipid oxidation in fresh pork steaks.  Over time, porcine gut microbiota can become 

accustomed to macroalgal polysaccharides.  This could result in more breakdown and 

utilisation of the macroalgal extract by gut microbiota prior to transportation to the 

muscle.  Furthermore, trends indicated that levels of lipid oxidation in cooked pork patties 

were lower, although results were not statistically significant.  The behaviour of dietary 

seaweed polysaccharides during cooking requires further investigation as confirmation of 

antioxidant activity post-cooking would be required for bioactivity.   

The mechanism of action of the L/F-WS extract on lipid stability was also 

explored.  Trends indicated that the dietary L/F-WS extract lowered the levels of 

saturated (∑SFA) fatty acids in pork meat.  Pork meat products with improved fatty acid 

profiles and enhanced lipid stability may benefit consumers seeking meat with reduced 

saturated fat levels.  The antioxidant activity of the L/F-WS extract in pork muscle was 

attributed to a combination of proposed mechanisms including: immunomodulatory 

activity in the porcine gut, influence on the fatty acid composition (lower levels of 

saturated fatty acids) and free radical scavenging activity.   

In order to compare efficacy of mode of incorporation (dietary supplementation 

versus direct addition) the spray-dried macroalgal polysaccharide (L/F-SD) extract 

containing laminarin and fucoidan was added directly to pork meat and the effects on 

quality and shelf-life parameters on pork patties were examined in Chapter 6.  In contrast 
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to the dietary supplementation studies, the L/F-SD extract decreased surface redness and 

increased lipid oxidation in fresh pork patties.  An interaction between pork meat 

constituents (myoglobin) and the L/F-SD extract was purposed as the contributing factor 

in decreased surface redness of the pork patties.  The lipid pro-oxidant activity of the L/F-

SD extract was attributed to the other compounds present in the extract such as iron, 

copper and salt.  In contrast to the lipid pro-oxidant activity observed in fresh pork 

patties, levels of lipid oxidation decreased in cooked pork patties due to the addition of 

the L/F-SD extract.  This was attributed to the formation of Maillard reaction products not 

present in the fresh pork meat (containing L/F-SD) and indicated heating could enhance 

the bioactivity of the L/F-SD extract in cooked muscle foods. 

The ability of macroalgal polysaccharide extracts containing laminarin and 

fucoidan to enhance cooked pork meat quality but promote lipid oxidation in fresh pork 

patties (when added directly) was determined in Chapters 5 and 6.  Therefore an initial 

investigation in Chapter 7 focussed on exploring the anti-oxidative potential of purified 

laminarin and fucoidan individually and in comparison to the L/F-SD extract utilised in 

Chapters 4 and 6.  Separately, fucoidan demonstrated superior antioxidant activity to 

laminarin in pork meat homogenates; however fucoidan promoted oxymyoglobin 

oxidation in solution (commercial horse heart oxymyoglobin).  The mechanism by which 

fucoidan decreased lipid oxidation but promoted oxymyoglobin oxidation was attributed 

to the presence of sulphate groups which can scavenge free radicals as well as oxidise 

ferrous iron to the ferric state.  The interaction between fucoidan and oxymyoglobin may 

have contributed to the decreased surface redness of pork patties containing the L/F-SD 

extract observed previously in Chapter 6. 

Results from Chapters 5 and 6 indicated moderate thermal stability and enhanced 

antioxidant activity of the L/F-SD extract in cooked pork meat.  Therefore in Chapter 7, 
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the final investigation of this thesis was to determine the bioaccessibility (fraction 

available for absorption and uptake) of antioxidant compounds from the L/F-SD extract 

in pork patties following cooking and post digestion.  Cooking negatively affected the 

DPPH free radical scavenging activity of fucoidan in cooked pork patties.  Conversely, 

the DPPH free radical scavenging activity of the L/F-SD extract was enhanced due to the 

formation of Maillard reaction products in the cooked pork patties.  In vitro digestion of 

the cooked pork patties containing the L/F-SD extract increased DPPH free radical 

scavenging activity.  The increased DPPH free radical scavenging activity of the L/F-SD 

extract was attributed partially to fucoidan as well as potential synergy between other 

components in the extract such as protein and mannitol.  Following cellular uptake, 

DPPH free radical scavenging activity decreased following incubation with Caco-2 cells 

indicating uptake and transport of antioxidant compounds.  Functional cooked meat 

products formulated with the L/F-SD extract could contribute to the antioxidant defence 

system in humans and prove beneficial to human health. 

 In summary, the inclusion of L/F-WS and L/F-SD extracts in porcine diets 

exhibited quality enhancing effects in fresh and cooked pork steaks.  The addition of the 

L/F-SD extract enhanced lipid stability in cooked pork patties.  The mode of 

incorporation by which macroalgal polysaccharide extracts are added to meat appears to 

influence the mode of action of the bioactive components present.  The pro-oxidant 

effects of the L/F-SD extract in fresh pork may be eliminated due to porcine digestive and 

metabolic processes.  Fucoidan and the L/F-SD extract demonstrated bioactivity (in vitro 

antioxidant assays).  Bioaccessibility of antioxidant activity of the L/F-SD extract after 

cooking and post digestion was confirmed using an in vitro digestion and cellular uptake 

model. 
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Overall Conclusions 

 Results indicated the potential use of macroalgae and commercial macroalgal 

polysaccharide extracts as potential functional ingredients in muscle foods. 

 Ulva rigida and Palmaria palmata may be considered as replacement functional 

ingredients for Atlantic salmon feed without negatively impacting fillet quality 

and shelf-life parameters. 

 Deposition of carotenoids (lutein and zeaxanthin) with bioactivity in Atlantic 

salmon fillets could reduce the use of synthetic pigments such as canthaxanthin, 

and salmon could subsequently be marketed as a functional fish product. 

 The inclusion of macroalgal polysaccharide extracts containing laminarin and 

fucoidan into animal feed could enhance pork meat quality. 

 Laminarin and fucoidan may be used as a natural antioxidant alternative in the 

development of novel functional meat products. 

 The use of macroalgal polysaccharide extracts containing laminarin and fucoidan 

added directly to fresh meat could enhance cooked pork meat quality. 

 Antioxidant activity of the macroalgal polysaccharides was enhanced by the in 

vitro digestion process. 

 Bioaccessibility of antioxidant compounds of the spray-dried macroalgal extract 

confirmed the use of macroalgal polysaccharides as functional ingredients in 

muscle based foods. 
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Future Research 

This thesis provides preliminary investigations into the use and effects of 

macroalgae and macroalgal polysaccharides in muscle foods.  The use of macroalgae as 

natural ingredients in food has the potential to improve quality and enhance food safety.  

Research on macroalgae and macroalgal extracts in food is limited with abundant 

opportunity to further our knowledge of this valuable resource.  Future research needs 

arising from the work presented in this thesis are summarised as follows: 

 

 Further elucidation of the specific structure and antioxidant mechanisms of 

laminarin and fucoidan to provide a better understanding of their behaviour and 

functionality in meat products. 

 Examine the effect of fucoidan and the spray-dried macroalgal polysaccharide 

extract in other fresh and cooked meat products. 

 Investigate the use of other macroalgal compounds with antioxidant activity (i.e. 

fucoxanthin) in muscle foods. 

 Confirm bioaccessibility and bioavailability of other macroalgal derived 

functional ingredients in muscle based foods after cooking and post digestive 

processes. 

 Conduct in vivo human dietary trials in order to validate in vitro studies.   

 Increase consumer awareness about the health benefits of macroalgae and sensory 

changes associated with incorporation of macroalgae into muscle products. 

 Develop cost effective harvesting and extraction processes necessary to facilitate 

the use of macroalgae as ingredients in muscle foods. 
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Inclusion of Palmaria palmata (red seaweed)
in Atlantic salmon diets: effects on the quality,
shelf-life parameters and sensory properties
of fresh and cooked salmon fillets
Natasha C Moroney,a Alex HL Wan,b Anna Soler-Vila,b Richard D FitzGerald,c

Mark P Johnsonb and Joe P Kerrya*

Abstract

BACKGROUND: The use of Palmaria palmata (PP) as a natural ingredient in farmed Atlantic salmon diets was investigated. The
effect of salmon diet supplementation with P. palmata (0, 5, 10 and 15%) or synthetic astaxanthin (positive control, PC) for 16
weeks pre-slaughter on quality indices of fresh salmon fillets was examined. The susceptibility of salmon fillets/homogenates
to oxidative stress conditions was also measured.

RESULTS: In salmon fillets stored in modified atmosphere packs (60% N2/40% CO2) for up to 15 days at 4 ∘C, P. palmata increased
surface −a* (greenness) and b* (yellowness) values in a dose-dependent manner, resulting in a final yellow/orange flesh colour.
In general, the dietary addition of P. palmata had no effect on pH, lipid oxidation (fresh, cooked and fillet homogenates) and
microbiological status. ‘Eating quality’ sensory descriptors (texture, odour and oxidation flavour) in cooked salmon fillets were
not influenced by dietary P. palmata. Salmon fed 5% PP showed increased overall acceptability compared with those fed PC and
0% PP.

CONCLUSION: Dietary P. palmata was ineffective at providing red coloration in salmon fillets, but pigment deposition enhanced
fillets with a yellow/orange colour. Carotenoids from P. palmata may prove to be a natural pigment alternative to canthaxanthin
in salmon feeds.
© 2014 Society of Chemical Industry

Keywords: seaweed; Palmaria palmata; pigments; farmed Atlantic salmon; feed ingredient; fillet quality

INTRODUCTION
The current worldwide production of farmed Atlantic salmon
(Salmo salar) has increased substantially to over 1× 106 t with
the increased demand for highly nutritious fresh salmon and
salmon-related products in Japan, the European Union and North
America.1 Wild salmon feed on other fish and small crustaceans
such as krill containing carotenoid pigments, which are respon-
sible for the red/pink salmon colour consumers associate with
acceptable salmon fillet quality.2 Since salmon cannot synthe-
sise carotenoids, farmed salmon diets are mostly supplemented
with synthetic sources of carotenoids (mainly astaxanthin and to
a lesser extent canthaxanthin) in order to pigment farmed salmon
flesh similar to wild salmon.3

In nature, astaxanthin (red) exists as three optical isomers (3R,3′R,
3S,3′S and 3R,3′S), with varying ratios depending on the source.
The 3R,3′R isomer is considered most bioavailable, and all three
isomers are present in different ratios in wild salmon. Synthetic
astaxanthin (usually an isomer ratio of 1:2:1) is absorbed, trans-
ported and deposited in salmon flesh similarly to natural forms
of astaxanthin.4 Canthaxanthin (orange) is not found in wild
Atlantic salmon but is a minor carotenoid in Pacific salmon species

and is used in some farmed salmon feeds in conjunction with
astaxanthin.5

The colour of salmon is regarded as one of the most impor-
tant quality criteria after freshness.5 Pigmentation from dietary
carotenoids (yellow, orange and red) can range from pale, faintly
pigmented flesh to strong red tones and is considered a vital
aspect of commercial feed formulation and fish management. In
addition to flesh pigmentation, carotenoids have been linked to
proper growth and survival as well as to possible protection of
tissues from oxidative damage.6 Synthetic pigments traditionally
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used in salmon feed continue to be utilised with success, but pig-
ments from natural sources should be considered with the increase
in consumer preference for natural food additives.7

Historically, farmed salmon were fed a diet composed of fish
meal (sole protein source) and fish oil (major dietary lipid source).
In order to increase sustainability and decrease production costs
in aquaculture, substitution of fish meal with alternative protein
sources such as soybean, corn gluten and wheat has been investi-
gated previously. Today, many alternative plant protein sources are
successfully incorporated into fish feeds.8,9 However, to date, lim-
ited research has been conducted examining the nutritional value
of seaweeds (macroalgae) as a potential protein substitute for fish
meal replacement. Several sources of biological astaxanthin have
been utilised to address consumer demand for natural pigmen-
tation of fish, including yeast (Phaffia rhodozyma), krill (Euphausia
superba) or crab wastes and green microalgae (Haematococcus plu-
vialis).10

The average protein content of the red seaweed (Rhodophyta)
Palmaria palmata (∼35%) is comparable to that of high-protein
vegetables such as soybeans and, as such, may be used as
an alternative protein source for fish feeds.11 Ten amino acids
essential for salmon growth and protein structure are all present
in P. palmata.12,13 Palmaria palmata also contains a variety of
fat-soluble carotenoids, including high levels of lutein (yellow), 𝛼-
and 𝛽-carotene (reddish yellow) as well as chlorophyll a/b (mid
green to olive green).14,15 Carotenoids are isoprenoid molecules
that aid in the absorption of sunlight and protect cells from
oxidative stress by quenching singlet oxygen.4 The carotenoid
content of P. palmata varies seasonally, depends on postharvest
treatment and is generally higher than that in other seaweed
species.13 Red seaweeds differ in structure and photosynthetic
pigments from green and brown seaweeds, with the red colour
attributed to the presence of water-soluble light-harvesting pig-
ments known as phycobiliproteins, found in chloroplasts, which
mask the other fat-soluble pigments. There are three major classes
of phycobiliproteins: phycoerythrin (red), phycocyanin (blue) and
allophycocyanin (green/blue).16

Individually, colour pigments (carotenoids, xanthophylls, chloro-
phyll and phycobiliproteins) found in P. palmata demonstrated

potent antioxidant activity in a number of test systems, includ-
ing in vitro antioxidant assays (DPPH, ABTS) and the inhibition
of conjugated dienes and TBARS products in a linoleic acid
emulsion.17,18 Pigments have also been reported to possess a
range of health-promoting properties. Carotenoids and chloro-
phyll derivatives have exhibited anticancer properties, while phy-
cobiliproteins have been linked to significant anti-inflammatory,
hepatoprotective and free radical-scavenging properties.17,19 – 21

Seaweeds may offer potential for use as a fish meal replacer
(protein source) and a source of natural pigments and bioactive
compounds in fish diets. Therefore the use of seaweed in salmon
diets may satisfy the increased consumer demand for natural,
health-promoting products and merits investigation. The objec-
tive of this study was to examine the effect of including P. palmata
(0–15%) in farmed salmon diets on the quality, shelf-life parame-
ters and sensory properties of salmon fillets.

MATERIALS AND METHODS
Reagents
All chemicals used were of ‘AnalaR’ grade and were obtained from
Sigma-Aldrich Chemie GmbH (Steinheim, Germany), Oxoid Ltd
(Basingstoke, UK) or Merck KGaA (Darmstadt, Germany). Palmaria
palmata was harvested from the coasts of Galway Bay, Ireland.

Salmon and diets
After harvesting, P. palmata was washed and dried before addi-
tion to the salmon diet formulations. Diets were prepared in the
feed formulation laboratory at Carna Research Station, Ryan Insti-
tute, National University of Ireland, Galway. All diets were formu-
lated to be iso-nitrogenous (40%), iso-lipidic (25%) and iso-caloric
(26 MJ kg−1). The composition of the experimental diets is outlined
in Table 1.

Atlantic salmon smolts (S. salar) were obtained from a commer-
cial company based at Lough Fee, Connemara, Ireland. After an
8 week acclimatisation period, a 16 week completely randomised
experimental feed trial was carried out at Carna Research Sta-
tion. Salmon (n= 33, average fish weight ∼170.4 g) were randomly
assigned to one of 15 tanks (three tanks per treatment) that con-
sisted of five different experimental formulated diets. The positive

Table 1. Composition (g kg−1, unless indicated otherwise) of experimental salmon diets with inclusion of Palmaria palmata (PP) (adapted from Wan
et al.22)

Component PC 0% PP 5% PP 10% PP 15% PP

Fish meala 407.4 407.4 390.8 374.1 357.5
Fish oila 200.0 200.0 201.4 202.8 204.1
Palmaria palmata – – 50.0 100.0 150.0
Corn starchb 187.3 187.6 152.8 118.1 83.4
Lysaminec 90.0 90.0 90.0 90.0 90.0
Glutalysc 90.0 90.0 90.0 90.0 90.0
Mineral and vitamin premixd 20.0 20.0 20.0 20.0 20.0
Lucantin Pinke 0.3 – – – –
Barox Plusf 5.0 5.0 5.0 5.0 5.0

a United Fish Products Ltd, Donegal, Ireland.
b Laboratory grade, Sigma-Aldrich Company Ltd, Poole, UK.
c Purified feed ingredients, Roquette, Lestrem, France.
d Premier Nutrition Products Ltd, Rugeley, UK (manufacturer’s analysis: Ca, 12.09%; ash, 78.708%; Na, 8.858%; vitamin A, 1.0 μg kg−1; vitamin D3, 0.10%;
vitamin E, 7.0 g kg−1; Cu, 250 mg kg−1; Mg, 15.6 g kg−1; P, 5.2 g kg−1).
e BASF, Ludwigshafen, Germany.
f Kemin Europa NV, Herentals, Belgium.
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control group (PC) was fed a basal diet plus synthetic astaxan-
thin (0.3 g kg−1 feed) (Table 1). The remaining four groups were fed
the basal diet plus P. palmata (PP) at 0, 5, 10 and 15% PP inclu-
sion levels. The salmon were hand-fed on five occasions over the
course of each day and housed in 1000 L tanks fed by a filtered
flow-through seawater supply (ambient temperature regime). At
the end of the feeding trial, salmon (average fish weight ∼419.9 g)
were euthanised with a sharp blow to the head followed by pithing
of the brain and were gutted. Fresh (raw) salmon fillets were
transported on ice at 4 ∘C to the School of Food and Nutritional
Sciences, University College Cork, Ireland. Further details of the
experimental site, feeding trial conditions and growth of fish are
reported in Wan et al.22

Proximate analysis of fresh salmon fillets
The proximate composition of fresh salmon fillets was reported
on a wet weight basis. Salmon fillet protein content (N× 6.25) was
determined by the Kjeldahl method.23 Moisture and fat contents
were measured using a SMART Trac rapid moisture/fat analyser
(CEM Corporation, Matthews, NC, USA). Ash content was deter-
mined using a muffle furnace.24 Compositional analysis results
were expressed as g per 100 g wet weight.

Salmon processing and packaging
Fresh salmon fillets (∼100 g) (PC, 0, 5, 10 and 15% PP) were
placed in low-oxygen-permeable (<1 cm3 m−2 day−1 at STP)
polystyrene/ethylvinylalcohol/polyethylene trays and, employing
modified atmosphere packaging technology, flushed with 60%
N2/40% CO2 using a vacuum-sealing unit (VS 100, Gustav Müller
and Co. KG, Bad Homburg, Germany) equipped with a gas mixer
(Witt-Gasetechnik GmbH and Co. KG, Witten, Germany). Trays
were covered and heat-sealed using a low-oxygen-permeable
(3 cm3 m−2 day−1 at STP) laminated barrier film with a polyolefin
heat-sealable layer. Fresh salmon fillets were stored for up to
15 days under fluorescent lighting conditions (∼660 lx) at 4 ∘C.
The gas atmosphere (% O2 and % CO2) in the modified atmo-
sphere packs (MAPs) was monitored using a CheckMate 9900
(PBI-Dansensor, Ringsted, Denmark). Immediately after gas flush-
ing, MAPs contained 56.91± 0.53% N2 and 42.95± 0.42% CO2.
The average gas composition in MAPs at the end of the 15 day
storage period was 60.40± 1.66% N2/39.60± 1.66% CO2; % N2

was calculated by difference of % O2 and % CO2.
In a cooked fish study, salmon fillets from all treatments (PC,

0, 5, 10 and 15% PP) were placed on aluminium foil-lined trays
and cooked at 180 ∘C for 12 min in a fan-assisted convection oven
(Zanussi Professional 10 GN1/1, Conegliano, Italy) until an internal
temperature of 72 ∘C was reached. Cooked fillets were placed
in trays over-wrapped with oxygen-permeable film and stored
aerobically for up to 5 days at 4 ∘C.

Measurement of pH
Fresh salmon fillet samples (10 g) were homogenised for 1 min at
24 000 rpm in 90 mL of distilled water using an Ultra Turrax T25
homogeniser (Janke and Kunkel, IKA-Labortechnik GmbH and Co.,
Staufen, Germany) and the pH was measured at 20 ∘C using a
pH meter (Seven Easy portable, Mettler-Toledo GmbH, Schweizen-
bach, Switzerland). The pH of salmon fillets was recorded on days
1, 3, 7, 12 and 15 of storage.

Colour measurement
Surface colour was measured using a Konica Minolta CR-400
Chroma Meter (Minolta Camera Co., Osaka, Japan). The Chroma
Meter consisted of a measuring head (CR-400), with an 8 mm
diameter measuring area, a 2∘ standard observer and a data
processor (DP-400). The Chroma Meter was calibrated on the
CIE LAB colour space system using a white tile (Dc: L= 97.79,
a=−0.11, b= 2.69). The L* value represents lightness and a* and
b* values represent redness and yellowness respectively. Colour
measurements of fresh salmon fillets were recorded on days 1, 3,
7, 12 and 15.

Measurement of lipid oxidation
Lipid oxidation was measured using the 2-thiobarbituric
acid (TBA) assay of Siu and Draper.25 The malondialdehyde
(MDA) content was calculated using an extinction coeffi-
cient of 1.56× 105 L mol−1 cm−1. Results were expressed as
2-thiobarbituric acid-reactive substances (TBARS) in mg MDA
kg−1 salmon. Lipid oxidation was measured in fresh salmon fillets
on days 1, 3, 7, 12 and 15 of storage and in cooked salmon fillets
on days 0, 1, 3 and 5.

Preparation of salmon fillet homogenates
Fresh salmon fillet homogenates (25%) were prepared
by homogenising 25 g of tissue in 75 mL of 0.12 mol L−1

KCl/5 mmol L−1 histidine (pH 5.5) using an Ultra Turrax T25
homogeniser at 24 000 rpm for 3 min. Lipid oxidation in
homogenate incubates (30 mL) was initiated with equimolar ferric
chloride (FeCl3)/sodium ascorbate (45 μmol L−1). Homogenates
without FeCl3 and ascorbic acid were run simultaneously as con-
trols. Lipid oxidation in fresh salmon homogenates was measured
immediately (time 0) and after 1, 4 and 24 h of storage at 4 ∘C.

Measurement of lipid oxidation in salmon fillet homogenates
A modification of the TBA assay of Siu and Draper25 was used
to measure lipid oxidation in fresh salmon fillet homogenates.
Homogenate samples (4 mL) were added to 4 mL of 100 g L−1

trichloroacetic acid. Samples were mixed using a vortex mixer
and the precipitate formed was removed by filtering through
Whatman No. 1 filter paper. In a screw-cap test tube, 4 mL of clear
supernatant was added to 1 mL of 0.06 mol L−1 TBA. The tube was
incubated at 80 ∘C for 90 min and the absorbance of the resulting
coloured complex was measured using a spectrophotometer at
532 nm against a blank containing all reagents and distilled water
instead of the filtrate. The MDA content was calculated using
an extinction coefficient of 1.56× 105 L mol−1 cm−1. Results were
expressed as TBARS in mg MDA kg−1 salmon.

Microbiological analysis
Fresh salmon fillet samples (10 g) were transferred into stomacher
bags, diluted with 90 mL of maximum recovery diluent and stom-
ached (Steward Stomacher 400 Lab Blender, London, UK) for 3 min,
resulting in a 10−1 dilution used for analysis. Serial dilutions were
prepared and 0.1 mL aliquots from each dilution were plated onto
standard plate count agar (Oxoid Ltd). Plates were incubated at
30 ∘C for 48 h and at 4 ∘C for 10 days to determine mesophilic
and psychrotrophic counts respectively. Microbiological analysis
of fresh salmon fillets was carried out on days 1, 3, 7, 12 and 15
of storage. Results were expressed as log10 colony-forming units
(CFU) g−1 salmon.
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Table 2. Effect of dietary Palmaria palmata (PP) on proximate composition of fresh salmon fillets (n = 3)

Proximate composition (g per 100 g wet weight)

Treatment Protein Moisture Fat Ash

PC 21.13± 0.82a 75.45± 1.56a 2.13± 0.89a 1.29± 0.12a

0% PP 21.01± 0.61 75.49± 1.40 2.27± 1.02 1.23± 0.19
5% PP 22.00± 0.59 73.74± 1.90 2.85± 1.45 1.40± 0.22
10% PP 22.45± 1.26 74.40± 1.77 1.83± 0.74 1.32± 0.12
15% PP 20.52± 0.66 74.89± 2.14 3.32± 1.71 1.27± 0.12

a Within each composition type, mean values (±standard deviation) in the same column are not significantly different (P > 0.05).

Sensory evaluation
Sensory analysis (‘visual’ and ‘eating quality’) of fresh and cooked
salmon fillets stored in 60% N2/40% CO2 was performed in dupli-
cate by 26 naïve assessors on days 1 and 7 of storage following
the method of O’Sullivan et al.26 By day 12, the bacterial count
was deemed unsafe to continue further sensory evaluation. ‘Visual’
sensory analysis descriptors examined were pinkness, whiteness,
drip, purchasing appeal and overall acceptability. ‘Eating quality’
sensory analysis descriptors examined were colour, texture, odour,
oxidation flavour and overall acceptability. Assessors were asked to
indicate their degree of liking on a 10 cm line scale ranging from 0
(extremely dislike) to 10 (extremely like).

Salmon fillets were cooked for sensory analysis in a Zanussi oven
at 180 ∘C for 12 min until an internal meat temperature of 72 ∘C
was reached. Following cooking, fillets were cooled, the fish was
removed from the skin and salmon portions were identified with
random three-digit codes. Sample presentation order was ran-
domised to prevent any flavour carryover effects.27 Sensory analy-
sis was undertaken in the panel booths at the university sensory
laboratory in accordance with ISO regulations.28 Assessors were
also provided with water and crackers to cleanse their palates
between samples. Results for sensory analysis scores were mea-
sured in cm. Results were presented as significance of regression
coefficients.

Statistical analysis
All analyses were performed in duplicate. Mean sample val-
ues (n= 3) for each of the five treatment groups (PC, 0, 5,
10 and 15% PP) were subjected to statistical analysis. A full
repeated measures two-way analysis of variance (ANOVA) was
conducted to investigate the effects of dietary P. palmata level,
time and their interaction. Dietary P. palmata level represented the
‘between-subjects’ factor, while the effect of time was measured
using the ‘within-subjects’ factor. Tukey’s test was used to adjust
for multiple comparisons between treatment means. The analysis
was carried out using SPSS 18.0 for Windows (SPSS, Chicago,
IL, USA).

‘Visual’ and ‘eating quality’ sensory data were analysed with
ANOVA/partial least squares regression (APLSR) to process the
mean data accumulated from the 26 test subjects in duplicate.
The X matrix was designated as 0/1 for treatment and days, with
the Y matrix designated as sensory and instrumental variables. The
optimal number of components in the APLSR models presented
was determined to be six principal components. In these mod-
els, assessor- and session-level effects were removed using level
correction. The validated explained variance for the model con-
structed was −0.51 and 6.27% and the calibrated variance was

2.38 and 8.97% on days 1 and 7 respectively. To derive signifi-
cance indications for the relationships determined in the quanti-
tative APLSR, regression coefficients were analysed by jack-knifing
based on cross-validation and stability plots.29,30 All analyses were
performed using The Unscrambler Version 9.8 (CAMO ASA, Trond-
heim, Norway).

RESULTS AND DISCUSSION
Proximate analysis and pH of salmon fillets
The protein contents of fresh (raw) salmon fillets from fish fed
iso-nitrogenous diets ranged from ∼20 to 22 g per 100 g for all
dietary treatments (Table 2). Similarly, Bjerkeng et al.9 reported a
protein content of ∼18 g per 100 g for Atlantic salmon fillets from
fish fed fish meal or soybean as a fish meal replacer. Levels of fat
ranged from ∼2 to 3 g per 100 g, with no significant differences
between dietary treatments. In a similar study, the lipid content
of Oncorhynchus mykiss (rainbow trout) fillets was not affected by
dietary addition of Porphyra dioica (red alga) at levels ranging from
0 to 15%.31 Moisture and ash levels were unaffected by P. palmata
supplementation, with levels ranging from ∼74 to 76 g per 100 g
and from ∼1.2 to 1.4 g per 100 g respectively. Several studies
have reported no effect on salmon fillet proximate composition
when plant-based meals are used as alternative protein and lipid
sources compared with traditional feed (fish meal and oil).9,32 In the
present study, the proximate analysis of salmon fillets from salmon
fed P. palmata is comparable to that from salmon fed the positive
control (PC) diet. Therefore P. palmata may be used as a potential
replacement functional ingredient for fish meal in Atlantic salmon
feed without detrimentally affecting the proximate composition of
salmon fillets.

The pH of fresh salmon fillets ranged from ∼6.27 to 6.33 over
the 15 day storage period and was unaffected by the addition of
dietary P. palmata. Similarly, Einen et al.33 reported fillet pH stability
(6.3) during storage of Atlantic salmon (S. salar) for up to 100 h.

Colour stability of fresh salmon fillets
Trends indicated that the surface lightness (L*) values of fresh
salmon fillets increased over the storage time (Table 3). Lightness
values of the PC group were significantly lower (P < 0.05) com-
pared with 15% PP on day 1 and with 0 and 10% PP on day 7 of
storage. The lower L* values of PC fillets were attributed to the
concurrent increase in flesh pigment concentration provided by
deposition of synthetic astaxanthin in the fish muscle. Buttle et al.34

reported a similar pattern of decreased lightness in fresh fillets
from Atlantic salmon fed astaxanthin, canthaxanthin or an astax-
anthin/canthaxanthin mix (0.06 g kg−1 feed).
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Table 3. Effect of dietary Palmaria palmata (PP) on surface lightness (L*), redness (+a*), greenness (−a*) and yellowness (b*) values of fresh salmon
fillets (n = 3) stored in modified atmosphere packs (60% N2/40% CO2) for up to 15 days at 4 ∘C

Storage time at 4 ∘C (days)

Treatment Parameter 1 3 7 12 15

PC

L*

41.29± 2.06a 44.72± 1.81a 45.09± 2.13b 48.21± 1.76a 48.75± 3.86a

0% PP 44.73± 2.35a 45.54± 2.05a 50.42± 1.23a 51.03± 2.05a 49.67± 2.05a

5% PP 46.78± 2.11a 45.82± 0.50a 49.78± 3.01a 50.56± 0.90a 49.88± 2.09a

10% PP 46.85± 2.79a 47.44± 3.30a 50.49± 0.97a 49.59± 1.36a 50.02± 3.00a

15% PP 48.24± 1.40b 45.72± 1.00a 49.28± 0.25a 49.21± 0.62a 52.10± 1.73a

PC

a*

5.63± 1.47b 6.69± 1.61b 6.38± 1.79b 6.08± 0.84b 8.29± 1.32b

0% PP −0.61± 0.41a −0.53± 0.43a −0.63± 0.27a −1.07± 0.15a −0.48± 1.02a

5% PP −1.21± 0.26a −1.07± 0.68a −0.55± 0.82a −1.11± 1.24a −1.01± 0.15a

10% PP −1.54± 0.28a −0.54± 1.01a −0.71± 0.40a −1.22± 0.64a −2.29± 0.09a

15% PP −1.35± 0.59a −1.49± 0.18a −1.27± 0.95a −1.49± 0.89a −2.11± 0.36a

PC

b*

10.84± 0.92b 11.50± 2.00b 11.10± 0.76b 12.81± 0.73b 12.81± 1.47b

0% PP 2.52± 0.38a 2.58± 0.47a 4.16± 1.83a 4.05± 0.65a 4.98± 0.16a

5% PP 3.88± 0.46a 5.05± 0.31ac 6.12± 1.57ac 6.14± 1.43ac 5.59± 0.37a

10% PP 6.54± 0.41c 7.47± 0.15cd 8.60± 0.95bc 8.00± 1.69c 7.92± 1.73ac

15% PP 8.98± 1.32b 8.58± 0.58d 10.43± 0.37b 8.96± 1.54c 11.01± 2.40bc

a,b,c,dWithin each parameter and storage day, mean values (±standard deviation) in the same column bearing different superscripts are significantly
different.

In general, the surface redness (a*) values of PC salmon fillets
increased as a function of storage time (Table 3). The increased
surface redness due to synthetic astaxanthin deposited in the
PC salmon fillets resulted in a red/pink colour. In the fillets from
salmon fed P. palmata (0–15% PP), the surface greenness (−a*)
increased as a function of storage time and P. palmata con-
centration. The increase in surface greenness as a function of
dietary P. palmata indicated deposition of pigments that were
ineffective at providing red coloration. Similarly, Chatzifotis et al.35

reported the inefficacy of the red carotenoid lycopene, contained
in tomatoes, in providing red coloration in red porgy (Pagrus
pagrus). Palmaria palmata contains other pigments available for
absorption and deposition in the fish muscle, such as chloro-
phyll a/b (green) and phycobiliproteins, including R-phycocyanin
(greenish blue), allophycocyanin (greenish blue), R-phycoerythrin
(red) and 𝛽-phycoerythrin (red).36 In the present study, chloro-
phyll, R-phycocyanin and allophycocyanin, all of which exhibit
green colour, may have contributed to the final greenness colour
observed in the salmon fillets.

General trends showed that the surface yellowness (b*) values
increased over the storage time as a function of P. palmata level
on all storage days. Yellowness values were significantly (P < 0.05)
higher for 10 and 15% PP than for 0% PP on each storage day
(Table 3). On days 1, 7 and 15, the b* values of PC and 15% PP
were similar. In a previously reported study, rainbow trout fed
diets containing P. dioica (0–15%) with no added astaxanthin
exhibited stronger orange flesh tones in fillets as a function of
the red alga concentration; it was concluded that the red alga
contained fat-soluble yellow xanthophylls, especially lutein and
zeaxanthin, which contributed to the final flesh coloration.31 Olsen
and Baker37 reported the absorption and deposition of lutein,
structurally similar to astaxanthin, in Atlantic salmon muscle. In
the present study, the increased surface yellowness is most likely
due to deposition of fat-soluble carotenoids, mainly lutein, from P.
palmata.

Several factors influence carotenoid deposition in the fish mus-
cle, including quantity available, carotenoid structure and the abil-
ity of salmon to metabolise or biotransform available carotenoids.
The final carotenoid structure and level of deposition will deter-
mine the final colour of the fillet.10 In the present study, the
carotenoid profile (lutein, 𝛼- and 𝛽-carotene) exclusive to P. pal-
mata was not sufficient to increase surface redness of the salmon
fillets, but the carotenoids did enhance surface yellowness. In
recent years, fish feed ingredients have included many plant
sources such as maize gluten with significant amounts of yel-
low pigments from carotenoids such as lutein and zeaxanthin.38

Similarly, canthaxanthin, sometimes used in farmed salmon feed,
imparts an orange colour to salmon flesh and is therefore used
in conjunction with astaxanthin to achieve desired final red/pink
pigmentation.34 Owing to the final yellow/orange flesh colour of
salmon fillets in the present study, the carotenoids from P. palmata
may be considered as a potential natural pigment alternative to
the use of canthaxanthin in farmed salmon feed.

Lipid oxidation in fresh and cooked salmon fillets and fresh
salmon fillet homogenates
Overall, the levels of lipid oxidation in fresh salmon fillets stored
in MAPs were low, with mean values ranging from 0.07 to 0.11 mg
MDA kg−1 salmon (Table 4). These low levels of lipid oxidation may
be attributed to the physical condition of the salmon fillets (intact)
and the gaseous environment within the MAPs (60% N2/40% CO2).
Randell et al.39 also reported low lipid oxidation values (<1 mg
MDA kg−1) for salmon fillets stored in MAPs (60% CO2/40% N2

or 40% CO2/ 60% N2) at 2 ∘C. Processes that change the physical
structure of muscle foods, e.g. grinding or mincing and cooking,
accelerate lipid oxidation reactions. In cooked salmon fillets, lipid
oxidation increased over the 5 day storage period (Fig. 1) and
levels of lipid oxidation were higher than in fresh salmon fillets,
with mean values ranging from 0.33 to 1.29 mg MDA kg−1 salmon.
The addition of P. palmata to salmon diets did not significantly
influence lipid oxidation in fresh or cooked salmon fillets.
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Table 4. Effect of dietary Palmaria palmata (PP) on lipid oxidation (TBARS, mg MDA kg−1 salmon) in fresh salmon fillets (n = 3) stored in modified
atmosphere packs (60% N2/40% CO2) for up to 15 days at 4 ∘C

Storage time at 4 ∘C (days)

Treatment 1 3 7 12 15

PC 0.103± 0.02a 0.073± 0.01a 0.098± 0.00a 0.071± 0.01a 0.101± 0.01a

0% PP 0.089± 0.01 0.077± 0.01 0.101± 0.01 0.057± 0.02 0.102± 0.00
5% PP 0.084± 0.02 0.065± 0.01 0.105± 0.01 0.070± 0.02 0.069± 0.01
10% PP 0.088± 0.02 0.062± 0.00 0.092± 0.01 0.066± 0.02 0.090± 0.00
15% PP 0.081± 0.02 0.065± 0.01 0.089± 0.01 0.084± 0.01 0.093± 0.01

a Within each storage day, mean values (±standard deviation) in the same column are not significantly different (P > 0.05).
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Figure 1. Effect of dietary Palmaria palmata (PP) on lipid oxidation (TBARS) in cooked salmon fillets (n = 3) stored aerobically for up to 5 days at 4 ∘C: ,
PC; , 0% PP; , 5% PP; , 10% PP; , 15% PP. aWithin each storage day, mean values (±standard deviation) are not significantly different (P > 0.05).

The increase in− a* (greenness) and b* (yellowness) colour mea-
surements with increasing dietary P. palmata concentration indi-
cated deposition of colour pigments in the muscle. The antioxidant
potential in vitro of both fat- and water-soluble compounds (lutein,
𝛽-carotene, phycobiliproteins, chlorophyll) of P. palmata is well
documented.40 Additionally, the antioxidant activity of extracts
from P. palmata has been reported using a number of in vitro
antioxidant assays (deoxyribose assay, DPPH, ABTS, TBARS, reduc-
ing activity, transition metal ion chelation).18 Previous studies indi-
cated that dietary antioxidants such as𝛼-tocopherol fed to Atlantic
halibut enhanced lipid stability in fish muscle, with significantly
lower levels of lipid oxidation reported in fish fillets.41 Despite the
antioxidant potential of P. palmata, no increase in lipid stability of
the salmon fillets was observed in the present study.

To further examine the antioxidant potential of compounds
from P. palmata deposited in the fish muscle, raw salmon fillet
homogenates were subjected to iron (FeCl3)/ascorbate-induced
lipid oxidation. Following FeCl3 and ascorbic acid addition, lipid
oxidation increased in all tissue homogenates over the 24 h stor-
age period. No significant differences were observed between PC
and all PP treatments (0–15%), with mean values ranging from
0.21 to 1.77 mg MDA kg−1 salmon (Fig. 2). Similarly, astaxanthin
deposited in farmed Atlantic salmon fillets demonstrated no signif-
icant antioxidant activity under standardised conditions of acceler-
ated oxidation. Although no effect of astaxanthin as an antioxidant
in fish muscle was measured, it was concluded that retention of
the carotenoid may offer other beneficial biological effects such as
enhanced immune response, inhibition of mutagensis and reduc-
tion of photo-induced nuclear damage in cells and tissues.21,42

Under conditions employed in the present study (fresh fil-
lets stored in MAPs, cooked fillets stored aerobically, fresh fillet
homogenates subjected to iron/ascorbate induced oxidation), lev-
els of lipid oxidation in salmon fillets were unaffected by dietary
P. palmata. However, in vitro antioxidant activity of P. palmata has
been reported using extracts with purified bioactive components
and at concentrations greater than those tested in the present
study. The antioxidant activity of carotenoids and other com-
pounds in vivo depends on numerous factors such as form, con-
centration, cellular distribution and interaction with other compo-
nents present in the muscle tissue.4 In the present study, the lack
of antioxidant activity in salmon fillets may have been due to the
form or concentration of components deposited in the muscle.

Although retention of pigments from P. palmata did not offer
an increase in lipid stability to the salmon fillets under the condi-
tions tested, carotenoids are still necessary for salmon growth and
development.6 Natural pigments retained in salmon fillets may
offer added benefit to consumers. Lutein, for example, has been
linked to maintenance of normal visual function in the human eye
macula.43 Further studies would need to examine the bioavailabil-
ity of colour pigments deposited in the fish muscle.

Microbiology of fresh salmon fillets
Mesophilic and psychrotrophic total viable counts (TVCs)
increased during storage of fresh salmon fillets in MAPs, rang-
ing from ∼1.9 to 9.1 log10 CFU g−1 and from ∼2.3 to 9.0 log10 CFU
g−1 respectively (Table 5). Mesophilic counts obtained were similar
to previously reported values for fresh salmon fillets stored at 4 ∘C
under normal conditions, where initial colony counts ranged from
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Figure 2. Effect of dietary Palmaria palmata (PP) on lipid oxidation (TBARS) in salmon fillet homogenates (n = 3) containing equimolar FeCl3/ascorbate
(45 μmol L−1) and stored for 24 ∘h at 4∘C: , PC; , 0% PP; , 5% PP; , 10% PP; , 15% PP. aWithin each storage time, mean values (±standard deviation)
are not significantly different (P > 0.05).

Table 5. Effect of dietary Palmaria palmata (PP) on microbial status (mesophilic and psychrotrophic, log10 CFU g−1 salmon) of fresh salmon fillets (n
= 3) stored in modified atmosphere packs (60% N2/40% CO2) for up to 15 days at 4 ∘C

Storage time at 4 ∘C (days)

Treatment Temperature (∘C) 1 3 7 12 15

PC 30 1.93± 0.40a 2.69± 0.64a 6.83± 0.98a 8.39± 0.62a 9.27± 0.59a

0% PP 2.03± 0.35 1.66± 1.52 5.41± 1.00 8.38± 0.33 9.01± 1.39
5% PP 2.35± 0.37 2.63± 0.49 5.98± 1.22 7.74± 1.19 8.87± 0.66
10% PP 1.78± 1.56 2.81± 0.36 5.67± 0.76 7.37± 1.07 9.38± 0.27
15% PP 1.43± 1.25 1.49± 1.29 6.55± 0.92 8.40± 0.46 9.14± 0.22
PC 4 1.96± 1.71a 3.59± 1.01a 6.57± 0.75a 8.61± 0.54a 8.89± 0.56a

0% PP 1.90± 1.65 3.26± 0.73 5.35± 0.96 8.55± 0.28 9.44± 1.30
5% PP 1.13± 1.96 2.37± 2.12 5.86± 0.90 7.54± 1.34 8.69± 0.91
10% PP 3.43± 0.43 2.28± 2.10 5.56± 0.88 7.70± 0.70 8.89± 0.12
15% PP 3.18± 0.31 2.48± 2.15 6.60± 1.03 8.59± 0.48 9.18± 0.22

a Within each parameter and storage day, mean values (±standard deviation) in the same column are not significantly different (P > 0.05).

2 to 5 log10 CFU g−1 on day 0 and end of shelf-life was determined
as colony counts> 7 log10 CFU g−1.44 In the present study, on day
12, all salmon fillets had mesophilic and psychrotrophic counts
of ∼8 log10 CFU g−1 and were considered unsafe for human con-
sumption. The TVCs for 5, 10 and 15% PP were similar (P > 0.05) for
all treatments, on each storage day, compared with 0% PP and PC,
indicating that dietary P. palmata did not result in salmon fillets
with enhanced antimicrobial stability.

Previously reported studies indicate that the antimicrobial activ-
ity of seaweeds is dependant on concentration, solvent use and
extraction method as well as the sensitivity of the methods
used to determine antimicrobial activity.45,46 Cox et al.45 reported
that methanolic extracts of P. palmata were moderately effec-
tive against Listeria monocytogenes (62.09%) and showed weak
activity against Enterococcus faecalis, Pseudomonas aeruginosa and
Salmonella abony (39.28, 19.22 and 2.21% respectively) using the
microtitre method. Ethanolic extracts of P. palmata increased inhi-
bition of bacteria to 100 and 93.89% against E. faecalis and P. aerug-
inosa respectively. However, no inhibition of five fish pathogenic
bacteria strains was found using P. palmata extracts in the standard
agar plate diffusion assay.47 In vitro studies demonstrated antimi-
crobial activity through the use refined or purified P. palmata

extracts; however, to date, no scientific literature demonstrating
antibacterial activity of seaweeds or seaweed extracts in food
products exists. In the present study, the lack of antimicrobial activ-
ity in the salmon fillets may have been due to the purity or level
(5–15%) of P. palmata incorporated in the salmon feed.

Sensory evaluation of fresh and cooked salmon fillets
In ‘visual’ sensory analysis, fillets from fresh salmon fed astaxan-
thin (PC) were significantly positively correlated with pinkness,
purchasing appeal and overall acceptability (P < 0.001) on days 1
and 7 of storage (Table 6). On days 1 and 7 of storage, salmon
fed at all PP levels (0, 5, 10 and 15%) were significantly neg-
atively correlated with pinkness, purchasing appeal and overall
acceptability. The observations of the panellists were in agree-
ment with instrumental a* (redness) values, where PC had the
largest a* values compared with all PP treatments. Proximate com-
position indicated that moisture (∼74–76 g per 100 g) was simi-
lar across all treatments (Table 2) and dietary P. palmata did not
influence drip loss on days 1 and 7 of storage. Randell et al.39

reported that drip loss was low (∼1.5%) in salmon stored in MAPs
(60% N2/40% CO2).
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Table 6. Significance of regression coefficients (ANOVA values) of sensory analysis scores for fresh and cooked salmon fillets (n = 3) as derived by
jack-knife uncertainty testing

Treatment/storage time (days)

PC 0% PP 5% PP 10% PP 15% PP

Parameter 1 7 1 7 1 7 1 7 1 7

Visual sensory analysis
Pinkness 0.00∗∗∗ −0.02∗ −0.10 0.00∗∗∗ −0.00∗∗∗ −0.00∗∗∗ −0.05∗ −0.003∗∗ −0.02∗ −0.00∗∗∗

Whiteness −0.00∗∗∗ 0.02∗ 0.10 −0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.04∗ 0.003∗∗ 0.01∗ 0.00∗∗∗

Drip −0.28 0.37 −0.55 0.53 0.28 −0.53 0.32 −0.56 0.29 −0.52
Purchasing appeal 0.00∗∗∗ −0.04∗ −0.10 0.00∗∗∗ −0.00∗∗∗ −0.00∗∗∗ −0.06 −0.003∗∗ −0.03∗ −0.00∗∗∗

Overall acceptability 0.00∗∗∗ −0.03∗ −0.10 0.00∗∗∗ −0.00∗∗∗ −0.00∗∗∗ −0.05∗ −0.003∗∗ −0.02∗ −0.00∗∗∗

Eating quality sensory analysis
Colour 0.00∗∗∗ 0.05∗ −0.11 −0.00∗∗∗ −0.00∗∗∗ −0.00∗∗∗ −0.07 −0.003∗∗ −0.03∗ −0.00∗∗∗

Texture 0.35 −0.39 −0.35 0.18 −0.36 −0.20 −0.40 −0.21 −0.34 −0.16
Odour −0.68 0.70 −0.39 0.40 0.68 −0.43 0.69 −0.40 0.69 −0.42
Oxidation flavour −0.24 0.33 0.39 −0.33 0.24 0.35 0.31 0.36 0.28 0.32
Overall acceptability 0.00∗∗∗ −0.06 −0.13 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ −0.08 −0.02∗ −0.03∗ 0.00∗∗∗

∗95% significance, P < 0.05;
∗∗99% significance, P < 0.01;
∗∗∗99.9% significance, P < 0.001.

In ‘eating quality’ sensory analysis, PC was significantly posi-
tively correlated with cooked salmon fillet colour while 5% PP
was significantly negatively correlated with fillet colour (P < 0.001)
on both analysis days. Sensory panellists were able to distinguish
between controls and salmon fed PP based on the colour of the
cooked salmon fillets. Texture, odour and oxidation flavour in
cooked salmon fillets were not significantly influenced by dietary
PP. The ability of panellists to detect no oxidation/off-flavour in
the salmon fillets is in agreement with the low levels of lipid oxi-
dation (TBARS) found. On days 1 and 7, salmon fed 5% PP were
significantly positively correlated (P < 0.001) with overall accept-
ability (Table 6). In a previously reported study, feeding red tilapia
(Oreochromis niloticus) with Spirulina platensis as the sole source
of fish feed did not impact on the taste and smell parameters of
the cooked fish fillets.48 In the present study, salmon fed low levels
of PP (5%) showed increased overall acceptability, compared with
controls, by sensory panellists despite their ability to distinguish
between fillets based on colour. Therefore P. palmata incorporated
in salmon feed at low levels (5%) may offer enhancement of over-
all acceptability without negatively impacting on texture, odour or
oxidation flavour.

CONCLUSIONS
Salmon fillet surface colour was enhanced with a yellow/orange
colour due to deposition of P. palmata pigments. Owing to con-
sumers’ growing preference for additives from natural sources, P.
palmata may prove to be a natural pigment alternative when incor-
porated into salmon feed and have application in the development
of novel functional salmon products. Further research is neces-
sary to investigate if more refined P. palmata extracts increase
lipid stability. Palmaria palmata enhanced overall ‘eating quality’
acceptability of salmon fillets with comparable product quality
(texture, odour and oxidation flavour) and proximate composition
to Atlantic salmon (S. salar) fed synthetic astaxanthin. Therefore
P. palmata may be considered as a replacement functional ingre-
dient for farmed Atlantic salmon feed. Further studies will need

to examine the use of P. palmata with other carotenoid sources
to adequately reach final red/pink flesh levels acceptable to con-
sumers.
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A seaweed extract containing laminarin (L) and fucoidan (F) (L/F) was manufactured from brown seaweed
(Laminaria digitata) in spray-dried (L/F-SD) and wet (L/F-WS) forms. The effect of supplementation of pig
dietswith L/F-SD and L/F-WS (L, 500 mg/kg feed; F, 420 mg/kg feed) for 21 days pre-slaughter, on quality indices
of freshM. longissimus dorsi (LD) steaks was examined. Susceptibility of porcine liver, heart, kidney and lung
tissue homogenates to iron-induced (1 mM FeSO4) lipid oxidation was also investigated. Dietary supple-
mentation with L/F did not increase plasma total antioxidant status (TAS). In LD steaks stored in modified
atmosphere packs (80% O2:20% CO2) (MAP) for up to 15 days at 4 °C, muscle pH, surface colour (CIE ‘L*’
lightness, ‘a*’ redness and ‘b*’ yellowness values) andmicrobiology (psychrotrophic andmesophilic counts,
log CFU/g pork) were unaffected by dietary L/F. In general, levels of lipid oxidation (TBARS, mg MDA
(malondialdehyde)/kg pork) followed the order: C>LF-SD>L/F-WS. A statistically significant reduction
in lipid oxidation (Pb0.05) was observed in LD steaks from 75% of pigs (n=6) fed with L/F-WS compared
to controls. Iron-induced lipid oxidation increased in liver, heart, kidney and lung tissue homogenates over
the 24 h storage period and dietary L/F-WS reduced lipid oxidation to the greatest extent in liver tissue ho-
mogenates. Results demonstrate potential for the incorporation of marine-derived bioactive antioxidant
components into muscle foods via the animal's diet.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Meat and meat products are considered to be a vital component of
a healthy diet and important sources of protein, vitamins, minerals
and trace elements. In recent years, consumer confidence in meat has
been undermined by a number of health concerns related to meat con-
sumption, for example, saturated fat and cholesterol and the associated
risk of heart disease, cancer, obesity. Increased consumer demand for
healthier meat and meat products, with reduced fat levels, cholesterol,
sodium chloride, nitrite, enhanced fatty acid profile and containing
health promoting/enhancing ingredients has led to the development
of functional meat and meat products (Toldrá & Reig, 2011). The
mode of action of functional foods is based on the use of functional
ingredients which exert a range of bioactive properties such as antioxi-
dant, anti-inflammatory, anti-cancer and anti-diabetic activities. As con-
cerns regarding the safety and toxicity of synthetic antioxidants grow,
the functional properties of many plant extracts have been investigated
for their potential use as novel functional ingredients/nutraceuticals.

A number of strategies exist, whereby antioxidants may be incorpo-
rated intomeat andmeat products in order to facilitate the development

of functional meats with enhanced health-promoting properties (Khan
et al., 2011). Strategies include the supplementation of animal diets
with antioxidant compounds or the direct addition of antioxidants to
processed meat products. Previous research has focused on dietary
supplementation studies, for example, vitamin E (α-tocopheryl ace-
tate), significantly improved the lipid stability of fresh pork (Asghar et
al., 1991; Lanari, Schaefer, & Scheller, 1995; Monahan, Asghar, Gray,
Buckley, & Morrissey, 1994). Similarly, antioxidant plant extracts such
as tea catechins reduced lipid oxidation in poultry muscle (Tang,
Kerry, Sheehan, Buckley, & Morrissey, 2001). Dietary supplementation
of oregano oleoresins into porcine diets also reduced lipid oxidation in
minced pork (Janz, Morel, Wilkinson, & Purchas, 2007).

Direct addition of plant extracts also reduces lipid oxidation in
muscle foods. Carob fruit extracts were found to exhibit antioxidant
activity in cooked pork muscle homogenates when added at levels
which previously demonstrated bioactivity (reduction in total and
LDL cholesterol) in hypercholesterolemic human subjects (Bastida
et al., 2009). Lipid oxidation was reduced in pork meat homogenates
as a result of the addition cloudberry, beetroot and willow herb (Rey,
Hopia, Kivikari, & Kahkonen, 2005). Addition of tea catechins, rosemary
and sage also reduced levels of lipid oxidation in fresh pork patties
(McCarthy, Kerry, Kerry, Lynch, & Buckley, 2001).

Macroalgae (seaweed) and are a potential source of natural anti-
oxidants. Although the nutrient content of seaweed vary with species,
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geographical location, season and temperature, most contain significant
quantities of carbohydrates (polysaccharides and dietary fibre), protein
(essential amino acids), lipids (phospholipids), vitamins (ascorbic acid
and beta carotene) and minerals (calcium, iron, and potassium) (Gupta
& Abu-Ghannam, 2011). Brown seaweeds contain polyphenolic antiox-
idant compounds such as phlorotannins (phloroglucinol and eckol),
catechins (catechin, epigallocatechin, and epigallocatechin gallate), to-
copherols (α-, γ-, and δ-tocopherols), ascorbic acid and carotenoids
(α- and β- carotenes and fucoxanthin) (Zubia et al., 2009). The vast
range of compounds present increases potential for the use of seaweed
and/or extracts in the development of functional foods.

Brown seaweeds are rich in polysaccharides (soluble dietary fibre),
the most abundant of which are laminarin, fucoidan and alginic acid.
The chemical structure of laminarin (β-glucan) consists mainly of a lin-
ear β-(1,3)-linked glucose backbone with some random β-(1,6)-linked
glucose side chains depending on the variety of seaweed used for extrac-
tion (O'Doherty, Dillon, Figat, Callan, & Sweeney, 2010). Structurally,
fucoidan (fucan) is a sulphated polysaccharide containing L-fucose
(Costa et al., 2010). Seaweed polysaccharides, including laminarin and
fucoidan are reported to possess antioxidant (Heo, Park, Lee, & Jeon,
2005), antitumour, antiviral, and antibacterial activities (Costa et al.,
2010; O'Doherty et al., 2010; Zubia et al., 2009).

Scientific studies on the potential for incorporating health promot-
ing bioactive compounds derived from seaweed into muscle foods, via
supplementation of animal diets, are limited and merit investigation.
In addition to deposition of bioactive compounds in muscle tissues of
meat producing animals, dietary bioactive compounds also demon-
strate potential to improve animal health andwelfare. Supplementation
of pig diets with laminarin and fucoidan (isolated from Laminaria
digitata) has previously been shown to improve growth performance
and gut health in pigs (O'Doherty et al., 2010).

The objective of this studywas to assess the effect of dietary supple-
mentation of porcine diets with a seaweed extract containing laminarin
and fucoidan (L/F), isolated from L. digitata, on the plasma antioxidant
status, muscle pH, colour, lipid oxidation and microbiology of fresh
M. longissimus dorsi (LD) steaks stored in modified atmosphere
packs (MAP) at 4 °C. The influence of dietary L/F on iron-induced
lipid oxidation in porcine liver, heart, kidney and lung tissue homog-
enates was also examined.

2. Materials and methods

2.1. Reagents

All chemicals usedwere ‘AnalaR’ grade obtained from Sigma-Aldrich
Ireland Ltd., Arklow, Co. Wicklow, Ireland, Oxoid Ltd., Basingstoke,
Hampshire, England and Merck KGaA, Darmstadt, Germany. The total
antioxidant status (TAS) Randox-Trolox kit was obtained from Randox
Laboratories Ltd., Co. Antrim, UK. A seaweed extract (L/F), containing
laminarin (L) and fucoidan (F) wasmanufactured by Bioatlantis, Tralee,
Co. Kerry, Ireland. The extract isolated frombrown seaweed (L. digitata),
harvested in Ireland, was prepared using an acid extraction technique,
details of which are confidential.

2.2. Animals and diets

Twenty four pigs (Large White×Landrace cross consisting of 12
males and 12 females) (average live weight~14.51 kg) were randomly
assigned to one of three treatments (n=8) and fed ad libitum for
21 days pre-slaughter following a completely randomised experimental
design. The control group (Control) were fedwith a basal diet (Table 1).
The second group were fed with the basal diet plus a spray-dried sea-
weed extract containing laminarin and fucoidan (L/F-SD) at an inclu-
sion rate of 5.37 kg/tonne of feed. The third group were fed with the
basal diet plus awet formulationof the seaweed extract containing lam-
inarin and fucoidan (L/F-WS) at an inclusion rate of 26.3 kg/tonne of

feed. Inclusion rates are based on the laminarin and fucoidan content
of the spray-dried (L/F-SD) and wet (L/F-WS) seaweed extracts. There-
fore both treatment groups received diets containing L, 500 mg/kg feed
and F, 420 mg/kg feed.

The composition of the experimental diet and the seaweed ex-
tracts containing L/F are outlined in Tables 1 and 2, respectively. Dry
matter, crude protein, neutral detergent fibre, ash and gross energy
analysis of the experimental diet was carried out as described by
Leonard, Sweeney, Bahar, Lynch, and O'Doherty (2011). The laminarin
content (%) of the spray-dried (L/F-SD) and wet (L/F-WS) seaweed ex-
tracts was measured using a commercial assay kit (Megazyme Interna-
tional Ireland, Bray, Co.Wicklow, Ireland). Fucoidan levels (%) in L/F-SD
and L/F-WS were determined as described by Usov, Smirnova, and
Klochkova (2001).

The animals were housed individually (1.68 m×1.22 m slatted
pens) at Lyons Research Farm, University College Dublin, Newcastle,
Co. Dublin, Ireland and fed ad libitum from hopper style feeders.
Water was supplied ad libitum from individual nipple drinkers. The
average daily feed intake was 1.8 kg/day for the control and L/F-WS
groups, and 1.9 kg/day for the L/F-SD group (SEM 0.09). The ambient
environmental temperature within the houses was thermostatically
controlled and maintained at 22 °C. The pigs were slaughtered at
the end of the feeding period via euthanol injection (pentobarbitone
sodium patent blue) (injection rate: 1 ml/1.4 kg live weight) by veteri-
nary personnel. A blood sample for plasma analysis was taken immedi-
ately following injection. The mean slaughter weight was 29.7 kg. The
liver and kidneys were removed and frozen in a blast freezer. Carcasses
and organs were transported at 4 °C to the School of Food and Nutri-
tional Sciences at University College Cork, Ireland where they were
hung at 2 °C for 24 h. Liver, heart, kidney and lung tissues were placed
in vacuum pack bags (composed of polyamide and a polyethylene sea-
ling layer), vacuum packed and stored at−18 °C for four months prior
to analysis. Blood sampleswere centrifuged to separate the plasma frac-
tions and stored at −20 °C prior to analysis.

Table 1
Composition and chemical analysis of the experimental diet (g/kg, unless otherwise
indicated).

Composition Basal dieta

Wheat 660.40
Soya-bean meal 260.00
Soya oil 24.80
Minerals and vitaminsb 23.00
Lysine HCL 3.40
L-Threonine 1.30
DL-Methionine 0.80

Analysed composition
Dry matter 887.70
Crude protein (N*6.25) 186.60
Neutral detergent fibre 115.30
Ash 46.50
Gross energy (MJ/kg) 17.30
Calciumc 6.90
Phosphorusc 4.35
Lysinec 10.00
Methionine and cysteinec 6.00
Threoninec 6.50
Tryptophanc 1.80

a Control group — basal diet; L/F-SD — basal diet supplemented with 5.37 kg/tonne
of spray dried seaweed extract containing L/F and 20.9 kg water; L/F-WS — basal diet
supplemented with 26.3 kg/tonne of wet seaweed extract containing L/F.

b Vitamin andmineral inclusion (per kg diet): 3 mg retinol, 0.05 mg cholecalciferol, 40 mg
α-tocopherol, 25 mgcopper as copper sulphate, 100 mg iron as iron sulphate, 100 mgzinc
as zinc oxide, 0.3 mg selenium as sodium selenite, 25 mg manganese as manganese oxide
and 0.2 mg iodine as calcium iodate on a calcium sulphate/calcium carbonate carrier.

c Calculated from tabulated nutritional composition (Sauvant, Perez, & Tran, 2004).
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2.3. Plasma total antioxidant status

Blood samples (10 ml) were collected by jugular veni-puncture
using vacutainers containing lithium/heparin as anti-coagulant (Becton
Dickinson, Rutherford, NJ, USA) from all animals immediately after
slaughter. The blood was centrifuged (Beckman J2-21, Beckman Instru-
ments Inc., CA, USA) at 4720 g for 20 min at 4 °C. The plasma layer was
removed from the red blood cell layer and stored at −18 °C for subse-
quent analysis.

The total antioxidant status (TAS) of porcine blood plasmawasmea-
sured according to the manufacturers' instructions. Plasma (20 μl) was
added to 1 ml chromogen (metmyoglobin/ABTS®) and mixed thor-
oughly. Tubes were placed in a water bath at 37 °C for 10 min. An initial
absorbance reading of the coloured complex was recorded after 10 min
using a spectrophotometer (Cary 300 Bio, UV–vis spectrophotometer,
Varian Instruments, CA, USA) at 600 nm against a blank containing all
reagents and double de-ionised water. Tubes were returned to the
water bath and 200 μl of substrate (hydrogen peroxide in stabilised
form) was added. A second absorbance measurement of the colour
complex was recorded 3 min following substrate addition. The antioxi-
dant activity was calculated using the following equation:

mmol=l ¼ Factor � ΔA Blank−ΔA Sampleð Þ

Factor ¼ 2:04mmol=lð Þ= ΔA Blank–ΔA Standardð Þ

Total antioxidant status (TAS) was expressed as mmol of trolox
equivalent antioxidant capacity (TEAC)/L plasma.

2.4. Pork processing and packaging

Following storage at 2 °C for 24 h,M. longissimus dorsiwas excised
from each carcass, vacuum packed and stored at 2 °C for 24 h. The
heart and lungs were removed from each carcass, vacuum packed
and stored at−18 °C with the previously blast-frozen liver and kidney
tissues.

M. longissimus dorsi (LD) were cut into steaks (~1 in. thickness,
~45 g portion), placed in low oxygen permeable (b1 cm3/m2/24 h at
STP) polystyrene/ethylvinylalcohol (EVOH)/polyethylene (PE) trays
and flushed with 80% O2:20% CO2 (modified atmosphere packs,
MAP) using a vacuum-sealing unit (VS 100, Gustav Müller & Co. KG,
Homburg, Germany) equipped with a gas mixer (Witt-Gasetechnik
GmbH & Co. KG, Witten, Germany). Trays were covered and heat-
sealed using a low oxygen permeable (3 cm3/m2/24 h at STP) laminated
barrier film with a polyolefin heat sealable layer. LD steaks in MAP were
stored for up to 15 days under fluorescent lighting (660 lx) at 4 °C. The
gas atmosphere in the MAP was checked using a CheckMate 9900
(PBI-DanSensor, Denmark). Immediately after gas flushing, MAP con-
tained 70.18±0.33% O2 and 23.14±0.31% CO2. The average gas compo-
sition in MAP at the end of the 14 day storage period was 68.43±1.02%
O2 and 23.88%±0.59% CO2.

2.5. Measurement of pH

Pork samples (10 g) were homogenised for 1 min at 24,000 rpm in
90 ml distilled water using an Ultra Turrax T25 homogeniser (Janke
and Kunkel, IKA-Labortechnik, GmbH and Co., Staufen, Germany).
The pH of the pork homogenates was measured at 20 °C using a pH
meter (Seven Easy portable, Mettler-Toledo GmbH, Schweizenbach,
Switzerland). The pH of LD steaks was recorded on days 1, 4, 7, 11
and 14 of storage.

2.6. Colour Measurement

The surface colour was measured using a Minolta CR-300 Chroma
Meter (Minolta Camera, Co., Osaka, Japan). The chromameter consisted
of a measuring head (CR-300), with an 8 mmdiameter measuring area,
a 2° standard observer, and a data processor (DP-301). The chroma
meter was calibrated on the CIE LAB colour space system using a
white tile (Dc: L=97.79, a=−0.11, b=2.69). The ‘L*’ value represents
lightness and ‘a*’ and ‘b*’ values represent redness and yellowness, re-
spectively. Colour measurements of LD steaks were recorded on days
1, 4, 7, 11 and 14 of storage.

2.7. Measurement of lipid oxidation

Lipid oxidation was measured using the 2-thiobarbituric acid assay
of Siu and Draper (1978). The malondialdehyde content was calculated
using an extinction coefficient of 1.56×105 M−1 cm−1. Results were
expressed as 2-thiobarbituric acid reactive substances (TBARS) in mg
malondialdehyde (MDA)/kg pork. Lipid oxidation in LD steaks was
measured on days 1, 4, 7, 11 and 14 of storage.

2.8. Microbiological analysis

Pork (10 g) was transferred into stomacher bags, diluted with
90 ml of maximum recovery diluent and stomached for 3 min (Steward
Stomacher 400 Lab Blender, London, UK) resulting in a 10−1 dilution
used for analysis. Serial dilutions were prepared and 0.1 ml aliquots
from each dilution were plated onto standard plate count agar (PCA)
(Oxoid Ltd.). The plates were incubated at 30 °C for 48 h and at 4 °C
for 10 days to determinemesophilic and psychrotrophic counts, respec-
tively.Microbiological analysis of LD steaks was carried out on days 1,
5, 8, 12 and 15 of storage. Results were expressed as log10CFU (colony
forming units)/g pork.

2.9. Preparation of liver, heart, kidney and lung tissue homogenates

Liver, heart, kidney and lung tissue homogenates (25%) were pre-
pared by homogenising 20 g tissue in 60 ml 0.12 M KCl 5 mM histidine
(pH 5.5) using an Ultra Turrax T25 homogeniser at 24,000 rpm for
3 min. Lipid oxidation in 30 ml tissue homogenate samples, held in
150 ml beakers at 4 °C, was initiated by the addition of 1 mMFeSO4. Ho-
mogenates without FeSO4 were run simultaneously as controls. Lipid
oxidationwasmeasured immediately (time 0) and after 24 h of storage
at 4 °C.

2.9.1. Measurement of lipid oxidation in organ tissue homogenates
A modification of the 2-thiobarbituric acid (TBA) assay of Siu and

Draper (1978) was used tomeasure lipid oxidation in liver, heart, kidney
and lung tissue homogenates. Homogenate samples (4 ml) were added
to 4 ml 10% trichloroacetic acid (TCA). The samples were mixed using a
vortex mixer and the precipitate formed was removed by filtering
through Whatman No. 1 filter paper. In a screw cap test tube, 4 ml of
clear supernatant was added to 1 ml 0.06 M 2-thobarbituric acid (TBA).
The tubes were incubated at 80 °C for 90 min and the absorbance of the
resulting coloured complex was measured using a spectrophotometer
at 532 nm against a blank containing all reagents and distilled water

Table 2
Composition of the seaweed extracts containing laminarin and fucoidan.

L/F-SD L/F-WS

% Total solids 94.03 18.5
% Asha 68.6 13.4
% Protein 0.64 0.12
% Laminarin 9.3 1.9
% Fucoidan 7.8 1.6
% Mannitol 8.3 1.62
Inclusion rate (per tonne feed) 5.37 kg 26.3 kg

a The ash content of the seaweed extract was 15 g/kg DM Ca, 10 g/kg DM Na, 10 g/kg
DM K, 10 g/kg DM S, 250 mg/kg DM iodine, 250 mg/kg DM Fe, 20 mg/kg DM Cu and
50 mg/kg DM Zn.
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instead of the filtrate. Tubes containing supernatant from filtered liver
homogenates and 10% TCA, incubated with TBA reagent, were cen-
trifuged at 1000 g, prior to absorbance measurements to pellet a precip-
itate formed during the heating step. The malondialdehyde content was
calculated using an extinction coefficient of 1.56×105 M−1 cm−1. Re-
sults were expressed as TBA reactive substances (TBARS) in mg
malondialdehyde (MDA)/kg organ tissue.

2.10. Statistical analysis

All analyses were performed in duplicate. Mean sample values
(n=8) for each of the three treatment groups (Control, L/F-SD and
L/F-WS) were subjected to statistical analysis. A full repeated mea-
sures ANOVA was conducted to investigate the effects of dietary L/F
form (spray-dried (L/F-SD) and wet (L/F-WS) forms), time and their
interactions. Dietary L/F form represented the ‘between-subjects’ factor
and the effect of time was measured using the ‘within-subjects’ factor.
Tukey's test was used to adjust for multiple comparisons between
treatment means. The analysis was carried out using the SPSS 18.0 for
Windows (SPSS, Chicago, IL, USA) software package.

3. Results and discussion

3.1. Plasma total antioxidant status and muscle pH

In previously reported studies, antioxidant compounds have been
detected in the plasma of animals and humans following ingestion.
Detection of antioxidant compounds in blood plasma is a useful indi-
cator of the fate of supplemental extracts and suggests that com-
pounds or their metabolites are readily bio-available for potential
uptake intomuscle tissues. The consumption of foods rich in phenolic an-
tioxidants (strawberries, spinach or red wine) has been found to signifi-
cantly increase the antioxidant status of plasma in humans (ORAC, TEAC
and FRAP assays) (Cao, Russell, Lischner, & Prior, 1998). In rat plasma el-
evated tea catechin concentrations have been reported following oral
administration of a single dose (500 mg/kg body weight) (Nakagawa &
Miyazawa, 1997). Antioxidants such as vitamin E (α-tocopherol) have
been detected in porcine plasma with levels increasing 2.5-fold after ap-
proximately 7 days of supplementation (200 mg/kg feed) (Morrissey,
Buckley, Sisk, Lynch, & Sheehy, 1996).

In the present study, analysis of porcine plasma for laminarin and
fucoidan was not carried out due to the complex structural properties
of the seaweed polysaccharides. In order to assess the effectiveness of
dietary supplementation with L/F, the total antioxidant status (TAS)
of porcine plasma was determined. The average TAS was 0.55, 0.67
and 0.60 mmol TEAC/L plasma for the control group, L/F-SD and L/
F-WS, respectively. Porcine plasma TAS was not significantly affected
by L/F supplementation compared to the control group. Gladine,
Morand, Rock, Bauchart, and Durand (2007a) reported no increase
in plasma TAS in rats fed with plant extracts (rosemary, grape, citrus
and marigold, 0.5 g/kg diet for three weeks), however a significant re-
duction in plasma lipid oxidation (malondialdehyde (MDA)) was ob-
served. While laminarin and fucoidan have strong antioxidant
capacities in vitro (Heo et al., 2005; Wang, Zhang, Zhang, Song, & Li,
2010), to date limited research exists to support the contention that
consumption of polysaccharides augments plasma antioxidant levels
in vivo. Gladine et al. (2007a) reported no correlation between in vitro
and in vivo antioxidant capacity of plant extracts rich in polyphenols
and further suggested that bioavailability efficiency and TAS are more
a general indicator of plasma oxidative stability rather than specifically
reflecting lipid susceptibility to oxidation.

The reason for the lack of an effect of dietary L/F on the TAS of porcine
plasma is unclear. In a previously reported studywhich examined the ab-
sorption of dextran sulphate (branched glucan) (MW about 8000), ad-
ministered orally in a short-term (single dose, 4 g/day for 5 days) and
long term (1 g, 4 times/day for 29 to 335 days) study, dextran sulphate

was detected in high concentrations in endothelial cells and at low levels
in plasma as early as 2.4 min after administration. It was concluded that
dextran sulphatewas extensively absorbed and rapidly incorporated into
the endothelium therefore plasma levels were negligible (Hiebert, Wice,
Jaques, Williams, & Conly, 1999). By contrast, a single dose (0.1 ml/10 g
of body weight) of α-D-glucans from fungi (Tricholoma matsutake) ad-
ministered to mice, resulted in detection of α-D-glucans in mice plasma
16 h following oral administration. Maximum α-D-glucans levels were
detected by 24 h, after which, levels declined up to 48 h (Hoshi, Iijima,
Ishihara, Yasuhara, & Matsunaga, 2008). Previous literature reported
that distribution of glucans in the body is affected by various factors,
such asmolecularweight, particle size, fine structure, charge, association,
and susceptibility to enzymatic hydrolysis (Hiebert et al., 1999). In the
present study, pigs were fed up to 3 h prior to slaughter, therefore
rapid absorption of L/F by the GI tract may account for the lack of
an effect of dietary L/F on the total antioxidant status (TAS) of porcine
plasma.

The pH of fresh LDmuscle ranged from 5.90 to 5.19 over the 15 day
storage period and was unaffected by L/F supplementation of porcine
diets. pH values reported are comparable to previously reported
values (5.8–5.4) for post-mortem muscle (Faustman & Cassens,
1990).

3.2. Colour stability of fresh LD muscle

The surface lightness ‘L*’ and yellowness ‘b*’ values increased in
fresh LD muscle over the 14 day storage period. Surface ‘a*’ redness
values decreased as a function of storage time (Table 3). Each colour
parameter was not affected by L/F supplementation. Many studies
have provided evidence that pigment (oxymyoglobin) oxidation
and lipid oxidation are closely interrelated where an increase in one
results in a similar increase in the other. This is potentially due to de-
creased dissolved oxygen levels or radicals produced as a result of the
lipid oxidation process (O'Grady, Monahan, & Brunton, 2001). Levels
of lipid oxidation were relatively low over the 14 day storage period.
Therefore protection against pigment oxidation due to L/F supple-
mentation, mediated through a reduction in lipid oxidation, was not
evident in the present study.

While somepreviously reported studies indicate that colour stability
of pork muscles may be improved when antioxidants are incorporated
into animal diets, others demonstrate no effect of dietary antioxidants
on fresh pork colour stability. For example, in pigs fed with vitamin
E (α-tocopheryl acetate), some studies report positive benefits of
feeding vitamin E on pork colour stability, while others report no
beneficial effects on fresh pork colour (Asghar et al., 1991; Houben,
Eikelenboom, & Hoving-Bolink, 1998; Lanari et al., 1995; Monahan et
al., 1994). Similar to results reported in the present study, oat-based
diets containing β-glucans (1.6, 2.1, 3.3 or 4.1%) did not influence the
colour stability of porcine longissimus muscle (Fortin, Robertson,
Kibite, & Landry, 2003) while other plant extracts (Melissa, Origanum
and Salvia) (10 ml/pig for 10 days) improved muscle colour stability
when incorporated into porcine diets (Lahucky, Nuernberg, Kovac,
Bucko, & Nuernberg, 2010). In the studies reported, variations in
the efficacy of dietary antioxidants on the colour stability of pork
meat may also be attributed to differences in factors such as storage
temperature and packaging treatment. Interactions between poly-
saccharides and proteins have previously been reported in the scien-
tific literature however, knowledge of the role of these interactions
in relation to functionality in complex multiphasic systems is limited
(Doublier, Garnier, Renard, & Sanchez, 2000). The lack of an effect of
dietary L/F on the colour stability of pork (a* redness values) indi-
cates no interaction between polysaccharides (L/F) and proteins
(oxymyoglobin) in the present study. In addition, following ingestion
and absorption, polysaccharides are potentially bio-transformed into
different forms.
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3.3. Lipid oxidation in fresh LD muscle

Lipid oxidation increased in all groups over the 14 day storage pe-
riod (Table 4). Overall, the levels of lipid oxidation were low with
mean values ranging from 0.12 to 1.70 mg MDA/kg pork. Lowest
levels of oxidation were observed in LD steaks from pigs fed with
the wet supplement (L/F-WS). Trends for lipid oxidation followed
the order: C>LF-SD>L/F-WS. The spray-drying process during the
manufacture of L/F-SD may have negatively affected and lowered
the antioxidant capacity of the L/F supplement. While trends show a
positive effect on limiting lipid oxidation in both the L/F supplemented
diets, a statistically significant effect on levels of lipid oxidation was ob-
served in the L/F-WS groupwhen 75% of pigs (n=6)were compared to
the control group (Pb0.05). Therefore, it was concluded that antioxi-
dant components of laminarin and fucoidan were deposited in porcine
muscle (LD) following the inclusion of L/F in animal diets.

Many in vitro antioxidant assays (DPPH, FRAP, TEAC, NO, and ABTS
radical scavenging) have demonstrated antioxidant potential of numer-
ous seaweed polysaccharides (Ngo, Wijesekara, Vo, Van Ta, & Kim,
2011) including sulphated polysaccharides and β-glucans from a varie-
ty of seaweeds (Turbinaria conoides, Laminaria japonica, Sargassum
fulvellum, and Dictyota mertensii) (Costa et al., 2010; Ngo et al., 2011;
Paiva et al., 2011; Wang et al., 2010). Limited research exists linking
the antioxidant activity of seaweed extracts in vitrowith in vivo studies
in human or animal subjects (in particular pigs).

Seaweeds have long been used as soil fertilisers and in animal
feeds for many years but historically much of the information has
been subjective (Fike et al., 2001). A previous study which examined
the effects of a seaweed (Ascophyllum nodosum)-based proprietary
product on tall fescue (bunch grasses), reported that grass fertilised
with the seaweed product improved antioxidant activity in grasses
and subsequently increased the antioxidant activity of ruminant ani-
mals grazed on the treated grasses by increasing serum vitamin A and
whole-blood selenium levels (Fike et al., 2001). This finding supports
the hypothesis that dietary supplementation with seaweed can, in
fact, increase antioxidant activity in animals as reported in the

present study where, direct supplementation of L/F had an impact
on lowering levels of lipid oxidation in porcine muscle.

3.4. Lipid oxidation in porcine liver, heart, kidney and lung tissue
homogenates

The uptake and distribution of dietary antioxidant compounds
such as vitamin E has been measured in various porcine tissues
(Morrissey et al., 1996). Due to the chemical nature and complexity
of the L/F seaweed extracts utilised in the present study, the LDmuscle
and tissues examined were not assayed directly for laminarin and
fucoidan present in the seaweed extract. In order to determinewhether
antioxidant compounds present in the L/F extract were distributed
throughout porcine tissues, other than the LD muscle, liver, heart,
kidney and lung tissue homogenates were subjected to iron (FeSO4)-
induced lipid oxidation. Following FeSO4 addition, lipid oxidation in-
creased in all tissue homogenates over the 24 h storage period. Trends
indicate lower levels of lipid oxidation in liver tissuehomogenates, as a re-
sult of dietary L/F, however due to variation results were not statistically
significant (Table 5). In heart, kidney and lung tissue homogenates, signif-
icant decreases in levels of lipid oxidation were not detected.

In a previously reported dietary study, where rats were fed with
plant extracts (rosemary, grape, citrus and marigold, 0.5 g/kg diet for
three weeks) with bio-efficiency in the liver, it was concluded that sup-
plementation for 3 weeks was not sufficient to significantly modify the
intensity of lipid oxidation in extra-hepatic tissues (longissimus thoracis
and heart muscles) (Gladine et al., 2007b). In a related study, dietary
laminarin extracted from brown algae, fed for 25 days (5% during
4 days followed by 10% during 21 days) was found to modulate
intra-hepatic immune cells in rats thus protecting the liver from
damage (Neyrinck, Mouson, & Delzenne, 2007). Such findings indi-
cate deposition of laminarin in liver tissues following oral ingestion.
Similarly, Airanthi et al. (2011) reported that mice, fed with brown sea-
weed extracts (Undaria pinnatifida, Sargassum horneri, and Cystoseira
hakodatensis) (0.5% and 2%) for four weeks, had significantly lower
levels of lipid hydroperoxides in liver tissue homogenates compared
to controls. Supplementation of rat diets with seaweed powder

Table 3
Effect of dietary laminarin/fucoidan (L/F) on the surface lightness (‘L*’ value), redness (‘a*’ value) and yellowness (‘b*’ value) values of freshM. longissimus dorsi (LD) stored in modified
atmosphere packs (80% O2:20% CO2) for up to 14 days at 4 °C.

Parameter Treatment Storage time at 4 °C, days

1 4 7 11 14

Lightness
L*

Control 58.20±0.70a 60.74±1.13a 61.47±1.35a 62.15±1.42a 63.63±1.68a

L/F-SD 59.04±1.98 60.63±1.23 62.12±1.42 62.06±1.55 63.39±1.55
L/F-WS 58.09±1.53 59.69±1.42 60.63±0.92 61.73±1.09 63.17±1.54

Redness
a*

Control 9.00±0.90a 8.95±0.88a 8.65±1.11a 7.42±0.78a 5.96±1.15a

L/F-SD 10.35±1.06 8.88±0.81 8.26±1.18 7.16±0.95 5.72±0.81
L/F-WS 10.06±1.09 9.34±0.82 8.07±0.77 7.90±0.63 6.44±0.93

Yellowness
b*

Control 7.35±0.80a 8.02±0.61a 8.02±0.72a 8.03±0.81a 9.36±0.80a

L/F-SD 8.24±0.87 8.35±0.63 8.52±0.69 8.46±0.73 8.77±0.85
L/F-WS 8.21±0.64 8.35±0.59 7.59±0.56 8.21±0.61 8.40±0.48

a Within each parameter and storage day, mean values (±standard deviation) in the same column are not significantly different, P>0.05.

Table 4
Effect of dietary laminarin/fucoidan (L/F) on lipid oxidation (TBARS) in fresh
M. longissimus dorsi (LD) stored in modified atmosphere packs (80% O2:20% CO2) for
up to 14 days at 4 °C.

Treatment Storage time at 4 °C, days

1 4 7 11 14

Control 0.19±0.04a 0.24±0.15a 0.30±0.12a 0.78±0.51a 1.70±1.02a

L/F-SD 0.16±0.03 0.19±0.05 0.28±0.12 0.94±0.92 1.21±0.70
L/F-WS 0.13±0.02 0.12±0.03 0.19±0.04 0.48±0.16 0.91±0.45

a Within each storage day, mean values (±standard deviation) in the same column
are not significantly different, P>0.05.

Table 5
Effect of dietary laminarin/fucoidan (L/F) on iron-induced lipid oxidation (TBARS) in
organ (liver, heart, kidney and lung) tissue homogenates after 24 h of storage at 4 °C.

Treatment Storage for 24 h at 4 °C

Liver Heart Kidney Lung

Control 3.20±1.43a 3.26±0.26a 3.06±1.01a 2.99±0.93a

L/F-SD 1.99±1.54 3.34±0.27 2.26±1.09 2.27±1.82
L/F-WS 1.46±1.36 3.28±0.27 2.59±0.52 2.96±1.30

a Within each organ type, mean values (±standard deviation) in the same column
are not significantly different, P>0.05.
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(Eucheuma cottonii) (5% and 10% for 35 days) increased the activity
of superoxide dismutase (antioxidant enzyme) in liver tissues of
hypocholesterolemic rats (Wresdiyati, Hartanta, & Astawan, 2009).

3.5. Microbiology of fresh LD muscle

The mesophilic plate counts ranged from 4.32 to 4.58 log CFU/g on
day 1 and increased to amaximumof 7.41 log CFU/g on day 15 of storage
(Table 6). Psychotropic plate counts ranged from 3.24 to 3.42 log CFU/g
on day 1 and increased to levels ranging from 7.94 to 8.20 log CFU/g on
day 15 (Table 6). Mesophilic counts obtained are similar to previously
reported values for fresh pork (Houben et al., 1998). Previously reported
benefits of L/F include antimicrobial activity in test systems such as
growth inhibition assays and the agar plate diffusion test, however re-
sults from the present study indicate that L/F dietary supplementation
did not exert antimicrobial activity in fresh pork muscle.

Several in vitro antimicrobial assays demonstrate antimicrobial ac-
tivities of various types of seaweed including extracts from Ceramium
rubrum, Mastocarpus stellatus and L. digitata. An extract from L. digitata
(31 mg dry weight/ml) demonstrated strong antibacterial activity and
inhibited almost all test bacteria (12marine and 7 prominent fish path-
ogenic bacteria). In addition, L. digitata resulted in both bacteriostatic
and bacteriolytic (the destruction of bacteria by lysis) modes of action
(Dubber & Harder, 2008). While antimicrobial activity of seaweed
extracts has been reported using in vitro assays, to date, the scientific
literature contains no studies demonstrating antibacterial activity of
seaweed extracts in food products (Gupta & Abu-Ghannam, 2011).

4. Conclusions

The quality enhancing effects of supplementing pig diets with L/F
was mediated through decreased levels of lipid oxidation in LD mus-
cle. Addition of L/F to porcine diets did not affect the surface colour of
pork meat. No antimicrobial effect of dietary L/F was observed under
the experimental conditions employed in the present study. Due to
concerns regarding toxicity of synthetic antioxidants, L/F may prove
to be a natural antioxidant alternative when incorporated into animal
feed and have application in the development of novel functional
meat products. In addition L/F supplementation may enhance animal
health and subsequently increase fresh meat quality. Further research
is necessary to examine the effects of dietary laminarin and fucoidan
levels, form and duration of feeding on the quality and shelf-life of
fresh pork.
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The effect of level (450 or 900mg laminarin (L) and fucoidan (F) /kg feed) and duration (3 or 6 wks) of feeding a
seaweed (Laminaria digitata) extract containing L/F on the quality of pork (longissimus thoracis et lumborum
(LTL)) stored in modified atmosphere packs and on organ lipid stability was examined. Mechanisms of L/F anti-
oxidant activity in LTL were evaluated. Plasma total antioxidant status, LTL pH, colour, microbiology and ‘eating
quality’ sensory analysis were unaffected by dietary L/F. ‘Visual’ sensory descriptors (purchasing appeal and
overall visual acceptability) were enhanced (p b 0.05) in L/F450 − 3 LTL. Lipid oxidation was lower (p b 0.05) in
L/F450− 3 and L/F900− 3 LTL and reduced in L/F900− 6 kidney homogenates. In cookedmincedpork, lipid oxidation
was not reduced by dietary L/F. Saturated fatty acids were lower (p b 0.05) in L/F900 − 6 LTL. Results indicated L/F
in pig diets for 3 weeks enhanced pork quality.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The use of antioxidants in the meat industry is an effective way to
minimise or prevent lipid oxidation, retard the formation of toxic oxida-
tion products, maintain nutritional quality and prolong shelf-life (Gupta
& Abu-Ghannam, 2011). The addition of antioxidants to meat and meat
products can be achieved by supplementing animal diets with specific
compounds for a defined duration pre-slaughter. The level and duration
of dietary antioxidant compounds necessary to enhance meat quality
parameters are dependent on factors such as chemical structure andpu-
rity of the antioxidant, animal species, breed and other physiological
factors. Previous strategies have investigated various levels and dura-
tions of feeding antioxidant compounds such as α-tocopheryl acetate
(vitamin E), β-carotene, ascorbic acid, tea catechins, chitosan and
plant extracts to pigs for the determination of an optimum level and du-
ration combination required to enhance pork meat quality (Decker,
Faustman, & Lopez-Bote, 2000).

Supplementation of α-tocopheryl acetate in porcine diets has proven
effective in enhancing the oxidative stability of longissimus dorsi muscle

which increased as a function of dietary level (20 and 200 mg/kg feed)
and duration (0, 35, 126 days) of supplementation, in post mortem
muscle (Morrissey, Buckley, Sisk, Lynch, & Sheehy, 1996). Similarly,
dietary green tea catechins (200 mg/kg) lowered levels of lipid oxida-
tion in longissimus thoracis et lumborum (LTL) pork steaks (Mason
et al., 2005). Lahucky, Nuernberg, Kovac, Bucko, and Nuernberg
(2010) reported that dietary supplementation of oregano extract
(30 and 60 ml/day) in pig diets increased lipid stability in longissimus
thoracis muscle as a function of level, however the same dose response
was not observed with dietary supplementation of Melissa (20 and
100 ml/day).

The potential of dietary antioxidants to influence other quality pa-
rameters such as the colour stability of pork meat varies considerably
(Jensen, Lauridsen, & Bertelsen, 1998). Buckley, Morrissey, and Gray
(1995) reported an increase in ‘a*’ redness values of LTL muscle from
pigs fed a high level of α-tocopheryl acetate (200 mg/kg feed) com-
pared to pigs fed a basal level of 10 mg α-tocopheryl acetate /kg of
feed. Conversely, Jensen et al. (1997) reported no influence on the col-
our stability of LTL pork steaks when pigs were fed increasing levels of
α-tocopheryl acetate (100, 200 and 700 mg/kg feed). Similarly, Mason
et al. (2005) reported green tea catechins (200 mg/kg) did not enhance
the colour stability of LTL pork steaks. However, supplementation with
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ascorbic acid (0, 100, 250 or 500 mg/L) in pig diets enhanced the ‘a*’
redness values of LTL muscle at the highest level (500 mg/L) (Pion,
van Heugten, See, Larick, & Pardue, 2004).

Due to their complex structure, seaweed polysaccharides have
diverse biological properties (Thomes, Rajendran, Pasanban, &
Rengasamy, 2010). Bioactive compounds identified in seaweed extracts
have demonstrated a capacity to neutralise superoxide and hydroxyl
radicals (Bocanegra, Bastida, Benedí, Ródenas, & Sánchez-Muniz,
2009). Brown seaweed polysaccharides including laminarin (β-glucan)
and fucoidan (a sulphated polysaccharide) exhibit bioactivities such as
anti-adhesive, anticoagulant, anti-inflammatory, antioxidant and anti-
tumoral properties (Eluvakkal, Sivakumar, & Arunkumar, 2010). Anti-
oxidant activity of laminarin and fucoidan depends on several
structural parameters, such as the type of sugar and glycosidic
branching, molecular weight and the degree and position of sulphation
(Jiménez-Escrig, Gómez-Ordóñez, Tenorio, & Rupérez, 2012). Laminarin
contains two types of polymeric chains, one where glucose is attached
to the end of the chain (G-chain) and the other has mannitol as the ter-
minal reducing end (M-chain) (Choi, Kim, & Lee, 2011). Fucoidan ex-
tracted from Laminaria digitata is reported to contain fucose and
sulphates as well as xylose, mannose, glucose, galactose and uronic
acid in minor amounts (Li, Lu, Wei, & Zhao, 2008). Understanding the
mechanism (inhibit/scavenge reactive species, prevent/terminate free-
radical generating reactions or chelate/sequester metals) through
which compounds exert their antioxidant activity can help determine
the mode of action/efficacy of antioxidant compounds in muscle, fol-
lowing digestion (Decker et al., 2000).

Consumer concerns over the safety and toxicity of synthetic antiox-
idants inmeat products has led to increased research into the use of nat-
ural antioxidant compounds. The perceived healthiness and structure of
seaweed makes it an ideal source of bioactive compounds with antiox-
idant activities whichmay replace synthetic antioxidants in meat prod-
ucts. Moroney, O'Grady, O'Doherty, and Kerry (2012) reported that a
brown seaweed extract, containing laminarin and fucoidan, decreased
lipid oxidation in fresh pork LTL. Pigs from the same study displayed im-
proved gut health due to laminarin and fucoidan from the dietary sea-
weed extract (Murphy et al., 2013). However, further investigation is
necessary to determine the level and duration of feeding dietary sea-
weed extracts containing laminarin and fucoidan in order to optimise
fresh pork quality and shelf-life.

The objective of this studywas to examine the effects of supplemen-
tation of porcine diets with a polysaccharide (laminarin (L) and
fucoidan (F)) (L/F) based seaweed extract at two levels (450 or
900 mg/kg feed) and durations (3 or 6 wks) of feeding, on the quality,
shelf-life parameters and sensory properties of fresh longissimus thoracis
et lumborum (LTL) steaks. The influence of dietary L/F on iron-induced
lipid oxidation in porcine liver, heart, kidney and lung tissue homoge-
nateswas assessed. Themechanismof action of dietary L/F on the stabil-
ity of lipids in pork meat was also investigated.

2. Materials and methods

2.1. Reagents

All chemicals usedwere ‘AnalaR’ grade obtained from Sigma-Aldrich
Ireland Ltd., Arklow, Co. Wicklow, Ireland, Oxoid Ltd., Basingstoke,
Hampshire, England, Fisher Scientific, Dublin, Ireland and Merck KGaA,
Darmstadt, Germany. The total antioxidant status (TAS) Randox-
Trolox kit was obtained from Randox Laboratories Ltd., Co. Antrim, UK.
A wet formulation seaweed extract (L/F), containing laminarin (L) and
fucoidan (F) was manufactured by Bioatlantis, Tralee, Co. Kerry,
Ireland. The extract isolated from brown seaweed (Laminaria digitata),
harvested in Ireland, was prepared using an acid extraction technique,
details of which are industrially-confidential. The composition of L/F is
outlined in Table 1.

2.2. Animals and diets

Thirty pigs (Large White x Landrace crosses consisting of 15 males
and 15 females) (average live weight ~82 kg) were randomly assigned
to one of five dietary treatments (n= 6) and fed ad libitum a basal diet
plus the L/F extract for 3 or 6 weeks pre-slaughter, following a
completely randomised experimental design. The control group were
fed the basal diet for the duration of the experiment. The composition
and analysis of the basal diet is reported in Moroney et al. (2012). The
seaweed extract in the feed formulation was added to result in total L
and F concentrations of 450 or 900 mg/kg feed. Average daily feed in-
take, average daily gain, feed conversion ratio and details of the dietary
treatments of each group are outlined in Table 2.

The animals were housed individually (1.68 m × 1.22 m slatted
pens) at Lyons Research Farm, University College Dublin, Newcastle,
Co. Dublin, Ireland and fed ad libitum from hopper-style feeders.
Waterwas supplied ad libitum from individual nipple drinkers. The am-
bient environmental temperature within the houses was thermostati-
cally controlled and maintained at 22 °C. Blood samples for plasma
analysis were taken prior to transportation to the abattoir (Rosderra
Irish Meats Group, Edenderry, Co. Offaly, Ireland). Pigs were stunned
using gas and humanely slaughtered, 3 h after feeding, following animal
welfare regulations. The mean slaughter weight was 115.81 kg. The
liver, heart, kidney and lungs were removed from each animal, placed
in laminate vacuum pack bags (composed of polyamide/polyethylene
layers), vacuum packed and stored at −18 °C for one month prior to
analysis. Blood samples were centrifuged (Beckman J2-21, Beckman In-
struments Inc., CA, USA) at 4720 g for 20 min at 4 °C, and plasma frac-
tions were removed and stored at −20 °C prior to analysis. Carcasses
were hung at 2 °C for 24 h at Rosderra Irish Meats Group then
transported at 4 °C to the School of Food and Nutritional Sciences at
University College Cork, Ireland and stored at 2 °C for a further 24 h be-
fore removal of muscles for analysis.

2.3. Plasma total antioxidant status

The total antioxidant status (TAS) of porcine blood plasmawasmea-
sured as described by Moroney et al. (2012) and the results were

Table 1
Composition of the seaweed extract containing laminarin (L) and fucoidan (F) (L/F).

L/F extract

% Total solids 38.9
% Asha 28.1
% Protein 0.25
% Laminarin 4.0
% Fucoidan 3.2
% Mannitol 3.3
Inclusion rate (per tonne feed) (L/F450) 6.25 kg
Inclusion rate (per tonne feed) (L/F900) 12.5 kg

a The ash content of the seaweed extract was 15 g/kg DM Ca, 10 g/kg DM Na, 10 g/kg
DM K, 10 g/kg DM S, 250 mg/kg DM iodine, 250 mg/kg DM Fe, 20 mg/kg DM Cu and
50 mg/kg DM Zn.

Table 2
Average daily feed intake (ADF) (kg/day), Average daily gain (ADG) (kg/day), Feed con-
version ratio (FCR), level (mg/kg feed) and duration (weeks) of dietary L/F.

ADFx ADGy FCRz L level F level Total L/F level Duration

Controlw 2.13 0.810 2.62 – – – 6
L/F450 − 3 2.20 0.805 2.68 250 200 450 3
L/F450 − 6 2.18 0.812 2.68 250 200 450 6
L/F900 − 3 2.15 0.820 2.62 500 400 900 3
L/F900 − 6 2.13 0.810 2.63 500 400 900 6

w Control group fed basal diet only.
x SEM 0.05.
y SEM 0.03.
z SEM 0.07.
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expressed as mmol of trolox equivalent antioxidant capacity (TEAC)/L
plasma.

2.4. Pork processing and packaging

Longissimus thoracis et lumborum (LTL) muscles were excised from
each carcass, vacuum packed and stored at 2 °C for 24 h. LTL were cut
into steaks (~2.5 cm in thickness, ~45 g portion), placed in low oxygen
permeable (b1 cm3/m2/24 h at STP) polystyrene/ethylvinylalcohol
(EVOH)/polyethylene (PE) trays and flushed with 80% O2: 20% CO2

(modified atmosphere packs, MAP) using a vacuum-sealing unit (VS
100, Gustav Müller & Co. KG, Homburg, Germany) equipped with a
gas mixer (Witt-Gasetechnik GmbH & Co. KG, Witten, Germany).
Trays were covered and heat-sealed using a low oxygen permeable
(3 cm3/m2/24 h at STP) laminated barrier film with a polyolefin heat-
sealable layer. LTL steaks in MAP were stored for up to 14 days under
fluorescent lighting (660 lx) at 4 °C. The gas atmosphere (% O2 and
% CO2) in the MAP was checked using a CheckMate 9900 (PBI-
DanSensor, Denmark). Immediately after gas flushing, MAP contained
75.07± 0.43% O2 and 25.62± 0.29% CO2. The average gas composition
in MAP at the end of the 14 day storage period was 73.01 ± 0.88% O2

and 26.83 ± 0.87% CO2.
In the cooked pork study, LTL muscles from all treatments were

trimmed of visible fat and connective tissue and minced twice through
a plate with 4 mm holes (Model P114L, Talsa, Valencia, Spain), formed
into patties (100 g portions) using a meat former (Ministeak burger
maker, O.L Smith Co. Ltd., Italy), placed on aluminium foil lined trays
and cooked at 180 °C for 20 min in a fan-assisted convection oven
(Zanussi Professional, Model 10 GN1/1, Conegliano, Italy) until an inter-
nal temperature of 72 °C was reached. Cooked patties were placed ei-
ther in trays and either flushed with 70% N2: 30% CO2 (MAP) and
stored for up to 14 days as described previously, or over-wrapped
with oxygen permeable low-density polyethylene film and stored aero-
bically for up to 3 days at 4 °C (approximately 660 lx). Immediately after
gas flushing, MAP contained 67.55 ± 0.93% N2 and 32.25 ± 0.72% CO2.
The average gas composition in MAP at the end of the 14-day storage
period was 67.89 ± 0.16% N2 and 30.98 ± 0.06% CO2. Percent nitrogen
was calculated by difference of % O2 and % CO2 (CheckMate 9900).

2.5. Measurement of pork quality and shelf-life parameters

Pork pH, colour (CIE ‘L*’ lightness, ‘a*’ redness and ‘b*’ yellowness
values), lipid oxidation (2-thiobarbituric acid reactive substances
(TBARS)), microbiological analysis (mesophilic and psychrotrophic
total viable counts), and sensory evaluation (‘visual’ and ‘eating quali-
ty’) were measured at intervals during storage as described by
Moroney et al. (2012), Moroney, O'Grady, O'Doherty, and Kerry
(2013). The pH, colour measurements and lipid oxidation in fresh LTL
steaks and cooked minced pork patties were recorded on days 1, 4, 7,
11 and 14 of storage. In cooked minced pork patties stored aerobically,
lipid oxidation was measured on days 0, 1, 2 and 3 of storage. Microbi-
ological analysis of fresh LTL steakswas carried out on days 1, 5, 8 and 13
of storage. Sensory analysis (‘visual’ and ‘eating quality’) of fresh LTL
steaks stored in 80% O2: 20% CO2 was performed in duplicate by 52
naive assessors on days 1 and 7 of storage. ‘Visual’ sensory analysis de-
scriptors of fresh LTL steaks were pinkness, whiteness, drip, package
quality, purchasing appeal, and overall acceptability. ‘Eating quality’
sensory analysis descriptors of cooked LTL steaks (180 °C for 20 min
in a fan-assisted convection oven) were appearance, tenderness, oxida-
tion flavour, liking of flavour and overall acceptability.

2.6. The mechanism of action of L/F on lipid stability in pork meat

2.6.1. Fatty acid analysis
Lipidswere extracted frompork sampleswith chloroform:methanol

(2:1 v/v) according to the method by Folch, Lees, and Sloane-Stanley

(1957). Fatty acid methyl esters (FAMEs) were prepared by first using
10 ml 0.5 N NaOH in methanol for 10 min at 90 °C followed by 10 ml
14% BF3 in methanol for 10 min at 90 °C (Park & Goins, 1994). FAMEs
were recovered with hexane. Prior to gas chromatography (GC) analy-
sis, samples were dried over anhydrous sodium sulphate (0.5 g) for
1 h and stored at −20 °C. FAMEs were separated using GC (Varian
3800, Varian, Walnut Creek, CA, USA) fitted with a flame ionisation de-
tector, using a Chrompack CP Sil 88 column (Chrompack, Middleton,
The Netherlands, 100 m × 0.25 mm i.d., 0.20 μm film thickness) and
helium as the carrier gas. The column oven was programmed to be
held initially at 80 °C for 8 min and increased 8.5 °C/min to a final col-
umn temperature of 200 °C. The injection volume used was 0.6 μl,
with automatic sample injection on a SPI 1093 splitless on-column tem-
perature programmable injector. Peaks were integrated using the
Varian Star Chromatography Workstation software (version 6.0) and
peaks were identified by comparison of retention times with pure
FAME standards (Nu-Chek Prep, Elysian, MN, USA). The percentage of
individual fatty acidswas calculated according to the peak areas relative
to the total area (total fatty acids were set at 100%). Results were
expressed as g/100 g FAME.

2.6.2. In vitro antioxidant activity of L/F in pork meat
Pork homogenates (10% w/v) were prepared as described by Qwele

et al. (2013) formeasurement of in vitro antioxidant activity. Briefly, LTL
steaks (10 g) were homogenised in 0.05 M phosphate buffer (90 ml),
pH 7, using an Ultra Turrax T25 homogeniser. Trolox C (1000 μg/ml),
EDTA (1000 μg/ml) were added to 10% pork homogenates as positive
controls for the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical
scavenging and the ferrous ion chelating activity (FICA) assays. A
spray-dried seaweed extract containing 9.3% L and 7.8% F, comparable
to the wet extract used in the animal diets, was added to 10% pork
homogentates (1000 and 3000 μg/ml) as a positive seaweed polysac-
charide control for both DPPH and FICA assays. Homogenates were cen-
trifuged at 7800 g for 10 min at 4 °C. The supernatants obtained were
used for the estimation of the DPPH free radical scavenging and FICA ac-
tivities of L/F in pork meat.

2.6.2.1. Determination of DPPH radical scavenging activity. DPPH radical-
scavenging activity of LTL steaks was measured as described by Qwele
et al. (2013) with slight modifications. DPPH (0.2 mM, 3 ml) in metha-
nolwas added to 0.3ml supernatant and 2.7ml distilledwater. Themix-
ture was vortexed and left to stand at room temperature (20–22 °C) in
the dark and the precipitate formed was removed by filtering through
Whatman No. 1 filter paper. The assay control contained 0.3 ml buffer
(0.05 M phosphate), 2.7 ml distilled water and 3 ml of DPPH solution.
Absorbances were measured against a methanol blank after 20 h at
517 nm (Cary 300 Bio, UV–Vis spectrophotometer, Varian Instruments,
CA, USA). Trolox C (1000 μg/ml) and L/F (1000 and 3000 μg/ml) were
used as positive controls. The DPPH radical scavenging activity
expressed as percent of the control was calculated as follows:

% inhibition of DPPH
¼ 1− absorbance of sample=absorbance of controlð Þ½ � � 100:

2.6.2.2. Determination of ferrous ion chelating activity (FICA). The FICA of
L/F in porkmeat wasmeasured using the iron–ferrozine complexmeth-
od (Yen &Wu, 1999) with slight modifications. FeCl2 (2 mM, 0.1 ml) in
distilled water was added to 0.5 ml supernatant and 4.2 ml distilled
water. The reaction was initiated with the addition of 0.2 ml of 5 mM
ferrozine in distilled water, the mixture was vortexed and left to stand
at room temperature (20–22 °C) for 1 h in the dark. The assay control
contained 0.5 ml buffer (0.05 M phosphate), 4.2 ml distilled water,
0.1 ml of FeCl2 and 0.2 ml of ferrozine solution. At 1 h the absorbance
of the solution was measured at 562 nm against a water blank using a
spectrophotometer (Cary 300 Bio). EDTA (1000 μg/ml) and L/F (1000
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and 3000 μg/ml) were used as positive controls. The FICA was calculat-
ed as follows:

% chelating activity
¼ 1− absorbance of sample=absorbance of controlð Þ½ � � 100:

2.7. Statistical analysis

All analyses were performed in duplicate. Mean sample values
(n = 6) for each of the five treatment groups (Control, L/F450 − 3,
L/F450 − 6, L/F900 − 3 and L/F900 − 6) were subjected to statistical anal-
ysis. A full repeated measures two-way analysis of variance (ANOVA)
was conducted to investigate the effects of dietary L/F level (450 or
900), duration (3wk or 6wk) and level*duration interactions. No signif-
icances were observed between level*duration interactions. Level and
duration represented the ‘between-subjects’ factor and the effect of
time was measured using the ‘within-subjects’ factor. Tukey's test was
used to adjust for multiple comparisons between treatment means.
The analysis was performed using the SPSS 18.0 for Windows (SPSS,
Chicago, IL, USA) software package.

‘Visual’ and ‘eating quality’ sensory data was analysed with ANOVA-
Partial Least Squares Regression (APLSR) to process themeandata accu-
mulated from the 52 test subjects. The X-matrix was designated as 0/1
for treatment and days with the Y-matrix designated as sensory and in-
strumental variables. The optimal number of components in the ASLSR
models presented was determined to be 6 principal components. In
these models assessor and session level effects were removed using
level correction. The validated explained variance for the model con-
structed was 13.8% on day 1 and 18.0% on day 7 and the calibrated var-
iance was 17.5% on day 2 and 21.4% on day 7. To derive significance
indications for the relationships determined in the quantitative APLSR,
regression coefficients were analysed by jack-knifing which is based
on cross-validation and stability plots (Martens & Martens, 1999,
2001). All analyses were performed using the Unscrambler Software,
version 9.8 (CAMO ASA, Trondheim, Norway).

3. Results and discussion

3.1. Plasma total antioxidant status

The TAS of porcine plasma was 1.03, 1.01, 0.91, 1.04 and 0.99 mmol
TEAC/L plasma for the control, L/F450 − 3, L/F450 − 6, L/F900 − 3

and L/F900 − 6, groups respectively. Results indicated that level of L/
F dietary addition or duration of feeding did not influence (p N 0.05)
the TAS of porcine plasma. Similar findings were reported by Moroney
et al. (2012), where porcine plasma TASwas not affected by L/F supple-
mentation at a level and duration similar to L/F900 − 3. Similarly, dried
Ascophyllum nodosum (2.5, 5.0 or 10.0 g/kg) did not affect a range of
markers for plasma oxidative status, including MDA, after inclusion in
pigs diets for 28 days (Michiels et al., 2011). In the present study, pigs
were fed 3 h pre-slaughter and lack of an effect of L/F on porcine plasma
TAS may have been due to the rapid absorption during digestion.

3.2. Colour stability and muscle pH of fresh LTL muscle

The surface lightness ‘L*’ and yellowness ‘b*’ values increased in
fresh LTLmuscle over the 14-day storage period. The ‘a*’ redness values
of LTLmuscle decreased as a function of storage time andwas not influ-
enced by level or duration of feeding dietary L/F (Table 3). Similar trends
in the colour stability of pork meat were reported by Moroney et al.
(2012). In addition, Park et al. (2005) demonstrated that supplementa-
tion of pig dietswith a polysaccharide iron complex (chitosan–alginate–
Fe(II) (3ml per day)) had no effect on LTL pork steak colour parameters.

Muscle pH of fresh pork ranged from 5.61 to 5.15 over the 15-day
storage period and was unaffected by level and duration of feeding die-
tary L/F. The pH values reported were comparable to previously report-
ed values (5.90–5.19) for post-mortem pork muscle from pigs fed L/F
(Moroney et al., 2012). The relationship between muscle pH and pork
colour (L* and a*) has been established where pH-induced effects on
muscle proteins directly correlated with changes in the pink colour of
pork, as observed in pale soft exudative (PSE) and dark firm dry pork
meat (DFD) (Brewer, Zhu, Bidner, Meisinger, & McKeith, 2001). In the
present study, no effect was exerted by level or duration of feeding L/F
on muscle pH or the colour stability of fresh pork LTL steaks.

3.3. Lipid oxidation in fresh LTL muscle and cooked minced pork

Lipid oxidation increased in meat from all dietary groups as
a function of storage time (Table 4). However, the levels of lipid
oxidation were generally low with mean values ranging from
0.16–0.93 mg MDA/kg pork. Trends for lipid oxidation followed
the order: C N L/F450 − 6 N L/F900 − 6 N L/F450 − 3 N L/F900 − 3. On day
11 and 14 of storage in MAP, levels of lipid oxidation in L/F450 − 3 and
L/F900 − 3 were significantly (p b 0.05) lower compared to the control.
Moroney et al. (2012), reported protection against lipid oxidation in

Table 3
Effect of dietary laminarin/fucoidan (L/F) on the surface lightness (‘L*’ value), redness (‘a*’ value) and yellowness (‘b*’ value) values of fresh longissimus thoracis et lumborum (LTL) stored in
modified atmosphere packs (80% O2: 20% CO2) for up to 14 days at 4 °C.

Treatment Parameter Storage time at 4 °C, days

1 4 7 11 14

Control Lightness 54.99 ± 2.83a 55.02 ± 2.32a 55.74 ± 2.14a 56.38 ± 2.07a 59.01 ± 2.06a

L/F450 − 3 L* 54.42 ± 4.09 54.73 ± 5.01 57.14 ± 3.96 57.59 ± 4.40 59.11 ± 3.53
L/F450 − 6 53.21 ± 2.47 54.23 ± 2.59 56.17 ± 2.09 57.60 ± 1.28 58.85 ± 1.60
L/F900 − 3 52.94 ± 2.77 54.50 ± 2.41 55.62 ± 1.55 56.01 ± 0.93 56.82 ± 1.45
L/F900 − 6 54.54 ± 2.30 56.11 ± 1.68 58.17 ± 3.3.5 56.85 ± 2.46 58.99 ± 1.80

Control Redness 6.75 ± 1.12a 6.45 ± 0.41a 5.53 ± 0.57a 4.13 ± 0.72a 3.73 ± 1.51a

L/F450 − 3 a* 6.80 ± 0.62 6.64 ± 0.55 5.18 ± 0.53 5.14 ± 0.78 4.18 ± 1.10
L/F450 − 6 6.19 ± 1.01 5.79 ± 0.53 5.34 ± 1.04 4.77 ± 0.72 3.49 ± 0.76
L/F900 − 3 5.97 ± 0.74 5.20 ± 0.76 4.97 ± 0.65 3.92 ± 0.56 3.89 ± 0.43
L/F900 − 6 6.39 ± 1.21 5.49 ± 1.39 4.79 ± 1.20 4.00 ± 0.93 3.29 ± 1.27

Control Yellowness 7.99 ± 0.88a 8.09 ± 0.44a 7.84 ± 0.51a 7.42 ± 0.46a 8.67 ± 1.55a

L/F450 − 3 b* 8.26 ± 0.96 8.35 ± 1.11 8.34 ± 1.04 8.85 ± 1.03 9.04 ± 1.43
L/F450 − 6 7.46 ± 0.81 7.29 ± 0.39 7.81 ± 0.57 8.29 ± 0.82 7.95 ± 1.20
L/F900 − 3 7.26 ± 0.58 7.22 ± 0.42 7.60 ± 0.70 7.35 ± 0.35 7.73 ± 0.46
L/F900 − 6 7.48 ± 0.75 7.51 ± 0.83 7.89 ± 1.29 7.39 ± 0.98 7.99 ± 1.06

a Within each parameter and storage day, mean values (±standard deviation) in the same column are not significantly different, p N 0.05.

135N.C. Moroney et al. / Meat Science 99 (2015) 132–141



LTL steaks potentially due to deposition of antioxidant components
in L/F in pork muscle following dietary supplementation at a level
similar to L/F900 − 3.

Recent studies have shown that dietary L/Fmodulated gastrointesti-
nal physiology, improved digestion and increased absorptive functions
of the pig intestine (Heim et al., 2014). The degree of digestibility
of the seaweed polysaccharides increased with feeding duration,
which subsequently increased nutrient digestibility (O'Doherty, Dillon,
Figat, Callan, & Sweeney, 2010). In the present study, L/F450 − 3 and
L/F900 − 3 was sufficient to increase lipid stability in LTL steaks. Uptake
and increased utilisation of the polysaccharides by gutmicrobesmay be
responsible for the variation observed in lipid stability of L/F450 − 6 and
L/F900 − 6 compared to feeding L/F for 3 weeks.

In cooked pork patties stored aerobically and inMAP, lipid oxidation
increased in all treatments over the 14-day storage period (Table 4).
Lowest levels of lipid oxidation for cooked pork patties stored aerobical-
ly and in MAP were observed in L/F450 − 3 and L/F900 − 3 and results
were not significantly different from the controls. Results indicated
low to moderate thermal stability of L/F in cooked pork meat however
the behaviour of dietary seaweed polysaccharides during cooking re-
quires further investigation. Lipid oxidation levels were greater than
those observed for raw LTL muscle due to the pro-oxidative nature of
the mincing and cooking processes. In cooked patties stored in MAP,
lipid oxidation was lower than in patties stored aerobically due to the
low oxygen levels present in MAP. In the present study, although not
statistically significant, trends showed that dietary L/F supplementation
for 3 weeks resulted in slightly lower levels of lipid oxidation compared
to the controls for cooked patties stored in both packaging conditions.

3.4. Lipid oxidation in porcine liver, heart, kidney and lung
tissue homogenates

Liver, heart, kidney and lung tissue homogenates were subjected to
iron (FeSO4)-induced lipid oxidation to estimate the distribution of L/F
extract in porcine organ tissues. Following FeSO4 addition, lipid oxida-
tion increased in all tissue homogenates over the 24 h storage period.
While not significantly different, trends indicated lower levels of lipid
oxidation in kidney and lung tissue homogenates, as a result of dietary
L/F (Table 5). Moroney et al. (2012) reported slightly lower levels of
lipid oxidation in porcine liver tissue homogenates after dietary supple-
mentation of a spray-dried seaweed extract similar to L/F900 − 3. In the
present study, similar decreases in levels of lipid oxidation of liver

tissues after L/F supplementation were not detected. Lynch, Sweeney,
Callan, O'Sullivan, and O'Doherty (2010) suggested that pigmaturity in-
fluenced the digestion, breakdown and subsequent availability of fer-
mentable polysaccharides entering the large intestine. Pigs used in the
present study (115.81 kg) were larger in size than pigs (29.7 kg) inves-
tigated by Moroney et al. (2012). The differences in lipid stability of
organ tissues observed between the two studies may be attributed to
maturity of the pigs at the time of slaughter.

Several studies have shown that dietary seaweed extracts, contain-
ing laminarin and fucoidan individually, can accumulate and positively
influence stress markers in animal liver, heart, kidney and lung tissues
(Thomes et al., 2010). In rat lung tissue, deposition of antioxidant com-
ponents from dietary laminarin (200 or 400 mg/kg body weight) was
found to significantly reduce malondialdehyde (MDA) levels (Cheng,
Liang, Li, & Jin, 2011). In the present study, the maximum level and
duration (L/F900 − 6) was the most effective (not significantly) of all
treatments examined at reducing iron-induced oxidation of porcine
kidney and lung tissue homogenates compared to the control. The
digestion of soluble dietary fibre has been linked to changes in microbi-
ota which consequently influences absorption rate of minerals and
other nutrients (Scholz-Ahrens, Schaafsma, van den Heuvel, &
Schrezenmeir, 2001). The digestion and utilisation of dietary L/F by
the porcine gut to support immunological health may have influenced
the bioavailability and subsequent deposition of L/F and minerals from
the extract in the organ tissues. Increased availability of iron and copper,
known initiators of lipid oxidation, from the seaweed extract may have
counterbalanced the antioxidant potential of dietary L/F.

Table 4
Effect of dietary laminarin/fucoidan (L/F) on lipid oxidation (TBARS) in fresh longissimus thoracis et lumborum (LTL) and cooked pork patties stored inmodified atmosphere packs (MAP)
and aerobically for up to 14 days and 3 days, respectively, at 4 °C.

Treatment Packaging Storage time at 4 °C, days

1 4 7 11 14

Control MAP1 Fresh 0.16 ± 0.01a 0.17 ± 0.03a 0.20 ± 0.04a 0.60 ± 0.26a 0.93 ± 0.33a

L/F450 − 3 0.16 ± 0.02a 0.19 ± 0.04a 0.17 ± 0.06a 0.32 ± 0.08b 0.40 ± 0.16b

L/F450 − 6 0.16 ± 0.02a 0.17 ± 0.03a 0.17 ± 0.04a 0.45 ± 0.21ab 0.65 ± 0.51ab

L/F900 − 3 0.16 ± 0.02a 0.16 ± 0.02a 0.16 ± 0.02a 0.31 ± 0.10b 0.37 ± 0.13b

L/F900 − 6 0.16 ± 0.01a 0.16 ± 0.03a 0.18 ± 0.03a 0.35 ± 0.09ab 0.52 ± 0.26ab

Control MAP2 Cooked 1.78 ± 0.42a 2.91 ± 0.60a 2.90 ± 0.55a 3.07 ± 0.60a 2.89 ± 0.45a

L/F450 − 3 1.76 ± 0.49a 2.66 ± 0.62a 2.39 ± 0.48a 2.63 ± 0.68a 2.54 ± 0.57a

L/F450 − 6 2.03 ± 0.36a 3.05 ± 1.17a 3.12 ± 0.71a 2.96 ± 0.47a 3.02 ± 0.59a

L/F900 − 3 1.71 ± 0.18a 2.28 ± 0.19a 2.47 ± 0.29a 2.65 ± 0.45a 2.55 ± 0.36a

L/F900 − 6 2.11 ± 0.50a 3.04 ± 0.94a 3.08 ± 0.57a 3.35 ± 0.81a 2.65 ± 0.48a

0 1 2 3

Control Aerobic Cooked 1.21 ± 0.34a 2.03 ± 0.54a 2.59 ± 0.53a 3.39 ± 0.88a

L/F450 − 3 1.26 ± 0.18a 1.85 ± 0.58a 2.32 ± 0.77a 2.94 ± 1.02a

L/F450 − 6 1.08 ± 0.29a 2.34 ± 0.51a 3.13 ± 0.74a 3.75 ± 0.76a

L/F900 − 3 1.09 ± 0.14a 1.81 ± 0.22a 2.40 ± 0.42a 3.11 ± 0.54a

L/F900 − 6 1.40 ± 0.19a 2.51 ± 0.54a 2.92 ± 0.34a 3.48 ± 0.35a

1(80% O2: 20% CO2), 2(70% N2: 30% CO2).
abWithin each parameter and storage day, mean values (±standard deviation) in the same column bearing different superscripts are significantly different, p b 0.05.

Table 5
Effect of dietary laminarin/fucoidan (L/F) on iron-induced lipid oxidation (TBARS) in organ
(liver, heart, kidney and lung) tissue homogenates after 24 h storage at 4 °C.

Treatment Storage for 24 h at 4 °C

Liver Heart Kidney Lung

Control 2.91 ± 0.76a 1.42 ± 0.88a 2.68 ± 0.82a 1.26 ± 0.55a

L/F450 − 3 2.93 ± 0.81 1.21 ± 0.70 2.52 ± 0.46 1.21 ± 0.71
L/F450 − 6 3.21 ± 0.85 1.76 ± 0.81 2.72 ± 0.55 1.55 ± 0.77
L/F900 − 3 3.10 ± 0.67 1.52 ± 0.31 1.72 ± 0.90 1.20 ± 0.65
L/F900 − 6 2.98 ± 0.39 1.17 ± 0.35 1.59 ± 0.65 0.86 ± 0.14

a Within each organ type, mean values (±standard deviation) in the same column are
not significantly different, p N 0.05.
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3.5. Microbiology of fresh LTL muscle

The mesophilic plate counts of fresh LTL muscle ranged from ~2.7 to
~3.2 log cfu/g on day 1 and increased to amaximumof ~7.0 log cfu/g on
day 13 of storage (Table 6). Psychrotrophic plate counts ranged from
~4.0 to ~5.0 log cfu/g on day 1 and increased to levels ranging from
~9.9 to ~10.5 log cfu/g on day 13 (Table 6). Mesophilic and
psychrotrophic counts are in agreement with previously reported
values fromMoroney et al. (2012). Results from the present study indi-
cated dietary L/F, regardless of level or duration of feeding, did not exert
antimicrobial activity in fresh LTL steaks.

The biological activity of sulphated polysaccharides can vary be-
tween species and has been linked to the molecular weight and
sulphated content as well as the position of sulphate groups (Li et al.,
2008). Antimicrobial properties of seaweed extracts are influenced by
extraction solvents, form and concentration of compounds present,
and activity has been reported in extracts prepared from a range of sea-
weed species (Bansemir, Blume, Schröder, & Lindequist, 2006; Cox,
Hamilton Turley, Rajauria, Abu-Ghannam, & Jaiswal, 2013). Crude ex-
tracts containing sulphated polysaccharides from Gracilaria ornata ex-
hibited no antimicrobial activity against seven bacteria (B. subtilis,
S. aureus, E. aerogens, E. coli, P. aeruginosa, S. choleraesuis and S. typhi)
(plate diffusion method). Amorim et al. (2012) postulated the absence
of antimicrobial activity of sulphated polysaccharides may be due to
the inability to interact with the cell wall of bacteria as a result of charge
and the repulsion of the sulphated groups. In the present study, the lack
of antimicrobial activity in the LTL steaks may be attributed to the form
and concentration of compounds deposited in the muscle.

3.6. Sensory evaluation of fresh and cooked LTL muscle

In ‘visual’ sensory analysis of LTL steaks (Table 7), no significant
trends were observed for ‘pinkness’ or ‘whiteness’ with the exception
of L/F450 − 3 which was significantly (p b 0.05) positively correlated
to appearingmore (pink) on day 1. Instrumental ‘a*’ redness values sup-
port such findings indicating that colour was unaffected by level
and duration of feeding dietary L/F. On day 1, L/F900 − 3 was signifi-
cantly (p b 0.001) positively correlated to having a high drip loss
while L/F900 − 6 was significantly (p b 0.01) negatively correlated to
having no drip loss. On day 7, the control was significantly (p b 0.001)
positively correlated to having a high drip loss while L/F450 − 3 was sig-
nificantly (p b 0.001) negatively correlated to having no drip loss. Al-
though not significant, L/F450 − 6, L/F900 − 3, L/F900 − 6 were also
negatively correlated to having no drip loss on day 7, which may indi-
cate that deposition of components of the L/F extract led to an increase
in stability in the protein matrix leading to reduced drip during storage.
On day 7, L/F450 − 3 was significantly (p b 0.05) positively correlated to
purchasing appeal and overall visual acceptabilitywhile the control was
significantly (p b 0.05) negatively correlated to purchasing appeal and

overall visual acceptability. Therefore, the ‘visual’ sensory properties of
L/F450 − 3 pork patties were enhanced by dietary L/F supplementation
according to the sensory panellists.

No significant trendswere observed for ‘eating quality’ sensory anal-
ysis including appearance, texture, and overall acceptability of the
cooked LTL muscle (Table 7). In a previously reported study, the addi-
tion of dried Himanthalia elongata (5%) to low-fat frankfurters resulted
in less acceptable products, due mainly to the flavour of the seaweed
(López-López, Cofrades, Yakan, Solas, & Jiménez-Colmenero, 2010). In
the present study, ‘eating quality’ sensory analysis was unaffected by
level and duration of feeding of dietary L/F. Dietary supplementation
where the L/F extract is subjected to porcine digestive and metabolic
processes, may serve to eliminate possible negative organoleptic detec-
tion of flavourants by consumers. This indicates that seaweed extracts
may be incorporated into porcine tissues via the animal's diet without
damaging consumer preferences for pork meat.

3.7. Determination of L/F mechanism of action on lipid stability in pork
muscle

Themechanismof antioxidant activity of L/F in porkmeatmay be at-
tributed to one or a number of chemical reactions or pathways such as
immunomodulatory activity in the gut, influence on the fatty acid com-
position as well as antioxidant activity (radical scavenging and ferrous
ion chelating) in the muscle.

3.7.1. Improvement of porcine gut health
When used as feed additives in pig diets, components of the L/F ex-

tract have the potential to enhance porcine gut health by improving
the immune system and altering the intestinal microbiota before
being absorbed and deposited in the muscle (Gahan, Lynch, Callan,
O'Sullivan, & O'Doherty, 2009). The immune function is specially linked
to the release of reactive oxygen species (ROS), the excess of which
must be eliminated by endogenous antioxidant defences. ROS which
are not counteracted by the antioxidant defences of the cell can become
a source of damage to DNA, lipids and proteins in the animal. Molecular
damage resulting fromoxidative stress can lead to significant damage to
cell structures and evenmoderate oxidation can trigger cell death (De la
Fuente, 2002). Immunomodulatory activities of L/F, have been reported,
in mammals through modification of macrophage activity resulting in
increased immune function (Castro, Zarra, & Lamas, 2004; Li et al.,
2008). It is postulated that the lipid antioxidant activity of L/F in pork
meat may be mediated through enhanced immune function as a result
of dietary polysaccharide supplementation.

3.7.2. Changes in fatty acid composition of pork muscle
Lynch et al. (2010) reported that dietary supplementation of L/F in-

fluenced short chain fatty acid (SCFA) production in pigs. Polysaccha-
rides such as L/F undergo fermentation in the cecum and large

Table 6
Effect of dietary laminarin/fucoidan (L/F) on themicrobial status (mesophilic andpsychrotrophic TVC) of fresh longissimus thoracis et lumborum (LTL) stored inmodified atmosphere packs
(80% O2: 20% CO2) at for up to 13 days at 4 °C.

Treatment Storage time at 4 °C, days

Temp 1 5 8 13

Control 30 °C Mesophilic 2.84 ± 0.27a 3.78 ± 0.01a 4.83 ± 0.22a 6.58 ± 0.39a

L/F450 − 3 2.77 ± 0.20 4.03 ± 0.05 5.14 ± 0.49 5.46 ± 0.92
L/F450 − 6 3.16 ± 0.08 3.76 ± 0.19 6.14 ± 0.73 6.83 ± 0.84
L/F900 − 3 2.66 ± 0.26 3.78 ± 0.02 5.20 ± 0.41 7.01 ± 0.53
L/F900 − 6 2.70 ± 0.30 3.65 ± 0.25 4.73 ± 0.55 6.49 ± 0.55

Control 4 °C Psychrotrophic 4.42 ± 0.40a 4.80 ± 0.43a 6.49 ± 0.83a 9.90 ± 0.73a

L/F450 - 3 4.68 ± 0.77 4.92 ± 0.74 6.54 ± 0.31 10.17 ± 0.20
L/F450 - 6 4.95 ± 0.28 5.69 ± 0.29 7.24 ± 0.43 10.50 ± 0.07
L/F900 - 3 4.00 ± 0.42 5.18 ± 0.21 6.37 ± 0.37 10.49 ± 0.02
L/F900 - 6 4.12 ± 0.18 4.65 ± 0.30 6.77 ± 0.09 10.29 ± 0.04

a Within each storage temperature and day, mean values (±standard deviation) in the same column are not significantly different, p N 0.05.
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intestine by the anaerobic cecal and colonicmicrobiota resulting inmul-
tiple groups of metabolites of which, SCFA are the major group. The
most abundant SCFA are acetate, propionate and butyrate (den Besten
et al., 2013). SCFA can be transported from the intestinal lumen into
the blood and taken up by organs where they act as substrates or signal
molecules (Wong, de Souza, Kendall, Emam, & Jenkins, 2006). SCFA, in
particular acetate, have been linked to the synthesis of cholesterol and
long chain fatty acids as well as being a substrate for glutamine and glu-
tamate synthesis (den Besten et al., 2013). Therefore the potential exists
for dietary L/F to influence the FA profile of pork meat.

The fatty acid composition of pork meat for all dietary treatments is
presented in Table 8. Susceptibility to lipid oxidation in pork meat is
largely determined by the level of unsaturated fatty acids and pro-
oxidants present in the muscle (Decker et al., 2000). The fatty acid

composition of the control is comparable to previously reported values
for fresh pork meat (Wood et al., 2004). L/F900 − 3 was lower (p b 0.05)
in stearic acid; L/F900 − 6 was lower (p b 0.05) in stearic and arachidic
acid relative to the control, resulting in a decreased (p b 0.05) total
level of saturated (∑SFA) fatty acids in L/F900 − 6. Trends indicated
that all pigs fed dietary L/F had lower levels of saturated (∑SFA) fatty
acids. In pork meat, stearic acid content has been linked to fat hardness
due to the saturated nature of this fatty acid. However, in the present
study, the tenderness sensory descriptor of cooked LTL muscle was un-
affected by stearic acid level. Trends also suggested that higher levels of
polyunsaturated (∑PUFA) fatty acids and higher polyunsaturated:sat-
urated (P:S) ratios in meat from all dietary seaweed treatments relative
to the control. L/F900− 6 displayed enhanced lipid stability in addition to
significantly lower (p b 0.05) saturated fatty acids suggesting dietary

Table 7
Significance of regression coefficients (ANOVA values) for fresh longissimus thoracis et lumborum (LTL) as derived by jack-knife uncertainty testing.

Parameter Storage time, day/treatment

Control L/F450 − 3 L/F450 − 6 L/F900 − 3 L/F900 − 6

1 7 1 7 1 7 1 7 1 7

Visual sensory analysis
Pinkness 0.61 −0.40 0.01⁎ 0.45 0.80 0.93 −0.31 0.48 −0.47 0.55
Whiteness −0.64 −0.99 −0.07 0.99 −0.81 0.99 0.39 0.99 0.52 0.99
Drip 0.27 0.00⁎⁎⁎ 0.23 −0.00⁎⁎⁎ 0.72 −0.93 0.00⁎⁎⁎ −0.23 −0.01⁎⁎ −0.57
Packaging quality −0.67 0.99 −0.66 −0.99 −0.78 −0.99 0.65 −0.99 0.64 −0.99
Purchasing appeal −0.69 −0.03⁎ −0.79 0.05⁎ −0.56 0.93 0.75 0.29 0.73 0.56
Overall acceptability −0.41 −0.03⁎ −0.68 0.05⁎ −0.51 0.93 0.59 0.27 0.51 0.56

Eating quality sensory analysis
Appearance 0.81 −0.54 0.70 0.55 0.87 0.93 −0.75 0.61 −0.78 0.56
Tenderness −0.09 0.55 −0.56 −0.55 −0.63 −0.93 0.35 −0.61 0.20 −0.72
Oxidation flavour −0.41 −0.93 −0.31 0.93 −0.74 0.95 0.18 0.92 0.23 0.93
Liking of flavour 0.83 −0.94 0.74 0.94 0.88 0.96 −0.78 0.94 −0.80
Overall acceptability 0.81 0.50 0.68 −0.52 0.87 −0.93 −0.75 −0.50 −0.77 −0.71

⁎ 95% significance, p b 0.05.
⁎⁎ 99% significance, p b 0.01.
⁎⁎⁎ 99.9% significance, p b 0.001.

Table 8
Effect of dietary laminarin/fucoidan (L/F) on fatty acid composition in fresh longissimus thoracis et lumborum (LTL).

Treatment

Control L/F450 − 3 L/F450 − 6 L/F900 − 3 L/F900 − 6

Lauric C12:0 0.12 ± 0.08a 0.12 ± 0.05a 0.13 ± 0.05a 0.11 ± 0.03a 0.12 ± 0.06a

Myristic C14:0 0.83 ± 0.20a 0.84 ± 0.30a 0.85 ± 0.18a 0.87 ± 0.13a 0.89 ± 0.13a

Palmitic C16:0 22.18 ± 0.73a 21.95 ± 1.51a 22.09 ± 0.63a 21.91 ± 0.47a 21.56 ± 0.97a

Stearic C18:0 13.84 ± 1.29a 12.97 ± 0.76ac 13.21 ± 0.38ad 12.59 ± 0.40bcd 11.65 ± 0.45b

Arachidic C20:0 0.26 ± 0.05a 0.22 ± 0.04ab 0.23 ± 0.03ab 0.22 ± 0.01ab 0.17 ± 0.09b

ΣSFA 37.24 ± 2.08a 36.10 ± 1.65ab 36.51 ± 1.02ab 35.69 ± 0.73ab 34.39 ± 1.25b

t-Palmitoleic C16:1 trans 0.28 ± 0.02a 0.28 ± 0.06a 0.29 ± 0.04a 0.30 ± 0.03a 0.27 ± 0.04a

Palmitoleic C16:1 cis 1.71 ± 0.43a 1.80 ± 0.73a 1.83 ± 0.27a 2.04 ± 0.44a 2.25 ± 0.42a

Elaidic C18:1 trans 0.37 ± 0.10a 0.37 ± 0.18a 0.38 ± 0.13a 0.38 ± 0.10a 0.30 ± 0.09a

Oleic C18:1 (n−9) 31.11 ± 5.35a 27.35 ± 6.63a 28.92 ± 3.54a 29.36 ± 3.76a 32.40 ± 4.86a

Vaccenic C18:1 (n−7) 2.98 ± 0.66a 3.00 ± 0.55a 3.50 ± 0.17a 3.29 ± 0.25a 3.58 ± 0.22a

ΣMUFA 36.46 ± 5.76a 32.77 ± 7.48a 34.92 ± 3.68a 35.37 ± 3.90a 38.81 ± 5.19a

Linoleic C18:2 (n−6) 14.85 ± 3.85a 17.73 ± 4.00a 15.67 ± 2.14a 16.43 ± 2.41a 16.28 ± 3.61a

γ-Linolenic C18:3 (n−6) 0.05 ± 0.04a 0.11 ± 0.04a 0.09 ± 0.05a 0.07 ± 0.04a 0.06 ± 0.03a

α-Linolenic C18:3 (n−3) 0.77 ± 0.16a 0.86 ± 0.11a 0.83 ± 0.19a 0.92 ± 0.20a 0.86 ± 0.15a

Dihomo-γ-linolenic C20:3 (n−6) 0.25 ± 0.06a 0.35 ± 0.13a 0.32 ± 0.07a 0.28 ± 0.07a 0.28 ± 0.07a

Arachidonic C20:4 (n−6) 2.56 ± 1.11a 3.39 ± 1.56a 3.16 ± 1.02a 2.85 ± 0.88a 2.67 ± 1.02a

Eicosapentaenoic C20:5 (n−3) 0.17 ± 0.13a 0.19 ± 0.10a 0.18 ± 0.06a 0.17 ± 0.06a 0.13 ± 0.09a

Docosatetraenoic C22:4 (n−6) 0.34 ± 0.15a 0.46 ± 0.23a 0.41 ± 0.10a 0.40 ± 0.16a 0.35 ± 0.12a

Docosapentaenoic C22:5 (n−3) 0.39 ± 0.17a 0.57 ± 0.26a 0.54 ± 0.17a 0.47 ± 0.15a 0.45 ± 0.17a

Docosahexaenoic C22:6 (n−3) 0.07 ± 0.03a 0.12 ± 0.07a 0.07 ± 0.09a 0.08 ± 0.05a 0.08 ± 0.06a

ΣPUFA 19.44 ± 5.29a 23.77 ± 6.19a 21.28 ± 3.42a 21.67 ± 3.31a 21.17 ± 4.93a

P:S ratio# 0.43 ± 0.13a 0.52 ± 0.13a 0.46 ± 0.07a 0.49 ± 0.07a 0.50 ± 0.12a

18:2n−6:18:3n−3 19.89 ± 6.49a 21.36 ± 7.26a 20.12 ± 7.57a 18.56 ± 4.53a 19.24 ± 4.47a

Σn−6:Σn−3 13.48 ± 1.31a 13.49 ± 1.63a 12.64 ± 1.68a 12.86 ± 1.43a 13.52 ± 1.69a

#P:S ratio = (C18:2n−6 + C18:3n−3)/(C12:0 + C14:0 + C16:0 + C18:0).
abWithin each fatty acid, mean values (±standard deviation) in the same row bearing different superscripts are significantly different, p b 0.05.
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addition of L/F beneficially influenced the fatty acid profile of LTLmuscle
without detrimental effects on lipid stability. This shift in the ratio of P:S
may benefit consumers seeking meat with reduced saturated fat levels.

3.7.3. Free radical scavenging activity of L/F extract in pork muscle
The DPPH free radical scavenging activity of laminarin, fucoidan and

a variety of brown seaweeds (i.e. Fucus vesiculosus, Laminaria japonica,
Sargassum plagiophyllum, Sargassum vulgare) has been reported previ-
ously (Choi et al., 2011; Dore et al., 2013; Suresh et al., 2012; Vo &
Kim, 2013). Free radical scavenging activity and protection against
ROS is a potential mechanism of action of dietary L/F deposited in the
muscle tissue. The free radical scavenging activity of fresh pork from
the dietary treatments (L/F450 − 3; L/F450 − 6; L/F900 − 3; L/F900 − 6)
ranged from 38.92 to 43.45% and was similar to the control (39.49%)
(Fig. 1). A spray-dried seaweed extract containing L/F and Trolox were
directly added to pork meat (positive controls) to determine in vitro
radical scavenging activity. Direct addition of L/F (1000 and 3000 μg/
ml) and Trolox (1000 μg/ml) to pork meat resulted 57.2%, 63.3% and
83.2% free radical scavenging activity, respectively. The antioxidant ac-
tivity of fucoidan has been related to the sulphate content, position,mo-
lecular weight and sugar composition (Sinurat &Marraskuranto, 2013).
In the present study, the seaweed extract exhibited free-radical scav-
enging activity in vitro, however, scavenging activity was not detected
in pork meat following dietary supplementation with L/F. The lack of

free-radical scavenging activity is potentially due to biotransformation
of L/F during ingestion and absorption by the porcine gut before deposi-
tion in the muscle resulting in compounds un-reactive with the DPPH
radical.

3.7.4. Ferrous ion chelating activity of L/F extract in pork muscle
Transitionmetals present in muscle foods such as iron are known to

initiate and accelerate lipid oxidation in food systems. Low tomoderate
ferrous ion chelating activities of brown seaweeds (Sargassum
filipendula and Laminaria japonica) have been previously reported, and
activity was attributed to the presence of sulphated polysaccharides
(Costa et al., 2011; Wang, Zhang, Zhang, & Li, 2008). Analysis of the
L/F extract (rich in sulphated polysaccharides) (1000 and 3000 μg/ml)
utilised in the present study, indicated no FICA whereas EDTA (positive
control) resulted in 90.95% FICA. Iron chelating activity is dependent on
the complex structural characteristics of seaweed polysaccharides
(Mak, Hamid, Liu, Lu, & White, 2013). The L/F extract may undergo
structural modification (biotransformation) during porcine digestion
and potentially exhibit antioxidant activity mediated through ferrous
ion chelating activity in pork meat. FICA of pork meat fractions from
each dietary treatment ranged from 17.65–25.10% (similar to the
control) (Fig. 2). Results indicated that dietary L/F did not influence
FICA in LTL muscle and antioxidant activity of L/F is most likely due to
a combination of the proposed mechanisms discussed.
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Fig. 1. Effect of dietary laminarin/fucoidan (L/F) on DPPH free radical scavenging in fresh longissimus thoracis et lumborum (LTL) muscle. abcWithin each dataset (assay controls/dietary
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4. Conclusions

Dietary supplementation of L/F at 3 weeks, irrespective of level, re-
sulted in enhanced pork meat due to deposition of marine-derived bio-
active antioxidant components in LTL muscle. Antioxidant response
factor, dependant on duration of supplementation, was most likely at-
tributed to a number of mechanisms. Dietary L/F reduced saturated
fatty acids and lowered lipid oxidation in LTLmuscle. Due to complexity
of the extract and porcine metabolic pathways, it is unclear if free radi-
cal scavenging abilities of the extract were responsible for the antioxi-
dant activity observed in LTL muscle. Meat quality enhancing effects of
seaweed polysaccharides may be mediated through health promoting
effects of gut-associated immunity. The improved fatty acid profile
with enhanced lipid stability of pork meat without impact on tender-
ness, flavour or other sensory properties suggests dietary supplementa-
tion of seaweed extracts containing laminarin and fucoidan could result
in an enhanced pork meat product.
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A spray-dried seaweed extract containing laminarin (L, 9.3%) and fucoidan (F, 7.8%) (L/F extract) from brown
seaweed (Laminaria digitata) was added directly to minced pork (M. longissimus dorsi) (LD) at levels of 0.01%,
0.1% and 0.5% (w/w). Fresh and cooked minced pork patties were stored in modified atmosphere packs
containing 80% O2:20% CO2 and 70% N2:30% CO2, respectively, for up to 14 days at 4 °C. The L/F extract re-
duced the surface redness (‘a*’ values) of fresh patties as a function of concentration. The L/F extract (0.5%)
exerted the greatest lipid pro-oxidant activity in fresh patties. The L/F extract (0.5%) significantly decreased
(P b 0.05) lipid oxidation in cooked patties. The L/F extract had no effect on the microbiological status, pH,
water holding capacity (WHC) or cook loss of patties. Pork patties containing 0.01% L/F were preferred by
sensory panellists. Further research will focus on the use of refined purified seaweed extracts in functional
meat products.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The use of seaweed (macroalgae) or seaweed extracts as food ad-
ditives is growing in popularity due to the vast range of functional
properties they impart in food products. Seaweeds contain high pro-
portions of polysaccharides, proteins, minerals, and vitamins and
have low lipid content (Gómez-Ordóñez, Jiménez-Escrig, & Rupérez,
2010). Seaweed polysaccharides are a potential source of soluble
and insoluble dietary fibre. Soluble seaweed polysaccharides exhibit
higher water holding capacity than cellulosic (insoluble) fibres. Solu-
ble dietary fibres demonstrate the ability to increase viscosity, form
gels and/or act as emulsifiers and are also characterised by a capacity
to reduce both glycemic response and plasma cholesterol in humans
(Elleuch et al., 2011; Venugopal, 2008).

The cell walls of brown seaweed (Phaeophyta) contain polysac-
charide compounds such as laminarin and fucoidan (soluble fibres).
Laminarin, a β-polymer of glucose, is the main storage polysaccha-
ride in algae. Fucoidan, a sulphated heteropolysaccharide, is com-
posed primarily of L-fucose and protects seaweed from desiccation
(Anastasakis, Ross, & Jones, 2011; Bocanegra, Bastida, Benedí,
Ródenas, & Sánchez-Muniz, 2009). Seaweed polysaccharides, includ-
ing laminarin and fucoidan are reported to possess antioxidant
(Choi, Kim, & Lee, 2011), anti-tumour, anticoagulant, antiviral, and
antibacterial activities (Costa et al., 2010; Wang et al., 2007).

The development of functional meats with enhanced physiochemical
and health-promoting properties may be achieved by adding seaweeds
or seaweed extracts containing bioactive components into meat and
meat products. Bioactive compounds may be incorporated by supple-
mentation of animal diets or by direct addition during meat processing
(Khan et al., 2011). In a recent study carried out by our research group,
supplementation of pig diets with brown seaweed (Laminaria digitata)
extracts containing laminarin and fucoidan enhanced the oxidative sta-
bility of fresh pork meat (Moroney, O'Grady, O'Doherty, & Kerry, 2012).
Similarly, Diaz-Rubio, Serrano, Borderias, and Saura-Calixto (2011)
reported that the direct addition of dietary fibre from Fucus vesiculosus
inhibited lipid oxidation in fish mince muscle.

Recent scientific studies have also examined the functionality of
macroalgae (powdered/dried Himanthalia elongata, Undaria pinnatifida,
Porphyra umbilicalis, and Laminaria japonica) in processed meat prod-
ucts, such as beef or pork burgers/patties, frankfurters, restructured
poultry steaks, and pork meat emulsion systems (Choi et al., 2012;
Cofrades, López-López, Ruiz-Capillas, Triki, & Jiménez-Colmenero,
2011; López-López, Cofrades, & Jiménez-Colmenero, 2009; López-López,
Cofrades, Yakan, Solas, & Jiménez-Colmenero, 2010). Pigments present
in seaweed can influence meat product colour depending on the
seaweed/extract type and concentration added (Choi et al., 2012;
Jiménez-Colmenero et al., 2010; López-López, Cofrades, Ruiz-Capillas,
& Jiménez-Colmenero, 2009). Acidic seaweed components such as
fucoidan and alginic acid decreased the pH of meat products containing
powdered seaweeds (Choi et al., 2012; Cofrades, López-López, Solas,
Bravo, & Jiménez-Colmenero, 2008). The antioxidant capacity (FRAP)
of pork meat emulsion systems increased due to the high phenolic
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content of powdered seaweed added (López-López et al., 2009).
Algal oils have been used to enhance the lipid profile of frankfurters
(López-López, Cofrades, Ruiz-Capillas, & Jiménez-Colmenero, 2009).
Soluble and insoluble dietary fibres from macroalgae increased cooking
yields, improve texture, fat/water binding and emulsion stability and
decreased costs in meat product formulations (Fernández-Martín,
López-López, Cofrades, & Colmenero, 2009; Jiménez-Colmenero et al.,
2010). Seaweeds contain a high concentration of minerals and therefore
may also have potential for use as salt replacers in processedmeat prod-
ucts (Cofrades et al., 2011).

Studies on the addition of seaweed polysaccharides to meat prod-
ucts are limited and merit investigation. The objective of this study
was to examine the effect of the direct addition of a spray-dried sea-
weed (L. digitata) extract containing laminarin and fucoidan (L/F) on
the quality and shelf-life of minced pork (M. longissimus dorsi (LD))
stored in modified atmosphere packs. Quality parameters examined
include colour, lipid oxidation (fresh and cooked), microbiology, pH,
water holding capacity (WHC), texture profile analysis (TPA), cook
loss, and sensory properties during refrigerated storage at 4 °C.

2. Materials and methods

2.1. Reagents

All chemicals usedwere ‘AnalaR’ grade obtained from Sigma-Aldrich
Ireland Ltd., Arklow, Co. Wicklow, Ireland, Oxoid Ltd., Basingstoke,
Hampshire, England and Merck KGaA, Darmstadt, Germany. Fresh
pork muscle (M. longissimus dorsi) (LD) was supplied by Ballyburden
Meat Processors, Ballincollig, Co. Cork, Ireland. A spray-dried seaweed
extract, containing laminarin (L) and fucoidan (F) (L/F extract) was
manufactured by Bio Atlantis, Tralee, Co. Kerry, Ireland. The L/F extract
was prepared from brown seaweed (L. digitata), using an acid extrac-
tion technique, the details of which are confidential. The composition
of the L/F extract was 94.03% total solids, 68.6% ash, 0.64% protein,
9.3% laminarin, 7.8% fucoidan, and 8.3% mannitol. The ash component
of the L/F extract was composed of 15 g/kg DM Ca, 10 g/kg DM Na,
10 g/kg DM K, 10 g/kg DM S, 250 mg/kg DM iodine, 250 mg/kg DM
Fe, 20 mg/kg DM Cu and 50 mg/kg DM Zn. Tea catechins (TC)
(81.43%) extracted from green tea was supplied by New Kinglong
Natural Products Co. Ltd, Hunan, China.

2.2. Salt determination

The salt content of the L/F extract was measured using the mercu-
ric nitrate titration method of Dubsky and Trtilek as described by
Roberts (1936). The L/F extract (5 g) was dissolved in 40 ml of dis-
tilled water. Samples were filtered through Whatman No. 1 filter
paper with glass wool into a 100 ml volumetric flask and made up
to volume with distilled water. Filtrate (25 ml) plus 15 ml of 0.01 N
HNO3 and 1 ml of diphenylcarbazone indicator was titrated against
0.023 N Hg(NO3)2 standardised with 25 ml of 0.25% NaCl. A purple
colour denoted the titration end-point. The salt percentage was calcu-
lated using the following equation:

%Salt ¼ ml Hg NO3ð Þ2=5:

The salt content of the extract was 1% ± 0.1%. In the minced pork
studies, a salt control (ST) was used to determine the effect of the salt
contained in the L/F extract on the quality parameters examined. The
addition of salt (50 mg/kg) to fresh minced pork (ST) was equivalent
to the salt content of 0.5% L/F pork treatment.

2.3. Pork processing and packaging

M. longissimus dorsi (LD) muscles were trimmed of visible fat and
connective tissue and minced twice through a plate with 4 mm holes

(Model P114L, Talsa, Valencia, Spain). Following mincing, fresh pork
was assigned to one of six treatments: untreated pork (Control);
0.005% salt (salt control) (ST); 0.1% tea catechin (positive lipid oxida-
tion control) (TC); and pork plus increasing amounts of the L/F ex-
tract: 0.01% L/F, 0.1% L/F and 0.5% L/F. ST, TC and L/F were dissolved
in water, immediately added to raw minced pork (5% v/w) and
mixed vigorously.

Minced pork from each treatment was formed into patties (100 g
portions) using a meat former (Ministeak burger maker, O.L. Smith
Co. Ltd., Italy), placed in low oxygen permeable (b1 cm3/m2/24 h at
STP) polystyrene/ethyl vinyl alcohol/polyethylene trays and using
modified atmosphere packaging (MAP) technology, was flushed
with 80% O2:20% CO2 using a vacuum-sealing unit (VS 100, Gustav
Müller and Co. KG, Bad Homburg, Germany) equipped with a gas
mixer (Witt-Gasetechnik GmbH and Co. KG, Witten, Germany).
Trays were covered and heat-sealed using a low oxygen permeable
(3 cm3/m2/24 h at STP) laminated barrier film with a polyolefin
heat-sealable layer.

In the cooked pork study, minced pork patties (0.5% L/F) were
placed on aluminium foil lined trays and cooked at 180 °C for 20 min
in a fan-assisted convection oven (Zanussi Professional, Model 10
GN1/1, Conegliano, Italy) until an internal temperature of 72 °C was
reached. Cooked patties were placed in MAP trays and flushed with
70% N2:30% CO2 and packaged as described previously. Fresh and
cooked pork patties were stored for up to 14 days under fluorescent
lighting conditions (approximately 660 lx) at 4 °C. The gas atmosphere
(% O2 and % CO2) in the MAP was checked using a CheckMate 9900
(PBI-DanSensor, Denmark). The % N2 was calculated by difference.
Immediately after gas flushing, fresh pork MAP trays contained
77.15 ± 0.37% O2 and 22.73 ± 0.33% CO2 and the gas composition
after 14 days was 67.75 ± 3.82% O2 and 30.00 ± 3.87% CO2. In cooked
pork MAP trays, the gas composition was 67.46 ± 0.82% N2 and
32.13 ± 0.49% CO2 directly after gas flushing and 68.79 ± 0.14% N2

and 31.10% ± 0.08% CO2 after 14 days of storage.

2.4. Measurement of pH

Fresh minced pork samples (10 g) were homogenised for 1 min at
24,000 rpm in 90 ml distilled water using an Ultra Turrax T25
homogeniser (Janke and Kunkel, IKA-Labortechnik, GmbH and Co.,
Staufen, Germany). The pH of the pork homogenates was measured
at 20 °C using a pH meter (Seven Easy portable, Mettler-Toledo
GmbH, Schweizenbach, Switzerland). The pH of minced pork patties
was recorded on days 1, 4, 7, 11 and 14 of storage.

2.5. Colour measurement

The surface colour was measured using a Konica Minolta CR-300
Chroma-Meter (Minolta Camera Co., Osaka, Japan). The Chroma-Meter
consisted of a measuring head (CR-300), with an 8 mm diameter mea-
suring area, a 2° standard observer, and a data processor (DP-301). The
Chroma-Meter was calibrated on the CIE LAB colour space system
using a white tile (Dc: L = 97.79, a = −0.11, b = 2.69). The ‘L*’ value
represents lightness and ‘a*’ and ‘b*’ values represent redness and
yellowness, respectively. Colour measurements of fresh minced pork
patties were recorded on days 1, 4, 7, 11 and 14 of storage.

2.6. Measurement of lipid oxidation

Lipid oxidation was measured using the 2-thiobarbituric acid
assay of Siu and Draper (1978). The malondialdehyde content was
calculated using an extinction coefficient of 1.56 × 105 M−1 cm−1.
Results were expressed as 2-thiobarbituric acid reactive substances
(TBARS) in mg malondialdehyde (MDA)/kg pork. Lipid oxidation in
fresh and cooked minced pork patties was measured on days 1, 4, 7,
11 and 14 of storage.
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2.7. Microbiological analysis

Fresh minced pork (10 g) was transferred into stomacher bags,
diluted with 90 ml of maximum recovery diluent and stomached for
3 min (Steward Stomacher 400 Lab Blender, London, UK) resulting
in a 10−1 dilution used for analysis. Serial dilutions were prepared
and 0.1 ml aliquots from each dilution were plated onto standard
plate count agar (PCA) (Oxoid Ltd.). The plates were incubated at
30 °C for 48 h and at 4 °C for 10 days to determine mesophilic and
psychrotrophic counts, respectively. Microbiological analysis of fresh
minced pork patties from direct addition was carried out on days 1,
5, 8 and 12 of storage. Results were expressed as log10 cfu (colony
forming units)/g pork.

2.8. Water holding capacity

Water holding capacity (WHC) was measured as described by
Lianji and Chen (1989). Approximately 10 g of fresh minced pork
was weighed into glass jars, covered with aluminium foil and heated
in a water bath for 10 min at 90 °C. After heating, samples were care-
fully removed from each jar using forceps, wrapped in cheesecloth,
and placed in 30 ml centrifuge tubes lined with cotton wool at the
base of each tube. The samples were centrifuged (Beckman J2-21,
Beckman Instruments Inc., CA, USA) at 13,440 ×g for 10 min at 4 °C.
Following centrifugation, the cheesecloth was removed and samples
were reweighed. Measurements of the moisture content (M) of pork
sampleswere carried out on the Smart Trac5 rapidmoisture/fat analyser
(CEM Corporation). The percentage WHC was calculated using the
following equation:

%WHC ¼ 1− B−Að Þ= B�Mð Þ½ �½ � � 100

where B denotes the weight of sample before heating; A, the weight of
sample after heating and centrifuging; andM the %moisture of the sam-
ple (CEM). WHC was measured on days 2 and 7 of storage.

2.9. Texture profile analysis

Texture profile analysis (TPA) was carried out on cooked pork
patties based on a method described by Bourne (1978). Cooked pat-
ties were cut into 20 mm pieces and axially compressed to 50% of
their original height in a two-cycle compression test with an alumin-
ium cylinder probe of 2 cm diameter using a texture analyser
(TA.XT2i Texture Analyser, StableMicro Systems, UK). Force time de-
formation curves were obtained using a 5 kN load cell applied at a
cross speed of 50 mm/min. Attributes were calculated as follows:
hardness (N), peak force required for first compression; springiness
(mm), distance sample recovers after first compression; adhesive-
ness (N), the negative force area for the first bite representing the
work necessary to pull the compressing plunger away from the sam-
ple; cohesiveness (dimensionless), ratio of positive force area during
the second compression; gumminess (N), the product of hardness
and cohesiveness; and chewiness (N × mm), the product of gummi-
ness and springiness. TPA was carried out on days 2 and 7 compara-
ble with sensory analysis measurement days.

2.10. Cook loss

The weight of minced pork patties was recorded before and after
cooking. Patties were cooled for 1 h before re-weighing. Cook loss
was measured on days 2 and 7 of storage and calculated using the
following equation:

%cook loss ¼ raw weight−cooked weightð Þ=raw weight½ � � 100:

2.11. Sensory evaluation

Sensory analysis (‘visual’ and ‘eating quality’) of fresh pork patties
stored in 80% O2:20% CO2 was performed by 52 naïve assessors on
days 2 and 7 of storage following the method of O'Sullivan, Byrne,
and Martens (2003). On day 8, the bacterial count of the fresh pork
patties (>6 log10 cfu/g) was considered too high for further sensory
evaluation. ‘Visual’ sensory analysis descriptors were redness,
brownness, drip, package quality, purchasing appeal, and overall ac-
ceptability. ‘Eating quality’ sensory analysis descriptors were appear-
ance, tenderness, oxidation flavour, liking of flavour and overall
acceptability. Assessors were asked to indicate their degree of liking
on a 10 cm line scale ranging from 0 (extremely dislike) to 10
(extremely like).

Pork patties were cooked for sensory analysis in a Zanussi oven at
180 °C for 20 min until an internal meat temperature of 72 °C
was reached. Following cooking, patties were cooled and cut into
2 cm × 2 cm cubes and identified with random three-digit codes.
Sample presentation order was randomised to prevent any flavour
carryover effects (MacFie, Bratchell, Greenhoff, & Vallis, 1989). Prior
to serving to panellists, pork samples were re-heated in a microwave
for 10 s to release the meat odour and flavour. Sensory analysis was
undertaken in the panel booths at the University sensory laboratory
in accordance with the ISO (1988) international standard regulations.
Assessors were also provided with water and crackers to cleanse their
pallets between samples. Results for sensory analysis scores were
measured in centimetres (cm) and scores were statistically analysed
using ANOVA-Partial Least Squares Regression (APLSR). Results
were presented as significance of regression coefficients, analysed
by jack-knife testing.

2.12. Statistical analysis

All analyseswere performed in duplicate and three independent ex-
perimental trialswere carried out. A full repeatedmeasures ANOVAwas
conducted to investigate the effects of L/F concentration, time and their
interactions. L/F concentration represented the ‘between-subjects’ fac-
tor and the effect of time was measured using the ‘within-subjects’ fac-
tor. Tukey's test was used to adjust for multiple comparisons between
treatment means. The analysis was carried out using SPSS 18.0 for
Windows (SPSS, Chicago, IL, USA) software package.

‘Visual’ and ‘eating quality’ sensory data were analysedwith ANOVA-
Partial Least Squares Regression (APLSR) to process the mean data accu-
mulated from the 52 test subjects. The X-matrix was designated as 0/1
for treatment and days with the Y-matrix designated as sensory and
instrumental variables. The optimal number of components in the
APLSR models presented was determined to be 6 principal components.
In these models assessor and session level effects were removed using
level correction. The validated explained variance for the model
constructed was−0.51% on day 2 and 6.27% on day 7 and the calibrated
variance was 2.38% on day 2 and 8.97% on day 7. To derive significance
indications for the relationships determined in the quantitative APLSR,
regression coefficients were analysed by jack-knifing which is based on
cross-validation and stability plots (Martens & Martens, 1999, 2001).
All analyses were performed using the Unscrambler Software, version
9.8 (CAMO ASA, Trondheim, Norway).

3. Results and discussion

3.1. Colour stability of fresh minced pork

The ‘L*’ lightness values increased in fresh pork patties (0.01% L/F,
0.1% L/F, and 0.5% L/F) over the 14 day storage period and patties
were unaffected by L/F extract concentration (Table 1). In a similar
study, the addition of powdered L. japonica (1%, 3,% and 5%) decreased
the lightness values of uncooked reduced fat pork patties due to the
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brown and yellow pigments such as chlorophylls, phycophine, and xan-
thophylls present in the extract (Choi et al., 2012).

The ‘a*’ redness values of pork patties decreased as a function of
storage time. The L/F extract (0.1% L/F, and 0.5% L/F) reduced the surface
redness (‘a*’ values) of pork patties on days 7, 11 and 14 of storage as a
function of L/F concentration (Table 1). Similarly Cofrades et al. (2008)
reported that the addition of dried H. elongata, U. pinnatifida and
P. umbilicalis (2.5% and 5%) reduced the ‘a*’ redness values of a pork
meat gel/emulsion in a concentration dependant manner.

Previous studies have linked oxymyoglobin oxidation and discolor-
ation in meat to lipid oxidation, with an increase in one resulting in a
similar increase in the other due to a number of proposed mechanisms
(O'Grady, Monahan, & Brunton, 2001). At the highest level of L/F addi-
tion (0.5%), levels of lipid oxidation in pork patties were higher than
the control on days 4, 7, 11 and 14 of storage (Table 2). Increased levels
of lipid oxidation may subsequently promote oxymyoglobin oxidation
which may explain the observed decreased surface redness values of
pork patties in the present study.

In addition, decreased surface redness may be attributed to inter-
actions between pork meat constituents and the added seaweed
extract. Previous studies have indicated that polysaccharides can in-
teract with proteins and it is generally accepted that electrostatic in-
teractions occur between the anionic groups of a polysaccharide
(seaweed polyanionic alginates) and the positively charged groups
present in proteins (Imeson, Ledward, & Mitchell, 1977). Sulphated
polysaccharides are capable of forming soluble complexes with
globular proteins at pH values above the protein isoelectric point
(Hill, Ledward, & Mitchell, 1998). Imeson et al. (1977) determined
that the presence of the anionic polysaccharides altered the spectrum
from that typical of metmyoglobin to one with a decreased absorption
in the Soret (~400 nm) region; in the presence of pectate and alginate
the Soret absorption also occurs at lower wavelengths. Therefore the
dose-dependant decrease in ‘a*’ redness values, of pork patties may
be partially attributed to interactions between polysaccharides (L/F)
present in the extract and oxymyoglobin in pork meat.

In a previous study, a spray-dried L/F extract, identical to that used
in the present study, did not affect the ‘a*’ redness values when incor-
porated into fresh pork via animal's diet (Moroney et al., 2012).
Therefore the manner (dietary supplementation versus direct addi-
tion) by which seaweed extracts are added to meat appears to influ-
ence the mode of action of the bioactive components present.

The ‘b*’ yellowness values of fresh pork patties containing up to 0.1%
L/F decreased over the 14 day storage period (Table 1). The addition of
0.5% L/F to fresh pork patties resulted in increased ‘b*’ yellowness
values over time. Similarly, Cofrades et al. (2008) reported that dried

H. elongata and U. pinnatifida (2.5% and 5%) increased ‘b*’ yellowness
values in pork emulsion systems. In addition to chlorophyll, brown
seaweeds contain phycophine, a brown pigment, and xanthophyll, a
yellow pigment, which provides the seaweeds with a variety of shades
in the yellow–dark chestnut range, including yellowish greens which
can mask the green of chlorophyll (Cofrades et al., 2008). The change
in the yellowness values of the pork patties in the present study may
be attributed to the addition of natural colour pigments present in the
L/F extract.

3.2. Lipid oxidation in fresh and cooked minced pork

In general, levels of lipid oxidation in fresh pork patties increased
over time and followed the order: 0.5% L/F > ST > 0.1% L/F > Con-
trol > 0.01% L/F > TC (Table 2). No statistical difference was ob-
served between L/F extract treatments (0.01% L/F and 0.1% L/F) and
controls (control and TC) on any of the storage days. Levels of lipid
oxidation were lowest in TC-containing pork patties. Previous studies
have also demonstrated the potent antioxidant activity of TC in mus-
cle foods (Tang, Kerry, Sheehan, Buckley, & Morrissey, 2001). In pork
patties containing 0.5% L/F, the extract exerted the greatest lipid
pro-oxidant activity on each measurement day. A pro-oxidant effect
was also observed in pork patties containing salt (ST) at levels equiv-
alent to 50 mg/kg, indicating that Na present in 0.5% L/F may be re-
sponsible for catalysis of lipid oxidation in fresh pork patties.
Numerous studies have demonstrated the pro-oxidant properties of
salt in muscle foods (Tang et al., 2001). In fresh meat, salt can pro-
mote the formation of hypervalent ferrylmyoglobin (or activated
metmyoglobin), an initiator of lipid oxidation (Rhee & Ziprin, 2001).

The L/F extract also contained minerals such as iron (250 mg/kg
DM) and copper (20 mg/kg DM) which are known to promote lipid
oxidation in meat products (Bandy, Walter, Moon, & Davison, 2001;
Decker & Xu, 1998; Rhee & Ziprin, 2001). Transition metals, in partic-
ular iron, initiate lipid oxidation either directly or indirectly by facili-
tating the generation of other initiating factors. Metals may also play
a role in the propagation of lipid oxidation by catalysing the break-
down of lipid hydroperoxides and iron is considered a major catalyst
of oxidative rancidity in meat (Ruiz, Perez-Vendrell, & Esteve-Garcia,
2000). Therefore, minerals present in the L/F extract may also be
responsible for the catalysis of lipid oxidation in fresh pork patties.

In a previous study, the supplementation of porcine diets with a
spray-dried L/F extract, identical to that used in the present study,
decreased lipid oxidation in fresh pork LD muscle. It was concluded
that antioxidant components of laminarin and fucoidan were
deposited in LD muscle thereby enhancing lipid stability of pork

Table 1
Effect of L/F extract addition on surface lightness (‘L*’ value), redness (‘a*’ value) and yellowness (‘b*’ value) values of fresh pork patties stored in modified atmosphere packs (80%
O2:20% CO2) for up to 14 days at 4 °C.

Treatment Parameter Storage time at 4 °C, days

1 4 7 11 14

Control Lightness
L*

56.77 ± 2.25a 58.30 ± 3.12a 58.86 ± 1.58a 60.12 ± 1.49a 60.36 ± 2.19a

0.01% L/F 56.76 ± 2.19 58.20 ± 3.05 60.20 ± 0.99 61.10 ± 0.89 60.81 ± 2.17
0.1% L/F 56.66 ± 3.32 57.10 ± 3.83 59.15 ± 1.75 61.09 ± 1.11 60.88 ± 1.44
0.5% L/F 55.28 ± 2.31 56.24 ± 3.11 59.94 ± 1.28 62.19 ± 0.58 62.35 ± 1.45
ST⁎ 56.19 ± 1.80 56.15 ± 1.51 57.88 ± 1.09 60.73 ± 2.50 61.94 ± 2.69
Control Redness

a*
8.78 ± 0.48a 6.87 ± 0.53a 4.89 ± 2.00a 3.29 ± 1.76a 2.40 ± 1.34a

0.01% L/F 8.68 ± 0.53 6.74 ± 0.51 4.72 ± 1.99 3.26 ± 1.86 2.14 ± 1.05
0.1% L/F 8.54 ± 0.54 6.86 ± 0.75 3.80 ± 1.92 1.56 ± 0.78 0.94 ± 0.67
0.5% L/F 7.79 ± 0.52 6.15 ± 0.77 2.47 ± 1.89 0.41 ± 0.72 −0.03 ± 0.72
ST 8.92 ± 0.31 7.33 ± 1.03 5.21 ± 2.65 1.85 ± 0.91 0.33 ± 0.68
Control Yellowness

b*
9.83 ± 0.34a 9.24 ± 0.20a 9.00 ± 0.16a 8.97 ± 0.48a 8.86 ± 1.02a

0.01% L/F 9.71 ± 0.33 9.24 ± 0.29 9.26 ± 0.34 9.22 ± 0.41 8.85 ± 0.66
0.1% L/F 9.82 ± 0.07 9.37 ± 0.29 9.08 ± 0.25 9.11 ± 0.67 9.27 ± 0.53
0.5% L/F 9.99 ± 0.27 9.81 ± 0.03 10.06 ± 0.51 10.21 ± 1.02 10.21 ± 0.40
ST 9.85 ± 0.29 9.36 ± 0.37 9.13 ± 0.67 9.76 ± 0.66 9.99 ± 0.39

a Within each parameter and storage day, mean values (±standard deviation) in the same column are not significantly different, P > 0.05.
⁎ Salt control (ST), 0.005% salt.
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meat (Moroney et al., 2012). Dietary supplementation of L/F extract
may serve to eliminate the effects of pro-oxidant components
contained in the extract presumably due to porcine digestive and
metabolic processes.

In contrast to the results reported in the present study, the addition
of powdered H. elongata, U. pinnatifida and P. umbilicalis (2.5% and 5%)
increased antioxidant activity in low-salt pork meat emulsion model
systems. Antioxidant activity, determined using in vitro antioxidant
assays (FRAP and TEAC), was attributed to polyphenolic compounds
present in the seaweeds (López-López, Bastida, Ruiz-Capillas, Bravo, et
al., 2009).

In cooked pork patties, lipid oxidation increased as a function of stor-
age time. Pork patties containing L/F extract (0.5%) had significantly
lower levels of lipid oxidation (P b 0.05) compared to the control on
days 1, 4 and 14 of storage (Table 2). In a recent in vitro study, heat treat-
ment (85 °C, 15 min) was reported to significantly improve the total
phenolic, flavonoid, tannin and sugar contents in addition to the antiox-
idant activities (DPPH, metal ion chelating ability, H2O2 scavenging, and
FRAP) of three edible Irish brown seaweeds (Laminaria saccharina,
L. digitata and H. elongata) (Rajauria, Jaiswal, Abu-Ghannam, & Gupta,
2010). The spray-dried L/F extract examined in the present study is
composed of polysaccharideswhich contain glucose. During cooking, re-
ducing sugars such as glucose undergo non-enzymatic browning reac-
tions such as the Maillard reaction (Manzocco, Calligaris, Mastrocola,
Nicoli, & Lerici, 2000). The Maillard reaction has been associated with
the formation of brown melanoidins (Maillard reaction products) with
strong antioxidant capacity (Yilmaz& Toledo, 2005). The antioxidant ac-
tivity of the L/F extract increased during cooking as demonstrated by the
significant decrease in lipid oxidation of cooked pork patties, whichmay
be attributed to Maillard reaction products formed during the cooking
process which were not present in the fresh pork patties. Future studies
are necessary to analyse the generation of Maillard reaction products
during the cooking process.

3.3. Microbiology of fresh minced pork

In fresh pork patties, mesophilic and psychrotrophic total viable
counts (TVC) increased during storage ranging from ~3.6 to
9.2 log10 cfu/g and ~5.0 to 9.8, respectively (Table 3). The TVC for
0.01% L/F, 0.1% L/F and 0.5% L/F were similar (P > 0.05) for all treat-
ments, on each storage day, compared to controls indicating that L/F
did not exert any antimicrobial activity in fresh pork patties. Similar
findings were reported by Moroney et al. (2012) where supplementa-
tion of the L/F extract in porcine diets exhibited no effect on microbio-
logical counts in fresh LD muscle.

Results from the present study are in contrast to previously
reported studies where antimicrobial activity of L. digitata was
assessed using in vitro test systems such as the growth inhibition
assay and agar plate diffusion test (Dubber & Harder, 2008). In related
studies, dried U. pinnatifida (3%) and dried H. elongata (5%) added to

beef patties and pork frankfurters, respectively, initially resulted in in-
creased levels of microbial growth compared to controls, presumably
due to the product formulations rather than the seaweed (i.e. lower
salt concentrations). However, trends were not statistically significant
and no antimicrobial properties of the seaweed were detected over
time (López-López, Cofrades, & Jiménez-Colmenero, 2009; López-López
et al., 2010). While many in vitro studies on the bioactive compounds
present in several seaweeds have demonstrated antimicrobial activity
against a number of Grampositive and negative bacteria, no scientific lit-
erature exists demonstrating antibacterial activity of seaweed extracts in
food products (Gupta & Abu-Ghannam, 2011).

3.4. pH, water holding capacity and cook loss of fresh minced pork

The pH of fresh pork patties decreased from ~5.7 to 5.6 over the
14 day storage period and was unaffected by the addition of the L/F
extract. This pH range is comparable to values reported previously
(5.8–5.4) for post-mortem muscle (Faustman & Cassens, 1990). Choi
et al. (2012) reported a significant decrease (P b 0.05) in the pH of
reduced-fat pork patties when powdered L. japonica (1%, 3,% and 5%)
was added due to the presence of acid components such as alginic
acid (pH: 2.3–2.8) in the seaweed extract.

The addition of L/F to fresh pork patties had no significant effect
on the water holding capacity (WHC) values which ranged from
32.3 to 37.8% and 31.5–34.6% on days 2 and 7 of storage, respectively.
Therefore, WHC decreased marginally as a function of storage time
(Table 4). Fleury and Lahaye (1991) demonstrated that the physico-
chemical properties of seaweeds are determined by the chemical
structure of the constituent polysaccharides present in the algae. Pre-
vious studies on physicochemical properties of seaweeds report a
positive correlation between water retention and swelling capacity
(Rupérez & Saura-Calixto, 2001). Therefore, meat products with
added seaweed or seaweed extracts, may have improved water and

Table 2
Effect of L/F extract addition on lipid oxidation (TBARS) of fresh and cooked pork patties stored in 80% O2:20% CO2, and 70% N2:30% CO2, respectively, for up to 14 days at 4 °C.

Treatment Parameter Storage time at 4 °C, days

1 4 7 11 14

Control Fresh 0.062 ± 0.02a 0.134 ± 0.02a 0.119 ± 0.05abc 0.372 ± 0.23abc 0.374 ± 0.12abc

TC† 0.043 ± 0.02a 0.117 ± 0.04a 0.038 ± 0.02b 0.097 ± 0.06b 0.129 ± 0.05b

0.01% L/F 0.059 ± 0.01a 0.139 ± 0.01a 0.129 ± 0.07abc 0.341 ± 0.23abc 0.358 ± 0.13abc

0.1% L/F 0.062 ± 0.02a 0.155 ± 0.04a 0.207 ± 0.14abc 0.467 ± 0.30abc 0.582 ± 0.21abc

0.5% L/F 0.159 ± 0.04b 0.285 ± 0.08b 0.726 ± 0.47c 1.327 ± 0.72c 1.380 ± 0.77abc

ST⁎ 0.090 ± 0.02a 0.116 ± 0.04a 0.282 ± 0.09abc 1.195 ± 0.64c 1.509 ± 0.93c

Control Cooked 1.662 ± 0.07a 1.868 ± 0.29a 1.994 ± 0.36a 2.257 ± 0.06a 2.795 ± 0.01a

0.5% L/F 1.095 ± 0.30b 1.261 ± 0.16b 1.757 ± 0.55a 2.187 ± 0.48a 2.273 ± 0.13b

abcWithin each parameter and storage day, mean values (±standard deviation) in the same column bearing different superscripts are significantly different, P b 0.05.
† Tea catechins (TC) (positive lipid oxidation control), 0.1%.
⁎ Salt control (ST), 0.005% salt.

Table 3
Effect of L/F extract addition on microbial status (mesophilic and psychrotrophic) of
fresh pork patties stored in modified atmosphere packs (80% O2:20% CO2) for up to
12 days at 4 °C.

Treatment Storage time at 4 °C, days

Temp 1 5 8 12

Control 30 °C 5.19 ± 0.08a 6.79 ± 0.37a 8.79 ± 0.59a 9.01 ± 0.46a

0.01% L/F 5.02 ± 0.28 6.84 ± 0.45 8.90 ± 0.61 9.01 ± 0.62
0.1% L/F 5.01 ± 0.24 6.84 ± 0.23 8.82 ± 0.62 8.89 ± 0.74
0.5% L/F 5.16 ± 0.06 6.85 ± 0.22 8.86 ± 0.69 9.22 ± 0.58
Control 4 °C 6.30 ± 0.34a 8.17 ± 0.44a 9.32 ± 0.12a 9.46 ± 0.26a

0.01% L/F 6.26 ± 0.20 8.16 ± 0.55 9.26 ± 0.32 9.31 ± 0.27
0.1% L/F 6.37 ± 0.27 8.19 ± 0.64 9.48 ± 0.18 9.23 ± 0.39
0.5% L/F 6.37 ± 0.26 8.33 ± 0.57 9.63 ± 0.19 9.75 ± 0.09

a Within each parameter and storage day, mean values (±standard deviation) in the
same column are not significantly different, P > 0.05.
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fat binding properties (López-López, Cofrades, & Jiménez-Colmenero,
2009).

Cook loss was unaffected by the addition of the L/F extract and
ranged from30.6 to 32.3% and 29.0–32.6% on days 2 and 7 of storage, re-
spectively (Table 4). In a previous study, the cook loss of reduced-fat
pork patties containing powdered L. japonica (1%, 3,% and 5%) was sig-
nificantly lower than that of the control. Reduced cook loss was attrib-
uted to dietary fibres such as alginate and laminarin, which have high
water holding and binding capacities (Choi et al., 2012). The functional
properties of agar, alginates and carrageenans in food products have
been well documented in the scientific literature. Scientific reports
on laminarin and fucoidan focus primarily on biological activity
(Elleuch et al., 2011; Thebaudin, Lefebvre, Harrington, & Bourgeois,
1997; Venugopal, 2008). The lack of effect of the L/F extract in the
present studymay be due to the low concentration atwhich the extract
was added to the fresh pork patties.

3.5. Texture profile analysis of fresh minced pork

Hardness levels decreased between storage days 2 and 7 for all treat-
ments. General trends indicated that hardness increased with the addi-
tion of L/F in a dose-dependentmanner on day 2 of storage compared to
the controls (Table 5). In general, the addition of various types of fi-
bres (soy, wheat, cereal or fruit) increased hardness of cooked meat
emulsions (Fernández-Ginés, Fernández-Lopez, Sayas-Barberá, &
Pérez-Alvarez, 2005). The hardness of gel/emulsion pork meat
systems and frankfurters increased due to the addition of dried
H. elongata, U. pinnatifida, and P. umbilicalis (2.5 and 5%), and
H. elongata (5.6%), respectively (Cofrades et al., 2008; López-López,
Bastida, Ruiz-Capillas, Bravo, et al., 2009). The L/F extract did not
have a significant effect on springiness or cohesiveness, on either as-
sessment day, relative to the controls. General trends on days 2 and 7
of storage, while not statistically significant, indicated that gumminess
and chewiness parameters in cooked pork patties increased at L/F levels
up to 0.1% (Table 5).

The proportion, composition (soluble and insoluble fractions) and
characteristics (including particle size) of dietary fibre greatly influence

physicochemical properties exerted in meat products (Gómez-Ordóñez
et al., 2010). The texture of pork productsmay be enhanced by seaweed
extracts depending on the amount and type of dietary fibre present in
the extract. Conflicting studies demonstrated no beneficial effects of di-
etary fibre on pork texture (Cofrades et al., 2008; López-López et al.,
2010). The thickening and gelling properties and the water-retention
ability of soluble fibres contribute to the stabilisation of the structure
of foods (dispersions, emulsions and foams) by modifying rheological
properties of the continuous phase. Insoluble fibres can also influence
food texture due to their water-retention ability and swelling proper-
ties (Thebaudin et al., 1997). The direct addition of the L/F extract (com-
posed of 17.1% soluble fibres) at low levels did not significantly affect
the textural parameters of the fresh pork patties in the present study
which may be due to the very low level and type of soluble fibres
added to the fresh pork patties.

3.6. Sensory evaluation of fresh and cooked minced pork

In ‘visual’ sensory analysis of minced pork patties (Table 6), the con-
trol and 0.01% L/F were significantly (P b 0.01) positively correlated to
redness while 0.5% L/F was significantly (P b 0.001) positively correlat-
ed to brownness on day 7 of storage. This is in agreement with instru-
mental ‘a*’ redness values, where a negative effect was exerted by L/F
at the higher concentrations. Similarly, powdered L. japonica (1%, 3,%
and 5%) was found to significantly (P b 0.05) decrease the colour
score of reduced-fat pork patties due to the dark brown colour of the
seaweed powder (Choi et al., 2012). On day 7, 0.01% L/F and the control
were significantly (P b 0.01) positively correlated to purchasing appeal
and overall acceptability while 0.5% L/F was significantly (P b 0.001)
negatively correlated to purchasing appeal and overall acceptability.
Therefore, the ‘visual’ sensory properties of pork pattieswere negatively
affected by the addition of 0.5% L/F extract, but at the lower level (0.01%
L/F), were still acceptable to sensory panellists.

No significant trends were observed for ‘eating quality’ sensory
analysis with the exception of tenderness, which was significantly
(P b 0.05) negatively correlated with 0.5% L/F on day 7 of storage
(Table 6). However, no significant effect on the TPA from the L/F ex-
tract was observed. This indicated that the L/F extract can be incorpo-
rated at low levels (0.01%–0.1%) without detrimentally affecting the
texture. No significant correlations were observed for overall accept-
ability and trends indicated positive directional correlations for
control, 0.01% L/F and 0.1% L/F. In a previously reported study, the
addition of dried U. pinnatifida (3.3%) did not negatively affect the
sensory properties of low-salt and low-fat beef patties in comparison
with the control (López-López et al., 2010). Choi et al. (2012)
reported the addition of powdered L. japonica (1%, 3,% and 5%) to
reduced-fat pork patties demonstrated significantly (P b 0.05) higher
overall acceptability scores indicating foods containing seaweed had
better sensory scores when compared to the controls. In the present
study, sensory panellists were unable to distinguish between the con-
trol and pork patties containing low levels of the L/F extract.

Table 4
Effect of L/F extract addition on cook loss and water holding capacity (WHC) of fresh
pork patties stored in modified atmosphere packs (80% O2:20% CO2) at 4 °C.

Treatment Storage time at 4 °C (d)

Cook loss WHC

2 7 2 7

Control 31.99 ± 0.93a 32.20 ± 0.94a 35.09 ± 1.72a 33.50 ± 3.37a

0.01% L/F 32.29 ± 1.23 32.57 ± 0.58 37.79 ± 1.62 33.87 ± 2.83
0.1% L/F 32.05 ± 0.31 31.95 ± 1.53 36.55 ± 1.82 32.08 ± 1.67
0.5% L/F 31.36 ± 1.53 29.26 ± 1.31 37.26 ± 1.40 34.63 ± 3.60
ST⁎ 30.61 ± 0.77 29.01 ± 4.00 32.27 ± 4.10 31.53 ± 4.72

a Within each parameter and storage day, mean values (±standard deviation) in the
same column are not significantly different, P > 0.05.
⁎ Salt control (ST), 0.005% salt.

Table 5
Effect of L/F extract addition on texture profile analysis (TPA) of fresh pork patties stored in modified atmosphere packs (80% O2:20% CO2) at 4 °C.

Treatment Day Hardness Springiness Cohesiveness Gumminess Chewiness

Control 2 36.56 ± 17.30a 0.86 ± 0.02a 0.55 ± 0.02a 20.12 ± 9.30a 17.12 ± 7.54a

0.01% L/F 38.68 ± 08.80 0.85 ± 0.02 0.55 ± 0.01 21.37 ± 4.81 18.14 ± 3.72
0.1% L/F 52.34 ± 16.00 0.86 ± 0.02 0.55 ± 0.01 28.55 ± 8.31 24.54 ± 6.61
0.5% L/F 44.20 ± 17.03 0.84 ± 0.04 0.56 ± 0.02 24.33 ± 8.90 20.26 ± 7.12
Control 7 27.04 ± 06.62a 0.87 ± 0.02a 0.56 ± 0.02a 15.02 ± 4.03a 13.12 ± 3.84a

0.01% L/F 24.21 ± 06.67 0.87 ± 0.04 0.56 ± 0.01 13.51 ± 3.48 11.62 ± 2.66
0.1% L/F 31.76 ± 10.50 0.85 ± 0.04 0.55 ± 0.02 17.65 ± 5.94 15.15 ± 5.32
0.5% L/F 25.33 ± 02.03 0.87 ± 0.03 0.55 ± 0.02 14.06 ± 1.21 12.20 ± 1.16

a Within each parameter and storage day, mean values (± standard deviation) in the same column are not significantly different, P > 0.05.
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4. Conclusions

Addition of a seaweed extract containing polysaccharides (soluble
dietary fibres) did not enhance quality parameters of the fresh
minced pork patties. The L/F extract exerted a pro-oxidant effect on
lipid oxidation over time attributed to the pro-oxidant components
(sodium, copper and iron) present in the extract. Decreased lipid ox-
idation observed in cooked pork patties containing the L/F extract
(0.5%) provided evidence that heating can enhance the antioxidant
capacity of seaweed extracts in muscle foods and improve quality pa-
rameters possibly do to the formation of brown melanoidins (Maillard
reaction products) with antioxidant functionality. The L/F extract at a
level of 0.01% can be incorporated without adversely affecting the
colour, lipid oxidation, texture or sensorial acceptance of pork patties.
Further research is necessary to examine the effects of more refined or
purified laminarin and fucoidan extracts in meat products.
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Abstract: The anti-oxidative potential of laminarin (L), fucoidan (F) and an L/F  

seaweed extract was measured using the DPPH free radical scavenging assay, in 25% pork 

(longissimus thoracis et lumborum (LTL)) homogenates (TBARS) (3 and 6 mg/mL) and in 

horse heart oxymyoglobin (OxyMb) (0.1 and 1 mg/mL). The DPPH activity of fresh and 

cooked minced LTL containing L (100 mg/g; L100), F100 and L/F100,300, and bioaccessibility 

post in vitro digestion (L/F300), was assessed. Theoretical cellular uptake of antioxidant 

compounds was measured in a transwell Caco-2 cell model. Laminarin displayed no 

activity and fucoidan reduced lipid oxidation but catalysed OxyMb oxidation. Fucoidan 

activity was lowered by cooking while the L/F extract displayed moderate thermal 

stability. A decrease in DPPH antioxidant activity of 44.15% and 36.63%, after 4 and 20 h 

respectively, indicated theoretical uptake of L/F antioxidant compounds. Results highlight 

the potential use of seaweed extracts as functional ingredients in pork. 

Keywords: laminarin; fucoidan; seaweed extract; in vitro digestion; bioaccessibility; pork 
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1. Introduction 

Seaweed polysaccharides (laminarin and fucoidan) isolated from the cell walls of brown seaweed 

(Laminaria digitata) possess immunomodulatory, anti-inflammatory, antiviral, antitumor, antithrombotic 

anticoagulant and antioxidant bioactivities [1,2]. Structurally, laminarin is composed of β-(1,3)-linked 

glucose containing large amounts of sugars and a low fraction of uronic acids. Two types of polymeric 

chains are present in laminarin, G-chains with glucose at the end and M-chains with mannitol as the 

terminal reducing end [3]. The antioxidant activity of laminarin has been linked to molecular structure, 

degree and length of branching and the monosaccharide constituents [4]. The structure of fucoidan 

consists mainly of α(1,3)-linked L-fucopyranose residues with sulphates at the C-2 position [5]. Distinct 

conclusions regarding chemical structures of fucoidans are often difficult to formulate due to structural 

heterogeneity and lack of regularity in fucoidan molecules [6]. Sulphate content, degree of sulphation 

and molecular weight are often attributed as factors influencing the antioxidant activity of fucoidan [7]. 

A wide range of analytical techniques (e.g., HPLC, ATR-FTIR and NMR spectroscopy) may be 

used to characterise and quantify structurally complex polysaccharides, such as laminarin and 

fucoidan, present in seaweeds [8]. Such techniques can involve detailed and time consuming extraction, 

preparation and sample clean-up procedures, depending on the parent seaweed material or the matrix in 

which the compounds of interest (polysaccharides) are contained [9]. In vitro antioxidant assays (e.g., 

FRAP, ABTS, ORAC and DPPH free radical scavenging activities) are frequently used to assess the 

antioxidant activity and potency of plant extracts [10]. The DPPH assay (based on a quick electron 

transfer reaction, followed by a slower hydrogen transfer reaction) is a simple, rapid, sensitive and 

reproducible index of antioxidant activity [11]. DPPH free radical scavenging activity of seaweed 

extracts, including laminarin and fucoidan, has been reported for a number of seaweed species [11,12]. 

The addition of antioxidant compounds to muscle foods (via the animals’ diet or direct addition) in 

order to enhance meat quality and shelf-life has attracted much research attention in recent years. 

Previous research indicated that functional ingredients, such as laminarin and fucoidan, have beneficial 

effects pre-(animal health) [13] and post-slaughter (meat quality) [14]. Moroney et al. [15] reported that 

the addition of seaweed extracts, containing laminarin and fucoidan, to pig diets, resulted in lower levels of 

lipid oxidation in fresh pork steaks. However, direct addition of the same seaweed extract, promoted 

lipid oxidation and decreased the surface redness of fresh pork patties [16]. Catalysis of lipid oxidation 

was linked to the presence of salt and minerals in the seaweed extract. Increased discolouration 

(oxymyoglobin oxidation) was attributed to the effect of oxidising lipids and potential interactions 

between seaweed polysaccharides and oxymyoglobin. The anti- and pro-oxidative activity of laminarin 

and fucoidan on lipid and oxymyoglobin oxidation processes will be further examined in the present study. 

The chemical structure of plant cell wall polysaccharides (e.g., cellulose, pectin substances, inulin 

and gums) and other associated non-carbohydrate components (i.e., resistant protein) can be sensitive 

to chemical, mechanical, thermal and enzymatic processing [17]. Therefore the consequence of cooking on 

the potential bioactivity of laminarin and fucoidan in a meat matrix should be considered when formulating 

a functional meat product [18]. Cooking may sometimes improve the antioxidant activity of plant 

based materials due to the formation of other antioxidant components such as Maillard reaction 

products (MRPs) [19]. MRPs have been reported to possess antiradical activity including inhibition of 

the DPPH, oxygen peroxyl and hydroxyl radicals as well as copper and Fe2+ chelators [20]. In a 
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previous study, Moroney et al. [16] reported a reduction in lipid oxidation of cooked minced pork 

patties containing laminarin and fucoidan which was attributed partially to the cooking process and the 

formation of MRPs which were not present in the fresh pork patties. 

The digestion process may influence the bioactivity and bioaccessibility of laminarin and fucoidan. 

Bioaccessibility is defined as the fraction of a compound transferred from the food matrix during 

digestion, and thus made accessible for intestinal absorption and cellular uptake [21]. In vitro digestion 

models provide a useful alternative to animal and human models and simulate the digestion process of 

the human gastrointestinal tract (GIT). Cell culture models, in particular the Caco-2 cell culture model, 

have been widely utilised as part of in vitro digestion models as a predictive tool for the absorption of 

bioactive compounds from foods [22]. 

Studies on the anti-oxidative potential of seaweed polysaccharides in meat products are limited and 

merit investigation. Furthermore, the literature lacks information regarding the bioaccessibility of 

seaweed polysaccharides in meat products after cooking and post digestion. The initial objective of this 

study was to profile the antioxidant activity of laminarin (L), fucoidan (F) and a seaweed extract 

containing L and F, using the DPPH free radical scavenging assay. The antioxidative potential of L, F 

and L/F was further examined in fresh pork longissimus thoracis et lumborum (LTL) homogenates and 

in commercial horse heart oxymyoglobin. The DPPH radical scavenging and thermal stability of L, F 

and L/F in cooked pork patties was assessed. Finally cooked pork patties were subjected to an in vitro 

digestion procedure to determine the effects of digestion on the antioxidant potential of L, F and L/F 

and L/F digestates were examined in a transwell Caco-2 cell model to assess theoretical cellular uptake 

of antioxidant components of L/F. 

2. Results and Discussion 

2.1. Free Radical Scavenging Activity of Seaweed Polysaccharides (L, F and L/F) 

In general, the DPPH free radical scavenging activity of seaweed polysaccharides increased over 

20 h and followed the order: Trolox > F1 > L/F3 > L/F1 > L10 ≈ L1 (Table 1). DPPH free radical 

scavenging activity of L/F increased as a function of concentration. The DPPH free radical scavenging 

activities reported for L1 and L10 were comparable to previously reported values (1.4%–5.3%) for laminarin 

extracted from Laminaria digitata at concentrations ranging from 0.125 to 1.0 mg/mL [12]. The DPPH 

free radical scavenging activity of F1 (66.13%) after 1 h in the present study was similar to the 

inhibition of the DPPH radical (55.22%) after 30 min by fucoidan (1 mg/mL) from Sigma reported by 

Mak et al. [7]. 

Limited research suggests that carbohydrate polymers such as β-glucans (laminarin) possess free 

radical scavenging activity, however the addition of high levels of β-glucans is often necessary before 

radical scavenging activity is observed [23,24]. At concentrations of 20–200 mg/mL (higher than those 

used in the present study) a 1,3 β-D-glucan enriched extract from cereal grains demonstrated 25%–80% 

inhibition of the DPPH radical [23]. The mechanism of antioxidant action of β-D-glucans against free 

radicals is still not well understood, but a number of theories exist [25]. Tsiapali et al. [24] reported 

enhanced antioxidant activity of laminarin polymers over monomeric units due to greater ease of 

abstraction of anomeric hydrogen from one of the internal monosaccharide units rather than from the 
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reducing end. In the present study, laminarin exhibited weak radical scavenging activity which may be 

due to the level examined. 

Table 1. Free radical scavenging activity (DPPH) of L, F and L/F for up to 20 h at ~20 °C. 

Incubate 
Time, h 

1 4 20 

L1 * 1.09 ± 0.92 ab 1.39 ± 0.96 ab 1.64 ± 1.30 ab 

L10 1.55 ± 1.21 b 2.72 ± 1.77 b 3.16 ± 2.72 b 

F1 66.13 ± 0.32 c 76.48 ± 0.30 c 90.68 ± 0.55 c 

L/F1 35.43 ± 2.04 d 47.35 ± 1.79 d 69.51 ± 1.37 d 

L/F3 56.18 ± 1.01 e 68.40 ± 0.89 e 78.41 ± 0.21 e 

Trolox 95.89 ± 0.08 f 95.92 ± 0.14 f 95.76 ± 0.48 f 

* Subscripts 1, 3 and 10 denote concentrations in mg/mL; a–f Within each storage time, mean values  

(± standard deviation) in the same column bearing different superscripts are significantly different, p < 0.05. 

For some antioxidants, such as Trolox, the reaction with DPPH is rapid while other compounds may 

react more slowly [26]. The ability of seaweed extracts to quench free radicals is known to take place 

over longer periods of time compared to rapid acting synthetic antioxidants such as butylated 

hydroxyanisole (BHA) [27,28]. Slower reacting compounds are hypothesised to have a more complex 

reaction mechanism involving one or more secondary reactions in quenching the DPPH radical [10]. In 

the present study, after 20 h, the DPPH free radical scavenging activity of F1 was equivalent (although 

statistically lower) to the positive control (Trolox), and significantly (p < 0.05) higher than both L1 and 

L10. Therefore the ability of an antioxidant to reduce and quench free radicals over a longer period of 

time may have benefits for extending the shelf-life of processed foods [28]. 

2.2. Effect of Seaweed Polysaccharides on Lipid Oxidation in Pork Muscle Model Systems 

In vitro antioxidant assays (e.g., the DPPH assay) highlight the potential antioxidant activities  

of compounds but may not accurately predict activity in complex test systems such as muscle foods.  

To further investigate antioxidant activities of L, F and L/F, pork meat homogenates were subjected to 

iron/ascorbate (FeCl3/sodium ascorbate)-induced lipid oxidation. Compared to the control, after 4 h at  

4 °C, lipid oxidation significantly increased (p < 0.05) in the pork meat homogenates with the addition 

of pro-oxidants (Figure 1). No difference was observed for L3 and L6 compared to the control. 

Similarly no inhibition of lipid oxidation by laminarin, at levels comparable to those in the present 

study (3 mg/mL), was observed in a linoleic acid emulsion system [25]. F3 and F6 significantly 

decreased (p < 0.05) levels of lipid oxidation in pork meat homogenates. Trends indicated that levels 

of lipid oxidation in L/F3 and L/F6 were lower than the control (with pro-oxidants) although results 

were not statistically significant. In a previous study, Moroney et al. [16] reported that salt and 

minerals, present in the L/F extract, may have promoted lipid oxidation in fresh pork patties. Minerals 

and salt present in L/F3 and L/F6 may have counteracted the antioxidant activity of other constituents 

in the extract, thus impeding ability to significantly enhance lipid stability in the pork meat 

homogentates (Figure 1). 
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Structurally laminarin does not contain sulphate groups, which reportedly increases the antioxidant 

activity of fucoidan [29]. Sulphate groups can enhance the steric hindrance between polymer chains in 

polysaccharides leading to a more ordered and expanded conformation thus improving homogeneity in 

aqueous solution [30]. Lower molecular weight polysaccharides are often linked to increased free radical 

scavenging ability, presumably due to a non-compact structure which may allow more available sulphate 

and hydroxyl groups react with free radicals [9]. However, this was not observed for L in the present 

study indicating that even at low molecular weight, the structure in the presence of pork meat was 

unable to inhibit lipid oxidation, similar to the lack of DPPH free radical scavenging activity observed in 

Section 2.1 (Table 1). 

 

Figure 1. Lipid oxidation in 25% longissimus thoracis et lumborum (LTL) pork muscle 

homogenates following the addition of L, F or L/F and storage for up to 4 h at 4 °C.  

* Subscripts 3 and 6 denote concentrations in mg/mL. abcd Mean values (± standard deviation 

error bars) bearing different superscripts are significantly different, p < 0.05. 

In general, it is accepted that natural antioxidants scavenge free oxygen-centered radicals via  

two major mechanisms, hydrogen atom transfer (HAT) reactions and electron transfer (ET) reactions. 

Yan et al. [30] suggested the HAT reaction is more likely to occur in neutral polysaccharides, such as 

laminarin, while the ET is the probable mechanism in acidic polysaccharides, like fucoidan where the 

negative charge of the sulphate groups plays a large part in the radical scavenging activity. In the present 

study, fucoidan is most likely responsible for the antioxidant activity observed by the L/F extract in the 

pork meat homogenates presumably due to ET reactions between the sulphate groups and the free 

radicals in the pork meat homogenates. 

2.3. Effect of Seaweed Polysaccharides on Oxymyoglobin Oxidation 

Oxymyoglobin oxidation (represented by a reduction in OxyMb, %) increased during storage for up 

to 8 days at 4 °C (Table 2). L0.1 and L1 had no influence on OxyMb oxidation, however F0.1 and F1 
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significantly (p < 0.05) enhanced OxyMb oxidation compared to the control in a dose dependant 

manner on days 4 and 8 of storage. Similarly, a significant increase (p < 0.05) in OxyMb oxidation 

was observed for L/F0.1 and L/F1. The presence of metmyoglobin is characterised by an increased 

absorption at ~628 nm [31] which is evident in the spectral scan for OxyMb alone and OxyMb + F1 

(Figure 2). At the wavelengths examined, no spectral shift in the presence of F1 was observed. 

Table 2. Oxymyoglobin (OxyMb) oxidation (represented by a reduction in OxyMb) 

following the addition of L, F or L/F and storage for up to 8 d at 4 °C.  

Incubate 
time, d 

0 4 8 

Control 76.53 ± 2.28 a 59.92 ± 2.30 a 54.46 ± 2.02 a 

L0.1 * 76.57 ± 2.31 a 59.68 ± 2.14 ab 54.00 ± 2.50 a 

L1 76.59 ± 2.73 a 58.11 ± 3.12 abc 52.51 ± 2.75 a 

F0.1 74.73 ± 2.54 ac 53.44 ± 2.44 bd 45.42 ± 2.56 b 

F1 67.55 ± 2.50 b 32.95 ± 2.00 e 21.71 ± 1.34 c 

L/F0.1 74.93 ± 2.06 ad 52.91 ± 2.44 cd 44.95 ± 2.82 b 

L/F1 69.03 ± 2.78 bcd 39.01 ± 1.90 e 28.78 ± 2.25 d 

* Subscripts 0.1 and 1 denote concentrations in mg/mL; abcde Within each storage time, mean values  

(± standard deviation) in the same column bearing different superscripts are significantly different p < 0.05.  

 

Figure 2. Absorbance spectra of oxymyoglobin (OxyMb) alone and following the addition 

of F1 (* Subscript 1 denotes concentration in mg/mL) and storage for up to 8 days at 4 °C. 

The exact mechanism by which fucoidan promotes OxyMb oxidation is unclear. The ability of 

fucoidan to bind to proteins such as antithrombin (a glycoprotein) and bovine serum albumin (a 
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globular protein) has previously been linked to molecular weight as well as the sulphation patterns of 

the polysaccharide [32–34]. Generally, interactions between anionic polysaccharides and positively 

charged OxyMb have been reported to be electrostatic in nature due to opposing charges [35].  

Similarly, Satoh et al. [36] demonstrated that oxidation of OxyMb was initiated via nucleophilic 

attack at the iron (II) centre of OxyMb by a water molecule with strong proton assistance from the 

distal histidine, or a hydroxide anion (OH−). These reactions can cause irreversible displacement of 

bound dioxygen from OxyMb resulting in the formation of ferric metmyoglobin and generation of the 

superoxide anion. In the present study, the anionic sulphate groups of fucoidan potentially enhanced 

the oxidation of OxyMb through the nucleophilic displacement mechanism described above.  

2.4. Effect of Cooking on the DPPH Free Radical Scavenging Activity of Seaweed Polysaccharides in 

Pork Meat 

Statistical analysis indicated that the DPPH free radical scavenging of L, F and L/F in the presence 

of fresh minced LTL (F100 > L/F300 ≈ L/F100 ≈ L100) followed a similar pattern to the DPPH free radical 

scavenging activities of seaweed polysaccharides reported in Section 2.1. L100 DPPH free radical 

scavenging was similar to the control before and after cooking (Figure 3). The DPPH free radical 

scavenging activity of F100 significantly (p < 0.05) decreased after cooking. Thermal processing is 

known to modify the physicochemical properties of plant cell wall polysaccharides [17]. The DPPH 

free radical scavenging activities of fresh and cooked L/F100 and L/F300 were similar indicating 

moderate thermal stability of the L/F extract. Similarly, Moroney et al. [14] reported low to  

moderate thermal stability of L/F in cooked minced pork patties from pigs fed the L/F extract for  

3 weeks pre-slaughter. 

 

Figure 3. Free radical scavenging activity (DPPH) of L, F or L/F in fresh and cooked 

minced longissimus thoracis et lumborum (LTL) pork muscle stored for 20 h at ~20 °C. 

* Subscripts 100 and 300 denote concentrations in mg/g. ab Within each treatment, mean 

values (± standard deviation error bars) bearing different superscripts are significantly 

different, p < 0.05. Comparing wx fresh and yz cooked LTL pork muscle treatments to their 

respective controls, mean values bearing different superscripts are significantly different,  

p < 0.05. ( ), fresh; ( ), cooked. 
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L/F300 significantly (p < 0.05) enhanced the DPPH free radical scavenging activity of cooked 

minced LTL compared to the control (Figure 3). Similarly, Prabhasankar et al. [37] reported an 

increase in DPPH free radical scavenging activity of cooked pasta with the addition of a brown seaweed 

(Undaria pinnatifida) to uncooked pasta. The formation of Maillard reaction products (MRP) and other 

novel antioxidant compounds such as mycosporine-like amino acids during heat treatment of seaweed 

extracts has been reported [38–40]. Additionally, MRP have proven effective inhibitors of lipid oxidation 

in cooked minced pork patties [41]. In the present study, MRP formed during heating of L/F300 most 

likely enhanced the DPPH free radical scavenging of cooked minced LTL.  

2.5. DPPH Free Radical Scavenging Activity of Seaweed Polysaccharides in Pork Meat Following  

in Vitro Digestion 

During the digestion procedure, cooked minced LTL from each treatment was subjected to pH 

changes and enzymatic reactions which resulted in increased (~30%–44%) DPPH free radical 

scavenging activities in digestates compared to undigested aqueous fractions (data not shown). The 

DPPH free radical scavenging activity of the control post digestion increased from 14.4% to 44.8% and 

was attributed to the presence of compounds such as peptides released from the pork meat during the in 

vitro digestion procedure. Escudero et al. [42] reported 51 different peptides were released from pork meat 

(longissimus dorsi) following in vitro digestion. Additionally, peptides obtained from animal sources 

such as porcine myofibrillar proteins have demonstrated DPPH free radical scavenging activity [43–45]. 

Data from each treatment (L100, F100, L/F100 and L/F300) were adjusted for the meat control to estimate 

the antioxidant activity due to the seaweed polysaccharides post digestion (Figure 4).  

The DPPH free radical scavenging activity of digested L100 and L/F100 were similar (Figure 4). 

Laminarin is resistant to digestion in the upper GIT including acidic and enzymatic hydrolysis [46]. 

Salyers et al. [47] established two different types of enzymes (laminarases and β-glucosidases) were 

essential to fully degrade laminarin and were only synthesised after 4–6 h of incubation in the presence 

of the inducer. In the present study, the lack of suitable enzymes to break down laminarin in the in vitro 

digestion model used may explain the lack of enhanced antioxidant activity post digestion. 

 

Figure 4. Free radical scavenging activity (DPPH) of L, F or L/F in digested cooked 

minced longissimus thoracis et lumborum (LTL) pork muscle stored for 20 h at ~20 °C.  

* Subscripts 100 and 300 denote concentrations in mg/g. abc Mean values (± standard 

deviation error bars) bearing different superscripts are significantly different, p < 0.05. 
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F100 and L/F300 significantly (p < 0.05) enhanced the DPPH free radical scavenging activity of 

cooked minced LTL post digestion. A few fucan-degrading enzymes have been obtained from marine 

bacteria and molluscs, however complete enzymatic breakdown has not been reported. The presence of 

sulphate groups attached to fucoidan has been postulated as a reason for resistance to enzymatic 

breakdown during digestion. The retention of the sulphate groups during digestion results in high ionic 

exchange capacities such as the binding of bile salts and scavenging of free radicals throughout the 

GIT before potential absorption [48]. The enhanced DPPH radical scavenging activity of F100 and 

L/F300 in cooked minced LTL, in the present study, may be due to the retention of the sulphate groups 

throughout the in vitro digestion procedure.  

The DPPH free radical scavenging activity of digested L/F300 was significantly (p < 0.05) greater 

than F100. Fucoidan may be partially responsible for the scavenging activity of the extract. The 

synergistic effect between components in the L/F extract, such as protein and mannitol, could have 

contributed to the observed enhanced free radical scavenging activity in cooked minced LTL post 

digestion. Antioxidant activity, post-digestion, of bioactive peptides extracted from seaweeds has been 

reported previously [49]. Mannitol is frequently considered as a reference for carbohydrate-type 

antioxidants due to its established scavenging abilities [24]. Additionally, MRPs formed during 

cooking may have enhanced the DPPH free radical scavenging activity of L/F300 post digestion. 

2.6. Bioaccessibility of Seaweed Polysaccharides in Pork Meat after Incubation with Caco-2 Cells 

The aqueous fraction of the control and L/F300 digestates was incubated with Caco-2 cells for 4 and 

20 h to determine the bioaccessibility of L/F post digestion. The DPPH free radical scavenging activity 

of L/F300, post digestion, was 56.49% higher than the meat control. Following incubation of the control 

and L/F300 digestates with Caco-2 cells for 4 and 20 h, the DPPH free radical scavenging activity of 

L/F300 was 12.34% and 19.85% higher than the meat control, respectively. The reduction in the DPPH 

free radical scavenging activity indicated theoretical uptake of some compounds with antioxidant 

activity. Therefore theoretical cellular uptake of seaweed polysaccharides was 44.15% and 36.63% 

(DPPH free radical scavenging activity) after incubation with Caco-2 cells at 4 and 20 h, respectively. 

Similarly, Soler-Rivas et al. [50] reported a decrease in ABTS free radical activity after digested 

grilled mushrooms were incubated with Caco-2 cells. Previously reported studies indicated that seaweed 

polysaccharides can be, to some extent, absorbed into the blood stream post digestion; however metabolism 

of these components after absorption has not been established [1]. Antioxidant compounds from L/F300 

not absorbed through the intestinal wall would potentially be available to scavenge free radicals or be 

fermented by colonic bacteria and contribute to the overall antioxidant defence system of the GIT [1,51]. 

Further research is necessary to determine the fate of antioxidant compounds after absorption. 

3. Experimental Section  

3.1. Reagents 

All chemicals used were “AnalaR” grade obtained from Sigma-Aldrich Ireland Ltd., Arklow, Co. 

Wicklow, Ireland and Merck KGaA, Darmstadt, Germany. Tissue culture plastics were supplied by 

Sarstedt, Wexford, Ireland and the Caco-2 cell line (Human Caucasian colon adenocarcinoma) were 
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from the European Collection of Animal Cell Cultures, Wiltshire, UK. Fresh pork meat (longissimus 

thoracis et lumborum (LTL)) was supplied by Ballyburden Meat Processors, Ballincollig, Co. Cork, 

Ireland. Laminarin (L) (MW = 13 kDa) and fucoidan (F) (MW = 57 kDa) standards from Sigma-Aldrich 

were isolated from Laminaria digitata and Fucus vesiculosus, respectively. A spray-dried seaweed 

extract (L/F), containing laminarin and fucoidan was manufactured by Bioatlantis, Tralee, Co. Kerry, 

Ireland. The extract isolated from brown seaweed (Laminaria digitata) was prepared using an acid 

extraction technique, details of which are industrially-confidential. The extract contained 0.64% protein, 

9.3% laminarin, 7.8% fucoidan, and 8.3% mannitol and further details are reported in Moroney et al. [15]. 

3.2. Measurement of the DPPH Free Radical Scavenging Activities of Seaweed Polysaccharides  

(L, F and L/F) 

The 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity of L, F and L/F was 

measured using the method of Qwele et al. [52] with slight modifications. DPPH (0.2 mM, 3 mL) in 

methanol was added to 3 mL of L (1 and 10 mg/mL; L1 and L10), F (1 mg/mL; F1) and L/F (1 and 

3 mg/mL; L/F1 and L/F3). Trolox C (1 mg/mL; Trolox), was used as a positive control. Tubes were 

mixed and incubated for up to 20 h at room temperature (~20 °C) in the dark. The assay control 

contained 3 mL distilled water and 3 mL of DPPH solution. Absorbance measurements were recorded 

spectrophotometrically (Cary 300 Bio, UV-Vis spectrophotometer, Varian Instruments, Palo Alto, CA, 

USA) against a distilled water blank after 1, 4 and 20 h at 517 nm. The DPPH free radical scavenging 

activity, expressed as a percentage of the assay control was calculated as follows: 

% inhibition of DPPH = [1 − (absorbance of sample/absorbance of assay control)] × 100 (1) 

3.3. The Effect of Seaweed Polysaccharides on Lipid Oxidation in Pork Muscle Homogenates 

Pork homogenates (25% w/v) were prepared by homogenising LTL (70 g) in buffer (210 mL) (0.12 

M KCL 5 mM histidine, pH 5.5) on ice using an Ultra-turrax T25 homogeniser. L, F and L/F were 

solubilised in distilled water and added to LTL homogenates at final concentrations of 3 and 6 mg/mL 

(L3, L6, F3, F6, L/F3 and L/F6) homogenate. Lipid oxidation in muscle homogenate samples (20 g) held 

at 4 °C was initiated by the addition of 45 μM FeCl3/sodium ascorbate (1:1). Muscle homogenates with 

and without FeCl3/sodium ascorbate and without antioxidants (L, F and L/F) were run simultaneously 

as controls with each experiment. Lipid oxidation measurements were measured after 4 h in samples 

held at 4 °C. 

Measurement of Lipid Oxidation in Pork Muscle Homogenates 

A modification of the 2-thiobarbituric acid (TBA) assay of Siu & Draper [53] was used to measure 

lipid oxidation in pork muscle (LTL) homogenates. Homogenate samples (4 mL) were added to 4 mL 

10% trichloroacetic acid (TCA) and centrifuged (Beckman J2-21, Beckman Instruments Inc., Brea, 

CA, USA) at 6160× g for 15 min at 4 °C. Following centrifugation, the supernatant was filtered 

through Whatman No. 1 filter paper. In a screw cap test tube, the clear filtrate (4 mL) was added to 0.06 M 

TBA reagent (1 mL) and incubated at 80 °C for 90 min. The absorbance of the resulting coloured 

complex was measured using a spectrophotometer (Cary 300 Bio) at 532 nm against a blank 
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containing buffer (2 mL, 0.12 M KCL 5 mM histidine, pH 5.5), 10% TCA (2 mL) and 0.06 M TBA 

reagent (1 mL). Results were expressed directly as absorbance values at 532 nm. 

3.4. The Effect of Seaweed Polysaccharides on Oxymyoglobin Oxidation 

3.4.1. Preparation of Commercial Oxymyoglobin 

Commercial horse heart oxymyoglobin (OxyMb) was prepared according to a modification of the 

method of Brown & Mebine [54]. Metmyoglobin (MetMb) (0.06 g) was dissolved in ice-cold distilled 

water (2 mL) to a concentration of 30 mg/mL and reduced to OxyMb by the addition of sodium 

dithionite at 1 mg/mL. To remove excess dithionite, OxyMb solution (2 mL) was applied to a glass 

column (2 cm i.d. × 25 cm) containing 10 g of mixed bed ion exchange resin (Amberlite MB-1A) and 

eluted from the column with approximately 20 mL cold distilled water. The OxyMb solution was 

passed through the column three times to reduce the conductivity to that of distilled water and was 

adjusted to a final volume of 50 mL with double strength buffer (300 mM KH2PO4-KOH, pH 5.5). The 

concentration of OxyMb in the final solution was calculated from its absorbance value at 525 nm divided 

by a millimolar extinction coefficient of 7.6 mM−1·cm−1 [55]. 

3.4.2. Effect of Seaweed Polysaccharides on Oxymyoglobin Oxidation 

Incubates (7 mL) containing OxyMb (~1 mg/mL) and L, F and L/F at two levels (0.1 and 1 mg/mL; 

L0.1, L1, F0.1, F1, L/F0.1 and L/F1) in 150 mM KH2PO4-KOH, pH 5.5, were prepared. Distilled water 

was used to prepare seaweed polysaccharide solutions (20 mg/mL). Additions to each OxyMb incubate 

were at a final concentration of 5% (v/v). Incubates were held at 4 °C and OxyMb oxidation was 

measured on days 0, 4 and 8 of storage.  

Following centrifugation at 6160× g for 10 min at 4 °C, the absorbance spectra of the incubates 

(2 mL) containing commercial OxyMb were measured on a spectrophotometer (Cary 300 Bio) and 

spectral scans were recorded from 750 to 500 nm. The relative proportion of OxyMb (% of total 

myoglobin) was calculated using absorbance measurements at selected wavelengths (572, 565, 545 

and 525 nm) as described by Krzywicki [55].  

3.5. Effect of Cooking on DPPH Free Radical Scavenging Activity of Seaweed Polysaccharides in 

Pork Meat 

Fresh minced LTL was assigned to one of five treatments: untreated pork (Control), L (100 mg/g 

pork; L100), F (100 mg/g; F100), L/F (100 mg/g; L/F100) and L/F (300 mg/g; L/F300). The levels of L, F 

and L/F added to fresh minced LTL were based on the DPPH free radical scavenging activities of the 

seaweed polysaccharides determined in Section 2.2. L, F and L/F were dissolved in water, immediately 

added to fresh minced LTL (5% v/w) and mixed vigorously. Minced LTL (1 g portion) from each 

treatment was retained for measurement of DPPH free radical scavenging activity of fresh minced LTL 

prior to cooking. The remaining fresh LTL (5 g portions) of each treatment were placed on aluminium 

foil lined trays and cooked at 180 °C for 5 min 30 s in a fan-assisted convection oven (Zanussi 

Professional, Model 10 GN1/1, Conegliano, Italy) until an internal temperature of 72 °C was reached. 
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Fresh and cooked minced LTL (1 g) were homogenised in 0.05 M phosphate buffer (9 mL), pH 7, 

using an Ultra Turrax T25 homogeniser and homogenates were centrifuged (Beckman J2-21) at 7800× g 

for 10 min at 4 °C. The supernatant fraction obtained (fresh/cooked minced LTL) was used for the 

measurement of the DPPH free radical scavenging activity [52]. DPPH (0.2 mM, 3 mL) prepared in 

methanol was added to 0.3 mL supernatant and 2.7 mL distilled water. The mixture was vortexed and 

left to stand at room temperature (~20 °C) in the dark. The assay control contained 0.3 mL phosphate 

buffer and 2.7 mL distilled water and 3 mL of DPPH solution. The absorbance of the solution was 

measured against a distilled water blank after 1, 4 and 20 h at 517 nm. The scavenging activity of the 

pork meat against the DPPH radical before and after cooking was expressed as a percentage of the 

assay control and calculated as: 

% inhibition of DPPH = [1 − (absorbance of sample/absorbance of assay control)] × 100 (2) 

3.6. Effect of in Vitro Digestion on the DPPH Free Radical Scavenging Activity of Seaweed 

Polysaccharides in Cooked Pork Meat 

The in vitro digestion procedure was adapted from that previously described by Daly et al. [56]. All 

experimental work was carried out in UV-light free conditions to reduce the possible photo-decomposition 

of L, F and L/F present in the cooked minced LTL. Briefly, cooked minced LTL (1 g) from each 

treatment were weighed into 100 mL plastic tubes and homogenized using an Ultra Turrax T25 

homogeniser at 24,000 rpm for 10 s in 8 mL Hanks Balance Salts Solution (HBSS) containing BHT. 

HBSS (5 mL) was slowly pipetted down the homogeniser to rinse remaining residue into the plastic 

tubes. The homogenates were transferred into amber bottles (rinsed twice using 5 mL HBSS). In order 

to mimic the gastric phase of digestion, pepsin (1 mL) (0.04 g/mL in 0.1 N HCl) and HBSS (2 mL) 

was added and the pH was adjusted to 2 using 1 M HCl. Oxygen was displaced by blowing nitrogen 

over the samples for 5 s. Samples were then incubated at 37 °C for 1 h in an orbital shaking (95 rpm) 

water bath (Grant OLS200, Keison Products; Essex, UK).  

After gastric digestion, the pH was increased to 5.3 using sodium carbonate (0.9 M NaHCO3) 

followed by the addition of 200 μL bile salts (1.2 mg/mL glycodeoxycholate, 0.8 mg/mL taurocholate and 

1.2 mg/mL taurodeoxycholate) and 100 μL pancreatin (0.08 g/mL HBSS). Subsequently, the pH was 

increased to 7.4 using NaOH, oxygen was displaced by nitrogen and samples were incubated at 37 °C 

in the orbital shaking water bath for a further 2 h. Following intestinal digestion, the digested minced 

LTL (digestates) from each treatment were centrifuged (Beckman J2-21) at 7800× g for 10 min at 

4 °C. Undigested minced LTL samples were diluted using HBSS to the same final volume as the 

digestates and subsequently centrifuged at 7800× g for 10 min at 4 °C.  

The supernatant (aqueous fractions) of the undigested minced LTL and digestate samples were 

frozen at −80 °C until required for measurement of DPPH free radical scavenging activity (described 

in Section 3.5). The assay control contained 0.3 mL HBSS buffer and 2.7 mL distilled water and 3 mL 

of DPPH solution. The absorbance of the solution was measured against a distilled water blank after 1, 4 

and 20 h at 517 nm. The scavenging activity of the pork meat against DPPH radical post digestion was 

corrected for the meat control and expressed as: 

% inhibition of DPPH = [(1 − (Absample/Abac)) × 100] − [(1 − (Abmeatcontrol/Abac)) × 100] (3) 
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where Absample = absorbance of sample; Abac = absorbance of assay control; Abmeatcontrol = absorbance 

of meat control. 

3.7. Bioaccessibility and Theoretical Cellular Uptake of the Aqueous Fraction of Digested  

Minced LTL 

Caco-2 cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM), containing 10% 

(v/v) foetal bovine serum (FBS) and 1% (v/v) non-essential amino acids. Cells were grown at 37 °C 

/5% CO2 in a humidified incubator and were cultured with 0.5% Penicillin-Streptomycin (5000 U/mL). 

Cultures of Caco-2 cells were used between passages 46–51. To establish the Caco-2 intestinal model, 

the cells were seeded at a density of 6 × 104 cells cm−2 on a transwell plate (12-well plate, 22 mm 

diameter, 0.4 µm pore size membrane). Media was changed every 2–3 days and experiments were 

performed when monolayers were 17–20 days post-confluency. The aqueous fraction of the digestates 

(control and L/F300) (125 µL) were diluted to a final volume of 500 µL with serum free media and added 

to the top chamber of the transwell plate. Serum free media (1 mL) was added to the basolateral 

chamber and the cells were incubated for 4 and 20 h. Preliminary work showed that the aqueous 

fraction of the digestates was not toxic to the cells (data not shown). The transepithelial electrical 

resistance (Millicell-ERS, Millipore, Cork, Ireland) was measured before and after the addition of the 

aqueous fraction of the digestates to ensure the monolayer remained intact. The media from the 

basolateral chamber was then harvested for the measurement of the DPPH free radical scavenging 

activity (see Section 3.5). 

The assay control contained 0.3 mL serum free media and 2.7 mL distilled water and 3 mL of 

DPPH solution. The absorbance of the solution was measured against a distilled water blank after 4 h 

at 517 nm. The difference between the DPPH free radical scavenging activities of L/F300 and the 

control, expressed as a percentage of the control, was calculated for the aqueous fraction of the 

digestate (AF) and the transwell basolateral chamber media (TW) as follows: 

% theoretical cellular uptake of antioxidant compounds =  

[(AFL/F300 − AFmeatcontrol)/AFmeatcontrol) × 100] − [(TWL/F300 − TWmeatcontrol)/TWmeatcontrol) × 100] 
(4) 

where AFL/F300 = absorbance of aqueous fraction of the digestate L/F300; AFmeatcontrol = absorbance of 

aqueous fraction of the digestate meat control; TWL/F300 = absorbance of transwell basolateral chamber 

media following incubation of L/F300 with Caco-2 cells; TWmeatcontrol = absorbance of transwell basolateral 

chamber media following incubation of the meat control with Caco-2 cells. The difference in activity 

between AF and TW was attributed to theoretical uptake of antioxidant compounds by the Caco-2 cells. 

3.8. Statistical Analysis 

Each experiment was carried out three individual times. All analyses were performed in duplicate. 

The DPPH free radical scavenging activities of L, F and L/F, fresh and cooked LTL pork muscle, 

cooked LTL digestates and lipid oxidation mean values were analysed by one-way ANOVA. Means 

were considered significantly different at (p < 0.05) using Tukey’s post hoc test. A full repeated 

measures ANOVA was conducted to investigate the effects of L, F and L/F concentration and time on 

oxymyoglobin oxidation. L, F and L/F represented the “between-subjects” factor and the effect of time 
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was measured using the “within-subjects” factor. Tukey’s test was used to adjust for multiple 

comparisons between treatment means (p < 0.05). All analysis was carried out using the SPSS 18.0 for 

Windows (SPSS, Chicago, IL, USA) software package. 

4. Conclusions  

Due to the presence of sulphate groups and anionic charge, fucoidan is a more potent free radical 

scavenging antioxidant than laminarin. Furthermore fucoidan is at least, in part, responsible for the 

antioxidant activity observed by the L/F extract in previous studies. Fucoidan may be a potential 

natural antioxidant to enhance lipid stability in meat products. The antioxidant potential of fucoidan and 

the L/F extract is strongly influenced by the cooking and digestion processes. The L/F extract demonstrated 

superior antioxidant activity compared to fucoidan in minced LTL, after cooking and post digestion. The 

antioxidant compounds of the L/F extract were partially absorbed by Caco-2 cells confirming their 

bioaccessibility post digestion. Results demonstrate the potential for extracts containing fucoidan to 

enhance antioxidant activity of functional cooked meat products as well as contribute to human 

antioxidant defence systems. 
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